WorldWideScience

Sample records for meiotic sex chromosome

  1. Female meiotic sex chromosome inactivation in chicken.

    Directory of Open Access Journals (Sweden)

    Sam Schoenmakers

    2009-05-01

    Full Text Available During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW, whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  2. On the origin of sex chromosomes from meiotic drive

    Science.gov (United States)

    Úbeda, Francisco; Patten, Manus M.; Wild, Geoff

    2015-01-01

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins. PMID:25392470

  3. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation.

    Directory of Open Access Journals (Sweden)

    Colin D Meiklejohn

    2011-08-01

    Full Text Available The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation--the equalization of X chromosome gene expression in males and females--and meiotic sex chromosome inactivation (MSCI--the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.

  4. Caenorhabditis elegans histone methyltransferase MET-2 shields the male X chromosome from checkpoint machinery and mediates meiotic sex chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Paula M Checchi

    2011-09-01

    Full Text Available Meiosis is a specialized form of cellular division that results in the precise halving of the genome to produce gametes for sexual reproduction. Checkpoints function during meiosis to detect errors and subsequently to activate a signaling cascade that prevents the formation of aneuploid gametes. Indeed, asynapsis of a homologous chromosome pair elicits a checkpoint response that can in turn trigger germline apoptosis. In a heterogametic germ line, however, sex chromosomes proceed through meiosis with unsynapsed regions and are not recognized by checkpoint machinery. We conducted a directed RNAi screen in Caenorhabditis elegans to identify regulatory factors that prevent recognition of heteromorphic sex chromosomes as unpaired and uncovered a role for the SET domain histone H3 lysine 9 histone methyltransferase (HMTase MET-2 and two additional HMTases in shielding the male X from checkpoint machinery. We found that MET-2 also mediates the transcriptional silencing program of meiotic sex chromosome inactivation (MSCI but not meiotic silencing of unsynapsed chromatin (MSUC, suggesting that these processes are distinct. Further, MSCI and checkpoint shielding can be uncoupled, as double-strand breaks targeted to an unpaired, transcriptionally silenced extra-chromosomal array induce checkpoint activation in germ lines depleted for met-2. In summary, our data uncover a mechanism by which repressive chromatin architecture enables checkpoint proteins to distinguish between the partnerless male X chromosome and asynapsed chromosomes thereby shielding the lone X from inappropriate activation of an apoptotic program.

  5. Meiotic sex chromosome inactivation is disrupted in sterile hybrid male house mice.

    Science.gov (United States)

    Campbell, Polly; Good, Jeffrey M; Nachman, Michael W

    2013-03-01

    In male mammals, the X and Y chromosomes are transcriptionally silenced in primary spermatocytes by meiotic sex chromosome inactivation (MSCI) and remain repressed for the duration of spermatogenesis. Here, we test the longstanding hypothesis that disrupted MSCI might contribute to the preferential sterility of heterogametic hybrid males. We studied a cross between wild-derived inbred strains of Mus musculus musculus and M. m. domesticus in which sterility is asymmetric: F1 males with a M. m. musculus mother are sterile or nearly so while F1 males with a M. m. domesticus mother are normal. In previous work, we discovered widespread overexpression of X-linked genes in the testes of sterile but not fertile F1 males. Here, we ask whether this overexpression is specifically a result of disrupted MSCI. To do this, we isolated cells from different stages of spermatogenesis and measured the expression of several genes using quantitative PCR. We found that X overexpression in sterile F1 primary spermatocytes is coincident with the onset of MSCI and persists in postmeiotic spermatids. Using a series of recombinant X genotypes, we then asked whether X overexpression in hybrids is controlled by cis-acting loci across the X chromosome. We found that it is not. Instead, one large interval in the proximal portion of the M. m. musculus X chromosome is associated with both overexpression and the severity of sterility phenotypes in hybrids. These results demonstrate a strong association between X-linked hybrid male sterility and disruption of MSCI and suggest that trans-acting loci on the X are important for the transcriptional regulation of the X chromosome during spermatogenesis.

  6. Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Martina; Altmanová, M.; Kratochvíl, L.

    2014-01-01

    Roč. 22, č. 1 (2014), s. 35-44 ISSN 0967-3849 R&D Projects: GA ČR GAP506/10/0718 Institutional support: RVO:67985904 Keywords : amniota * centromere * heterogamety * neo-sex chromosomes * reptiles Subject RIV: EG - Zoology Impact factor: 2.478, year: 2014

  7. Meiotic recombination, synapsis, meiotic inactivation and sperm aneuploidy in a chromosome 1 inversion carrier.

    Science.gov (United States)

    Kirkpatrick, Gordon; Chow, Victor; Ma, Sai

    2012-01-01

    Disrupted meiotic behaviour of inversion carriers may be responsible for suboptimal sperm parameters in these carriers. This study investigated meiotic recombination, synapsis, transcriptional silencing and chromosome segregation effects in a pericentric inv(1) carrier. Recombination (MLH1), synapsis (SYCP1, SYCP3) and transcriptional inactivation (γH2AX, BRCA1) were examined by fluorescence immunostaining. Chromosome specific rates of recombination were determined by fluorescence in-situ hybridization. Furthermore, testicular sperm was examined for aneuploidy and segregation of the inv(1). Our findings showed that global recombination rates were similar to controls. Recombination on the inv(1) and the sex chromosomes were reduced. The inv(1) associated with the XY body in 43.4% of cells, in which XY recombination was disproportionately absent, and 94.3% of cells displayed asynapsed regions which displayed meiotic silencing regardless of their association with the XY body. Furthermore, a low frequency of chromosomal imbalance was observed in spermatozoa (3.4%). Our results suggest that certain inversion carriers may display unimpaired global recombination and impaired recombination on the involved and the sex chromosomes during meiosis. Asynapsis or inversion-loop formation in the inverted region may be responsible for impaired spermatogenesis and may prevent sperm-chromosome imbalance. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Heteromorphic Sex Chromosomes: Navigating Meiosis without a Homologous Partner

    OpenAIRE

    Checchi, Paula M.; Engebrecht, JoAnne

    2011-01-01

    Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have ...

  9. Chromosomal rearrangement interferes with meiotic X chromosome inactivation

    Czech Academy of Sciences Publication Activity Database

    Homolka, David; Ivánek, Robert; Čapková, Jana; Jansa, Petr; Forejt, Jiří

    2007-01-01

    Roč. 17, č. 10 (2007), s. 1431-1437 ISSN 1088-9051 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR GA301/06/1334; GA ČR GA301/07/1383 Grant - others:Howard Hughes Medical Institute(US) HHMI 55000306 Institutional research plan: CEZ:AV0Z50520514 Keywords : chromosomal translocations * meiotic X chromosome inactivation * spermatogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.224, year: 2007

  10. Meiotic transmission of Drosophila pseudoobscura chromosomal arrangements.

    Directory of Open Access Journals (Sweden)

    Richard P Meisel

    Full Text Available Drosophila pseudoobscura harbors a rich gene arrangement polymorphism on the third chromosome generated by a series of overlapping paracentric inversions. The arrangements suppress recombination in heterokaryotypic individuals, which allows for the selective maintenance of coadapted gene complexes. Previous mapping experiments used to determine the degree to which recombination is suppressed in gene arrangement heterozygotes produced non-recombinant progeny in non-Mendelian ratios. The deviations from Mendelian expectations could be the result of viability differences between wild and mutant chromosomes, meiotic drive because of achiasmate pairing of homologues in heterokaryotypic females during meiosis, or a combination of both mechanisms. The possibility that the frequencies of the chromosomal arrangements in natural populations are affected by mechanisms other than adaptive selection led us to consider these hypotheses. We performed reciprocal crosses involving both heterozygous males and females to determine if the frequency of the non-recombinant progeny deviates significantly from Mendelian expectations and if the frequencies deviate between reciprocal crosses. We failed to observe non-Mendelian ratios in multiple crosses, and the frequency of the non-recombinant classes differed in only one of five pairs of reciprocal crosses despite sufficient power to detect these differences in all crosses. Our results indicate that deviations from Mendelian expectations in recombination experiments involving the D. pseudoobscura inversion system are most likely due to fitness differences of gene arrangement karyotypes in different environments.

  11. Meiotic chromosome behaviour and sexual sterility in two Nigerian ...

    African Journals Online (AJOL)

    The behaviour of meiotic chromosomes and the subsequent behaviour of the meiotic products were investigated in two Nigerian species of Aloe, namely Aloe keayi and Aloe macrocarpa var major with a view to uncovering the cause of their inability to reproduce sexually. The two plant materials used in this study were ...

  12. Meiotic Chromosome Analysis of the Giant Water Bug, Lethocerus indicus

    Science.gov (United States)

    Wisoram, Wijit; Saengthong, Pradit; Ngernsiri, Lertluk

    2013-01-01

    The giant water bug, Lethocerus indicus (Lepeletier and Serville) (Heteroptera: Belostomatidae), a native species of Southeast Asia, is one of the largest insects belonging to suborder Heteroptera. In this study, the meiotic chromosome of L. indicus was studied in insect samples collected from Thailand, Myanmar, Loas, and Cambodia. Testicular cells stained with lacto-acetic orcein, Giemsa, DAPI, and silver nitrate were analyzed. The results revealed that the chromosome complement of L. indicus was 2n = 22A + neo-XY + 2m, which differed from that of previous reports. Each individual male contained testicular cells with three univalent patterns. The frequency of cells containing neo-XY chromosome univalent (∼5%) was a bit higher than that of cells with autosomal univalents (∼3%). Some cells (∼0.5%) had both sex chromosome univalents and a pair of autosomal univalents. None of the m-chromosome univalents were observed during prophase I. In addition, this report presents clear evidence about the existence of m-chromosomes in Belostomatidae. PMID:23895100

  13. Chromosome numbers and meiotic behavior of some Paspalum accessions

    Directory of Open Access Journals (Sweden)

    Eleniza de Victor Adamowski

    2005-12-01

    Full Text Available Chromosome number and meiotic behavior were evaluated in 36 Brazilian accessions of the grass Paspalum (which had never previously been analyzed to determinate which accessions might be useful in interspecific hybridizations. The analysis showed that one accession of Paspalum coryphaeum was diploid (2n = 2x = 20 and one accession of Paspalum conspersum hexaploid (2n = 6x = 60, the remaining 34 accessions being tetraploid (2n = 4x = 40. The pairing configuration was typical for the ploidy level i.e. in the diploid, chromosomes paired as 10 bivalents, in tetraploids as bi-, tri- and quadrivalents, and in hexaploid as 30 bivalents. A low frequency of meiotic abnormalities (less than 10% was observed in the diploid, hexaploid and some tetraploid accessions, although the majority of tetraploid accessions showed a high frequency of meiotic irregularities. The use of accessions with a low frequency of meiotic abnormalities in breeding programs is discussed.

  14. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis.

    Science.gov (United States)

    Phillips, Carolyn M; Wong, Chihunt; Bhalla, Needhi; Carlton, Peter M; Weiser, Pinky; Meneely, Philip M; Dernburg, Abby F

    2005-12-16

    The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X chromosome-specific defects in homolog pairing and synapsis. him-8 encodes a C2H2 zinc-finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as the meiotic pairing center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8 bound chromosome sites associate with the nuclear envelope (NE) throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient.

  15. Chromosome numbers and meiotic analysis in the pre-breeding of ...

    Indian Academy of Sciences (India)

    Among the diploid accessions, the rate of meiotic abnormalities was low, ranging from 0.82% to 7.93%. In the 27 tetraploid accessions, the rate of meiotic abnormalities ranged from 18.41% to 65.83%. The most common meiotic abnormalities were related to irregular chromosome segregation, but chromosome stickiness ...

  16. Why Do Sex Chromosomes Stop Recombining?

    Science.gov (United States)

    Ponnikas, Suvi; Sigeman, Hanna; Abbott, Jessica K; Hansson, Bengt

    2018-04-28

    It is commonly assumed that sex chromosomes evolve recombination suppression because selection favours linkage between sex-determining and sexually antagonistic genes. However, although the role of sexual antagonism during sex chromosome evolution has attained strong support from theory, experimental and observational evidence is rare or equivocal. Here, we highlight alternative, often neglected, hypotheses for recombination suppression on sex chromosomes, which invoke meiotic drive, heterozygote advantage, and genetic drift, respectively. We contrast the hypotheses, the situations when they are likely to be of importance, and outline why it is surprisingly difficult to test them. Lastly, we discuss future research directions (including modelling, population genomics, comparative approaches, and experiments) to disentangle the different hypotheses of sex chromosome evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Sexual antagonism and meiotic drive cause stable linkage disequilibrium and favour reduced recombination on the X chromosome.

    Science.gov (United States)

    Rydzewski, W T; Carioscia, S A; Liévano, G; Lynch, V D; Patten, M M

    2016-06-01

    Sexual antagonism and meiotic drive are sex-specific evolutionary forces with the potential to shape genomic architecture. Previous theory has found that pairing two sexually antagonistic loci or combining sexual antagonism with meiotic drive at linked autosomal loci augments genetic variation, produces stable linkage disequilibrium (LD) and favours reduced recombination. However, the influence of these two forces has not been examined on the X chromosome, which is thought to be enriched for sexual antagonism and meiotic drive. We investigate the evolution of the X chromosome under both sexual antagonism and meiotic drive with two models: in one, both loci experience sexual antagonism; in the other, we pair a meiotic drive locus with a sexually antagonistic locus. We find that LD arises between the two loci in both models, even when the two loci freely recombine in females and that driving haplotypes will be enriched for male-beneficial alleles, further skewing sex ratios in these populations. We introduce a new measure of LD, Dz', which accounts for population allele frequencies and is appropriate for instances where these are sex specific. Both models demonstrate that natural selection favours modifiers that reduce the recombination rate. These results inform observed patterns of congealment found on driving X chromosomes and have implications for patterns of natural variation and the evolution of recombination rates on the X chromosome. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  18. X-ray induction of mitotic and meiotic chromosome aberrations

    International Nuclear Information System (INIS)

    Yao, K.T.S.

    1980-01-01

    In 1964 six pairs of rat kangaroo (Potorous tridactylis) were obtained from Australia. The tissues of these animals were used to initiate cell lines. Since this species has a low chromosome number of six pairs, each pair with its own distinctive morphology, it is particularly favorable for cytogenetic research. In cell cultures derived from the corneal endothelial tissues of one animal there emerged a number of haploid cells. The number of haploid cells in the cultures reached as high as 20% of the total mitotic configurations. The in vitro diploid and haploid mixture cell cultures could be a resemblance or a coincidence to the mixture existence of the diploid primary spermatocytes and the haploid secondary spermatocytes (gametes) in the in vivo testicular tissues of the male animals. It would be interesting to compare reactions of the haploid and diploid cell mixture, either in the cultures or in the testes, to x-ray exposure. Two other studies involving x-ray effects on Chinese hamster oocyte maturation and meiotic chromosomes and the x-ray induction of Chinese hamster spermatocyte meiotic chromosome aberrations have been done in this laboratory. A review of these three studies involving diploid and haploid chromosomes may lead to further research in the x-ray induction of chromosome aberrations

  19. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis

    International Nuclear Information System (INIS)

    Phillips, Carolyn M.; Wong, Chihunt; Bhalla, Needhi; Carlton, Peter M.; Weiser, Pinky; Meneely, Philip M.; Dernburg, Abby F.

    2005-01-01

    The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X-chromosome-specific defects in homolog pairing and synapsis.him-8 encodes a C2H2 zinc finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as themeiotic Pairing Center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8-bound chromosome sites associate with the nuclear envelope (NE)throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient

  20. Sex chromosomes and speciation in Drosophila

    Science.gov (United States)

    Presgraves, Daven C.

    2010-01-01

    Two empirical rules suggest that sex chromosomes play a special role in speciation. The first is Haldane's rule— the preferential sterility and inviability of species hybrids of the heterogametic (XY) sex. The second is the disproportionately large effect of the X chromosome in genetic analyses of hybrid sterility. Whereas the causes of Haldane's rule are well established, the causes of the ‘large X-effect’ have remained controversial. New genetic analyses in Drosophila confirm that the X is a hotspot for hybrid male sterility factors, providing a proximate explanation for the large X-effect. Several other new findings— on faster X evolution, X chromosome meiotic drive, and the regulation of the X chromosome in the male-germline— provide plausible evolutionary explanations for the large X-effect. PMID:18514967

  1. Recombination Proteins Mediate Meiotic Spatial Chromosome Organization and Pairing

    Science.gov (United States)

    Storlazzi, Aurora; Gargano, Silvana; Ruprich-Robert, Gwenael; Falque, Matthieu; David, Michelle; Kleckner, Nancy; Zickler, Denise

    2010-01-01

    SUMMARY Meiotic chromosome pairing involves not only recognition of homology but also juxtaposition of entire chromosomes in a topologically regular way. Analysis of filamentous fungus Sordaria macrospora reveals that recombination proteins Mer3, Msh4 and Mlh1 play direct roles in all of these aspects, in advance of their known roles in recombination. Absence of Mer3 helicase results in interwoven chromosomes, thereby revealing the existence of features that specifically ensure “entanglement avoidance”. Entanglements that remain at zygotene, i.e. “interlockings”, require Mlh1 for resolution, likely to eliminate constraining recombinational connections. Patterns of Mer3 and Msh4 foci along aligned chromosomes show that the double-strand breaks mediating homologous alignment have spatially separated ends, one localized to each partner axis, and that pairing involves interference among developing interhomolog interactions. We propose that Mer3, Msh4 and Mlh1 execute all of these roles during pairing by modulating the state of nascent double-strand break/partner DNA contacts within axis-associated recombination complexes. PMID:20371348

  2. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica.

    Directory of Open Access Journals (Sweden)

    Nicolas Mary

    Full Text Available For the first time in the domestic pig, meiotic recombination along the 18 porcine autosomes was directly studied by immunolocalization of MLH1 protein. In total, 7,848 synaptonemal complexes from 436 spermatocytes were analyzed, and 13,969 recombination sites were mapped. Individual chromosomes for 113 of the 436 cells (representing 2,034 synaptonemal complexes were identified by immunostaining and fluorescence in situ hybridization (FISH. The average total length of autosomal synaptonemal complexes per cell was 190.3 µm, with 32.0 recombination sites (crossovers, on average, per cell. The number of crossovers and the lengths of the autosomal synaptonemal complexes showed significant intra- (i.e. between cells and inter-individual variations. The distributions of recombination sites within each chromosomal category were similar: crossovers in metacentric and submetacentric chromosomes were concentrated in the telomeric regions of the p- and q-arms, whereas two hotspots were located near the centromere and in the telomeric region of acrocentrics. Lack of MLH1 foci was mainly observed in the smaller chromosomes, particularly chromosome 18 (SSC18 and the sex chromosomes. All autosomes displayed positive interference, with a large variability between the chromosomes.

  3. Meiotic consequences of induced chromosomal anomalies in Triticum aestivum L

    International Nuclear Information System (INIS)

    Larik, A.S.; Hafiz, H.M.I.; Ansari, N.N.

    1981-01-01

    Investigations on the mechanism of chromosome breakages, types of aberrations and their genetic consequences form an integral part of the most of the studies on radiation genetics (BROCK 1977; KONZAK et al. 1977; LARIK 1975; SEARS 1977; SHARMA & FORSBEGR 1977), covering a wide range of plants belonging to both wild and cultivated species. Mutations due to deficiency of genes with a dominant or epistatic effect occur in very high frequency (MAC KEY 1968) because the well buffered genomes of polyploids can tolerate losses of large chromosome segments and even of entire chromosomes (LARIK 1978a; LARIK & THOMAS 1979; LARIK et al. 1980a). Extensive investigations on the effect of physical and chemical mutagens on the cytological behaviour of wheat and other plants have already been reported (GAUL 1977). However, cytological studies on the M 2 and M 3 populations are very limited (LARIK et al. 1980a). An attempt has been made in the present work to extend these studies. This paper presents an analysis of meiotic anomalies in M 3 populations of bread wheat and discusses their significance with reference to genetics and plant breeding

  4. Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division

    Science.gov (United States)

    Storlazzi, Aurora; Tessé, Sophie; Gargano, Silvana; James, Françoise; Kleckner, Nancy; Zickler, Denise

    2003-01-01

    Chromosomal processes related to formation and function of meiotic chiasmata have been analyzed in Sordaria macrospora. Double-strand breaks (DSBs), programmed or γ-rays-induced, are found to promote four major events beyond recombination and accompanying synaptonemal complex formation: (1) juxtaposition of homologs from long-distance interactions to close presynaptic coalignment at midleptotene; (2) structural destabilization of chromosomes at leptotene/zygotene, including sister axis separation and fracturing, as revealed in a mutant altered in the conserved, axis-associated cohesin-related protein Spo76/Pds5p; (3) exit from the bouquet stage, with accompanying global chromosome movements, at zygotene/pachytene (bouquet stage exit is further found to be a cell-wide regulatory transition and DSB transesterase Spo11p is suggested to have a new noncatalytic role in this transition); (4) normal occurrence of both meiotic divisions, including normal sister separation. Functional interactions between DSBs and the spo76-1 mutation suggest that Spo76/Pds5p opposes local destabilization of axes at developing chiasma sites and raise the possibility of a regulatory mechanism that directly monitors the presence of chiasmata at metaphase I. Local chromosome remodeling at DSB sites appears to trigger an entire cascade of chromosome movements, morphogenetic changes, and regulatory effects that are superimposed upon a foundation of DSB-independent processes. PMID:14563680

  5. Reduced polymorphism associated with X chromosome meiotic drive in the stalk-eyed fly Teleopsis dalmanni.

    Directory of Open Access Journals (Sweden)

    Sarah J Christianson

    Full Text Available Sex chromosome meiotic drive has been suggested as a cause of several evolutionary genetic phenomena, including genomic conflicts that give rise to reproductive isolation between new species. In this paper we present a population genetic analysis of X chromosome drive in the stalk-eyed fly, Teleopsis dalmanni, to determine how this natural polymorphism influences genetic diversity. We analyzed patterns of DNA sequence variation at two X-linked regions (comprising 1325 bp approximately 50 cM apart and one autosomal region (comprising 921 bp for 50 males, half of which were collected in the field from one of two allopatric locations and the other half were derived from lab-reared individuals with known brood sex ratios. These two populations are recently diverged but exhibit partial postzygotic reproductive isolation, i.e. crosses produce sterile hybrid males and fertile females. We find no nucleotide or microsatellite variation on the drive X chromosome, whereas the same individuals show levels of variation at autosomal regions that are similar to field-collected flies. Furthermore, one field-caught individual collected 10 years previously had a nearly identical X haplotype to the drive X, and is over 2% divergent from other haplotypes sampled from the field. These results are consistent with a selective sweep that has removed genetic variation from much of the drive X chromosome. We discuss how this finding may relate to the rapid evolution of postzygotic reproductive isolation that has been documented for these flies.

  6. Meiotic events in Oenothera - a non-standard pattern of chromosome behaviour.

    Science.gov (United States)

    Golczyk, Hieronim; Musiał, Krystyna; Rauwolf, Uwe; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan

    2008-11-01

    The genus Oenothera shows an intriguing extent of permanent translocation heterozygosity. Reciprocal translocations of chromosome arms in species or populations result in various kinds of chromosome multivalents in diakinesis. Early meiotic events conditioning such chromosome behaviour are poorly understood. We found a surprising uniformity of the leptotene-diplotene period, regardless of the chromosome configuration at diakinesis (ring of 14, 7 bivalents, mixture of bivalents and multivalents). It appears that the earliest chromosome interactions at Oenothera meiosis are untypical, since they involve pericentromeric regions. During early leptotene, proximal chromosome parts cluster and form a highly polarized Rabl configuration. Telomeres associated in pairs were seen at zygotene. The high degree of polarization of meiotic nuclei continues for an exceptionally long period, i.e., during zygotene-pachytene into the diplotene contraction stage. The Rabl-polarized meiotic architecture and clustering of pericentromeres suggest a high complexity of karyotypes, not only in structural heterozygotes but also in bivalent-forming homozygous species.

  7. Sex chromosome repeats tip the balance towards speciation.

    Science.gov (United States)

    O'Neill, Michael J; O'Neill, Rachel J

    2018-04-06

    Because sex chromosomes, by definition, carry genes that determine sex, mutations that alter their structural and functional stability can have immediate consequences for the individual by reducing fertility, but also for a species by altering the sex ratio. Moreover, the sex-specific segregation patterns of heteromorphic sex chromosomes make them havens for selfish genetic elements that not only create sub-optimal sex ratios, but can also foster sexual antagonism. Compensatory mutations to mitigate antagonism or return sex ratios to a Fisherian optimum can create hybrid incompatibility and establish reproductive barriers leading to species divergence. The destabilizing influence of these selfish elements is often manifest within populations as copy number variants (CNVs) in satellite repeats and transposable elements (TE) or as CNVs involving sex determining genes, or genes essential to fertility and sex chromosome dosage compensation. This review catalogs several examples of well-studied sex chromosome CNVs in Drosophilids and mammals that underlie instances of meiotic drive, hybrid incompatibility and disruptions to sex differentiation and sex chromosome dosage compensation. While it is difficult to pinpoint a direct cause/effect relationship between these sex chromosome CNVs and speciation, it is easy to see how their effects in creating imbalances between the sexes, and the compensatory mutations to restore balance, can lead to lineage splitting and species formation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids

    Czech Academy of Sciences Publication Activity Database

    Bhattacharyya, Tanmoy; Reifová, R.; Gregorová, Soňa; Šimeček, Petr; Gergelits, Václav; Mistrik, M.; Martincová, Iva; Piálek, Jaroslav; Forejt, Jiří

    2014-01-01

    Roč. 10, č. 2 (2014), e1004088 ISSN 1553-7404 R&D Projects: GA AV ČR Premium Academiae of the Academy of Sciences of the Czech Republic; GA MŠk(CZ) LD11079; GA ČR GA206/08/0640; GA MŠk ED1.1.00/02.0109 Institutional support: RVO:68081766 ; RVO:68378050 Keywords : hybrid sterility * meiotic asynapsis * chromosome substitution strains Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.167, year: 2013

  9. Transient and Partial Nuclear Lamina Disruption Promotes Chromosome Movement in Early Meiotic Prophase.

    Science.gov (United States)

    Link, Jana; Paouneskou, Dimitra; Velkova, Maria; Daryabeigi, Anahita; Laos, Triin; Labella, Sara; Barroso, Consuelo; Pacheco Piñol, Sarai; Montoya, Alex; Kramer, Holger; Woglar, Alexander; Baudrimont, Antoine; Markert, Sebastian Mathias; Stigloher, Christian; Martinez-Perez, Enrique; Dammermann, Alexander; Alsheimer, Manfred; Zetka, Monique; Jantsch, Verena

    2018-04-23

    Meiotic chromosome movement is important for the pairwise alignment of homologous chromosomes, which is required for correct chromosome segregation. Movement is driven by cytoplasmic forces, transmitted to chromosome ends by nuclear membrane-spanning proteins. In animal cells, lamins form a prominent scaffold at the nuclear periphery, yet the role lamins play in meiotic chromosome movement is unclear. We show that chromosome movement correlates with reduced lamin association with the nuclear rim, which requires lamin phosphorylation at sites analogous to those that open lamina network crosslinks in mitosis. Failure to remodel the lamina results in delayed meiotic entry, altered chromatin organization, unpaired or interlocked chromosomes, and slowed chromosome movement. The remodeling kinases are delivered to lamins via chromosome ends coupled to the nuclear envelope, potentially enabling crosstalk between the lamina and chromosomal events. Thus, opening the lamina network plays a role in modulating contacts between chromosomes and the nuclear periphery during meiosis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    Directory of Open Access Journals (Sweden)

    Maria Balcova

    2016-04-01

    Full Text Available Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm and Mus m. domesticus (Mmd, it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2 genomic locus on Chromosome X (Chr X by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s responsible for variation in the global recombination rate between closely related mouse subspecies.

  11. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    Science.gov (United States)

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-04-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.

  12. Colocalization of somatic and meiotic double strand breaks near the Myc oncogene on mouse chromosome 15.

    Science.gov (United States)

    Ng, Siemon H; Maas, Sarah A; Petkov, Petko M; Mills, Kevin D; Paigen, Kenneth

    2009-10-01

    Both somatic and meiotic recombinations involve the repair of DNA double strand breaks (DSBs) that occur at preferred locations in the genome. Improper repair of DSBs during either mitosis or meiosis can lead to mutations, chromosomal aberration such as translocations, cancer, and/or cell death. Currently, no model exists that explains the locations of either spontaneous somatic DSBs or programmed meiotic DSBs or relates them to each other. One common class of tumorigenic translocations arising from DSBs is chromosomal rearrangements near the Myc oncogene. Myc translocations have been associated with Burkitt lymphoma in humans, plasmacytoma in mice, and immunocytoma in rats. Comparing the locations of somatic and meiotic DSBs near the mouse Myc oncogene, we demonstrated that the placement of these DSBs is not random and that both events clustered in the same short discrete region of the genome. Our work shows that both somatic and meiotic DSBs tend to occur in proximity to each other within the Myc region, suggesting that they share common originating features. It is likely that some regions of the genome are more susceptible to both somatic and meiotic DSBs, and the locations of meiotic hotspots may be an indicator of genomic regions more susceptible to DNA damage. (c) 2009 Wiley-Liss, Inc.

  13. Sex chromosomes in Ephestia kuehniella

    Czech Academy of Sciences Publication Activity Database

    Marec, František; Sahara, K.; Traut, W.

    2001-01-01

    Roč. 44, č. 1 (2001), s. 131 ISSN 0003-3995. [European Cytogenetics Conference /3./. 07.07.2001-10.07.2001, Paris] Institutional research plan: CEZ:AV0Z5007907 Keywords : Telomere * sex chromosomes * chromosome fragments Subject RIV: EB - Genetics ; Molecular Biology

  14. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.

    Directory of Open Access Journals (Sweden)

    Tanmoy Bhattacharyya

    2014-02-01

    Full Text Available Hybrid sterility (HS belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.

  15. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.

    Science.gov (United States)

    Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri

    2014-02-01

    Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm) allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.

  16. X Chromosome Control of Meiotic Chromosome Synapsis in Mouse Inter-Subspecific Hybrids

    Science.gov (United States)

    Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri

    2014-01-01

    Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes. PMID:24516397

  17. Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses.

    Science.gov (United States)

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-03-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.

  18. Meiotic drive on aberrant chromosome 1 in the mouse is determined by a linked distorter.

    Science.gov (United States)

    Agulnik, S I; Sabantsev, I D; Orlova, G V; Ruvinsky, A O

    1993-04-01

    An aberrant chromosome 1 carrying an inverted fragment with two amplified DNA regions was isolated from wild populations of Mus musculus. Meiotic drive favouring the aberrant chromosome was demonstrated for heterozygous females. Its cause was preferential passage of aberrant chromosome 1 to the oocyte. Genetic analysis allowed us to identify a two-component system conditioning deviation from equal segregation of the homologues. The system consists of a postulated distorter and responder. The distorter is located on chromosome 1 distally to the responder, between the ln and Pep-3 genes, and it acts on the responder when in trans position. Polymorphism of the distorters was manifested as variation in their effect on meiotic drive level in the laboratory strain and mice from wild populations.

  19. Nested Inversion Polymorphisms Predispose Chromosome 22q11.2 to Meiotic Rearrangements

    NARCIS (Netherlands)

    Demaerel, Wolfram; Hestand, Matthew S.; Vergaelen, Elfi; Swillen, Ann; López-Sánchez, Marcos; Pérez-Jurado, Luis A.; McDonald-Mcginn, Donna M.; Zackai, Elaine; Emanuel, Beverly S.; Morrow, Bernice E.; Breckpot, Jeroen; Devriendt, Koenraad; Vermeesch, Joris R.; Antshel, Kevin M.; Arango, Celso; Armando, Marco; Bassett, Anne S.; Bearden, Carrie E.; Boot, Erik; Bravo-Sanchez, Marta; Breetvelt, Elemi; Busa, Tiffany; Butcher, Nancy J.; Campbell, Linda E.; Carmel, Miri; Chow, Eva W C; Crowley, T. Blaine; Cubells, Joseph; Cutler, David; Demaerel, Wolfram; Digilio, Maria Cristina; Duijff, Sasja; Eliez, Stephan; Emanuel, Beverly S.; Epstein, Michael P.; Evers, Rens; Fernandez Garcia-Moya, Luis; Fiksinski, Ania; Fraguas, David; Fremont, Wanda; Fritsch, Rosemarie; Garcia-Minaur, Sixto; Golden, Aaron; Gothelf, Doron; Guo, Tingwei; Gur, Ruben C.; Gur, Raquel E.; Heine-Suner, Damian; Hestand, Matthew; Hooper, Stephen R.; Kates, Wendy R.; Kushan, Leila; Laorden-Nieto, Alejandra; Maeder, Johanna; Marino, Bruno; Marshall, Christian R.; McCabe, Kathryn; McDonald-Mcginn, Donna M.; Michaelovosky, Elena; Morrow, Bernice E.; Moss, Edward; Mulle, Jennifer; Murphy, Declan; Murphy, Kieran C.; Murphy, Clodagh M.; Niarchou, Maria; Ornstein, Claudia; Owen, Michael J; Philip, Nicole; Repetto, Gabriela M.; Schneider, Maude; Shashi, Vandana; Simon, Tony J.; Swillen, Ann; Tassone, Flora; Unolt, Marta; Van Amelsvoort, Therese; van den Bree, Marianne B M; Van Duin, Esther; Vergaelen, Elfi; Vermeesch, Joris R.; Vicari, Stefano; Vingerhoets, Claudia; Vorstman, Jacob; Warren, Steve; Weinberger, Ronnie; Weisman, Omri; Weizman, Abraham; Zackai, Elaine; Zhang, Zhengdong; Zwick, Michael

    2017-01-01

    Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have

  20. Meiotic chromosome behaviours in M1 generation of bread wheat irradiated by gamma-rays

    International Nuclear Information System (INIS)

    Watanabe, Y.; Takato, S.

    1982-01-01

    Growing plants of bread wheat (Triticum aestivum L. 2 n=6x=42, AABBDD) were subjected to acute or chronic irradiation by gamma-rays from 60Co and meiotic chromosome behaviours of PMCS in M 1 generation were cytologically compared. Both acute and chronic irradiations produced different types of chromosomal aberrations at the meiotic stages. Among them, translocation type was the most frequent, followed by univalent type. A mixed type, i. e. translocation accompanying one or more univalents was often detected. Even normal type which lacked translocation and univalent included laggards and briclges without exception. Other meiotic abnormalities such as deletion, iso-chromosome and micronuclei were observed frequently in both treatments. Dose dependency of translocation frequency was not recognized in this experiment. In chronic irradiation, different chromosome numbers and meiotic behaviours were found not only among florets of a spike but also among anthers of a floret. A number of plants with aneuploid-like grass types occurred at a high frequency in M 1 , especially with low exposure

  1. Mitotic and meiotic chromosomes of a southern Brazilian population of Boophilus microplus (Acari, Ixodidae

    Directory of Open Access Journals (Sweden)

    Rosane Nunes Garcia

    Full Text Available Using conventional staining with acetic orcein and C-banding techniques it was investigated constitutive heterochromatin chromosomal polymorphisms and the mitotic and the meiotic behavior of male and female chromosomes of Boophilus microplus (Canestrini, 1887. Some differences were detected in the population of southern Brazil as compared to the data of other authors for populations in other latitudes. The differences being mainly concerned with the distribution of constitutive centromeric heterochromatin and variation in the length of heterochromatic blocks in the pericentromeric regions of some chromosome pairs.

  2. Local and sex-specific biases in crossover vs. noncrossover outcomes at meiotic recombination hot spots in mice

    Science.gov (United States)

    de Boer, Esther; Jasin, Maria; Keeney, Scott

    2015-01-01

    Meiotic recombination initiated by programmed double-strand breaks (DSBs) yields two types of interhomolog recombination products, crossovers and noncrossovers, but what determines whether a DSB will yield a crossover or noncrossover is not understood. In this study, we analyzed the influence of sex and chromosomal location on mammalian recombination outcomes by constructing fine-scale recombination maps in both males and females at two mouse hot spots located in different regions of the same chromosome. These include the most comprehensive maps of recombination hot spots in oocytes to date. One hot spot, located centrally on chromosome 1, behaved similarly in male and female meiosis: Crossovers and noncrossovers formed at comparable levels and ratios in both sexes. In contrast, at a distal hot spot, crossovers were recovered only in males even though noncrossovers were obtained at similar frequencies in both sexes. These findings reveal an example of extreme sex-specific bias in recombination outcome. We further found that estimates of relative DSB levels are surprisingly poor predictors of relative crossover frequencies between hot spots in males. Our results demonstrate that the outcome of mammalian meiotic recombination can be biased, that this bias can vary depending on location and cellular context, and that DSB frequency is not the only determinant of crossover frequency. PMID:26251527

  3. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Cloutier

    2015-10-01

    Full Text Available Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX. We find that DNA double-strand break (DSB foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities.

  4. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals

    Science.gov (United States)

    Cloutier, Jeffrey M.; Mahadevaiah, Shantha K.; ElInati, Elias; Nussenzweig, André; Tóth, Attila; Turner, James M. A.

    2015-01-01

    Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO) and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX). We find that DNA double-strand break (DSB) foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX) levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities. PMID:26509888

  5. DNMT3L is a regulator of X chromosome compaction and post-meiotic gene transcription.

    Directory of Open Access Journals (Sweden)

    Natasha M Zamudio

    Full Text Available Previous studies on the epigenetic regulator DNA methyltransferase 3-Like (DNMT3L, have demonstrated it is an essential regulator of paternal imprinting and early male meiosis. Dnmt3L is also a paternal effect gene, i.e., wild type offspring of heterozygous mutant sires display abnormal phenotypes suggesting the inheritance of aberrant epigenetic marks on the paternal chromosomes. In order to reveal the mechanisms underlying these paternal effects, we have assessed X chromosome meiotic compaction, XY chromosome aneuploidy rates and global transcription in meiotic and haploid germ cells from male mice heterozygous for Dnmt3L. XY bodies from Dnmt3L heterozygous males were significantly longer than those from wild types, and were associated with a three-fold increase in XY bearing sperm. Loss of a Dnmt3L allele resulted in deregulated expression of a large number of both X-linked and autosomal genes within meiotic cells, but more prominently in haploid germ cells. Data demonstrate that similar to embryonic stem cells, DNMT3L is involved in an auto-regulatory loop in germ cells wherein the loss of a Dnmt3L allele resulted in increased transcription from the remaining wild type allele. In contrast, however, within round spermatids, this auto-regulatory loop incorporated the alternative non-coding alternative transcripts. Consistent with the mRNA data, we have localized DNMT3L within spermatids and sperm and shown that the loss of a Dnmt3L allele results in a decreased DNMT3L content within sperm. These data demonstrate previously unrecognised roles for DNMT3L in late meiosis and in the transcriptional regulation of meiotic and post-meiotic germ cells. These data provide a potential mechanism for some cases of human Klinefelter's and Turner's syndromes.

  6. Eccentric localization of catalase to protect chromosomes from oxidative damages during meiotic maturation in mouse oocytes.

    Science.gov (United States)

    Park, Yong Seok; You, Seung Yeop; Cho, Sungrae; Jeon, Hyuk-Joon; Lee, Sukchan; Cho, Dong-Hyung; Kim, Jae-Sung; Oh, Jeong Su

    2016-09-01

    The maintenance of genomic integrity and stability is essential for the survival of every organism. Unfortunately, DNA is vulnerable to attack by a variety of damaging agents. Oxidative stress is a major cause of DNA damage because reactive oxygen species (ROS) are produced as by-products of normal cellular metabolism. Cells have developed eloquent antioxidant defense systems to protect themselves from oxidative damage along with aerobic metabolism. Here, we show that catalase (CAT) is present in mouse oocytes to protect the genome from oxidative damage during meiotic maturation. CAT was expressed in the nucleus to form unique vesicular structures. However, after nuclear envelope breakdown, CAT was redistributed in the cytoplasm with particular focus at the chromosomes. Inhibition of CAT activity increased endogenous ROS levels, but did not perturb meiotic maturation. In addition, CAT inhibition produced chromosomal defects, including chromosome misalignment and DNA damage. Therefore, our data suggest that CAT is required not only to scavenge ROS, but also to protect DNA from oxidative damage during meiotic maturation in mouse oocytes.

  7. Modulation of Prdm9-controlled meiotic chromosome asynapsis overrides hybrid sterility in mice.

    Science.gov (United States)

    Gregorova, Sona; Gergelits, Vaclav; Chvatalova, Irena; Bhattacharyya, Tanmoy; Valiskova, Barbora; Fotopulosova, Vladana; Jansa, Petr; Wiatrowska, Diana; Forejt, Jiri

    2018-03-14

    Hybrid sterility is one of the reproductive isolation mechanisms leading to speciation. Prdm9 , the only known vertebrate hybrid-sterility gene, causes failure of meiotic chromosome synapsis and infertility in male hybrids that are the offspring of two mouse subspecies. Within species, Prdm9 determines the sites of programmed DNA double-strand breaks (DSBs) and meiotic recombination hotspots. To investigate the relation between Prdm9 -controlled meiotic arrest and asynapsis, we inserted random stretches of consubspecific homology on several autosomal pairs in sterile hybrids, and analyzed their ability to form synaptonemal complexes and to rescue male fertility. Twenty-seven or more megabases of consubspecific (belonging to the same subspecies) homology fully restored synapsis in a given autosomal pair, and we predicted that two or more DSBs within symmetric hotspots per chromosome are necessary for successful meiosis. We hypothesize that impaired recombination between evolutionarily diverged chromosomes could function as one of the mechanisms of hybrid sterility occurring in various sexually reproducing species. © 2018, Gregorova et al.

  8. Sexually antagonistic "zygotic drive" of the sex chromosomes.

    Directory of Open Access Journals (Sweden)

    William R Rice

    2008-12-01

    Full Text Available Genomic conflict is perplexing because it causes the fitness of a species to decline rather than improve. Many diverse forms of genomic conflict have been identified, but this extant tally may be incomplete. Here, we show that the unusual characteristics of the sex chromosomes can, in principle, lead to a previously unappreciated form of sexual genomic conflict. The phenomenon occurs because there is selection in the heterogametic sex for sex-linked mutations that harm the sex of offspring that does not carry them, whenever there is competition among siblings. This harmful phenotype can be expressed as an antagonistic green-beard effect that is mediated by epigenetic parental effects, parental investment, and/or interactions among siblings. We call this form of genomic conflict sexually antagonistic "zygotic drive", because it is functionally equivalent to meiotic drive, except that it operates during the zygotic and postzygotic stages of the life cycle rather than the meiotic and gametic stages. A combination of mathematical modeling and a survey of empirical studies is used to show that sexually antagonistic zygotic drive is feasible, likely to be widespread in nature, and that it can promote a genetic "arms race" between the homo- and heteromorphic sex chromosomes. This new category of genomic conflict has the potential to strongly influence other fundamental evolutionary processes, such as speciation and the degeneration of the Y and W sex chromosomes. It also fosters a new genetic hypothesis for the evolution of enigmatic fitness-reducing traits like the high frequency of spontaneous abortion, sterility, and homosexuality observed in humans.

  9. Meiotic sex ratio variation in natural populations of Ceratodon purpureus (Ditrichaceae).

    Science.gov (United States)

    Norrell, Tatum E; Jones, Kelly S; Payton, Adam C; McDaniel, Stuart F

    2014-09-01

    Sex ratio variation is a common but often unexplained phenomenon in species across the tree of life. Here we evaluate the hypothesis that meiotic sex ratio variation can contribute to the biased sex ratios found in natural populations of the moss Ceratodon purpureus.• We obtained sporophytes from several populations of C. purpureus from eastern North America. From each sporophyte, we estimated the mean spore viability by germinating replicate samples on agar plates. We estimated the meiotic sex ratio of each sporophyte by inferring the sex of a random sample of germinated spores (mean = 77) using a PCR-RFLP test. We tested for among-sporophyte variation in viability using an ANOVA and for deviations from 1:1 sex ratio using a χ(2)-test and evaluated the relationship between these quantities using a linear regression.• We found among-sporophyte variation in spore viability and meiotic sex ratio, suggesting that genetic variants that contribute to variation in both of these traits segregate within populations of this species. However, we found no relationship between these quantities, suggesting that factors other than sex ratio distorters contribute to variation in spore viability within populations.• These results demonstrate that sex ratio distortion may partially explain the population sex ratio variation seen in C. purpureus, but more generally that genetic conflict over meiotic segregation may contribute to fitness variation in this species. Overall, this study lays the groundwork for future studies on the genetic basis of meiotic sex ratio variation. © 2014 Botanical Society of America, Inc.

  10. Chromosomes and their meiotic behaviour in two species of Dieuches Dohrn, 1860 (Heteroptera: Lygaeidae: Rhyparochromini

    Directory of Open Access Journals (Sweden)

    Harbhajan Kaur

    2009-08-01

    Full Text Available The Lygaeidae (Heteroptera are a large and diverse family in which the male diploid chromosomal complement ranges from 10 to 30. Diploid numbers of 14 and 16 are taken as two modal numbers of the family. The Rhyparochrominae, one of the largest subfamilies of the Lygaeidae, are known to be heterogeneous both cytologically and morphologically. Available data on the tribe Rhyparochromini reveal that all species are characterized by the presence of a pair of microchromosomes (m-chromosomes and have an XY/XX (♂/♀ sex chromosome determining system. Dieuches coloratus (Distant, 1909 and D. insignis (Distant, 1918 belonging to Rhyparochromini, have 2n=14=10A+2m+XY and 2n=12=8A+2m+XY respectively. Both the species are similar inone pair of distinctly large autosomes in their chromosome complements. The metaphase plate arrangement of autosomes, sex chromosomes and m-chromosomes in D. coloratus is similar to the common condition observed in the tribe Rhyparochromini. In D. insignis, however, the arrangement is different. Here, metaphase I is usual in showing peripheral position of autosomes and central position of sex chromosomes and m-chromosomes. At metaphase II, however, autosomes, sex chromosomes and m-chromosomes are peripherally placed, an arrangement, which is not reported earlier in the tribe Rhyparochromini.

  11. The Phosphatase Dusp7 Drives Meiotic Resumption and Chromosome Alignment in Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    Thomas Tischer

    2016-10-01

    Full Text Available Mammalian oocytes are stored in the ovary, where they are arrested in prophase for prolonged periods. The mechanisms that abrogate the prophase arrest in mammalian oocytes and reinitiate meiosis are not well understood. Here, we identify and characterize an essential pathway for the resumption of meiosis that relies on the protein phosphatase DUSP7. DUSP7-depleted oocytes either fail to resume meiosis or resume meiosis with a significant delay. In the absence of DUSP7, Cdk1/CycB activity drops below the critical level required to reinitiate meiosis, precluding or delaying nuclear envelope breakdown. Our data suggest that DUSP7 drives meiotic resumption by dephosphorylating and thereby inactivating cPKC isoforms. In addition to controlling meiotic resumption, DUSP7 has a second function in chromosome segregation: DUSP7-depleted oocytes that enter meiosis show severe chromosome alignment defects and progress into anaphase prematurely. Altogether, these findings establish the phosphatase DUSP7 as an essential regulator of multiple steps in oocyte meiosis.

  12. Nested Inversion Polymorphisms Predispose Chromosome 22q11.2 to Meiotic Rearrangements.

    Science.gov (United States)

    Demaerel, Wolfram; Hestand, Matthew S; Vergaelen, Elfi; Swillen, Ann; López-Sánchez, Marcos; Pérez-Jurado, Luis A; McDonald-McGinn, Donna M; Zackai, Elaine; Emanuel, Beverly S; Morrow, Bernice E; Breckpot, Jeroen; Devriendt, Koenraad; Vermeesch, Joris R

    2017-10-05

    Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have been uncovered as of yet. Using fiber-FISH, we demonstrate that parents transmitting the de novo 3 Mb LCR22A-D 22q11.2 deletion, the reciprocal duplication, and the smaller 1.5 Mb LCR22A-B 22q11.2 deletion carry inversions of LCR22B-D or LCR22C-D. Hence, the inversions predispose chromosome 22q11.2 to meiotic rearrangements and increase the individual risk for transmitting rearrangements. Interestingly, the inversions are nested or flanking rather than coinciding with the deletion or duplication sizes. This finding raises the possibility that inversions are a prerequisite not only for 22q11.2 rearrangements but also for all NAHR-mediated genomic disorders. Copyright © 2017. Published by Elsevier Inc.

  13. Conservation of sex chromosomes in lacertid lizards

    Czech Academy of Sciences Publication Activity Database

    Rovatsos, M.; Vukič, J.; Altmanová, M.; Johnson Pokorná, Martina; Moravec, J.; Kratochvíl, L.

    2016-01-01

    Roč. 25, č. 13 (2016), s. 3120-3126 ISSN 0962-1083 Institutional support: RVO:67985904 Keywords : lizards * molecular sex ing * reptiles * sex chromosomes Subject RIV: EG - Zoology Impact factor: 6.086, year: 2016

  14. Autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast.

    Science.gov (United States)

    Matsuhara, Hirotada; Yamamoto, Ayumu

    2016-01-01

    Autophagy is a conserved intracellular degradation system, which contributes to development and differentiation of various organisms. Yeast cells undergo meiosis under nitrogen-starved conditions and require autophagy for meiosis initiation. However, the precise roles of autophagy in meiosis remain unclear. Here, we show that autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast. Autophagy-defective strains bearing a mutation in the autophagy core factor gene atg1, atg7, or atg14 exhibit deformed nuclear structures during meiosis. These mutant cells require an extracellular nitrogen supply for meiosis progression following their entry into meiosis and show delayed meiosis progression even with a nitrogen supply. In addition, they show frequent chromosome dissociation from the spindle together with spindle overextension, forming extra nuclei. Furthermore, Aurora kinase, which regulates chromosome segregation and spindle elongation, is significantly increased at the centromere and spindle in the mutant cells. Aurora kinase down-regulation eliminated delayed initiation of meiosis I and II, chromosome dissociation, and spindle overextension, indicating that increased Aurora kinase activity may cause these aberrances in the mutant cells. Our findings show a hitherto unrecognized relationship of autophagy with the nuclear structure, regulation of cell cycle progression, and chromosome segregation in meiosis. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  15. Meiotic inheritance of a fungal supernumerary chromosome and its effect on sexual fertility in Nectria haematococca.

    Science.gov (United States)

    Garmaroodi, Hamid S; Taga, Masatoki

    2015-10-01

    PDA1-conditionally dispensable chromosome (CDC) of Nectria haematococca MP VI has long served as a model of supernumerary chromosomes in plant pathogenic fungi because of pathogenicity-related genes located on it. In our previous study, we showed the dosage effects of PDA1-CDC on pathogenicity and homoserine utilization by exploiting tagged PDA1-CDC with a marker gene. CDC content of mating partners and progenies analyzed by PCR, PFGE combined with Southern analysis and chromosome painting via FISH. In this study, we analyzed mode of meiotic inheritance of PDA1-CDC in several mating patterns with regard to CDC content and found a correlation between CDC content of parental strains with fertility of crosses. The results showed non-Mendelian inheritance of this chromosome followed by duplication or loss of the CDC in haploid genome through meiosis that probably were due to premature centromere division, not by nondisjunction as reported for the supernumerary chromosomes in other species. Correlation of CDC with fertility is the first time to be examined in fungi in this study. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers.

    Directory of Open Access Journals (Sweden)

    Christophe Lambing

    2015-07-01

    Full Text Available Meiotic chromosomes are organized into linear looped chromatin arrays by a protein axis localized along the loop-bases. Programmed remodelling of the axis occurs during prophase I of meiosis. Structured illumination microscopy (SIM has revealed dynamic changes in the chromosome axis in Arabidopsis thaliana and Brassica oleracea. We show that the axis associated protein ASY1 is depleted during zygotene concomitant with synaptonemal complex (SC formation. Study of an Atpch2 mutant demonstrates this requires the conserved AAA+ ATPase, PCH2, which localizes to the sites of axis remodelling. Loss of PCH2 leads to a failure to deplete ASY1 from the axes and compromizes SC polymerisation. Immunolocalization of recombination proteins in Atpch2 indicates that recombination initiation and CO designation during early prophase I occur normally. Evidence suggests that CO interference is initially functional in the mutant but there is a defect in CO maturation following designation. This leads to a reduction in COs and a failure to form COs between some homologous chromosome pairs leading to univalent chromosomes at metaphase I. Genetic analysis reveals that CO distribution is also affected in some chromosome regions. Together these data indicate that the axis remodelling defect in Atpch2 disrupts normal patterned formation of COs.

  17. Abnormal sex chromosome constitution and longitudinal growth

    DEFF Research Database (Denmark)

    Aksglaede, Lise; Skakkebaek, Niels E; Juul, Anders

    2008-01-01

    Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles.......Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles....

  18. ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing

    NARCIS (Netherlands)

    Royo, Hélène; Prosser, Haydn; Ruzankina, Yaroslava; Mahadevaiah, Shantha K.; Cloutier, Jeffrey M.; Baumann, Marek; Fukuda, Tomoyuki; Höög, Christer; Tóth, Attila; de Rooij, Dirk G.; Bradley, Allan; Brown, Eric J.; Turner, James M. A.

    2013-01-01

    In mammals, homologs that fail to synapse during meiosis are transcriptionally inactivated. This process, meiotic silencing, drives inactivation of the heterologous XY bivalent in male germ cells (meiotic sex chromosome inactivation [MSCI]) and is thought to act as a meiotic surveillance mechanism.

  19. Translocations of Chromosome End-Segments and Facultative Heterochromatin Promote Meiotic Ring Formation in Evening Primroses[W][OPEN

    Science.gov (United States)

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-01-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories. PMID:24681616

  20. To Break or Not To Break: Sex Chromosome Hemizygosity During Meiosis in Caenorhabditis.

    Science.gov (United States)

    Van, Mike V; Larson, Braden J; Engebrecht, JoAnne

    2016-11-01

    Meiotic recombination establishes connections between homologous chromosomes to promote segregation. Hemizygous regions of sex chromosomes have no homologous chromosome to recombine with, yet must be transmitted through meiosis. An extreme case of hemizygosity exists in the genus Caenorhabditis, where males have a single X chromosome that completely lacks a homologous partner. To determine whether similar strategies have evolved to accommodate hemizygosity of the X during male meiosis in Caenorhabditis with distinct modes of sexual reproduction, we examined induction and processing of meiotic double strand breaks (DSBs) in androdioecious (hermaphrodite/male) Caenorhabditis elegans and C. briggsae, and gonochoristic (female/male) C. remanei and C. brenneri Analysis of the recombinase RAD-51 suggests more meiotic DSBs are induced in gonochoristic vs. androdioecious species. However, in late prophase in all species, chromosome pairs are restructured into bivalents around a single axis, suggesting that the holocentric nature of Caenorhabditis chromosomes dictates a single crossover per bivalent regardless of the number of DSBs induced. Interestingly, RAD-51 foci were readily observed on the X chromosome of androdioecious male germ cells, while very few were detected in gonochoristic male germ cells. As in C. elegans, the X chromosome in C. briggsae male germ cells undergoes transient pseudosynapsis and flexibility in DSB repair pathway choice. In contrast, in C. remanei and C. brenneri male germ cells, the X chromosome does not undergo pseudosynapsis and appears refractory to SPO-11-induced breaks. Together our results suggest that distinct strategies have evolved to accommodate sex chromosome hemizygosity during meiosis in closely related Caenorhabditis species. Copyright © 2016 by the Genetics Society of America.

  1. New Y chromosomes and early stages of sex chromosome ...

    Indian Academy of Sciences (India)

    2010-09-06

    Sep 6, 2010 ... chromosomes are evolutionary consequences of that func- tion. Given sufficient ... (for a review, see Charlesworth et al. 2005). ... In the present paper, I review sex deter- mination .... part had apparently been exchanged against the homologous ... age group III-Y chromosomes were successful while in well-.

  2. Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction.

    Science.gov (United States)

    Tessé, Sophie; Bourbon, Henri-Marc; Debuchy, Robert; Budin, Karine; Dubois, Emeline; Liangran, Zhang; Antoine, Romain; Piolot, Tristan; Kleckner, Nancy; Zickler, Denise; Espagne, Eric

    2017-09-15

    Meiosis is the cellular program by which a diploid cell gives rise to haploid gametes for sexual reproduction. Meiotic progression depends on tight physical and functional coupling of recombination steps at the DNA level with specific organizational features of meiotic-prophase chromosomes. The present study reveals that every step of this coupling is mediated by a single molecule: Asy2/Mer2. We show that Mer2, identified so far only in budding and fission yeasts, is in fact evolutionarily conserved from fungi (Mer2/Rec15/Asy2/Bad42) to plants (PRD3/PAIR1) and mammals (IHO1). In yeasts, Mer2 mediates assembly of recombination-initiation complexes and double-strand breaks (DSBs). This role is conserved in the fungus Sordaria However, functional analysis of 13 mer2 mutants and successive localization of Mer2 to axis, synaptonemal complex (SC), and chromatin revealed, in addition, three further important functions. First, after DSB formation, Mer2 is required for pairing by mediating homolog spatial juxtaposition, with implications for crossover (CO) patterning/interference. Second, Mer2 participates in the transfer/maintenance and release of recombination complexes to/from the SC central region. Third, after completion of recombination, potentially dependent on SUMOylation, Mer2 mediates global chromosome compaction and post-recombination chiasma development. Thus, beyond its role as a recombinosome-axis/SC linker molecule, Mer2 has important functions in relation to basic chromosome structure. © 2017 Tessé et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Meiotic Studies on Combinations of Chromosomes With Different Sized Centromeres in Maize

    Directory of Open Access Journals (Sweden)

    Fangpu Han

    2018-06-01

    Full Text Available Multiple centromere misdivision derivatives of a translocation between the supernumerary B chromosome and the short arm of chromosome 9 (TB-9Sb permit investigation of how centromeres of different sizes behave in meiosis in opposition or in competition with each other. In the first analysis, heterozygotes were produced between the normal TB-9Sb and derivatives of it that resulted from centromere misdivision that reduced the amounts of centromeric DNA. These heterozygotes could test whether these drastic differences would result in meiotic drive of the larger chromosome in female meiosis. Cytological determinations of the segregation of large and small centromeres among thousands of progeny of four combinations were made. The recovery of the larger centromere was at a few percent higher frequency in two of four combinations. However, examination of phosphorylated histone H2A-Thr133, a characteristic of active centromeres, showed a lack of correlation with the size of the centromeric DNA, suggesting an expansion of the basal protein features of the kinetochore in two of the three cases despite the reduction in the size of the underlying DNA. In the second analysis, plants containing different sizes of the B chromosome centromere were crossed to plants with TB-9Sb with a foldback duplication of 9S (TB-9Sb-Dp9. In the progeny, plants containing large and small versions of the B chromosome centromere were selected by FISH. A meiotic “tug of war” occurred in hybrid combinations by recombination between the normal 9S and the foldback duplication in those cases in which pairing occurred. Such pairing and recombination produce anaphase I bridges but in some cases the large and small centromeres progressed to the same pole. In one combination, new dicentric chromosomes were found in the progeny. Collectively, the results indicate that the size of the underlying DNA of a centromere does not dramatically affect its segregation properties or its ability

  4. Temporal genomic evolution of bird sex chromosomes

    DEFF Research Database (Denmark)

    Wang, Zongji; Zhang, Jilin; Yang, Wei

    2014-01-01

    BACKGROUND: Sex chromosomes exhibit many unusual patterns in sequence and gene expression relative to autosomes. Birds have evolved a female heterogametic sex system (male ZZ, female ZW), through stepwise suppression of recombination between chrZ and chrW. To address the broad patterns and complex...... driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes. RESULTS: We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous...... ('fast-Z' evolution). And species with a lower level of intronic heterozygosities tend to evolve even faster on the Z chromosome. Further analysis of fast-evolving genes' enriched functional categories and sex-biased expression patterns support that, fast-Z evolution in birds is mainly driven by genetic...

  5. Evolutionary stability of sex chromosomes in snakes.

    Science.gov (United States)

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-12-22

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. © 2015 The Author(s).

  6. Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects.

    Science.gov (United States)

    Blackmon, Heath; Ross, Laura; Bachtrog, Doris

    2017-01-01

    Insects harbor a tremendous diversity of sex determining mechanisms both within and between groups. For example, in some orders such as Hymenoptera, all members are haplodiploid, whereas Diptera contain species with homomorphic as well as male and female heterogametic sex chromosome systems or paternal genome elimination. We have established a large database on karyotypes and sex chromosomes in insects, containing information on over 13000 species covering 29 orders of insects. This database constitutes a unique starting point to report phylogenetic patterns on the distribution of sex determination mechanisms, sex chromosomes, and karyotypes among insects and allows us to test general theories on the evolutionary dynamics of karyotypes, sex chromosomes, and sex determination systems in a comparative framework. Phylogenetic analysis reveals that male heterogamety is the ancestral mode of sex determination in insects, and transitions to female heterogamety are extremely rare. Many insect orders harbor species with complex sex chromosomes, and gains and losses of the sex-limited chromosome are frequent in some groups. Haplodiploidy originated several times within insects, and parthenogenesis is rare but evolves frequently. Providing a single source to electronically access data previously distributed among more than 500 articles and books will not only accelerate analyses of the assembled data, but also provide a unique resource to guide research on which taxa are likely to be informative to address specific questions, for example, for genome sequencing projects or large-scale comparative studies. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Reticulate Evolution of the Rock Lizards: Meiotic Chromosome Dynamics and Spermatogenesis in Diploid and Triploid Males of the Genus Darevskia.

