WorldWideScience

Sample records for meiosis-driven genome variation

  1. HGVA: the Human Genome Variation Archive

    OpenAIRE

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gr?f, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-01-01

    Abstract High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic...

  2. HGVA: the Human Genome Variation Archive.

    Science.gov (United States)

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gräf, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-07-03

    High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic data for key reference projects in a clean, fast and integrated fashion. HGVA provides an efficient and intuitive web-interface for easy data mining, a comprehensive RESTful API and client libraries in Python, Java and JavaScript for fast programmatic access to its knowledge base. HGVA calculates population frequencies for these projects and enriches their data with variant annotation provided by CellBase, a rich and fast annotation solution. HGVA serves as a proof-of-concept of the genome analysis developments being carried out by the University of Cambridge together with UK's 100 000 genomes project and the National Institute for Health Research BioResource Rare-Diseases, in particular, deploying open-source for Computational Biology (OpenCB) software platform for storing and analyzing massive genomic datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-25

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human genome variations: 1) HapMap Data (1,417 individuals) (http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-08_phaseII+III/forward/), 2) HGDP (Human Genome Diversity Project) Data (940 individuals) (http://www.hagsc.org/hgdp/files.html), 3) 1000 genomes Data (2,504 individuals) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ If we can integrate all three data into a single volume of data, we should be able to conduct a more detailed analysis of human genome variations for a total number of 4,861 individuals (= 1,417+940+2,504 individuals). In fact, we successfully integrated these three data sets by use of information on the reference human genome sequence, and we conducted the big data analysis. In particular, we constructed a phylogenetic tree of about 5,000 human individuals at the genome level. As a result, we were able to identify clusters of ethnic groups, with detectable admixture, that were not possible by an analysis of each of the three data sets. Here, we report the outcome of this kind of big data analyses and discuss evolutionary significance of human genomic variations. Note that the present study was conducted in collaboration with Katsuhiko Mineta and Kosuke Goto at KAUST.

  4. Copy number variation in the bovine genome

    DEFF Research Database (Denmark)

    Fadista, João; Thomsen, Bo; Holm, Lars-Erik

    2010-01-01

    to genetic variation in cattle. Results We designed and used a set of NimbleGen CGH arrays that tile across the assayable portion of the cattle genome with approximately 6.3 million probes, at a median probe spacing of 301 bp. This study reports the highest resolution map of copy number variation...... in the cattle genome, with 304 CNV regions (CNVRs) being identified among the genomes of 20 bovine samples from 4 dairy and beef breeds. The CNVRs identified covered 0.68% (22 Mb) of the genome, and ranged in size from 1.7 to 2,031 kb (median size 16.7 kb). About 20% of the CNVs co-localized with segmental...... duplications, while 30% encompass genes, of which the majority is involved in environmental response. About 10% of the human orthologous of these genes are associated with human disease susceptibility and, hence, may have important phenotypic consequences. Conclusions Together, this analysis provides a useful...

  5. From genomic variation to personalized medicine

    DEFF Research Database (Denmark)

    Wesolowska, Agata; Schmiegelow, Kjeld

    Genomic variation is the basis of interindividual differences in observable traits and disease susceptibility. Genetic studies are the driving force of personalized medicine, as many of the differences in treatment efficacy can be attributed to our genomic background. The rapid development...... of nextgeneration sequencing technologies accelerates the discovery of the complete landscape of human variation. The main limitation is not anymore the available genotyping technology or cost, but rather the lack of understanding of the functionality of individual variations. Single polymorphisms rarely explain...... a considerable amount of the phenotype variability, hence the major difficulty of interpretation lies in the complexity of molecular interactions. This PhD thesis describes the state-of-art of the functional human variation research (Chapter 1) and introduces childhood acute lymphoblastic leukaemia (ALL...