    Science.gov (United States)

    Spangenberg, Victor; Arakelyan, Marine; Galoyan, Eduard; Matveevsky, Sergey; Petrosyan, Ruzanna; Bogdanov, Yuri; Danielyan, Felix; Kolomiets, Oxana

    2017-05-24

    Knowing whether triploid hybrids resulting from natural hybridization of parthenogenetic and bisexual species are fertile is crucial for understanding the mechanisms of reticulate evolution in rock lizards. Here, using males of the bisexual diploid rock lizard species Darevskia raddei nairensis and Darevskia valentini and a triploid hybrid male Darevskia unisexualis × Darevskia valentini , we performed karyotyping and comparative immunocytochemistry of chromosome synapsis and investigated the distribution of RAD51 and MLH1 foci in spread spermatocyte nuclei in meiotic prophase I. Three chromosome sets were found to occur in cell nuclei in the D. unisexualis × D. valentini hybrid, two originating from a parthenogenetic D. unisexualis female and one from the D. valentini male. Despite this distorted chromosome synapsis and incomplete double-strand breaks repair in meiotic prophase I, the number of mismatch repair foci in the triploid hybrid was enough to pass through both meiotic divisions. The defects in synapsis and repair did not arrest meiosis or spermatogenesis. Numerous abnormal mature spermatids were observed in the testes of the studied hybrid.

  8. Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system.

    Directory of Open Access Journals (Sweden)

    Mikhail G Divashuk

    Full Text Available Hemp (Cannabis sativa L. was karyotyped using by DAPI/C-banding staining to provide chromosome measurements, and by fluorescence in situ hybridization with probes for 45 rDNA (pTa71, 5S rDNA (pCT4.2, a subtelomeric repeat (CS-1 and the Arabidopsis telomere probes. The karyotype has 18 autosomes plus a sex chromosome pair (XX in female and XY in male plants. The autosomes are difficult to distinguish morphologically, but three pairs could be distinguished using the probes. The Y chromosome is larger than the autosomes, and carries a fully heterochromatic DAPI positive arm and CS-1 repeats only on the less intensely DAPI-stained, euchromatic arm. The X is the largest chromosome of all, and carries CS-1 subtelomeric repeats on both arms. The meiotic configuration of the sex bivalent locates a pseudoautosomal region of the Y chromosome at the end of the euchromatic CS-1-carrying arm. Our molecular cytogenetic study of the C. sativa sex chromosomes is a starting point for helping to make C. sativa a promising model to study sex chromosome evolution.

  9. Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system.

    Science.gov (United States)

    Divashuk, Mikhail G; Alexandrov, Oleg S; Razumova, Olga V; Kirov, Ilya V; Karlov, Gennady I

    2014-01-01

    Hemp (Cannabis sativa L.) was karyotyped using by DAPI/C-banding staining to provide chromosome measurements, and by fluorescence in situ hybridization with probes for 45 rDNA (pTa71), 5S rDNA (pCT4.2), a subtelomeric repeat (CS-1) and the Arabidopsis telomere probes. The karyotype has 18 autosomes plus a sex chromosome pair (XX in female and XY in male plants). The autosomes are difficult to distinguish morphologically, but three pairs could be distinguished using the probes. The Y chromosome is larger than the autosomes, and carries a fully heterochromatic DAPI positive arm and CS-1 repeats only on the less intensely DAPI-stained, euchromatic arm. The X is the largest chromosome of all, and carries CS-1 subtelomeric repeats on both arms. The meiotic configuration of the sex bivalent locates a pseudoautosomal region of the Y chromosome at the end of the euchromatic CS-1-carrying arm. Our molecular cytogenetic study of the C. sativa sex chromosomes is a starting point for helping to make C. sativa a promising model to study sex chromosome evolution.

  10. The variability is in the sex chromosomes.

    Science.gov (United States)

    Reinhold, Klaus; Engqvist, Leif

    2013-12-01

    Sex differences in the mean trait expression are well documented, not only for traits that are directly associated with reproduction. Less is known about how the variability of traits differs between males and females. In species with sex chromosomes and dosage compensation, the heterogametic sex is expected to show larger trait variability ("sex-chromosome hypothesis"), yet this central prediction, based on fundamental genetic principles, has never been evaluated in detail. Here we show that in species with heterogametic males, male variability in body size is significantly larger than in females, whereas the opposite can be shown for species with heterogametic females. These results support the prediction of the sex-chromosome hypothesis that individuals of the heterogametic sex should be more variable. We argue that the pattern demonstrated here for sex-specific body size variability is likely to apply to any trait and needs to be considered when testing predictions about sex-specific variability and sexual selection. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  11. Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development.

    Directory of Open Access Journals (Sweden)

    Lu Wang

    Full Text Available Casein kinase I alpha (CK1α is a member of serine/threonine protein kinase, generally present in all eukaryotes. In mammals, CK1α regulates the transition from interphase to metaphase in mitosis. However, little is known about its role in meiosis. Here we examined Ck1α mRNA and protein expression, as well as its subcellular localization in mouse oocytes from germinal vesicle to the late 1-cell stage. Our results showed that the expression level of CK1α was increased in metaphase. Immunostaining results showed that CK1α colocalized with condensed chromosomes during oocyte meiotic maturation and early embryo development. We used the loss-of-function approach by employing CK1α specific morpholino injection to block the function of CK1α. This functional blocking leads to failure of polar body 1 (PB1 extrusion, chromosome misalignment and MII plate incrassation. We further found that D4476, a specific and efficient CK1 inhibitor, decreased the rate of PB1 extrusion. Moreover, D4476 resulted in giant polar body extrusion, oocyte pro-MI arrest, chromosome congression failure and impairment of embryo developmental potential. In addition, we employed pyrvinium pamoate (PP, an allosteric activator of CK1α, to enhance CK1α activity in oocytes. Supplementation of PP induced oocyte meiotic maturation failure, severe congression abnormalities and misalignment of chromosomes. Taken together, our study for the first time demonstrates that CK1α is required for chromosome alignment and segregation during oocyte meiotic maturation and early embryo development.

  12. Klinefelter syndrome and other sex chromosomal aneuploidies

    Directory of Open Access Journals (Sweden)

    Graham John M

    2006-10-01

    Full Text Available Abstract The term Klinefelter syndrome (KS describes a group of chromosomal disorder in which there is at least one extra X chromosome to a normal male karyotype, 46,XY. XXY aneuploidy is the most common disorder of sex chromosomes in humans, with prevalence of one in 500 males. Other sex chromosomal aneuploidies have also been described, although they are much less frequent, with 48,XXYY and 48,XXXY being present in 1 per 17,000 to 1 per 50,000 male births. The incidence of 49,XXXXY is 1 per 85,000 to 100,000 male births. In addition, 46,XX males also exist and it is caused by translocation of Y material including sex determining region (SRY to the X chromosome during paternal meiosis. Formal cytogenetic analysis is necessary to make a definite diagnosis, and more obvious differences in physical features tend to be associated with increasing numbers of sex chromosomes. If the diagnosis is not made prenatally, 47,XXY males may present with a variety of subtle clinical signs that are age-related. In infancy, males with 47,XXY may have chromosomal evaluations done for hypospadias, small phallus or cryptorchidism, developmental delay. The school-aged child may present with language delay, learning disabilities, or behavioral problems. The older child or adolescent may be discovered during an endocrine evaluation for delayed or incomplete pubertal development with eunuchoid body habitus, gynecomastia, and small testes. Adults are often evaluated for infertility or breast malignancy. Androgen replacement therapy should begin at puberty, around age 12 years, in increasing dosage sufficient to maintain age appropriate serum concentrations of testosterone, estradiol, follicle stimulating hormone (FSH, and luteinizing hormone (LH. The effects on physical and cognitive development increase with the number of extra Xs, and each extra X is associated with an intelligence quotient (IQ decrease of approximately 15–16 points, with language most affected

  13. The SMC-5/6 Complex and the HIM-6 (BLM Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis.

    Directory of Open Access Journals (Sweden)

    Ye Hong

    2016-03-01

    Full Text Available Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs to generate crossovers (COs during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis.

  14. The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis.

    Science.gov (United States)

    Hong, Ye; Sonneville, Remi; Agostinho, Ana; Meier, Bettina; Wang, Bin; Blow, J Julian; Gartner, Anton

    2016-03-01

    Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis.

  15. Chromosomal Evolution in Lower Vertebrates: Sex Chromosomes in Neotropical Fishes

    Czech Academy of Sciences Publication Activity Database

    Cioffi, M. de B.; Yano, C. F.; Sember, Alexandr; Bertollo, L.A.C.

    2017-01-01

    Roč. 8, č. 10 (2017), č. článku 258. ISSN 2073-4425 R&D Projects: GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : alternative evolutionary models * simple and multiple sex chromosomes * independent and common origins Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.600, year: 2016

  16. Psychoeducational Implications of Sex Chromosome Anomalies

    Science.gov (United States)

    Wodrich, David L.; Tarbox, Jennifer

    2008-01-01

    Numerous anomalies involving the sex chromosomes (X or Y) have been documented and their impact on development, learning, and behavior studied. This article reviews three of these disorders, Turner syndrome, Klinefelter syndrome, and Lesch-Nyhan disease. Each of these three is associated with one or more selective impairments or behavioral…

  17. Synaptonemal complex analysis of interracial hybrids between the Moscow and Neroosa chromosomal races of the common shrew Sorex araneus showing regular formation of a complex meiotic configuration (ring-of-four).

    Science.gov (United States)

    Matveevsky, Sergey N; Pavlova, Svetlana V; Maret M Acaeva; Oxana L Kolomiets

    2012-01-01

    Immunocytochemical and electron microscopic analysis of synaptonemal complexes (SCs) was carried out for the first time in homozygotes and complex Robertsonian heterozygotes (hybrids) of the common shrew, Sorex araneus Linnaeus, 1758, from a newly discovered hybrid zone between the Moscow and the Neroosa chromosomal races. These races differ in four monobrachial homologous metacentrics, and closed SC tetravalent is expected to be formed in meiosis of a hybrid. Indeed, such a multivalent was found at meiotic prophase I in hybrids. Interactions between multivalent and both autosomes and/or the sex chromosomes were observed. For the first time we have used immunocytochemical techniques to analyse asynapsis in Sorex araneus and show that the multivalent pairs in an orderly fashion with complete synapsis. Despite some signs of spermatocytes arrested in the meiotic prophase I, hybrids had large number of active sperm. Thus, Moscow - Neroosa hybrid males that form a ring-of-four meiotic configuration are most likely not sterile. Our results support previous demonstrations that monobrachial homology of metacentrics of the common shrew does not lead to complete reproductive isolation between parapatric chromosomal races of the species.

  18. Synaptonemal complex analysis of interracial hybrids between the Moscow and Neroosa chromosomal races of the common shrew Sorex araneus showing regular formation of a complex meiotic configuration (ring-of-four

    Directory of Open Access Journals (Sweden)

    Sergey Matveevsky

    2012-09-01

    Full Text Available Immunocytochemical and electron microscopic analysis of synaptonemal complexes (SCs was carried out for the first time in homozygotes and complex Robertsonian heterozygotes (hybrids of the common shrew, Sorex araneus Linnaeus, 1758, from a newly discovered hybrid zone between the Moscow and the Neroosa chromosomal races. These races differ in four monobrachial homologous metacentrics, and closed SC tetravalent is expected to be formed in meiosis of a hybrid. Indeed, such a multivalent was found at meiotic prophase I in hybrids. Interactions between multivalent and both autosomes and/or the sex chromosomes were observed. For the first time we have used immunocytochemical techniques to analyse asynapsis in S. araneus and show that the multivalent pairs in an orderly fashion with complete synapsis. Despite some signs of spermatocytes arrested in the meiotic prophase I, hybrids had large number of active sperm. Thus, Moscow – Neroosa hybrid males that form a ring-of-four meiotic configuration are most likely not sterile. Our results support previous demonstrations that monobrachial homology of metacentrics of the common shrew does not lead to complete reproductive isolation between parapatric chromosomal races of the species.

  19. Onset and progress of meiotic prophase in the oocytes in the B6.YTIR sex-reversed mouse ovary.

    Science.gov (United States)

    Park, E-H; Taketo, T

    2003-12-01

    When the Y chromosome of a Mus musculus domesticus male mouse (caught in Tirano, Italy) is placed on a C57BL/6J genetic background, approximately half of the XY (B6.YTIR) progeny develop into normal-appearing but infertile females. We have previously reported that the primary cause of infertility can be attributed to their oocytes. To identify the primary defect in the XY oocyte, we examined the onset and progress of meiotic prophase in the B6.YTIR fetal ovary. Using bromo-deoxyuridine incorporation and culture, we determined that the germ cells began to enter meiosis at the developmental ages and in numbers comparable to those in the control XX ovary. Furthermore, the meiotic prophase appeared to progress normally until the late zygotene stage. However, the oocytes that entered meiosis early in the XY ovary failed to complete the meiotic prophase. On the other hand, a considerable number of oocytes entered meiosis at late developmental stages and completed the meiotic prophase in the XY ovary. We propose that the timing of entry into meiosis and the XY chromosomal composition influence the survival of oocytes during meiotic prophase in the fetal ovary.

  20. Gonadal sex chromosome complement in individuals with sex chromosomal and/or gonadal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, J.A.; Sanger, W.G.; Seemayer, T. [Univ. of Nebraska Medical Center, Omaha, NE (United States)] [and others

    1994-09-01

    Gonadal abnormalities are characteristically seen in patients with sex chromosomal aneuploidy. Morphologically these abnormalities can be variable and are hypothesized to be dependent on the sex chromosomal consititution of the gonad (independent of the chromosomal complement of other tissues, such as peripheral blood lymphocytes). In this study, the gonadal sex chromosome complement was evaluated for potential mosaicism and correlated with the histopathology from 5 patients with known sex chromosomal and/or gonadal disorders. FISH techniques using X and Y chromosome specific probes were performed on nuclei extracted from paraffin embedded tissue. Gonadal tissue obtained from case 1 (a true hemaphroditic newborn) consisted of ovotestes and epididymis (left side) and ovary with fallopian tube (right side). Cytogenetic and FISH studies performed on blood, ovotestes and ovary revealed an XX complement. Cytogenetic analysis of blood from case 2, a 4-year-old with suspected Turner syndrome revealed 45,X/46,X,del(Y)(q11.21). FISH analysis of the resected gonads (histologically = immature testes) confirmed an X/XY mosaic complement. Histologically, the gonadal tissue was testicular. Severe autolysis prohibited successful analysis in the 2 remaining cases. In summary, molecular cytogenetic evaluation of gonadal tissue from individuals with sex chromosomal and/or gonadal disorders did not reveal tissue-specific anomalies which could account for differences observed pathologically.

  1. The role of meiotic cohesin REC8 in chromosome segregation in {gamma} irradiation-induced endopolyploid tumour cells

    Energy Technology Data Exchange (ETDEWEB)

    Erenpreisa, Jekaterina [Latvian Biomedicine Research and Study Centre, Riga, LV-1067 (Latvia); Cragg, Mark S. [Tenovus Laboratory, Cancer Sciences Division, Southampton University School of Medicine, General Hospital, Southampton SO16 6YD (United Kingdom); Salmina, Kristine [Latvian Biomedicine Research and Study Centre, Riga, LV-1067 (Latvia); Hausmann, Michael [Kirchhoff Inst. fuer Physik, Univ. of Heidelberg, D-69120 Heidelberg (Germany); Scherthan, Harry, E-mail: scherth@web.de [Inst. fuer Radiobiologie der Bundeswehr in Verbindung mit der Univ. Ulm, D-80937 Munich (Germany); MPI for Molec. Genetics, 14195 Berlin (Germany)

    2009-09-10

    Escape from mitotic catastrophe and generation of endopolyploid tumour cells (ETCs) represents a potential survival strategy of tumour cells in response to genotoxic treatments. ETCs that resume the mitotic cell cycle have reduced ploidy and are often resistant to these treatments. In search for a mechanism for genome reduction, we previously observed that ETCs express meiotic proteins among which REC8 (a meiotic cohesin component) is of particular interest, since it favours reductional cell division in meiosis. In the present investigation, we induced endopolyploidy in p53-dysfunctional human tumour cell lines (Namalwa, WI-L2-NS, HeLa) by gamma irradiation, and analysed the sub-cellular localisation of REC8 in the resulting ETCs. We observed by RT-PCR and Western blot that REC8 is constitutively expressed in these tumour cells, along with SGOL1 and SGOL2, and that REC8 becomes modified after irradiation. REC8 localised to paired sister centromeres in ETCs, the former co-segregating to opposite poles. Furthermore, REC8 localised to the centrosome of interphase ETCs and to the astral poles in anaphase cells where it colocalised with the microtubule-associated protein NuMA. Altogether, our observations indicate that radiation-induced ETCs express features of meiotic cell divisions and that these may facilitate chromosome segregation and genome reduction.

  2. The role of meiotic cohesin REC8 in chromosome segregation in γ irradiation-induced endopolyploid tumour cells

    International Nuclear Information System (INIS)

    Erenpreisa, Jekaterina; Cragg, Mark S.; Salmina, Kristine; Hausmann, Michael; Scherthan, Harry

    2009-01-01

    Escape from mitotic catastrophe and generation of endopolyploid tumour cells (ETCs) represents a potential survival strategy of tumour cells in response to genotoxic treatments. ETCs that resume the mitotic cell cycle have reduced ploidy and are often resistant to these treatments. In search for a mechanism for genome reduction, we previously observed that ETCs express meiotic proteins among which REC8 (a meiotic cohesin component) is of particular interest, since it favours reductional cell division in meiosis. In the present investigation, we induced endopolyploidy in p53-dysfunctional human tumour cell lines (Namalwa, WI-L2-NS, HeLa) by gamma irradiation, and analysed the sub-cellular localisation of REC8 in the resulting ETCs. We observed by RT-PCR and Western blot that REC8 is constitutively expressed in these tumour cells, along with SGOL1 and SGOL2, and that REC8 becomes modified after irradiation. REC8 localised to paired sister centromeres in ETCs, the former co-segregating to opposite poles. Furthermore, REC8 localised to the centrosome of interphase ETCs and to the astral poles in anaphase cells where it colocalised with the microtubule-associated protein NuMA. Altogether, our observations indicate that radiation-induced ETCs express features of meiotic cell divisions and that these may facilitate chromosome segregation and genome reduction.

  3. The role of meiotic cohesin REC8 in chromosome segregation in gamma irradiation-induced endopolyploid tumour cells.

    Science.gov (United States)

    Erenpreisa, Jekaterina; Cragg, Mark S; Salmina, Kristine; Hausmann, Michael; Scherthan, Harry

    2009-09-10

    Escape from mitotic catastrophe and generation of endopolyploid tumour cells (ETCs) represents a potential survival strategy of tumour cells in response to genotoxic treatments. ETCs that resume the mitotic cell cycle have reduced ploidy and are often resistant to these treatments. In search for a mechanism for genome reduction, we previously observed that ETCs express meiotic proteins among which REC8 (a meiotic cohesin component) is of particular interest, since it favours reductional cell division in meiosis. In the present investigation, we induced endopolyploidy in p53-dysfunctional human tumour cell lines (Namalwa, WI-L2-NS, HeLa) by gamma irradiation, and analysed the sub-cellular localisation of REC8 in the resulting ETCs. We observed by RT-PCR and Western blot that REC8 is constitutively expressed in these tumour cells, along with SGOL1 and SGOL2, and that REC8 becomes modified after irradiation. REC8 localised to paired sister centromeres in ETCs, the former co-segregating to opposite poles. Furthermore, REC8 localised to the centrosome of interphase ETCs and to the astral poles in anaphase cells where it colocalised with the microtubule-associated protein NuMA. Altogether, our observations indicate that radiation-induced ETCs express features of meiotic cell divisions and that these may facilitate chromosome segregation and genome reduction.

  4. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes?

    Directory of Open Access Journals (Sweden)

    Teruko Taketo

    2015-06-01

    Full Text Available The sexual differentiation of germ cells into spermatozoa or oocytes is strictly regulated by their gonadal environment, testis or ovary, which is determined by the presence or absence of the Y chromosome, respectively. Hence, in normal mammalian development, male germ cells differentiate in the presence of X and Y chromosomes, and female germ cells do so in the presence of two X chromosomes. However, gonadal sex reversal occurs in humans as well as in other mammalian species, and the resultant XX males and XY females can lead healthy lives, except for a complete or partial loss of fertility. Germ cells carrying an abnormal set of sex chromosomes are efficiently eliminated by multilayered surveillance mechanisms in the testis, and also, though more variably, in the ovary. Studying the molecular basis for sex-specific responses to a set of sex chromosomes during gametogenesis will promote our understanding of meiotic processes contributing to the evolution of sex determining mechanisms. This review discusses the fate of germ cells carrying various sex chromosomal compositions in mouse models, the limitation of which may be overcome by recent successes in the differentiation of functional germ cells from embryonic stem cells under experimental conditions.

  5. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?

    Science.gov (United States)

    Gleeson, Dianne; Georges, Arthur

    2018-01-01

    Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata) which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways. PMID:29751579

  6. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?

    Directory of Open Access Journals (Sweden)

    Shayer Mahmood Ibney Alam

    2018-05-01

    Full Text Available Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD and temperature-dependent sex determination (TSD within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways.

  7. Sex-chromosome anaphase movements in crane-fly spermatocytes are coordinated: ultraviolet microbeam irradiation of one kinetochore of one sex chromosome blocks the movements of both sex chromosomes

    International Nuclear Information System (INIS)

    Swedak, J.A.M.; Forer, A.

    1987-01-01

    Sex chromosomes in crane-fly spermatocytes move polewards at anaphase after the autosomes have reached the poles. We irradiated one kinetochore of one sex chromosome using an ultraviolet microbeam. When both sex chromosomes were normally oriented, irradiation of a single kinetochore permanently blocked movement of both sex chromosomes. Irradiation of non-kinetochore chromosomal regions or of spindle fibres did not block movement, or blocked movement only temporarily. We argue that ultraviolet irradiation of one kinetochore blocks movement of both sex chromosomes because of effects on a 'signal' system. Irradiation of one kinetochore of a maloriented sex chromosome did not block motion of either sex chromosome. However, irradiation of one kinetochore of a normally oriented sex chromosome permanently blocked motion of both that sex chromosome and the maloriented sex chromosome. Thus for the signal system to allow the sex chromosomes to move to the pole each sex chromosome must have one spindle fibre to each pole. (author)

  8. Genetically enhanced asynapsis of autosomal chromatin promotes transcriptional dysregulation and meiotic failure

    Czech Academy of Sciences Publication Activity Database

    Homolka, David; Jansa, Petr; Forejt, Jiří

    2012-01-01

    Roč. 121, č. 1 (2012), s. 91-104 ISSN 0009-5915 R&D Projects: GA MŠk(CZ) LD11079 Institutional research plan: CEZ:AV0Z50520514 Keywords : meiotic silencing of unsynapsed chromatin * meiotic sex chromosome inactivation * autosomal translocation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.340, year: 2012

  9. Maize histone H2B-mCherry: a new fluorescent chromatin marker for somatic and meiotic chromosome research.

    Science.gov (United States)

    Howe, Elizabeth S; Clemente, Thomas E; Bass, Hank W

    2012-06-01

    Cytological studies of fluorescent proteins are rapidly yielding insights into chromatin structure and dynamics. Here we describe the production and cytological characterization of new transgenic maize lines expressing a fluorescent histone fusion protein, H2B-mCherry. The transgene is expressed under the control of the maize ubiquitin1 promoter, including its first exon and intron. Polymerase chain reaction-based genotyping and root-tip microscopy showed that most of the lines carrying the transgene also expressed it, producing bright uniform staining of nuclei. Further, plants showing expression in root tips at the seedling stage also showed expression during meiosis, late in the life cycle. Detailed high-resolution three-dimensional imaging of cells and nuclei from various somatic and meiotic cell types showed that H2B-mCherry produced remarkably clear images of chromatin and chromosome fiber morphology, as seen in somatic, male meiotic prophase, and early microgametophyte cells. H2B-mCherry also yielded distinct nucleolus staining and was shown to be compatible with fluorescence in situ hybridization. We found several instances where H2B-mCherry was superior to DAPI as a generalized chromatin stain. Our study establishes these histone H2B-mCherry lines as new biological reagents for visualizing chromatin structure, chromosome morphology, and nuclear dynamics in fixed and living cells in a model plant genetic system.

  10. A new species of Endecous Saussure, 1878 (Orthoptera, Gryllidae) from northeast Brazil with the first X1X20 chromosomal sex system in Gryllidae.

    Science.gov (United States)

    Zefa, Edison; Redü, Darlan Rutz; Da Costa, Maria Kátia Matiotti; Fontanetti, Carmem S; Gottschalk, Marco Silva; Padilha, Giovanna Boff; Fernandes e Silva, Anelise; Martins, Luciano De P

    2014-08-06

    In this paper we describe a new species of Luzarinae cricket collected from the cave "Gruta de Ubajara, municipality of Ubajara, State of Ceará, Brazil, highlighting phallic sclerites morphology and chromosome complement as diagnostic characters. We presented meiotic and mitotic characterization in order to define the karyotype with 2n = 12 + X1X2♂/12 + X1X1X2X2♀. This represents the first record of X1X20 chromosomal sex system in Gryllidae.

  11. Nicotine-induced Disturbances of Meiotic Maturation in Cultured Mouse Oocytes: Alterations of Spindle Integrity and Chromosome Alignment

    Directory of Open Access Journals (Sweden)

    Zenzes Maria

    2004-09-01

    Full Text Available Abstract We investigated whether nicotine exposure in vitro of mouse oocytes affects spindle and chromosome function during meiotic maturation (M-I and M-II. Oocytes in germinal vesicle (GV stage were cultured in nicotine for 8 h or for 16 h, to assess effects in M-I and in metaphase II (M-II. The latter culture setting used the three protocols: 8 h nicotine then 8 h medium (8N + 8M; 16 h nicotine (16N; 8 h medium then 8 h nicotine (8M + 8N. Non-toxic concentrations of nicotine at 1.0, 2.5, 5.0 and 10.0 mmol/L were used. Spindle-chromosome configurations were analyzed with wide-field optical sectioning microscopy. In 8 h cultures, nicotine exposure resulted in dose-related increased proportions of M-I oocytes with defective spindle-chromosome configurations. A dose-related delayed entry into anaphase I was also detected. In 16 h cultures, nicotine exposure for the first 8 h (8N + 8M, or for 16 h (16N, resulted in dose- and time-related increased proportions of oocytes arrested in M-I (10 mmol/L; 8 h: 53.2%, controls 9.6%; 16 h: 87.6%, controls 8.5%. Defects in M-I spindles and chromosomes caused M-I arrest leading to dose-related decreased proportions of oocytes that reached metaphase-II (10 mmol/L 8 h: 46.8%, controls 90.4%;16 h: 12.4%, controls 91.5%. A delayed anaphase-I affected the normal timing of M-II, leading to abnormal oocytes with dispersed chromosomes, or with double spindles and no polar body. Nicotine exposure during the second 8 h (8M + 8N resulted in dose-related, increased proportions of M-II oocytes with defective spindles and chromosomes (10 mmol/L: 42.9%, controls 2.0%. Nicotine has no adverse effects on GV break down, but induces spindle and chromosome defects compromising oocyte meiotic maturation and development.

  12. X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus

    Directory of Open Access Journals (Sweden)

    Adauto Lima Cardoso

    2015-06-01

    Full Text Available Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes.

  13. Polytene chromosome analysis in relation to genetic sex separation in the Mediterranean fruit fly, Ceratitis capitata (Wied.)

    International Nuclear Information System (INIS)

    Kerremans, P.; Busch-Petersen, E.

    1990-01-01

    The development of stable genetic sexing strains in the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), is hampered by the presence of low levels of male recombination. Such recombination may be reduced by minimizing the distance between the translocation breakpoint and the translocated 'sexing' allele. Cytogenetic analysis of mitotic/meiotic and polytene chromosomes could provide information on the selection of such potentially stable genetic sexing strains. Translocation breakpoints in two genetic sexing strains in the medfly, based on a white female/brown male pupal colour dimorphism, have been determined. Preliminary results are described and the advantages and limitations of polytene chromosome analysis for the isolation of stable genetic sexing strains of the medfly are discussed. (author). 31 refs

  14. [Identification of the genetic sex chromosomes in the monogenic blowfly Chrysomya rufifacies (Calliphoridae, Diptera)].

    Science.gov (United States)

    Ullerich, F H

    1975-01-01

    Previous investigations have shown the sex determination in the monogenic blowfly Chrysomya rufifacies to be controlled by a cytologically not discernible homogametry-heterogamety mechanism in the female. Female-producing (thelygenic) females are assumed to be heterozygous for a dominant female sex realizer (F') with sex-predetermining properties, while male-producing (arrhenogenic) females as well as males are supposed to be homozygous for the recessive allele (f). In order to identify the genetic sex chromosomes of C. rufifacies among its five pairs of long euchromatic chromosomes (nos. 1-5) plus one pair of small heterochromatic ones (no. 6), all chromosomes were marked by reciprocal translocations induced by X-ray treatment of adult males. The inheritance of thirteen different heteroxygous translocations has been analyzed. All of the translocations (eleven) between two of the four longer chromosomes did not show sex-linked inheritance, thus demonstrating the autosomal character of the chromosomes nos 1, 2, 3 and 4. The same is true for the translocation T6 (2/6). Therefore the small heterochromatic chromosome no. 6, corresponding to the morphlogically differentiated six chromosomes within the amphogenic calliphorid species, remains without sex determining function in the monogenic fly. This could be confirmed by the analysis of monosomic (monosomy-6) and trisomic (trisomy-6) individuals, which resulted from meiotic non-disfunction in T6/+ translocation heterozygotes. Contrary to these translocations, the heteroxygous 5/2 translocation (T14) exhibited sex-linked inheritance: There was but a very low frequency (0,76 per cent) of recombinants resulting from crossing-over between F'/f and the translocation breakage point in theylgenic F1 T14/+females. The sex-linked inheritance of T14 was confirmed by the progeny of a thelygenic F1 T14/+ female crossed to a homozygous T14/T14 translocation male.Among the offspring of that F1 T14/+ female, which had received the

  15. Sex Chromosome Translocations in the Evolution of Reproductive Isolation

    Science.gov (United States)

    Tracey, Martin L.

    1972-01-01

    Haldane's rule states that in organisms with differentiated sex chromosomes, hybrid sterility or inviability is generally expressed more frequently in the heterogametic sex. This observation has been variously explained as due to either genic or chromosomal imbalance. The fixation probabilities and mean times to fixation of sex-chromosome translocations of the type necessary to explain Haldane's rule on the basis of chromosomal imbalance have been estimated in small populations of Drosophila melanogaster. The fixation probability of an X chromosome carrying the long arm of the Y(X·YL) is approximately 30% greater than expected under the assumption of no selection. No fitness differences associated with the attached YL segment were detected. The fixation probability of a deficient Y chromosome is 300% greater than expected when the X chromosome contains the deleted portion of the Y. It is suggested that sex-chromosome translocations may play a role in the establishment of reproductive isolation. PMID:4630586

  16. Autosomal origin of sex chromosome in a polyploid plant

    Science.gov (United States)

    While theory on sex chromosome evolution is well developed, evidence of the early stages of this process remains elusive, in part because this process unfolded in many animals so long ago. The relatively recent and repeated evolution of separate sexes (dioecy) and sex chromosomes in plants, however,...

  17. Evolution of heteromorphic sex chromosomes in the order Aulopiformes.

    Science.gov (United States)

    Ota, K; Kobayashi, T; Ueno, K; Gojobori, T

    2000-12-23

    The fish order Aulopiformes contains both synchronously hermaphroditic and gonochoristic species. From the cytogenetic viewpoint, few reports show that gonochoristic Aulopiformes have heteromorphic sex chromosomes. Because fish in this order give us a unique opportunity to elucidate the evolution of sex chromosomes, it is important to examine a phylogenetic relationship in Aulopiformes by both molecular evolutionary and cytogenetic methods. Thus, we conducted molecular phylogenetic and cytogenetic studies of six Aulopiform species. Our results suggested that hermaphroditic species were evolutionarily derived from gonochoristic species. It follows that the hermaphroditic species might have lost the heteromorphic sex chromosomes during evolution. Here, we suggest a possibility that heteromorphic sex chromosomes can disappear from the genome, even if they have appeared once in evolution. Taking into account Ohno's hypothesis that heteromorphic sex chromosomes might have emerged from autosomes, we propose the hypothesis that heteromorphic sex chromosomes may have undergone repeated events of appearance and disappearance during the course of fish evolution.

  18. Stage sensitivity and dose response of meiotic chromosomes of pollen mother cells of Tradescantia to X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T H; Kontos, Jr, G J; Anderson, V A [Western Illinois Univ., Macomb (USA). Dept. of Biological Sciences

    1980-05-01

    Chromosome damage induced by physical and chemical mutagens can be quantitated by the frequencies of micronuclei (MCN) produced in tetrads of the meiotic pollen mother cells of Tradescantia, i.e. the 'MCN-in-Tetrad' test. The stage sensitivity and dose response of these meiocytes to low exposures of X-rays was studied to improve the efficiency and reliability of this test. Stage sensitivity was determined by observing, at 3 hr intervals, the frequencies of X-ray (35 rads)-induced MCN in tetrads from a series of 16 fixations of tetrad-containing inflorescences. Late stages of meiosis (3-9 hr post-irradiation fixation groups) were insensitive (5-14 MCN/100 tetrads). Relatively high sensitivity was exhibited in the early stages of meiosis. The first and second sensitive peaks (62 and 61 MCN/100 tetrads) centered around the 21 and 39 hr post-irradiation fixation groups respectively. Control groups yielded around 3-4 MCN/100 tetrads. A dose-response relation for MCN was determined by treating early stages of meiotic pollen mother cells with X-ray exposures ranging from 9.5 to 57.5 rads. A linear regression line was established with about 20 MCN/100 tetrads per 10 rad increment.

  19. Stage sensitivity and dose response of meiotic chromosomes of pollen mother cells of Tradescantia to X-rays

    International Nuclear Information System (INIS)

    Ma, T.-H.; Kontos, G.J. Jr.; Anderson, V.A.

    1980-01-01

    Chromosome damage induced by physical and chemical mutagens can be quantitated by the frequencies of micronuclei (MCN) produced in tetrads of the meiotic pollen mother cells of Tradescantia, i.e. the 'MCN-in-Tetrad' test. The stage sensitivity and dose response of these meiocytes to low exposures of X-rays was studied to improve the efficiency and reliability of this test. Stage sensitivity was determined by observing, at 3 hr intervals, the frequencies of X-ray (35 rads)-induced MCN in tetrads from a series of 16 fixations of tetrad-containing inflorescences. Late stages of meiosis (3-9 hr post-irradiation fixation groups) were insensitive (5-14 MCN/100 tetrads). Relatively high sensitivity was exhibited in the early stages of meiosis. The first and second sensitive peaks (62 and 61 MCN/100 tetrads) centered around the 21 and 39 hr post-irradiation fixation groups respectively. Control groups yielded around 3-4 MCN/100 tetrads. A dose-response relation for MCN was determined by treating early stages of meiotic pollen mother cells with X-ray exposures ranging from 9.5 to 57.5 rads. A linear regression line was established with about 20 MCN/100 tetrads per 10 rad increment. (author)

  20. Conserved sex chromosomes across adaptively radiated Anolis lizards.

    Science.gov (United States)

    Rovatsos, Michail; Altmanová, Marie; Pokorná, Martina; Kratochvíl, Lukáš

    2014-07-01

    Vertebrates possess diverse sex-determining systems, which differ in evolutionary stability among particular groups. It has been suggested that poikilotherms possess more frequent turnovers of sex chromosomes than homoiotherms, whose effective thermoregulation can prevent the emergence of the sex reversals induced by environmental temperature. Squamate reptiles used to be regarded as a group with an extensive variability in sex determination; however, we document how the rather old radiation of lizards from the genus Anolis, known for exceptional ecomorphological variability, was connected with stability in sex chromosomes. We found that 18 tested species, representing most of the phylogenetic diversity of the genus, share the gene content of their X chromosomes. Furthermore, we discovered homologous sex chromosomes in species of two genera (Sceloporus and Petrosaurus) from the family Phrynosomatidae, serving here as an outgroup to Anolis. We can conclude that the origin of sex chromosomes within iguanas largely predates the Anolis radiation and that the sex chromosomes of iguanas remained conserved for a significant part of their evolutionary history. Next to therian mammals and birds, Anolis lizards therefore represent another adaptively radiated amniote clade with conserved sex chromosomes. We argue that the evolutionary stability of sex-determining systems may reflect an advanced stage of differentiation of sex chromosomes rather than thermoregulation strategy. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  1. High degree of sex chromosome differentiation in stickleback fishes

    Directory of Open Access Journals (Sweden)

    Shimada Yukinori

    2011-09-01

    Full Text Available Abstract Background Studies of closely related species with different sex chromosome systems can provide insights into the processes of sex chromosome differentiation and evolution. To investigate the potential utility of molecular markers in studying sex chromosome differentiation at early stages of their divergence, we examined the levels and patterns of genetic differentiation between sex chromosomes in nine-spined (Pungitius pungitius and three-spined sticklebacks (Gasterosteus aculeatus using microsatellite markers. Results A set of novel microsatellite markers spanning the entire length of the sex chromosomes were developed for nine-spined sticklebacks using the sequenced genomes of other fish species. Sex-specific patterns of genetic variability and male-specific alleles were identified at most of these loci, indicating a high degree of differentiation between the X and Y chromosomes in nine-spined sticklebacks. In three-spined sticklebacks, male-specific alleles were detected at some loci confined to two chromosomal regions. In addition, male-specific null alleles were identified at several other loci, implying the absence of Y chromosomal alleles at these loci. Overall, male-specific alleles and null alleles were found over a region spanning 81% of the sex chromosomes in three-spined sticklebacks. Conclusions High levels but distinct patterns of sex chromosome differentiation were uncovered in the stickleback species that diverged 13 million years ago. Our results suggest that the Y chromosome is highly degenerate in three-spined sticklebacks, but not in nine-spined sticklebacks. In general, the results demonstrate that microsatellites can be useful in identifying the degree and patterns of sex chromosome differentiation in species at initial stages of sex chromosome evolution.

  2. Aplastic Anemia in Two Patients with Sex Chromosome Aneuploidies.

    Science.gov (United States)

    Rush, Eric T; Schaefer, G Bradley; Sanger, Warren G; Coccia, Peter F

    2015-01-01

    Sex chromosome aneuploidies range in incidence from rather common to exceedingly rare and have a variable phenotype. We report 2 patients with sex chromosome aneuploidies who developed severe aplastic anemia requiring treatment. The first patient had tetrasomy X (48,XXXX) and presented at 9 years of age, and the second patient had trisomy X (47,XXX) and presented at 5 years of age. Although aplastic anemia has been associated with other chromosomal abnormalities, sex chromosome abnormalities have not been traditionally considered a risk factor for this condition. A review of the literature reveals that at least one other patient with a sex chromosome aneuploidy (45,X) has suffered from aplastic anemia and that other autosomal chromosomal anomalies have been described. Despite the uncommon nature of each condition, it is possible that the apparent association is coincidental. A better understanding of the genetic causes of aplastic anemia remains important. © 2015 S. Karger AG, Basel.

  3. Physical mapping of the Period gene on meiotic chromosomes of South American grasshoppers (Acridomorpha, Orthoptera).

    Science.gov (United States)

    Souza, T E; Oliveira, D L; Santos, J F; Rieger, T T

    2014-12-19

    The single-copy gene Period was located in five grasshopper species belonging to the Acridomorpha group through permanent in situ hybridization (PISH). The mapping revealed one copy of this gene in the L1 chromosome pair in Ommexecha virens, Xyleus discoideus angulatus, Tropidacris collaris, Schistocerca pallens, and Stiphra robusta. A possible second copy was mapped on the L2 chromosome pair in S. robusta, which should be confirmed by further studies. Except for the latter case, the chromosomal position of the Period gene was highly conserved among the four families studied. The S. robusta karyotype also differs from the others both in chromosome number and morphology. The position conservation of the single-copy gene Period contrasts with the location diversification of multigene families in these species. The localization of single-copy genes by PISH can provide new insights about the genomic content and chromosomal evolution of grasshoppers and others insects.

  4. Turnover of sex chromosomes in the stickleback fishes (gasterosteidae.

    Directory of Open Access Journals (Sweden)

    Joseph A Ross

    2009-02-01

    Full Text Available Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae. Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus have a heteromorphic XY pair corresponding to linkage group (LG 19. In this study, we found that the ninespine stickleback (Pungitius pungitius has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X(1X(2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans and the fourspine stickleback (Apeltes quadracus. However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems.

  5. Meiotic Recombination Analyses in Pigs Carrying Different Balanced Structural Chromosomal Rearrangements.

    Directory of Open Access Journals (Sweden)

    Nicolas Mary

    Full Text Available Correct pairing, synapsis and recombination between homologous chromosomes are essential for normal meiosis. All these events are strongly regulated, and our knowledge of the mechanisms involved in this regulation is increasing rapidly. Chromosomal rearrangements are known to disturb these processes. In the present paper, synapsis and recombination (number and distribution of MLH1 foci were studied in three boars (Sus scrofa domestica carrying different chromosomal rearrangements. One (T34he was heterozygote for the t(3;4(p1.3;q1.5 reciprocal translocation, one (T34ho was homozygote for that translocation, while the third (T34Inv was heterozygote for both the translocation and a pericentric inversion inv(4(p1.4;q2.3. All three boars were normal for synapsis and sperm production. This particular situation allowed us to rigorously study the impact of rearrangements on recombination. Overall, the rearrangements induced only minor modifications of the number of MLH1 foci (per spermatocyte or per chromosome and of the length of synaptonemal complexes for chromosomes 3 and 4. The distribution of MLH1 foci in T34he was comparable to that of the controls. Conversely, the distributions of MLH1 foci on chromosome 4 were strongly modified in boar T34Inv (lack of crossover in the heterosynaptic region of the quadrivalent, and crossover displaced to the chromosome extremities, and also in boar T34ho (two recombination peaks on the q-arms compared with one of higher magnitude in the controls. Analyses of boars T34he and T34Inv showed that the interference was propagated through the breakpoints. A different result was obtained for boar T34ho, in which the breakpoints (transition between SSC3 and SSC4 chromatin on the bivalents seemed to alter the transmission of the interference signal. Our results suggest that the number of crossovers and crossover interference could be regulated by partially different mechanisms.

  6. Meiotic Consequences of Genetic Divergence Across the Murine Pseudoautosomal Region.

    Science.gov (United States)

    Dumont, Beth L

    2017-03-01

    The production of haploid gametes during meiosis is dependent on the homology-driven processes of pairing, synapsis, and recombination. On the mammalian heterogametic sex chromosomes, these key meiotic activities are confined to the pseudoautosomal region (PAR), a short region of near-perfect sequence homology between the X and Y chromosomes. Despite its established importance for meiosis, the PAR is rapidly evolving, raising the question of how proper X / Y segregation is buffered against the accumulation of homology-disrupting mutations. Here, I investigate the interplay of PAR evolution and function in two interfertile house mouse subspecies characterized by structurally divergent PARs, Mus musculus domesticus and M. m. castaneus Using cytogenetic methods to visualize the sex chromosomes at meiosis, I show that intersubspecific F 1 hybrids harbor an increased frequency of pachytene spermatocytes with unsynapsed sex chromosomes. This high rate of asynapsis is due, in part, to the premature release of synaptic associations prior to completion of prophase I. Further, I show that when sex chromosomes do synapse in intersubspecific hybrids, recombination is reduced across the paired region. Together, these meiotic defects afflict ∼50% of spermatocytes from F 1 hybrids and lead to increased apoptosis in meiotically dividing cells. Despite flagrant disruption of the meiotic program, a subset of spermatocytes complete meiosis and intersubspecific F 1 males remain fertile. These findings cast light on the meiotic constraints that shape sex chromosome evolution and offer initial clues to resolve the paradox raised by the rapid evolution of this functionally significant locus. Copyright © 2017 by the Genetics Society of America.

  7. Evolution of vertebrate sex chromosomes and dosage compensation.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2016-01-01

    Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.

  8. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis

    Czech Academy of Sciences Publication Activity Database

    Šíchová, Jindra; Ohno, M.; Dincă, V.; Watanabe, M.; Sahara, K.; Marec, František

    2016-01-01

    Roč. 118, č. 3 (2016), s. 457-471 ISSN 0024-4066 R&D Projects: GA ČR(CZ) GA14-22765S Grant - others:GA JU(CZ) 052/2013/P Institutional support: RVO:60077344 Keywords : karyotype evolution * meiotic pairing * multiple sex chromosomes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.288, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/bij.12756/full

  9. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas.

    Science.gov (United States)

    Rovatsos, Michail; Pokorná, Martina; Altmanová, Marie; Kratochvíl, Lukáš

    2014-03-01

    Many poikilothermic vertebrate lineages, especially among amphibians and fishes, possess a rapid turnover of sex chromosomes, while in endotherms there is a notable stability of sex chromosomes. Reptiles in general exhibit variability in sex-determining systems; as typical poikilotherms, they might be expected to have a rapid turnover of sex chromosomes. However, molecular data which would enable the testing of the stability of sex chromosomes are lacking in most lineages. Here, we provide molecular evidence that sex chromosomes are highly conserved across iguanas, one of the most species-rich clade of reptiles. We demonstrate that members of the New World families Iguanidae, Tropiduridae, Leiocephalidae, Phrynosomatidae, Dactyloidae and Crotaphytidae, as well as of the family Opluridae which is restricted to Madagascar, all share homologous sex chromosomes. As our sampling represents the majority of the phylogenetic diversity of iguanas, the origin of iguana sex chromosomes can be traced back in history to the basal splitting of this group which occurred during the Cretaceous period. Iguanas thus show a stability of sex chromosomes comparable to mammals and birds and represent the group with the oldest sex chromosomes currently known among amniotic poikilothermic vertebrates.

  10. Meiotic chromosomal translocations in male mice induced by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Savkovic, N.; Pecevski; Vuksanovic, L.; Radivojevic, D.; Alavantic, D.

    1983-01-01

    The dose-response curve for reciprocal translocations induced by acute exposure of spermatogonial stem cells to X-rays in treated mice and their F-1 sons was examined. Male mice were totally irradiated with doses of 1Gy;5x1Gy and 5Gy. The obtained results show that frequency of the chromosomal translocations in directly treated animals is dose dependent. The percentage of animals irradiated with 1Gy which had the chromosomal translocations was 60, while this percentage in animals irradiated with single and fractionated dose of 5Gy was 100. The frequency of chromosomal translocations varies from 1.5% to 8.0%. Multivalent configurations in F-1 males were observed after exposure to 5Gy only. The incidence of F-1 translocated males was 17.5%.

  11. Turnover of sex chromosomes induced by sexual conflict

    NARCIS (Netherlands)

    van Doorn, G. S.; Kirkpatrick, Mark

    2007-01-01

    Sex-determination genes are among the most fluid features of the genome in many groups of animals(1,2). In some taxa the master sex-determining gene moves frequently between chromosomes, whereas in other taxa different genes have been recruited to determine the sex of the zygotes. There is a well

  12. Meiotic behaviour of individual chromosomes of Festuca pratensis in tetraploid Lolium multiflorum

    Czech Academy of Sciences Publication Activity Database

    Kopecký, David; Lukaszewski, A.J.; Doležel, Jaroslav

    2008-01-01

    Roč. 16, č. 7 (2008), s. 987-998 ISSN 0967-3849 R&D Projects: GA ČR GP521/07/P479 Institutional research plan: CEZ:AV0Z50380511 Keywords : Chromosome pairing * Festuca * Lolium Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.405, year: 2008

  13. Evidence that meiotic pairing starts at the telomeres: Molecular analysis of recombination in a family with a pericentric X chromosome inversion

    Energy Technology Data Exchange (ETDEWEB)

    Shashi, V.; Allinson, P.S.; Golden, W.L.; Kelly, T.E. [Univ. of Virginia, Charlottesville, VA (United States)

    1994-09-01

    Recent studies in yeast have shown that telomeres rather than centromeres lead in chromosome movement just prior to meiosis and may have a role in recombination. Cytological studies of meiosis in Drosophila and mice have shown that in pericentric inversion heterozygotes there is lack of loop formation, with recobmination seen only outside the inversion. In a family with Duchenne muscular dystrophy (DMD) we recognized that only affected males and carrier females had a pericentric X chromosome inversion (inv X(p11.4;q26)). Since the short arm inversion breakpoint was proximal to the DMD locus, it could not be implicated in the mutational event causing DMD. There was no history of infertility, recurrent miscarriages or liveborn unbalanced females to suggest there was recombination within the inversion. We studied 22 members over three generations to understand the pattern of meiotic recombination between the normal and the inverted X chromosome. In total, 17 meioses involving the inverted X chromosome in females were studied by cytogenetic analysis and 16 CA repeat polymorphisms along the length of the X chromosome. Results: (a) There was complete concordance between the segregation of the DMD mutation and the inverted X chromosome. (b) On DNA analysis, there was complete absence of recombination within the inverted segment. We also found no recombination at the DMD locus. Recombination was seen only at Xp22 and Xq27-28. (c) Recombination was seen in the same individual at both Xp22 and Xq27-28 without recombination otherwise. Conclusions: (1) Pericentric X inversions reduce the genetic map length of the chromosome, with the physical map length being normal. (2) Meiotic X chromosome pairing in this family is initiated at the telomeres. (3) Following telomeric pairing in pericentric X chromosome inversions, there is inhibition of recombination within the inversion and adjacent regions.

  14. Chromosome Banding in Amphibia. XXXVI. Multimorphic Sex Chromosomes and an Enigmatic Sex Determination in Eleutherodactylus johnstonei (Anura, Eleutherodactylidae).

    Science.gov (United States)

    Schmid, Michael; Steinlein, Claus

    2018-01-01

    A detailed cytogenetic study on the leaf litter frog Eleutherodactylus johnstonei from 14 different Caribbean islands and the mainlands of Venezuela and Guyana revealed the existence of multimorphic XY♂/XX♀ sex chromosomes 14. Their male sex determination and development depends either on the presence of 2 telocentric chromosomes 14 (XtYt), or on 1 submetacentric chromosome 14 (Xsm) plus 1 telocentric chromosome 14 (Yt), or on the presence of 2 submetacentric chromosomes 14 (XsmYsm). The female sex determination and development requires either the presence of 2 telocentric chromosomes 14 (XtXt) or 2 submetacentric chromosomes 14 (XsmXsm). In all individuals analyzed, the sex chromosomes 14 carry a prominent nucleolus organizer region in their long arms. An explanation is given for the origin of the (XtYt)♂, (XsmYt)♂, (XsmYsm)♂, (XtXt)♀, and (XsmXsm)♀ in the different populations of E. johnstonei. Furthermore, the present study gives detailed data on the chromosome banding patterns, in situ hybridization experiments, and the genome size of E. johnstonei. © 2018 S. Karger AG, Basel.

  15. Structural, functional, and evolutionary features of plant sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Vyskot, Boris; Hobza, Roman; Kejnovský, Eduard; Žlůvová, Jitka; Janoušek, Bohuslav

    2009-01-01

    Roč. 17, č. 4 (2009), s. 547 ISSN 0967-3849. [17th International Chromosome Conference. 23.06.2009-26.06.2009, Boone] R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : sex chromosomes * Silene latifolia * epigenetic Subject RIV: BO - Biophysics

  16. Psychotic disorder and its characteristics in sex chromosome aneuploidies

    Directory of Open Access Journals (Sweden)

    Annapia Verri

    2009-09-01

    Full Text Available Sex chromosome anomalies have been associated with psychoses. We report a patient with XYY chromosome anomaly who developed a paranoid psychosis. The second case deal with a 51-year-old woman affected by Turner Syndrome and Psychotic Disorder, with a prevalent somatic and sexual focus.

  17. ON THE TOPOGRAPHY OF THE SEX- CHROMOSOME IN

    Indian Academy of Sciences (India)

    over, we endeavoured to find the relative distribution of these genes in their chromosome, and to determine the distance between them, having in view the construction of a map of the sex-chromosome of fowls. We studied the following genes (in ...

  18. Cytological evidence of chromosomal rearrangement in the second meiotic division after exposure to X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Szemere, G. (Orvostudomanyi Egyetem, Szeged (Hungary). Orvosbiologiai Intezet)

    1982-01-01

    Metaphase II cells with unequal dyad-arms and obvious X/autosomal rearrangements were found after an exposure to X-rays (2 Gy) of male mice at different stages of meiosis (pachytene, diplotene and diakinesis) with a frequency of 0.2, 1.26 and 0.6%, respectively, giving a direct cytological evidence of structural chromosomal rearrangements in metaphase II cells, partly with autosomal and partly with X/autosomal partners.

  19. Meiotic synapsis of homogeneously staining regions (HSRs) in chromosome 1 of Mus musculus.

    Science.gov (United States)

    Winking, H; Reuter, C; Traut, W

    1993-05-01

    About 50 copies of a long-range repeat DNA family with a repeat size of roughly 100 kb and with sequence homology to mRNAs are clustered in the G-light band D of chromosome 1 of the house mouse, Mus musculus. We studied amplified versions of the cluster which are found in many wild populations of M. musculus. They are cytogenetically conspicuous as one or two C-band positive homogeneously staining regions (single- and double band HSRs) which increase the mitotic length of chromosome 1. The double band HSR was phylogenetically derived from a single band HSR by a paracentric inversion. In homozygous condition, such HSRs contribute, albeit not as much as expected from their mitotic length, to the synaptonemal complex (SC) length of chromosome 1. In HSR heterozygous animals an elongation of the SCs was not noticeable. In single band HSR heterozygous males, synapsis proceeds regularly and continuously from the distal telomere towards the centromeric end without forming buckles. Thus, the single band HSR has no adverse effect on pairing. The same straight pairing behaviour was found in the majority of double band HSR heterozygous spermatocytes. This shows that extensive nonhomologous pairing can take place in the earliest phase of synapsis. Synapsis was discontinuous, leaving the central part of the bivalent 1 asynapsed, in only 14.3% of double band HSR heterozygous cells. In such cells the chromosome 1 SC is completed at a later stage of meiosis. The delay is presumably an effect of the inversion that includes one HSR band and the segment between the two HSR bands.

  20. Cytological evidence of chromosomal rearrangement in the second meiotic division after exposure to X-rays

    International Nuclear Information System (INIS)

    Szemere, G.

    1982-01-01

    Metaphase II cells with unequal dyad-arms and obvious X/autosomal rearrangements were found after an exposure to X-rays (2 Gy) of male mice at different stages of meiosis (pachytene, diplotene and diakinesis) with a frequency of 0.2, 1.26 and 0.6%, respectively, giving a direct cytological evidence of structural chromosomal rearrangements in metaphase II cells, partly with autosomal and partly with X/autosomal partners. (author)

  1. Meiotic Consequences of Genetic Divergence Across the Murine Pseudoautosomal Region

    OpenAIRE

    Dumont, Beth L.

    2017-01-01

    The production of haploid gametes during meiosis is dependent on the homology-driven processes of pairing, synapsis, and recombination. On the mammalian heterogametic sex chromosomes, these key meiotic activities are confined to the pseudoautosomal region (PAR), a short region of near-perfect sequence homology between the X and Y chromosomes. Despite its established importance for meiosis, the PAR is rapidly evolving, raising the question of how proper X/Y segregation is buffered against the ...

  2. Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility.

    Directory of Open Access Journals (Sweden)

    Linbin Zhang

    2015-03-01

    Full Text Available Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome--two patterns widely observed across animals.

  3. Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility.

    Science.gov (United States)

    Zhang, Linbin; Sun, Tianai; Woldesellassie, Fitsum; Xiao, Hailian; Tao, Yun

    2015-03-01

    Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome--two patterns widely observed across animals.

  4. Neo-sex Chromosomes in the Monarch Butterfly, Danaus plexippus

    Directory of Open Access Journals (Sweden)

    Andrew J. Mongue

    2017-10-01

    Full Text Available We report the discovery of a neo-sex chromosome in the monarch butterfly, Danaus plexippus, and several of its close relatives. Z-linked scaffolds in the D. plexippus genome assembly were identified via sex-specific differences in Illumina sequencing coverage. Additionally, a majority of the D. plexippus genome assembly was assigned to chromosomes based on counts of one-to-one orthologs relative to the butterfly Melitaea cinxia (with replication using two other lepidopteran species, in which genome scaffolds have been mapped to linkage groups. Sequencing coverage-based assessments of Z linkage combined with homology-based chromosomal assignments provided strong evidence for a Z-autosome fusion in the Danaus lineage, involving the autosome homologous to chromosome 21 in M. cinxia. Coverage analysis also identified three notable assembly errors resulting in chimeric Z-autosome scaffolds. Cytogenetic analysis further revealed a large W chromosome that is partially euchromatic, consistent with being a neo-W chromosome. The discovery of a neo-Z and the provisional assignment of chromosome linkage for >90% of D. plexippus genes lays the foundation for novel insights concerning sex chromosome evolution in this female-heterogametic model species for functional and evolutionary genomics.

  5. Preimplantation genetic diagnosis outcomes and meiotic segregation analysis of robertsonian translocation carriers.

    Science.gov (United States)

    Ko, Duck Sung; Cho, Jae Won; Lee, Hyoung-Song; Kim, Jin Yeong; Kang, Inn Soo; Yang, Kwang Moon; Lim, Chun Kyu

    2013-04-01

    To investigate the meiotic segregation patterns of cleavage-stage embryos from robertsonian translocation carriers and aneuploidy of chromosome 18 according to meiotic segregation patterns. Retrospective study. Infertility center and laboratory of reproductive biology and infertility. Sixty-two couples with robertsonian translocation carriers. One blastomere was biopsied from embryos and diagnosed with the use of fluorescence in situ hybridization (FISH). Translocation chromosomes were analyzed with the use of locus-specific and subtelomeric FISH probes. Aneuploidy of chromosome 18 was assessed simultaneously with translocation chromosomes. Preimplantation genetic diagnosis (PGD) outcomes, meiotic segregation patterns of robertsonian translocation, and aneuploidy of chromosome 18 depending on meiotic segregation patterns. Two hundred seventy embryos of 332 transferrable embryos were transferred in 113 cycles, and 27 healthy babies were born. The alternate segregation was significantly higher in male carriers than in female carriers (43.9% vs. 29.9%, respectively), and adjacent segregation was higher in female carriers than in male carriers (44.7% vs. 38.7%, respectively). Aneuploidy of chromosome 18 was significantly increased in 3:0-segregated or chaotic embryos. Forty-seven alternate embryos were excluded from embryo replacement owing to aneuploidy of chromosome 18. In carriers of robertsonian translocation, meiotic segregation showed differences between men and women. Frequent meiotic errors caused by premature predivision or nondisjunction and less stringent checkpoint in women might cause such differences between sexes. Aneuploidy of chromosome 18 might be influenced by meiotic segregation of translocation chromosomes. Factors that cause malsegregation, such as 3:0 or chaotic segregation, seem to play a role in aneuploidy of chromosome 18. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. The meiotic consequences of chromosomal aberrations induced by separate and simultaneous applications of gamma rays and NMU in lentil (Lens culinaris Med.)

    International Nuclear Information System (INIS)

    Dixit, Pratibha; Dubey, D.K.

    1983-01-01

    Certain meiotic abnormalities were induced by the application of 5, 10 or 15 Kr of gamma rays and/or 0.02 percent of NMU on seeds of lentil (Lens culinaris Med.) var. T36. Univalents, quadrivalents or higher multivalent associations were induced by gamma rays individually or in combination with NMU, while no such associations were recorded in plants treated with NMU alone. But nucleolar fragmentation, chromatin bridges and non-orientation of chromosome fragments were induced by both the mutagens. The percentage of cells showing meiotic abnormalities in the gamma ray treatments increased with an increase in the irradiation dose, however, the combined treatments of the two mutagens did not show a synergestic influence of the two mutagens in inducing such abnormalities. (author)

  7. The evolution of sex chromosomes in organisms with separate haploid sexes.

    Science.gov (United States)

    Immler, Simone; Otto, Sarah Perin

    2015-03-01

    The evolution of dimorphic sex chromosomes is driven largely by the evolution of reduced recombination and the subsequent accumulation of deleterious mutations. Although these processes are increasingly well understood in diploid organisms, the evolution of dimorphic sex chromosomes in haploid organisms (U/V) has been virtually unstudied theoretically. We analyze a model to investigate the evolution of linkage between fitness loci and the sex-determining region in U/V species. In a second step, we test how prone nonrecombining regions are to degeneration due to accumulation of deleterious mutations. Our modeling predicts that the decay of recombination on the sex chromosomes and the addition of strata via fusions will be just as much a part of the evolution of haploid sex chromosomes as in diploid sex chromosome systems. Reduced recombination is broadly favored, as long as there is some fitness difference between haploid males and females. The degeneration of the sex-determining region due to the accumulation of deleterious mutations is expected to be slower in haploid organisms because of the absence of masking. Nevertheless, balancing selection often drives greater differentiation between the U/V sex chromosomes than in X/Y and Z/W systems. We summarize empirical evidence for haploid sex chromosome evolution and discuss our predictions in light of these findings. © 2015 The Author(s).

  8. Fine structure of meiotic prophase chromosomes and modified synaptonemal complexes in diploid and triploid Rhoeo spathacea.

    Science.gov (United States)

    Lin, Y J

    1979-06-01

    The synaptonemal complex (SC) in the diploid Rhoeo consists of 2 amorphous lateral elements, each about 46.0 nm thick, and one amorphous central element about 30.0 nm thick. The central region is about 115.0 nm wide. SC in the triploid have essentially the same dimensions as those of the diploid; both lateral (46.0 nm) and central (30.0 nm) elements are amorphous, and the central region is about 117.5 nm wide. The coil, observed in both diploid and triploid, is a modified short segment of SC with several twists at the end of a synapsed bivalent that is attached to the nuclear membrane. Serial sections in a diploid cell reveal that a coil extends inwards about 3.5 micron from the nuclear membrane and makes a complete turn at a distance of every 0.5 micron. There is a correlation between the modified ends of SC and terminal chiasmata in Rhoeo. The coils might have a positive role in the process of crossing over, or alternatively might be involved in ring formation by holding chromosome ends together while chiasmata are not involved. SC are present in chromocentres of both diploid and triploid. Chromocentres in diploid and triploid are indistinguishable, and appear to be formed from the aggregation of pericentromeric heterochromatin as a result of translocations which occured close to the centromeres. 3-dimensional hypothetical pachytene configuration of the diploid is presented.

  9. Meiotic and mitotic behaviour of a ring/deleted chromosome 22 in human embryos determined by preimplantation genetic diagnosis for a maternal carrier

    Directory of Open Access Journals (Sweden)

    Laver Sarah

    2009-01-01

    Full Text Available Abstract Background Ring chromosomes are normally associated with developmental anomalies and are rarely inherited. An exception to this rule is provided by deletion/ring cases. We were provided with a unique opportunity to investigate the meiotic segregation at oogenesis in a woman who is a carrier of a deleted/ring 22 chromosome. The couple requested preimplantation genetic diagnosis (PGD following the birth of a son with a mosaic karyotype. The couple underwent two cycles of PGD. Studies were performed on lymphocytes, single embryonic cells removed from 3 day-old embryos and un-transferred embryos. Analysis was carried out using fluorescence in situ hybridisation (FISH with specific probe sets in two rounds of hybridization. Results In total, 12 embryos were biopsied, and follow up information was obtained for 10 embryos. No embryos were completely normal or balanced for chromosome 22 by day 5. There was only one embryo diagnosed as balanced of 12 biopsied but that accumulated postzygotic errors by day 5. Three oocytes apparently had a balanced chromosome 22 complement but all had the deleted and the ring 22 and not the intact chromosome 22. After fertilisation all the embryos accumulated postzygotic errors for chromosome 22. Conclusion The study of the preimplantation embryos in this case provided a rare and significant chance to study and understand the phenomena associated with this unusual type of anomaly during meiosis and in the earliest stages of development. It is the first reported PGD attempt for a ring chromosome abnormality.

  10. Sex chromosomes and speciation in birds and other ZW systems.

    Science.gov (United States)

    Irwin, Darren E

    2018-02-14

    Theory and empirical patterns suggest a disproportionate role for sex chromosomes in evolution and speciation. Focusing on ZW sex determination (females ZW, males ZZ; the system in birds, many snakes, and lepidopterans), I review how evolutionary dynamics are expected to differ between the Z, W and the autosomes, discuss how these differences may lead to a greater role of the sex chromosomes in speciation and use data from birds to compare relative evolutionary rates of sex chromosomes and autosomes. Neutral mutations, partially or completely recessive beneficial mutations, and deleterious mutations under many conditions are expected to accumulate faster on the Z than on autosomes. Sexually antagonistic polymorphisms are expected to arise on the Z, raising the possibility of the spread of preference alleles. The faster accumulation of many types of mutations and the potential for complex evolutionary dynamics of sexually antagonistic traits and preferences contribute to a role for the Z chromosome in speciation. A quantitative comparison among a wide variety of bird species shows that the Z tends to have less within-population diversity and greater between-species differentiation than the autosomes, likely due to both adaptive evolution and a greater rate of fixation of deleterious alleles. The W chromosome also shows strong potential to be involved in speciation, in part because of its co-inheritance with the mitochondrial genome. While theory and empirical evidence suggest a disproportionate role for sex chromosomes in speciation, the importance of sex chromosomes is moderated by their small size compared to the whole genome. © 2018 John Wiley & Sons Ltd.

  11. The genomics of plant sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Vyskot, Boris; Hobza, Roman

    2015-01-01

    Roč. 236, JUL 2015 (2015), s. 126-135 ISSN 0168-9452 R&D Projects: GA ČR(CZ) GBP501/12/G090; GA ČR(CZ) GAP501/12/2220 Institutional support: RVO:68081707 Keywords : Y-CHROMOSOME * SILENE-LATIFOLIA * DIOECIOUS PLANT Subject RIV: BO - Biophysics Impact factor: 3.362, year: 2015

  12. The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Hobza, Roman; Kejnovský, Eduard; Vyskot, Boris; Widmer, A.

    2007-01-01

    Roč. 278, č. 6 (2007), s. 633-638 ISSN 1617-4615 R&D Projects: GA ČR(CZ) GA204/05/2097; GA ČR(CZ) GA521/06/0056 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chromosomal rearrangements * sex chromosomes * FISH Subject RIV: BO - Biophysics Impact factor: 2.978, year: 2007

  13. Y Fuse? Sex Chromosome Fusions in Fishes and Reptiles

    Science.gov (United States)

    Vamosi, Jana C.; Peichel, Catherine L.; Valenzuela, Nicole; Kitano, Jun

    2015-01-01

    Chromosomal fusion plays a recurring role in the evolution of adaptations and reproductive isolation among species, yet little is known of the evolutionary drivers of chromosomal fusions. Because sex chromosomes (X and Y in male heterogametic systems, Z and W in female heterogametic systems) differ in their selective, mutational, and demographic environments, those differences provide a unique opportunity to dissect the evolutionary forces that drive chromosomal fusions. We estimate the rate at which fusions between sex chromosomes and autosomes become established across the phylogenies of both fishes and squamate reptiles. Both the incidence among extant species and the establishment rate of Y-autosome fusions is much higher than for X-autosome, Z-autosome, or W-autosome fusions. Using population genetic models, we show that this pattern cannot be reconciled with many standard explanations for the spread of fusions. In particular, direct selection acting on fusions or sexually antagonistic selection cannot, on their own, account for the predominance of Y-autosome fusions. The most plausible explanation for the observed data seems to be (a) that fusions are slightly deleterious, and (b) that the mutation rate is male-biased or the reproductive sex ratio is female-biased. We identify other combinations of evolutionary forces that might in principle account for the data although they appear less likely. Our results shed light on the processes that drive structural changes throughout the genome. PMID:25993542

  14. Utilization during mitotic cell division of loci controlling meiotic recombination and disjunction in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Baker, B.S.; Carpenter, A.T.C.; Ripoll, P.

    1978-01-01

    To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by uv and x rays. Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells

  15. Sex chromosome diversity in Armenian toad grasshoppers (Orthoptera, Acridoidea, Pamphagidae)

    Science.gov (United States)

    Bugrov, Alexander G.; Jetybayev, Ilyas E.; Karagyan, Gayane H.; Rubtsov, Nicolay B.

    2016-01-01

    Abstract Although previous cytogenetic analysis of Pamphagidae grasshoppers pointed to considerable karyotype uniformity among most of the species in the family, our study of species from Armenia has discovered other, previously unknown karyotypes, differing from the standard for Pamphagidae mainly in having unusual sets of sex chromosomes. Asiotmethis turritus (Fischer von Waldheim, 1833), Paranocaracris rubripes (Fischer von Waldheim, 1846), and Nocaracris cyanipes (Fischer von Waldheim, 1846) were found to have the karyotype 2n♂=16+neo-XY and 2n♀=16+neo-XX, the neo-X chromosome being the result of centromeric fusion of an ancient acrocentric X chromosome and a large acrocentric autosome. The karyotype of Paranothrotes opacus (Brunner von Wattenwyl, 1882) was found to be 2n♂=14+X1X2Y and 2n♀=14+X1X1X2X2., the result of an additional chromosome rearrangement involving translocation of the neo-Y and another large autosome. Furthermore, evolution of the sex chromosomes in these species has involved different variants of heterochromatinization and miniaturization of the neo-Y. The karyotype of Eremopeza festiva (Saussure, 1884), in turn, appeared to have the standard sex determination system described earlier for Pamphagidae grasshoppers, 2n♂=18+X0 and 2n♀=18+XX, but all the chromosomes of this species were found to have small second C-positive arms. Using fluorescent in situ hybridization (FISH) with 18S rDNA and telomeric (TTAGG)n DNA repeats to yield new data on the structural organization of chromosomes in the species studied, we found that for most of them, clusters of repeats homologous to 18S rDNA localize on two, three or four pairs of autosomes and on the X. In Eremopeza festiva, however, FISH with labelled 18S rDNA painted C-positive regions of all autosomes and the X chromosome; clusters of telomeric repeats localized primarily on the ends of the chromosome arms. Overall, we conclude that the different stages of neo-Y degradation revealed in

  16. Complex evolutionary trajectories of sex chromosomes across bird taxa

    DEFF Research Database (Denmark)

    Zhou, Qi; Zhang, Jilin; Bachtrog, Doris

    2014-01-01

    Sex-specific chromosomes, like the W of most female birds and the Y of male mammals, usually have lost most genes owing to a lack of recombination.We analyze newly available genomes of 17 bird species representing the avian phylogenetic range, and find that more than half of them do not have...

  17. Gender in plants: sex chromosomes are emerging from the fog

    Czech Academy of Sciences Publication Activity Database

    Vyskot, Boris; Hobza, Roman

    2004-01-01

    Roč. 20, č. 9 (2004), s. 432-438 ISSN 0168-9525 R&D Projects: GA AV ČR(CZ) KSK5052113 Keywords : sex chromosomes * dioecious papaya * evolution Subject RIV: BO - Biophysics Impact factor: 14.643, year: 2004

  18. 3. Pattern of Inheritance of Autosome and Sex. Chromosome Linked ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Teaching and Learning Genetics with Drosophila – Pattern of Inheritance of Autosome and Sex Chro-mosome Linked Genes/Characters. H A Ranganath M T Tanuja. Classroom Volume 4 Issue 10 October 1999 pp 78-87 ...

  19. Genetics of dioecy and causal sex chromosomes in plants

    Indian Academy of Sciences (India)

    2014-04-15

    chromosome evolution; sex-ratio variation ...... interaction between the two genes, Cm ACS7 and Cm W1P1, ... son of low pollinator density seed formation will be scanty ...... Kaltz O. and Bell G. 2002 The ecology and genetics of fitness in.

  20. Molecular analysis of sex chromosome-linked mutants in the ...

    Indian Academy of Sciences (India)

    2010-09-06

    Sep 6, 2010 ... 1Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, ... In Bombyx mori, the W chromosome determines the female sex. .... located on an autosome, and there is no difference in the ex- ..... tral nervous system or in a brain-controlled body wall muscle.

  1. Neurogenin 3 Mediates Sex Chromosome Effects on the Generation of Sex Differences in Hypothalamic Neuronal Development

    Directory of Open Access Journals (Sweden)

    Maria Julia Scerbo

    2014-07-01

    Full Text Available The organizational action of testosterone during critical periods of development is the cause of numerous sex differences in the brain. However, sex differences in neuritogenesis have been detected in primary neuronal hypothalamic cultures prepared before the peak of testosterone production by fetal testis. In the present study we assessed the hypothesis of that cell-autonomous action of sex chromosomes can differentially regulate the expression of the neuritogenic gene neurogenin 3 (Ngn3 in male and female hypothalamic neurons, generating sex differences in neuronal development. Neuronal cultures were prepared from male and female E14 mouse hypothalami, before the fetal peak of testosterone. Female neurons showed enhanced neuritogenesis and higher expression of Ngn3 than male neurons. The silencing of Ngn3 abolished sex differences in neuritogenesis, decreasing the differentiation of female neurons. The sex difference in Ngn3 expression was determined by sex chromosomes, as demonstrated using the four core genotypes mouse model, in which a spontaneous deletion of the testis-determining gene Sry from the Y chromosome was combined with the insertion of the Sry gene onto an autosome. In addition, the expression of Ngn3, which is also known to mediate the neuritogenic actions of estradiol, was increased in the cultures treated with the hormone, but only in those from male embryos. Furthermore, the hormone reversed the sex differences in neuritogenesis promoting the differentiation of male neurons. These findings indicate that Ngn3 mediates both cell-autonomous actions of sex chromosomes and hormonal effects on neuritogenesis.

  2. SEX-DETector: A Probabilistic Approach to Study Sex Chromosomes in Non-Model Organisms

    Science.gov (United States)

    Muyle, Aline; Käfer, Jos; Zemp, Niklaus; Mousset, Sylvain; Picard, Franck; Marais, Gabriel AB

    2016-01-01

    We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences. Most of them remain difficult to apply to numerous non-model organisms, either because they require a reference genome, or because they are designed for evolutionarily old systems. Sequencing a cross (parents and progeny) by RNA-seq to study the segregation of alleles and infer sex-linked genes is a cost-efficient strategy, which also provides expression level estimates. However, the lack of a proper statistical framework has limited a broader application of this approach. Tests on empirical Silene data show that our method identifies 20–35% more sex-linked genes than existing pipelines, while making reliable inferences for downstream analyses. Approximately 12 individuals are needed for optimal results based on simulations. For species with an unknown sex-determination system, the method can assess the presence and type (XY vs. ZW) of sex chromosomes through a model comparison strategy. The method is particularly well optimized for sex chromosomes of young or intermediate age, which are expected in thousands of yet unstudied lineages. Any organisms, including non-model ones for which nothing is known a priori, that can be bred in the lab, are suitable for our method. SEX-DETector and its implementation in a Galaxy workflow are made freely available. PMID:27492231

  3. Female heterogamety in Madagascar chameleons (Squamata: Chamaeleonidae: Furcifer): differentiation of sex and neo-sex chromosomes

    Science.gov (United States)

    Rovatsos, Michail; Pokorná, Martina Johnson; Altmanová, Marie; Kratochvíl, Lukáš

    2015-01-01

    Amniotes possess variability in sex determining mechanisms, however, this diversity is still only partially known throughout the clade and sex determining systems still remain unknown even in such a popular and distinctive lineage as chameleons (Squamata: Acrodonta: Chamaeleonidae). Here, we present evidence for female heterogamety in this group. The Malagasy giant chameleon (Furcifer oustaleti) (chromosome number 2n = 22) possesses heteromorphic Z and W sex chromosomes with heterochromatic W. The panther chameleon (Furcifer pardalis) (2n = 22 in males, 21 in females), the second most popular chameleon species in the world pet trade, exhibits a rather rare Z1Z1Z2Z2/Z1Z2W system of multiple sex chromosomes, which most likely evolved from W-autosome fusion. Notably, its neo-W chromosome is partially heterochromatic and its female-specific genetic content has expanded into the previously autosomal region. Showing clear evidence for genotypic sex determination in the panther chameleon, we resolve the long-standing question of whether or not environmental sex determination exists in this species. Together with recent findings in other reptile lineages, our work demonstrates that female heterogamety is widespread among amniotes, adding another important piece to the mosaic of knowledge on sex determination in amniotes needed to understand the evolution of this important trait. PMID:26286647

  4. Avian sex, sex chromosomes, and dosage compensation in the age of genomics.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2014-04-01

    Comparisons of the sex chromosome systems in birds and mammals are widening our view and deepening our understanding of vertebrate sex chromosome organization, function, and evolution. Birds have a very conserved ZW system of sex determination in which males have two copies of a large, gene-rich Z chromosome, and females have a single Z and a female-specific W chromosome. The avian ZW system is quite the reverse of the well-studied mammalian XY chromosome system, and evolved independently from different autosomal blocs. Despite the different gene content of mammal and bird sex chromosomes, there are many parallels. Genes on the bird Z and the mammal X have both undergone selection for male-advantage functions, and there has been amplification of male-advantage genes and accumulation of LINEs. The bird W and mammal Y have both undergone extensive degradation, but some birds retain early stages and some mammals terminal stages of the process, suggesting that the process is more advanced in mammals. Different sex-determining genes, DMRT1 and SRY, define the ZW and XY systems, but DMRT1 is involved in downstream events in mammals. Birds show strong cell autonomous specification of somatic sex differences in ZZ and ZW tissue, but there is growing evidence for direct X chromosome effects on sexual phenotype in mammals. Dosage compensation in birds appears to be phenotypically and molecularly quite different from X inactivation, being partial and gene-specific, but both systems use tools from the same molecular toolbox and there are some signs that galliform birds represent an early stage in the evolution of a coordinated system.

  5. Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy

    DEFF Research Database (Denmark)

    Ottesen, Anne-Marie; Aksglaede, Lise; Garn, Inger

    2010-01-01

    Tall stature and eunuchoid body proportions characterize patients with 47,XXY Klinefelter syndrome, whereas patients with 45,X Turner syndrome are characterized by impaired growth. Growth is relatively well characterized in these two syndromes, while few studies describe the growth of patients wi......,XXXX (n = 13), and -1.0 (-3.5 to -0.8) in 49,XXXXX (n = 3). Height increased with an increasing number of extra X or Y chromosomes, except in males with five, and in females with four or five sex chromosomes, consistent with a nonlinear effect on height....

  6. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans

    Science.gov (United States)

    Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin

    2016-01-01

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover

  7. Cloning an expressed gene shared by the human sex chromosomes

    International Nuclear Information System (INIS)

    Darling, S.M.; Banting, G.S.; Pym, B.; Wolfe, J.; Goodfellow, P.N.

    1986-01-01

    The existence of genes shared by mammalian sex chromosomes has been predicted on both evolutionary and functional grounds. However, the only experimental evidence for such genes in humans is the cell-surface antigen encoded by loci on the X and Y chromosomes (MIC2X and MIC2Y, respectively), which is recognized by the monoclonal antibody 12E7. Using the bacteriophage λgt11 expression system in Escherichia coli and immunoscreening techniques, the authors have isolated a cDNA clone whose primary product is recognized by 12E7. Southern blot analysis using somatic cell hybrids containing only the human X or Y chromosomes shows that the sequences reacting with the cDNA clone are localized to the sex chromosomes. In addition, the clone hybridizes to DNAs isolated from mouse cells that have been transfected with human DNA and selected for 12E7 expression on the fluorescence-activated cell sorter. The authors conclude that the cDNA clone encodes the 12E7 antigen, which is the primary product of the MIC2 loci. The clone was used to explore sequence homology between MIC2X and MIC2Y; these loci are closely related, if not identical

  8. Meiotic behaviour of tetraploid wheats (Triticum turgidum L.) and ...

    Indian Academy of Sciences (India)

    cause for the meiotic instability (Oettler 2005). Meiotic in- stability in triticale seems to have another molecular cause. Rye chromosomes generally .... economic yield is the product of sexual reproduction (Saini. 1997). Global warming is now ...

  9. Comparative Sex Chromosome Genomics in Snakes: Differentiation, Evolutionary Strata, and Lack of Global Dosage Compensation

    Science.gov (United States)

    Zektser, Yulia; Mahajan, Shivani; Bachtrog, Doris

    2013-01-01

    Snakes exhibit genetic sex determination, with female heterogametic sex chromosomes (ZZ males, ZW females). Extensive cytogenetic work has suggested that the level of sex chromosome heteromorphism varies among species, with Boidae having entirely homomorphic sex chromosomes, Viperidae having completely heteromorphic sex chromosomes, and Colubridae showing partial differentiation. Here, we take a genomic approach to compare sex chromosome differentiation in these three snake families. We identify homomorphic sex chromosomes in boas (Boidae), but completely heteromorphic sex chromosomes in both garter snakes (Colubridae) and pygmy rattlesnake (Viperidae). Detection of W-linked gametologs enables us to establish the presence of evolutionary strata on garter and pygmy rattlesnake sex chromosomes where recombination was abolished at different time points. Sequence analysis shows that all strata are shared between pygmy rattlesnake and garter snake, i.e., recombination was abolished between the sex chromosomes before the two lineages diverged. The sex-biased transmission of the Z and its hemizygosity in females can impact patterns of molecular evolution, and we show that rates of evolution for Z-linked genes are increased relative to their pseudoautosomal homologs, both at synonymous and amino acid sites (even after controlling for mutational biases). This demonstrates that mutation rates are male-biased in snakes (male-driven evolution), but also supports faster-Z evolution due to differential selective effects on the Z. Finally, we perform a transcriptome analysis in boa and pygmy rattlesnake to establish baseline levels of sex-biased expression in homomorphic sex chromosomes, and show that heteromorphic ZW chromosomes in rattlesnakes lack chromosome-wide dosage compensation. Our study provides the first full scale overview of the evolution of snake sex chromosomes at the genomic level, thus greatly expanding our knowledge of reptilian and vertebrate sex chromosomes

  10. Distribution of sex chromosomes (XY) in lymphocyte metaphase spreads of dairy bulls

    OpenAIRE

    Kotikalapudi Rosaiah; Patel Rajesh Kumar; Medidi Hemanth; Sugali Nagaraju Naik

    2013-01-01

    Position of autosome and sex chromosomes in metaphase spreads is grate concerned of Cytogeneticians worldwide to understand cell biology. A few isolated studies have been conducted for the distribution of chromosomes in metaphase spread. Our studies reveal that most sex chromosomes (XY) remain on periphery and semi-periphery, 84.16% for X and 86.97% for Y respectively, in round metaphase spreads. The application of sex chromosome position in metaphase sprea...

  11. The chicken Z chromosome is enriched for genes with preferential expression in ovarian somatic cells

    Czech Academy of Sciences Publication Activity Database

    Mořkovský, L.; Storchová, R.; Plachý, Jiří; Ivánek, Robert; Divina, Petr; Hejnar, Jiří

    2010-01-01

    Roč. 70, č. 2 (2010), s. 129-136 ISSN 0022-2844 Institutional research plan: CEZ:AV0Z50520514 Keywords : Z chromosome * meiotic sex chromosome inactivation * sex ual antagonisms Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.311, year: 2010

  12. Divergent Evolutionary Trajectories of Two Young, Homomorphic, and Closely Related Sex Chromosome Systems

    Science.gov (United States)

    Furman, Benjamin L S; Evans, Ben J

    2018-01-01

    Abstract There exists extraordinary variation among species in the degree and nature of sex chromosome divergence. However, much of our knowledge about sex chromosomes is based on comparisons between deeply diverged species with different ancestral sex chromosomes, making it difficult to establish how fast and why sex chromosomes acquire variable levels of divergence. To address this problem, we studied sex chromosome evolution in two species of African clawed frog (Xenopus), both of whom acquired novel systems for sex determination from a recent common ancestor, and both of whom have female (ZW/ZZ) heterogamy. Derived sex chromosomes of one species, X. laevis, have a small region of suppressed recombination that surrounds the sex determining locus, and have remained this way for millions of years. In the other species, X. borealis, a younger sex chromosome system exists on a different pair of chromosomes, but the region of suppressed recombination surrounding an unidentified sex determining gene is vast, spanning almost half of the sex chromosomes. Differences between these sex chromosome systems are also apparent in the extent of nucleotide divergence between the sex chromosomes carried by females. Our analyses also indicate that in autosomes of both of these species, recombination during oogenesis occurs more frequently and in different genomic locations than during spermatogenesis. These results demonstrate that new sex chromosomes can assume radically different evolutionary trajectories, with far-reaching genomic consequences. They also suggest that in some instances the origin of new triggers for sex determination may be coupled with rapid evolution sex chromosomes, including recombination suppression of large genomic regions. PMID:29608717

  13. Construction of physical maps for the sex-specific regions of papaya sex chromosomes

    Directory of Open Access Journals (Sweden)

    Na Jong-Kuk

    2012-05-01

    Full Text Available Abstract Background Papaya is a major fruit crop in tropical and subtropical regions worldwide. It is trioecious with three sex forms: male, female, and hermaphrodite. Sex determination is controlled by a pair of nascent sex chromosomes with two slightly different Y chromosomes, Y for male and Yh for hermaphrodite. The sex chromosome genotypes are XY (male, XYh (hermaphrodite, and XX (female. The papaya hermaphrodite-specific Yh chromosome region (HSY is pericentromeric and heterochromatic. Physical mapping of HSY and its X counterpart is essential for sequencing these regions and uncovering the early events of sex chromosome evolution and to identify the sex determination genes for crop improvement. Results A reiterate chromosome walking strategy was applied to construct the two physical maps with three bacterial artificial chromosome (BAC libraries. The HSY physical map consists of 68 overlapped BACs on the minimum tiling path, and covers all four HSY-specific Knobs. One gap remained in the region of Knob 1, the only knob structure shared between HSY and X, due to the lack of HSY-specific sequences. This gap was filled on the physical map of the HSY corresponding region in the X chromosome. The X physical map consists of 44 BACs on the minimum tiling path with one gap remaining in the middle, due to the nature of highly repetitive sequences. This gap was filled on the HSY physical map. The borders of the non-recombining HSY were defined genetically by fine mapping using 1460 F2 individuals. The genetically defined HSY spanned approximately 8.5 Mb, whereas its X counterpart extended about 5.4 Mb including a 900 Kb region containing the Knob 1 shared by the HSY and X. The 8.5 Mb HSY corresponds to 4.5 Mb of its X counterpart, showing 4 Mb (89% DNA sequence expansion. Conclusion The 89% increase of DNA sequence in HSY indicates rapid expansion of the Yh chromosome after genetic recombination was suppressed 2–3 million years ago. The

  14. Comparative AFLP reveals paternal sex ratio chromosome specific DNA sequences in the parasitoid wasp Trichogramma kaykai

    NARCIS (Netherlands)

    Vugt, van J.J.F.A.; Hulst, van der R.G.M.; Pruijssers, A.; Verbaarschot, P.G.H.; Stouthamer, R.; Jong, de H.

    2009-01-01

    The parasitoid wasp Trichogramma kaykai with a haplo-diploid sex determination has a B chromosome called the paternal sex ratio (PSR) chromosome that confers paternal genome loss during early embryogenesis, resulting in male offspring. So far, it is not well known whether the PSR chromosome has

  15. Molecular signature of epistatic selection: interrogating genetic interactions in the sex-ratio meiotic drive of Drosophila simulans.

    Science.gov (United States)

    Chevin, Luis-Miguel; Bastide, Héloïse; Montchamp-Moreau, Catherine; Hospital, Frédéric

    2009-06-01

    Fine scale analyses of signatures of selection allow assessing quantitative aspects of a species' evolutionary genetic history, such as the strength of selection on genes. When several selected loci lie in the same genomic region, their epistatic interactions may also be investigated. Here, we study how the neutral polymorphism pattern was shaped by two close recombining loci that cause 'sex-ratio' meiotic drive in Drosophila simulans, as an example of strong selection with potentially strong epistasis. We compare the polymorphism data observed in a natural population with the results of forward stochastic simulations under several contexts of epistasis between the candidate loci for the drive. We compute the likelihood of different possible scenarios, in order to determine which configuration is most consistent with the data. Our results highlight that fine scale analyses of well-chosen candidate genomic regions provide information-rich data that can be used to investigate the genotype-phenotype-fitness map, which can hardly be studied in genome-wide analyses. We also emphasize that initial conditions and time of observation (here, time after the interruption of a partial selective sweep) are crucial parameters in the interpretation of real data, while these are often overlooked in theoretical studies.

  16. Regulation of meiotic entry and gonadal sex differentiation in the human

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Rajpert-De Meyts, Ewa

    2014-01-01

    Meiosis is a unique type of cell division that is performed only by germ cells to form haploid gametes. The switch from mitosis to meiosis exhibits a distinct sex-specific difference in timing, with female germ cells entering meiosis during fetal development and male germ cells at puberty when...... spermatogenesis is initiated. During early fetal development, bipotential primordial germ cells migrate to the forming gonad where they remain sexually indifferent until the sex-specific differentiation of germ cells is initiated by cues from the somatic cells. This irreversible step in gonadal sex...... in the context of fetal gonad development and germ cell differentiation, with emphasis on results obtained in humans. Furthermore, the consequences of dysregulated meiosis signaling in humans are briefly discussed in the context of selected pathologies, including testicular germ cell cancer and some forms...

  17. New insights into sex chromosome evolution in anole lizards (Reptilia, Dactyloidae).

    Science.gov (United States)

    Giovannotti, M; Trifonov, V A; Paoletti, A; Kichigin, I G; O'Brien, P C M; Kasai, F; Giovagnoli, G; Ng, B L; Ruggeri, P; Cerioni, P Nisi; Splendiani, A; Pereira, J C; Olmo, E; Rens, W; Caputo Barucchi, V; Ferguson-Smith, M A

    2017-03-01

    Anoles are a clade of iguanian lizards that underwent an extensive radiation between 125 and 65 million years ago. Their karyotypes show wide variation in diploid number spanning from 26 (Anolis evermanni) to 44 (A. insolitus). This chromosomal variation involves their sex chromosomes, ranging from simple systems (XX/XY), with heterochromosomes represented by either micro- or macrochromosomes, to multiple systems (X 1 X 1 X 2 X 2 /X 1 X 2 Y). Here, for the first time, the homology relationships of sex chromosomes have been investigated in nine anole lizards at the whole chromosome level. Cross-species chromosome painting using sex chromosome paints from A. carolinensis, Ctenonotus pogus and Norops sagrei and gene mapping of X-linked genes demonstrated that the anole ancestral sex chromosome system constituted by microchromosomes is retained in all the species with the ancestral karyotype (2n = 36, 12 macro- and 24 microchromosomes). On the contrary, species with a derived karyotype, namely those belonging to genera Ctenonotus and Norops, show a series of rearrangements (fusions/fissions) involving autosomes/microchromosomes that led to the formation of their current sex chromosome systems. These results demonstrate that different autosomes were involved in translocations with sex chromosomes in closely related lineages of anole lizards and that several sequential microautosome/sex chromosome fusions lead to a remarkable increase in size of Norops sagrei sex chromosomes.

  18. Genes and chromosome arrangements affecting sex ratio in the Mediterranean fruit fly, Ceratitis capitata (Wied.)

    International Nuclear Information System (INIS)

    Wood, R.J.; Kafu, A.A.; Rendon Arana, P.A.; Owusu-Daaku, K.; Alcock, R.M.; Hallows, J.A.; Busch-Petersen, E.; Mani, G.S.

    1997-01-01

    The MP (male producing) factor, which shows temperature sensitive meiotic drive favoring the Y chromosome, proved to be highly variable in spermatozoal deficiency in different cysts within a single testis. However, the overall loss of sperm corresponded almost precisely with the loss of females. The minimum proportion of females consistently obtained in inbred lines was about 30-35%. On the basis of parallel studies with the mosquito Aedes aegypti, variability between cysts is open to interpretation in terms of different rates of senescence. The T:Y(wp + )30C genetic sexing strain, which is designed to generate males with brown (wild type) puparia and females with white puparia, was contaminated artificially in a series of population experiments to investigate the pattern of breakdown. Wild type contamination with either sex caused an increase of brown pupae. The sex ratio became progressively distorted in favour of females after contamination with females, mated or unmated, but not after male contamination. The experiments revealed evidence of a low frequency of natural recombination between wp + and the translocation breakpoint on the Y chromosome, shown by the appearance of wp males. The frequency of male recombination (r) and the selection coefficient (s) against wp/wp were measured over 11 generations. The best fit to the observed data was obtained with r = (0.14 ± 0.04)% and s=(26.0 ± 2.7)%. Using these estimates to predict the frequency of wp + females and wp males for up to 100 generations, it was concluded that white males would never exceed 0.5% whereas the frequency of brown females was expected to exceed 33% after 25 generations. Published data on the mass reared strain, maintained with a population size of 240,000 adult flies, were subjected to the same analysis. A higher value of s between (38.0 ± 3.2)% and (52.0 ± 0.3)% was obtained under these conditions. Electrophoretic studies on esterases revealed a significantly higher activity in a recently

  19. Neo-sex chromosomes in the monarch butterfly, Danaus plexippus

    Czech Academy of Sciences Publication Activity Database

    Mongue, A. J.; Nguyen, Petr; Voleníková, Anna; Walters, J. R.

    2017-01-01

    Roč. 7, č. 10 (2017), s. 3281-3294 ISSN 2160-1836 R&D Projects: GA ČR(CZ) GA14-22765S; GA ČR(CZ) GP14-35819P Grant - others:GA JU(CZ) 159/2016/P Institutional support: RVO:60077344 Keywords : sex chromosomes * evolution * Lepidoptera Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 2.861, year: 2016 http://www.g3journal.org/content/7/10/3281.long

  20. B chromosomes have a functional effect on female sex determination in Lake Victoria cichlid fishes.

    Directory of Open Access Journals (Sweden)

    Kohta Yoshida

    2011-08-01

    Full Text Available The endemic cichlid fishes in Lake Victoria are a model system for speciation through adaptive radiation. Although the evolution of the sex-determination system may also play a role in speciation, little is known about the sex-determination system of Lake Victoria cichlids. To understand the evolution of the sex-determination system in these fish, we performed cytogenetic analysis in 11 cichlid species from Lake Victoria. B chromosomes, which are present in addition to standard chromosomes, were found at a high prevalence rate (85% in these cichlids. In one species, B chromosomes were female-specific. Cross-breeding using females with and without the B chromosomes demonstrated that the presence of the B chromosomes leads to a female-biased sex ratio in this species. Although B chromosomes were believed to be selfish genetic elements with little effect on phenotype and to lack protein-coding genes, the present study provides evidence that B chromosomes have a functional effect on female sex determination. FISH analysis using a BAC clone containing B chromosome DNA suggested that the B chromosomes are derived from sex chromosomes. Determination of the nucleotide sequences of this clone (104.5 kb revealed the presence of several protein-coding genes in the B chromosome, suggesting that B chromosomes have the potential to contain functional genes. Because some sex chromosomes in amphibians and arthropods are thought to be derived from B chromosomes, the B chromosomes in Lake Victoria cichlids may represent an evolutionary transition toward the generation of sex chromosomes.

  1. Sex Chromosome Evolution, Heterochiasmy, and Physiological QTL in the Salmonid Brook Charr Salvelinus fontinalis

    Directory of Open Access Journals (Sweden)

    Ben J.G. Sutherland

    2017-08-01

    Full Text Available Whole-genome duplication (WGD can have large impacts on genome evolution, and much remains unknown about these impacts. This includes the mechanisms of coping with a duplicated sex determination system and whether this has an impact on increasing the diversity of sex determination mechanisms. Other impacts include sexual conflict, where alleles having different optimums in each sex can result in sequestration of genes into nonrecombining sex chromosomes. Sex chromosome development itself may involve sex-specific recombination rate (i.e., heterochiasmy, which is also poorly understood. The family Salmonidae is a model system for these phenomena, having undergone autotetraploidization and subsequent rediploidization in most of the genome at the base of the lineage. The salmonid master sex determining gene is known, and many species have nonhomologous sex chromosomes, putatively due to transposition of this gene. In this study, we identify the sex chromosome of Brook Charr Salvelinus fontinalis and compare sex chromosome identities across the lineage (eight species and four genera. Although nonhomology is frequent, homologous sex chromosomes and other consistencies are present in distantly related species, indicating probable convergence on specific sex and neo-sex chromosomes. We also characterize strong heterochiasmy with 2.7-fold more crossovers in maternal than paternal haplotypes with paternal crossovers biased to chromosome ends. When considering only rediploidized chromosomes, the overall heterochiasmy trend remains, although with only 1.9-fold more recombination in the female than the male. Y chromosome crossovers are restricted to a single end of the chromosome, and this chromosome contains a large interspecific inversion, although its status between males and females remains unknown. Finally, we identify quantitative trait loci (QTL for 21 unique growth, reproductive, and stress-related phenotypes to improve knowledge of the genetic

  2. Meiotic and post-meiotic studies in the male mouse exposed to X-rays and their human implications

    International Nuclear Information System (INIS)

    Szemere, G.

    1977-01-01

    Cytological studies were carried out on the meiotic process of control and irradiated male mice in order to provide direct means of estimating the non-disjunction rate for autosomes and sex chromosomes. Analysis of second meiotic divisions showed that while spontaneous rates of anaphase I non-disjunctions were extremely low, they could be enhanced by X-ray treatment of prophase spermatocytes. Irradiation at pre-leptotene resulted in a higher rate of anaphase I non-disjunction than did irradiation at pachytene, while early spermatogonia were relatively insensitive. In the present experiments, a relatively high proportion of chromosomally abnormal fetuses (including triploidy, X monosomy, autosomal trisomy and several mosaicisms) have been found amoung the progeny of males irradiated at pre-leptotene. The human implications of these findings with respect to the radiation hazards are discussed

  3. Using RAD-seq to recognize sex-specific markers and sex chromosome systems.

    Science.gov (United States)

    Gamble, Tony

    2016-05-01

    Next-generation sequencing methods have initiated a revolution in molecular ecology and evolution (Tautz et al. ). Among the most impressive of these sequencing innovations is restriction site-associated DNA sequencing or RAD-seq (Baird et al. ; Andrews et al. ). RAD-seq uses the Illumina sequencing platform to sequence fragments of DNA cut by a specific restriction enzyme and can generate tens of thousands of molecular genetic markers for analysis. One of the many uses of RAD-seq data has been to identify sex-specific genetic markers, markers found in one sex but not the other (Baxter et al. ; Gamble & Zarkower ). Sex-specific markers are a powerful tool for biologists. At their most basic, they can be used to identify the sex of an individual via PCR. This is useful in cases where a species lacks obvious sexual dimorphism at some or all life history stages. For example, such tests have been important for studying sex differences in life history (Sheldon ; Mossman & Waser ), the management and breeding of endangered species (Taberlet et al. ; Griffiths & Tiwari ; Robertson et al. ) and sexing embryonic material (Hacker et al. ; Smith et al. ). Furthermore, sex-specific markers allow recognition of the sex chromosome system in cases where standard cytogenetic methods fail (Charlesworth & Mank ; Gamble & Zarkower ). Thus, species with male-specific markers have male heterogamety (XY) while species with female-specific markers have female heterogamety (ZW). In this issue, Fowler & Buonaccorsi () illustrate the ease by which RAD-seq data can generate sex-specific genetic markers in rockfish (Sebastes). Moreover, by examining RAD-seq data from two closely related rockfish species, Sebastes chrysomelas and Sebastes carnatus (Fig. ), Fowler & Buonaccorsi () uncover shared sex-specific markers and a conserved sex chromosome system. © 2016 John Wiley & Sons Ltd.

  4. Sex chromosome abnormalities and sterility in river buffalo.

    Science.gov (United States)

    Di Meo, G P; Perucatti, A; Di Palo, R; Iannuzzi, A; Ciotola, F; Peretti, V; Neglia, G; Campanile, G; Zicarelli, L; Iannuzzi, L

    2008-01-01

    Thirteen male river buffaloes, 119 females with reproductive problems (which had reached reproductive age but had failed to become pregnant in the presence of bulls) and two male co-twins underwent both clinical and cytogenetic investigation. Clinical analyses performed by veterinary practitioners revealed normal body conformation and external genitalia for most females. However, some subjects showed some slight male traits such as large base horn circumference, prominent withers and tight pelvis. Rectal palpation revealed damage to internal sex adducts varying between atrophy of Mullerian ducts to complete lack of internal sex adducts (with closed vagina). All bulls had normal karyotypes at high resolution banding, while 25 animals (23 females and 2 male co-twins) (20.7%) with reproductive problems were found to carry the following sex chromosome abnormalities: X monosomy (2 females); X trisomy (1 female); sex reversal syndrome (2 females); and free-martinism (18 females and 2 males). All female carriers were sterile. Copyright 2008 S. Karger AG, Basel.

  5. Sex chromosome turnover contributes to genomic divergence between incipient stickleback species.

    Directory of Open Access Journals (Sweden)

    Kohta Yoshida

    2014-03-01

    Full Text Available Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration.

  6. Spermatogenesis-specific features of the meiotic program in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Diane C Shakes

    2009-08-01

    Full Text Available In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex.

  7. Aberrations of holokinetic chromosomes and associated lethality after X-irradiation of meiotic stages in Tetranychus urticae Koch (acari, tetranychidae)

    International Nuclear Information System (INIS)

    Tempelaar, M.J.

    1979-01-01

    Chromosomes of the holokinetic organization type were irradiated with X-rays in various stages of meiosis in unfertillized eggs of Tetranychus urticae Koch. Visible cytological aberrations, lethality and sterility were investigated in subsequent generations. Chromosome fragments are the most frequently occuring light-microscopically visible chromosome aberrations; bridges are not formed. Contrary to expectations, the presence of fragments appears to be positively correlated with the occurrence of lethality; loss of fragments, missegregation and the measure of damage of the broken chromosome parts are involved. In contrast with monokinetic chromosomes the earliest lethality occurs only after about 10 divisions. The ratios between different embryonic lethality types (early vs. late) differ depending on the stage irradiated: in more compact chromatin, more serious damage (i.e. more early lethality syndromes) is induced than in less compact chromatin. In the progeny of the surviving males, neither translocations nor independent fragments are found; indirect evidence indicated the occasional presence of inversions. The presumtive inversions are induced more frequently in a chromatin-compact stage (metaphase I) than in a less compact one (telophase I). (Auth.)

  8. Shaping meiotic chromosomes with SUMO: a feedback loop controls the assembly of the synaptonemal complex in budding yeast

    Directory of Open Access Journals (Sweden)

    Hideo Tsubouchi

    2016-02-01

    Full Text Available The synaptonemal complex (SC is a meiosis-specific chromosomal structure in which homologous chromosomes are intimately linked through arrays of specialized proteins called transverse filaments (TF. Widely conserved in eukaryote meiosis, the SC forms during prophase I and is essential for accurate segregation of homologous chromosomes at meiosis I. However, the basic mechanism overlooking formation and regulation of the SC has been poorly understood. By using the budding yeast Saccharomyces cerevisiae, we recently showed that SC formation is controlled through the attachment of multiple molecules of small ubiquitin-like modifier (SUMO to a regulator of TF assembly. Intriguingly, this SUMOylation is activated by TF, implicating the involvement of a positive feedback loop in the control of SC assembly. We discuss the implication of this finding and possible involvement of a similar mechanism in regulating other processes.

  9. Meiotic behaviour of tetraploid wheats (Triticum turgidum L.)

    Indian Academy of Sciences (India)

    Meiotic behaviour of plant chromosomes is influenced by both genetic and environmental factors. In this study, the meiotic behaviour of cereal crops was investigated, which includes tetraploid wheat genotypes (with and without the meiotic restitution trait) and their derivates (synthetic hexaploid wheats and a doubled ...

  10. Differentiation of Sex Chromosomes and Karyotype Characterisation in the Dragonsnake Xenodermus javanicus (Squamata: Xenodermatidae)

    Czech Academy of Sciences Publication Activity Database

    Rovatsos, M.; Johnson Pokorná, Martina; Kratochvíl, L.

    2015-01-01

    Roč. 147, č. 1 (2015), s. 48-54 ISSN 1424-8581 Institutional support: RVO:67985904 Keywords : interstitial telomeric repeats * sex chromosomes * sex determination Subject RIV: EG - Zoology Impact factor: 1.638, year: 2015

  11. Assignment of the human gene for pregnancy-associated plasma protein A (PAPPA) to 9q33.1 by fluorescence in situ hybridization to mitotic and meiotic chromosomes

    DEFF Research Database (Denmark)

    Silahtaroglu, A N; Tümer, Z; Kristensen, Torsten

    1993-01-01

    Low levels of pregnancy-associated plasma protein A (PAPPA) during the first trimester has been suggested as a biochemical indicator of pregnancies with aneuploid fetuses. Furthermore, the complete absence of PAPPA in pregnancies associated with Cornelia de Lange syndrome (CL) has suggested...... a causal connection between PAPPA and the development of CL. We have assigned the locus for PAPPA to chromosome region 9q33.1 on mitotic and meiotic chromosomes by fluorescence in situ hybridization, using a 3.7-kb partial PAPPA cDNA probe...

  12. A major locus on mouse chromosome 18 controls XX sex reversal in Odd Sex (Ods) mice.

    Science.gov (United States)

    Qin, Yangjun; Poirier, Christophe; Truong, Cavatina; Schumacher, Armin; Agoulnik, Alexander I; Bishop, Colin E

    2003-03-01

    We have previously reported a dominant mouse mutant, Odd sex (Ods), in which XX Ods/+ mice on the FVB/N background show complete sex reversal, associated with expression of Sox9 in the fetal gonads. Remarkably, when crossed to the A/J strain approximately 95% of the (AXFVB) F(1) XX Ods/+ mice developed as fully fertile, phenotypic females, the remainder developing as males or hermaphrodites. Using a (AXFVB) F(2) population, we conducted a genome-wide linkage scan to identify the number and chromosomal location of potential Ods modifier genes. A single major locus termed Odsm1 was mapped to chromosome 18, tightly linked to D18Mit189 and D18Mit210. Segregation at this locus could account for the presence of sex reversal in 100% of XX Ods/+ mice which develop as males, for the absence of sex reversal in approximately 92% of XX Ods/+ mice which develop as females, and for the mixed sexual phenotype in approximately 72% of XX Ods/+ mice that develop with ambiguous genitalia. We propose that homozygosity for the FVB-derived allele strongly favors Ods sex reversal, whereas homozygosity for the A/J-derived allele inhibits it. In mice heterozygous at Odsm1, the phenotypic outcome, male, female or hermaphrodite, is determined by a complex interaction of several minor modifying loci. The close proximity of Smad2, Smad7 and Smad4 to D18Mit189/210 provides a potential mechanism through which Odsm1 might act.

  13. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): are differentiated sex chromosomes indeed so evolutionary stable?

    Science.gov (United States)

    Koubová, Martina; Johnson Pokorná, Martina; Rovatsos, Michail; Farkačová, Klára; Altmanová, Marie; Kratochvíl, Lukáš

    2014-12-01

    Among amniote vertebrates, geckos represent a clade with exceptional variability in sex determination; however, only a minority of species of this highly diverse group has been studied in this respect. Here, we describe for the first time a female heterogamety in the genus Paroedura, the group radiated in Madagascar and adjacent islands. We identified homomorphic ZZ/ZW sex chromosomes with a highly heterochromatic W chromosome in Paroedura masobe, Paroedura oviceps, Paroedura karstophila, Paroedura stumpffi, and Paroedura lohatsara. Comparative genomic hybridization (CGH) revealed that female-specific sequences are greatly amplified in the W chromosome of P. lohatsara and that P. gracilis seems to possess a derived system of multiple sex chromosomes. Contrastingly, neither CGH nor heterochromatin visualization revealed differentiated sex chromosomes in the members of the Paroedura picta-Paroedura bastardi-Paroedura ibityensis clade, which is phylogenetically nested within lineages with a heterochromatic W chromosome. As a sex ratio consistent with genotypic sex determination has been reported in P. picta, it appears that the members of the P. picta-P. bastardi-P. ibityensis clade possess homomorphic, poorly differentiated sex chromosomes and may represent a rare example of evolutionary loss of highly differentiated sex chromosomes. Fluorescent in situ hybridization (FISH) with a telomeric probe revealed a telomere-typical pattern in all species and an accumulation of telomeric sequences in the centromeric region of autosomes in P. stumpffi and P. bastardi. Our study adds important information for the greater understanding of the variability and evolution of sex determination in geckos and demonstrates how the geckos of the genus Paroedura provide an interesting model for studying the evolution of the sex chromosomes.

  14. Patterns of molecular evolution of an avian neo-sex chromosome.

    Science.gov (United States)

    Pala, Irene; Hasselquist, Dennis; Bensch, Staffan; Hansson, Bengt

    2012-12-01

    Newer parts of sex chromosomes, neo-sex chromosomes, offer unique possibilities for studying gene degeneration and sequence evolution in response to loss of recombination and population size decrease. We have recently described a neo-sex chromosome system in Sylvioidea passerines that has resulted from a fusion between the first half (10 Mb) of chromosome 4a and the ancestral sex chromosomes. In this study, we report the results of molecular analyses of neo-Z and neo-W gametologs and intronic parts of neo-Z and autosomal genes on the second half of chromosome 4a in three species within different Sylvioidea lineages (Acrocephalidea, Timaliidae, and Alaudidae). In line with hypotheses of neo-sex chromosome evolution, we observe 1) lower genetic diversity of neo-Z genes compared with autosomal genes, 2) moderate synonymous and weak nonsynonymous sequence divergence between neo-Z and neo-W gametologs, and 3) lower GC content on neo-W than neo-Z gametologs. Phylogenetic reconstruction of eight neo-Z and neo-W gametologs suggests that recombination continued after the split of Alaudidae from the rest of the Sylvioidea lineages (i.e., after ~42.2 Ma) and with some exceptions also after the split of Acrocephalidea and Timaliidae (i.e., after ~39.4 Ma). The Sylvioidea neo-sex chromosome shares classical evolutionary features with the ancestral sex chromosomes but, as expected from its more recent origin, shows weaker divergence between gametologs.

  15. A role for a neo-sex chromosome in stickleback speciation

    Science.gov (United States)

    Kitano, Jun; Ross, Joseph A.; Mori, Seiichi; Kume, Manabu; Jones, Felicity C.; Chan, Yingguang F.; Absher, Devin M.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Kingsley, David M.; Peichel, Catherine L.

    2009-01-01

    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex chromosome turnover and speciation. Although closely related species often have different sex chromosome systems, it is unknown whether sex chromosome turnover contributes to the evolution of reproductive isolation between species. In this study, we show that a newly evolved sex chromosome harbours genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome harbours loci for male courtship display traits that contribute to behavioural isolation, while the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large-X effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data suggest that sex chromosome turnover might play a greater role in speciation than previously appreciated. PMID:19783981

  16. A meiotic linkage map of the silver fox, aligned and compared to the canine genome.

    Science.gov (United States)

    Kukekova, Anna V; Trut, Lyudmila N; Oskina, Irina N; Johnson, Jennifer L; Temnykh, Svetlana V; Kharlamova, Anastasiya V; Shepeleva, Darya V; Gulievich, Rimma G; Shikhevich, Svetlana G; Graphodatsky, Alexander S; Aguirre, Gustavo D; Acland, Gregory M

    2007-03-01

    A meiotic linkage map is essential for mapping traits of interest and is often the first step toward understanding a cryptic genome. Specific strains of silver fox (a variant of the red fox, Vulpes vulpes), which segregate behavioral and morphological phenotypes, create a need for such a map. One such strain, selected for docility, exhibits friendly dog-like responses to humans, in contrast to another strain selected for aggression. Development of a fox map is facilitated by the known cytogenetic homologies between the dog and fox, and by the availability of high resolution canine genome maps and sequence data. Furthermore, the high genomic sequence identity between dog and fox allows adaptation of canine microsatellites for genotyping and meiotic mapping in foxes. Using 320 such markers, we have constructed the first meiotic linkage map of the fox genome. The resulting sex-averaged map covers 16 fox autosomes and the X chromosome with an average inter-marker distance of 7.5 cM. The total map length corresponds to 1480.2 cM. From comparison of sex-averaged meiotic linkage maps of the fox and dog genomes, suppression of recombination in pericentromeric regions of the metacentric fox chromosomes was apparent, relative to the corresponding segments of acrocentric dog chromosomes. Alignment of the fox meiotic map against the 7.6x canine genome sequence revealed high conservation of marker order between homologous regions of the two species. The fox meiotic map provides a critical tool for genetic studies in foxes and identification of genetic loci and genes implicated in fox domestication.

  17. MEIOB targets single-strand DNA and is necessary for meiotic recombination.

    Directory of Open Access Journals (Sweden)

    Benoit Souquet

    Full Text Available Meiotic recombination is a mandatory process for sexual reproduction. We identified a protein specifically implicated in meiotic homologous recombination that we named: meiosis specific with OB domain (MEIOB. This protein is conserved among metazoan species and contains single-strand DNA binding sites similar to those of RPA1. Our studies in vitro revealed that both recombinant and endogenous MEIOB can be retained on single-strand DNA. Those in vivo demonstrated the specific expression of Meiob in early meiotic germ cells and the co-localization of MEIOB protein with RPA on chromosome axes. MEIOB localization in Dmc1 (-/- spermatocytes indicated that it accumulates on resected DNA. Homologous Meiob deletion in mice caused infertility in both sexes, due to a meiotic arrest at a zygotene/pachytene-like stage. DNA double strand break repair and homologous chromosome synapsis were impaired in Meiob (-/- meiocytes. Interestingly MEIOB appeared to be dispensable for the initial loading of recombinases but was required to maintain a proper number of RAD51 and DMC1 foci beyond the zygotene stage. In light of these findings, we propose that RPA and this new single-strand DNA binding protein MEIOB, are essential to ensure the proper stabilization of recombinases which is required for successful homology search and meiotic recombination.

  18. The mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma represents a model for early evolution of sex chromosomes.

    Directory of Open Access Journals (Sweden)

    Audrius Menkis

    2008-03-01

    Full Text Available We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains, derived from one N. tetrasperma heterokaryon (mat A+mat a, was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first "evolutionary stratum", genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers.

  19. First Description of the Karyotype and Sex Chromosomes in the Komodo Dragon (Varanus komodoensis).

    Science.gov (United States)

    Johnson Pokorná, Martina; Altmanová, Marie; Rovatsos, Michail; Velenský, Petr; Vodička, Roman; Rehák, Ivan; Kratochvíl, Lukáš

    2016-01-01

    The Komodo dragon (Varanus komodoensis) is the largest lizard in the world. Surprisingly, it has not yet been cytogenetically examined. Here, we present the very first description of its karyotype and sex chromosomes. The karyotype consists of 2n = 40 chromosomes, 16 macrochromosomes and 24 microchromosomes. Although the chromosome number is constant for all species of monitor lizards (family Varanidae) with the currently reported karyotype, variability in the morphology of the macrochromosomes has been previously documented within the group. We uncovered highly differentiated ZZ/ZW sex microchromosomes with a heterochromatic W chromosome in the Komodo dragon. Sex chromosomes have so far only been described in a few species of varanids including V. varius, the sister species to Komodo dragon, whose W chromosome is notably larger than that of the Komodo dragon. Accumulations of several microsatellite sequences in the W chromosome have recently been detected in 3 species of monitor lizards; however, these accumulations are absent from the W chromosome of the Komodo dragon. In conclusion, although varanids are rather conservative in karyotypes, their W chromosomes exhibit substantial variability at the sequence level, adding further evidence that degenerated sex chromosomes may represent the most dynamic genome part. © 2016 S. Karger AG, Basel.

  20. Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest.

    Science.gov (United States)

    Bracewell, Ryan R; Bentz, Barbara J; Sullivan, Brian T; Good, Jeffrey M

    2017-11-17

    Genome evolution is predicted to be rapid following the establishment of new (neo) sex chromosomes, but it is not known if neo-sex chromosome evolution plays an important role in speciation. Here we combine extensive crossing experiments with population and functional genomic data to examine neo-XY chromosome evolution and incipient speciation in the mountain pine beetle. We find a broad continuum of intrinsic incompatibilities in hybrid males that increase in strength with geographic distance between reproductively isolated populations. This striking progression of reproductive isolation is coupled with extensive gene specialization, natural selection, and elevated genetic differentiation on both sex chromosomes. Closely related populations isolated by hybrid male sterility also show fixation of alternative neo-Y haplotypes that differ in structure and male-specific gene content. Our results suggest that neo-sex chromosome evolution can drive rapid functional divergence between closely related populations irrespective of ecological drivers of divergence.

  1. Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs.

    Science.gov (United States)

    Schartl, Manfred; Schmid, Michael; Nanda, Indrajit

    2016-06-01

    The Y and W chromosomes of mammals and birds are known to be small because most of their genetic content degenerated and were lost due to absence of recombination with the X or Z, respectively. Thus, a picture has emerged of ever-shrinking Ys and Ws that may finally even fade into disappearance. We review here the large amount of literature on sex chromosomes in vertebrate species and find by taking a closer look, particularly at the sex chromosomes of fishes, amphibians and reptiles where several groups have evolutionary younger chromosomes than those of mammals and birds, that the perception of sex chromosomes being doomed to size reduction is incomplete. Here, sex-determining mechanisms show a high turnover and new sex chromosomes appear repeatedly. In many species, Ys and Ws are larger than their X and Z counterparts. This brings up intriguing perspectives regarding the evolutionary dynamics of sex chromosomes. It can be concluded that, due to accumulation of repetitive DNA and transposons, the Y and W chromosomes can increase in size during the initial phase of their differentiation.

  2. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes.

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2016-05-01

    The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.

  3. Increased high-density lipoprotein cholesterol levels in mice with XX versus XY sex chromosomes.

    Science.gov (United States)

    Link, Jenny C; Chen, Xuqi; Prien, Christopher; Borja, Mark S; Hammerson, Bradley; Oda, Michael N; Arnold, Arthur P; Reue, Karen

    2015-08-01

    The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the four core genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male-female gonadal sex and XX-XY chromosome complement. Gonadectomy of adult mice revealed that the male-female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male-female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared with a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with 2 X chromosomes compared with mice with an X and Y chromosome. By generating mice with XX, XY, and XXY chromosome complements, we determined that the presence of 2 X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. We demonstrate that having 2 X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. © 2015 American Heart Association, Inc.

  4. Sex chromosome aneuploidy in cytogenetic findings of referral patients from south of Iran

    Directory of Open Access Journals (Sweden)

    Najmeh Jouyan

    2012-01-01

    Full Text Available Background: Chromosome abnormality (CA including Sex chromosomes abnormality (SCAs is one of the most important causes of disordered sexual development and infertility. SCAs formed by numerical or structural alteration in X and Y chromosomes, are the most frequently CA encountered at both prenatal diagnosis and at birth. Objective: This study describes cytogenetic findings of cases suspected with CA referred for cytogenetic study. Materials and Methods: Blood samples of 4151 patients referred for cytogenetic analysis were cultured for chromosome preparation. Karyotypes were prepared for all samples and G-Banded chromosomes were analyzed using x100 objective lens. Sex chromosome aneuploidy cases were analyzed and categorized in two groups of Turners and Klinefelter’s syndrome (KFS. Results: Out of 230 (5.54% cases with chromosomally abnormal karyotype, 122 (30% cases suspected of sexual disorder showed SCA including 46% Turner’s syndrome, 46% KFS and the remaining other sex chromosome abnormalities. The frequency of classic and mosaic form of Turner’s syndrome was 33% and 67%, this was 55% and 45% for KFS, respectively. Conclusion: This study shows a relatively high sex chromosome abnormality in this region and provides cytogenetic data to assist clinicians and genetic counselors to determine the priority of requesting cytogenetic study. Differences between results from various reports can be due to different genetic background or ethnicity.

  5. Multiple sex-associated regions and a putative sex chromosome in zebrafish revealed by RAD mapping and population genomics.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    Full Text Available Within vertebrates, major sex determining genes can differ among taxa and even within species. In zebrafish (Danio rerio, neither heteromorphic sex chromosomes nor single sex determination genes of large effect, like Sry in mammals, have yet been identified. Furthermore, environmental factors can influence zebrafish sex determination. Although progress has been made in understanding zebrafish gonad differentiation (e.g. the influence of germ cells on gonad fate, the primary genetic basis of zebrafish sex determination remains poorly understood. To identify genetic loci associated with sex, we analyzed F(2 offspring of reciprocal crosses between Oregon *AB and Nadia (NA wild-type zebrafish stocks. Genome-wide linkage analysis, using more than 5,000 sequence-based polymorphic restriction site associated (RAD-tag markers and population genomic analysis of more than 30,000 single nucleotide polymorphisms in our *ABxNA crosses revealed a sex-associated locus on the end of the long arm of chr-4 for both cross families, and an additional locus in the middle of chr-3 in one cross family. Additional sequencing showed that two SNPs in dmrt1 previously suggested to be functional candidates for sex determination in a cross of ABxIndia wild-type zebrafish, are not associated with sex in our AB fish. Our data show that sex determination in zebrafish is polygenic and that different genes may influence sex determination in different strains or that different genes become more important under different environmental conditions. The association of the end of chr-4 with sex is remarkable because, unique in the karyotype, this chromosome arm shares features with known sex chromosomes: it is highly heterochromatic, repetitive, late replicating, and has reduced recombination. Our results reveal that chr-4 has functional and structural properties expected of a sex chromosome.

  6. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): are differentiated sex chromosomes indeed so evolutionary stable?

    Czech Academy of Sciences Publication Activity Database

    Koubová, M.; Johnson Pokorná, Martina; Rovatsos, M.; Farkačová, K.; Altmanová, M.; Kratochvíl, L.

    2014-01-01

    Roč. 22, č. 4 (2014), s. 441-452 ISSN 0967-3849 R&D Projects: GA ČR GAP506/10/0718 Institutional support: RVO:67985904 Keywords : sex chromosomes * heterochromatin * reptiles * sex determination * FISH * ITSs Subject RIV: EG - Zoology Impact factor: 2.478, year: 2014

  7. Sex differences in the brain-an interplay of sex steroid hormones and sex chromosomes.

    Science.gov (United States)

    Grgurevic, Neza; Majdic, Gregor

    2016-09-01

    Although considerable progress has been made in our understanding of brain function, many questions remain unanswered. The ultimate goal of studying the brain is to understand the connection between brain structure and function and behavioural outcomes. Since sex differences in brain morphology were first observed, subsequent studies suggest different functional organization of the male and female brains in humans. Sex and gender have been identified as being a significant factor in understanding human physiology, health and disease, and the biological differences between the sexes is not limited to the gonads and secondary sexual characteristics, but also affects the structure and, more crucially, the function of the brain and other organs. Significant variability in brain structures between individuals, in addition to between the sexes, is factor that complicates the study of sex differences in the brain. In this review, we explore the current understanding of sex differences in the brain, mostly focusing on preclinical animal studies. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  8. The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY.

    Science.gov (United States)

    Sasidhar, Manda V; Itoh, Noriko; Gold, Stefan M; Lawson, Gregory W; Voskuhl, Rhonda R

    2012-08-01

    Many autoimmune diseases are characterised by a female predominance. This may be caused by sex hormones, sex chromosomes or both. This report uses a transgenic mouse model to investigate how sex chromosome complement, not confounded by differences in gonadal type, might contribute to lupus pathogenesis. Transgenic NZM2328 mice were created by deletion of the Sry gene from the Y chromosome, thereby separating genetic from gonadal sex. Survival, renal histopathology and markers of immune activation were compared in mice carrying the XX versus the XY(-) sex chromosome complement, with each genotype being ovary bearing. Mice with XX sex chromosome complement compared with XY(-) exhibited poorer survival rates and increased kidney pathology. Splenic T lymphocytes from XX mice demonstrated upregulated X-linked CD40 ligand expression and higher levels of activation markers ex vivo. Increased MMP, TGF and IL-13 production was found, while IL-2 was lower in XX mice. An accumulation of splenic follicular B cells and peritoneal marginal zone B cells was observed, coupled with upregulated costimulatory marker expression on B cells in XX mice. These data show that the XX sex chromosome complement, compared with XY(-), is associated with accelerated spontaneous lupus.

  9. The chromosomal distribution of microsatellite repeats in the genome of the wolf fish Hoplias malabaricus, focusing on the sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Cioffi, M.B.; Kejnovský, Eduard; Bertollo, L.A.C.

    2011-01-01

    Roč. 132, č. 4 (2011), s. 289-296 ISSN 1424-8581 R&D Projects: GA ČR(CZ) GAP305/10/0930 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : fish sex chromosomes * fluorescence in situ hybridization * microsatellites Subject RIV: BO - Biophysics Impact factor: 1.533, year: 2011

  10. Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans

    Directory of Open Access Journals (Sweden)

    Zhou Qi

    2012-03-01

    Full Text Available Abstract Background Drosophila albomicans is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility. Methods We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold. Results We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 Drosophila genomes. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome. Conclusions Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in D. albomicans.