  6. GFVO: the Genomic Feature and Variation Ontology

    KAUST Repository

    Baran, Joachim

    2015-05-05

    Falling costs in genomic laboratory experiments have led to a steady increase of genomic feature and variation data. Multiple genomic data formats exist for sharing these data, and whilst they are similar, they are addressing slightly different data viewpoints and are consequently not fully compatible with each other. The fragmentation of data format specifications makes it hard to integrate and interpret data for further analysis with information from multiple data providers. As a solution, a new ontology is presented here for annotating and representing genomic feature and variation dataset contents. The Genomic Feature and Variation Ontology (GFVO) specifically addresses genomic data as it is regularly shared using the GFF3 (incl. FASTA), GTF, GVF and VCF file formats. GFVO simplifies data integration and enables linking of genomic annotations across datasets through common semantics of genomic types and relations. Availability and implementation. The latest stable release of the ontology is available via its base URI; previous and development versions are available at the ontology’s GitHub repository: https://github.com/BioInterchange/Ontologies; versions of the ontology are indexed through BioPortal (without external class-/property-equivalences due to BioPortal release 4.10 limitations); examples and reference documentation is provided on a separate web-page: http://www.biointerchange.org/ontologies.html. GFVO version 1.0.2 is licensed under the CC0 1.0 Universal license (https://creativecommons.org/publicdomain/zero/1.0) and therefore de facto within the public domain; the ontology can be appropriated without attribution for commercial and non-commercial use.

  7. GFVO: the Genomic Feature and Variation Ontology

    Directory of Open Access Journals (Sweden)

    Joachim Baran

    2015-05-01

    Full Text Available Falling costs in genomic laboratory experiments have led to a steady increase of genomic feature and variation data. Multiple genomic data formats exist for sharing these data, and whilst they are similar, they are addressing slightly different data viewpoints and are consequently not fully compatible with each other. The fragmentation of data format specifications makes it hard to integrate and interpret data for further analysis with information from multiple data providers. As a solution, a new ontology is presented here for annotating and representing genomic feature and variation dataset contents. The Genomic Feature and Variation Ontology (GFVO specifically addresses genomic data as it is regularly shared using the GFF3 (incl. FASTA, GTF, GVF and VCF file formats. GFVO simplifies data integration and enables linking of genomic annotations across datasets through common semantics of genomic types and relations.Availability and implementation. The latest stable release of the ontology is available via its base URI; previous and development versions are available at the ontology’s GitHub repository: https://github.com/BioInterchange/Ontologies; versions of the ontology are indexed through BioPortal (without external class-/property-equivalences due to BioPortal release 4.10 limitations; examples and reference documentation is provided on a separate web-page: http://www.biointerchange.org/ontologies.html. GFVO version 1.0.2 is licensed under the CC0 1.0 Universal license (https://creativecommons.org/publicdomain/zero/1.0 and therefore de facto within the public domain; the ontology can be appropriated without attribution for commercial and non-commercial use.

  8. Copy number variation in the bovine genome

    Directory of Open Access Journals (Sweden)

    Bendixen Christian

    2010-05-01

    Full Text Available Abstract Background Copy number variations (CNVs, which represent a significant source of genetic diversity in mammals, have been shown to be associated with phenotypes of clinical relevance and to be causative of disease. Notwithstanding, little is known about the extent to which CNV contributes to genetic variation in cattle. Results We designed and used a set of NimbleGen CGH arrays that tile across the assayable portion of the cattle genome with approximately 6.3 million probes, at a median probe spacing of 301 bp. This study reports the highest resolution map of copy number variation in the cattle genome, with 304 CNV regions (CNVRs being identified among the genomes of 20 bovine samples from 4 dairy and beef breeds. The CNVRs identified covered 0.68% (22 Mb of the genome, and ranged in size from 1.7 to 2,031 kb (median size 16.7 kb. About 20% of the CNVs co-localized with segmental duplications, while 30% encompass genes, of which the majority is involved in environmental response. About 10% of the human orthologous of these genes are associated with human disease susceptibility and, hence, may have important phenotypic consequences. Conclusions Together, this analysis provides a useful resource for assessment of the impact of CNVs regarding variation in bovine health and production traits.