  11. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes.

    Science.gov (United States)

    Mank, Judith E

    2012-01-01

    Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes.

  12. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes

    Science.gov (United States)

    2012-01-01

    Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes. PMID:22038285

  13. Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2015-12-01

    The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.

  14. Allele-specific marker generation and linkage mapping on the Xiphophorus sex chromosomes.

    Science.gov (United States)

    Woolcock, B; Kazianis, S; Lucito, R; Walter, R B; Kallman, K D; Morizot, D C; Vielkind, J R

    2006-01-01

    There is great interest in the sex chromosomes of Xiphophorus fishes because both WY/YY and XX/XY sex-determining mechanisms function in these species, with at least one taxon possessing all three types of sex chromosomes, and because in certain interspecific hybrids melanoma arises as a consequence of inheritance of the sex-linked macromelanophore determining locus (MDL). Representational difference analysis (RDA) has been used to clone two sequences from the sex-determining region of X. maculatus, including a cholinergic receptor, nicotinic, delta polypeptide (CHRND) orthologue. Allele-specific assays for these sequences, as well as for the sex-linked XMRK1 and XMRK2 genes, were developed to distinguish W, X, and Y chromosomes derived from a X. maculatus (XX/XY) strain and a X. helleri (WY/YY) strain. Linkage mapping localized these markers to linkage group (LG) 24. No recombinants were observed between XMRK2 and MDL, confirming a role for XMRK2 in macromelanophore development. Although the master sex-determining (SD) locus certainly resides on Xiphophorus LG 24, autosomal loci are probably involved in sex determination as well, as indicated by the abnormal sex ratios in the backcross hybrids that contrast theoretical predictions based on LG 24 genotyping. Marker development and allelic discrimination on the Xiphophorus sex chromosomes should prove highly useful for studies that utilize this genus as an animal model.

  15. Robertsonian chromosome polymorphism of Akodon molinae (Rodentia: Sigmodontinae: analysis of trivalents in meiotic prophase Polimorfismo cromosómico Robertsoniano de Akodon molinae (Rodentia: Sigmodontinae

    Directory of Open Access Journals (Sweden)

    RAÚL FERNÁNDEZ-DONOSO

    2001-03-01

    Full Text Available Akodon molinae (with 2n = 42-43-44 and an FN = 44 shows a remarkable polymorphism of chromosome 1 in natural and laboratory populations. Specimens 2n = 42, named single homozygotes (SH, have a chromosome pair 1 formed by two large metacentric chromosomes. Specimens 2n = 3, heterozygotes (Ht, have one chromosome 1 and two medium-sized subtelocentric chromosomes, 1a and 1b, which are homologous with the long and short arms of chromosome 1 respectively. Specimens 2n = 44 are double homozygotes (DH, with just two pairs of medium-sized subtelocentric chromosomes, 1a and 1b. Analysis of meiotic metaphases I and II showed that anomalous segregation occurs more frequently in spermatocytes carrying the 1a and 1b chromosomes. This would disturb gametogenesis and other reproductive and developmental processes, producing a marked decrease in viability of DH individuals. There is, as yet, no satisfactory explanation for these phenomena. To investigate structural elements which might explain such segregational anomalies, we have studied bivalent and trivalent synapsis in pachytene spermatocytes from SH, Ht and DH specimens. Of a total of 80 spermatocyte nuclei microspreads, the following results were obtained: of 16 microspreads from two SH individuals, 20 autosomic bivalents plus the XY bivalent were observed; of 48 microspreads from three Ht individuals, 19 autosomic bivalents, 1 trivalent and an XY bivalent were seen; and of the 16 microspreads from two DH individuals, 21 autosomic bivalents plus the XY bivalent were found. Trivalents analysed showed complete pairing between the short arms of 1a and 1b, and having an apparently normal synaptonemal complex (SC with lengths of 1 and 2.8 µm. The trivalent SC showed three telomeric ends, corresponding to arms: q1 and q1a; p1 and q1b; and p1a and p1b, with attachment plates to the nuclear envelope of normal organisation. None of the trivalents showed asynapsis or desynapsis between p1a and p1b, nor an

  16. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination.

    Science.gov (United States)

    Pokorná, Martina; Rábová, Marie; Ráb, Petr; Ferguson-Smith, Malcolm A; Rens, Willem; Kratochvíl, Lukáš

    2010-11-01

    The eyelid geckos (family Eublepharidae) include both species with temperature-dependent sex determination and species where genotypic sex determination (GSD) was suggested based on the observation of equal sex ratios at several incubation temperatures. In this study, we present data on karyotypes and chromosomal characteristics in 12 species (Aeluroscalabotes felinus, Coleonyx brevis, Coleonyx elegans, Coleonyx variegatus, Eublepharis angramainyu, Eublepharis macularius, Goniurosaurus araneus, Goniurosaurus lichtenfelderi, Goniurosaurus luii, Goniurosaurus splendens, Hemitheconyx caudicinctus, and Holodactylus africanus) covering all genera of the family, and search for the presence of heteromorphic sex chromosomes. Phylogenetic mapping of chromosomal changes showed a long evolutionary stasis of karyotypes with all acrocentric chromosomes followed by numerous chromosomal rearrangements in the ancestors of two lineages. We have found heteromorphic sex chromosomes in only one species, which suggests that sex chromosomes in most GSD species of the eyelid geckos are not morphologically differentiated. The sexual difference in karyotype was detected only in C. elegans which has a multiple sex chromosome system (X(1)X(2)Y). The metacentric Y chromosome evolved most likely via centric fusion of two acrocentric chromosomes involving loss of interstitial telomeric sequences. We conclude that the eyelid geckos exhibit diversity in sex determination ranging from the absence of any sexual differences to heteromorphic sex chromosomes, which makes them an interesting system for exploring the evolutionary origin of sexually dimorphic genomes.

  17. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  18. Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms.

    Directory of Open Access Journals (Sweden)

    James A Fraser

    2004-12-01

    Full Text Available Sexual identity is governed by sex chromosomes in plants and animals, and by mating type (MAT loci in fungi. Comparative analysis of the MAT locus from a species cluster of the human fungal pathogen Cryptococcus revealed sequential evolutionary events that fashioned this large, highly unusual region. We hypothesize that MAT evolved via four main steps, beginning with acquisition of genes into two unlinked sex-determining regions, forming independent gene clusters that then fused via chromosomal translocation. A transitional tripolar intermediate state then converted to a bipolar system via gene conversion or recombination between the linked and unlinked sex-determining regions. MAT was subsequently subjected to intra- and interallelic gene conversion and inversions that suppress recombination. These events resemble those that shaped mammalian sex chromosomes, illustrating convergent evolution in sex-determining structures in the animal and fungal kingdoms.

  19. Association testing to detect gene-gene interactions on sex chromosomes in trio data

    Directory of Open Access Journals (Sweden)

    Yeonok eLee

    2013-11-01

    Full Text Available Autism Spectrum Disorder (ASD occurs more often among males than females in a 4:1 ratio. Among theories used to explain the causes of ASD, the X chromosome and the Y chromosome theories attribute ASD to X-linked mutation and the male-limited gene expressions on the Y chromosome, respectively. Despite the rationale of the theory, studies have failed to attribute the sex-biased ratio to the significant linkage or association on the regions of interest on X chromosome. We further study the gender biased ratio by examining the possible interaction effects between two genes in the sex chromosomes. We propose a logistic regression model with mixed effects to detect gene-gene interactions on sex chromosomes. We investigated the power and type I error rates of the approach for a range of minor allele frequencies and varying linkage disequilibrium between markers and QTLs. We also evaluated the robustness of the model to population stratification. We applied the model to a trio-family data set with an ASD affected male child to study gene-gene interactions on sex chromosomes.

  20. Comparative genetic mapping in Fragaria virginiana reveals autosomal origin of sex chromosome

    Science.gov (United States)

    Although most flowering plants are hermaphrodite, separate sexes (dioecy) have evolved repeatedly. The evolution of sex chromosomes from autosomes can often, but not always, accompany this transition. Thus, many have argued that plant genera that contain both hermaphroditic and dioecious members pro...

  1. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans

    Science.gov (United States)

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-01-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal’s sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function. PMID:27356611

  2. Postzygotic isolation involves strong mitochondrial and sex-specific effects in Tigriopus californicus, a species lacking heteromorphic sex chromosomes.

    Science.gov (United States)

    Foley, B R; Rose, C G; Rundle, D E; Leong, W; Edmands, S

    2013-11-01

    Detailed studies of the genetics of speciation have focused on a few model systems, particularly Drosophila. The copepod Tigriopus californicus offers an alternative that differs from standard animal models in that it lacks heteromorphic chromosomes (instead, sex determination is polygenic) and has reduced opportunities for sexual conflict, because females mate only once. Quantitative trait loci (QTL) mapping was conducted on reciprocal F2 hybrids between two strongly differentiated populations, using a saturated linkage map spanning all 12 autosomes and the mitochondrion. By comparing sexes, a possible sex ratio distorter was found but no sex chromosomes. Although studies of standard models often find an excess of hybrid male sterility factors, we found no QTL for sterility and multiple QTL for hybrid viability (indicated by non-Mendelian adult ratios) and other characters. Viability problems were found to be stronger in males, but the usual explanations for weaker hybrid males (sex chromosomes, sensitivity of spermatogenesis, sexual selection) cannot fully account for these male viability problems. Instead, higher metabolic rates may amplify deleterious effects in males. Although many studies of standard speciation models find the strongest genetic incompatibilities to be nuclear-nuclear (specifically X chromosome-autosome), we found the strongest deleterious interaction in this system was mito-nuclear. Consistent with the snowball theory of incompatibility accumulation, we found that trigenic interactions in this highly divergent cross were substantially more frequent (>6×) than digenic interactions. This alternative system thus allows important comparisons to studies of the genetics of reproductive isolation in more standard model systems.

  3. Specific deletion of Cdc42 does not affect meiotic spindle organization/migration and homologous chromosome segregation but disrupts polarity establishment and cytokinesis in mouse oocytes

    DEFF Research Database (Denmark)

    Wang, Zhen-Bo; Jiang, Zong-Zhe; Zhang, Qing-Hua

    2013-01-01

    Mammalian oocyte maturation is distinguished by highly asymmetric meiotic divisions during which a haploid female gamete is produced and almost all the cytoplasm is maintained in the egg for embryo development. Actin-dependent meiosis I spindle positioning to the cortex induces the formation...

  4. Sex chromosome complement influences operant responding for a palatable food in mice.

    Science.gov (United States)

    Seu, Emanuele; Groman, Stephanie M; Arnold, Arthur P; Jentsch, J David

    2014-07-01

    The procurement and consumption of palatable, calorie-dense foods is influenced by the nutritional and hedonic value of foods. Although many factors can influence the control over behavior by foods rich in sugar and fat, emerging evidence indicates that biological sex may play a particularly crucial role in the types of foods individuals seek out, as well as the level of motivation individuals will exert to obtain those foods. However, a systematic investigation of food-seeking and consumption that disentangles the effects of the major sex-biasing factors, including sex chromosome complement and organizational and activational effects of sex hormones, has yet to be conducted. Using the four core genotypes mouse model system, we separated and quantified the effects of sex chromosome complement and gonadal sex on consumption of and motivation to obtain a highly palatable solution [sweetened condensed milk (SCM)]. Gonadectomized mice with an XY sex chromosome complement, compared with those with two X chromosomes, independent of gonadal sex, appeared to be more sensitive to the reward value of the SCM solution and were more motivated to expend effort to obtain it, as evidenced by their dramatically greater expended effort in an instrumental task with progressively larger response-to-reward ratios. Gonadal sex independently affected free consumption of the solution but not motivation to obtain it. These data indicate that gonadal and chromosomal sex effects independently influence reward-related behaviors, contributing to sexually dimorphic patterns of behavior related to the pursuit and consumption of rewards. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Genetic Diversity in the UV Sex Chromosomes of the Brown Alga Ectocarpus.

    Science.gov (United States)

    Avia, Komlan; Lipinska, Agnieszka P; Mignerot, Laure; Montecinos, Alejandro E; Jamy, Mahwash; Ahmed, Sophia; Valero, Myriam; Peters, Akira F; Cock, J Mark; Roze, Denis; Coelho, Susana M

    2018-06-06

    Three types of sex chromosome system exist in nature: diploid XY and ZW systems and haploid UV systems. For many years, research has focused exclusively on XY and ZW systems, leaving UV chromosomes and haploid sex determination largely neglected. Here, we perform a detailed analysis of DNA sequence neutral diversity levels across the U and V sex chromosomes of the model brown alga Ectocarpus using a large population dataset. We show that the U and V non-recombining regions of the sex chromosomes (SDR) exhibit about half as much neutral diversity as the autosomes. This difference is consistent with the reduced effective population size of these regions compared with the rest of the genome, suggesting that the influence of additional factors such as background selection or selective sweeps is minimal. The pseudoautosomal region (PAR) of this UV system, in contrast, exhibited surprisingly high neutral diversity and there were several indications that genes in this region may be under balancing selection. The PAR of Ectocarpus is known to exhibit unusual genomic features and our results lay the foundation for further work aimed at understanding whether, and to what extent, these structural features underlie the high level of genetic diversity. Overall, this study fills a gap between available information on genetic diversity in XY/ZW systems and UV systems and significantly contributes to advancing our knowledge of the evolution of UV sex chromosomes.

  6. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.

    Directory of Open Access Journals (Sweden)

    Yong-Hyun Shin

    2010-11-01

    Full Text Available Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/ (- testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/ (- testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/ (- ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/ (- oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing.

  7. Karyological characterization of the endemic Iberian rock lizard, Iberolacerta monticola (Squamata, Lacertidae): insights into sex chromosome evolution.

    Science.gov (United States)

    Rojo, V; Giovannotti, M; Naveira, H; Nisi Cerioni, P; González-Tizón, A M; Caputo Barucchi, V; Galán, P; Olmo, E; Martínez-Lage, A

    2014-01-01

    Rock lizards of the genus Iberolacerta constitute a promising model to examine the process of sex chromosome evolution, as these closely related taxa exhibit remarkable diversity in the degree of sex chromosome differentiation with no clear phylogenetic segregation, ranging from cryptic to highly heteromorphic ZW chromosomes and even multiple chromosome systems (Z1Z1Z2Z2/Z1Z2W). To gain a deeper insight into the patterns of karyotype and sex chromosome evolution, we performed a cytogenetic analysis based on conventional staining, banding techniques and fluorescence in situ hybridization in the species I. monticola, for which previous cytogenetic investigations did not detect differentiated sex chromosomes. The karyotype is composed of 2n = 36 acrocentric chromosomes. NORs and the major ribosomal genes were located in the subtelomeric region of chromosome pair 6. Hybridization signals of the telomeric sequences (TTAGGG)n were visualized at the telomeres of all chromosomes and interstitially in 5 chromosome pairs. C-banding showed constitutive heterochromatin at the centromeres of all chromosomes, as well as clear pericentromeric and light telomeric C-bands in several chromosome pairs. These results highlight some chromosomal markers which can be useful to identify species-specific diagnostic characters, although they may not accurately reflect the phylogenetic relationships among the taxa. In addition, C-banding revealed the presence of a heteromorphic ZW sex chromosome pair, where W is smaller than Z and almost completely heterochromatic. This finding sheds light on sex chromosome evolution in the genus Iberolacerta and suggests that further comparative cytogenetic analyses are needed to understand the processes underlying the origin, differentiation and plasticity of sex chromosome systems in lacertid lizards. © 2013 S. Karger AG, Basel.

  8. Laboratory studies on insecticide resistance, alcohol tolerance and sex ratio distortion by meiotic drive in the Mediterranean fruit fly, Ceratitis capitata (Wied.)

    International Nuclear Information System (INIS)

    Wood, R.J.

    1990-01-01

    Three approaches to developing a genetic sexing technique for the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), are discussed. Laboratory studies in late third instar larvae of the medfly revealed a potential for dieldrin resistance. A programme of sib selection produced the DiR strain, more than 60x resistante to dieldrin with cross-resistance to other cyclodienes, HCH, malathion and permethrin. Adults were not resistant. Crosses showed dieldrin resistance to be monofactorial, subject to a modifying effect from the genetic background on the expression of the homozygote. The 'backcrossing with selection' technique was used to separate dieldrin and malathion resistance but, in the process, resistance to both insecticides was lost after four to eight generations. Attempts to induce male linkage of the R gene by X irradiation were unsuccessful. Further genetic studies on resistance are recommended. With a view to producing an ethanol sensitive strain homozygous for an ADH null mutation (Adh - /Adh - ), pentenol selection of late third instar larvae was carried out, combined with ethyl methane sulphonate (EMS) treatments of adults. This produced a maximum of 15x tolerance of pentenol but no associated change in ethanol tolerance. Electrophoresis (PAGE) showed that two major ADH systems were at their most active in late third instar larvae. A gene causing a male distorted sex ratio in the progeny of males carrying it was isolated after X irradiation. The expression of the gene, which appears to be an example of meiotic drive, was enhanced by reducing the ambient temperature of parent flies from 26 deg. C+-2.0 to 18 deg. C+-1.5 during days 2-5 of pupal development. Selection to increase the expression of the gene produced families with less than 20% females but sex ratio tended to revert towards normal in subsequent generations. A potential is seen for producing strains in which sex ratio can be regulated by temperature. (author). 30 refs, 5 figs, 2

  9. Meiotic behaviour in three interspecific three-way hybrids between ...

    Indian Academy of Sciences (India)

    In H17, abnormalities were more frequent from anaphase II, when many laggard chromosomes appeared, suggesting that each genome presented a different genetic control for meiotic phase timing. Despite the phylogenetic proximity among these two species, these three hybrids presented a high frequency of meiotic ...

  10. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: no role in sex determination and reproduction.

    Science.gov (United States)

    Yoshido, A; Marec, F; Sahara, K

    2016-05-01

    Moths and butterflies (Lepidoptera) have sex chromosome systems with female heterogamety (WZ/ZZ or derived variants). The maternally inherited W chromosome is known to determine female sex in the silkworm, Bombyx mori. However, little is known about the role of W chromosome in other lepidopteran species. Here we describe two forms of the W chromosome, W and neo-W, that are transmitted to both sexes in offspring of hybrids from reciprocal crosses between subspecies of wild silkmoths, Samia cynthia. We performed crosses between S. c. pryeri (2n=28, WZ/ZZ) and S. c. walkeri (2n=26, neo-Wneo-Z/neo-Zneo-Z) and examined fitness and sex chromosome constitution in their hybrids. The F1 hybrids of both reciprocal crosses had reduced fertility. Fluorescence in situ hybridization revealed not only the expected sex chromosome constitutions in the backcross and F2 hybrids of both sexes but also females without the W (or neo-W) chromosome and males carrying the W (or neo-W) chromosome. Furthermore, crosses between the F2 hybrids revealed no association between the presence or absence of W (or neo-W) chromosome and variations in the hatchability of their eggs. Our results clearly suggest that the W (or neo-W) chromosome of S. cynthia ssp. plays no role in sex determination and reproduction, and thus does not contribute to the formation of reproductive barriers between different subspecies.

  11. Chromosome

    Science.gov (United States)

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  12. Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis.

    Science.gov (United States)

    Mawaribuchi, Shuuji; Takahashi, Shuji; Wada, Mikako; Uno, Yoshinobu; Matsuda, Yoichi; Kondo, Mariko; Fukui, Akimasa; Takamatsu, Nobuhiko; Taira, Masanori; Ito, Michihiko

    2017-06-15

    Genetic sex-determining systems in vertebrates include two basic types of heterogamety; XX (female)/XY (male) and ZZ (male)/ZW (female) types. The African clawed frog Xenopus laevis has a ZZ/ZW-type sex-determining system. In this species, we previously identified a W-specific sex (female)-determining gene dmw, and specified W and Z chromosomes, which could be morphologically indistinguishable (homomorphic). In addition to dmw, we most recently discovered two genes, named scanw and ccdc69w, and one gene, named capn5z in the W- and Z-specific regions, respectively. In this study, we revealed the detail structures of the W/Z-specific loci and genes. Sequence analysis indicated that there is almost no sequence similarity between 278kb W-specific and 83kb Z-specific sequences on chromosome 2Lq32-33, where both the transposable elements are abundant. Synteny and phylogenic analyses indicated that all the W/Z-specific genes might have emerged independently. Expression analysis demonstrated that scanw and ccdc69w or capn5z are expressed in early differentiating ZW gonads or testes, thereby suggesting possible roles in female or male development, respectively. Importantly, the sex-determining gene (SDG) dmw might have been generated after allotetraploidization, thereby indicating the construction of the new sex-determining system by dmw after species hybridization. Furthermore, by direct genotyping, we confirmed that diploid WW embryos developed into normal female frogs, which indicate that the Z-specific region is not essential for female development. Overall, these findings indicate that sex chromosome differentiation has started, although no heteromorphic sex chromosomes are evident yet, in X. laevis. Homologous recombination suppression might have promoted the accumulation of mutations and transposable elements, and enlarged the W/Z-specific regions, thereby resulting in differentiation of the W/Z chromosomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Influence of postzygotic reproductive isolation on the interspecific transmission of the paternal sex ratio chromosome in Trichogramma

    NARCIS (Netherlands)

    Jeong, G.S.; Stouthamer, R.

    2006-01-01

    The paternal sex ratio (PSR) chromosome is a supernumerary chromosome that causes the destruction of the paternal chromosome set in the first mitosis in a fertilized egg. It is known from parasitoid wasps in the genera Nasonia and Trichogramma (Hymenoptera). In these haplodiploids, the egg

  14. Sex differences in circadian food anticipatory activity are not altered by individual manipulations of sex hormones or sex chromosome copy number in mice.

    Science.gov (United States)

    Aguayo, Antonio; Martin, Camille S; Huddy, Timothy F; Ogawa-Okada, Maya; Adkins, Jamie L; Steele, Andrew D

    2018-01-01

    Recent studies in mice have demonstrated a sexual dimorphism in circadian entrainment to scheduled feeding. On a time restricted diet, males tend to develop food anticipatory activity (FAA) sooner than females and with a higher amplitude of activity. The underlying cause of this sex difference remains unknown. One study suggests that sex hormones, both androgens and estrogens, modulate food anticipatory activity in mice. Here we present results suggesting that the sex difference in FAA is unrelated to gonadal sex hormones. While a sex difference between males and females in FAA on a timed, calorie restricted diet was observed there were no differences between intact and gonadectomized mice in the onset or magnitude of FAA. To test other sources of the sex difference in circadian entrainment to scheduled feeding, we used sex chromosome copy number mutants, but there was no difference in FAA when comparing XX, XY-, XY-;Sry Tg, and XX;Sry Tg mice, demonstrating that gene dosage of sex chromosomes does not mediate the sex difference in FAA. Next, we masculinized female mice by treating them with 17-beta estradiol during the neonatal period; yet again, we saw no difference in FAA between control and masculinized females. Finally, we observed that there was no longer a sex difference in FAA for older mice, suggesting that the sex difference in FAA is age-dependent. Thus, our study demonstrates that singular manipulations of gonadal hormones, sex chromosomes, or developmental patterning are not able to explain the difference in FAA between young male and female mice.

  15. Sex Chromosome Evolution and Genomic Divergence in the Fish Hoplias malabaricus (Characiformes, Erythrinidae)

    Czech Academy of Sciences Publication Activity Database

    Sember, Alexandr; Bertollo, L.A.C.; Ráb, Petr; Yano, C. F.; Hatanaka, T.; de Oliveira, E. A.; de Bello Cioffi, M.

    2018-01-01

    Roč. 9, č. 1 (2018), č. článku 71. ISSN 1664-8021 R&D Projects: GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : fish cytogenetics * multiple sex chromosomes * sex-determining region Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.789, year: 2016

  16. First Description of the Karyotype and Sex Chromosomes in the Komodo Dragon (Varanus komodoensis)

    Czech Academy of Sciences Publication Activity Database

    Johnson Pokorná, Martina; Altmanová, M.; Rovatsos, M.; Velenský, P.; Vodička, R.; Řehák, I.; Kratochvíl, L.

    2016-01-01

    Roč. 148, č. 4 (2016), s. 284-291 ISSN 1424-8581 Institutional support: RVO:67985904 Keywords : CGH * female heterogamety * heterochromatin * microsatellite accumulation * sex chromosome evolution * squamate reptile Subject RIV: EG - Zoology Impact factor: 1.354, year: 2016

  17. The paternal-sex-ratio (PSR) chromosome in natural populations of Nasonia (Hymenoptera Chalcidoidea)

    NARCIS (Netherlands)

    Beukeboom, L.W.; Werren, J.H.

    2000-01-01

    Selfish genetic elements may be important in promoting evolutionary change. Paternal sex ratio (PSR) is a selfish B chromosome that causes all-male families in the haplodiploid parasitic wasp Nasonia vitripennis, by inducing paternal genome loss in fertilized eggs. The natural distribution and

  18. Sex-chromosome heterochromatin variation in the wood mouse, Apodemus sylvaticus

    Czech Academy of Sciences Publication Activity Database

    Nová, P.; Reutter, B. A.; Rábová, Marie; Zima, Jan

    2002-01-01

    Roč. 96, 1-4 (2002), s. 186-190 ISSN 0301-0171 R&D Projects: GA AV ČR KSK6005114 Keywords : sex-chromosome * Apodemus sylvaticus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.114, year: 2002

  19. Vocal and Gestural Productions of 24-Month-Old Children with Sex Chromosome Trisomies

    Science.gov (United States)

    Zampini, Laura; Draghi, Lara; Silibello, Gaia; Dall'Ara, Francesca; Rigamonti, Claudia; Suttora, Chiara; Zanchi, Paola; Salerni, Nicoletta; Lalatta, Faustina; Vizziello, Paola

    2018-01-01

    Background: Children with sex chromosome trisomies (SCT) frequently show problems in language development. However, a clear description of the communicative patterns of these children is still lacking. Aims: To describe the first stages of language development in children with SCT in comparison with those in typically developing (TD) children. The…

  20. Genetic markers, translocations and sexing genes on chromosome 2 of Ceratitis capitata

    International Nuclear Information System (INIS)

    Cladera, J.L.

    1997-01-01

    A review is presented of results obtained in a search for genetic markers, translocations and selectable genes obtained at the Instituto de Genetica, Castelar, Argentina, with special reference to chromosome 2 linked mutations and genes useful for developing self-sexing strains in Ceratitis capitata. (author)

  1. Sex chromosome trisomies in Europe: prevalence, prenatal detection and outcome of pregnancy

    DEFF Research Database (Denmark)

    Boyd, Patricia Anne; Loane, Maria; Garne, Ester

    2011-01-01

    This study aims to assess prevalence and pregnancy outcome for sex chromosome trisomies (SCTs) diagnosed prenatally or in the first year of life. Data held by the European Surveillance of Congenital Anomalies (EUROCAT) database on SCT cases delivered 2000-2005 from 19 population-based registries ...

  2. Empirical evidence for large X-effects in animals with undifferentiated sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Dufresnes, C.; Majtyka, T.; Baird, Stuart J. E.; Gerchen, J. F.; Borzée, A.; Savary, R.; Ogielska, M.; Perrin, N.; Stöck, M.

    2016-01-01

    Roč. 6, č. 21029 (2016), s. 21029 ISSN 2045-2322 Institutional support: RVO:68081766 Keywords : controlled study * genetic marker * hybrid zone * Hyla * introgression * sex chromosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.259, year: 2016

  3. Nuclear organization in human sperm: preliminary evidence for altered sex chromosome centromere position in infertile males.

    Science.gov (United States)

    Finch, K A; Fonseka, K G L; Abogrein, A; Ioannou, D; Handyside, A H; Thornhill, A R; Hickson, N; Griffin, D K

    2008-06-01

    Many genetic defects with a chromosomal basis affect male reproduction via a range of different mechanisms. Chromosome position is a well-known marker of nuclear organization, and alterations in standard patterns can lead to disease phenotypes such as cancer, laminopathies and epilepsy. It has been demonstrated that normal mammalian sperm adopt a pattern with the centromeres aligning towards the nuclear centre. The purpose of this study was to test the hypothesis that altered chromosome position in the sperm head is associated with male infertility. The average nuclear positions of fluorescence in-situ hybridization signals for three centromeric probes (for chromosomes X, Y and 18) were compared in normoozoospermic men and in men with compromised semen parameters. In controls, the centromeres of chromosomes X, Y and 18 all occupied a central nuclear location. In infertile men the sex chromosomes appeared more likely to be distributed in a pattern not distinguishable from a random model. Our findings cast doubt on the reliability of centromeric probes for aneuploidy screening. The analysis of chromosome position in sperm heads should be further investigated for the screening of infertile men.

  4. Polyploidization increases meiotic recombination frequency in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Rehmsmeier Marc

    2011-04-01

    Full Text Available Abstract Background Polyploidization is the multiplication of the whole chromosome complement and has occurred frequently in vascular plants. Maintenance of stable polyploid state over generations requires special mechanisms to control pairing and distribution of more than two homologous chromosomes during meiosis. Since a minimal number of crossover events is essential for correct chromosome segregation, we investigated whether polyploidy has an influence on the frequency of meiotic recombination. Results Using two genetically linked transgenes providing seed-specific fluorescence, we compared a high number of progeny from diploid and tetraploid Arabidopsis plants. We show that rates of meiotic recombination in reciprocal crosses of genetically identical diploid and autotetraploid Arabidopsis plants were significantly higher in tetraploids compared to diploids. Although male and female gametogenesis differ substantially in meiotic recombination frequency, both rates were equally increased in tetraploids. To investigate whether multivalent formation in autotetraploids was responsible for the increased recombination rates, we also performed corresponding experiments with allotetraploid plants showing strict bivalent pairing. We found similarly increased rates in auto- and allotetraploids, suggesting that the ploidy effect is independent of chromosome pairing configurations. Conclusions The evolutionary success of polyploid plants in nature and under domestication has been attributed to buffering of mutations and sub- and neo-functionalization of duplicated genes. Should the data described here be representative for polyploid plants, enhanced meiotic recombination, and the resulting rapid creation of genetic diversity, could have also contributed to their prevalence.

  5. A Link between Meiotic Prophase Progression and CrossoverControl

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, Peter M.; Farruggio, Alfonso P.; Dernburg, Abby F.

    2005-07-06

    During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.

  6. Many functions of the meiotic cohesin.

    Science.gov (United States)

    Bardhan, Amit

    2010-12-01

    Sister chromatids are held together from the time of their formation in S phase until they segregate in anaphase by the cohesin complex. In meiosis of most organisms, the mitotic Mcd1/Scc1/Rad21 subunit of the cohesin complex is largely replaced by its paralog named Rec8. This article reviews the specialized functions of Rec8 that are crucial for diverse aspects of chromosome dynamics in meiosis, and presents some speculations relating to meiotic chromosome organization.

  7. Sex-chromosome differentiation parallels postglacial range expansion in European tree frogs (Hyla arborea).

    Science.gov (United States)

    Dufresnes, Christophe; Bertholet, Youna; Wassef, Jérôme; Ghali, Karim; Savary, Romain; Pasteur, Baptiste; Brelsford, Alan; Rozenblut-Kościsty, Beata; Ogielska, Maria; Stöck, Matthias; Perrin, Nicolas

    2014-12-01

    Occasional XY recombination is a proposed explanation for the sex-chromosome homomorphy in European tree frogs. Numerous laboratory crosses, however, failed to detect any event of male recombination, and a detailed survey of NW-European Hyla arborea populations identified male-specific alleles at sex-linked loci, pointing to the absence of XY recombination in their recent history. Here, we address this paradox in a phylogeographic framework by genotyping sex-linked microsatellite markers in populations and sibships from the entire species range. Contrasting with postglacial populations of NW Europe, which display complete absence of XY recombination and strong sex-chromosome differentiation, refugial populations of the southern Balkans and Adriatic coast show limited XY recombination and large overlaps in allele frequencies. Geographically and historically intermediate populations of the Pannonian Basin show intermediate patterns of XY differentiation. Even in populations where X and Y occasionally recombine, the genetic diversity of Y haplotypes is reduced below the levels expected from the fourfold drop in copy numbers. This study is the first in which X and Y haplotypes could be phased over the distribution range in a species with homomorphic sex chromosomes; it shows that XY-recombination patterns may differ strikingly between conspecific populations, and that recombination arrest may evolve rapidly (<5000 generations). © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  8. Human sperm sex chromosome disomy and sperm DNA damage assessed by the neutral comet assay.

    Science.gov (United States)

    McAuliffe, M E; Williams, P L; Korrick, S A; Dadd, R; Marchetti, F; Martenies, S E; Perry, M J

    2014-10-10

    Is there an association between human sperm sex chromosome disomy and sperm DNA damage? An increase in human sperm XY disomy was associated with higher comet extent; however, there was no other consistent association of sex chromosome disomies with DNA damage. There is limited published research on the association between sex chromosome disomy and sperm DNA damage and the findings are not consistent across studies. We conducted a cross-sectional study of 190 men (25% ever smoker, 75% never smoker) from subfertile couples presenting at the Massachusetts General Hospital Fertility Clinic from January 2000 to May 2003. Multiprobe fluorescence in situ hybridization for chromosomes X, Y and 18 was used to determine XX, YY, XY and total sex chromosome disomy in sperm nuclei using an automated scoring method. The neutral comet assay was used to measure sperm DNA damage, as reflected by comet extent, percentage DNA in the comet tail, and tail distributed moment. Univariate and multiple linear regression models were constructed with sex chromosome disomy (separate models for each of the four disomic conditions) as the independent variable, and DNA damage parameters (separate models for each measure of DNA damage) as the dependent variable. Men with current or past smoking history had significantly greater comet extent (µm: regression coefficients with 95% CI) [XX18: 15.17 (1.98, 28.36); YY18: 14.68 (1.50, 27.86); XY18: 15.41 (2.37, 28.45); Total Sex Chromosome Disomy: 15.23 (2.09, 28.38)], and tail distributed moment [XX18: 3.01 (0.30, 5.72); YY18: 2.95 (0.24, 5.67); XY18: 3.04 (0.36, 5.72); Total Sex Chromosome Disomy: 3.10 (0.31, 5.71)] than men who had never smoked. In regression models adjusted for age and smoking, there was a positive association between XY disomy and comet extent. For an increase in XY disomy from 0.56 to 1.47% (representing the 25th to 75th percentile), there was a mean increase of 5.08 µm in comet extent. No other statistically significant

  9. Effect of gamma irradiation on sex chromatin body appearance and the sex chromosome aberrations in the potato tuber moth, phthorimaea operculella (Lepidoptera: Gelechiidae)

    International Nuclear Information System (INIS)

    Makee, H.

    2007-01-01

    Genetic sexing technique based on the construction of a Balanced Lethal Strain (BLS) has been proposed for Phthorimaea operculella (Zeller). The isolation of female with T(W. Z) translocation is a fundamental step to develop such strain. Gamma irradiation was used to induce the requested translocations. The availability of sex-linked morphological marker is required to facilitate the detection of such mutations. Since a visible sex-linked marker has not been found in P. operculella, therefore main aim of our study was to determine the possibility of using sex heterochromatin body as a marker to identify the required translocated females. The appearance of sex heterochromatin body and the analysis of sex chromosomes in F1 females of irradiated P. operculella females were investigated. The percentage of abnormality in sex heterochromatin body in highly polyploid Malpighian tubule nuclei was increased by increasing the applied dose. Based on the appearance of this body, 3 mutant lines were isolated: elongated, small, fragmented lines. W chromosome was easily distinguished from Z chromosome when the analysis of pachytene sex chromosome bivalents of P. operculella females was carried out. The aberrations involved W chromosome directly influenced the appearance of sex heterochromatin body in highly polyploid somatic cells of the isolated mutant lines. The results showed that sex heterochromatin could be used as sex determination and cytogenetic marker in P. operculella. (Author)

  10. Effect of gamma irradiation on sex chromatin body appearance and the sex chromosome aberrations in the potato tuber moth, phthorimaea operculella (Lepidoptera: Gelechiidae)

    International Nuclear Information System (INIS)

    Makee, H.

    2006-05-01

    Genetic sexing technique based on the construction of a Balanced Lethal Strain (BLS) has been proposed for Phthorimaea operculella (Zeller). The isolation of female with T(W; Z) translocation is a fundamental step to develop such strain. Gamma irradiation was used to induce the requested translocations. The availability of sex-linked morphological marker is required to facilitate the detection of such mutations. Since a visible sex-linked marker has not been found in P. operculella, therefore main aim of our study was to determine the possibility of using sex heterochromatin body as a marker to identify the required translocated females. The appearance of sex heterochromatin body and the analysis of sex chromosomes in F1 females of irradiated P. operculella females were investigated. The percentage of abnormality in sex heterochromatin body in highly polyploid Malpighian tubule nuclei was increased by increasing the applied dose. Based on the appearance of this body, 3 mutant lines were isolated: elongated, small, fragmented lines. W chromosome was easily distinguished from Z chromosome when the analysis of pachytene sex chromosome bivalents of P. operculella females was carried out. The aberrations involved W chromosome directly influenced the appearance of sex heterochromatin body in highly polyploid somatic cells of the isolated mutant lines. The results showed that sex heterochromatin could be used as sex determination and cytogenetic marker in P. operculella. (Author)

  11. A quantitative study of the second meiotic metaphase in male mice (Mus musculus).

    Science.gov (United States)

    Beatty, R A; Lim, M C; Coulter, V J

    1975-01-01

    Over 11,000 second meiotic metaphase spreads stained for the pericentromeric region have been studied quantitatively in male mice of 14 strains. The sex-chromosome constitution of a cell could be judged objectively if X and Y chromosomes and ploidy were all scored. A bias arose if only Y chromosomes and ploidy were scored but could be corrected statistically. There was no sign of other forms of bias. The original contiguity of X and Y second metaphases in vivo was very occasionally evident in the preparations. Most of the subhaploid aneuploid counts were assumed to be artifactual. The incidence of truly aneuploid second metaphases in 13 strains was estimated as 0.38+/-0.12%. The estimated average rate per chromosome was 0.019+/-0.006%, with a comparable order of magnitude for the sex chromosomes alone. Simultaneous aneuploidy of two or more chromosomes of the haploid set was estimated to be very rare. Of the spreads from 13 strains, 9.6% were polyploid (2N, 3N, 4N) and showed most of the possible combinations of sex chromosomes. Nearly all the polyploid spreads were considered to arise by artifactual cell fusion at the time of second metaphase during the preparative technique, especially of the X and Y daughter-cell products of the first meiotic division. Other modes of origin (true polyploidy, accidental superposition of cells during preparation) were unlikely. The data could be accommodated by a statistical model with only four parameters. It allowed for artifactual fusion mainly between daughter cells but also between non-daughter cells, bias in one scoring method, and bias in the numbers of cells with given ploidy successfully mounted. Current techniques of chromosome preparation were thought to be wholly unsuitable for the recognition of true polyploidy. The artifactual origin of polyploid spreads was borne out by an absence of polyploid spermatozoa in 14 strains. There appeared to be a virtually constant transmission rate of paternal X and Y chromosomes from

  12. Sexual dimorphism in mammalian autosomal gene regulation is determined not only by Sry but by sex chromosome complement as well.

    Science.gov (United States)

    Wijchers, Patrick J; Yandim, Cihangir; Panousopoulou, Eleni; Ahmad, Mushfika; Harker, Nicky; Saveliev, Alexander; Burgoyne, Paul S; Festenstein, Richard

    2010-09-14

    Differences between males and females are normally attributed to developmental and hormonal differences between the sexes. Here, we demonstrate differences between males and females in gene silencing using a heterochromatin-sensitive reporter gene. Using "sex-reversal" mouse models with varying sex chromosome complements, we found that this differential gene silencing was determined by X chromosome complement, rather than sex. Genome-wide transcription profiling showed that the expression of hundreds of autosomal genes was also sensitive to sex chromosome complement. These genome-wide analyses also uncovered a role for Sry in modulating autosomal gene expression in a sex chromosome complement-specific manner. The identification of this additional layer in the establishment of sexual dimorphisms has implications for understanding sexual dimorphisms in physiology and disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. [Identification of the meiotic events in grasshopper spermatogenesis].

    Science.gov (United States)

    Liu, Meng-Hao; Zhao, Kai-Qiang; Wang, Ya-Dong; Yang, Meng-Ping; Zhao, Ning-Ning; Yang, Da-Xiang

    2012-12-01

    The grasshoppers are ideal materials to study various meiotic stages of spermatogenesis due to their easy availability, fairly large chromosomes, and fewer numbers of chromosomes. It is easy to make temporary squash preparation of grasshopper testes; however, it is usually difficult for the beginners to differentiate between stages of meiosis. In view of this, we demonstrated the method of identification of meiotic stages by chromosome number and chromosome conformation, taking spermatogonial meiosis of Locusta migratoria manilensis as an example. We described briefly the mitosis of spermatogonia and the spermatogenesis of this species as well.

  14. The mechanisms underlying sexual differentiation of behavior and physiology in mammals and birds: relative contributions of sex steroids and sex chromosomes

    Directory of Open Access Journals (Sweden)

    Fumihiko eMaekawa

    2014-08-01

    Full Text Available From a classical viewpoint, sex-specific behavior and physiological functions as well as the brain structures of mammals such as rats and mice, have been thought to be influenced by perinatal sex steroids secreted by the gonads. Sex steroids have also been thought to affect the differentiation of the sex-typical behavior of a few members of the avian order Galliformes, including the Japanese quail and chickens, during their development in ovo. However, recent mammalian studies that focused on the artificial shuffling or knockout of the sex-determining gene, Sry, have revealed that sex chromosomal effects may be associated with particular types of sex-linked differences such as aggression levels, social interaction, and autoimmune diseases, independently of sex steroid-mediated effects. In addition, studies on naturally occurring, rare phenomena such as gynandromorphic birds and experimentally constructed chimeras in which the composition of sex chromosomes in the brain differs from that in the other parts of the body, indicated that sex chromosomes play certain direct roles in the sex-specific differentiation of the gonads and the brain. In this article, we review the relative contributions of sex steroids and sex chromosomes in the determination of brain functions related to sexual behavior and reproductive physiology in mammals and birds.

  15. Environmental Exposure of Sperm Sex-Chromosomes: A Gender Selection Technique.

    Science.gov (United States)

    Oyeyipo, Ibukun P; van der Linde, Michelle; du Plessis, Stefan S

    2017-10-01

    Preconceptual sex selection is still a highly debatable process whereby X- and Y-chromosome-bearing spermatozoa are isolated prior to fertilization of the oocyte. Although various separation techniques are available, none can guarantee 100% accuracy. The aim of this study was to separate X- and Y-chromosome-bearing spermatozoa using methods based on the viability difference between the X- and Y-chromosome-bearing spermatozoa. A total of 18 experimental semen samples were used, written consent was obtained from all donors and results were analysed in a blinded fashion. Spermatozoa were exposed to different pH values (5.5, 6.5, 7.5, 8.5, and 9.5), increased temperatures (37°C, 41°C, and 45°C) and ROS level (50 μM, 750 μM, and 1,000 μM). The live and dead cell separation was done through a modified swim-up technique. Changes in the sex-chromosome ratio of samples were established by double-label fluorescent in situ hybridization (FISH) before and after processing. The results indicated successful enrichment of Xchromosome-bearing spermatozoa upon incubation in acidic media, increased temperatures, and elevated H 2 O 2 . This study demonstrated the potential role for exploring the physiological differences between X-and Y-chromosome-bearing spermatozoa in the development of preconceptual gender selection.

  16. Sex, rebellion and decadence: the scandalous evolutionary history of the human Y chromosome.

    Science.gov (United States)

    Navarro-Costa, Paulo

    2012-12-01

    It can be argued that the Y chromosome brings some of the spirit of rock&roll to our genome. Equal parts degenerate and sex-driven, the Y has boldly rebelled against sexual recombination, one of the sacred pillars of evolution. In evolutionary terms this chromosome also seems to have adopted another of rock&roll's mottos: living fast. Yet, it appears to have refused to die young. In this manuscript the Y chromosome will be analyzed from the intersection between structural, evolutionary and functional biology. Such integrative approach will present the Y as a highly specialized product of a series of remarkable evolutionary processes. These led to the establishment of a sex-specific genomic niche that is maintained by a complex balance between selective pressure and the genetic diversity introduced by intrachromosomal recombination. Central to this equilibrium is the "polish or perish" dilemma faced by the male-specific Y genes: either they are polished by the acquisition of male-related functions or they perish via the accumulation of inactivating mutations. Thus, understanding to what extent the idiosyncrasies of Y recombination may impact this chromosome's role in sex determination and male germline functions should be regarded as essential for added clinical insight into several male infertility phenotypes. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Comparative Meiotic Studies in Triatoma sordida (Stål and T. guasayana Wygodzinsky & Abalos (Reduviidae, Heteroptera

    Directory of Open Access Journals (Sweden)

    P Rebagliati

    1998-05-01

    Full Text Available Triatoma sordida and T. guasayana are competent Trypanosoma cruzi vectors, with overlapping distribution areas in Argentina. Both species are morphologically similar, and their immature stages are hard to discriminate. Cytogenetic studies in the genus Triatoma reveal scarce karyotypic variations, being 2n= 20 + XY the most frequent diploid number in males. In the present work the meiotic behaviour of different Argentinian populations of T. sordida and T. guasayana has been analyzed; the meiotic karyotype of both species has also been compared. The species differ in total chromosome area and in the relative area of the sex chromosomes. These meiotic karyotypic differences constitute an additional tool for the taxonomic characterization of T. sordida and T. guasayana. The analysis of an interpopulation hybrid of T. sordida (Brazil x Argentina reveals a regular meiotic behaviour, despite the presence of heteromorphic bivalents. Our observations support the hypothesis that karyotype variations through the gain or loss of heterochromatin can not be considered as a primary mechanism of reproductive isolation in Triatoma.

  18. A Role for the X Chromosome in Sex Differences in Variability in General Intelligence?

    Science.gov (United States)

    Johnson, Wendy; Carothers, Andrew; Deary, Ian J

    2009-11-01

    There is substantial evidence that males are more variable than females in general intelligence. In recent years, researchers have presented this as a reason that, although there is little, if any, mean sex difference in general intelligence, males tend to be overrepresented at both ends of its overall distribution. Part of the explanation could be the presence of genes on the X chromosome related both to syndromal disorders involving mental retardation and to population variation in general intelligence occurring normally. Genes on the X chromosome appear overrepresented among genes with known involvement in mental retardation, which is consistent with a model we developed of the population distribution of general intelligence as a mixture of two normal distributions. Using this model, we explored the expected ratios of males to females at various points in the distribution and estimated the proportion of variance in general intelligence potentially due to genes on the X chromosome. These estimates provide clues to the extent to which biologically based sex differences could be manifested in the environment as sex differences in displayed intellectual abilities. We discuss these observations in the context of sex differences in specific cognitive abilities and evolutionary theories of sexual selection. © 2009 Association for Psychological Science.

  19. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina

    2010-01-01

    During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes, is essen......During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes....... Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between...... types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis....

  20. Meiotic recombination hotspots - a comparative view.

    Science.gov (United States)

    Choi, Kyuha; Henderson, Ian R

    2015-07-01

    During meiosis homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover. Meiotic recombination has a profound effect on patterns of genetic variation and is an important tool during crop breeding. Crossovers initiate from programmed DNA double-stranded breaks that are processed to form single-stranded DNA, which can invade a homologous chromosome. Strand invasion events mature into double Holliday junctions that can be resolved as crossovers. Extensive variation in the frequency of meiotic recombination occurs along chromosomes and is typically focused in narrow hotspots, observed both at the level of DNA breaks and final crossovers. We review methodologies to profile hotspots at different steps of the meiotic recombination pathway that have been used in different eukaryote species. We then discuss what these studies have revealed concerning specification of hotspot locations and activity and the contributions of both genetic and epigenetic factors. Understanding hotspots is important for interpreting patterns of genetic variation in populations and how eukaryotic genomes evolve. In addition, manipulation of hotspots will allow us to accelerate crop breeding, where meiotic recombination distributions can be limiting. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  1. Mouse Y-linked Zfy1 and Zfy2 are expressed during the male-specific interphase between meiosis I and meiosis II and promote the 2nd meiotic division.

    Science.gov (United States)

    Vernet, Nadège; Mahadevaiah, Shantha K; Yamauchi, Yasuhiro; Decarpentrie, Fanny; Mitchell, Michael J; Ward, Monika A; Burgoyne, Paul S

    2014-06-01

    Mouse Zfy1 and Zfy2 encode zinc finger transcription factors that map to the short arm of the Y chromosome (Yp). They have previously been shown to promote meiotic quality control during pachytene (Zfy1 and Zfy2) and at the first meiotic metaphase (Zfy2). However, from these previous studies additional roles for genes encoded on Yp during meiotic progression were inferred. In order to identify these genes and investigate their function in later stages of meiosis, we created three models with diminishing Yp and Zfy gene complements (but lacking the Y-long-arm). Since the Y-long-arm mediates pairing and exchange with the X via their pseudoautosomal regions (PARs) we added a minute PAR-bearing X chromosome derivative to enable formation of a sex bivalent, thus avoiding Zfy2-mediated meiotic metaphase I (MI) checkpoint responses to the unpaired (univalent) X chromosome. Using these models we obtained definitive evidence that genetic information on Yp promotes meiosis II, and by transgene addition identified Zfy1 and Zfy2 as the genes responsible. Zfy2 was substantially more effective and proved to have a much more potent transactivation domain than Zfy1. We previously established that only Zfy2 is required for the robust apoptotic elimination of MI spermatocytes in response to a univalent X; the finding that both genes potentiate meiosis II led us to ask whether there was de novo Zfy1 and Zfy2 transcription in the interphase between meiosis I and meiosis II, and this proved to be the case. X-encoded Zfx was also expressed at this stage and Zfx over-expression also potentiated meiosis II. An interphase between the meiotic divisions is male-specific and we previously hypothesised that this allows meiosis II critical X and Y gene reactivation following sex chromosome silencing in meiotic prophase. The interphase transcription and meiosis II function of Zfx, Zfy1 and Zfy2 validate this hypothesis.

  2. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Directory of Open Access Journals (Sweden)

    Xingmei Xie

    Full Text Available Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR. Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY, five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377, one X/Y-common STR (X22, and two autosomal STRs (D13S305 and D21S11. Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  3. Molecular diagnostic testing for Klinefelter syndrome and other male sex chromosome aneuploidies

    Directory of Open Access Journals (Sweden)

    Hager Karl

    2012-04-01

    Full Text Available Abstract Background Male sex chromosome aneuploidies are underdiagnosed despite concomitant physical and behavioral manifestations. Objective To develop a non-invasive, rapid and high-throughput molecular diagnostic assay for detection of male sex chromosome aneuploidies, including 47,XXY (Klinefelter, 47,XYY, 48,XXYY and 48,XXXY syndromes. Methods The assay utilizes three XYM and four XA markers to interrogate Y:X and X:autosome ratios, respectively. The seven markers were PCR amplified using genomic DNA isolated from a cohort of 323 males with aneuploid (n = 117 and 46,XY (n = 206 karyotypes. The resulting PCR products were subjected to Pyrosequencing, a quantitative DNA sequencing method. Results Receiver operator characteristic (ROC curves were used to establish thresholds for the discrimination of aneuploid from normal samples. The XYM markers permitted the identification of 47,XXY, 48,XXXY and 47,XYY syndromes with 100% sensitivity and specificity in both purified DNA and buccal swab samples. The 48,XXYY karyotype was delineated by XA marker data from 46,XY; an X allele threshold of 43% also permitted detection of 48,XXYY with 100% sensitivity and specificity. Analysis of X chromosome-specific biallelic SNPs demonstrated that 43 of 45 individuals (96% with 48,XXYY karyotype had two distinct X chromosomes, while 2 (4% had a duplicate X, providing evidence that 48,XXYY may result from nondisjunction during early mitotic divisions of a 46,XY embryo. Conclusions Quantitative Pyrosequencing, with high-throughput potential, can detect male sex chromosome aneuploidies with 100% sensitivity.

  4. Identification of the sex-determining locus in grass puffer (Takifugu niphobles) provides evidence for sex-chromosome turnover in a subset of Takifugu species

    Science.gov (United States)

    Atsumi, Kazufumi; Kamiya, Takashi; Nozawa, Aoi; Aoki, Yuma; Tasumi, Satoshi; Koyama, Takashi; Nakamura, Osamu; Suzuki, Yuzuru

    2018-01-01

    There is increasing evidence for frequent turnover in sex chromosomes in vertebrates. Yet experimental systems suitable for tracing the detailed process of turnover are rare. In theory, homologous turnover is possible if the new sex-determining locus is established on the existing sex-chromosome. However, there is no empirical evidence for such an event. The genus Takifugu includes fugu (Takifugu rubripes) and its two closely-related species whose sex is most likely determined by a SNP at the Amhr2 locus. In these species, males are heterozygous, with G and C alleles at the SNP site, while females are homozygous for the C allele. To determine if a shift in the sex-determining locus occurred in another member of this genus, we used genetic mapping to characterize the sex-chromosome systems of Takifugu niphobles. We found that the G allele of Amhr2 is absent in T. niphobles. Nevertheless, our initial mapping suggests a linkage between the phenotypic sex and the chromosome 19, which harbors the Amhr2 locus. Subsequent high-resolution analysis using a sex-reversed fish demonstrated that the sex-determining locus maps to the proximal end of chromosome 19, far from the Amhr2 locus. Thus, it is likely that homologous turnover involving these species has occurred. The data also showed that there is a male-specific reduction of recombination around the sex-determining locus. Nevertheless, no evidence for sex-chromosome differentiation was detected: the reduced recombination depended on phenotypic sex rather than genotypic sex; no X- or Y-specific maker was obtained; the YY individual was viable. Furthermore, fine-scale mapping narrowed down the new sex-determining locus to the interval corresponding to approximately 300-kb of sequence in the fugu genome. Thus, T. niphobles is determined to have a young and small sex-determining region that is suitable for studying an early phase of sex-chromosome evolution and the mechanisms underlying turnover of sex chromosome. PMID

  5. Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution.

    Science.gov (United States)

    Razumova, Olga V; Alexandrov, Oleg S; Divashuk, Mikhail G; Sukhorada, Tatiana I; Karlov, Gennady I

    2016-05-01

    Hemp (Cannabis sativa L., 2n = 20) is a dioecious plant. Sex expression is controlled by an X-to-autosome balance system consisting of the heteromorphic sex chromosomes XY for males and XX for females. Genetically monoecious hemp offers several agronomic advantages compared to the dioecious cultivars that are widely used in hemp cultivation. The male or female origin of monoecious maternal plants is unknown. Additionally, the sex chromosome composition of monoecious hemp forms remains unknown. In this study, we examine the sex chromosome makeup in monoecious hemp using a cytogenetic approach. Eight monoecious and two dioecious cultivars were used. The DNA of 210 monoecious plants was used for PCR analysis with the male-associated markers MADC2 and SCAR323. All monoecious plants showed female amplification patterns. Fluorescence in situ hybridization (FISH) with the subtelomeric CS-1 probe to chromosomes plates and karyotyping revealed a lack of Y chromosome and presence of XX sex chromosomes in monoecious cultivars with the chromosome number 2n = 20. There was a high level of intra- and intercultivar karyotype variation detected. The results of this study can be used for further analysis of the genetic basis of sex expression in plants.

  6. Three loci on mouse chromosome 5 and 10 modulate sex determination in XX Ods/+ mice.

    Science.gov (United States)

    Poirier, Christophe; Moran, Jennifer L; Kovanci, Ertug; Petit, Deborah C; Beier, David R; Bishop, Colin E

    2007-07-01

    In mouse, XY embryos are committed to the male sex determination pathway after the transient expression of the Y-linked Sry gene in the Sertoli cell lineage between 10.5 and 12.5 dpc. In the C57BL/6J strain, male sex determination program can be modulated by some autosomal genes. The C57BL/6J alleles at these autosomal loci can antagonize male sex determination in combination with specific Sry alleles. In this report, the authors have identified an effect of these C57BL/6J specific alleles in combination with a mutated Sox9 allele, Sox9(Ods). Authors report the mapping of three of these genetic loci on mouse chromosome 5 and 10 in a backcross of the Ods mutation to the C57BL/6J background. Our study confirms the importance of the strain C57BL/6J for the investigation of the genetic mechanisms that control sex determination.

  7. Horse domestication and conservation genetics of Przewalski's horse inferred from sex chromosomal and autosomal sequences.

    Science.gov (United States)

    Lau, Allison N; Peng, Lei; Goto, Hiroki; Chemnick, Leona; Ryder, Oliver A; Makova, Kateryna D

    2009-01-01

    Despite their ability to interbreed and produce fertile offspring, there is continued disagreement about the genetic relationship of the domestic horse (Equus caballus) to its endangered wild relative, Przewalski's horse (Equus przewalskii). Analyses have differed as to whether or not Przewalski's horse is placed phylogenetically as a separate sister group to domestic horses. Because Przewalski's horse and domestic horse are so closely related, genetic data can also be used to infer domestication-specific differences between the two. To investigate the genetic relationship of Przewalski's horse to the domestic horse and to address whether evolution of the domestic horse is driven by males or females, five homologous introns (a total of approximately 3 kb) were sequenced on the X and Y chromosomes in two Przewalski's horses and three breeds of domestic horses: Arabian horse, Mongolian domestic horse, and Dartmoor pony. Five autosomal introns (a total of approximately 6 kb) were sequenced for these horses as well. The sequences of sex chromosomal and autosomal introns were used to determine nucleotide diversity and the forces driving evolution in these species. As a result, X chromosomal and autosomal data do not place Przewalski's horses in a separate clade within phylogenetic trees for horses, suggesting a close relationship between domestic and Przewalski's horses. It was also found that there was a lack of nucleotide diversity on the Y chromosome and higher nucleotide diversity than expected on the X chromosome in domestic horses as compared with the Y chromosome and autosomes. This supports the hypothesis that very few male horses along with numerous female horses founded the various domestic horse breeds. Patterns of nucleotide diversity among different types of chromosomes were distinct for Przewalski's in contrast to domestic horses, supporting unique evolutionary histories of the two species.

  8. The effect of X-irradiation on the fertility and on the induction of meiotic chromosome rearrangements in mice and their first generation

    International Nuclear Information System (INIS)

    Savkovic, N.; Pecevski, J.; Maric, N.; Radivojevic, D.

    1980-01-01

    The effect of whole-body or local irradiation with X-rays at a dose of 600 R on the induction of chromosomal translocations in the diakinesis metaphase I of the meiosis in treated and F 1 males has been examined along with their fertility. Our results show the high percentage of mortality in whole-body irradiated mice. The percentage of the fertility was 25% in whole-body, and 93.7% in locally irradiated males. The testis weight was also reduced. The percentage of chromosomal translocations in diakinesis, metaphase I, of the meiosis was higher after whole-body irradiation than after local irradiation. In F 1 males both types of irradiation induced chromosomal translocations. (orig.) [de

  9. The effect of X-irradiation on the fertility and the induction of meiotic chromosome rearrangements in mice and their first generation

    International Nuclear Information System (INIS)

    Savkovic, N.; Pecevski, J.; Maric, N.; Radivojevic, D.

    1978-01-01

    The effect of whole-body and local irradiation with a dose of 600 X-rays on the induction of chromosomal translocations in Diakinesis-Metaphase I of meiosis in treated and F 1 males and their fertility have been examined. Our results showed the high percentage of mortality in whole-body irradiated mice. The percentage of fertility was 25% in whole-body, and 93,7% in locally irradiated males. The testis weight was also reduced. The percentage of chromosomal translocations in Diakinesis-Metaphase I of meiosis was greater after whole-body than after local irradiation. In F 1 males both types of irradiation induced chromosomal translocations. (orig.) [de

  10. Meiotic recombination in human oocytes.

    Directory of Open Access Journals (Sweden)

    Edith Y Cheng

    2009-09-01

    Full Text Available Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these abnormal crossover configurations by using immunofluorescence methodology to directly examine the meiotic recombination process in the human female. Accordingly, we initiated studies of crossover-associated proteins (e.g., MLH1 in human fetal oocytes to analyze their number and distribution on nondisjunction-prone human chromosomes and, more generally, to characterize genome-wide levels of recombination in the human female. Our analyses indicate that the number of MLH1 foci is lower than predicted from genetic linkage analysis, but its localization pattern conforms to that expected for a crossover-associated protein. In studies of individual chromosomes, our observations provide evidence for the presence of "vulnerable" crossover configurations in the fetal oocyte, consistent with the idea that these are subsequently translated into nondisjunctional events in the adult oocyte.

  11. The origin of a selfish B chromosome triggering paternal sex ratio in the parasitoid wasp Trichogramma kaykai

    NARCIS (Netherlands)

    Vugt, van J.J.F.A.; Jong, de J.H.S.G.M.; Stouthamer, R.

    2009-01-01

    This study uses molecular and cytogenetic methods to determine the origin of a B chromosome in some males of the wasp Trichogramma kaykai. This so-called paternal sex ratio (PSR) chromosome transmits only through sperm and shortly after fertilization triggers degeneration of the paternal genome,

  12. Meiotic analysis in induced tetraploids of Brachiaria decumbens Stapf

    Directory of Open Access Journals (Sweden)

    Carine Simioni

    2011-01-01

    Full Text Available The meiotic behavior of three tetraploid plants (2n=4x=36 originated from somatic chromosome duplication ofsexually reproducing diploid plants of Brachiaria decumbens was evaluated. All the analyzed plants presented abnormalities relatedto polyploidy, such as irregular chromosome segregation, leading to precocious chromosome migration to the poles and micronucleiduring both meiotic divisions. However, the abnormalities observed did not compromise the meiotic products which were characterizedby regular tetrads and satisfactory pollen fertility varying from 61.36 to 64.86%. Chromosomes paired mostly as bivalents indiakinesis but univalents to tetravalents were also observed. These studies contributed to the choice of compatible fertile sexualgenitors to be crossed to natural tetraploid apomicts in the B. decumbens by identifying abnormalities and verifying pollen fertility.Intraespecific crosses should reduce sterility in the hybrids produced in the breeding program of Brachiaria, a problem observedwith the interspecific hybrids produced so far.