  9. Genome Variation Map: a data repository of genome variations in BIG Data Center

    Science.gov (United States)

    Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang

    2018-01-01

    Abstract The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. PMID:29069473

  10. Structural genomic variation in ischemic stroke

    Science.gov (United States)

    Matarin, Mar; Simon-Sanchez, Javier; Fung, Hon-Chung; Scholz, Sonja; Gibbs, J. Raphael; Hernandez, Dena G.; Crews, Cynthia; Britton, Angela; Wavrant De Vrieze, Fabienne; Brott, Thomas G.; Brown, Robert D.; Worrall, Bradford B.; Silliman, Scott; Case, L. Douglas; Hardy, John A.; Rich, Stephen S.; Meschia, James F.; Singleton, Andrew B.

    2008-01-01

    Technological advances in molecular genetics allow rapid and sensitive identification of genomic copy number variants (CNVs). This, in turn, has sparked interest in the function such variation may play in disease. While a role for copy number mutations as a cause of Mendelian disorders is well established, it is unclear whether CNVs may affect risk for common complex disorders. We sought to investigate whether CNVs may modulate risk for ischemic stroke (IS) and to provide a catalog of CNVs in patients with this disorder by analyzing copy number metrics produced as a part of our previous genome-wide single-nucleotide polymorphism (SNP)-based association study of ischemic stroke in a North American white population. We examined CNVs in 263 patients with ischemic stroke (IS). Each identified CNV was compared with changes identified in 275 neurologically normal controls. Our analysis identified 247 CNVs, corresponding to 187 insertions (76%; 135 heterozygous; 25 homozygous duplications or triplications; 2 heterosomic) and 60 deletions (24%; 40 heterozygous deletions;3 homozygous deletions; 14 heterosomic deletions). Most alterations (81%) were the same as, or overlapped with, previously reported CNVs. We report here the first genome-wide analysis of CNVs in IS patients. In summary, our study did not detect any common genomic structural variation unequivocally linked to IS, although we cannot exclude that smaller CNVs or CNVs in genomic regions poorly covered by this methodology may confer risk for IS. The application of genome-wide SNP arrays now facilitates the evaluation of structural changes through the entire genome as part of a genome-wide genetic association study. PMID:18288507

  11. Copy Number Variations in Tilapia Genomes.

    Science.gov (United States)

    Li, Bi Jun; Li, Hong Lian; Meng, Zining; Zhang, Yong; Lin, Haoran; Yue, Gen Hua; Xia, Jun Hong

    2017-02-01

    Discovering the nature and pattern of genome variation is fundamental in understanding phenotypic diversity among populations. Although several millions of single nucleotide polymorphisms (SNPs) have been discovered in tilapia, the genome-wide characterization of larger structural variants, such as copy number variation (CNV) regions has not been carried out yet. We conducted a genome-wide scan for CNVs in 47 individuals from three tilapia populations. Based on 254 Gb of high-quality paired-end sequencing reads, we identified 4642 distinct high-confidence CNVs. These CNVs account for 1.9% (12.411 Mb) of the used Nile tilapia reference genome. A total of 1100 predicted CNVs were found overlapping with exon regions of protein genes. Further association analysis based on linear model regression found 85 CNVs ranging between 300 and 27,000 base pairs significantly associated to population types (R 2  > 0.9 and P > 0.001). Our study sheds first insights on genome-wide CNVs in tilapia. These CNVs among and within tilapia populations may have functional effects on phenotypes and specific adaptation to particular environments.

  12. Burkholderia pseudomallei genome plasticity associated with genomic island variation

    Directory of Open Access Journals (Sweden)