  13. First description of multivalent ring structures in eutherian mammalian meiosis: new chromosomal characterization of Cormura brevirostris (Emballonuridae, Chiroptera).

    Science.gov (United States)

    de Araújo, Ramon Everton Ferreira; Nagamachi, Cleusa Yoshiko; da Costa, Marlyson Jeremias Rodrigues; Noronha, Renata Coelho Rodrigues; Rodrigues, Luís Reginaldo Ribeiro; Pieczarka, Julio César

    2016-08-01

    Twelve specimens of the bat Cormura brevirostris (Emballonuridae: Chiroptera) were collected from four localities in the Brazilian Amazon region and analyzed by classical and molecular cytogenetics. The diploid number and autosomal fundamental number were as previously reported (2n = 22 and FNa = 40, respectively). Fluorescence in situ hybridization using rDNA probes and silver nitrate technique demonstrated the presence of two NOR sites and the presence of internal telomeric sequences at pericentromeric regions of all chromosomes with exception of Y. Based on meiotic studies and chromosome banding we suggest that the sex chromosome pair of C. brevirostris was equivocally identified as it appears in the literature. Meiotic analysis demonstrated that at diplotene-diakinesis the cells had a ring conformation involving four chromosome pairs. This suggests the occurrence of multiple reciprocal translocations among these chromosomes, which is a very rare phenomenon in vertebrates, and has never been described in Eutheria.

  14. Genetics, chromatin diminution, and sex chromosome evolution in the parasitic nematode genus Strongyloides.

    Science.gov (United States)

    Nemetschke, Linda; Eberhardt, Alexander G; Hertzberg, Hubertus; Streit, Adrian

    2010-10-12

    When chromatin diminution occurs during a cell division a portion of the chromatin is eliminated, resulting in daughter cells with a smaller amount of genetic material. In the parasitic roundworms Ascaris and Parascaris, chromatin diminution creates a genetic difference between the soma and the germline. However, the function of chromatin diminution remains a mystery, because the vast majority of the eliminated DNA is noncoding. Within the parasitic roundworm genus Strongyloides, S. stercoralis (in man) and S. ratti (in rat) employ XX/XO sex determination, but the situation in S. papillosus (in sheep) is different but controversial. We demonstrate genetically that S. papillosus employs sex-specific chromatin diminution to eliminate an internal portion of one of the two homologs of one chromosome pair in males. Contrary to ascarids, the eliminated DNA in S. papillosus contains a large number of genes. We demonstrate that the region undergoing diminution is homologous to the X chromosome of the closely related S. ratti. The flanking regions, which are not diminished, are homologous to the S. ratti autosome number I. Furthermore, we found that the diminished chromosome is not incorporated into sperm, resulting in a male-specific transmission ratio distortion. Our data indicate that on the evolutionary path to S. papillosus, the X chromosome fused with an autosome. Chromatin diminution serves to functionally restore an XX/XO sex-determining system. A consequence of the fusion and the process that copes with it is a transmission ratio distortion in males for certain loci. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. A high incidence of meiotic silencing of unsynapsed chromatin is not associated with substantial pachytene loss in heterozygous male mice carrying multiple simple robertsonian translocations.

    Directory of Open Access Journals (Sweden)

    Marcia Manterola

    2009-08-01

    Full Text Available Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC. Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., gammaH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR. These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading

  16. High-resolution meiotic and physical mapping of the Best`s vitelliform macular dystrophy (VMD2) locus to pericentromeric chromosome 11

    Energy Technology Data Exchange (ETDEWEB)

    Weber, B.H.F.; Vogt, G. [Institut fuer Humangenetik, Wuerzburg (Germany); Walker, D. [UBC, Vancouver (Canada)] [and others

    1994-09-01

    Vitelliform macular dystrophy, also known as Best`s disease, is a juvenile-onset macular degeneration with autosomal dominant inheritance. It is characterized by well-demarcated accumulation of lipofuscin-like material within and beneath the retinal pigment epithelium (RPE) and classically results in an egg yolk-like appearance of the macula. Typically, carriers of the disease gene show a specific electrophysiological sign which can be detected by electrooculography (EOG). The EOG measures a standing potential between the cornea and the retina which is primarily generated by the RPE. The histopathological findings as well as the EOG abnormalities suggest that Best`s disease is a generalized disorder of the RPE. The basic biochemical defect is still unknown. As a first step in the positional cloning of the defective gene, the Best`s disease locus was mapped to chromosome 11 between markers at D11S871 and INT2. Subsequently, his region was refined to a 3.7 cM interval flanked by loci D11S903 and PYGM. To further narrow the D11S903-PYGM interval and to obtain an estimate of the physical size of the minimal candidate region, we used a combination of high-resolution PCR hybrid mapping and analysis of recombinant Best`s disease chromosomes. We identified six markers from within the D11S903-PYGM interval that show no recombination with the defective gene in three multigeneration Best`s disease pedigrees. Our hybrid panel localizes these markers on either side of the centromere on chromosome 11. The closest markers flanking the disease gene are at D11S986 in band p12-11.22 and at D11S480 in band q13.2-13.3. Our study demonstrates that the physical size of the Best`s disease region is exceedingly larger than was previously estimated from the genetic data due to the proximity of the defective gene to the centromere of chromosome 11.

  17. Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization

    Science.gov (United States)

    Tan, Kun; An, Lei; Miao, Kai; Ren, Likun; Hou, Zhuocheng; Tao, Li; Zhang, Zhenni; Wang, Xiaodong; Xia, Wei; Liu, Jinghao; Wang, Zhuqing; Xi, Guangyin; Gao, Shuai; Sui, Linlin; Zhu, De-Sheng; Wang, Shumin; Wu, Zhonghong; Bach, Ingolf; Chen, Dong-bao; Tian, Jianhui

    2016-01-01

    Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications. PMID:26951653

  18. Identification of a Novel Retrotransposon with Sex Chromosome-Specific Distribution in Silene latifolia

    Czech Academy of Sciences Publication Activity Database

    Králová, Tereza; Čegan, Radim; Kubát, Zdeněk; Vrána, Jan; Vyskot, Boris; Vogel, Ivan; Kejnovský, Eduard; Hobza, Roman

    2014-01-01

    Roč. 143, 1-3 (2014), s. 87-95 ISSN 1424-8581 R&D Projects: GA MŠk(CZ) LM2010005; GA ČR(CZ) GAP501/10/0102; GA ČR(CZ) GAP501/12/2220; GA ČR(CZ) GAP305/10/0930; GA ČR(CZ) GA522/09/0083; GA MŠk(CZ) LO1204 Institutional support: RVO:68081707 Keywords : Microdissection * Sex chromosomes * Silene latifolia (white campion) Subject RIV: BO - Biophysics; EF - Botanics (UEB-Q) Impact factor: 1.561, year: 2014

  19. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing.

    Directory of Open Access Journals (Sweden)

    Olivier J Becherel

    2013-04-01

    Full Text Available Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2, plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI. Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops, and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.

  20. [Effect of heterozygosity for insertions of homogeneously stained regions in chromosome 1 of the house mouse on synapsis in meiotic prophase].

    Science.gov (United States)

    Borodin, P M; Ladygina, T Iu; Gorlov, I P

    1989-02-01

    Electron microscope analysis of surface-spread synaptonemal complexes (SC) in oocytes and spermatocytes from double cis heterozygotes for Is(HSR; 1C5)1Icg and Is(HSR; 1E3)2Icg was carried out. Aberrant chromosomes were isolated from the feral population of Mus musculus musculus of Novosibirsk. They contain homogeneously stained regions of total length of about 30% of Chr 1 mitotic metaphase. Heteromorphic bivalents of Chr1 with different lengths of the lateral elements of SC and the loop in the intermedial position were revealed in 4.4% spermatocytes and 20% oocytes of heterozygous animals. The loop size depends on the stage of meiosis: it is maximal at late zygotene and decreases up to disappearance during pachytene.

  1. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  2. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    Science.gov (United States)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  3. Meiotic behavior and pollen fertility of five species in the genus ...

    African Journals Online (AJOL)

    Meiotic behavior and pollen fertility were analysed in five Epimedium species: Epimedium chlorandrum, Epimedium acuminatum, Epimedium davidii, Epimedium ecalcaratum and Epimedium pubescens. Chromosome numbers for five species were 2n = 2x = 12. All examined species displayed stable meiotic process and ...

  4. Integrated gene mapping and synteny studies give insights into the evolution of a sex proto-chromosome in Solea senegalensis.

    Science.gov (United States)

    Portela-Bens, Silvia; Merlo, Manuel Alejandro; Rodríguez, María Esther; Cross, Ismael; Manchado, Manuel; Kosyakova, Nadezda; Liehr, Thomas; Rebordinos, Laureana

    2017-03-01

    The evolution of genes related to sex and reproduction in fish shows high plasticity and, to date, the sex determination system has only been identified in a few species. Solea senegalensis has 42 chromosomes and an XX/XY chromosome system for sex determination, while related species show the ZZ/ZW system. Next-generation sequencing (NGS), multi-color fluorescence in situ hybridization (mFISH) techniques, and bioinformatics analysis have been carried out, with the objective of revealing new information about sex determination and reproduction in S. senegalensis. To that end, several bacterial artificial chromosome (BAC) clones that contain candidate genes involved in such processes (dmrt1, dmrt2, dmrt3, dmrt4, sox3, sox6, sox8, sox9, lh, cyp19a1a, amh, vasa, aqp3, and nanos3) were analyzed and compared with the same region in other related species. Synteny studies showed that the co-localization of dmrt1-dmrt2-drmt3 in the largest metacentric chromosome of S. senegalensis is coincident with that found in the Z chromosome of Cynoglossus semilaevis, which would potentially make this a sex proto-chromosome. Phylogenetic studies show the close proximity of S. senegalensis to Oryzias latipes, a species with an XX/XY system and a sex master gene. Comparative mapping provides evidence of the preferential association of these candidate genes in particular chromosome pairs. By using the NGS and mFISH techniques, it has been possible to obtain an integrated genetic map, which shows that 15 out of 21 chromosome pairs of S. senegalensis have at least one BAC clone. This result is important for distinguishing those chromosome pairs of S. senegalensis that are similar in shape and size. The mFISH analysis shows the following co-localizations in the same chromosomes: dmrt1-dmrt2-dmrt3, dmrt4-sox9-thrb, aqp3-sox8, cyp19a1a-fshb, igsf9b-sox3, and lysg-sox6.

  5. Molecular cytogenetics and characterization of a ZZ/ZW sex chromosome system in Triportheus nematurus (Characiformes, Characidae).

    Science.gov (United States)

    Diniz, Débora; Moreira-Filho, Orlando; Bertollo, Luiz Antonio Carlos

    2008-05-01

    Chromosomes of Triportheus nematurus, a fish species from family Characidae, were analyzed in order to establish the conventional karyotype, location of C-band positive heterochromatin, Ag-NORs, GC- and AT-rich sites, and mapping of 18S and 5S rDNA with fluorescence in situ hybridization (FISH). The diploid number found was 2n = 52 chromosomes in both males and females. However, the females presented a pair of differentiated heteromorphic chromosomes, characterizing a ZZ/ZW sex chromosome system. The Z chromosome was metacentric and the largest one in the karyotype, bearing C-positive heterochromatin at pericentromeric and telomeric regions. The W chromosome was middle-sized submetacentric, appearing mostly heterochromatic after C-banding and presenting heterogeneous heterochromatin composed of GC- and AT-rich regions revealed by fluorochrome staining. Ag-NORs were also GC-rich and surrounded by heterochromatic regions, being located at the secondary constriction on the short arms of the second chromosome pair, in agreement with 18S rDNA sites detected with FISH. The 18S and 5S rDNA were aligned in tandem, representing an uncommon situation in fishes. The results obtained reinforce the basal condition of the ZZ/ZW sex system in the genus Triportheus, probably arisen prior to speciation in the group.

  6. wtf genes are prolific dual poison-antidote meiotic drivers.

    Science.gov (United States)

    Nuckolls, Nicole L; Bravo Núñez, María Angélica; Eickbush, Michael T; Young, Janet M; Lange, Jeffrey J; Yu, Jonathan S; Smith, Gerald R; Jaspersen, Sue L; Malik, Harmit S; Zanders, Sarah E

    2017-06-20

    Meiotic drivers are selfish genes that bias their transmission into gametes, defying Mendelian inheritance. Despite the significant impact of these genomic parasites on evolution and infertility, few meiotic drive loci have been identified or mechanistically characterized. Here, we demonstrate a complex landscape of meiotic drive genes on chromosome 3 of the fission yeasts Schizosaccharomyces kambucha and S. pombe . We identify S. kambucha wtf4 as one of these genes that acts to kill gametes (known as spores in yeast) that do not inherit the gene from heterozygotes. wtf4 utilizes dual, overlapping transcripts to encode both a gamete-killing poison and an antidote to the poison. To enact drive, all gametes are poisoned, whereas only those that inherit wtf4 are rescued by the antidote. Our work suggests that the wtf multigene family proliferated due to meiotic drive and highlights the power of selfish genes to shape genomes, even while imposing tremendous costs to fertility.

  7. Sex differences in diurnal rhythms of food intake in mice caused by gonadal hormones and complement of sex chromosomes.

    Science.gov (United States)

    Chen, Xuqi; Wang, Lixin; Loh, Dawn H; Colwell, Christopher S; Taché, Yvette; Reue, Karen; Arnold, Arthur P

    2015-09-01

    We measured diurnal rhythms of food intake, as well as body weight and composition, while varying three major classes of sex-biasing factors: activational and organizational effects of gonadal hormones, and sex chromosome complement (SCC). Four Core Genotypes (FCG) mice, comprising XX and XY gonadal males and XX and XY gonadal females, were either gonad-intact or gonadectomized (GDX) as adults (2.5months); food intake was measured second-by-second for 7days starting 5weeks later, and body weight and composition were measured for 22weeks thereafter. Gonadal males weighed more than females. GDX increased body weight/fat of gonadal females, but increased body fat and reduced body weight of males. After GDX, XX mice had greater body weight and more fat than XY mice. In gonad-intact mice, males had greater total food intake and more meals than females during the dark phase, but females had more food intake and meals and larger meals than males during the light phase. GDX reduced overall food intake irrespective of gonad type or SCC, and eliminated differences in feeding between groups with different gonads. Diurnal phase of feeding was influenced by all three sex-biasing variables. Gonad-intact females had earlier onset and acrophase (peak) of feeding relative to males. GDX caused a phase-advance of feeding, especially in XX mice, leading to an earlier onset of feeding in GDX XX vs. XY mice, but earlier acrophase in GDX males relative to females. Gonadal hormones and SCC interact in the control of diurnal rhythms of food intake. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Double trouble: combined action of meiotic drive and Wolbachia feminization in Eurema butterflies.

    Science.gov (United States)

    Kern, Peter; Cook, James M; Kageyama, Daisuke; Riegler, Markus

    2015-05-01

    Arthropod sex ratios can be manipulated by a diverse range of selfish genetic elements, including maternally inherited Wolbachia bacteria. Feminization by Wolbachia is rare but has been described for Eurema mandarina butterflies. In this species, some phenotypic and functional females, thought to be ZZ genetic males, are infected with a feminizing Wolbachia strain, wFem. Meanwhile, heterogametic WZ females are not infected with wFem. Here, we establish a quantitative PCR assay allowing reliable sexing in three Eurema species. Against expectation, all E. mandarina females, including wFem females, had only one Z chromosome that was paternally inherited. Observation of somatic interphase nuclei confirmed that W chromatin was absent in wFem females, but present in females without wFem. We conclude that the sex bias in wFem lines is due to meiotic drive (MD) that excludes the maternal Z and thus prevents formation of ZZ males. Furthermore, wFem lines may have lost the W chromosome or harbour a dysfunctional version, yet rely on wFem for female development; removal of wFem results in all-male offspring. This is the first study that demonstrates an interaction between MD and Wolbachia feminization, and it highlights endosymbionts as potentially confounding factors in MD of sex chromosomes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Effects of chromosomal sex and hormonal influences on shaping sex differences in brain and behavior: Lessons from cases of disorders of sex development.

    Science.gov (United States)

    Bramble, Matthew S; Lipson, Allen; Vashist, Neerja; Vilain, Eric

    2017-01-02

    Sex differences in brain development and postnatal behavior are determined largely by genetic sex and in utero gonadal hormone secretions. In humans however, determining the weight that each of these factors contributes remains a challenge because social influences should also be considered. Cases of disorders of sex development (DSD) provide unique insight into how mutations in genes responsible for gonadal formation can perturb the subsequent developmental hormonal milieu and elicit changes in normal human brain maturation. Specific forms of DSDs such as complete androgen insensitivity syndrome (CAIS), congenital adrenal hyperplasia (CAH), and 5α-reductase deficiency syndrome have variable effects between males and females, and the developmental outcomes of such conditions are largely dependent on sex chromosome composition. Medical and psychological works focused on CAH, CAIS, and 5α-reductase deficiency have helped form the foundation for understanding the roles of genetic and hormonal factors necessary for guiding human brain development. Here we highlight how the three aforementioned DSDs contribute to brain and behavioral phenotypes that can uniquely affect 46,XY and 46,XX individuals in dramatically different fashions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Unusual distribution of Zfy and Zfx sequences on the sex chromosomes of the wood lemming, a species exhibiting XY sex reversal.

    Science.gov (United States)

    Lau, Y F; Yang-Feng, T L; Elder, B; Fredga, K; Wiberg, U H

    1992-01-01

    Sex reversal occurs naturally in the wood lemming (Myopus schisticolor) due to the presence in populations of this species of a variant (mutated) X chromosome, designated X*. Thus, X*Y animals develop into females, whereas XY animals develop into normal males. Chromosome mapping by in situ hybridization of DNA sequences homologous to the human ZFY gene localized the wood lemming Zfx sequences to region p12----p11 on both the wild-type X and the mutated X* chromosomes, at or proximal to a presumed breakpoint (Xp12) involved in the generation of the X* chromosome from the normal X, and Zfy sequences along the entire short arm of the Y chromosome. Differences between Zfx and Zfx* were readily detected by Southern blot analysis. However, both the Zfx and Zfx* genes expressed similarly sized transcripts in all adult somatic tissues investigated. Although the precise molecular difference between the Zfx and Zfx* genes is still unknown, their chromosomal location suggests that either Zfx or some other closely linked gene(s) on the X chromosome may be a major X-linked sex-determining gene, Tdx, which in the X* chromosome fails to interact properly with the Y-linked testis-determining gene, Tdy, thus causing X*Y embryos to develop into females. At least 15 copies of wood lemming Zfy sequences are distributed along the short arm of the Y chromosome. Northern hybridization analyses of adult tissues and somatic cell lines indicated that these Zfy repeats were transcriptionally inactive. Normally, 3-kb Zfy (ZFY) transcripts are readily detected in mouse and human testes, especially in the germ cells. It has therefore been postulated that expression of the Zfy (ZFY) gene may be important for spermatogenesis. Whether the lack of sufficient Zfy transcripts in the testis of the adult wood lemming has any impact on spermatogenesis in this species is still to be elucidated by further studies.

  11. Incomplete sex chromosome dosage compensation in the Indian meal moth, Plodia interpunctella, based on de novo transcriptome assembly.

    Science.gov (United States)

    Harrison, Peter W; Mank, Judith E; Wedell, Nina

    2012-01-01

    Males and females experience differences in gene dose for loci in the nonrecombining region of heteromorphic sex chromosomes. If not compensated, this leads to expression imbalances, with the homogametic sex on average exhibiting greater expression due to the doubled gene dose. Many organisms with heteromorphic sex chromosomes display global dosage compensation mechanisms, which equalize gene expression levels between the sexes. However, birds and Schistosoma have been previously shown to lack chromosome-wide dosage compensation mechanisms, and the status in other female heterogametic taxa including Lepidoptera remains unresolved. To further our understanding of dosage compensation in female heterogametic taxa and to resolve its status in the lepidopterans, we assessed the Indian meal moth, Plodia interpunctella. As P. interpunctella lacks a complete reference genome, we conducted de novo transcriptome assembly combined with orthologous genomic location prediction from the related silkworm genome, Bombyx mori, to compare Z-linked and autosomal gene expression levels for each sex. We demonstrate that P. interpunctella lacks complete Z chromosome dosage compensation, female Z-linked genes having just over half the expression level of males and autosomal genes. This finding suggests that the Lepidoptera and possibly all female heterogametic taxa lack global dosage compensation, although more species will need to be sampled to confirm this assertion.

  12. ATM promotes the obligate XY crossover and both crossover control and chromosome axis integrity on autosomes.

    Directory of Open Access Journals (Sweden)

    Marco Barchi

    2008-05-01

    Full Text Available During meiosis in most sexually reproducing organisms, recombination forms crossovers between homologous maternal and paternal chromosomes and thereby promotes proper chromosome segregation at the first meiotic division. The number and distribution of crossovers are tightly controlled, but the factors that contribute to this control are poorly understood in most organisms, including mammals. Here we provide evidence that the ATM kinase or protein is essential for proper crossover formation in mouse spermatocytes. ATM deficiency causes multiple phenotypes in humans and mice, including gonadal atrophy. Mouse Atm-/- spermatocytes undergo apoptosis at mid-prophase of meiosis I, but Atm(-/- meiotic phenotypes are partially rescued by Spo11 heterozygosity, such that ATM-deficient spermatocytes progress to meiotic metaphase I. Strikingly, Spo11+/-Atm-/- spermatocytes are defective in forming the obligate crossover on the sex chromosomes, even though the XY pair is usually incorporated in a sex body and is transcriptionally inactivated as in normal spermatocytes. The XY crossover defect correlates with the appearance of lagging chromosomes at metaphase I, which may trigger the extensive metaphase apoptosis that is observed in these cells. In addition, control of the number and distribution of crossovers on autosomes appears to be defective in the absence of ATM because there is an increase in the total number of MLH1 foci, which mark the sites of eventual crossover formation, and because interference between MLH1 foci is perturbed. The axes of autosomes exhibit structural defects that correlate with the positions of ongoing recombination. Together, these findings indicate that ATM plays a role in both crossover control and chromosome axis integrity and further suggests that ATM is important for coordinating these features of meiotic chromosome dynamics.

  13. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination

    Czech Academy of Sciences Publication Activity Database

    Pokorná, M.; Rábová, Marie; Ráb, Petr; Kratochvíl, L.

    2010-01-01

    Roč. 18, č. 6 (2010), s. 748-748 ISSN 0967-3849. [19th International Colloquium on animal cytogenetics and gene mapping. 06.06.-09.06.2010, Krakow] Institutional research plan: CEZ:AV0Z50450515 Keywords : sex chromosomes * karyotypic evolution * eye-lid geckos Subject RIV: EB - Genetics ; Molecular Biology

  14. Neurocognitive outcomes of individuals with a sex chromosome trisomy: XXX, XYY, or XXY: a systematic review*

    Science.gov (United States)

    LEGGETT, VICTORIA; JACOBS, PATRICIA; NATION, KATE; SCERIF, GAIA; BISHOP, DOROTHY V M

    2010-01-01

    Aim To review systematically the neurodevelopmental characteristics of individuals with sex chromosome trisomies (SCTs). Method A bibliographic search identified English-language articles on SCTs. The focus was on studies unbiased by clinical referral, with power of at least 0.69 to detect an effect size of 1.0. Results We identified 35 articles on five neonatally identified samples that had adequate power for our review. An additional 11 studies were included where cases had been identified for reasons other than neurodevelopmental concerns. Individuals with an additional X chromosome had mean IQs that were within broadly normal limits but lower than the respective comparison groups, with verbal IQ most affected. Cognitive outcomes were poorest for females with XXX. Males with XYY had normal-range IQs, but all three SCT groups (XXX, XXY, and XYY) had marked difficulties in speech and language, motor skills, and educational achievement. Nevertheless, most adults with SCTs lived independently. Less evidence was available for brain structure and for attention, social, and psychiatric outcomes. Within each group there was much variation. Interpretation Individuals with SCTs are at risk of cognitive and behavioural difficulties. However, the evidence base is slender, and further research is needed to ascertain the nature, severity, and causes of these difficulties in unselected samples. PMID:20059514

  15. Neurocognitive outcomes of individuals with a sex chromosome trisomy: XXX, XYY, or XXY: a systematic review.

    Science.gov (United States)

    Leggett, Victoria; Jacobs, Patricia; Nation, Kate; Scerif, Gaia; Bishop, Dorothy V M

    2010-02-01

    To review systematically the neurodevelopmental characteristics of individuals with sex chromosome trisomies (SCTs). A bibliographic search identified English-language articles on SCTs. The focus was on studies unbiased by clinical referral, with power of at least 0.69 to detect an effect size of 1.0. We identified 35 articles on five neonatally identified samples that had adequate power for our review. An additional 11 studies were included where cases had been identified for reasons other than neurodevelopmental concerns. Individuals with an additional X chromosome had mean IQs that were within broadly normal limits but lower than the respective comparison groups, with verbal IQ most affected. Cognitive outcomes were poorest for females with XXX. Males with XYY had normal-range IQs, but all three SCT groups (XXX, XXY, and XYY) had marked difficulties in speech and language, motor skills, and educational achievement. Nevertheless, most adults with SCTs lived independently. Less evidence was available for brain structure and for attention, social, and psychiatric outcomes. Within each group there was much variation. Individuals with SCTs are at risk of cognitive and behavioural difficulties. However, the evidence base is slender, and further research is needed to ascertain the nature, severity, and causes of these difficulties in unselected samples.

  16. The fate of W chromosomes in hybrids between wild silkmoths, Samia cynthia ssp.: no role in sex determination and reproduction

    Czech Academy of Sciences Publication Activity Database

    Yoshido, Atsuo; Marec, František; Sahara, K.

    2016-01-01

    Roč. 116, č. 5 (2016), s. 424-433 ISSN 0018-067X R&D Projects: GA ČR(CZ) GA14-22765S Grant - others:The European Union Seventh Framework Programme (FP7/2007-2013)(CZ) 316304 Program:FP7 Institutional support: RVO:60077344 Keywords : hybrids * sex chromosomes * sex determination Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.961, year: 2016

  17. Genomic diversity in two related plant species with and without sex chromosomes--Silene latifolia and S. vulgaris.

    Directory of Open Access Journals (Sweden)

    Radim Cegan

    Full Text Available Genome size evolution is a complex process influenced by polyploidization, satellite DNA accumulation, and expansion of retroelements. How this process could be affected by different reproductive strategies is still poorly understood.We analyzed differences in the number and distribution of major repetitive DNA elements in two closely related species, Silene latifolia and S. vulgaris. Both species are diploid and possess the same chromosome number (2n = 24, but differ in their genome size and mode of reproduction. The dioecious S. latifolia (1C = 2.70 pg DNA possesses sex chromosomes and its genome is 2.5× larger than that of the gynodioecious S. vulgaris (1C = 1.13 pg DNA, which does not possess sex chromosomes. We discovered that the genome of S. latifolia is larger mainly due to the expansion of Ogre retrotransposons. Surprisingly, the centromeric STAR-C and TR1 tandem repeats were found to be more abundant in S. vulgaris, the species with the smaller genome. We further examined the distribution of major repetitive sequences in related species in the Caryophyllaceae family. The results of FISH (fluorescence in situ hybridization on mitotic chromosomes with the Retand element indicate that large rearrangements occurred during the evolution of the Caryophyllaceae family.Our data demonstrate that the evolution of genome size in the genus Silene is accompanied by the expansion of different repetitive elements with specific patterns in the dioecious species possessing the sex chromosomes.

  18. Rapid molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus L., based on large Y-chromosomal insertions.

    Science.gov (United States)

    Bakker, Theo C M; Giger, Thomas; Frommen, Joachim G; Largiadèr, Carlo R

    2017-08-01

    There is a need for rapid and reliable molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus, the supermodel species for evolutionary biology. A DNA region at the 5' end of the sex-linked microsatellite Gac4202 was sequenced for the X chromosome of six females and the Y chromosome of five males from three populations. The Y chromosome contained two large insertions, which did not recombine with the phenotype of sex in a cross of 322 individuals. Genetic variation (SNPs and indels) within the insertions was smaller than on flanking DNA sequences. Three molecular PCR-based sex tests were developed, in which the first, the second or both insertions were covered. In five European populations (from DE, CH, NL, GB) of three-spined sticklebacks, tests with both insertions combined showed two clearly separated bands on agarose minigels in males and one band in females. The tests with the separate insertions gave similar results. Thus, the new molecular sexing method gave rapid and reliable results for sexing three-spined sticklebacks and is an improvement and/or alternative to existing methods.

  19. Meiotic behavior of wild Caricaceae species potentially suitable for papaya improvement

    Directory of Open Access Journals (Sweden)

    Emanuelli Narducci da Silva

    2012-01-01

    Full Text Available The purpose of this study was to evaluate the meiotic behavior and determine the meiotic index and pollen viability of representative plants of the wild species V. goudotiana, V. quercifolia and J. spinosa. Meiotic analysis confirmed that the species are diploid and have 18 chromosomes. Meiosis was partially normal, since some abnormalities, e.g, sticky and lagging chromosomes, precocious segregation, lack of synchrony, and disturbances in the spindle fibers were observed. These abnormalities resulted in post-meiotic products (monads, dyads, triads, and polyads that probably contributed to the meiotic index of 85.7 % (V. goudotiana to 95.9 % (J. spinosa; significant variation was observed in the species V. goudotiana. The pollen viability of 68.0% (V. goudotiana to 96.0 % (J. spinosa was reasonably good in these wild species. Crossings in breeding programs involving V. goudotiana should therefore be carefully planned, since part of the gametes of this species is unviable.

  20. Ancient Male Recombination Shaped Genetic Diversity of Neo-Y Chromosome in Drosophila albomicans.

    Science.gov (United States)

    Satomura, Kazuhiro; Tamura, Koichiro

    2016-02-01

    Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Effects of a chromosome-3 mutator gene on radiation-induced mutability in Drosophila melanogaster females

    Energy Technology Data Exchange (ETDEWEB)

    Sankaranarayanan, K. (Rijksuniversiteit Leiden (Netherlands). Dept. of Radiation Genetics and Chemical Mutagenesis; Cohen (J.A.) Inst. voor Radiopathologie en Stralenbescherming, Leiden (Netherlands))

    1982-01-01

    A series of X-irradiation experiments was carried out using Drosophila melanogaster females homozygous for a third chromosome mutator gene and females which had a similar genetic background except that the mutator-bearing third chromosomes were substituted by normal wild-type chromosomes. In the present work, the sensitivity of the pre-meiotic germ cells of mutator and normal females to the X-ray induction (2000 R) of sex-linked recessive lethals was studied. In addition, experiments were conducted to examine the sensitivity of the immature (stage 7; prophase I of meiosis) oocytes of both kinds of females to the induction of dominant lethals, X-linked recessive lethals and X-chromosome losses. The results show that in pre-meiotic germ cells, the frequencies of radiation-induced recessive lethals are similar in both kinds of females. However, the proportion of these mutations that occur in clusters of size 3 and higher, is higher in mutator than in normal females. In stage-7 oocytes, the frequencies of radiation-induced dominant lethals and sex-linked recessive lethals were similar in both kinds of females. The X-loss frequencies however, were consistently higher in mutator females although statistical significance was obtained only at higher exposures (3000 and 3750 R) and not at lower ones (750-2250 R). Possible reasons for the discrepancy between the present results and those of Gold and Green with respect to pre-meiotic germ cells are discussed.

  2. Neurocognitive Outcomes of Individuals with a Sex Chromosome Trisomy: XXX, XYY, or XXY--A Systematic Review

    Science.gov (United States)

    Leggett, Victoria; Jacobs, Patricia; Nation, Kate; Scerif, Gaia; Bishop, Dorothy V. M.

    2010-01-01

    Aim: To review systematically the neurodevelopmental characteristics of individuals with sex chromosome trisomies (SCTs). Method: A bibliographic search identified English-language articles on SCTs. The focus was on studies unbiased by clinical referral, with power of at least 0.69 to detect an effect size of 1.0. Results: We identified 35…

  3. Dissociable effects of Sry and sex chromosome complement on activity, feeding and anxiety-related behaviours in mice.

    Science.gov (United States)

    Kopsida, Eleni; Lynn, Phoebe M; Humby, Trevor; Wilkinson, Lawrence S; Davies, William

    2013-01-01

    Whilst gonadal hormones can substantially influence sexual differentiation of the brain, recent findings have suggested that sex-linked genes may also directly influence neurodevelopment. Here we used the well-established murine 'four core genotype' (FCG) model on a gonadally-intact, outbred genetic background to characterise the contribution of Sry-dependent effects (i.e. those arising from the expression of the Y-linked Sry gene in the brain, or from hormonal sequelae of gonadal Sry expression) and direct effects of sex-linked genes other than Sry ('sex chromosome complement' effects) to sexually dimorphic mouse behavioural phenotypes. Over a 24 hour period, XX and XY gonadally female mice (lacking Sry) exhibited greater horizontal locomotor activity and reduced food consumption per unit bodyweight than XX and XY gonadally male mice (possessing Sry); in two behavioural tests (the elevated plus and zero mazes) XX and XY gonadally female mice showed evidence for increased anxiety-related behaviours relative to XX and XY gonadally male mice. Exploratory correlational analyses indicated that these Sry-dependent effects could not be simply explained by brain expression of the gene, nor by circulating testosterone levels. We also noted a sex chromosome complement effect on food (but not water) consumption whereby XY mice consumed more over a 24hr period than XX mice, and a sex chromosome complement effect in a third test of anxiety-related behaviour, the light-dark box. The present data suggest that: i) the male-specific factor Sry may influence activity and feeding behaviours in mice, and ii) dissociable feeding and anxiety-related murine phenotypes may be differentially modulated by Sry and by other sex-linked genes. Our results may have relevance for understanding the molecular underpinnings of sexually dimorphic behavioural phenotypes in healthy men and women, and in individuals with abnormal sex chromosome constitutions.

  4. Dissociable effects of Sry and sex chromosome complement on activity, feeding and anxiety-related behaviours in mice.

    Directory of Open Access Journals (Sweden)

    Eleni Kopsida

    Full Text Available Whilst gonadal hormones can substantially influence sexual differentiation of the brain, recent findings have suggested that sex-linked genes may also directly influence neurodevelopment. Here we used the well-established murine 'four core genotype' (FCG model on a gonadally-intact, outbred genetic background to characterise the contribution of Sry-dependent effects (i.e. those arising from the expression of the Y-linked Sry gene in the brain, or from hormonal sequelae of gonadal Sry expression and direct effects of sex-linked genes other than Sry ('sex chromosome complement' effects to sexually dimorphic mouse behavioural phenotypes. Over a 24 hour period, XX and XY gonadally female mice (lacking Sry exhibited greater horizontal locomotor activity and reduced food consumption per unit bodyweight than XX and XY gonadally male mice (possessing Sry; in two behavioural tests (the elevated plus and zero mazes XX and XY gonadally female mice showed evidence for increased anxiety-related behaviours relative to XX and XY gonadally male mice. Exploratory correlational analyses indicated that these Sry-dependent effects could not be simply explained by brain expression of the gene, nor by circulating testosterone levels. We also noted a sex chromosome complement effect on food (but not water consumption whereby XY mice consumed more over a 24hr period than XX mice, and a sex chromosome complement effect in a third test of anxiety-related behaviour, the light-dark box. The present data suggest that: i the male-specific factor Sry may influence activity and feeding behaviours in mice, and ii dissociable feeding and anxiety-related murine phenotypes may be differentially modulated by Sry and by other sex-linked genes. Our results may have relevance for understanding the molecular underpinnings of sexually dimorphic behavioural phenotypes in healthy men and women, and in individuals with abnormal sex chromosome constitutions.

  5. An immunological approach of sperm sexing and different methods for identification of X- and Y-chromosome bearing sperm

    Directory of Open Access Journals (Sweden)

    Shiv Kumar Yadav

    2017-05-01

    Full Text Available Separation of X- and Y-chromosome bearing sperm has been practiced for selection of desired sex of offspring to increase the profit in livestock industries. At present, fluorescence-activated cell sorter is the only successful method for separation of X- and Y-chromosome bearing sperm. This technology is based on the differences in DNA content between these two types of sperm and has been commercialized for bovine sperm. However, this technology still has problems in terms of high economic cost, sperm damage, and lower pregnancy rates compared to unsorted semen. Therefore, an inexpensive, convenient, and non-invasive approach for sperm sexing would be of benefit to agricultural sector. Within this perspective, immunological sperm sexing method is one of the attractive choices to separate X- and Y-chromosome bearing sperm. This article reviews the current knowledge about immunological approaches, viz., H-Y antigen, sex-specific antigens, and differentially expressed proteins for sperm sexing. Moreover, this review also highlighted the different methods for identification of X- and Y-sperm.

  6. Correction to: Whole chromosome painting reveals independent origin of sex chromosomes in closely related forms of a fish species.

    Science.gov (United States)

    Cioffi, Marcelo de Bello; Sánchez, Antonio; Marchal, Juan Alberto; Kosyakova, Nadezda; Liehr, Thomas; Trifonov, Vladimir; Bertollo, Luiz Antonio Carlos

    2018-02-01

    ere, we report that a paragraph from the "Discussion" section of Cioffi et al. (2011; p. 1070, 4th paragraph of column 1) was transcribed (with only minor edits) from an introductory paragraph previously published in Chromosome Research by O'Meally et al.

  7. Asymmetry of cerebral grey and white matter and structural volumes in relation to sex hormones and chromosomes

    Directory of Open Access Journals (Sweden)

    Ivanka eSavic

    2014-11-01

    Full Text Available Whilst many studies show sex differences in cerebral asymmetry, their mechanisms are still unknown. This report describes the potential impact of sex hormones and sex chromosomes by comparing MR data from 39 male and 47 female controls and 33 men with an extra X-chromosome (47,XXY Methods: Regional asymmetry in grey and white matter volumes (GMV and WMV was calculated using voxel based moprhometry (SPM5, by contrasting the unflipped and flipped individual GMV and WMV images. In addition, structural volumes were calculated for the thalamus, caudate, putamen, amygdala, and hippocampus, using the FreeSurfer software. Effects of plasma testosterone and estrogen on the GMV and WMV, as well on the right/left ratios of the subcortical volumes were tested by multi-regression analysis.Results: All three groups showed a leftward asymmetry in the motor cortex and the planum temporale, and a rightward asymmetry of the middle occipital cortex. Both asymmetries were more pronounced in 46,XY males than 46,XX females and 47,XXY males, and were positively correlated with testosterone levels. There was also a rightward asymmetry of the vermis and leftward asymmetry in the cerebellar hemispheres in all groups. Notably, cerebellar asymmetries were larger in 46,XX females and 47,XXY males, but were not related to sex hormone levels. No asymmetry differences between 46,XX females and 47,XXY males, and no overall effects of brain size were detected.Conclusion: The asymmetry in the planum temporale area and the occipital cortex seem related to processes associated with testosterone, whereas the observed cerebellar asymmetries suggest a link with X-chromosome escapee genes. Sex differences in cerebral asymmetry are moderated by sex hormones and X-chromosome genes, in a regionally differentiated manner.

  8. Asymmetry of cerebral gray and white matter and structural volumes in relation to sex hormones and chromosomes.

    Science.gov (United States)

    Savic, Ivanka

    2014-01-01

    Whilst many studies show sex differences in cerebral asymmetry, their mechanisms are still unknown. This report describes the potential impact of sex hormones and sex chromosomes by comparing MR data from 39 male and 47 female controls and 33 men with an extra X-chromosome (47,XXY). Regional asymmetry in gray and white matter volumes (GMV and WMV) was calculated using voxel based moprhometry (SPM5), by contrasting the unflipped and flipped individual GMV and WMV images. In addition, structural volumes were calculated for the thalamus, caudate, putamen, amygdala, and hippocampus, using the FreeSurfer software. Effects of plasma testosterone and estrogen on the GMV and WMV, as well on the right/left ratios of the subcortical volumes were tested by multi-regression analysis. All three groups showed a leftward asymmetry in the motor cortex and the planum temporale, and a rightward asymmetry of the middle occipital cortex. Both asymmetries were more pronounced in 46,XY males than 46,XX females and 47,XXY males, and were positively correlated with testosterone levels. There was also a rightward asymmetry of the vermis and leftward GMV asymmetry in the cerebellar hemispheres in all groups. Notably, cerebellar asymmetries were larger in 46,XX females and 47,XXY males, but were not related to sex hormone levels. No asymmetry differences between 46,XX females and 47,XXY males, and no overall effects of brain size were detected. The asymmetry in the planum temporale area and the occipital cortex seem related to processes associated with testosterone, whereas the observed cerebellar asymmetries suggest a link with X-chromosome escapee genes. Sex differences in cerebral asymmetry are moderated by sex hormones and X-chromosome genes, in a regionally differentiated manner.

  9. Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the x and an aberrant y chromosome.

    Science.gov (United States)

    Singh, L; Jones, K W

    1982-02-01

    Satellite DNA (Bkm) from the W sex-determining chromosome of snakes, which is related to sequences on the mouse Y chromosome, has been used to analyze the DNA and chromosomes of sex-reversed (Sxr) XXSxr male mice. Such mice exhibit a male-specific Southern blot Bkm hybridization pattern, consistent with the presence of Y-chromosome DNA. In situ hybridization of Bkm to chromosomes of XXSxr mice shows an aberrant concentration of related sequences on the distal terminus of a large mouse chromosome. The XYSxr carrier male, however, shows a pair of small chromosomes, which are presumed to be aberrant Y derivatives. Meiosis in the XYSxr mouse involves transfer of chromatin rich in Bkm-related DNA from the Y-Y1 complex to the X distal terminus. We suggest that this event is responsible for the transmission of the Sxr trait.

  10. Meiotic drive influences the outcome of sexually antagonistic selection at a linked locus.

    Science.gov (United States)

    Patten, M M

    2014-11-01

    Most meiotic drivers, such as the t-haplotype in Mus and the segregation distorter (SD) in Drosophila, act in a sex-specific manner, gaining a transmission advantage through one sex although suffering only the fitness costs associated with the driver in the other. Their inheritance is thus more likely through one of the two sexes, a property they share with sexually antagonistic alleles. Previous theory has shown that pairs of linked loci segregating for sexually antagonistic alleles are more likely to remain polymorphic and that linkage disequilibrium accrues between them. I probe this similarity between drive and sexual antagonism and examine the evolution of chromosomes experiencing these selection pressures simultaneously. Reminiscent of previous theory, I find that: the opportunity for polymorphism increases for a sexually antagonistic locus that is physically linked to a driving locus; the opportunity for polymorphism at a driving locus also increases when linked to a sexually antagonistic locus; and stable linkage disequilibrium accompanies any polymorphic equilibrium. Additionally, I find that drive at a linked locus favours the fixation of sexually antagonistic alleles that benefit the sex in which drive occurs. Further, I show that under certain conditions reduced recombination between these two loci is selectively favoured. These theoretical results provide clear, testable predictions about the nature of sexually antagonistic variation on driving chromosomes and have implications for the evolution of genomic architecture. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  11. B chromosome in Plantago lagopus Linnaeus, 1753 shows preferential transmission and accumulation through unusual processes

    Science.gov (United States)

    Dhar, Manoj K.; Kour, Gurmeet; Kaul, Sanjana

    2017-01-01

    Abstract Plantago lagopus is a diploid (2n = 2x =12) weed belonging to family Plantaginaceae. We reported a novel B chromosome in this species composed of 5S and 45S ribosomal DNA and other repetitive elements. In the present work, presence of B chromosome(s) was confirmed through FISH on root tip and pollen mother cells. Several experiments were done to determine the transmission of B chromosome through male and female sex tracks. Progenies derived from the reciprocal crosses between plants with (1B) and without (0B) B chromosomes were studied. The frequency of B chromosome bearing plants was significantly higher than expected, in the progeny of 1B female × 0B male. Thus, the B chromosome seems to have preferential transmission through the female sex track, which may be due to meiotic drive. One of the most intriguing aspects of the present study was the recovery of plants having more chromosomes than the standard complement of 12 chromosomes. Such plants were isolated from the progenies of B chromosome carrying plants. The origin of these plants can be explained on the basis of a two step process; formation of unreduced gametes in 1B plants and fusion of unreduced gametes with the normal gametes or other unreduced gametes. Several molecular techniques were used which unequivocally confirmed similar genetic constitution of 1B (parent) and plants with higher number of chromosomes. PMID:28919970

  12. An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution

    Czech Academy of Sciences Publication Activity Database

    Hobza, Roman; Lengerová, Martina; Svoboda, J.; Kubeková, H.; Kejnovský, Eduard; Vyskot, Boris

    2006-01-01

    Roč. 115, č. 5 (2006), s. 376-382 ISSN 0009-5915 R&D Projects: GA ČR(CZ) GA521/06/0056; GA ČR(CZ) GA204/05/2097 Institutional research plan: CEZ:AV0Z50040507 Keywords : plant melandrium-album * dioecious plant * X-chromosome Subject RIV: BO - Biophysics Impact factor: 4.065, year: 2006

  13. Sex Reversal and Comparative Data Undermine the W Chromosome and Support Z-linked DMRT1 as the Regulator of Gonadal Sex Differentiation in Birds.

    Science.gov (United States)

    Hirst, Claire E; Major, Andrew T; Ayers, Katie L; Brown, Rosie J; Mariette, Mylene; Sackton, Timothy B; Smith, Craig A

    2017-09-01

    The exact genetic mechanism regulating avian gonadal sex differentiation has not been completely resolved. The most likely scenario involves a dosage mechanism, whereby the Z-linked DMRT1 gene triggers testis development. However, the possibility still exists that the female-specific W chromosome may harbor an ovarian determining factor. In this study, we provide evidence that the universal gene regulating gonadal sex differentiation in birds is Z-linked DMRT1 and not a W-linked (ovarian) factor. Three candidate W-linked ovarian determinants are HINTW, female-expressed transcript 1 (FET1), and female-associated factor (FAF). To test the association of these genes with ovarian differentiation in the chicken, we examined their expression following experimentally induced female-to-male sex reversal using the aromatase inhibitor fadrozole (FAD). Administration of FAD on day 3 of embryogenesis induced a significant loss of aromatase enzyme activity in female gonads and masculinization. However, expression levels of HINTW, FAF, and FET1 were unaltered after experimental masculinization. Furthermore, comparative analysis showed that FAF and FET1 expression could not be detected in zebra finch gonads. Additionally, an antibody raised against the predicted HINTW protein failed to detect it endogenously. These data do not support a universal role for these genes or for the W sex chromosome in ovarian development in birds. We found that DMRT1 (but not the recently identified Z-linked HEMGN gene) is male upregulated in embryonic zebra finch and emu gonads, as in the chicken. As chicken, zebra finch, and emu exemplify the major evolutionary clades of birds, we propose that Z-linked DMRT1, and not the W sex chromosome, regulates gonadal sex differentiation in birds. Copyright © 2017 Endocrine Society.

  14. RPA homologs and ssDNA processing during meiotic recombination.

    Science.gov (United States)

    Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle

    2016-06-01

    Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair.

  15. Polytene chromosomes of monogenic and amphogenic Chrysomya species (Calliphoridae, Diptera): analysis of banding patterns and in situ hybridization with Drosophila sex determining gene sequences.

    Science.gov (United States)

    Puchalla, S

    1994-03-01

    Standard maps for the five banded polytene chromosomes found in trichogen cell nuclei of the monogenic blowfly Chrysomya rufifacies and the amphogenic Chrysomya pinguis are presented. The chromosomes are highly homologous in the two species; differences in banding patterns are predominantly caused by one pericentric and ten paracentric inversions. In chromosome 5 of the amphogenic Chrysomya phaonis, also analysed in this paper, an additional paracentric inversion was observed. The distribution of species specific inversions indicates that the monogenic C. rufifacies is phylogenetically older than the amphogenic species. The maternal sex realizer locus F'/f on polytene chromosome 5 of C. rufifacies is not associated with a structural heterozygosity. Chromosome pair 6 of C. rufifacies and the sex chromosome pair of C. pinguis are under-replicated in polytene nuclei; they consist of irregular chromatin granules, frequently associated with nucleolus material. Evolution of heteromorphic sex chromosomes in Chrysomya is probably correlated with heterochromatin accumulation. A search for sex determining genes in Chrysomya was initiated using sex determining sequences from Drosophila melanogaster for in situ hybridization. The polytene band 41A1 on chromosome 5 of monogenic and amphogenic Chrysomya species contains sequences homologous to the maternal sex determining gene daughterless (da). Homology to the zygotic gene Sex-lethal (Sxl) of Drosophila is detected in band 39A1 on chromosome 5 of C. rufifacies. The findings reported here are the first evidence for a possible homology between the da gene of Drosophila and the maternal sex realizer F' of C. rufifacies. An hypothesis for the evolution of the maternal effect sex determination of C. rufifacies is proposed.

  16. Transcriptome profiling of Nasonia vitripennis testis reveals novel transcripts expressed from the selfish B chromosome, paternal sex ratio.

    Science.gov (United States)

    Akbari, Omar S; Antoshechkin, Igor; Hay, Bruce A; Ferree, Patrick M

    2013-09-04

    A widespread phenomenon in nature is sex ratio distortion of arthropod populations caused by microbial and genetic parasites. Currently little is known about how these agents alter host developmental processes to favor one sex or the other. The paternal sex ratio (PSR) chromosome is a nonessential, paternally transmitted centric fragment that segregates in natural populations of the jewel wasp, Nasonia vitripennis. To persist, PSR is thought to modify the hereditary material of the developing sperm, with the result that all nuclear DNA other than the PSR chromosome is destroyed shortly after fertilization. This results in the conversion of a fertilized embryo--normally a female--into a male, thereby insuring transmission of the "selfish" PSR chromosome, and simultaneously leading to wasp populations that are male-biased. To begin to understand this system at the mechanistic level, we carried out transcriptional profiling of testis from WT and PSR-carrying males. We identified a number of transcripts that are differentially expressed between these conditions. We also discovered nine transcripts that are uniquely expressed from the PSR chromosome. Four of these PSR-specific transcripts encode putative proteins, whereas the others have very short open reading frames and no homology to known proteins, suggesting that they are long noncoding RNAs. We propose several different models for how these transcripts could facilitate PSR-dependent effects. Our analyses also revealed 15.71 MB of novel transcribed regions in the N. vitripennis genome, thus increasing the current annotation of total transcribed regions by 53.4%. Finally, we detected expression of multiple meiosis-related genes in the wasp testis, despite the lack of conventional meiosis in the male sex.

  17. Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp

    Czech Academy of Sciences Publication Activity Database

    Yoshido, A.; Sahara, K.; Marec, František; Matsuda, Y.

    2011-01-01

    Roč. 106, č. 4 (2011), s. 614-624 ISSN 0018-067X R&D Projects: GA AV ČR IAA600960925 Grant - others:Japan Society for the Promotion of Science(JP) 19-1114; Japan Society for the Promotion of Science(JP) 21-7147 Institutional research plan: CEZ:AV0Z50070508 Keywords : Lepidoptera * sex chromosomes * fluorescences Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.597, year: 2011

  18. Dual mechanism of chromatin remodeling in the common shrew sex trivalent (XY 1Y 2

    Directory of Open Access Journals (Sweden)

    Sergey N. Matveevsky

    2017-11-01

    Full Text Available Here we focus on the XY1Y2 condition in male common shrew Sorex araneus Linnaeus, 1758, applying electron microscopy and immunocytochemistry for a comprehensive analysis of structure, synapsis and behaviour of the sex trivalent in pachytene spermatocytes. The pachytene sex trivalent consists of three distinct parts: short and long synaptic SC fragments (between the X and Y1 and between the X and Y2, respectively and a long asynaptic region of the X in-between. Chromatin inactivation was revealed in the XY1 synaptic region, the asynaptic region of the X and a very small asynaptic part of the Y2. This inactive part of the sex trivalent, that we named the ‘head’, forms a typical sex body and is located at the periphery of the meiotic nucleus at mid pachytene. The second part or ‘tail’, a long region of synapsis between the X and Y2 chromosomes, is directed from the periphery into the nucleus. Based on the distribution patterns of four proteins involved in chromatin inactivation, we propose a model of meiotic silencing in shrew sex chromosomes. Thus, we conclude that pachytene sex chromosomes are structurally and functionally two different chromatin domains with specific nuclear topology: the peripheral inactivated ‘true’ sex chromosome regions (part of the X and the Y1 and more centrally located transcriptionally active autosomal segments (part of the X and the Y2.

  19. Y-chromosomal diversity in Haiti and Jamaica: contrasting levels of sex-biased gene flow.

    Science.gov (United States)

    Simms, Tanya M; Wright, Marisil R; Hernandez, Michelle; Perez, Omar A; Ramirez, Evelyn C; Martinez, Emanuel; Herrera, Rene J

    2012-08-01

    Although previous studies have characterized the genetic structure of populations from Haiti and Jamaica using classical and autosomal STR polymorphisms, the patrilineal influences that are present in these countries have yet to be explored. To address this lacuna, the current study aims to investigate, for the first time, the potential impact of different ancestral sources, unique colonial histories, and distinct family structures on the paternal profile of both groups. According to previous reports examining populations from the Americas, island-specific demographic histories can greatly impact population structure, including various patterns of sex-biased gene flow. Also, given the contrasting autosomal profiles provided in our earlier study (Simms et al.: Am J Phys Anthropol 142 (2010) 49-66), we hypothesize that the degree and directionality of gene flow from Europeans, Africans, Amerindians, and East Asians are dissimilar in the two countries. To test this premise, 177 high-resolution Y-chromosome binary markers and 17 Y-STR loci were typed in Haiti (n = 123) and Jamaica (n = 159) and subsequently utilized for phylogenetic comparisons to available reference collections encompassing Africa, Europe, Asia (East and South), and the New World. Our results reveal that both studied populations exhibit a predominantly South-Saharan paternal component, with haplogroups A1b-V152, A3-M32, B2-M182, E1a-M33, E1b1a-M2, E2b-M98, and R1b2-V88 comprising 77.2% and 66.7% of the Haitian and Jamaican paternal gene pools, respectively. Yet, European derived chromosomes (i.e., haplogroups G2a*-P15, I-M258, R1b1b-M269, and T-M184) were detected at commensurate levels in Haiti (20.3%) and Jamaica (18.9%), whereas Y-haplogroups indicative of Chinese [O-M175 (3.8%)] and Indian [H-M69 (0.6%) and L-M20 (0.6%)] ancestry were restricted to Jamaica. Copyright © 2012 Wiley Periodicals, Inc.

  20. C-banding and fluorescent in situ hybridization with rDNA sequences in chromosomes of Cycloneda sanguinea Linnaeus (Coleoptera, Coccinellidae

    Directory of Open Access Journals (Sweden)

    Eliane Mariza Dortas Maffei

    2004-01-01

    Full Text Available The aim of this study was to describe mitotic and meiotic chromosomes of Cycloneda sanguinea using C-banding, fluorescent in situ hybridization (FISH rDNA probes, and sequential FISH/Ag-NOR staining. The chromosome number was 2n = 18 + XX for females and 2n = 18 + Xy for males. The X chromosome was metacentric and the Y chromosome was very small. During meiosis, the karyotypic meioformula was n = 9 + Xy p, and sex chromosomes configured a parachute at metaphase I. At the beginning of pachytene, bivalents were still individualized, and sex chromosomes were associated end-to-end through the heteropycnotic region of the X chromosome. Later in pachytene, further condensation led to the formation of a pseudo-ring by the sex bivalent. All chromosomes showed pericentromeric heterochromatin. FISH and sequential FISH/Ag-NOR staining evidenced the location of the nucleolar organizer region in one pair of autosomes (at spermatogonial metaphase. During meiosis, these genes were mapped to a region outside the sex vesicle by FISH, although Xy p was deeply stained with silver at metaphase I. These results suggest that these argyrophilic substances are of a nucleolar protein nature, and seem to be synthesized by a pair of autosomes and imported during meiosis (prophase I to the sex pair, during the association of the sex chromosomes.

  1. Origin of meiotic nondisjunction in Drosophila females

    International Nuclear Information System (INIS)

    Grell, R.F.

    1978-01-01

    Meiotic nondisjunction can be induced by external agents, such as heat, radiation, and chemicals, and by internal genotypic alterations, namely, point mutations and chromosomal rearrangements. In many cases nondisjunction arises from a reduction or elimination of crossing-over, leading to the production of homologous univalents which fail to co-orient on the metaphase plate and to disjoin properly. In some organisms, e.g., Drosophila and perhaps man, distributive pairing [i.e., a post-exchange, size-dependent pairing] ensures the regular segregation of such homologous univalents. When a nonhomologous univalent is present, which falls within a size range permitting nonhomologous recognition and pairing, distributive nondisjunction of the homologues may follow. Examples of nondisjunction induced by inversion heterozygosity, translocation heterozygosity, chromosome fragments, radiation, heat, and recombination-defective mutants are presented

  2. Roles of Cohesin and Condensin in Chromosome Dynamics During Mammalian Meiosis

    OpenAIRE

    LEE, Jibak

    2013-01-01

    Meiosis is a key step for sexual reproduction in which chromosome number is halved by two successive meiotic divisions after a single round of DNA replication. In the first meiotic division (meiosis I), homologous chromosomes pair, synapse, and recombine with their partners in prophase I. As a result, homologous chromosomes are physically connected until metaphase I and then segregated from each other at the onset of anaphase I. In the subsequent second meiotic division (meiosis II), sister c...

  3. The eXtroardinarY Babies Study: Natural History of Health and Neurodevelopment in Infants and Young Children With Sex Chromosome Trisomy

    Science.gov (United States)

    2018-01-10

    Klinefelter Syndrome; Trisomy X; XYY Syndrome; XXXY and XXXXY Syndrome; Xxyy Syndrome; Xyyy Syndrome; Xxxx Syndrome; Xxxxx Syndrome; Xxxyy Syndrome; Xxyyy Syndrome; Xyyyy Syndrome; Male With Sex Chromosome Mosaicism

  4. Cohesin in determining chromosome architecture

    Energy Technology Data Exchange (ETDEWEB)

    Haering, Christian H., E-mail: christian.haering@embl.de [Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg (Germany); Jessberger, Rolf, E-mail: rolf.jessberger@tu-dresden.de [Institute of Physiological Chemistry, Dresden University of Technology, Dresden (Germany)

    2012-07-15

    Cells use ring-like structured protein complexes for various tasks in DNA dynamics. The tripartite cohesin ring is particularly suited to determine chromosome architecture, for it is large and dynamic, may acquire different forms, and is involved in several distinct nuclear processes. This review focuses on cohesin's role in structuring chromosomes during mitotic and meiotic cell divisions and during interphase.

  5. Meiotic behaviour and spermatogenesis in male mice heterozygous for translocation types also occurring in man

    NARCIS (Netherlands)

    Nijhoff, J.H.

    1981-01-01

    In this thesis a start was made with meiotic observations of mouse translocation types - a Robertsonian translocation and a translocation between a metacentric and an acrocentric chromosome - which also occur in man. It is generally accepted that, when no chromosomal rearrangements are involved, man

  6. Sixteen kiwi (Apteryx spp) transcriptomes provide a wealth of genetic markers and insight into sex chromosome evolution in birds.

    Science.gov (United States)

    Ramstad, Kristina M; Miller, Hilary C; Kolle, Gabriel

    2016-05-26

    Kiwi represent the most basal extant avian lineage (paleognaths) and exhibit biological attributes that are unusual or extreme among living birds, such as large egg size, strong olfaction, nocturnality, flightlessness and long lifespan. Despite intense interest in their evolution and their threatened status, genomic resources for kiwi were virtually non-existent until the recent publication of a single genome. Here we present the most comprehensive kiwi transcriptomes to date, obtained via Illumina sequencing of whole blood and de novo assembly of mRNA sequences of eight individuals from each of the two rarest kiwi species, little spotted kiwi (LSK; Apteryx owenii) and rowi (A. rowi). Sequences obtained were orthologous with a wide diversity of functional genes despite the sequencing of a single tissue type. Individual and composite assemblies contain more than 7900 unique protein coding transcripts in each of LSK and rowi that show strong homology with chicken (Gallus gallus), including those associated with growth, development, disease resistance, reproduction and behavior. The assemblies also contain 66,909 SNPs that distinguish between LSK and rowi, 12,384 SNPs among LSK (associated with 3088 genes), and 29,313 SNPs among rowi (associated with 4953 genes). We found 3084 transcripts differentially expressed between LSK and rowi and 150 transcripts differentially expressed between the sexes. Of the latter, 83 could be mapped to chicken chromosomes with 95% syntenic with chromosome Z. Our study has simultaneously sequenced multiple species, sexes, and individual kiwi at thousands of genes, and thus represents a significant leap forward in genomic resources available for kiwi. The expression pattern we observed among chromosome Z related genes in kiwi is similar to that observed in ostriches and emu, suggesting a common and ancestral pattern of sex chromosome homomorphy, recombination, and gene dosage among living paleognaths. The transcriptome assemblies described

  7. Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta)

    KAUST Repository

    Fučí ková , Karolina; Pažoutová , Marie; Rindi, Fabio

    2015-01-01

    being the only partial exceptions (only four genes present). The evidence of sex provided by the meiotic genes is phylogenetically widespread in the class and indicates that sexual reproduction is not associated with any particular morphological

  8. Radiation-induced mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Parry, J.M.; Sharp, D.; Tippins, R.S.; Parry, E.M.

    1979-01-01

    A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems the authors have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. (Auth.)

  9. Meiotic behaviour and spermatogenesis in male mice heterozygous for translocation types also occurring in man

    International Nuclear Information System (INIS)

    Nijhoff, J.H.

    1981-01-01

    In this thesis a start was made with meiotic observations of mouse translocation types - a Robertsonian translocation and a translocation between a metacentric and an acrocentric chromosome - which also occur in man. As an exogeneous factor of possible influence, the meiotic effects of two types of radiation (fission neutrons and X-rays) administered at relatively low doses 2 and 3 hours before prometaphase-metaphase II (probably during metaphase-anaphase I), were determined in Rb4Bnr/+-males. (Auth.)

  10. Karyotype characterization and ZZ/ZW sex chromosome heteromorphism in two species of the catfish genus Ancistrus Kner, 1854 (Siluriformes: Loricariidae from the Amazon basin

    Directory of Open Access Journals (Sweden)

    Renildo R. de Oliveira

    Full Text Available We present karyotypic characteristics and report on the occurrence of ZZ/ZW sex chromosomes in Ancistrus ranunculus (rio Xingu and Ancistrus sp. "Piagaçu" (rio Purus, of the Brazilian Amazon. Ancistrus ranunculus has a modal number of 2n=48 chromosomes, a fundamental number (FN of 82 for both sexes, and the karyotypic formula was 20m+8sm+6st+14a for males and 19m+9sm+6st+14a for females. Ancistrus sp. "Piagaçu" presented 2n=52 chromosomes, FN= 78 for males and FN= 79 for females. The karyotypic formula was 16m+8sm+2st+26a for males and 16m+9sm+2st+25a for females. The high number of acrocentric chromosomes in karyotype of Ancistrus sp. "Piagaçu" differs from the majority of Ancistrini genera studied so far, and may have resulted from pericentric inversions and translocations. The lower number of chromosomes in A. ranunculus indicates that centric fusions also occurred in the evolution of Ancistrus karyotypes. We conclude that karyotypic characteristics and the presence of sex chromosomes can constitute important cytotaxonomic markers to identify cryptic species of Ancistrus. However, sex chromosomes apparently arose independently within the genus and thus do not constitute a reliable character to analyze phylogenetic relations among Ancistrus species.

  11. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans.

    Science.gov (United States)

    Chung, George; Rose, Ann M; Petalcorin, Mark I R; Martin, Julie S; Kessler, Zebulin; Sanchez-Pulido, Luis; Ponting, Chris P; Yanowitz, Judith L; Boulton, Simon J

    2015-09-15

    The Caenorhabditis elegans gene rec-1 was the first genetic locus identified in metazoa to affect the distribution of meiotic crossovers along the chromosome. We report that rec-1 encodes a distant paralog of HIM-5, which was discovered by whole-genome sequencing and confirmed by multiple genome-edited alleles. REC-1 is phosphorylated by cyclin-dependent kinase (CDK) in vitro, and mutation of the CDK consensus sites in REC-1 compromises meiotic crossover distribution in vivo. Unexpectedly, rec-1; him-5 double mutants are synthetic-lethal due to a defect in meiotic double-strand break formation. Thus, we uncovered an unexpected robustness to meiotic DSB formation and crossover positioning that is executed by HIM-5 and REC-1 and regulated by phosphorylation. © 2015 Chung et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition.

    Science.gov (United States)

    Tessé, Sophie; Storlazzi, Aurora; Kleckner, Nancy; Gargano, Silvana; Zickler, Denise

    2003-10-28

    Ski8p is implicated in degradation of non-poly(A) and double-stranded RNA, and in meiotic DNA recombination. We have identified the Sordaria macrospora SKI8 gene. Ski8p is cytoplasmically localized in all vegetative and sexual cycle cells, and is nuclear localized, specifically in early-mid-meiotic prophase, in temporal correlation with Spo11p, the meiotic double-strand break (DSB) transesterase. Localizations of Ski8p and Spo11p are mutually interdependent. ski8 mutants exhibit defects in vegetative growth, entry into the sexual program, and sporulation. Diverse meiotic defects, also seen in spo11 mutants, are diagnostic of DSB absence, and they are restored by exogenous DSBs. These results suggest that Ski8p promotes meiotic DSB formation by acting directly within meiotic prophase chromosomes. Mutant phenotypes also divide meiotic homolog juxtaposition into three successive, mechanistically distinct steps; recognition, presynaptic alignment, and synapsis, which are distinguished by their differential dependence on DSBs.

  13. Enzymatic amplification of a Y chromosome repeat in a single blastomere allows identification of the sex of preimplantation mouse embryos

    International Nuclear Information System (INIS)

    Bradbury, M.W.; Isola, L.M.; Gordon, J.W.

    1990-01-01

    The polymerase chain reaction (PCR) technique has been adapted to identify the sex of preimplantation mouse embryos rapidly. PCR was used to amplify a specific repeated DNA sequence on the Y chromosome from a single isolated blastomere in under 12 hr. The remainder of the biopsied embryo was then transferred to a pseudopregnant female and carried to term. Using this technique, 72% of embryos can be classed as potentially either male or female. Transfers of such embryos have produced pregnancies with 8/8 fetuses (100%) being of the predicted sex. Variations of the technique have demonstrated certain limitations to the present procedure as well as indicated possible strategies for improvement of the assay. The PCR technique may have wide application in the genetic analysis of preimplantation embryos

  14. Chromosome stickiness during meiotic behavior analysis of Passiflora serrato-digitata L. (PassifloraCEAE Aderência cromossômica durante a análise do comportamento meiótico de Passiflora serrato-digitata L (PassifloraCEAE

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Peres Kiihl

    2011-06-01

    Full Text Available Almost 90% of species of the genus Passiflora are native to the American continent, with high commercial value due to the fact that some species are used for human food while others have ornamental and medical qualities. Passiflora serrato-digitata is one of the species that integrates the Paraná Agronomic Institute germoplasm bank at its experimental base in Londrina, PR, Brazil. Collected flower buds were fixed in ethanol/acetic acid (3:1 v/v for 24h, transferred to 70% alcohol and stored under refrigeration. Slides were prepared by the squashing technique and stained with 1.0% propionic carmine; they were analyzed under an optic microscope. Irregularities in the chromosome segregation process of P. serrato-digitata have been verified by meiotic behavior analysis. These comprised precocious migration to poles in metaphase I and II, non-oriented chromosomes in metaphase plate in metaphase I and II, laggard chromosomes in anaphase I and II towards the formation of micronucleus in telophase I and II, and microspores in tetrads. Chromosome stickiness was another irregularity reported in the Passiflora genus for the first time. These irregularities which also contributed to the formation of monads, dyads and triads, resulted in normal imbalanced 2n and 4n microspores. According to the observed Meiotic Index of 71.83%, this species is not meiotically stable.Cerca de 90% das espécies do gênero Passiflora são nativas das Américas, sendo que aproximadamente 200 espécies são nativas do Brasil. Possuem grande importância comercial, pois algumas espécies são utilizadas na alimentação humana, outras apresentam propriedades medicinais e ornamentais. A espécie Passiflora serrato-digitata faz parte do banco de germoplasma do Instituto Agronômico do Paraná - IAPAR, estação experimental de Londrina, PR. Botões florais colhidos foram fixados em etanol/ácido acético (3:1 v/v por 24 horas, transferidos para álcool a 70% e acondicionado sob

  15. Chromosome-Centric Human Proteome Project Allies with Developmental Biology: A Case Study of the Role of Y Chromosome Genes in Organ Development.

    Science.gov (United States)

    Meyfour, Anna; Pooyan, Paria; Pahlavan, Sara; Rezaei-Tavirani, Mostafa; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2017-12-01

    One of the main goals of Chromosome-Centric Human Proteome Project is to identify protein evidence for missing proteins (MPs). Here, we present a case study of the role of Y chromosome genes in organ development and how to overcome the challenges facing MPs identification by employing human pluripotent stem cell differentiation into cells of different organs yielding unprecedented biological insight into adult silenced proteins. Y chromosome is a male-specific sex chromosome which escapes meiotic recombination. From an evolutionary perspective, Y chromosome has preserved 3% of ancestral genes compared to 98% preservation of the X chromosome based on Ohno's law. Male specific region of Y chromosome (MSY) contains genes that contribute to central dogma and govern the expression of various targets throughout the genome. One of the most well-known functions of MSY genes is to decide the male-specific characteristics including sex, testis formation, and spermatogenesis, which are majorly formed by ampliconic gene families. Beyond its role in sex-specific gonad development, MSY genes in coexpression with their X counterparts, as single copy and broadly expressed genes, inhibit haplolethality and play a key role in embryogenesis. The role of X-Y related gene mutations in the development of hereditary syndromes suggests an essential contribution of sex chromosome genes to development. MSY genes, solely and independent of their X counterparts and/or in association with sex hormones, have a considerable impact on organ development. In this Review, we present major recent findings on the contribution of MSY genes to gonad formation, spermatogenesis, and the brain, heart, and kidney development and discuss how Y chromosome proteome project may exploit developmental biology to find missing proteins.

  16. Heterochromatin position effects on circularized sex chromosomes cause filicidal embryonic lethality in Drosophila melanogaster.

    Science.gov (United States)

    Ferree, Patrick M; Gomez, Karina; Rominger, Peter; Howard, Dagnie; Kornfeld, Hannah; Barbash, Daniel A

    2014-04-01

    Some circularized X-Y chromosomes in Drosophila melanogaster are mitotically unstable and induce early embryonic lethality, but the genetic basis is unknown. Our experiments suggest that a large region of X-linked satellite DNA causes anaphase bridges and lethality when placed into a new heterochromatic environment within certain circularized X-Y chromosomes. These results reveal that repetitive sequences can be incompatible with one another in cis. The lethal phenotype also bears a remarkable resemblance to a case of interspecific hybrid lethality.

  17. XX/XY System of Sex Determination in the Geophilomorph Centipede Strigamia maritima.

    Directory of Open Access Journals (Sweden)

    Jack E Green

    Full Text Available We show that the geophilomorph centipede Strigamia maritima possesses an XX/XY system of sex chromosomes, with males being the heterogametic sex. This is, to our knowledge, the first report of sex chromosomes in any geophilomorph centipede. Using the recently assembled Strigamia genome sequence, we identified a set of scaffolds differentially represented in male and female DNA sequence. Using quantitative real-time PCR, we confirmed that three candidate X chromosome-derived scaffolds are present at approximately twice the copy number in females as in males. Furthermore, we confirmed that six candidate Y chromosome-derived scaffolds contain male-specific sequences. Finally, using this molecular information, we designed an X chromosome-specific DNA probe and performed fluorescent in situ hybridization against mitotic and meiotic chromosome spreads to identify the Strigamia XY sex-chromosome pair cytologically. We found that the X and Y chromosomes are recognizably different in size during the early pachytene stage of meiosis, and exhibit incomplete and delayed pairing.

  18. Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin

    Czech Academy of Sciences Publication Activity Database

    Vrbová, Iva; Traut, W.; Vítková, Magda; Nguyen, Petr; Kubíčková, S.; Marec, František

    2007-01-01

    Roč. 116, č. 2, (2007), s. 135-145 ISSN 0009-5915 R&D Projects: GA ČR(CZ) GA206/06/1860; GA ČR GD521/03/H160; GA AV ČR IAA6007307 Grant - others:International Atomic Energy Agency(AT) 12055/R Institutional research plan: CEZ:AV0Z50070508 Keywords : W chromosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.337, year: 2007

  19. Normal Female Germ Cell Differentiation Requires the Female X Chromosome to Autosome Ratio and Expression of Sex-Lethal in DROSOPHILA MELANOGASTER

    OpenAIRE

    Schüpbach, Trudi

    1985-01-01

    In somatic cells of Drosophila, the ratio of X chromosomes to autosomes (X:A ratio) determines sex and dosage compensation. The present paper addresses the question of whether germ cells also use the X:A ratio for sex determination and dosage compensation. Triploid female embryos were generated which, through the loss of an unstable ring-X chromosome, contained some germ cells of 2X;3A constitution in their ovaries. Such germ cells were shown to differentiate along one of two alternative pat...

  20. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin.

    Science.gov (United States)

    Baumann, Claudia; Wang, Xiaotian; Yang, Luhan; Viveiros, Maria M

    2017-04-01

    Mouse oocytes lack canonical centrosomes and instead contain unique acentriolar microtubule-organizing centers (aMTOCs). To test the function of these distinct aMTOCs in meiotic spindle formation, pericentrin (Pcnt), an essential centrosome/MTOC protein, was knocked down exclusively in oocytes by using a transgenic RNAi approach. Here, we provide evidence that disruption of aMTOC function in oocytes promotes spindle instability and severe meiotic errors that lead to pronounced female subfertility. Pcnt-depleted oocytes from transgenic (Tg) mice were ovulated at the metaphase-II stage, but show significant chromosome misalignment, aneuploidy and premature sister chromatid separation. These defects were associated with loss of key Pcnt-interacting proteins (γ-tubulin, Nedd1 and Cep215) from meiotic spindle poles, altered spindle structure and chromosome-microtubule attachment errors. Live-cell imaging revealed disruptions in the dynamics of spindle assembly and organization, together with chromosome attachment and congression defects. Notably, spindle formation was dependent on Ran GTPase activity in Pcnt-deficient oocytes. Our findings establish that meiotic division is highly error-prone in the absence of Pcnt and disrupted aMTOCs, similar to what reportedly occurs in human oocytes. Moreover, these data underscore crucial differences between MTOC-dependent and -independent meiotic spindle assembly. © 2017. Published by The Company of Biologists Ltd.

  1. Fetal sex determination in the first trimester of pregnancy using a Y chromosome-specific DNA probe

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Y.; Huang, S.; Chen, M.; Huang, Y.; Zhang, M.; Dong, J.; Ku, A.; Xu, S.

    1987-05-01

    Prenatal determination of fetal sex is important for the prevention of X-linked disorders such as hemophilia, Lesch-Nyhan syndrome and Duchenne muscular dystrophy. The complex procedures of prenatal diagnosis for X-linked disorders are unnecessary if the fetus is female, because usually no clinical symptoms ever appear in female. pY 3.4 probe used in this work for sex determination is a 3.4 kilobase human repeat sequence. The probe is specific for the Y chromosome of males and can be used for sex determination. The other prove pBLUR used in this paper as control is a widely dispersed, highly repeated human Alu family DNA sequence, represented equally in male and female DNA. On the basis of the relative densities of the autoradiographic spots produced by hybridization of fetal DNA with pY3.4 and pBLUR, the sex of fetus can be clearly identified. Further the authors can determine the radioactive intensity (cpm) of the hybridized DNA spots and the ratio of hybridization with Y3.4 to pBLUR (Y3.4/pBLUR x 10). Results show that the hybridization ratio of DNA from chorionic villi of male (1.03 +/- 0.24) is significantly higher than that of female (0.16 +/- 0.09). Therefore, sex determination of the fetus can be made, based on the ratio of pY3.4/pBLUR x 10. If necessary they can also use Southern hybridization with pY 3.4 probe of DNA isolated from chorionic villi to confirm the result of dot hybridization.

  2. Cytogenetics of the Javan file snake (Acrochordus javanicus) and the evolution of snake sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Rovatsos, M.; Altmanová, Marie; Johnson Pokorná, Martina; Augstenová, B.; Kratochvíl, L.

    2018-01-01

    Roč. 56, č. 1 (2018), s. 117-125 ISSN 0947-5745 Institutional support: RVO:67985904 Keywords : GATA * genome organization * sex determination Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.444, year: 2016

  3. Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies.

    Science.gov (United States)

    Šíchová, Jindra; Voleníková, Anna; Dincă, Vlad; Nguyen, Petr; Vila, Roger; Sahara, Ken; Marec, František

    2015-05-19

    Chromosomal rearrangements have the potential to limit the rate and pattern of gene flow within and between species and thus play a direct role in promoting and maintaining speciation. Wood white butterflies of the genus Leptidea are excellent models to study the role of chromosome rearrangements in speciation because they show karyotype variability not only among but also within species. In this work, we investigated genome architecture of three cryptic Leptidea species (L. juvernica, L. sinapis and L. reali) by standard and molecular cytogenetic techniques in order to reveal causes of the karyotype variability. Chromosome numbers ranged from 2n = 85 to 91 in L. juvernica and 2n = 69 to 73 in L. sinapis (both from Czech populations) to 2n = 51 to 55 in L. reali (Spanish population). We observed significant differences in chromosome numbers and localization of cytogenetic markers (rDNA and H3 histone genes) within the offspring of individual females. Using FISH with the (TTAGG) n telomeric probe we also documented the presence of multiple chromosome fusions and/or fissions and other complex rearrangements. Thus, the intraspecific karyotype variability is likely due to irregular chromosome segregation of multivalent meiotic configurations. The analysis of female meiotic chromosomes by GISH and CGH revealed multiple sex chromosomes: W1W2W3Z1Z2Z3Z4 in L. juvernica, W1W2W3Z1Z2Z3 in L. sinapis and W1W2W3W4Z1Z2Z3Z4 in L. reali. Our results suggest a dynamic karyotype evolution and point to the role of chromosomal rearrangements in the speciation of Leptidea butterflies. Moreover, our study revealed a curious sex determination system with 3-4 W and 3-4 Z chromosomes, which is unique in the Lepidoptera and which could also have played a role in the speciation process of the three Leptidea species.

  4. Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae)

    Czech Academy of Sciences Publication Activity Database

    Král, J.; Kořínková, T.; Krkavcová, L.; Musilová, J.; Forman, M.; Ávila Herrera, I. M.; Haddad, C. R.; Vítková, Magda; Henriques, S.; Palacios Vargas, J. G.; Hedin, M.

    2013-01-01

    Roč. 109, č. 2 (2013), s. 377-408 ISSN 0024-4066 Grant - others:AV ČR(CZ) IAA601110808; GA ČR(CZ) GA206/08/0813; Univerzita Karlova v Praze(CZ) SVV-2013-267205; Univerzita Karlova v Praze(CZ) SVV-2012-265202 Institutional support: RVO:60077344 Keywords : achiasmatic * chromosome pairing * deactivation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.535, year: 2013 http://onlinelibrary.wiley.com/doi/10.1111/bij.12056/pdf

  5. Structural and functional adaptations of the mammalian nuclear envelope to meet the meiotic requirements.

    Science.gov (United States)

    Link, Jana; Jahn, Daniel; Alsheimer, Manfred

    2015-01-01

    Numerous studies in the past years provided definite evidence that the nuclear envelope is much more than just a simple barrier. It rather constitutes a multifunctional platform combining structural and dynamic features to fulfill many fundamental functions such as chromatin organization, regulation of transcription, signaling, but also structural duties like maintaining general nuclear architecture and shape. One additional and, without doubt, highly impressive aspect is the recently identified key function of selected nuclear envelope components in driving meiotic chromosome dynamics, which in turn is essential for accurate recombination and segregation of the homologous chromosomes. Here, we summarize the recent work identifying new key players in meiotic telomere attachment and movement and discuss the latest advances in our understanding of the actual function of the meiotic nuclear envelope.

  6. Abnormal sex chromosome constitution and longitudinal growth: serum levels of insulin-like growth factor (IGF)-I, IGF binding protein-3, luteinizing hormone, and testosterone in 109 males with 47,XXY, 47,XYY, or sex-determining region of the Y chromosome (SRY)-positive 46,XX karyotypes

    DEFF Research Database (Denmark)

    Aksglaede, L.; Skakkebaek, N.E.; Juul, A.

    2008-01-01

    CONTEXT: Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles. AIM: The aim of the study was to evaluate the role of abnormal chromosome constitution...... and elevated LH levels after puberty, whereas the sex hormone secretion of the 47,XYY boys remained normal. CONCLUSION: We found accelerated growth in early childhood in boys with 47,XXY and 47,XYY karyotypes, whereas 46,XX-males were shorter than controls. These abnormal growth patterns were not reflected...

  7. A role for Caenorhabditis elegans chromatin-associated protein HIM-17 in the proliferation vs. meiotic entry decision.

    Science.gov (United States)

    Bessler, Jessica B; Reddy, Kirthi C; Hayashi, Michiko; Hodgkin, Jonathan; Villeneuve, Anne M

    2007-04-01

    Chromatin-associated protein HIM-17 was previously shown to function in the chromosomal events of meiotic prophase. Here we report an additional role for HIM-17 in regulating the balance between germ cell proliferation and meiotic development. A cryptic function for HIM-17 in promoting meiotic entry and/or inhibiting proliferation was revealed by defects in germline organization in him-17 mutants grown at high temperature (25 degrees) and by a synthetic tumorous germline phenotype in glp-1(ar202); him-17 mutants at 15 degrees.

  8. Unisexual reproduction drives meiotic recombination and phenotypic and karyotypic plasticity in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Sheng Sun

    2014-12-01

    Full Text Available In fungi, unisexual reproduction, where sexual development is initiated without the presence of two compatible mating type alleles, has been observed in several species that can also undergo traditional bisexual reproduction, including the important human fungal pathogens Cryptococcus neoformans and Candida albicans. While unisexual reproduction has been well characterized qualitatively, detailed quantifications are still lacking for aspects of this process, such as the frequency of recombination during unisexual reproduction, and how this compares with bisexual reproduction. Here, we analyzed meiotic recombination during α-α unisexual and a-α bisexual reproduction of C. neoformans. We found that meiotic recombination operates in a similar fashion during both modes of sexual reproduction. Specifically, we observed that in α-α unisexual reproduction, the numbers of crossovers along the chromosomes during meiosis, recombination frequencies at specific chromosomal regions, as well as meiotic recombination hot and cold spots, are all similar to those observed during a-α bisexual reproduction. The similarity in meiosis is also reflected by the fact that phenotypic segregation among progeny collected from the two modes of sexual reproduction is also similar, with transgressive segregation being observed in both. Additionally, we found diploid meiotic progeny were also produced at similar frequencies in the two modes of sexual reproduction, and transient chromosomal loss and duplication likely occurs frequently and results in aneuploidy and loss of heterozygosity that can span entire chromosomes. Furthermore, in both α-α unisexual and a-α bisexual reproduction, we observed biased allele inheritance in regions on chromosome 4, suggesting the presence of fragile chromosomal regions that might be vulnerable to mitotic recombination. Interestingly, we also observed a crossover event that occurred within the MAT locus during α-α unisexual

  9. Unisexual Reproduction Drives Meiotic Recombination and Phenotypic and Karyotypic Plasticity in Cryptococcus neoformans

    Science.gov (United States)

    Sun, Sheng; Billmyre, R. Blake; Mieczkowski, Piotr A.; Heitman, Joseph

    2014-01-01

    In fungi, unisexual reproduction, where sexual development is initiated without the presence of two compatible mating type alleles, has been observed in several species that can also undergo traditional bisexual reproduction, including the important human fungal pathogens Cryptococcus neoformans and Candida albicans. While unisexual reproduction has been well characterized qualitatively, detailed quantifications are still lacking for aspects of this process, such as the frequency of recombination during unisexual reproduction, and how this compares with bisexual reproduction. Here, we analyzed meiotic recombination during α-α unisexual and a-α bisexual reproduction of C. neoformans. We found that meiotic recombination operates in a similar fashion during both modes of sexual reproduction. Specifically, we observed that in α-α unisexual reproduction, the numbers of crossovers along the chromosomes during meiosis, recombination frequencies at specific chromosomal regions, as well as meiotic recombination hot and cold spots, are all similar to those observed during a-α bisexual reproduction. The similarity in meiosis is also reflected by the fact that phenotypic segregation among progeny collected from the two modes of sexual reproduction is also similar, with transgressive segregation being observed in both. Additionally, we found diploid meiotic progeny were also produced at similar frequencies in the two modes of sexual reproduction, and transient chromosomal loss and duplication likely occurs frequently and results in aneuploidy and loss of heterozygosity that can span entire chromosomes. Furthermore, in both α-α unisexual and a-α bisexual reproduction, we observed biased allele inheritance in regions on chromosome 4, suggesting the presence of fragile chromosomal regions that might be vulnerable to mitotic recombination. Interestingly, we also observed a crossover event that occurred within the MAT locus during α-α unisexual reproduction. Our results

  10. Chimeric Sex-Determining Chromosomal Regions and Dysregulation of Cell-Type Identity in a Sterile Zygosaccharomyces Allodiploid Yeast.

    Directory of Open Access Journals (Sweden)

    Melissa Bizzarri

    Full Text Available Allodiploidization is a fundamental yet evolutionarily poorly characterized event, which impacts genome evolution and heredity, controlling organismal development and polyploid cell-types. In this study, we investigated the sex determination system in the allodiploid and sterile ATCC 42981 yeast, a member of the Zygosaccharomyces rouxii species complex, and used it to study how a chimeric mating-type gene repertoire contributes to hybrid reproductive isolation. We found that ATCC 42981 has 7 MAT-like (MTL loci, 3 of which encode α-idiomorph and 4 encode a-idiomorph. Two phylogenetically divergent MAT expression loci were identified on different chromosomes, accounting for a hybrid a/α genotype. Furthermore, extra a-idimorph-encoding loci (termed MTLa copies 1 to 3 were recognized, which shared the same MATa1 ORFs but diverged for MATa2 genes. Each MAT expression locus was linked to a HML silent cassette, while the corresponding HMR loci were located on another chromosome. Two putative parental sex chromosome pairs contributed to this unusual genomic architecture: one came from an as-yet-undescribed taxon, which has the NCYC 3042 strain as a unique representative, while the other did not match any MAT-HML and HMR organizations previously described in Z. rouxii species. This chimeric rearrangement produces two copies of the HO gene, which encode for putatively functional endonucleases essential for mating-type switching. Although both a and α coding sequences, which are required to obtain a functional cell-type a1-α2 regulator, were present in the allodiploid ATCC 42981 genome, the transcriptional circuit, which regulates entry into meiosis in response to meiosis-inducing salt stress, appeared to be turned off. Furthermore, haploid and α-specific genes, such as MATα1 and HO, were observed to be actively transcribed and up-regulated under hypersaline stress. Overall, these evidences demonstrate that ATCC 42981 is unable to repress haploid

  11. Unusual arrangement and behaviour of the sex chromosomes of Aphodius (Agolius abdominalis Bonelli, 1812, and comparison with A. (A. bonvouloiri Harold, 1860 (Coleoptera: Aphodiidae

    Directory of Open Access Journals (Sweden)

    Robert Angus

    2009-12-01

    Full Text Available Aphodius abdominalis Bonelli, 1812 is shown to have a karyotype comprising nine pairs of autosomes and sex chromosomes which are X0 (male, XX (female. At first metaphase of meiosis the X chromosome is linked to an autosomal bivalent by a darkly staining area of the cytoplasm, resembling the Xy p arrangement typical of Aphodius species, but giving nine, rather than 10, elements in the nucleus. C-banding, which shows the centromeres, confirms this unusual arrangement. A. bonvouloiri, the only other known species of subgenus Agolius Mulsant et Rey, 1869, has a male karyotype with nine pairs of autosomes and Xy sex chromosomes. No preparations of its meiosis are available.

  12. A rearrangement of the Z chromosome topology influences the sex-linked gene display in the European corn borer, Ostrinia nubilalis

    Science.gov (United States)

    The sex determination system of Lepidoptera is comprised of heterogametic females (ZW) and homogametic males (ZZ), where voltinism (Volt) and the male pheromone response traits (Resp) are controlled by genes housed on the Z-chromosome. Volt and Resp determine traits that lead to ecotype differentia...

  13. Sex differences in life span: Females homozygous for the X chromosome do not suffer the shorter life span predicted by the unguarded X hypothesis.

    Science.gov (United States)

    Brengdahl, Martin; Kimber, Christopher M; Maguire-Baxter, Jack; Friberg, Urban

    2018-03-01

    Life span differs between the sexes in many species. Three hypotheses to explain this interesting pattern have been proposed, involving different drivers: sexual selection, asymmetrical inheritance of cytoplasmic genomes, and hemizygosity of the X(Z) chromosome (the unguarded X hypothesis). Of these, the unguarded X has received the least experimental attention. This hypothesis suggests that the heterogametic sex suffers a shortened life span because recessive deleterious alleles on its single X(Z) chromosome are expressed unconditionally. In Drosophila melanogaster, the X chromosome is unusually large (∼20% of the genome), providing a powerful model for evaluating theories involving the X. Here, we test the unguarded X hypothesis by forcing D. melanogaster females from a laboratory population to express recessive X-linked alleles to the same degree as males, using females exclusively made homozygous for the X chromosome. We find no evidence for reduced life span or egg-to-adult viability due to X homozygozity. In contrast, males and females homozygous for an autosome both suffer similar, significant reductions in those traits. The logic of the unguarded X hypothesis is indisputable, but our results suggest that the degree to which recessive deleterious X-linked alleles depress performance in the heterogametic sex appears too small to explain general sex differences in life span. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  14. An anther- and petal-specific gene SlMF1 is a multicopy gene with homologous sequences on sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Matsunaga, S.; Lebel-Hardenack, S.; Kejnovský, Eduard; Vyskot, Boris; Grant, Sarah R.; Kawano, S.

    2005-01-01

    Roč. 80, - (2005), s. 395-401 ISSN 1341-7568 R&D Projects: GA ČR(CZ) GA204/05/2097 Institutional research plan: CEZ:AV0Z50040507 Keywords : dioecious plant * male flower * sex chromosomes Subject RIV: BO - Biophysics Impact factor: 1.081, year: 2005

  15. Meiotic behavior and pollen fertility of five species in the genus ...

    African Journals Online (AJOL)

    fe

    2011-11-16

    Nov 16, 2011 ... Meiotic behavior and pollen fertility were analysed in five Epimedium species: Epimedium chlorandrum,. Epimedium acuminatum, Epimedium davidii, Epimedium ecalcaratum and Epimedium pubescens. Chromosome numbers for five species were 2n = 2x = 12. All examined species displayed stable ...

  16. Segregation distortion in chicken and the evolutionary consequences of female meiotic drive in birds

    DEFF Research Database (Denmark)

    Axelsson, Erik Gunnar; Albrechtsen, Anders; Van, A. P.

    2010-01-01

    As all four meiotic products give rise to sperm in males, female meiosis result in a single egg in most eukaryotes. Any genetic element with the potential to influence chromosome segregation, so that it is preferentially included in the egg, should therefore gain a transmission advantage; a process...

  17. Expression analysis of genes implicated in meiotic resumption in vivo and developmental competence

    NARCIS (Netherlands)

    Algriany, O.A.

    2007-01-01

    This thesis investigated the gene expression in bovine oocytes during meiotic resumption, at 6 h post LH surge, coinciding with germinal vesicle breakdown, which was supposed to give a picture of the major cell cycle regulation changes, cytoskeleton rearrangement and chromosome alignment.

  18. Exposure to persistent organic pollutants and sperm sex chromosome ratio in men from the Faroe Islands

    DEFF Research Database (Denmark)

    Kvist, L; Giwercman, A; Weihe, P

    2014-01-01

    People in the Arctic as well as fishermen on the polluted Swedish east coast are highly exposed to persistent organic pollutants (POPs). These compounds have been shown to affect the sperm Y:X chromosome ratio. In present study, the aim was to investigate whether polychlorinated biphenyl (PCB......,p'-DDE and ΣPCB correlated significantly (r=0.927, pboth Inuit and Swedish fishermen (0.512 for both......). In conclusion, Faroese men presented with lower Y:X ratio than Greenland Inuit and Swedish fishermen. Although no direct health effects are expected due to the lower Faroese Y:X ratio, it could be indicative of adverse effects on the reproductive system....

  19. A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success.

    Science.gov (United States)

    Knief, Ulrich; Forstmeier, Wolfgang; Pei, Yifan; Ihle, Malika; Wang, Daiping; Martin, Katrin; Opatová, Pavlína; Albrechtová, Jana; Wittig, Michael; Franke, Andre; Albrecht, Tomáš; Kempenaers, Bart

    2017-08-01

    Male reproductive success depends on the competitive ability of sperm to fertilize the ova, which should lead to strong selection on sperm characteristics. This raises the question of how heritable variation in sperm traits is maintained. Here we show that in zebra finches (Taeniopygia guttata) nearly half of the variance in sperm morphology is explained by an inversion on the Z chromosome with a 40% allele frequency in the wild. The sperm of males that are heterozygous for the inversion had the longest midpieces and the highest velocity. Furthermore, such males achieved the highest fertility and the highest siring success, both within-pair and extra-pair. Males homozygous for the derived allele show detrimental sperm characteristics and the lowest siring success. Our results suggest heterozygote advantage as the mechanism that maintains the inversion polymorphism and hence variance in sperm design and in fitness.

  20. Conditional genomic rearrangement by designed meiotic recombination using VDE (PI-SceI) in yeast.

    Science.gov (United States)

    Fukuda, Tomoyuki; Ohya, Yoshikazu; Ohta, Kunihiro

    2007-10-01

    Meiotic recombination plays critical roles in the acquisition of genetic diversity and has been utilized for conventional breeding of livestock and crops. The frequency of meiotic recombination is normally low, and is extremely low in regions called "recombination cold domains". Here, we describe a new and highly efficient method to modulate yeast meiotic gene rearrangements using VDE (PI-SceI), an intein-encoded endonuclease that causes an efficient unidirectional meiotic gene conversion at its recognition sequence (VRS). We designed universal targeting vectors, by use of which the strain that inserts the VRS at a desired site is acquired. Meiotic induction of the strains provided unidirectional gene conversions and frequent genetic rearrangements of flanking genes with little impact on cell viability. This system thus opens the way for the designed modulation of meiotic gene rearrangements, regardless of recombinational activity of chromosomal domains. Finally, the VDE-VRS system enabled us to conduct meiosis-specific conditional knockout of genes where VDE-initiated gene conversion disrupts the target gene during meiosis, serving as a novel approach to examine the functions of genes during germination of resultant spores.

  1. Selfish X chromosomes and speciation.

    Science.gov (United States)

    Patten, Manus M

    2017-12-27

    In two papers published at about the same time almost thirty years ago, Frank (Evolution, 45, 1991a, 262) and Hurst and Pomiankowski (Genetics, 128, 1991, 841) independently suggested that divergence of meiotic drive systems-comprising genes that cheat meiosis and genes that suppress this cheating-might provide a general explanation for Haldane's rule and the large X-effect in interspecific hybrids. Although at the time, the idea was met with skepticism and a conspicuous absence of empirical support, the tide has since turned. Some of the clearest mechanistic explanations we have for hybrid male sterility involve meiotic drive systems, and several other cases of hybrid sterility are suggestive of a role for meiotic drive. In this article, I review these ideas and their descendants and catalog the current evidence for the meiotic drive model of speciation. In addition, I suggest that meiotic drive is not the only intragenomic conflict to involve the X chromosome and contribute to hybrid incompatibility. Sexually and parentally antagonistic selection pressures can also pit the X chromosome and autosomes against each other. The resulting intragenomic conflicts should lead to co-evolution within populations and divergence between them, thus increasing the likelihood of incompatibilities in hybrids. I provide a sketch of these ideas and interpret some empirical patterns in the light of these additional X-autosome conflicts. © 2017 John Wiley & Sons Ltd.

  2. The eXtraordinarY Kids Clinic: an interdisciplinary model of care for children and adolescents with sex chromosome aneuploidy

    Directory of Open Access Journals (Sweden)

    Tartaglia N

    2015-07-01

    Full Text Available Nicole Tartaglia,1,2 Susan Howell,1,2 Rebecca Wilson,2 Jennifer Janusz,1,2 Richard Boada,1,2 Sydney Martin,2 Jacqueline B Frazier,2 Michelle Pfeiffer,2 Karen Regan,2 Sarah McSwegin,2 Philip Zeitler1,2 1Department of Pediatrics, University of Colorado School of Medicine, 2Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA Purpose: Individuals with sex chromosome aneuploidies (SCAs are born with an atypical number of X and/or Y chromosomes, and present with a range of medical, developmental, educational, behavioral, and psychological concerns. Rates of SCA diagnoses in infants and children are increasing, and there is a need for specialized interdisciplinary care to address associated risks. The eXtraordinarY Kids Clinic was established to provide comprehensive and experienced care for children and adolescents with SCA, with an interdisciplinary team composed of developmental–behavioral pediatrics, endocrinology, genetic counseling, child psychology, pediatric neuropsychology, speech–language pathology, occupational therapy, nursing, and social work. The clinic model includes an interdisciplinary approach to care, where assessment results by each discipline are integrated to develop unified diagnostic impressions and treatment plans individualized for each patient. Additional objectives of the eXtraordinarY Kids Clinic program include prenatal genetic counseling, research, education, family support, and advocacy. Methods: Satisfaction surveys were distributed to 496 patients, and responses were received from 168 unique patients. Results: Satisfaction with the overall clinic visit was ranked as “very satisfied” in 85%, and as “satisfied” in another 9.8%. Results further demonstrate specific benefits from the clinic experience, the importance of a knowledgeable clinic coordinator, and support the need for similar clinics across the country. Three case examples of the interdisciplinary approach to assessment and

  3. X- and Y-chromosome specific variants of the amelogenin gene allow sex determination in sheep (Ovis aries and European red deer (Cervus elaphus

    Directory of Open Access Journals (Sweden)

    Brenig B

    2005-03-01

    Full Text Available Abstract Background Simple and precise methods for sex determination in animals are a pre-requisite for a number of applications in animal production and forensics. However, some of the existing methods depend only on the detection of Y-chromosome specific sequences. Therefore, the abscence of a signal does not necessarily mean that the sample is of female origin, because experimental errors can also lead to negative results. Thus, the detection of Y- and X-chromosome specific sequences is advantageous. Results A novel method for sex identification in mammals (sheep, Ovis aries and European red deer, Cervus elaphus is described, using a polymerase chain reaction (PCR and sequencing of a part of the amelogenin gene. A partial sequence of the amelogenin gene of sheep and red deer was obtained, which exists on both X and Y chromosomes with a deletion region on the Y chromosome. With a specific pair of primers a DNA fragment of different length between the male and female mammal was amplified. Conclusion PCR amplification using the amelogenin gene primers is useful in sex identification of samples from sheep and red deer and can be applied to DNA analysis of micro samples with small amounts of DNA such as hair roots as well as bones or embryo biopsies.

  4. SRY mutation analysis by next generation (deep sequencing in a cohort of chromosomal Disorders of Sex Development (DSD patients with a mosaic karyotype

    Directory of Open Access Journals (Sweden)

    Hersmus Remko

    2012-11-01

    Full Text Available Abstract Background The presence of the Y-chromosome or Y chromosome-derived material is seen in 4-60% of Turner syndrome patients (Chromosomal Disorders of Sex Development (DSD. DSD patients with specific Y-chromosomal material in their karyotype, the GonadoBlastoma on the Y-chromosome (GBY region, have an increased risk of developing type II germ cell tumors/cancer (GCC, most likely related to TSPY. The Sex determining Region on the Y gene (SRY is located on the short arm of the Y-chromosome and is the crucial switch that initiates testis determination and subsequent male development. Mutations in this gene are responsible for sex reversal in approximately 10-15% of 46,XY pure gonadal dysgenesis (46,XY DSD cases. The majority of the mutations described are located in the central HMG domain, which is involved in the binding and bending of the DNA and harbors two nuclear localization signals. SRY mutations have also been found in a small number of patients with a 45,X/46,XY karyotype and might play a role in the maldevelopment of the gonads. Methods To thoroughly investigate the presence of possible SRY gene mutations in mosaic DSD patients, we performed next generation (deep sequencing on the genomic DNA of fourteen independent patients (twelve 45,X/46,XY, one 45,X/46,XX/46,XY, and one 46,XX/46,XY. Results and conclusions The results demonstrate that aberrations in SRY are rare in mosaic DSD patients and therefore do not play a significant role in the etiology of the disease.

  5. The mating type locus (MAT and sexual reproduction of Cryptococcus heveanensis: insights into the evolution of sex and sex-determining chromosomal regions in fungi.

    Directory of Open Access Journals (Sweden)

    Banu Metin

    2010-05-01

    transitions in sexuality concomitant with emergence of a pathogenic clade. These studies provide insight into convergent processes that independently punctuated evolution of sex-determining loci and sex chromosomes in fungi, plants, and animals.

  6. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects.

    Science.gov (United States)

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A

    2016-09-19

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Uncovering the evolutionary history of neo-XY sex chromosomes in the grasshopper Ronderosia bergii (Orthoptera, Melanoplinae) through satellite DNA analysis.

    Science.gov (United States)

    Palacios-Gimenez, Octavio M; Milani, Diogo; Lemos, Bernardo; Castillo, Elio R; Martí, Dardo A; Ramos, Erica; Martins, Cesar; Cabral-de-Mello, Diogo C

    2018-01-08

    Neo-sex chromosome systems arose independently multiple times in evolution, presenting the remarkable characteristic of repetitive DNAs accumulation. Among grasshoppers, occurrence of neo-XY was repeatedly noticed in Melanoplinae. Here we analyzed the most abundant tandem repeats of R. bergii (2n = 22, neo-XY♂) using deep Illumina sequencing and graph-based clustering in order to address the neo-sex chromosomes evolution. The analyses revealed ten families of satDNAs comprising about ~1% of the male genome, which occupied mainly C-positive regions of autosomes. Regarding the sex chromosomes, satDNAs were recorded within centromeric or interstitial regions of the neo-X chromosome and four satDNAs occurred in the neo-Y, two of them being exclusive (Rber248 and Rber299). Using a combination of probes we uncovered five well-defined cytological variants for neo-Y, originated by multiple paracentric inversions and satDNA amplification, besides fragmented neo-Y. These neo-Y variants were distinct in frequency between embryos and adult males. The genomic data together with cytogenetic mapping enabled us to better understand the neo-sex chromosome dynamics in grasshoppers, reinforcing differentiation of neo-X and neo-Y and revealing the occurrence of multiple additional rearrangements involved in the neo-Y evolution of R. bergii. We discussed the possible causes that led to differences in frequency for the neo-Y variants between embryos and adults. Finally we hypothesize about the role of DNA satellites in R. bergii as well as putative historical events involved in the evolution of the R. bergii neo-XY.

  8. Mutations in Caenorhabditis elegans him-19 show meiotic defects that worsen with age.

    Science.gov (United States)

    Tang, Lois; Machacek, Thomas; Mamnun, Yasmine M; Penkner, Alexandra; Gloggnitzer, Jiradet; Wegrostek, Christina; Konrat, Robert; Jantsch, Michael F; Loidl, Josef; Jantsch, Verena

    2010-03-15

    From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans.

  9. Abnormal sex chromosome constitution and longitudinal growth: serum levels of insulin-like growth factor (IGF)-I, IGF binding protein-3, luteinizing hormone, and testosterone in 109 males with 47,XXY, 47,XYY, or sex-determining region of the Y chromosome (SRY)-positive 46,XX karyotypes

    DEFF Research Database (Denmark)

    Aksglaede, L.; Skakkebaek, N.E.; Juul, A.

    2008-01-01

    CONTEXT: Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles. AIM: The aim of the study was to evaluate the role of abnormal chromosome constitution for longitu......CONTEXT: Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles. AIM: The aim of the study was to evaluate the role of abnormal chromosome constitution...... and sitting height, serum levels of reproductive hormones, IGF-I, and IGFBP-3 were measured. RESULTS: In boys with 47,XXY and 47,XYY karyotypes, growth was accelerated already in childhood, compared with healthy boys. 46,XX-males were significantly shorter than healthy boys but matched the stature of healthy...... and elevated LH levels after puberty, whereas the sex hormone secretion of the 47,XYY boys remained normal. CONCLUSION: We found accelerated growth in early childhood in boys with 47,XXY and 47,XYY karyotypes, whereas 46,XX-males were shorter than controls. These abnormal growth patterns were not reflected...

  10. Sex-linked dominant

    Science.gov (United States)

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  11. The Genetic Variation of Bali Cattle (Bos javanicus Based on Sex Related Y Chromosome Gene

    Directory of Open Access Journals (Sweden)

    A Winaya

    2011-09-01

    Full Text Available Bali cattle is very popular Indonesian local beef related to their status in community living process of farmers in Indonesia, especially as providers of meat and exotic animal. Bali cattle were able to adapt the limited environment and becoming local livestock that existed until recently.  In our early study by microsatellites showed that Bali cattle have specific allele. In this study we analyzed the variance of partly sex related Y (SRY gene sequence in Bali cattle bull as a source of cement for Artificial Insemination (AI.  Blood from 17 two location of AI center, Singosari, Malang and Baturiti, Bali was collected and then extracted to get the DNA genome.  PCR reaction was done to amplify partially of SRY gene segment and followed by sequencing PCR products to get the DNA sequence of SRY gene. The SRY gene sequence was used to determine the genetic variation and phylogenetic relationship.  We found that Bali cattle bull from Singosari has relatively closed genetic relationship with Baturiti. It is also supported that in early data some Bali bulls of Singosari were came from Baturiti. It has been known that Baturiti is the one source of Bali cattle bull with promising genetic potential. While, in general that Bali bull where came from two areas were not different on reproductive performances. It is important to understand about the genetic variation of Bali cattle in molecular level related to conservation effort and maintaining the genetic characters of the local cattle. So, it will not become extinct or even decreased the genetic quality of Indonesian indigenous cattle.   Key Words : Bali cattle, SRY gene, artificial insemination, phylogenetic, allele   Animal Production 13(3:150-155 (2011

  12. Location of RAD51-like protein during meiotic prophase in Eimeria tenella.

    Science.gov (United States)

    Del Cacho, Emilio; Gallego, Margarita; Pagés, Marc; Barbero, José Luís; Monteagudo, Luís; Sánchez-Acedo, Caridad

    2011-05-31

    This study focuses on reporting events in Eimeria tenella oocysts from early to late prophase I in terms of RAD51 protein in association with the synaptonemal complex formed between homologous chromosomes. The aim of the study was the sequential localization of RAD51 protein, which is involved in the repair of double-strand breaks (DSBs) on the eimerian chromosomes as they synapse and desynapse. Structural Maintenance of Chromosome protein SMC3, which plays a role in synaptonemal complex formation, was labeled to identify initiation and progress of chromosome synapsis and desynapsis in parallel with the appearance and disappearance of RAD51 foci. Antibodies directed against RAD51 and cohesin subunit SMC3 proteins were labeled with either fluorescence or colloidal gold to visualize RAD51 protein foci and synaptonemal complexes. RAD51 protein localization during prophase I was studied on meiotic chromosomes spreads obtained from oocysts at different points in time after the start of sporulation. The present findings showed that foci detected with the antibody directed against RAD51 protein first appeared at the pre-leptotene stage before homologous chromosomes began pairing. Subsequently, the foci were detected in association with the lateral elements at the precise sites where synapsis were in progress. These findings lead us to suggest that in E. tenella, homologous chromosome pairing was a DSB-dependent mechanism and reinforced the participation of RAD51 protein in meiotic homology search, alignment and pairing of chromosomes. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Protein Determinants of Meiotic DNA Break Hotspots

    Science.gov (United States)

    Fowler, Kyle R.; Gutiérrez-Velasco, Susana

    2013-01-01

    SUMMARY Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to hundreds of times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is an unsolved problem, although transcription factors determine some hotspots. We report the discovery that three coiled-coil proteins – Rec25, Rec27, and Mug20 – bind essentially all hotspots with unprecedented specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hotspots. Our results indicate these hotspot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hotspots. We propose a new paradigm for hotspot determination and crossover control by linear element proteins. PMID:23395004

  14. Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast.

    Directory of Open Access Journals (Sweden)

    Bilge Argunhan

    Full Text Available Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs. The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI whereas no significant reduction was found in smaller chromosomes (III and VI. On the other hand, the absence of Rad17 (a critical component of the ATR pathway lead to an increase in DSB formation (chromosomes VII and II were tested. We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation.

  15. Correlation of Meiotic DSB Formation and Transcription Initiation Around Fission Yeast Recombination Hotspots.

    Science.gov (United States)

    Yamada, Shintaro; Okamura, Mika; Oda, Arisa; Murakami, Hiroshi; Ohta, Kunihiro; Yamada, Takatomi

    2017-06-01

    Meiotic homologous recombination, a critical event for ensuring faithful chromosome segregation and creating genetic diversity, is initiated by programmed DNA double-strand breaks (DSBs) formed at recombination hotspots. Meiotic DSB formation is likely to be influenced by other DNA-templated processes including transcription, but how DSB formation and transcription interact with each other has not been understood well. In this study, we used fission yeast to investigate a possible interplay of these two events. A group of hotspots in fission yeast are associated with sequences similar to the cyclic AMP response element and activated by the ATF/CREB family transcription factor dimer Atf1-Pcr1. We first focused on one of those hotspots, ade6-3049 , and Atf1. Our results showed that multiple transcripts, shorter than the ade6 full-length messenger RNA, emanate from a region surrounding the ade6-3049 hotspot. Interestingly, we found that the previously known recombination-activation region of Atf1 is also a transactivation domain, whose deletion affected DSB formation and short transcript production at ade6-3049 These results point to a possibility that the two events may be related to each other at ade6-3049 In fact, comparison of published maps of meiotic transcripts and hotspots suggested that hotspots are very often located close to meiotically transcribed regions. These observations therefore propose that meiotic DSB formation in fission yeast may be connected to transcription of surrounding regions. Copyright © 2017 by the Genetics Society of America.

  16. Attention-deficit hyperactivity disorder symptoms in children and adolescents with sex chromosome aneuploidy: XXY, XXX, XYY, and XXYY.

    Science.gov (United States)

    Tartaglia, Nicole R; Ayari, Natalie; Hutaff-Lee, Christa; Boada, Richard

    2012-05-01

    Attentional problems, hyperactivity, and impulsivity have been described as behavioral features associated with sex chromosome aneuploidy (SCA). In this study, the authors compare attention-deficit hyperactivity disorder (ADHD) symptoms in 167 participants aged 6 to 20 years with 4 types of SCA (XXY n = 56, XYY n = 33, XXX n = 25, and XXYY n = 53). They also evaluate factors associated with ADHD symptomatology (cognitive and adaptive scores, prenatal vs postnatal ascertainment) and describe the clinical response to psychopharmacologic medications in a subset of patients treated for ADHD. Evaluation included medical and developmental history, cognitive and adaptive functioning assessment, and parent and teacher ADHD questionnaires containing DSM-IV criteria. In the total study group, 58% (96/167) met DSM-IV criteria for ADHD on parent-report questionnaires (36% in XXY, 52% in XXX, 76% in XYY, and 72% in XXYY). The Inattentive subtype was most common in XXY and XXX, whereas the XYY and XXYY groups were more likely to also have hyperactive/impulsive symptoms. There were no significant differences in Verbal, Performance, or Full Scale IQ between children with symptom scores in the ADHD range compared with those below the ADHD range. However, adaptive functioning scores were significantly lower in the group whose scores in the ADHD range were compared with those of the group who did not meet ADHD DSM-IV criteria. Those with a prenatal diagnosis of XXY were less likely to meet criteria for ADHD compared with the postnatally diagnosed group. Psychopharmacologic treatment with stimulants was effective in 78.6% (66/84). Children and adolescents with SCA are at increased risk for ADHD symptoms. Recommendations for ADHD evaluation and treatment in consideration of other aspects of the SCA medical and behavioral phenotype are provided.

  17. “How should I tell my child?” Disclosing the Diagnosis of Sex Chromosome Aneuploidies

    Science.gov (United States)

    Dennis, Anna; Howell, Susan; Cordeiro, Lisa; Tartaglia, Nicole

    2017-01-01

    To date, the disclosure of a sex chromosome aneuploidy (SCA) diagnosis to an affected individual has not been explored. This study aimed to assess the timing and content revealed to an affected child by his or her parent(s), resources accessed in preparation, parental feelings of preparedness, common parental concerns, and recommendations for disclosure approaches. Two online surveys were created: 1) for parents of a child with a diagnosis and 2) for individuals with a diagnosis. One-hundred thirty-nine parent surveys (XXY n=68, XXX n=21, XYY n=9, other SCAs n=41) and 67 individual surveys (XXY n=58, XXX n=9) were analyzed. Parents most frequently discussed the topics of learning disabilities (47%) and genetics (45%) with their child during the initial disclosure. A significantly greater proportion of parent respondents reported feeling prepared vs. unprepared for disclosure, regardless of their child’s diagnosis (z-test of proportions, all p’sparents most frequently accessed resources such as websites, support groups, and discussion with the child’s physician prior to disclosure, with unprepared parents accessing fewer resources (M = 2.0 ± 1.41) than prepared parents [M= 2. ± 1.56; t(101) = −2.02, pparental concerns included making the conversation age-appropriate, discussing infertility, and possible impact on the child’s self-esteem. Both parent and individual respondents endorsed being honest with the child, disclosing the diagnosis early and before puberty, and discussing the diagnosis gradually over time. These results provide recommendations for parents, and suggest benefits from additional resources and supports to alleviate concerns when approaching diagnosis disclosure. PMID:25179748

  18. Dosage compensation and demasculinization of X chromosomes in Drosophila.

    Science.gov (United States)

    Bachtrog, Doris; Toda, Nicholas R T; Lockton, Steven

    2010-08-24

    The X chromosome of Drosophila shows a deficiency of genes with male-biased expression, whereas mammalian X chromosomes are enriched for spermatogenesis genes expressed premeiosis and multicopy testis genes. Meiotic X-inactivation and sexual antagonism can only partly account for these patterns. Here, we show that dosage compensation (DC) in Drosophila may contribute substantially to the depletion of male genes on the X. To equalize expression between X-linked and autosomal genes in the two sexes, male Drosophila hypertranscribe their single X, whereas female mammals silence one of their two X chromosomes. We combine fine-scale mapping data of dosage compensated regions with genome-wide expression profiles and show that most male-biased genes on the D. melanogaster X are located outside dosage compensated regions. Additionally, X-linked genes that have newly acquired male-biased expression in D. melanogaster are less likely to be dosage compensated, and parental X-linked genes that gave rise to an autosomal male-biased retrocopy are more likely located within compensated regions. This suggests that DC contributes to the observed demasculinization of X chromosomes in Drosophila, both by limiting the emergence of male-biased expression patterns of existing X genes, and by contributing to gene trafficking of male genes off the X. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Mek1/Mre4 is a master regulator of meiotic recombination in budding yeast

    Directory of Open Access Journals (Sweden)

    Nancy M. Hollingsworth

    2016-02-01

    Full Text Available Sexually reproducing organisms create gametes with half the somatic cell chromosome number so that fusion of gametes at fertilization does not change the ploidy of the cell. This reduction in chromosome number occurs by the specialized cell division of meiosis in which two rounds of chromosome segregation follow a single round of chromosome duplication. Meiotic crossovers formed between the non-sister chromatids of homologous chromosomes, combined with sister chromatid cohesion, physically connect homologs, thereby allowing proper segregation at the first meiotic division. Meiotic recombination is initiated by programmed double strand breaks (DSBs whose repair is highly regulated such that (1 there is a bias for recombination with homologs rather than sister chromatids, (2 crossovers are distributed throughout the genome by a process called interference, (3 crossover homeostasis regulates the balance between crossover and non-crossover repair to maintain a critical number of crossovers and (4 each pair of homologs receives at least one crossover. It was previously known that the imposition of interhomolog bias in budding yeast requires meiosis-specific modifications to the DNA damage response and the local activation of the meiosis-specific Mek1/Mre4 (hereafter Mek1 kinase at DSBs. However, because inactivation of Mek1 results in intersister, rather than interhomolog DSB repair, whether Mek1 had a role in interhomolog pathway choice was unknown. A recent study by Chen et al. (2015 reveals that Mek1 indirectly regulates the crossover/non-crossover decision between homologs as well as genetic interference. It does this by enabling phosphorylation of Zip1, the meiosis-specific transverse filament protein of the synaptonemal complex (SC, by the conserved cell cycle kinase, Cdc7-Dbf4 (DDK. These results suggest that Mek1 is a “master regulator” of meiotic recombination in budding yeast.

  20. Recurrent selection on the Winters sex-ratio genes in Drosophila simulans.

    Science.gov (United States)

    Kingan, Sarah B; Garrigan, Daniel; Hartl, Daniel L

    2010-01-01

    Selfish genes, such as meiotic drive elements, propagate themselves through a population without increasing the fitness of host organisms. X-linked (or Y-linked) meiotic drive elements reduce the transmission of the Y (X) chromosome and skew progeny and population sex ratios, leading to intense conflict among genomic compartments. Drosophila simulans is unusual in having a least three distinct systems of X chromosome meiotic drive. Here, we characterize naturally occurring genetic variation at the Winters sex-ratio driver (Distorter on the X or Dox), its progenitor gene (Mother of Dox or MDox), and its suppressor gene (Not Much Yang or Nmy), which have been previously mapped and characterized. We survey three North American populations as well as 13 globally distributed strains and present molecular polymorphism data at the three loci. We find that all three genes show signatures of selection in North America, judging from levels of polymorphism and skews in the site-frequency spectrum. These signatures likely result from the biased transmission of the driver and selection on the suppressor for the maintenance of equal sex ratios. Coalescent modeling indicates that the timing of selection is more recent than the age of the alleles, suggesting that the driver and suppressor are coevolving under an evolutionary "arms race." None of the Winters sex-ratio genes are fixed in D. simulans, and at all loci we find ancestral alleles, which lack the gene insertions and exhibit high levels of nucleotide polymorphism compared to the derived alleles. In addition, we find several "null" alleles that have mutations on the derived Dox background, which result in loss of drive function. We discuss the possible causes of the maintenance of presence-absence polymorphism in the Winters sex-ratio genes.

  1. ZIP4H (TEX11 deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over.

    Directory of Open Access Journals (Sweden)

    Carrie A Adelman

    2008-03-01

    Full Text Available We have recently shown that hypomorphic Mre11 complex mouse mutants exhibit defects in the repair of meiotic double strand breaks (DSBs. This is associated with perturbation of synaptonemal complex morphogenesis, repair and regulation of crossover formation. To further assess the Mre11 complex's role in meiotic progression, we identified testis-specific NBS1-interacting proteins via two-hybrid screening in yeast. In this screen, Zip4h (Tex11, a male germ cell specific X-linked gene was isolated. Based on sequence and predicted structural similarity to the S. cerevisiae and A. thaliana Zip4 orthologs, ZIP4H appears to be the mammalian ortholog. In S. cerevisiae and A. thaliana, Zip4 is a meiosis-specific protein that regulates the level of meiotic crossovers, thus influencing homologous chromosome segregation in these organisms. As is true for hypomorphic Nbs1 (Nbs1(DeltaB/DeltaB mice, Zip4h(-/Y mutant mice were fertile. Analysis of spermatocytes revealed a delay in meiotic double strand break repair and decreased crossover formation as inferred from DMC1 and MLH1 staining patterns, respectively. Achiasmate chromosomes at the first meiotic division were also observed in Zip4h(-/Y mutants, consistent with the observed reduction in MLH1 focus formation. These results indicate that meiotic functions of Zip4 family members are conserved and support the view that the Mre11 complex and ZIP4H interact functionally during the execution of the meiotic program in mammals.

  2. Synaptonemal complex aberrations in the pseudoautosomal region of X, Y chromosomes in irradiated hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.W.; Collins, B.W. [Environmental Protection Agency, Research Triangle Park, NC (United States); Poorman-Allen, P. [Wellcome Research Lab., Research Triangle Park, N.C. (United States); Sontag, M.R. [Duke Univ., Durham, NC (United States). Medical Center

    1994-05-01

    The effects of X-radiation, bleomycin and amsacrine (m-AMSA) on the meiotic chromosomes of male Armenian hamsters were determined by electron microscopic analysis of synaptonemal complex (SC) damage. Pachytene stage cells were analyzed 5 or 6 days following their treatment at putative preleptotene-leptotene stages of meiosis. Of the multiple types of SC aberrations observed to be significantly increased over control levels, lateral element breakage and synaptic anomalies were most prevalent. The focus of these studies was on the sex chromosomes which, in the Armenian hamster, reveal an unusally well-defined pseudoautosomal region. In the XY pair, radiation and chemical treatments caused certain forms of structural and synaptic anomalies which appeared to be preferentially localized to telomeric and/or crossover regions. The nature of these specific aberrations, involving breakage, bridge formation and asynapsis, is not well understood; however, their distributions are suggestive of possible relationships with sites and processes of crossing over. (author).

  3. Scrambling Eggs: Meiotic Drive and the Evolution of Female Recombination Rates

    Science.gov (United States)

    Brandvain, Yaniv; Coop, Graham

    2012-01-01

    Theories to explain the prevalence of sex and recombination have long been a central theme of evolutionary biology. Yet despite decades of attention dedicated to the evolution of sex and recombination, the widespread pattern of sex differences in the recombination rate is not well understood and has received relatively little theoretical attention. Here, we argue that female meiotic drivers—alleles that increase in frequency by exploiting the asymmetric cell division of oogenesis—present a potent selective pressure favoring the modification of the female recombination rate. Because recombination plays a central role in shaping patterns of variation within and among dyads, modifiers of the female recombination rate can function as potent suppressors or enhancers of female meiotic drive. We show that when female recombination modifiers are unlinked to female drivers, recombination modifiers that suppress harmful female drive can spread. By contrast, a recombination modifier tightly linked to a driver can increase in frequency by enhancing female drive. Our results predict that rapidly evolving female recombination rates, particularly around centromeres, should be a common outcome of meiotic drive. We discuss how selection to modify the efficacy of meiotic drive may contribute to commonly observed patterns of sex differences in recombination. PMID:22143919

  4. Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes

    Science.gov (United States)

    Cabral, Gabriela; Marques, André; Schubert, Veit; Pedrosa-Harand, Andrea; Schlögelhofer, Peter

    2014-01-01

    Meiosis is a specialized cell division in sexually reproducing organisms before gamete formation. Following DNA replication, the canonical sequence in species with monocentric chromosomes is characterized by reductional segregation of homologous chromosomes during the first and equational segregation of sister chromatids during the second meiotic division. Species with holocentric chromosomes employ specific adaptations to ensure regular disjunction during meiosis. Here we present the analysis of two closely related plant species with holocentric chromosomes that display an inversion of the canonical meiotic sequence, with the equational division preceding the reductional. In-depth analysis of the meiotic divisions of Rhynchospora pubera and R. tenuis reveals that during meiosis I sister chromatids are bi-oriented, display amphitelic attachment to the spindle and are subsequently separated. During prophase II, chromatids are connected by thin chromatin threads that appear instrumental for the regular disjunction of homologous non-sister chromatids in meiosis II. PMID:25295686

  5. Analysis of self-fertilization and meiotic behavior of eleven Brazilian triticale cultivars at two sowing dates

    Directory of Open Access Journals (Sweden)

    Divanilde Guerra

    2011-01-01

    Full Text Available Eleven Brazilian hexaploid triticale cultivars (2n = 6x = 42, from three breeding programs, were evaluated for theirability of self-fertilization in 2006 and for meiotic behavior, meiotic index and pollen viability at two sowing dates in 2007. Highpotential of self-fertilization was observed, with values up to 89.52 %. Many irregularities were found in the meiotic analysis, suchas the presence of univalents, laggard chromosomes and micronuclei in tetrads, which compromised both meiotic behavior andmeiotic index. At the first sowing date, more suitable for normal plant development, overall mean values of 52.68 % for normal cellsand 64.95 % for meiotic index were observed. At the second sowing date, less appropriate for the crop, overall means of 52.23 %for normal cells and 58.24 % for meiotic index were obtained. Despite all the irregularities, considerable pollen viability wasobserved, reaching overall means of 92.08 % and 91.07 % for the first and second sowing dates, respectively.