    Currie Bart J

    2008-04-01

    Full Text Available Abstract Background Burkholderia pseudomallei is a soil-dwelling saprophyte and the cause of melioidosis. Horizontal gene transfer contributes to the genetic diversity of this pathogen and may be an important determinant of virulence potential. The genome contains genomic island (GI regions that encode a broad array of functions. Although there is some evidence for the variable distribution of genomic islands in B. pseudomallei isolates, little is known about the extent of variation between related strains or their association with disease or environmental survival. Results Five islands from B. pseudomallei strain K96243 were chosen as representatives of different types of genomic islands present in this strain, and their presence investigated in other B. pseudomallei. In silico analysis of 10 B. pseudomallei genome sequences provided evidence for the variable presence of these regions, together with micro-evolutionary changes that generate GI diversity. The diversity of GIs in 186 isolates from NE Thailand (83 environmental and 103 clinical isolates was investigated using multiplex PCR screening. The proportion of all isolates positive by PCR ranged from 12% for a prophage-like island (GI 9, to 76% for a metabolic island (GI 16. The presence of each of the five GIs did not differ between environmental and disease-associated isolates (p > 0.05 for all five islands. The cumulative number of GIs per isolate for the 186 isolates ranged from 0 to 5 (median 2, IQR 1 to 3. The distribution of cumulative GI number did not differ between environmental and disease-associated isolates (p = 0.27. The presence of GIs was defined for the three largest clones in this collection (each defined as a single sequence type, ST, by multilocus sequence typing; these were ST 70 (n = 15 isolates, ST 54 (n = 11, and ST 167 (n = 9. The rapid loss and/or acquisition of gene islands was observed within individual clones. Comparisons were drawn between isolates obtained

  13. Genomic variation in Salmonella enterica core genes for epidemiological typing

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas; Lukjancenko, Oksana; Rundsten, Carsten Friis

    2012-01-01

    genomes and evaluate their value as typing targets, comparing whole genome typing and traditional methods such as 16S and MLST. A consensus tree based on variation of core genes gives much better resolution than 16S and MLST; the pan-genome family tree is similar to the consensus tree, but with higher...... that there is a positive selection towards mutations leading to amino acid changes. Conclusions: Genomic variation within the core genome is useful for investigating molecular evolution and providing candidate genes for bacterial genome typing. Identification of genes with different degrees of variation is important...

  14. Intrapopulation genome size variation in D. melanogaster reflects life history variation and plasticity.

    Directory of Open Access Journals (Sweden)

    Lisa L Ellis

    2014-07-01

    Full Text Available We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions.

  15. Copy Number Variation in the Horse Genome

    Science.gov (United States)

    Ghosh, Sharmila; Qu, Zhipeng; Das, Pranab J.; Fang, Erica; Juras, Rytis; Cothran, E. Gus; McDonell, Sue; Kenney, Daniel G.; Lear, Teri L.; Adelson, David L.; Chowdhary, Bhanu P.; Raudsepp, Terje

    2014-01-01

    We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches. PMID:25340504

  16. Copy number variation in the horse genome.

    Directory of Open Access Journals (Sweden)

    Sharmila Ghosh

    2014-10-01

    Full Text Available We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches.

  17. Child Development and Structural Variation in the Human Genome

    Science.gov (United States)

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  18. Genome size variation in the genus Avena.

    Science.gov (United States)

    Yan, Honghai; Martin, Sara L; Bekele, Wubishet A; Latta, Robert G; Diederichsen, Axel; Peng, Yuanying; Tinker, Nicholas A

    2016-03-01

    Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.

  19. Genomic variation landscape of the human gut microbiome

    DEFF Research Database (Denmark)

    Schloissnig, Siegfried; Arumugam, Manimozhiyan; Sunagawa, Shinichi

    2013-01-01

    Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 faecal...

  20. Genome Editing of Structural Variations: Modeling and Gene Correction.

    Science.gov (United States)

    Park, Chul-Yong; Sung, Jin Jea; Kim, Dong-Wook

    2016-07-01

    The analysis of chromosomal structural variations (SVs), such as inversions and translocations, was made possible by the completion of the human genome project and the development of genome-wide sequencing technologies. SVs contribute to genetic diversity and evolution, although some SVs can cause diseases such as hemophilia A in humans. Genome engineering technology using programmable nucleases (e.g., ZFNs, TALENs, and CRISPR/Cas9) has been rapidly developed, enabling precise and efficient genome editing for SV research. Here, we review advances in modeling and gene correction of SVs, focusing on inversion, translocation, and nucleotide repeat expansion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping

    DEFF Research Database (Denmark)

    Zhan, Bujie; Fadista, João; Thomsen, Bo

    2011-01-01

    sequence of a single Holstein Friesian bull with data from single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) array technologies to determine a comprehensive spectrum of genomic variation. The performance of resequencing SNP detection was assessed by combining SNPs that were...... of split-read and read-pair approaches proved to be complementary in finding different signatures. CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays. Conclusions Our results provide high resolution mapping of diverse classes of genomic variation...... in an individual bovine genome and demonstrate that structural variation surpasses sequence variation as the main component of genomic variability. Better accuracy of SNP detection was achieved with little loss of sensitivity when algorithms that implemented mapping quality were used. IBD regions were found...