  6. Y Chromosome DNA in Women's Vaginal Samples as a Biomarker of Recent Vaginal Sex and Condom Use With Male Partners in the HPV Infection and Transmission Among Couples Through Heterosexual Activity Cohort Study.

    Science.gov (United States)

    Malagón, Talía; Burchell, Ann; El-Zein, Mariam; Guénoun, Julie; Tellier, Pierre-Paul; Coutlée, François; Franco, Eduardo L

    2018-01-01

    Y chromosome DNA from male epithelial and sperm cells was detected in vaginal samples after unprotected sex in experimental studies. We assessed the strength of this association in an observational setting to examine the utility of Y chromosome DNA as a biomarker of recent sexual behaviors in epidemiological studies. The HPV (human papillomavirus) Infection and Transmission Among Couples Through Heterosexual Activity cohort study enrolled 502 women attending a university or college in Montréal, Canada, and their male partners from 2005 to 2010. Participants completed self-administered questionnaires. We used real-time polymerase chain reaction to test women's baseline vaginal samples for Y chromosome DNA and assessed which sexual behaviors were independent predictors of Y chromosome DNA positivity and quantity with logistic and negative binomial regression. Y chromosome DNA positivity decreased from 77% in women in partnerships reporting vaginal sex 0 to 1 day ago to 13% in women in partnerships reporting last vaginal sex of 15 or more days ago (adjusted odds ratio, 0.09; 95% confidence interval, 0.02-0.36). The mean proportion of exfoliated vaginal sample cells with Y chromosome DNA was much lower for women who reported always using condoms (0.01%) than for women who reported never using condoms (2.07%) (adjusted ratio, 26.8; 95% confidence interval, 8.9-80.5). No association was found with reported oral/digital sex frequency or concurrency of partnerships. Y chromosome DNA quantity is strongly associated with days since last vaginal sex and lack of condom use in observational settings. Y chromosome DNA quantity may prove useful as a correlate of recent vaginal sex in observational studies lacking data on sexual behavior, such as surveillance studies of human papillomavirus infection prevalence.

  7. Insights into the evolution of mammalian telomerase: Platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes

    Directory of Open Access Journals (Sweden)

    Hrdličková Radmila

    2012-06-01

    Full Text Available Abstract Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in ray-finned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.

  8. Variation and Evolution of the Meiotic Requirement for Crossing Over in Mammals.

    Science.gov (United States)

    Dumont, Beth L

    2017-01-01

    The segregation of homologous chromosomes at the first meiotic division is dependent on the presence of at least one well-positioned crossover per chromosome. In some mammalian species, however, the genomic distribution of crossovers is consistent with a more stringent baseline requirement of one crossover per chromosome arm. Given that the meiotic requirement for crossing over defines the minimum frequency of recombination necessary for the production of viable gametes, determining the chromosomal scale of this constraint is essential for defining crossover profiles predisposed to aneuploidy and understanding the parameters that shape patterns of recombination rate evolution across species. Here, I use cytogenetic methods for in situ imaging of crossovers in karyotypically diverse house mice (Mus musculus domesticus) and voles (genus Microtus) to test how chromosome number and configuration constrain the distribution of crossovers in a genome. I show that the global distribution of crossovers in house mice is thresholded by a minimum of one crossover per chromosome arm, whereas the crossover landscape in voles is defined by a more relaxed requirement of one crossover per chromosome. I extend these findings in an evolutionary metaanalysis of published recombination and karyotype data for 112 mammalian species and demonstrate that the physical scale of the genomic crossover distribution has undergone multiple independent shifts from one crossover per chromosome arm to one per chromosome during mammalian evolution. Together, these results indicate that the chromosomal scale constraint on crossover rates is itself a trait that evolves among species, a finding that casts light on an important source of crossover rate variation in mammals. Copyright © 2017 by the Genetics Society of America.

  9. Production and characterization of radiation-sensitive meiotic mutants of Coprinus cinereus

    International Nuclear Information System (INIS)

    Zolan, M.E.; Tremel, C.J.; Pukkila, P.J.

    1988-01-01

    We have isolated four gamma-sensitive mutants of the basidiomycete Coprinus cinereus. When homozygous, two of these (rad 3-1 and rad 9-1) produce fruiting bodies with very few viable basidiospores, the products of meiosis in this organism. A less radiation-sensitive allele of RAD 3, rad 3-2, causes no apparent meiotic defect in homozygous strains. Quantitative measurements of oidial survival of rad 3-1;rad 9-1 double mutants compared to the single mutants indicated that rad 3-1 and rad 9-1 mutants are defective in the same DNA repair pathway. In the pew viable basidiospores that are produced by these two strains, essentially normal levels of meiotic recombination can be detected. None of the mutants exhibits increased sensitivity to UV radiation. Cytological examination of meiotic chromosomes from mutant and wild-type fruiting bodies showed that rad 3-1 homozygous strains fail to condense and pair homologous chromosomes during prophase I. Although rad 9-1 strains are successful at chromosome pairing, meiosis is usually not completed in these mutants

  10. Genetic analysis of variation in human meiotic recombination.

    Directory of Open Access Journals (Sweden)

    Reshmi Chowdhury

    2009-09-01

    Full Text Available The number of recombination events per meiosis varies extensively among individuals. This recombination phenotype differs between female and male, and also among individuals of each gender. In this study, we used high-density SNP genotypes of over 2,300 individuals and their offspring in two datasets to characterize recombination landscape and to map the genetic variants that contribute to variation in recombination phenotypes. We found six genetic loci that are associated with recombination phenotypes. Two of these (RNF212 and an inversion on chromosome 17q21.31 were previously reported in the Icelandic population, and this is the first replication in any other population. Of the four newly identified loci (KIAA1462, PDZK1, UGCG, NUB1, results from expression studies provide support for their roles in meiosis. Each of the variants that we identified explains only a small fraction of the individual variation in recombination. Notably, we found different sequence variants associated with female and male recombination phenotypes, suggesting that they are regulated by different genes. Characterization of genetic variants that influence natural variation in meiotic recombination will lead to a better understanding of normal meiotic events as well as of non-disjunction, the primary cause of pregnancy loss.

  11. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  12. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution.

    Science.gov (United States)

    Rens, Willem; Grützner, Frank; O'brien, Patricia C M; Fairclough, Helen; Graves, Jennifer A M; Ferguson-Smith, Malcolm A

    2004-11-16

    The platypus (2n = 52) has a complex karyotype that has been controversial over the last three decades. The presence of unpaired chromosomes and an unknown sex-determining system especially has defied attempts at conventional analysis. This article reports on the preparation of chromosome-specific probes from flow-sorted chromosomes and their application in the identification and classification of all platypus chromosomes. This work reveals that the male karyotype has 21 pairs of chromosomes and 10 unpaired chromosomes (E1-E10), which are linked by short regions of homology to form a multivalent chain in meiosis. The female karyotype differs in that five of these unpaired elements (E1, E3, E5, E7, and E9) are each present in duplicate, whereas the remaining five unpaired elements (E2, E4, E6, E8, and E10) are absent. This finding indicates that sex is determined by the alternate segregation of the chain of 10 during spermatogenesis so that equal numbers of sperm bear either one of the two groups of five elements, i.e., five X and five Y chromosomes. Chromosome painting reveals that these X and Y chromosomes contain pairing (XY shared) and differential (X- or Y-specific) segments. Y differential regions must contain male-determining genes, and X differential regions should be dosage-compensated in the female. Two models for the evolution of the sex-determining system are presented. The resolution of the longstanding debate over the platypus karyotype is an important step toward the understanding of mechanisms of sex determination, dosage compensation, and karyotype evolution.

  13. A dense SNP-based linkage map for Atlantic salmon (Salmo salar reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns

    Directory of Open Access Journals (Sweden)

    Lien Sigbjørn

    2011-12-01

    Full Text Available Abstract Background The Atlantic salmon genome is in the process of returning to a diploid state after undergoing a whole genome duplication (WGD event between 25 and100 million years ago. Existing data on the proportion of paralogous sequence variants (PSVs, multisite variants (MSVs and other types of complex sequence variation suggest that the rediplodization phase is far from over. The aims of this study were to construct a high density linkage map for Atlantic salmon, to characterize the extent of rediploidization and to improve our understanding of genetic differences between sexes in this species. Results A linkage map for Atlantic salmon comprising 29 chromosomes and 5650 single nucleotide polymorphisms (SNPs was constructed using genotyping data from 3297 fish belonging to 143 families. Of these, 2696 SNPs were generated from ESTs or other gene associated sequences. Homeologous chromosomal regions were identified through the mapping of duplicated SNPs and through the investigation of syntenic relationships between Atlantic salmon and the reference genome sequence of the threespine stickleback (Gasterosteus aculeatus. The sex-specific linkage maps spanned a total of 2402.3 cM in females and 1746.2 cM in males, highlighting a difference in sex specific recombination rate (1.38:1 which is much lower than previously reported in Atlantic salmon. The sexes, however, displayed striking differences in the distribution of recombination sites within linkage groups, with males showing recombination strongly localized to telomeres. Conclusion The map presented here represents a valuable resource for addressing important questions of interest to evolution (the process of re-diploidization, aquaculture and salmonid life history biology and not least as a resource to aid the assembly of the forthcoming Atlantic salmon reference genome sequence.

  14. Chromosome number and meiotic behaviour in Brachiaria jubata

    Indian Academy of Sciences (India)

    Andrea Beatriz Mendes-Bonato1 Claudicéia Risso-Pascotto1 Maria Suely Pagliarini1 Cacilda Borges Do Valle2. Department of Cell Biology and Genetics, State University of Maringá, 87020-900 Maringá, Paraná, Brazil; Embrapa Beef Cattle, P.O. Box 154, 79002-970 Campo Grande, Mato Grosso do Sul, Brazil ...

  15. Chromosome number and meiotic behaviour in Brachiaria jubata ...

    Indian Academy of Sciences (India)

    behaviour in 21 accessions of this species as a tool in se- ... Table 1 presents the results of cytological evaluations. Only one accession .... Although low multivalent frequency is an .... accessions are rare and the more valuable parental mate-.

  16. Chromosome segregation in plant meiosis

    Directory of Open Access Journals (Sweden)

    Linda eZamariola

    2014-06-01

    Full Text Available Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.

  17. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    International Nuclear Information System (INIS)

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie; Neale, Matthew J.

    2014-01-01

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed

  18. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie; Neale, Matthew J., E-mail: m.neale@sussex.ac.uk

    2014-11-15

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.

  19. B microchromosomes in the family Curimatidae (Characiformes): mitotic and meiotic behavior.

    Science.gov (United States)

    Sampaio, Tatiane Ramos; Gravena, Waleska; Gouveia, Juceli Gonzalez; Giuliano-Caetano, Lucia; Dias, Ana Lúcia

    2011-01-01

    Cyphocharax voga (Hensel, 1870), Cyphocharax spilotus (Vari, 1987), Cyphocharax saladensis (Meinken, 1933), Cyphocharax modestus (Fernández-Yépez, 1948), Steindachnerina biornata (Braga & Azpelicueta, 1987) and Steindachnerina insculpta (Fernández-Yépez, 1948) collected from two hydrographic basins. All samples presented 2n=54 meta-submetacentric (m-sm) chromosomes and FN equal to 108, and 1 or 2 B microchromosomes in the mitotic and meiotic cells of the six sampled populations showing inter-and intraindividual variation. The analysis of the meiotic cells in Cyphocharax saladensis, Cyphocharax spilotus, and Cyphocharax voga showed a modal number of 54 chromosomes in the spermatogonial metaphases and 27 bivalents in the pachytene, diplotene, diakinesis and in metaphase I stages, and 27 chromosomes in metaphase II; in Cyphocharax modestus, Steindachnerina biornata, and Steindachnerina insculpta, spermatogonial metaphases with 54 chromosomes and pachytene and metaphase I with 27 bivalents were observed. The B microchromosome was observed as univalent in the spermatogonial metaphase of Cyphocharax spilotus, in the pachytene stage in the other species, with the exception of Cyphocharax saladensis, and Steindachnerina biornata in metaphase I. New occurrences of the B microchromosome in Cyphocharax voga, Cyphocharax saladensis and Steindachnerina biornata were observed, confirming that the presence of this type of chromosome is a striking characteristic of this group of fish.

  20. Aberrant meiotic behavior in Agave tequilana Weber var. azul.

    Science.gov (United States)

    Ruvalcaba-Ruiz, Domingo; Rodríguez-Garay, Benjamin

    2002-10-23

    Agave tequilana Weber var. azul, is the only one variety permitted by federal law in México to be used for tequila production which is the most popular contemporary alcoholic beverage made from agave and recognized worldwide. Despite the economic, genetic, and ornamental value of the plant, it has not been subjected to detailed cytogenetic research, which could lead to a better understanding of its reproduction for future genetic improvement. The objective of this work was to study the meiotic behavior in pollen mother cells and its implications on the pollen viability in Agave tequilana Weber var. azul. The analysis of Pollen Mother Cells in anaphase I (A-I) showed 82.56% of cells with a normal anaphase and, 17.44% with an irregular anaphase. In which 5.28% corresponded to cells with side arm bridges (SAB); 3.68% cells with one bridge and one fragment; 2.58% of irregular anaphase showed cells with one or two lagging chromosomes and 2.95% showed one acentric fragment; cells with two bridges and cells with two bridges and one acentric fragment were observed in frequencies of 1.60% and 1.35% respectively. In anaphase II some cells showed bridges and fragments too. Aberrant A-I cells had many shrunken or empty pollen grains (42.00%) and 58.00 % viable pollen. The observed meiotic irregularities suggest that structural chromosome aberrations have occurred, such as heterozygous inversions, sister chromatid exchanges, deletions and duplications which in turn are reflected in a low pollen viability.

  1. Aberrant meiotic behavior in Agave tequilana Weber var. azul

    Directory of Open Access Journals (Sweden)

    Rodríguez-Garay Benjamin

    2002-10-01

    Full Text Available Abstract Background Agave tequilana Weber var. azul, is the only one variety permitted by federal law in México to be used for tequila production which is the most popular contemporary alcoholic beverage made from agave and recognized worldwide. Despite the economic, genetic, and ornamental value of the plant, it has not been subjected to detailed cytogenetic research, which could lead to a better understanding of its reproduction for future genetic improvement. The objective of this work was to study the meiotic behavior in pollen mother cells and its implications on the pollen viability in Agave tequilana Weber var. azul. Results The analysis of Pollen Mother Cells in anaphase I (A-I showed 82.56% of cells with a normal anaphase and, 17.44% with an irregular anaphase. In which 5.28% corresponded to cells with side arm bridges (SAB; 3.68% cells with one bridge and one fragment; 2.58% of irregular anaphase showed cells with one or two lagging chromosomes and 2.95% showed one acentric fragment; cells with two bridges and cells with two bridges and one acentric fragment were observed in frequencies of 1.60% and 1.35% respectively. In anaphase II some cells showed bridges and fragments too. Aberrant A-I cells had many shrunken or empty pollen grains (42.00% and 58.00 % viable pollen. Conclusion The observed meiotic irregularities suggest that structural chromosome aberrations have occurred, such as heterozygous inversions, sister chromatid exchanges, deletions and duplications which in turn are reflected in a low pollen viability.

  2. Genomic features shaping the landscape of meiotic double-strand-break hotspots in maize.

    Science.gov (United States)

    He, Yan; Wang, Minghui; Dukowic-Schulze, Stefanie; Zhou, Adele; Tiang, Choon-Lin; Shilo, Shay; Sidhu, Gaganpreet K; Eichten, Steven; Bradbury, Peter; Springer, Nathan M; Buckler, Edward S; Levy, Avraham A; Sun, Qi; Pillardy, Jaroslaw; Kianian, Penny M A; Kianian, Shahryar F; Chen, Changbin; Pawlowski, Wojciech P

    2017-11-14

    Meiotic recombination is the most important source of genetic variation in higher eukaryotes. It is initiated by formation of double-strand breaks (DSBs) in chromosomal DNA in early meiotic prophase. The DSBs are subsequently repaired, resulting in crossovers (COs) and noncrossovers (NCOs). Recombination events are not distributed evenly along chromosomes but cluster at recombination hotspots. How specific sites become hotspots is poorly understood. Studies in yeast and mammals linked initiation of meiotic recombination to active chromatin features present upstream from genes, such as absence of nucleosomes and presence of trimethylation of lysine 4 in histone H3 (H3K4me3). Core recombination components are conserved among eukaryotes, but it is unclear whether this conservation results in universal characteristics of recombination landscapes shared by a wide range of species. To address this question, we mapped meiotic DSBs in maize, a higher eukaryote with a large genome that is rich in repetitive DNA. We found DSBs in maize to be frequent in all chromosome regions, including sites lacking COs, such as centromeres and pericentromeric regions. Furthermore, most DSBs are formed in repetitive DNA, predominantly Gypsy retrotransposons, and only one-quarter of DSB hotspots are near genes. Genic and nongenic hotspots differ in several characteristics, and only genic DSBs contribute to crossover formation. Maize hotspots overlap regions of low nucleosome occupancy but show only limited association with H3K4me3 sites. Overall, maize DSB hotspots exhibit distribution patterns and characteristics not reported previously in other species. Understanding recombination patterns in maize will shed light on mechanisms affecting dynamics of the plant genome.

  3. The Saccharomyces cerevisiae MUM2 gene interacts with the DNA replication machinery and is required for meiotic levels of double strand breaks.

    Science.gov (United States)

    Davis, L; Barbera, M; McDonnell, A; McIntyre, K; Sternglanz, R; Jin , Q; Loidl, J; Engebrecht, J

    2001-01-01

    The Saccharomyces cerevisiae MUM2 gene is essential for meiotic, but not mitotic, DNA replication and thus sporulation. Genetic interactions between MUM2 and a component of the origin recognition complex and polymerase alpha-primase suggest that MUM2 influences the function of the DNA replication machinery. Early meiotic gene expression is induced to a much greater extent in mum2 cells than in meiotic cells treated with the DNA synthesis inhibitor hydroxyurea. This result indicates that the mum2 meiotic arrest is downstream of the arrest induced by hydroxyurea and suggests that DNA synthesis is initiated in the mutant. Genetic analyses indicate that the recombination that occurs in mum2 mutants is dependent on the normal recombination machinery and on synaptonemal complex components and therefore is not a consequence of lesions created by incompletely replicated DNA. Both meiotic ectopic and allelic recombination are similarly reduced in the mum2 mutant, and the levels are consistent with the levels of meiosis-specific DSBs that are generated. Cytological analyses of mum2 mutants show that chromosome pairing and synapsis occur, although at reduced levels compared to wild type. Given the near-wild-type levels of meiotic gene expression, pairing, and synapsis, we suggest that the reduction in DNA replication is directly responsible for the reduced level of DSBs and meiotic recombination. PMID:11238403

  4. An Unusual Accumulation of Ribosomal Multigene Families and Microsatellite DNAs in the XX/XY Sex Chromosome System in the Trans-Andean Catfish Pimelodella cf. chagresi (Siluriformes:Heptapteridae).

    Science.gov (United States)

    Conde-Saldaña, Cristhian Camilo; Barreto, Cynthia Aparecida Valiati; Villa-Navarro, Francisco Antonio; Dergam, Jorge Abdala

    2018-02-01

    This work constitutes the first cytogenetic characterization of a trans-Andean species of Heptapteridae. The catfish Pimelodella cf. chagresi from the Upper Rio Magdalena was studied, applying standard cytogenetic techniques (Giemsa, C-banding, and argyrophilic nucleolar organizer region [Ag-NOR]) and fluorescence in situ hybridization techniques using repetitive DNA probes: microsatellites (CA 15 and GA 15 ) and ribosomal RNA (rRNA) multigene families (18S and 5S recombinant DNA [rDNA] probes). The species showed a unique diploid chromosome number 2n = 50 (32m [metacentrics] +14sm [submetacentrics] +4st [subtelocentrics]) and a XX/XY sex chromosomal system, where the heteromorphic Y-chromosome revealed a conspicuous accumulation of all the assayed domains of repetitive DNA. P. cf. chagresi karyotype shares common features with other Heptapteridae, such as the predominance of metacentric and submetacentric chromosomes, and one pair of subtelomeric nucleolar organizer regions (NORs). These results reflect an independent karyological identity of a trans-Andean species and the relevance of repetitive DNA sequences in the process of sex chromosome differentiation in fish; it is the first case of syntenic accumulation of rRNA multigene families (18S and 5S rDNA) and microsatellite sequences (CA 15 and GA 15 ) in a differentiated sex chromosome in Neotropical fish.

  5. Condensin-driven remodelling of X chromosome topology during dosage compensation

    Science.gov (United States)

    Crane, Emily; Bian, Qian; McCord, Rachel Patton; Lajoie, Bryan R.; Wheeler, Bayly S.; Ralston, Edward J.; Uzawa, Satoru; Dekker, Job; Meyer, Barbara J.

    2015-07-01

    The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (~1 Mb) resembling mammalian topologically associating domains (TADs). TADs on X chromosomes have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X chromosomes coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X chromosomes by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using

  6. A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus

    Science.gov (United States)

    Li, Minghui; Sun, Yunlv; Zhao, Jiue; Shi, Hongjuan; Zeng, Sheng; Ye, Kai; Jiang, Dongneng; Zhou, Linyan; Sun, Lina; Tao, Wenjing; Nagahama, Yoshitaka; Kocher, Thomas D.; Wang, Deshou

    2015-01-01

    Variation in the TGF-β signaling pathway is emerging as an important mechanism by which gonadal sex determination is controlled in teleosts. Here we show that amhy, a Y-specific duplicate of the anti-Müllerian hormone (amh) gene, induces male sex determination in Nile tilapia. amhy is a tandem duplicate located immediately downstream of amhΔ-y on the Y chromosome. The coding sequence of amhy was identical to the X-linked amh (amh) except a missense SNP (C/T) which changes an amino acid (Ser/Leu92) in the N-terminal region. amhy lacks 5608 bp of promoter sequence that is found in the X-linked amh homolog. The amhΔ-y contains several insertions and deletions in the promoter region, and even a 5 bp insertion in exonVI that results in a premature stop codon and thus a truncated protein product lacking the TGF-β binding domain. Both amhy and amhΔ-y expression is restricted to XY gonads from 5 days after hatching (dah) onwards. CRISPR/Cas9 knockout of amhy in XY fish resulted in male to female sex reversal, while mutation of amhΔ-y alone could not. In contrast, overexpression of Amhy in XX fish, using a fosmid transgene that carries the amhy/amhΔ-y haplotype or a vector containing amhy ORF under the control of CMV promoter, resulted in female to male sex reversal, while overexpression of AmhΔ-y alone in XX fish could not. Knockout of the anti-Müllerian hormone receptor type II (amhrII) in XY fish also resulted in 100% complete male to female sex reversal. Taken together, these results strongly suggest that the duplicated amhy with a missense SNP is the candidate sex determining gene and amhy/amhrII signal is essential for male sex determination in Nile tilapia. These findings highlight the conserved roles of TGF-β signaling pathway in fish sex determination. PMID:26588702

  7. Initiation of Meiotic Recombination in Mammals

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2010-12-01

    Full Text Available Meiotic recombination is initiated by the induction of programmed DNA double strand breaks (DSBs. DSB repair promotes homologous interactions and pairing and leads to the formation of crossovers (COs, which are required for the proper reductional segregation at the first meiotic division. In mammals, several hundred DSBs are generated at the beginning of meiotic prophase by the catalytic activity of SPO11. Currently it is not well understood how the frequency and timing of DSB formation and their localization are regulated. Several approaches in humans and mice have provided an extensive description of the localization of initiation events based on CO mapping, leading to the identification and characterization of preferred sites (hotspots of initiation. This review presents the current knowledge about the proteins known to be involved in this process, the sites where initiation takes place, and the factors that control hotspot localization.

  8. The fidelity of synaptonemal complex assembly is regulated by a signaling mechanism that controls early meiotic progression.

    Science.gov (United States)

    Silva, Nicola; Ferrandiz, Nuria; Barroso, Consuelo; Tognetti, Silvia; Lightfoot, James; Telecan, Oana; Encheva, Vesela; Faull, Peter; Hanni, Simon; Furger, Andre; Snijders, Ambrosius P; Speck, Christian; Martinez-Perez, Enrique

    2014-11-24

    Proper chromosome segregation during meiosis requires the assembly of the synaptonemal complex (SC) between homologous chromosomes. However, the SC structure itself is indifferent to homology, and poorly understood mechanisms that depend on conserved HORMA-domain proteins prevent ectopic SC assembly. Although HORMA-domain proteins are thought to regulate SC assembly as intrinsic components of meiotic chromosomes, here we uncover a key role for nuclear soluble HORMA-domain protein HTP-1 in the quality control of SC assembly. We show that a mutant form of HTP-1 impaired in chromosome loading provides functionality of an HTP-1-dependent checkpoint that delays exit from homology search-competent stages until all homolog pairs are linked by the SC. Bypassing of this regulatory mechanism results in premature meiotic progression and licensing of homology-independent SC assembly. These findings identify nuclear soluble HTP-1 as a regulator of early meiotic progression, suggesting parallels with the mode of action of Mad2 in the spindle assembly checkpoint. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Meiotic aneuploidy: its origins and induction following chemical treatment in Sordaria brevicollis.

    Science.gov (United States)

    Bond, D J; McMillan, L

    1979-08-01

    A system suitable for the detection of meiotic aneuploidy is described in which various different origins of the aneuploidy can be distinguished. Aneuploid meiotic products are detected as black disomic spores held in asci containing all the products of a single meiosis. Aneuploidy may result from nondisjunction or from a meiosis in which an extra replica of one of the chromosomes has been generated in some other way, e.g., extra replication. By using this system it has been shown that pFPA treatment increase aneuploidy, primarily through an effect on nondisjunction. Preliminary results with trifluralin have indicated that this compound, too, may increase aneuploidy. There is a good possibility that the system can be further developed to permit a more rapid screening using a random plating method; this will allow a more efficient two-part analysis of the effects of compounds under test.

  10. Meiotic behavior of two polyploid species of genus Pleurodema (Anura: Leiuperidae from central Argentina

    Directory of Open Access Journals (Sweden)

    Nancy E. Salas

    2014-06-01

    Full Text Available Polyploidy is an important evolutionary force but rare in vertebrates. However, in anurans, the genus Pleurodema has polyploid species, two of them tetraploid and one octoploid. The manner in which the chromosomes join in diakinesis can vary among species and, crucially, if they differ in their ploidy levels. In this work, we describe the meiotic configurations in two cryptic species from central Argentina, with different ploidy levels, Pleurodema kriegi (tetraploid and P. cordobae (octoploid. A total of 306 diakineses from 19 individuals were analyzed. In meiosis, P. kriegi form 22 bivalents, whereas P. cordobae exhibits variation in meiotic figures. We discuss the possible allo- and autopolyploid origin of these species, and we consider that the autopolyploid origin of P. cordobae from P. kriegi might be the most feasible.

  11. Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of Bactrocera oleae (Diptera: Tephritidae)

    Czech Academy of Sciences Publication Activity Database

    Drosopoulou, E.; Nakou, I.; Šíchová, Jindra; Kubíčková, S.; Marec, František; Mavragani-Tsipidou, P.

    2012-01-01

    Roč. 140, 4-6 (2012), s. 169-180 ISSN 0016-6707 R&D Projects: GA AV ČR IAA600960925 Grant - others:Ministry of Agriculture of the Czech Republic(CZ) MZE 0002716202; Grant Agency of the University of South Bohemia(CZ) GAJU 137/2010/P Institutional support: RVO:60077344 Keywords : chromosome painting * FISH * laser microdissection Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.681, year: 2012 http://link.springer.com/article/10.1007/s10709-012-9668-3

  12. [Meiotic abnormalities of oocytes from patients with endometriosis submitted to ovarian stimulation].

    Science.gov (United States)

    Barcelos, Ionara Diniz Evangelista Santos; Vieira, Rodolpho Cruz; Ferreira, Elisa Melo; Araújo, Maria Cristina Picinato Medeiros de; Martins, Wellington de Paula; Ferriani, Rui Alberto; Navarro, Paula Andrea de Albuquerque Salles

    2008-08-01

    to evaluate the meiotic spindle and the chromosome distribution of in vitro mature oocytes from stimulated cycles of infertile women with endometriosis, and with male and/or tubal infertility factors (Control Group), comparing the rates of in vitro maturation (IVM) between the two groups evaluated. fourteen patients with endometriosis and eight with male and/or tubal infertility factors, submitted to ovarian stimulation for intracytoplasmatic sperm injection have been prospectively and consecutively selected, and formed a Study and Control Group, respectively. Immature oocytes (46 and 22, respectively, from the Endometriosis and Control Groups) were submitted to IVM. Oocytes presenting extrusion of the first polar corpuscle were fixed and stained for microtubules and chromatin evaluation through immunofluorescence technique. Statistical analysis has been done by the Fisher's exact test, with statistical significance at pControl Groups, respectively). The chromosome and meiotic spindle organization was observed in 18 and 11 oocytes from the Endometriosis and Control Groups, respectively. In the Endometriosis Group, eight oocytes (44.4%) presented themselves as normal metaphase II (MII), three (16.7%) as abnormal MII, five (27.8%) were in telophase stage I and two (11.1%) underwent parthenogenetic activation. In the Control Group, five oocytes (45.4%) presented themselves as normal MII, three (27.3%) as abnormal MII, one (9.1%) was in telophase stage I and two (18.2%) underwent parthenogenetic activation. There was no significant difference in meiotic anomaly rate between the oocytes in MII from both groups. the present study data did not show significant differences in the IVM or in the meiotic anomalies rate between the IVM oocytes from stimulated cycles of patients with endometriosis, as compared with controls. Nevertheless, they have suggested a delay in the outcome of oocyte meiosis I from patients with endometriosis, shown by the higher proportion of oocytes in

  13. Nuclear Architecture of Mouse Spermatocytes: Chromosome Topology, Heterochromatin, and Nucleolus.

    Science.gov (United States)

    Berrios, Soledad

    2017-01-01

    The nuclear organization of spermatocytes in meiotic prophase I is primarily determined by the synaptic organization of the bivalents that are bound by their telomeres to the nuclear envelope and described as arc-shaped trajectories through the 3D nuclear space. However, over this basic meiotic organization, a spermatocyte nuclear architecture arises that is based on higher-ordered patterns of spatial associations among chromosomal domains from different bivalents that are conditioned by the individual characteristics of chromosomes and the opportunity for interactions between their domains. Consequently, the nuclear architecture is species-specific and prone to modification by chromosomal rearrangements. This model is valid for the localization of any chromosomal domain in the meiotic prophase nucleus. However, constitutive heterochromatin plays a leading role in shaping nuclear territories. Thus, the nuclear localization of nucleoli depends on the position of NORs in nucleolar bivalents, but the association among nucleolar chromosomes mainly depends on the presence of constitutive heterochromatin that does not affect the expression of the ribosomal genes. Constitutive heterochromatin and nucleoli form complex nuclear territories whose distribution in the nuclear space is nonrandom, supporting the hypothesis regarding the existence of a species-specific nuclear architecture in first meiotic prophase spermatocytes. © 2017 S. Karger AG, Basel.

  14. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination

    Czech Academy of Sciences Publication Activity Database

    Pokorná, M.; Rábová, Marie; Ráb, Petr; Ferguson-Smith, M. A.; Rens, W.; Kratochvíl, L.

    2010-01-01

    Roč. 18, č. 6 (2010), s. 809-820 ISSN 0967-3849 R&D Projects: GA ČR GAP506/10/0718; GA MŠk LC06073 Grant - others:GA ČR(CZ) GP206/06/P282 Program:GP Institutional research plan: CEZ:AV0Z50450515 Keywords : reptile cytogenetics * FISH * neo- sex hromosomes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.130, year: 2010

  15. Sex-biased gene expression during head development in a sexually dimorphic stalk-eyed fly.

    Directory of Open Access Journals (Sweden)

    Gerald S Wilkinson

    Full Text Available Stalk-eyed flies (family Diopsidae are a model system for studying sexual selection due to the elongated and sexually dimorphic eye-stalks found in many species. These flies are of additional interest because their X chromosome is derived largely from an autosomal arm in other flies. To identify candidate genes required for development of dimorphic eyestalks and investigate how sex-biased expression arose on the novel X, we compared gene expression between males and females using oligonucleotide microarrays and RNA from developing eyestalk tissue or adult heads in the dimorphic diopsid, Teleopsis dalmanni. Microarray analysis revealed sex-biased expression for 26% of 3,748 genes expressed in eye-antennal imaginal discs and concordant sex-biased expression for 86 genes in adult heads. Overall, 415 female-biased and 482 male-biased genes were associated with dimorphic eyestalk development but not differential expression in the adult head. Functional analysis revealed that male-biased genes are disproportionately associated with growth and mitochondrial function while female-biased genes are associated with cell differentiation and patterning or are novel transcripts. With regard to chromosomal effects, dosage compensation occurs by elevated expression of X-linked genes in males. Genes with female-biased expression were more common on the X and less common on autosomes than expected, while male-biased genes exhibited no chromosomal pattern. Rates of protein evolution were lower for female-biased genes but higher for genes that moved on or off the novel X chromosome. These findings cannot be due to meiotic sex chromosome inactivation or by constraints associated with dosage compensation. Instead, they could be consistent with sexual conflict in which female-biased genes on the novel X act primarily to reduce eyespan in females while other genes increase eyespan in both sexes. Additional information on sex-biased gene expression in other tissues and

  16. Mode of action, origin and structure of the Paternal Sex Ratio chromosome in the parasitoid wasp Trichogramma kaykai

    NARCIS (Netherlands)

    Vugt, van J.J.F.A.

    2005-01-01

    Selfish genetic elements are defined as genetic elements that have a replication advantage relative to the rest of the genome. They are ubiquitous in nature and were extensively reported for almost all species studied so far. A special type of selfish genetic element, the sex ratio distorter, is

  17. Imaging of Chromosome Dynamics in Mouse Testis Tissue by Immuno-FISH.

    Science.gov (United States)

    Scherthan, Harry

    2017-01-01

    The mouse (Mus musculus) represents the central mammalian genetic model system for biomedical and developmental research. Mutant mouse models have provided important insights into chromosome dynamics during the complex meiotic differentiation program that compensates for the genome doubling at fertilization. Homologous chromosomes (homologues) undergo dynamic pairing and recombine during first meiotic prophase before they become partitioned into four haploid sets by two consecutive meiotic divisions that lack an intervening S-phase. Fluorescence in situ hybridization (FISH) has been instrumental in the visualization and imaging of the dynamic reshaping of chromosome territories and mobility during prophase I, in which meiotic telomeres were found to act as pacemakers for the chromosome pairing dance. FISH combined with immunofluorescence (IF) co-staining of nuclear proteins has been instrumental for the visualization and imaging of mammalian meiotic chromosome behavior. This chapter describes FISH and IF methods for the analysis of chromosome dynamics in nuclei of paraffin-embedded mouse testes. The techniques have proven useful for fresh and archived paraffin testis material of several mammalian species.

  18. Gamma radiations induced meiotic abnormalities in cape gosseberry (Physalis peruviana Linn.)

    International Nuclear Information System (INIS)

    Gupta, S.K.

    1987-01-01

    The cytological alterations were systematically scored in Physalis peruviana after treatment with 5 to 60 Krads of gamma radiation. In control plant diplotenediakinesis revealed 24 bivalents and cytokinesis produced normal tetrads, whereas PMCs of differently treated plants showed various anomalies viz., altered configuration of chromosomes, clumping/sickness, fragments, bridges, laggards, unequal segregation and non-orientation of chromosomes and unequal groupings of chromosomes. Abnormal karyokinesis and/or cytokinesis led to the formation of abnormal sporads which later on causes pollen and plant sterility. While every type of anomaly is dose-dependent and tend to increase with advancing dose showing a fair degree of correlation with the dose of radiation. The persistence of meiotic abnormalities with reduce d frequency in M 2 generation also bears correlation with administered dose. (author). 10 refs

  19. Delayed manifestation and transmission bias of de novo chromosome mutations. Their relevance for radiation health effect

    International Nuclear Information System (INIS)

    Sasaki, Masao S.

    2006-01-01

    The origin and transmission of de novo chromosome mutations were reviewed on the basis of our chromosome studies in retinoblastoma patients and male infertility. In a series of 264 sporadic retinoblastoma families, gross chromosome rearrangements involving the RB1 locus were identified in 23 cases (8.7%), of which 16 were non-mosaic and 7 were mosaic mutations. The newly formed chromosome mutations, whether they were non-mosaic or mosaic, had a strong bias towards paternally derived chromosome, indicating that they shared a common mechanism where a pre-mutational event or instability is carried over to zygote by sperm and manifested as gross chromosome mutation at the early stages of development. The de novo chromosome mutations are preferentially transmitted through female carriers. This transmission bias is consistent with the finding of higher frequencies of translocation carriers in infertile men (7.69% versus 0.27% in general populations) in whom meiotic progression is severely suppressed, possibly through activation of meiotic checkpoints. Such a meiotic surveillance mechanism may minimize the spreading of newly-arisen chromosome mutations in populations. A quantitative model of meiotic surveillance mechanism is proposed and successfully applied to the published data on ''humped'' dose-response curves for radiation-induced spermatogonial reciprocal translocations in several mammalian species. (author)

  20. European gene mapping project (EUROGEM) : Breakpoint panels for human chromosomes based on the CEPH reference families

    NARCIS (Netherlands)

    Attwood, J; Bryant, SP; Bains, R; Povey, R; Povey, S; Rebello, M; Kapsetaki, M; Moschonas, NK; Grzeschik, KH; Otto, M; Dixon, M; Sudworth, HE; Kooy, RF; Wright, A; Teague, P; Terrenato, L; Vergnaud, G; Monfouilloux, S; Weissenbach, J; Alibert, O; Dib, C; Faure, S; Bakker, E; Pearson, NM; Vossen, RHAM; Gal, A; MuellerMyhsok, B; Cann, HM; Spurr, NK

    Meiotic breakpoint panels for human chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17; 18, 20 and X were constructed from genotypes from the CEPH reference families. Each recombinant chromosome included has a breakpoint well-supported with reference to defined quantitative criteria. The panels

  1. Male and female meiotic behaviour of an intrachromosomal insertion determined by preimplantation genetic diagnosis

    Directory of Open Access Journals (Sweden)

    Doshi Alpesh

    2010-02-01

    Full Text Available Abstract Background Two related family members, a female and a male balanced carrier of an intrachromosomal insertion on chromosome 7 were referred to our centre for preimplantation genetic diagnosis. This presented a rare opportunity to investigate the behaviour of the insertion chromosome during meiosis in two related carriers. The aim of this study was to carry out a detailed genetic analysis of the preimplantation embryos that were generated from the three treatment cycles for the male and two for the female carrier. Patients underwent in vitro fertilization and on day 3, 22 embryos from the female carrier and 19 embryos from the male carrier were biopsied and cells analysed by fluorescent in situ hybridization. Follow up analysis of 29 untransferred embryos was also performed for confirmation of the diagnosis and to obtain information on meiotic and mitotic outcome. Results In this study, the female carrier produced more than twice as many chromosomally balanced embryos as the male (76.5% vs. 36%, and two pregnancies were achieved for her. Follow up analysis showed that the male carrier had produced more highly abnormal embryos than the female (25% and 15% respectively and no pregnancies occurred for the male carrier and his partner. Conclusion This study compares how an intrachromosomal insertion has behaved in the meiotic and preimplantation stages of development in sibling male and female carriers. It confirms that PGD is an appropriate treatment in such cases. Reasons for the differing outcome for the two carriers are discussed.

  2. The roles of the Saccharomyces cerevisiae RecQ helicase SGS1 in meiotic genome surveillance.

    Directory of Open Access Journals (Sweden)

    Amit Dipak Amin

    2010-11-01

    Full Text Available The Saccharomyces cerevisiae RecQ helicase Sgs1 is essential for mitotic and meiotic genome stability. The stage at which Sgs1 acts during meiosis is subject to debate. Cytological experiments showed that a deletion of SGS1 leads to an increase in synapsis initiation complexes and axial associations leading to the proposal that it has an early role in unwinding surplus strand invasion events. Physical studies of recombination intermediates implicate it in the dissolution of double Holliday junctions between sister chromatids.In this work, we observed an increase in meiotic recombination between diverged sequences (homeologous recombination and an increase in unequal sister chromatid events when SGS1 is deleted. The first of these observations is most consistent with an early role of Sgs1 in unwinding inappropriate strand invasion events while the second is consistent with unwinding or dissolution of recombination intermediates in an Mlh1- and Top3-dependent manner. We also provide data that suggest that Sgs1 is involved in the rejection of 'second strand capture' when sequence divergence is present. Finally, we have identified a novel class of tetrads where non-sister spores (pairs of spores where each contains a centromere marker from a different parent are inviable. We propose a model for this unusual pattern of viability based on the inability of sgs1 mutants to untangle intertwined chromosomes. Our data suggest that this role of Sgs1 is not dependent on its interaction with Top3. We propose that in the absence of SGS1 chromosomes may sometimes remain entangled at the end of pre-meiotic replication. This, combined with reciprocal crossing over, could lead to physical destruction of the recombined and entangled chromosomes. We hypothesise that Sgs1, acting in concert with the topoisomerase Top2, resolves these structures.This work provides evidence that Sgs1 interacts with various partner proteins to maintain genome stability throughout

  3. Radiation-induced mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Parry, J M; Sharp, D; Tippins, R S; Parry, E M

    1979-06-01

    A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems we have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. The frequency of UV-light-induced monosomic colonies were reduced by post-treatment with photoreactivity light and both UV-light- and X-ray-induced monosomic colonies were reduced by liquid holding post-treatment under non-nutrient conditions. Both responses indicate an involvement of DNA-repair mechanisms in the removal of lesions which may lead to monosomy in yeast. This was further confirmed by the response of an excision-defective yeast strain which showed considerably increased sensitivity to the induction of monosomic colonies by UV-light treatment at low doses. Yeast cultures irradiated at different stages of growth showed variation in their responses to both UV-light and X-rays, cells at the exponential phase of growth show maximum sensitivity to the induction of monosomic colonies at low doses whereas stationary phase cultures showed maximum induction of monosomic colonies at high does. The frequencies of X-ray-induced chromosome aneuploidy during meiosis leading to the production of disomic spores was shown to be dependent upon the stage of meiosis at which the yeast cells were exposed to radiation. Cells which had proceeded beyond the DNA synthetic stage of meiosis were shown to produce disomic spores at considerably lower radiation doses than those cells which had only recently been inoculated into sporulation medium. The results obtained suggest that the yeast sustem may be suitable for the study of sensitivities of the various stages of meiotic cell division to the induction of chromosome aneuploidy after radiation exposure.

  4. Only a minority of sex chromosome abnormalities are detected by a national prenatal screening program for Down syndrome

    DEFF Research Database (Denmark)

    Viuff, Mette Hansen; Krag, Kirstine Stochholm; Uldbjerg, Niels

    2015-01-01

    significantly higher NT and lower PAPP-A compared with controls (all P legal abortion rate was high for all four syndromes (47,XXX: 24%; 47,XYY: 29%; Klinefelter syndrome: 48%, TS: 84%). For SCA fetuses carried to term, only TS fetuses had consistently lower birthweights...... and placenta weights than non-SCA controls (both P = 0.0001). A few SCA cases localized in DCCR could not be found in DFMD (n = 16). LIMITATIONS, REASON FOR CAUTION: Controls were matched on sex of the fetus of cases, meaning that all electively aborted fetuses (before week 12) were excluded, possibly reducing...

  5. Dissociable Effects of Sry and Sex Chromosome Complement on Activity, Feeding and Anxiety-Related Behaviours in Mice

    OpenAIRE

    Kopsida, Eleni; Lynn, Phoebe M.; Humby, Trevor; Wilkinson, Lawrence S.; Davies, William

    2013-01-01

    Hide Figures\\ud Abstract\\ud Introduction\\ud Materials and Methods\\ud Results\\ud Discussion\\ud Supporting Information\\ud Acknowledgments\\ud Author Contributions\\ud References\\ud Reader Comments (0)\\ud Figures\\ud Abstract\\ud \\ud Whilst gonadal hormones can substantially influence sexual differentiation of the brain, recent findings have suggested that sex-linked genes may also directly influence neurodevelopment. Here we used the well-established murine ‘four core genotype’ (FCG) model on a gon...

  6. Extensive fragmentation of the X chromosome in the bed bug Cimex lectularius Linnaeus, 1758 (Heteroptera, Cimicidae: a survey across Europe

    Directory of Open Access Journals (Sweden)

    David Sadílek

    2013-10-01

    Full Text Available Variation in the number of chromosomes was revealed in 61 samples of Cimex lectularius Linnaeus, 1758 from the Czech Republic and other European countries, hosted on Myotis Kaup, 1829 (4 and Homo sapiens Linnaeus, 1758 (57. The karyotype of all the specimens of C. lectularius analysed contained 26 autosomes and a varying number of the sex chromosomes. The number of sex chromosomes showed extensive variation, and up to 20 fragments were recorded. Altogether, 12 distinct karyotypes were distinguished. The male karyotypes consisted of 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 42 and 47 chromosomes. The females usually exhibited the number of chromosomes which was complementary to the number established in the males from the same sample. However, 11 polymorphic samples were revealed in which the karyotypes of females and males were not complementary each other. The complement with 2n = 26+X1X2Y was found in 44% of the specimens and 57,4% samples of bed bugs studied. The karyotypes with higher chromosome numbers as well as individuals with chromosomal mosaics were usually found within the samples exhibiting particularly extensive variation between individuals, and such complements were not found within samples contaning a few or single specimen. The occurrence of chromosomal mosaics with the karyotype constitution varying between cells of single individual was observed in five specimens (4.3% from five samples. We assume that polymorphism caused by fragmentation of the X chromosome may result in meiotic problems and non-disjunction can produce unbalanced gametes and result in lowered fitness of individuals carrying higher numbers of the X chromosome fragments. This effect should be apparently enhanced with the increasing number of the fragments and this may be the reason for the observed distribution pattern of individual karyotypes in the studied samples and the rarity of individuals with extremely high chromosome numbers. The assumed lowering of the

  7. Mutagenic Effect of Diethyl Sulphate (DES) on the Chromosomes of ...

    African Journals Online (AJOL)

    The effect was drastic on structure & morphology of the meiotic chromosomes. Many structural, physiological and numerical aberrations were observed and documented. Certain numerical changes such as induction of polyploids were attributed to the improvements observed in the expression of commercial characters in ...

  8. Cytogeography and chromosome evolution of subgenus Tridentatae of Artemisia (Asteraceae)

    Science.gov (United States)

    E. Durant McArthur; Stewart C. Sanderson

    1999-01-01

    The subgenus Tridentatae of Artemisia (Asteraceae: Anthemideae) is composed of 11 species of various taxonomic and geographic complexities. It is centered on Artemisia tridentata with its three widespread common subspecies and two more geographically confined ones. Meiotic chromosome counts on pollen mother cells...

  9. AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms.

    Directory of Open Access Journals (Sweden)

    Chloe Girard

    2015-07-01

    Full Text Available Meiotic crossovers (COs generate genetic diversity and are critical for the correct completion of meiosis in most species. Their occurrence is tightly constrained but the mechanisms underlying this limitation remain poorly understood. Here we identified the conserved AAA-ATPase FIDGETIN-LIKE-1 (FIGL1 as a negative regulator of meiotic CO formation. We show that Arabidopsis FIGL1 limits CO formation genome-wide, that FIGL1 controls dynamics of the two conserved recombinases DMC1 and RAD51 and that FIGL1 hinders the interaction between homologous chromosomes, suggesting that FIGL1 counteracts DMC1/RAD51-mediated inter-homologue strand invasion to limit CO formation. Further, depleting both FIGL1 and the previously identified anti-CO helicase FANCM synergistically increases crossover frequency. Additionally, we showed that the effect of mutating FANCM on recombination is much lower in F1 hybrids contrasting from the phenotype of inbred lines, while figl1 mutation equally increases crossovers in both contexts. This shows that the modes of action of FIGL1 and FANCM are differently affected by genomic contexts. We propose that FIGL1 and FANCM represent two successive barriers to CO formation, one limiting strand invasion, the other disassembling D-loops to promote SDSA, which when both lifted, leads to a large increase of crossovers, without impairing meiotic progression.

  10. Contributions of classical and molecular cytogenetic in meiotic analysis and pollen viability for plant breeding.

    Science.gov (United States)

    Lavinscky, M P; Souza, M M; Silva, G S; Melo, C A F

    2017-09-27

    The analysis of meiotic behavior has been widely used in the study of plants as they provide relevant information about the viability of a species. Meiosis boasts a host of highly conserved events and changes in genes that control these events will give rise to irregularities that can alter the normal course of meiosis and may lead to complete sterility of the plant. The recombination of genes that occur in meiosis is an important event to generate variability and has been important in studies for genetic improvement and to create viable hybrids. The use of fluorescence in situ hybridization and genomic in situ hybridization (GISH) in meiosis allows the localization of specific regions, enables to differentiate genomes in a hybrid, permits to observe the pairing of homoeologous chromosomes, and if there was a recombination between the genomes of progenitor species. Furthermore, the GISH allows us to observe the close relationship between the species involved. This article aims to report over meiosis studies on plants and hybrids, the use and importance of molecular cytogenetic in meiotic analysis and contributions of meiotic analysis in breeding programs.

  11. Model of chromosome associations in Mus domesticus spermatocytes

    Directory of Open Access Journals (Sweden)

    Soledad Berríos

    2010-01-01

    Full Text Available Understanding the spatial organization of the chromosomes in meiotic nuclei is crucial to our knowledge of the genome's functional regulation, stability and evolution. This study examined the nuclear architecture of Mus domesticus 2n=40 pachytene spermatocytes, analyzing the associations among autosomal bivalents via their Centromere Telomere Complexes (CTC. The study developed a nuclear model in which each CTC was represented as a 3D computer object. The probability of a given combination of associations among CTC was estimated by simulating a random distribution of 19 indistinguishable CTC over n indistinguishable "cells" on the nuclear envelope. The estimated association frequencies resulting from this numerical approach were similar to those obtained by quantifying actual associations in pachytene spermatocyte spreads. The nuclear localization and associations of CTC through the meiotic prophase in well-preserved nuclei were also analyzed. We concluded that throughout the meiotic prophase: 1 the CTC of autosomal bivalents are not randomly distributed in the nuclear space; 2 the CTC associate amongst themselves, probably at random, over a small surface of the nuclear envelope, at the beginning of the meiotic prophase; 3 the initial aggregation of centromere regions occurring in lepto-zygotene likely resolves into several smaller aggregates according to patterns of preferential partitioning; 4 these smaller aggregates spread over the inner face of the nuclear envelope, remaining stable until advanced stages of the meiotic prophase or even until the first meiotic division.

  12. Identification of the linkage group of the Z sex chromosomes of the sand lizard (Lacerta agilis, Lacertidae) and elucidation of karyotype evolution in lacertid lizards.

    Science.gov (United States)

    Srikulnath, Kornsorn; Matsubara, Kazumi; Uno, Yoshinobu; Nishida, Chizuko; Olsson, Mats; Matsuda, Yoichi

    2014-12-01

    The sand lizard (Lacerta agilis, Lacertidae) has a chromosome number of 2n = 38, with 17 pairs of acrocentric chromosomes, one pair of microchromosomes, a large acrocentric Z chromosome, and a micro-W chromosome. To investigate the process of karyotype evolution in L. agilis, we performed chromosome banding and fluorescent in situ hybridization for gene mapping and constructed a cytogenetic map with 86 functional genes. Chromosome banding revealed that the Z chromosome is the fifth largest chromosome. The cytogenetic map revealed homology of the L. agilis Z chromosome with chicken chromosomes 6 and 9. Comparison of the L. agilis cytogenetic map with those of four Toxicofera species with many microchromosomes (Elaphe quadrivirgata, Varanus salvator macromaculatus, Leiolepis reevesii rubritaeniata, and Anolis carolinensis) showed highly conserved linkage homology of L. agilis chromosomes (LAG) 1, 2, 3, 4, 5(Z), 7, 8, 9, and 10 with macrochromosomes and/or macrochromosome segments of the four Toxicofera species. Most of the genes located on the microchromosomes of Toxicofera were localized to LAG6, small acrocentric chromosomes (LAG11-18), and a microchromosome (LAG19) in L. agilis. These results suggest that the L. agilis karyotype resulted from frequent fusions of microchromosomes, which occurred in the ancestral karyotype of Toxicofera and led to the disappearance of microchromosomes and the appearance of many small macrochromosomes.

  13. XX Disorder of Sex Development is associated with an insertion on chromosome 9 and downregulation of RSPO1 in dogs (Canis lupus familiaris.

    Directory of Open Access Journals (Sweden)

    Vicki N Meyers-Wallen

    Full Text Available Remarkable progress has been achieved in understanding the mechanisms controlling sex determination, yet the cause for many Disorders of Sex Development (DSD remains unknown. Of particular interest is a rare XX DSD subtype in which individuals are negative for SRY, the testis determining factor on the Y chromosome, yet develop testes or ovotestes, and both of these phenotypes occur in the same family. This is a naturally occurring disorder in humans (Homo sapiens and dogs (C. familiaris. Phenotypes in the canine XX DSD model are strikingly similar to those of the human XX DSD subtype. The purposes of this study were to identify 1 a variant associated with XX DSD in the canine model and 2 gene expression alterations in canine embryonic gonads that could be informative to causation. Using a genome wide association study (GWAS and whole genome sequencing (WGS, we identified a variant on C. familiaris autosome 9 (CFA9 that is associated with XX DSD in the canine model and in affected purebred dogs. This is the first marker identified for inherited canine XX DSD. It lies upstream of SOX9 within the canine ortholog for the human disorder, which resides on 17q24. Inheritance of this variant indicates that XX DSD is a complex trait in which breed genetic background affects penetrance. Furthermore, the homozygous variant genotype is associated with embryonic lethality in at least one breed. Our analysis of gene expression studies (RNA-seq and PRO-seq in embryonic gonads at risk of XX DSD from the canine model identified significant RSPO1 downregulation in comparison to XX controls, without significant upregulation of SOX9 or other known testis pathway genes. Based on these data, a novel mechanism is proposed in which molecular lesions acting upstream of RSPO1 induce epigenomic gonadal mosaicism.

  14. XX Disorder of Sex Development is associated with an insertion on chromosome 9 and downregulation of RSPO1 in dogs (Canis lupus familiaris).

    Science.gov (United States)

    Meyers-Wallen, Vicki N; Boyko, Adam R; Danko, Charles G; Grenier, Jennifer K; Mezey, Jason G; Hayward, Jessica J; Shannon, Laura M; Gao, Chuan; Shafquat, Afrah; Rice, Edward J; Pujar, Shashikant; Eggers, Stefanie; Ohnesorg, Thomas; Sinclair, Andrew H

    2017-01-01

    Remarkable progress has been achieved in understanding the mechanisms controlling sex determination, yet the cause for many Disorders of Sex Development (DSD) remains unknown. Of particular interest is a rare XX DSD subtype in which individuals are negative for SRY, the testis determining factor on the Y chromosome, yet develop testes or ovotestes, and both of these phenotypes occur in the same family. This is a naturally occurring disorder in humans (Homo sapiens) and dogs (C. familiaris). Phenotypes in the canine XX DSD model are strikingly similar to those of the human XX DSD subtype. The purposes of this study were to identify 1) a variant associated with XX DSD in the canine model and 2) gene expression alterations in canine embryonic gonads that could be informative to causation. Using a genome wide association study (GWAS) and whole genome sequencing (WGS), we identified a variant on C. familiaris autosome 9 (CFA9) that is associated with XX DSD in the canine model and in affected purebred dogs. This is the first marker identified for inherited canine XX DSD. It lies upstream of SOX9 within the canine ortholog for the human disorder, which resides on 17q24. Inheritance of this variant indicates that XX DSD is a complex trait in which breed genetic background affects penetrance. Furthermore, the homozygous variant genotype is associated with embryonic lethality in at least one breed. Our analysis of gene expression studies (RNA-seq and PRO-seq) in embryonic gonads at risk of XX DSD from the canine model identified significant RSPO1 downregulation in comparison to XX controls, without significant upregulation of SOX9 or other known testis pathway genes. Based on these data, a novel mechanism is proposed in which molecular lesions acting upstream of RSPO1 induce epigenomic gonadal mosaicism.

  15. Expression of arf tumor suppressor in spermatogonia facilitates meiotic progression in male germ cells.

    Directory of Open Access Journals (Sweden)

    Michelle L Churchman

    2011-07-01

    Full Text Available The mammalian Cdkn2a (Ink4a-Arf locus encodes two tumor suppressor proteins (p16(Ink4a and p19(Arf that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb and the p53 transcription factor in response to oncogenic stress. Although p19(Arf is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19(Arf in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell-autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate γ-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells.

  16. Tissue- and stage-dependent dosage compensation on the Neo-X chromosome in drosophila pseudoobscura

    KAUST Repository

    Nozawa, Masafumi; Fukuda, Nana; Ikeo, Kazuho; Gojobori, Takashi

    2013-01-01

    Sex chromosome dosage compensation (DC) is widely accepted in various organisms. This concept is mostly supported by comparisons of gene expression between chromosomes and between sexes. However, genes on the X chromosome and autosomes are mostly

  17. Combinatorial regulation of meiotic holliday junction resolution in C. elegans by HIM-6 (BLM) helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 nucleases.

    Science.gov (United States)

    Agostinho, Ana; Meier, Bettina; Sonneville, Remi; Jagut, Marlène; Woglar, Alexander; Blow, Julian; Jantsch, Verena; Gartner, Anton

    2013-01-01

    Holliday junctions (HJs) are cruciform DNA structures that are created during recombination events. It is a matter of considerable importance to determine the resolvase(s) that promote resolution of these structures. We previously reported that C. elegans GEN-1 is a symmetrically cleaving HJ resolving enzyme required for recombinational repair, but we could not find an overt role in meiotic recombination. Here we identify C. elegans proteins involved in resolving meiotic HJs. We found no evidence for a redundant meiotic function of GEN-1. In contrast, we discovered two redundant HJ resolution pathways likely coordinated by the SLX-4 scaffold protein and also involving the HIM-6/BLM helicase. SLX-4 associates with the SLX-1, MUS-81 and XPF-1 nucleases and has been implicated in meiotic recombination in C. elegans. We found that C. elegans [mus-81; xpf-1], [slx-1; xpf-1], [mus-81; him-6] and [slx-1; him-6] double mutants showed a similar reduction in survival rates as slx-4. Analysis of meiotic diakinesis chromosomes revealed a distinct phenotype in these double mutants. Instead of wild-type bivalent chromosomes, pairs of "univalents" linked by chromatin bridges occur. These linkages depend on the conserved meiosis-specific transesterase SPO-11 and can be restored by ionizing radiation, suggesting that they represent unresolved meiotic HJs. This suggests the existence of two major resolvase activities, one provided by XPF-1 and HIM-6, the other by SLX-1 and MUS-81. In all double mutants crossover (CO) recombination is reduced but not abolished, indicative of further redundancy in meiotic HJ resolution. Real time imaging revealed extensive chromatin bridges during the first meiotic division that appear to be eventually resolved in meiosis II, suggesting back-up resolution activities acting at or after anaphase I. We also show that in HJ resolution mutants, the restructuring of chromosome arms distal and proximal to the CO still occurs, suggesting that CO initiation

  18. Correlation between pairing initiation sites, recombination nodules and meiotic recombination in Sordaria macrospora.

    Science.gov (United States)

    Zickler, D; Moreau, P J; Huynh, A D; Slezec, A M

    1992-09-01

    The decrease of meiotic exchanges (crossing over and conversion) in two mutants of Sordaria macrospora correlated strongly with a reduction of chiasmata and of both types of "recombination nodules." Serial section reconstruction electron microscopy was used to compare the synapsis pattern of meiotic prophase I in wild type and mutants. First, synapsis occurred but the number of synaptonemal complex initiation sites was reduced in both mutants. Second, this reduction was accompanied by, or resulted in, modifications of the pattern of synapsis. Genetic and synaptonemal complex maps were compared in three regions along one chromosome arm divided into well marked intervals. Reciprocal exchange frequencies and number of recombination nodules correlated in wild type in the three analyzed intervals, but disparity was found between the location of recombination nodules and exchanges in the mutants. Despite the twofold exchange decrease, sections of the genome such as the short arm of chromosome 2 and telomere regions were sheltered from nodule decrease and from pairing modifications. This indicated a certain amount of diversity in the control of these features and suggested that exchange frequency was dependent not only on the amount of effective pairing but also on the localization of the pairing sites, as revealed by the synaptonemal complex progression in the mutants.

  19. Molecular Basis for Enhancement of the Meiotic DMCI Recombinase by RAD51AP1

    Energy Technology Data Exchange (ETDEWEB)

    Dray, Eloise; Dunlop, Myun Hwa; Kauppi, Liisa; San Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick

    2010-11-05

    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 Associated Protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional co-operation is dependent on complex formation between DMC1 and RAD51AP1, and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci co-localize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

  20. Meiotic behaviour and its implication on species inter-relationship in the genus Curcuma (Linnaeus, 1753 (Zingiberaceae

    Directory of Open Access Journals (Sweden)

    Judith Mary Lamo

    2017-10-01

    Full Text Available In this paper, detailed meiotic analysis was investigated in seven species of Curcuma (Linnaeus, 1753 which can contribute significantly to our understanding about species inter-relationship, speciation and evolution. The species were divided into two groups viz., Group I having 2n = 42 (C. comosa Roxburgh, 1810, C. haritha Mangaly & M.Sabu, 1993, C. mangga Valeton & Zijp, 1917, and C. motana Roxburgh, 1800 and Group II with 2n = 63 (C. caesia Roxburgh, 1810, C. longa Linnaeus, 1753 and C. sylvatica Valeton, 1918. Both groups display varying degree of chromosome associations. Group I species showed the prevalence of bivalents, however occasional quadrivalents besides univalents were also encountered. About 48% of the PMCs analyzed in C. mangga showed 21 bivalents (II meiotic configurations, 32% in C. comosa and 16% in C. haritha. Group II species as expected showed the presence of trivalents besides bivalents, univalents and quadrivalents. About 32% of the PMCs analyzed at MI in C. sylvatica showed 21 trivalents (III meiotic configurations, 24% in C. longa and 8% in C. caesia. Overall, low frequency of multivalent associations as compared to bivalents indicates that Curcuma is an allopolyploid complex. Moreover, x = 21 is too high a basic number, therefore, we suggest that the genus Curcuma has evolved by hybridization of species with different chromosome numbers of 2n = 24 and 18, resulting in a dibasic amphidiploid species.

  1. Meiotic transmission of an in vitro-assembled autonomous maize minichromosome.

    Directory of Open Access Journals (Sweden)

    Shawn R Carlson

    2007-10-01

    Full Text Available Autonomous chromosomes are generated in yeast (yeast artificial chromosomes and human fibrosarcoma cells (human artificial chromosomes by introducing purified DNA fragments that nucleate a kinetochore, replicate, and segregate to daughter cells. These autonomous minichromosomes are convenient for manipulating and delivering DNA segments containing multiple genes. In contrast, commercial production of transgenic crops relies on methods that integrate one or a few genes into host chromosomes; extensive screening to identify insertions with the desired expression level, copy number, structure, and genomic location; and long breeding programs to produce varieties that carry multiple transgenes. As a step toward improving transgenic crop production, we report the development of autonomous maize minichromosomes (MMCs. We constructed circular MMCs by combining DsRed and nptII marker genes with 7-190 kb of genomic maize DNA fragments containing satellites, retroelements, and/or other repeats commonly found in centromeres and using particle bombardment to deliver these constructs into embryogenic maize tissue. We selected transformed cells, regenerated plants, and propagated their progeny for multiple generations in the absence of selection. Fluorescent in situ hybridization and segregation analysis demonstrated that autonomous MMCs can be mitotically and meiotically maintained. The MMC described here showed meiotic segregation ratios approaching Mendelian inheritance: 93% transmission as a disome (100% expected, 39% transmission as a monosome crossed to wild type (50% expected, and 59% transmission in self crosses (75% expected. The fluorescent DsRed reporter gene on the MMC was expressed through four generations, and Southern blot analysis indicated the encoded genes were intact. This novel approach for plant transformation can facilitate crop biotechnology by (i combining several trait genes on a single DNA fragment, (ii arranging genes in a defined

  2. Ultrastructural characterization of the meiotic prophase. A tool in the assessment of radiation damage in man

    Energy Technology Data Exchange (ETDEWEB)

    Holm, P.B.; Rasmussen, S.W.; von Wettstein, D. (Carlsberg Lab., Copenhagen (Denmark). Dept. of Physiology)

    1982-01-01

    The three-dimensional reconstruction of meiotic nuclei from serial sections micrographed in the electron microscope has provided information about man and several other organisms that is not obtainable by light microscopy or biochemical analysis. At zygotene, the previously unpaired chromosomes align and form synaptonemal complexes between homologous chromosome segments either by progressive initiation from the telomeres or by interstitial recognition. Chromosome and bivalent interlocking at zygotene is a regular phenomenon and occurs at a frequency of 0.7-4.0 per nucleus in samples of meiocytes analyzed from different organisms. This frequency is reduced to 0.1 per nucleus at pachytene. The interlockings are resolved by breakage and precise rejoining of the broken ends. This breakage and rejoining can also occur in the absence of the DNA nicking and repair involved in crossing-over. The synaptonemal complexes combining homologous chromosome segments are stabilized by recombination nodules, after which a second round of synaptonemal complex formation between as yet unpaired or unstably paired chromosome segments occurs, apparently for optimization of bivalent formation. Nonhomologous pairing with the synaptonemal complex can take place in this phase of pachytene.

  3. Meiotic and mitotic analyses of a reciprocal translocation in pisum sativum

    International Nuclear Information System (INIS)

    Muller, D.

    1974-01-01

    After X-irradiation of air-dried seeds of Pisum sativum, mutant 210 A was selected on the basis of the characteristic 'low number of seeds per pod', that segregates during following generations. Studies of pollen show a reduced fertility of 49.4% in about 50% of the plants. In meiotic metaphase I association of 4 chromosomes were observed in about 90% PMC in which more than half showed co-orientation of centromeres. A 3:1 segregation of the 4 linking chromosomes appeared in about 24% of all cases. Laggards, bridges and fragments reached a frequency of 11% in anaphase II. Seed production per pod in 2 vegetative periods varied from 63-67%; seed setting per plant fluctuated in the same year, between 55% and 43%. The analysis of karyotype proved the presumption of a simple reciprocal translocation. The exchange occurred between the long arms of the chromosomes 3 and 5. The break position is believed to be situated near the centromers of chromosome 3 and the lower half of the long arm of chromosome 5. (author)

  4. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    2013-05-01

    Full Text Available In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae. The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome or both sex chromosomes (X and Y chromosomes. This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

  5. Cytoplasmic and Genomic Effects on Meiotic Pairing in Brassica Hybrids and Allotetraploids from Pair Crosses of Three Cultivated Diploids

    Science.gov (United States)

    Cui, Cheng; Ge, Xianhong; Gautam, Mayank; Kang, Lei; Li, Zaiyun

    2012-01-01

    Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and “fixed heterosis” in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids. PMID:22505621

  6. X Chromosome Dose and Sex Bias in Autoimmune Diseases: Increased Prevalence of 47,XXX in Systemic Lupus Erythematosus and Sjögren's Syndrome.

    Science.gov (United States)

    Liu, Ke; Kurien, Biji T; Zimmerman, Sarah L; Kaufman, Kenneth M; Taft, Diana H; Kottyan, Leah C; Lazaro, Sara; Weaver, Carrie A; Ice, John A; Adler, Adam J; Chodosh, James; Radfar, Lida; Rasmussen, Astrid; Stone, Donald U; Lewis, David M; Li, Shibo; Koelsch, Kristi A; Igoe, Ann; Talsania, Mitali; Kumar, Jay; Maier-Moore, Jacen S; Harris, Valerie M; Gopalakrishnan, Rajaram; Jonsson, Roland; Lessard, James A; Lu, Xianglan; Gottenberg, Jacques-Eric; Anaya, Juan-Manuel; Cunninghame-Graham, Deborah S; Huang, Andrew J W; Brennan, Michael T; Hughes, Pamela; Illei, Gabor G; Miceli-Richard, Corinne; Keystone, Edward C; Bykerk, Vivian P; Hirschfield, Gideon; Xie, Gang; Ng, Wan-Fai; Nordmark, Gunnel; Eriksson, Per; Omdal, Roald; Rhodus, Nelson L; Rischmueller, Maureen; Rohrer, Michael; Segal, Barbara M; Vyse, Timothy J; Wahren-Herlenius, Marie; Witte, Torsten; Pons-Estel, Bernardo; Alarcon-Riquelme, Marta E; Guthridge, Joel M; James, Judith A; Lessard, Christopher J; Kelly, Jennifer A; Thompson, Susan D; Gaffney, Patrick M; Montgomery, Courtney G; Edberg, Jeffrey C; Kimberly, Robert P; Alarcón, Graciela S; Langefeld, Carl L; Gilkeson, Gary S; Kamen, Diane L; Tsao, Betty P; McCune, W Joseph; Salmon, Jane E; Merrill, Joan T; Weisman, Michael H; Wallace, Daniel J; Utset, Tammy O; Bottinger, Erwin P; Amos, Christopher I; Siminovitch, Katherine A; Mariette, Xavier; Sivils, Kathy L; Harley, John B; Scofield, R Hal

    2016-05-01

    More than 80% of autoimmune disease predominantly affects females, but the mechanism for this female bias is poorly understood. We suspected that an X chromosome dose effect accounts for this, and we undertook this study to test our hypothesis that trisomy X (47,XXX; occurring in ∼1 in 1,000 live female births) would be increased in patients with female-predominant diseases (systemic lupus erythematosus [SLE], primary Sjögren's syndrome [SS], primary biliary cirrhosis, and rheumatoid arthritis [RA]) compared to patients with diseases without female predominance (sarcoidosis) and compared to controls. All subjects in this study were female. We identified subjects with 47,XXX using aggregate data from single-nucleotide polymorphism arrays, and, when possible, we confirmed the presence of 47,XXX using fluorescence in situ hybridization or quantitative polymerase chain reaction. We found 47,XXX in 7 of 2,826 SLE patients and in 3 of 1,033 SS patients, but in only 2 of 7,074 controls (odds ratio in the SLE and primary SS groups 8.78 [95% confidence interval 1.67-86.79], P = 0.003 and odds ratio 10.29 [95% confidence interval 1.18-123.47], P = 0.02, respectively). One in 404 women with SLE and 1 in 344 women with SS had 47,XXX. There was an excess of 47,XXX among SLE and SS patients. The estimated prevalence of SLE and SS in women with 47,XXX was ∼2.5 and ∼2.9 times higher, respectively, than that in women with 46,XX and ∼25 and ∼41 times higher, respectively, than that in men with 46,XY. No statistically significant increase of 47,XXX was observed in other female-biased diseases (primary biliary cirrhosis or RA), supporting the idea of multiple pathways to sex bias in autoimmunity. © 2016, American College of Rheumatology.

  7. X Chromosome Dose and Sex Bias in Autoimmune Diseases: Increased 47,XXX in Systemic Lupus Erythematosus and Sjögren’s Syndrome

    Science.gov (United States)

    Liu, Ke; Kurien, Biji T.; Zimmerman, Sarah L.; Kaufman, Kenneth M.; Taft, Diana H.; Kottyan, Leah C.; Lazaro, Sara; Weaver, Carrie A.; Ice, John A.; Adler, Adam J.; Chodosh, James; Radfar, Lida; Rasmussen, Astrid; Stone, Donald U.; Lewis, David M.; Li, Shibo; Koelsch, Kristi A.; Igoe, Ann; Talsania, Mitali; Kumar, Jay; Maier-Moore, Jacen S.; Harris, Valerie M.; Gopalakrishnan, Rajaram; Jonsson, Roland; Lessard, James A.; Lu, Xianglan; Gottenberg, Jacques-Eric; Anaya, Juan-Manuel; Cunninghame-Graham, Deborah S.; Huang, Andrew J. W.; Brennan, Michael T.; Hughes, Pamela; Illei, Gabor G.; Miceli-Richard, Corinne; Keystone, Edward C.; Bykerk, Vivian P.; Hirschfield, Gideon; Xie, Gang; Ng, Wan-Fai; Nordmark, Gunnel; Eriksson, Per; Omdal, Roald; Rhodus, Nelson L.; Rischmueller, Maureen; Rohrer, Michael; Segal, Barbara M.; Vyse, Timothy J.; Wahren-Herlenius, Marie; Witte, Torsten; Pons-Estel, Bernardo; Alarcon-Riquelme, Marta E.; Guthridge, Joel M.; James, Judith A.; Lessard, Christopher J.; Kelly, Jennifer A.; Thompson, Susan D.; Gaffney, Patrick M.; Montgomery, Courtney G.; Edberg, Jeffrey C; Kimberly, Robert P; Alarcón, Graciela S.; Langefeld, Carl L.; Gilkeson, Gary S.; Kamen, Diane L.; Tsao, Betty P.; McCune, W. Joseph; Salmon, Jane E.; Merrill, Joan T.; Weisman, Michael H; Wallace, Daniel J; Utset, Tammy O; Bottinger, Erwin P.; Amos, Christopher I.; Siminovitch, Katherine A.; Mariette, Xavier; Sivils, Kathy L.

    2016-01-01

    Objective More than 80% of autoimmune disease is female dominant, but the mechanism for this female bias is poorly understood. We suspected an X chromosome dose effect and hypothesized that trisomy X (47,XXX , 1 in ~1,000 live female births) would be increased in female predominant diseases (e.g. systemic lupus erythematosus [SLE], primary Sjögren’s syndrome [SS], primary biliary cirrhosis [PBC] and rheumatoid arthritis [RA]) compared to diseases without female predominance (sarcoidosis) and controls. Methods We identified 47,XXX subjects using aggregate data from single nucleotide polymorphism (SNP) arrays and confirmed, when possible, by fluorescent in situ hybridization (FISH) or quantitative polymerase chain reaction (q-PCR). Results We found 47,XXX in seven of 2,826 SLE and three of 1,033 SS female patients, but only in two of the 7,074 female controls (p=0.003, OR=8.78, 95% CI: 1.67-86.79 and p=0.02, OR=10.29, 95% CI: 1.18-123.47; respectively). One 47,XXX subject was present for ~404 SLE women and ~344 SS women. 47,XXX was present in excess among SLE and SS subjects. Conclusion The estimated prevalence of SLE and SS in women with 47,XXX was respectively ~2.5 and ~2.9 times higher than in 46,XX women and ~25 and ~41 times higher than in 46,XY men. No statistically significant increase of 47,XXX was observed in other female-biased diseases (PBC or RA), supporting the idea of multiple pathways to sex bias in autoimmunity. PMID:26713507

  8. Sex chromosomes and sex determination in Lepidoptera

    Czech Academy of Sciences Publication Activity Database

    Traut, W.; Sahara, K.; Marec, František

    1[2007], č. 6 (2008), s. 332-346 ISSN 1661-5425 R&D Projects: GA ČR GA206/06/1860 Institutional research plan: CEZ:AV0Z50070508 Keywords : balanced lethal * butterfly * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.000, year: 2008

  9. Comparison of meiotic abnormalities induced by gamma-rays between a diploid and a tetraploid species of physalis

    International Nuclear Information System (INIS)

    Gupta, S.K.; Roy, S.K.

    1985-01-01

    Radiosensitivity of a diploid (P. ixocarpa) and a tetraploid (P. peruviana) species of Physalis has been studied. Meiotic abnormalities induced by γ-rays were compared in both species and found that it was always greater in tetraploid than in diploid species at each corresponding dose. The tetraploid plant due to greater chromosomal volume is more vulnerable to radiation hits and its immediate consequences are expected to contribute to the formation of sterile pollen, but this defect could be overcome by the buffering action of the unaltered genes over the altered ones at multiple loci, which normalizes the induced plant sterility. The diploid P. ixocarpa exhibited higher radiosensitivity than the tetraploid P. peruviana. Comparison between the frequencies of meiotic anomalies of M 2 and M 1 indicated that the latter has exaggerated values on these at all exposure levels. The lowered values of M 2 indicated their elimination through diplontic selection or intrasomatic or competitive elimination during the course of time lapse. (author)

  10. Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta)

    KAUST Repository

    Fučíková, Karolina

    2015-04-06

    © 2015 Phycological Society of America. Sexual reproduction is widespread in eukaryotes and is well documented in chlorophytan green algae. In this lineage, however, the Trebouxiophyceae represent a striking exception: in contrast to its relatives Chlorophyceae and Ulvophyceae this group appears to be mostly asexual, as fertilization has been rarely observed. Assessments of sexual reproduction in the Trebouxiophyceae have been based on microscopic observation of gametes fusing. New genomic data offer now the opportunity to check for the presence of meiotic genes, which represent an indirect evidence of a sexual life cycle. Using genomic and transcriptomic data for 12 taxa spanning the phylogenetic breadth of the class, we tried to clarify whether genuine asexuality or cryptic sexuality is the most likely case for the numerous putatively asexual trebouxiophytes. On the basis of these data and a bibliographic review, we conclude that the view of trebouxiophytes as primarily asexual is incorrect. In contrast to the limited number of reports of fertilization, meiotic genes were found in all genomes and transcriptomes examined, even in species presumed asexual. In the taxa examined the totality or majority of the genes were present, Helicosporidium and Auxenochlorella being the only partial exceptions (only four genes present). The evidence of sex provided by the meiotic genes is phylogenetically widespread in the class and indicates that sexual reproduction is not associated with any particular morphological or ecological trait. On the basis of the results, we expect that the existence of the meiotic genes will be documented in all trebouxiophycean genomes that will become available in the future.

  11. BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice.

    Directory of Open Access Journals (Sweden)

    Yulong Liang

    2010-01-01

    Full Text Available BRIT1 protein (also known as MCPH1 contains 3 BRCT domains which are conserved in BRCA1, BRCA2, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. BRIT1 mutations or aberrant expression are found in primary microcephaly patients as well as in cancer patients. Recent in vitro studies suggest that BRIT1/MCPH1 functions as a novel key regulator in the DNA damage response pathways. To investigate its physiological role and dissect the underlying mechanisms, we generated BRIT1(-/- mice and identified its essential roles in mitotic and meiotic recombination DNA repair and in maintaining genomic stability. Both BRIT1(-/- mice and mouse embryonic fibroblasts (MEFs were hypersensitive to gamma-irradiation. BRIT1(-/- MEFs and T lymphocytes exhibited severe chromatid breaks and reduced RAD51 foci formation after irradiation. Notably, BRIT1(-/- mice were infertile and meiotic homologous recombination was impaired. BRIT1-deficient spermatocytes exhibited a failure of chromosomal synapsis, and meiosis was arrested at late zygotene of prophase I accompanied by apoptosis. In mutant spermatocytes, DNA double-strand breaks (DSBs were formed, but localization of RAD51 or BRCA2 to meiotic chromosomes was severely impaired. In addition, we found that BRIT1 could bind to RAD51/BRCA2 complexes and that, in the absence of BRIT1, recruitment of RAD51 and BRCA2 to chromatin was reduced while their protein levels were not altered, indicating that BRIT1 is involved in mediating recruitment of RAD51/BRCA2 to the damage site. Collectively, our BRIT1-null mouse model demonstrates that BRIT1 is essential for maintaining genomic stability in vivo to protect the hosts from both programmed and irradiation-induced DNA damages, and its depletion causes a failure in both mitotic and meiotic recombination DNA repair via impairing RAD51/BRCA2's function and as a result leads to infertility and genomic instability in mice.

  12. System for the detection of chromosomal rearrangements using Sordaria macrospora

    Energy Technology Data Exchange (ETDEWEB)

    Arnaise, S.; Leblon, G.; Lares, L. (Paris-11 Univ., 91 - Orsay (France). Lab. de Biologie Cellulaire et Genetique)

    1984-01-01

    A system is described for the detection and diagnosis of induced chromosomal rearrangement using Sordaria macrospora. The system uses the property of the rearrangement to produce defective white ascospores as meiotic progeny from heterozygous crosses. Two reconstruction experiments have shown that this system is able to give reliable quantitative measures of rearrangement frequencies. Evidence for a photoreactivation process was obtained, suggesting that pyrimidine dimers may well be an important lesion in UV-induced chromosomal rearrangement. No evidence of induction of chromosomal rearrangement was obtained in experiments with the powerful chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine.

  13. Accuracy of preimplantation genetic diagnosis (PGD) of single gene and chromosomal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Verlinsky, Y.; Strom, C.; Rechitsky, S. [Reproductive Genetics Institute, Chicage, IL (United States)] [and others

    1994-09-01

    We have developed a polar body inferred approach for preconception diagnosis of single gene and chromosomal disorders. Preconception PCR or FISH analysis was performed in a total of 310 first polar bodies for the following genetic conditions: cystic fibrosis, hemophilia A, alpha-1-antitrypsin deficiency, Tay Sachs disease, retinitis pigmentosa and common chromosomal trisomies. An important advantage of this approach is the avoidance of sperm (DNA) contamination, which is the major problem of PGD. We are currently applying FISH analysis of biopsied blastomeres, in combination with PCR or separately, and have demonstrated a significant improvement of the accuracy of PGD of X-linked disorders at this stage. Our data have also demonstrated feasibility of the application of FISH technique for PGD of chromosomal disorders. It was possible to detect chromosomal non-disjunctions and chromatid malsegregations in the first meiotic division, as well as to evaluate chromosomal mutations originating from the second meiotic nondisjunction.

  14. Mitotic and meiotic irregularities in somatic hybrids of Lycopersicon esculentum and Solanum tuberosum.

    Science.gov (United States)

    Wolters, A M; Schoenmakers, H C; Kamstra, S; Eden, J; Koornneef, M; Jong, J H

    1994-10-01

    Chromosome numbers were determined in metaphase complements of root-tip meristems of 107 tomato (+) potato somatic hybrids, obtained from five different combinations of parental genotypes. Of these hybrids 79% were aneuploid, lacking one or two chromosomes in most cases. All four hybrids that were studied at mitotic anaphase of root tips showed laggards and bridges, the three aneuploids in a higher frequency than the single euploid. Hybrid K2H2-1C, which showed the highest percentage of aberrant anaphases, possessed 46 chromosomes. Fluorescence in situ hybridization with total genomic DNA showed that this hybrid contained 23 tomato, 22 potato, and 1 recombinant chromosome consisting of a tomato chromosome arm and a potato chromosome arm. The potato parent of K2H2-1C was aneusomatic in its root tips with a high frequency of monosomic and trisomic cells and a relatively high frequency of cells with one fragment or telosome. Meiotic analyses of three tomato (+) potato somatic hybrids revealed laggards, which occurred most frequently in the triploid hybrids, and bridges, which were frequently present in pollen mother cells (PMCs) at anaphase I of hypotetraploid K2H2-1C. We observed putative trivalents in PMCs at diakinesis and metaphase I of eutriploid A7-82A and quadrivalents in part of the PMCs of hypotetraploid K2H2-1C, suggesting that homoeologous recombination between tomato and potato chromosomes occurred in these hybrids. All three hybrids showed a high percentage of first division restitution, giving rise to unreduced gametes. However, shortly after the tetrad stage all microspores completely degenerated, resulting in exclusively sterile pollen.

  15. Quantitative sexing (Q-Sexing) and relative quantitative sexing (RQ ...

    African Journals Online (AJOL)

    samer

    Key words: Polymerase chain reaction (PCR), quantitative real time polymerase chain reaction (qPCR), quantitative sexing, Siberian tiger. INTRODUCTION. Animal molecular sexing .... 43:3-12. Ellegren H (1996). First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc.

  16. Chromosome painting reveals asynaptic full alignment of homologs and HIM-8-dependent remodeling of X chromosome territories during Caenorhabditis elegans meiosis.

    Science.gov (United States)

    Nabeshima, Kentaro; Mlynarczyk-Evans, Susanna; Villeneuve, Anne M

    2011-08-01

    During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)-spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners.

  17. Chromosome Painting Reveals Asynaptic Full Alignment of Homologs and HIM-8–Dependent Remodeling of X Chromosome Territories during Caenorhabditis elegans Meiosis

    Science.gov (United States)

    Nabeshima, Kentaro; Mlynarczyk-Evans, Susanna; Villeneuve, Anne M.

    2011-01-01

    During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)–spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners. PMID:21876678

  18. Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards.

    Science.gov (United States)

    Lutes, Aracely A; Neaves, William B; Baumann, Diana P; Wiegraebe, Winfried; Baumann, Peter

    2010-03-11

    Although bisexual reproduction has proven to be highly successful, parthenogenetic all-female populations occur frequently in certain taxa, including the whiptail lizards of the genus Aspidoscelis. Allozyme analysis revealed a high degree of fixed heterozygosity in these parthenogenetic species, supporting the view that they originated from hybridization events between related sexual species. It has remained unclear how the meiotic program is altered to produce diploid eggs while maintaining heterozygosity. Here we show that meiosis commences with twice the number of chromosomes in parthenogenetic versus sexual species, a mechanism that provides the basis for generating gametes with unreduced chromosome content without fundamental deviation from the classic meiotic program. Our observation of synaptonemal complexes and chiasmata demonstrate that a typical meiotic program occurs and that heterozygosity is not maintained by bypassing recombination. Instead, fluorescent in situ hybridization probes that distinguish between homologues reveal that bivalents form between sister chromosomes, the genetically identical products of the first of two premeiotic replication cycles. Sister chromosome pairing provides a mechanism for the maintenance of heterozygosity, which is critical for offsetting the reduced fitness associated with the lack of genetic diversity in parthenogenetic species.

  19. Microgravitational effects on chromosome behavior (7-IML-1)

    Science.gov (United States)

    Bruschi, Carlo

    1992-01-01

    The effects of the two major space-related conditions, microgravity and radiation, on the maintenance and transmission of genetic information have been partially documented in many organisms. Specifically, microgravity acts at the chromosomal level, primarily on the structure and segregation of chromosomes, in producing major abberations such as deletions, breaks, nondisjunction, and chromosome loss, and to a lesser degree, cosmic radiation appears to affect the genic level, producing point mutations and DNA damage. To distinguish between the effects from microgravity and from radiation, it is necessary to monitor both mitotic and meiotic genetic damage in the same organism. The yeast Saccharomyces cerevisiae is used to monitor at high resolution the frequency of chromosome loss, nondisjunction, intergenic recombination, and gene mutation in mitotic and meiotic cells, to a degree impossible in other organisms. Because the yeast chromosomes are small, sensitive measurements can be made that can be extrapolated to higher organisms and man. The objectives of the research are: (1) to quantitate the effects of microgravity and its synergism with cosmic radiation on chromosomal integrity and transmission during mitosis and meiosis; (2) to discriminate between chromosomal processes sensitive to microgravity and/or radiation during mitosis and meiosis; and (3) to relate these findings to anomalous mitotic mating type switching and ascosporogenesis following meiosis.

  20. Analysis of the sex-determining region of the Y chromosome (SRY) in sex reversed patients: point-mutation in SRY causing sex-reversion in a 46,XY female

    DEFF Research Database (Denmark)

    Müller, Jørn; Schwartz, M; Skakkebaek, N E

    1992-01-01

    The first and essential step in normal sexual differentiation takes place during the 5th-6th week of gestation. The testis determining factor (TDF) directs the undifferentiated gonad into a testis, which secretes hormones responsible for normal male development. A new candidate for TDF has recently...... been reported, and it has been called the sex determining region of the Y (SRY). The hypothesis has been supported by the finding of XX individuals with SRY, and two females with 46,XY karyotype and a mutation in SRY. However, XX males without SRY has been reported, and the role of SRY still has...... to be determined. We have tested three human females with 46,XY karyotype and gonadal dysgenesis and two 46,XX males for the presence of SRY using the polymerase chain reaction and subsequent DNA sequencing. Both 46,XX males contained SRY, whereas one of the 46,XY females had suffered a point mutation in SRY...

  1. A model describing the effect of sex-reversed YY fish in an established wild population: The use of a Trojan Y chromosome to cause extinction of an introduced exotic species.

    Science.gov (United States)

    Gutierrez, Juan B; Teem, John L

    2006-07-21

    A novel means of inducing extinction of an exotic fish population is proposed using a genetic approach to shift the ratio of male to females within a population. In the proposed strategy, sex-reversed fish containing two Y chromosomes are introduced into a normal fish population. These YY fish result in the production of a disproportionate number of male fish in subsequent generations. Mathematical modeling of the system following introduction of YY fish at a constant rate reveals that female fish decline in numbers over time, leading to eventual extinction of the population.

  2. Depletion of Key Meiotic Genes and Transcriptome-Wide Abiotic Stress Reprogramming Mark Early Preparatory Events Ahead of Apomeiotic Transition

    Directory of Open Access Journals (Sweden)

    Jubin N Shah

    2016-10-01

    Full Text Available Molecular dissection of apomixis - an asexual reproductive mode - is anticipated to solve the enigma of loss of meiotic sex, and to help fixing elite agronomic traits. The Brassicaceae genus Boechera comprises of both sexual and apomictic species, permitting comparative analyses of meiotic circumvention (apomeiosis and parthenogenesis. Whereas previous studies reported local transcriptome changes during these events, it remained unclear whether global changes associated with hybridization, polyploidy and environmental adaptation that arose during evolution of Boechera might hint as (epigenetic regulators of early development prior apomictic initiation. To identify these signatures during vegetative stages, we compared seedling RNA-seq transcriptomes of an obligate triploid apomict and a diploid sexual, both isolated from a drought-prone habitat. Uncovered were several genes differentially expressed between sexual and apomictic seedlings, including homologues of meiotic genes ASYNAPTIC 1 (ASY1 and MULTIPOLAR SPINDLE 1 (MPS1 that were down-regulated in apomicts. An intriguing class of apomict-specific deregulated genes included several NAC transcription factors, homologues of which are known to be transcriptionally reprogrammed during abiotic stress in other plants. Deregulation of both meiotic and stress-response genes during seedling stages might possibly be important in preparation for meiotic circumvention, as similar transcriptional alteration was discernible in apomeiotic floral buds too. Furthermore, we noted that the apomict showed better tolerance to osmotic stress in vitro than the sexual, in conjunction with significant upregulation of a subset of NAC genes. In support of the current model that DNA methylation epigenetically regulates stress, ploidy, hybridization and apomixis, we noted that ASY1, MPS1 and NAC019 homologues were deregulated in Boechera seedlings upon DNA demethylation, and ASY1 in particular seems to be repressed by

  3. Cryptic Species in Proechimys goeldii (Rodentia, Echimyidae)? A Case of Molecular and Chromosomal Differentiation in Allopatric Populations.

    Science.gov (United States)

    Rodrigues da Costa, Marlyson J; Siqueira do Amaral, Paulo J; Pieczarka, Julio C; Sampaio, Maria I; Rossi, Rogério V; Mendes-Oliveira, Ana C; Rodrigues Noronha, Renata C; Nagamachi, Cleusa Y

    2016-01-01

    The spiny rats of the genus Proechimys have a wide distribution in the Amazon, covering all areas of endemism of this region. We analyzed the karyotype and cytochrome b (Cyt b) sequences in Proechimys goeldii from 6 localities representing 3 interfluves of the eastern Amazon. A clear separation of P. goeldii into 2 monophyletic clades was observed, both chromosomally and based on Cyt b sequences: cytotype A (2n = 26x2640;/27x2642;, NF = 42) for samples from the Tapajos-Xingu interfluve and cytotype B (2n = 24x2640;/25x2642;, NF = 42) for samples from the Xingu-Tocantins interfluve and east of the Tocantins River. The karyotypes differ in a pericentric inversion and a centric fusion/fission and an average nucleotide divergence of 6.1%, suggesting cryptic species. Meiotic analysis confirmed the presence of a XX/XY1Y2 multiple sex chromosome determination system for both karyotypes. The karyotypes also vary from the literature (2n = 24, NF = 42, XX/XY). The autosome translocated to the X chromosome is different both in size and morphology to P. cf. longicaudatus, which also has a multiple sex chromosome determination system (2n = 14x2640;/15x2640;x2642;/16x2640;/17x2642;, NF = 14). The Xingu River is a barrier that separates populations of P. goeldii, thus maintaining their allopatric nature and providing an explanation for the molecular and cytogenetic patterns observed for the Xingu River but not the Tocantins River. © 2016 S. Karger AG, Basel.

  4. Cattle Sex-Specific Recombination and Genetic Control from a Large Pedigree Analysis.

    Science.gov (United States)

    Ma, Li; O'Connell, Jeffrey R; VanRaden, Paul M; Shen, Botong; Padhi, Abinash; Sun, Chuanyu; Bickhart, Derek M; Cole, John B; Null, Daniel J; Liu, George E; Da, Yang; Wiggans, George R

    2015-11-01

    Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.

  5. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ajimura, M.; Lee, S.H.; Ogawa, H.

    1993-01-01

    Mutants defective in meiotic recombination were isolated from a disomic haploid strain of Saccharomyces cerevisiae by examining recombination within the leu2 and his4 heteroalleles located on chromosome III. The mutants were classified into two new complementation groups (MRE2 and MRE11) and eight previously identified groups, which include SPO11, HOP1, REC114, MRE4/MEK1 and genes in the RAD52 epistasis group. All of the mutants, in which the mutations in the new complementation groups are homozygous and diploid, can undergo premeiotic DNA synthesis and produce spores. The spores are, however, not viable. The mre2 and mre11 mutants produce viable spores in a spo13 background, in which meiosis I is bypassed, suggesting that these mutants are blocked at an early step in meiotic recombination. The mre2 mutant does not exhibit any unusual phenotype during mitosis and it is, thus, considered to have a mutation in a meiosis-specific gene. By contrast, the mre11 mutant is sensitive to damage to DNA by methyl methanesulfonate and exhibits a hyperrecombination phenotype in mitosis. Among six alleles of HOP1 that were isolated, an unusual pattern of intragenic complementation was observed

  6. The RTR complex as caretaker of genome stability and its unique meiotic function in plants

    Directory of Open Access Journals (Sweden)

    Alexander eKnoll

    2014-02-01

    Full Text Available The RTR complex consisting of a RecQ helicase, a type IA topoisomerase and the structural protein RMI1 is involved in the processing of DNA recombination intermediates in all eukaryotes. In Arabidopsis thaliana the complex partners RECQ4A, topoisomerase 3α and RMI1 have been shown to be involved in DNA repair and in the suppression of homologous recombination (HR in somatic cells. Interestingly, mutants of AtTOP3A and AtRMI1 are also sterile due to extensive chromosome breakage in meiosis I, a phenotype that seems to be specific for plants. Although both proteins are essential for meiotic recombination it is still elusive on what kind of intermediates they are acting on. Recent data indicate that the pattern of non-crossover (NCO-associated meiotic gene conversion (GC differs between plants and other eukaryotes, as less NCOs in comparison to crossovers (CO could be detected in Arabidopsis. This indicates that NCOs happen either more rarely in plants or that the conversion tract length is significantly shorter than in other organisms. As the TOP3α/RMI1-mediated dissolution of recombination intermediates results exclusively in NCOs, we suggest that the peculiar GC pattern found in plants is connected to the unique role, members of the RTR complex play in plant meiosis.

  7. Magic with moulds: Meiotic and mitotic crossing over in Neurospora ...

    Indian Academy of Sciences (India)

    2006-02-16

    Feb 16, 2006 ... Home; Journals; Journal of Biosciences; Volume 31; Issue 1. Commentary: Magic with moulds: Meiotic and mitotic crossing over in Neurospora inversions and duplications. Durgadas P Kasbekar. Volume 31 Issue 1 March 2006 pp 3-4 ...

  8. Meiotic behaviour in three interspecific three-way hybrids between ...

    Indian Academy of Sciences (India)

    The meiotic behaviour of three three-way interspecific promising hybrids (H17, H27, and H34) was evaluated. ... Arrangement of parental genomes in distinct ... vanna due to its physiological tolerance to low fertility acid ... nomic evaluations.

  9. Fusion: a tale of recombination in an asexual fungus: The role of nuclear dynamics and hyphal fusion in horizontal chromosome transfer in Fusarium oxysporum

    NARCIS (Netherlands)

    Shahi, S.

    2016-01-01

    Recent studies have shown that not only meiotic recombination is responsible for the fast evolution of fungal pathogens. In the asexual fungus F. oxysporum (Fo) the "fast" evolving part of the genome is organized into small chromosomes and one such chromosome houses all effector genes and is

  10. Wrestling with Chromosomes: The Roles of SUMO During Meiosis.

    Science.gov (United States)

    Nottke, Amanda C; Kim, Hyun-Min; Colaiácovo, Monica P

    2017-01-01

    Meiosis is a specialized form of cell division required for the formation of haploid gametes and therefore is essential for successful sexual reproduction. Various steps are exquisitely coordinated to ensure accurate chromosome segregation during meiosis, thereby promoting the formation of haploid gametes from diploid cells. Recent studies are demonstrating that an important form of regulation during meiosis is exerted by the post-translational protein modification known as sumoylation. Here, we review and discuss the various critical steps of meiosis in which SUMO-mediated regulation has been implicated thus far. These include the maintenance of meiotic centromeric heterochromatin , meiotic DNA double-strand break repair and homologous recombination, centromeric coupling, and the assembly of a proteinaceous scaffold between homologous chromosomes known as the synaptonemal complex.

  11. Cytological techniques to study human female meiotic prophase.

    Science.gov (United States)

    Roig, Ignasi; Garcia-Caldés, Montserrat

    2009-01-01

    Most of the human aneuploidies have a maternal origin. This feature makes the study of human female meiosis a fundamental topic to understand the reasons leading to this important social problem. Unfortunately, due to sample collection difficulties, not many studies have been performed on human female meiotic prophase. In this chapter we present a comprehensive collection of protocols that allows the study of human female meiotic prophase through different technical approaches using both spread and structurally preserved oocytes.

  12. Effect of sex, age, and breed on genetic recombination features in cattle

    Science.gov (United States)

    Meiotic recombination is a fundamental biological process which generates genetic diversity, affects fertility, and influences evolvability. Here we investigate the roles of sex, age, and breed in cattle recombination features, including recombination rate, location and crossover interference. Usin...

  13. Genetic and physical mapping of two centromere-proximal regions of chromosome IV in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Aleksenko, Alexei Y.; Nielsen, Michael Lynge; Clutterbuck, A.J.

    2001-01-01

    revision of the genetic map of the chromosome, including the position of the centromere, Comparison of physical and genetic maps indicates that meiotic recombination is low in subcentromeric DNA, its frequency being reduced from 1 crossover per 0.8 Mb to approximately 1 crossover per 5 Mb per meiosis...

  14. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse.

    Directory of Open Access Journals (Sweden)

    Julie Cocquet

    2012-09-01

    Full Text Available Intragenomic conflicts arise when a genetic element favours its own transmission to the detriment of others. Conflicts over sex chromosome transmission are expected to have influenced genome structure, gene regulation, and speciation. In the mouse, the existence of an intragenomic conflict between X- and Y-linked multicopy genes has long been suggested but never demonstrated. The Y-encoded multicopy gene Sly has been shown to have a predominant role in the epigenetic repression of post meiotic sex chromatin (PMSC and, as such, represses X and Y genes, among which are its X-linked homologs Slx and Slxl1. Here, we produced mice that are deficient for both Sly and Slx/Slxl1 and observed that Slx/Slxl1 has an opposite role to that of Sly, in that it stimulates XY gene expression in spermatids. Slx/Slxl1 deficiency rescues the sperm differentiation defects and near sterility caused by Sly deficiency and vice versa. Slx/Slxl1 deficiency also causes a sex ratio distortion towards the production of male offspring that is corrected by Sly deficiency. All in all, our data show that Slx/Slxl1 and Sly have antagonistic effects during sperm differentiation and are involved in a postmeiotic intragenomic conflict that causes segregation distortion and male sterility. This is undoubtedly what drove the massive gene amplification on the mouse X and Y chromosomes. It may also be at the basis of cases of F1 male hybrid sterility where the balance between Slx/Slxl1 and Sly copy number, and therefore expression, is disrupted. To the best of our knowledge, our work is the first demonstration of a competition occurring between X and Y related genes in mammals. It also provides a biological basis for the concept that intragenomic conflict is an important evolutionary force which impacts on gene expression, genome structure, and speciation.

  15. Chromosome aberration assays in Allium

    Energy Technology Data Exchange (ETDEWEB)

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  16. DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway

    International Nuclear Information System (INIS)

    Dresser, M.E.; Ewing, D.J.; Conrad, M.N.; Dominguez, A.M.; Barstead, R.; Jiang, H.; Kodadek, T.

    1997-01-01

    Meiotic recombination in the yeast Saccharomyces cerevisiae requires two similar recA-like proteins, Dmc1p and Rad51p. A screen for dominant meiotic mutants provided DMC1-G126D, a dominant allele mutated in the conserved ATP-binding site (specifically, the A-loop motif) that confers a null phenotype. A recessive null allele, dmc1-K69E, was isolated as an intragenic suppressor of DMC1-G126D. Dmc1-K69Ep, unlike Dmc1p, does not interact homotypically in a two-hybrid assay, although it does interact with other fusion proteins identified by two-hybrid screen with Dmc1p. Dmc1p, unlike Rad51p, does not interact in the two-hybrid assay with Rad52p or Rad54p. However, Dmc1p does interact with Tid1p, a Rad54p homologue, with Tid4p, a Rad16p homologue, and with other fusion proteins that do not interact with Rad51p, suggesting that Dmc1p and Rad51p function in separate, though possibly overlapping, recombinational repair complexes. Epistasis analysis suggests that DMC1 and RAD51 function in separate pathways responsible for meiotic recombination. Taken together, our results are consistent with a requirement for DMC1 for meiosis-specific entry of DNA double-strand break ends into chromatin. Interestingly, the pattern on CHEF gels of chromosome fragments that result from meiotic DNA double-strand break formation is different in DMC1 mutant strains from that seen in rad50S strains. (author)

  17. A novel genetic tool for clonal analysis of fourth chromosome mutations

    OpenAIRE

    Sousa-Neves, Rui; Schinaman, Joseph M.

    2012-01-01

    The fourth chromosome of Drosophila remains one of the most intractable regions of the fly genome to genetic analysis. The main difficulty posed to the genetic analyses of mutations on this chromosome arises from the fact that it does not undergo meiotic recombination, which makes recombination mapping impossible, and also prevents clonal analysis of mutations, a technique which relies on recombination to introduce the prerequisite recessive markers and FLP-recombinase recognition targets (FR...

  18. Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies.

    Directory of Open Access Journals (Sweden)

    Melanie Legrand

    2008-01-01

    Full Text Available Haplotype maps (HapMaps reveal underlying sequence variation and facilitate the study of recombination and genetic diversity. In general, HapMaps are produced by analysis of Single-Nucleotide Polymorphism (SNP segregation in large numbers of meiotic progeny. Candida albicans, the most common human fungal pathogen, is an obligate diploid that does not appear to undergo meiosis. Thus, standard methods for haplotype mapping cannot be used. We exploited naturally occurring aneuploid strains to determine the haplotypes of the eight chromosome pairs in the C. albicans laboratory strain SC5314 and in a clinical isolate. Comparison of the maps revealed that the clinical strain had undergone a significant amount of genome rearrangement, consisting primarily of crossover or gene conversion recombination events. SNP map haplotyping revealed that insertion and activation of the UAU1 cassette in essential and non-essential genes can result in whole chromosome aneuploidy. UAU1 is often used to construct homozygous deletions of targeted genes in C. albicans; the exact mechanism (trisomy followed by chromosome loss versus gene conversion has not been determined. UAU1 insertion into the essential ORC1 gene resulted in a large proportion of trisomic strains, while gene conversion events predominated when UAU1 was inserted into the non-essential LRO1 gene. Therefore, induced aneuploidies can be used to generate HapMaps, which are essential for analyzing genome alterations and mitotic recombination events in this clonal organism.

  19. Sordaria, a model system to uncover links between meiotic pairing and recombination.

    Science.gov (United States)

    Zickler, Denise; Espagne, Eric

    2016-06-01

    The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) the identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Disruption of CHTF18 causes defective meiotic recombination in male mice.

    Directory of Open Access Journals (Sweden)

    Karen M Berkowitz

    Full Text Available CHTF18 (chromosome transmission fidelity factor 18 is an evolutionarily conserved subunit of the Replication Factor C-like complex, CTF18-RLC. CHTF18 is necessary for the faithful passage of chromosomes from one daughter cell to the next during mitosis in yeast, and it is crucial for germline development in the fruitfly. Previously, we showed that mouse Chtf18 is expressed throughout the germline, suggesting a role for CHTF18 in mammalian gametogenesis. To determine the role of CHTF18 in mammalian germ cell development, we derived mice carrying null and conditional mutations in the Chtf18 gene. Chtf18-null males exhibit 5-fold decreased sperm concentrations compared to wild-type controls, resulting in subfertility. Loss of Chtf18 results in impaired spermatogenesis; spermatogenic cells display abnormal morphology, and the stereotypical arrangement of cells within seminiferous tubules is perturbed. Meiotic recombination is defective and homologous chromosomes separate prematurely during prophase I. Repair of DNA double-strand breaks is delayed and incomplete; both RAD51 and γH2AX persist in prophase I. In addition, MLH1 foci are decreased in pachynema. These findings demonstrate essential roles for CHTF18 in mammalian spermatogenesis and meiosis, and suggest that CHTF18 may function during the double-strand break repair pathway to promote the formation of crossovers.

  1. A specific family of interspersed repeats (SINEs facilitates meiotic synapsis in mammals

    Directory of Open Access Journals (Sweden)

    Johnson Matthew E

    2013-01-01

    Full Text Available Abstract Background Errors during meiosis that affect synapsis and recombination between homologous chromosomes contribute to aneuploidy and infertility in humans. Despite the clinical relevance of these defects, we know very little about the mechanisms by which homologous chromosomes interact with one another during mammalian meiotic prophase. Further, we remain ignorant of the way in which chromosomal DNA complexes with the meiosis-specific structure that tethers homologs, the synaptonemal complex (SC, and whether specific DNA elements are necessary for this interaction. Results In the present study we utilized chromatin immunoprecipitation (ChIP and DNA sequencing to demonstrate that the axial elements of the mammalian SC are markedly enriched for a specific family of interspersed repeats, short interspersed elements (SINEs. Further, we refine the role of the repeats to specific sub-families of SINEs, B1 in mouse and AluY in old world monkey (Macaca mulatta. Conclusions Because B1 and AluY elements are the most actively retrotransposing SINEs in mice and rhesus monkeys, respectively, our observations imply that they may serve a dual function in axial element binding; i.e., as the anchoring point for the SC but possibly also as a suppressor/regulator of retrotransposition.

  2. New chromosome reports in Lamiaceae of Kashmir (Northwest Himalaya), India.

    Science.gov (United States)

    Malik, Reyaz Ahmad; Gupta, Raghbir Chand; Singh, Vijay; Bala, Santosh; Kumari, Santosh

    2017-03-01

    Meiotic studies and chromosome data are imperative in order to have an overall germplasm evaluation of a taxon. In the present effort, the meiotic study is carried out in 48 populations belonging to 26 species of Lamiaceae collected from their natural habitats in Kashmir Himalaya, which forms an important part of Northwest Himalaya. Chromosome counts in the five species viz. Dracocephalum nutans (2n = 10), Lycopus europaeus (2n = 22), Marrubium vulgare (2n = 54), Nepeta nervosa (2n = 18) and Salvia sclarea (2n = 22) are first time reported from India. Besides, 17 species are cytologically evaluated for the first time from the study area-Kashmir Himalaya. In Marrubium vulgare, hexaploid cytotype (2n = 6 × =54) is reported for the first time. Also, diploid and tetraploid cytomorphovariants are observed in Calamintha vulgaris (2n = 20, 40), Elsholtzia ciliata (2n = 16, 32) and Mentha longifolia (2n = 20, 40). Various meiotic abnormalities like chromatin stickiness, cytomixis, nonsynchronous disjunction, laggards, chromatin bridges, etc. leading to pollen abnormalities have been documented for the first time in some species. The worldwide status of chromosome number data in each genus is presented.

  3. Chromosome aberration assays in barley (Hordeum vulgare)

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, M J [Univ. of Tennessee, Knoxville; Nilan, R A

    1982-01-01

    Barley is an exceellent organism for studies of induced chromosome aberrations because of its few (2n = 2x = 14) relatively large chromosomes. Root-tip and shoot-tip cells have been used extensively for the study of ionizing radiation-induced chromosome aberrations. The general procedures are well known, the technology is simple and easy to learn, and the assays are relatively quick and inexpensive. Both root tips and shoot tips can be used for the study of chemical mutagens as well as ionizing radiations. Pollen mother cells are well suited for studying the effects of mutagens on meiotic chromosomes. The literature review for the Gene-Tox Program reported on 61 chemicals tested for their effects on barley chromosomes. Of these, 90% were reported to be either positive or positive dose-related, while 7% were negative and 3% were questionable. Barley assays based on chromosomal aberrations are useful to detect the clastogenic potency of chemicals under laboratory conditions. Indications are that the data from barley can be used to corroborate data obtained from other organisms. Among the classes of chemicals assayed were: alcohols and phenols; alkaloids; epoxides; alkyl sulfates; amides and sulfonamides; aromatic amines; aryl halides; aziridines; alkenes; carbamates; hydroazides; nitroaromatics; nitrosamides; nitrosources; phenothiazines; and polycyclic aromatic hydrocarbons.

  4. Accelerated pseudogenization on the neo-X chromosome in Drosophila miranda

    KAUST Repository

    Nozawa, Masafumi; Onizuka, Kanako; Fujimi, Mai; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    Y chromosomes often degenerate via the accumulation of pseudogenes and transposable elements. By contrast, little is known about X-chromosome degeneration. Here we compare the pseudogenization process between genes on the neo-sex chromosomes

  5. Modeling Chromosomes

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Learning about chromosomes is standard fare in biology classrooms today. However, students may find it difficult to understand the relationships among the "genome", "chromosomes", "genes", a "gene locus", and "alleles". In the simple activity described in this article, which follows the 5E approach…

  6. Chromosomal Conditions

    Science.gov (United States)

    ... and more. Stony Point, NY 10980 Close X Home > Complications & Loss > Birth defects & other health conditions > Chromosomal conditions Chromosomal conditions ... Disorders See also: Genetic counseling , Your family health history Last reviewed: February, 2013 ... labor & premature birth The newborn intensive care unit (NICU) Birth defects & ...

  7. Resolving complex chromosome structures during meiosis: versatile deployment of Smc5/6.

    Science.gov (United States)

    Verver, Dideke E; Hwang, Grace H; Jordan, Philip W; Hamer, Geert

    2016-03-01

    The Smc5/6 complex, along with cohesin and condensin, is a member of the structural maintenance of chromosome (SMC) family, large ring-like protein complexes that are essential for chromatin structure and function. Thanks to numerous studies of the mitotic cell cycle, Smc5/6 has been implicated to have roles in homologous recombination, restart of stalled replication forks, maintenance of ribosomal DNA (rDNA) and heterochromatin, telomerase-independent telomere elongation, and regulation of chromosome topology. The nature of these functions implies that the Smc5/6 complex also contributes to the profound chromatin changes, including meiotic recombination, that characterize meiosis. Only recently, studies in diverse model organisms have focused on the potential meiotic roles of the Smc5/6 complex. Indeed, Smc5/6 appears to be essential for meiotic recombination. However, due to both the complexity of the process of meiosis and the versatility of the Smc5/6 complex, many additional meiotic functions have been described. In this review, we provide a clear overview of the multiple functions found so far for the Smc5/6 complex in meiosis. Additionally, we compare these meiotic functions with the known mitotic functions in an attempt to find a common denominator and thereby create clarity in the field of Smc5/6 research.

  8. Association of Egg Mass and Egg Sex: Gene Expression Analysis from Maternal RNA in the Germinal Disc Region of Layer Hens (Gallus gallus).

    Science.gov (United States)

    Aslam, Muhammad Aamir; Schokker, Dirkjan; Groothuis, Ton G G; de Wit, Agnes A C; Smits, Mari A; Woelders, Henri

    2015-06-01

    Female birds have been shown to manipulate offspring sex ratio. However, mechanisms of sex ratio bias are not well understood. Reduced feed availability and change in body condition can affect the mass of eggs in birds that could lead to a skew in sex ratio. We employed feed restriction in laying chickens (Gallus gallus) to induce a decrease in body condition and egg mass using 45 chicken hens in treatment and control groups. Feed restriction led to an overall decline of egg mass. In the second period of treatment (Days 9-18) with more severe feed restriction and a steeper decline of egg mass, the sex ratio per hen (proportion of male eggs) had a significant negative association with mean egg mass per hen. Based on this association, two groups of hens were selected from feed restriction group, that is, hens producing male bias with low egg mass and hens producing female bias with high egg mass with overall sex ratios of 0.71 and 0.44 respectively. Genomewide transcriptome analysis on the germinal disks of F1 preovulatory follicles collected at the time of occurrence of meiosis-I was performed. We did not find significantly differentially expressed genes in these two groups of hens. However, gene set enrichment analysis showed that a number of cellular processes related to cell cycle progression, mitotic/meiotic apparatus, and chromosomal movement were enriched in female-biased hens or high mean egg mass as compared with male-biased hens or low mean egg mass. The differentially expressed gene sets may be involved in meiotic drive regulating sex ratio in the chicken. © 2015 by the Society for the Study of Reproduction, Inc.

  9. Divergent actions of long noncoding RNAs on X-chromosome ...

    Indian Academy of Sciences (India)

    2015-10-20

    Oct 20, 2015 ... Organisms with heterochromatic sex chromosomes need to compensate for differences in dosages of ... could also get genetically inactive and late replicating when ... tial to achieve the chromosomal level modifications were.

  10. LDSplitDB: a database for studies of meiotic recombination hotspots in MHC using human genomic data.

    Science.gov (United States)

    Guo, Jing; Chen, Hao; Yang, Peng; Lee, Yew Ti; Wu, Min; Przytycka, Teresa M; Kwoh, Chee Keong; Zheng, Jie

    2018-04-20

    Meiotic recombination happens during the process of meiosis when chromosomes inherited from two parents exchange genetic materials to generate chromosomes in the gamete cells. The recombination events tend to occur in narrow genomic regions called recombination hotspots. Its dysregulation could lead to serious human diseases such as birth defects. Although the regulatory mechanism of recombination events is still unclear, DNA sequence polymorphisms have been found to play crucial roles in the regulation of recombination hotspots. To facilitate the studies of the underlying mechanism, we developed a database named LDSplitDB which provides an integrative and interactive data mining and visualization platform for the genome-wide association studies of recombination hotspots. It contains the pre-computed association maps of the major histocompatibility complex (MHC) region in the 1000 Genomes Project and the HapMap Phase III datasets, and a genome-scale study of the European population from the HapMap Phase II dataset. Besides the recombination profiles, related data of genes, SNPs and different types of epigenetic modifications, which could be associated with meiotic recombination, are provided for comprehensive analysis. To meet the computational requirement of the rapidly increasing population genomics data, we prepared a lookup table of 400 haplotypes for recombination rate estimation using the well-known LDhat algorithm which includes all possible two-locus haplotype configurations. To the best of our knowledge, LDSplitDB is the first large-scale database for the association analysis of human recombination hotspots with DNA sequence polymorphisms. It provides valuable resources for the discovery of the mechanism of meiotic recombination hotspots. The information about MHC in this database could help understand the roles of recombination in human immune system. DATABASE URL: http://histone.scse.ntu.edu.sg/LDSplitDB.

  11. Occurrence of differential meiotic associations and additional ...

    Indian Academy of Sciences (India)

    A small population of complex translocation heterozygote plants of Allium roylei from the Bani region of Jammu Province was studied for meiosis in the female track. This study resulted in identification of two variants, having embryo-sac mother cells (EMCs) with more than 16 chromosomes. EMCs of the remaining plants ...

  12. Managing meiotic recombination in plant breeding

    NARCIS (Netherlands)

    Wijnker, T.G.; Jong, de J.H.S.G.M.

    2008-01-01

    Crossover recombination is a crucial process in plant breeding because it allows plant breeders to create novel allele combnations on chromosomes that can be used for breeding superior F1 hybrids. Gaining control over this process, in terms of increasing crossover incidence, altering crossover

  13. SLX-1 is required for maintaining genomic integrity and promoting meiotic noncrossovers in the Caenorhabditis elegans germline.

    Directory of Open Access Journals (Sweden)

    Takamune T Saito

    2012-08-01

    Full Text Available Although the SLX4 complex, which includes structure-specific nucleases such as XPF, MUS81, and SLX1, plays important roles in the repair of several kinds of DNA damage, the function of SLX1 in the germline remains unknown. Here we characterized the endonuclease activities of the Caenorhabditis elegans SLX-1-HIM-18/SLX-4 complex co-purified from human 293T cells and determined SLX-1 germline function via analysis of slx-1(tm2644 mutants. SLX-1 shows a HIM-18/SLX-4-dependent endonuclease activity toward replication forks, 5'-flaps, and Holliday junctions. slx-1 mutants exhibit hypersensitivity to UV, nitrogen mustard, and camptothecin, but not gamma irradiation. Consistent with a role in DNA repair, recombination intermediates accumulate in both mitotic and meiotic germ cells in slx-1 mutants. Importantly, meiotic crossover distribution, but not crossover frequency, is altered on chromosomes in slx-1 mutants compared to wild type. This alteration is not due to changes in either the levels or distribution of double-strand breaks (DSBs along chromosomes. We propose that SLX-1 is required for repair at stalled or collapsed replication forks, interstrand crosslink repair, and nucleotide excision repair during mitosis. Moreover, we hypothesize that SLX-1 regulates the crossover landscape during meiosis by acting as a noncrossover-promoting factor in a subset of DSBs.

  14. PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination.

    Science.gov (United States)

    Baker, Christopher L; Kajita, Shimpei; Walker, Michael; Saxl, Ruth L; Raghupathy, Narayanan; Choi, Kwangbom; Petkov, Petko M; Paigen, Kenneth

    2015-01-01

    Meiotic recombination generates new genetic variation and assures the proper segregation of chromosomes in gametes. PRDM9, a zinc finger protein with histone methyltransferase activity, initiates meiotic recombination by binding DNA at recombination hotspots and directing the position of DNA double-strand breaks (DSB). The DSB repair mechanism suggests that hotspots should eventually self-destruct, yet genome-wide recombination levels remain constant, a conundrum known as the hotspot paradox. To test if PRDM9 drives this evolutionary erosion, we measured activity of the Prdm9Cst allele in two Mus musculus subspecies, M.m. castaneus, in which Prdm9Cst arose, and M.m. domesticus, into which Prdm9Cst was introduced experimentally. Comparing these two strains, we find that haplotype differences at hotspots lead to qualitative and quantitative changes in PRDM9 binding and activity. Using Mus spretus as an outlier, we found most variants affecting PRDM9Cst binding arose and were fixed in M.m. castaneus, suppressing hotspot activity. Furthermore, M.m. castaneus×M.m. domesticus F1 hybrids exhibit novel hotspots, with large haplotype biases in both PRDM9 binding and chromatin modification. These novel hotspots represent sites of historic evolutionary erosion that become activated in hybrids due to crosstalk between one parent's Prdm9 allele and the opposite parent's chromosome. Together these data support a model where haplotype-specific PRDM9 binding directs biased gene conversion at hotspots, ultimately leading to hotspot erosion.

  15. CENTRAL REGION COMPONENT1, a Novel Synaptonemal Complex Component, Is Essential for Meiotic Recombination Initiation in Rice[C][W

    Science.gov (United States)

    Miao, Chunbo; Tang, Ding; Zhang, Honggen; Wang, Mo; Li, Yafei; Tang, Shuzhu; Yu, Hengxiu; Gu, Minghong; Cheng, Zhukuan

    2013-01-01

    In meiosis, homologous recombination entails programmed DNA double-strand break (DSB) formation and synaptonemal complex (SC) assembly coupled with the DSB repair. Although SCs display extensive structural conservation among species, their components identified are poorly conserved at the sequence level. Here, we identified a novel SC component, designated CENTRAL REGION COMPONENT1 (CRC1), in rice (Oryza sativa). CRC1 colocalizes with ZEP1, the rice SC transverse filament protein, to the central region of SCs in a mutually dependent fashion. Consistent with this colocalization, CRC1 interacts with ZEP1 in yeast two-hybrid assays. CRC1 is orthologous to Saccharomyces cerevisiae pachytene checkpoint2 (Pch2) and Mus musculus THYROID RECEPTOR-INTERACTING PROTEIN13 (TRIP13) and may be a conserved SC component. Additionally, we provide evidence that CRC1 is essential for meiotic DSB formation. CRC1 interacts with HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 (PAIR1) in vitro, suggesting that these proteins act as a complex to promote DSB formation. PAIR2, the rice ortholog of budding yeast homolog pairing1, is required for homologous chromosome pairing. We found that CRC1 is also essential for the recruitment of PAIR2 onto meiotic chromosomes. The roles of CRC1 identified here have not been reported for Pch2 or TRIP13. PMID:23943860

  16. Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice.

    Science.gov (United States)

    Miao, Chunbo; Tang, Ding; Zhang, Honggen; Wang, Mo; Li, Yafei; Tang, Shuzhu; Yu, Hengxiu; Gu, Minghong; Cheng, Zhukuan

    2013-08-01

    In meiosis, homologous recombination entails programmed DNA double-strand break (DSB) formation and synaptonemal complex (SC) assembly coupled with the DSB repair. Although SCs display extensive structural conservation among species, their components identified are poorly conserved at the sequence level. Here, we identified a novel SC component, designated central region component1 (CRC1), in rice (Oryza sativa). CRC1 colocalizes with ZEP1, the rice SC transverse filament protein, to the central region of SCs in a mutually dependent fashion. Consistent with this colocalization, CRC1 interacts with ZEP1 in yeast two-hybrid assays. CRC1 is orthologous to Saccharomyces cerevisiae pachytene checkpoint2 (Pch2) and Mus musculus THYROID receptor-interacting protein13 (TRIP13) and may be a conserved SC component. Additionally, we provide evidence that CRC1 is essential for meiotic DSB formation. CRC1 interacts with homologous pairing aberration in rice meiosis1 (PAIR1) in vitro, suggesting that these proteins act as a complex to promote DSB formation. PAIR2, the rice ortholog of budding yeast homolog pairing1, is required for homologous chromosome pairing. We found that CRC1 is also essential for the recruitment of PAIR2 onto meiotic chromosomes. The roles of CRC1 identified here have not been reported for Pch2 or TRIP13.

  17. Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox)

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Martina; Kratochvíl, L.; Kejnovský, Eduard

    2011-01-01

    Roč. 12, č. 1 (2011), s. 90-96 ISSN 1471-2156 R&D Projects: GA ČR GAP506/10/0718; GA ČR(CZ) GAP305/10/0930 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50040702 Keywords : repeated dna-sequences * Y-chromosome * determining mechanisms Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.475, year: 2011

  18. Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes)

    Czech Academy of Sciences Publication Activity Database

    de Oliveira, E. A.; Sember, Alexandr; Bertollo, L.A.C.; Yano, C. F.; Ezaz, T.; Moreira-Filho, O.; Hatanaka, T.; Trifonov, V.; Liehr, T.; Al-Rikabi, A. B. H.; Ráb, Petr; Pains, H.; de Bello Cioffi, M.

    2018-01-01

    Roč. 127, č. 1 (2018), s. 115-128 ISSN 0009-5915 R&D Projects: GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : fish cytogenetics * male-specific region * whole chromosome painting Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 4.414, year: 2016

  19. An assessment of sex chromosome copy number in a phenotypic female patient with hypergonadtropic hypogonadism, primary amenorrhea and growth retardation by GTG