  2. Genome size, morphological and palynological variations, and ...

    African Journals Online (AJOL)

    The present study compares the morphological, palynologycal and genome size (C-value content) characteristics in the long-styled and short-styled plants in three Linum species, that is, ... The analysis of variance (ANOVA) test performed among the three Linum species showed a significant difference in 2C-value content.

  3. Genome Architecture and Its Roles in Human Copy Number Variation

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-12-01

    Full Text Available Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs, are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.

  4. Salmon and steelhead genetics and genomics - Epigenetic and genomic variation in salmon and steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conduct analyses of epigenetic and genomic variation in Chinook salmon and steelhead to determine influence on phenotypic expression of life history traits. Genetic,...

  5. Bonobos fall within the genomic variation of chimpanzees.

    Directory of Open Access Journals (Sweden)

    Anne Fischer

    Full Text Available To gain insight into the patterns of genetic variation and evolutionary relationships within and between bonobos and chimpanzees, we sequenced 150,000 base pairs of nuclear DNA divided among 15 autosomal regions as well as the complete mitochondrial genomes from 20 bonobos and 58 chimpanzees. Except for western chimpanzees, we found poor genetic separation of chimpanzees based on sample locality. In contrast, bonobos consistently cluster together but fall as a group within the variation of chimpanzees for many of the regions. Thus, while chimpanzees retain genomic variation that predates bonobo-chimpanzee speciation, extensive lineage sorting has occurred within bonobos such that much of their genome traces its ancestry back to a single common ancestor that postdates their origin as a group separate from chimpanzees.

  6. Phase Variation and Genomic Architecture Changes in Azospirillum

    Science.gov (United States)

    Vial, Ludovic; Lavire, Céline; Mavingui, Patrick; Blaha, Didier; Haurat, Jacqueline; Moënne-Loccoz, Yvan; Bally, René; Wisniewski-Dyé, Florence

    2006-01-01

    The plant growth-promoting rhizobacterium Azospirillum lipoferum 4B generates in vitro at high frequency a stable nonswimming phase variant designated 4VI, which is distinguishable from the wild type by the differential absorption of dyes. The frequency of variants generated by a recA mutant of A. lipoferum 4B was increased up to 10-fold. The pleiotropic modifications characteristic of the phase variant are well documented, but the molecular processes involved are unknown. Here, the objective was to assess whether genomic rearrangements take place during phase variation of strain 4B. The random amplified polymorphic DNA (RAPD) profiles of strains 4B and 4VI differed. RAPD fragments observed only with the wild type were cloned, and three cosmids carrying the corresponding fragments were isolated. The three cosmids hybridized with a 750-kb plasmid and pulse-field gel electrophoresis analysis revealed that this replicon was missing in the 4VI genome. The same rearrangements took place during phase variation of 4BrecA. Large-scale genomic rearrangements during phase variation were demonstrated for two additional strains. In Azospirillum brasilense WN1, generation of stable variants was correlated with the disappearance of a replicon of 260 kb. For Azospirillum irakense KBC1, the variant was not stable and coincided with the formation of a new replicon, whereas the revertant recovered the parental genomic architecture. This study shows large-scale genomic rearrangements in Azospirillum strains and correlates them with phase variation. PMID:16855225

  7. Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy

    DEFF Research Database (Denmark)

    Kaas, Christian Schrøder; Kristensen, Claus; Betenbaugh, Michael J.

    2015-01-01

    in eight additional analyzed CHO genomes (15-20% haploidy) but not in the genome of the Chinese hamster. The dhfr gene is confirmed to be haploid in CHO DXB11; transcriptionally active and the remaining allele contains a G410C point mutation causing a Thr137Arg missense mutation. We find similar to 2.......5 million single nucleotide polymorphisms (SNP's), 44 gene deletions in the CHO DXB11 genome and 9357 SNP's, which interfere with the coding regions of 3458 genes. Copy number variations for nine CHO genomes were mapped to the chromosomes of the Chinese hamster showing unique signatures for each chromosome...

  8. Population Genetic Inference from Personal Genome Data: Impact of Ancestry and Admixture on Human Genomic Variation

    Science.gov (United States)

    Kidd, Jeffrey M.; Gravel, Simon; Byrnes, Jake; Moreno-Estrada, Andres; Musharoff, Shaila; Bryc, Katarzyna; Degenhardt, Jeremiah D.; Brisbin, Abra; Sheth, Vrunda; Chen, Rong; McLaughlin, Stephen F.; Peckham, Heather E.; Omberg, Larsson; Bormann Chung, Christina A.; Stanley, Sarah; Pearlstein, Kevin; Levandowsky, Elizabeth; Acevedo-Acevedo, Suehelay; Auton, Adam; Keinan, Alon; Acuña-Alonzo, Victor; Barquera-Lozano, Rodrigo; Canizales-Quinteros, Samuel; Eng, Celeste; Burchard, Esteban G.; Russell, Archie; Reynolds, Andy; Clark, Andrew G.; Reese, Martin G.; Lincoln, Stephen E.; Butte, Atul J.; De La Vega, Francisco M.; Bustamante, Carlos D.

    2012-01-01

    Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas—70% of the European ancestry in today’s African Americans dates back to European gene flow happening only 7–8 generations ago. PMID:23040495

  9. Genome-wide sequence variations among Mycobacterium avium subspecies paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Chung-Yi eHsu

    2011-12-01

    Full Text Available Mycobacterium avium subspecies paratuberculosis (M. ap, the causative agent of Johne’s disease (JD, infects many farmed ruminants, wildlife animals and humans. To better understand the molecular pathogenesis of these infections, we analyzed the whole genome sequences of several M. ap and M. avium subspecies avium (M. avium strains isolated from various hosts and environments. Using Next-generation sequencing technology, all 6 M. ap isolates showed a high percentage of homology (98% to the reference genome sequence of M. ap K-10 isolated from cattle. However, 2 M. avium isolates (DT 78 and Env 77 showed significant sequence diversity from the reference strain M. avium 104. The genomes of M. avium isolates DT 78 and Env 77 exhibited only 87% and 40% homology, respectively, to the M. avium 104 reference genome. Within the M. ap isolates, genomic rearrangements (insertions/deletions, Indels were not detected, and only unique single nucleotide polymorphisms (SNPs were observed among the 6 M. ap strains. While most of the SNPs (~100 in M. ap genomes were non-synonymous, a total of ~ 6000 SNPs were detected among M. avium genomes, most of them were synonymous suggesting a differential selective pressure between M. ap and M. avium isolates. In addition, SNPs-based phylo-genomic analysis showed that isolates from goat and Oryx are closely related to the cattle (K-10 strain while the human isolate (M. ap 4B is closely related to the environmental strains, indicating environmental source to human infections. Overall, SNPs were the most common variations among M. ap isolates while SNPs in addition to Indels were prevalent among M. avium isolates. Genomic variations will be useful in designing host-specific markers for the analysis of mycobacterial evolution and for developing novel diagnostics directed against Johne’s disease in animals.

  10. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2015-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  11. The African Genome Variation Project shapes medical genetics in Africa.

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S

    2015-01-15

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  12. Genomic Copy Number Variation in Disorders of Cognitive Development

    Science.gov (United States)

    Morrow, Eric M.

    2010-01-01

    Objective: To highlight recent discoveries in the area of genomic copy number variation in neuropsychiatric disorders including intellectual disability, autism, and schizophrenia. To emphasize new principles emerging from this area, involving the genetic architecture of disease, pathophysiology, and diagnosis. Method: Review of studies published…

  13. Genome structure analysis of molluscs revealed whole genome duplication and lineage specific repeat variation.

    Science.gov (United States)

    Yoshida, Masa-aki; Ishikura, Yukiko; Moritaki, Takeya; Shoguchi, Eiichi; Shimizu, Kentaro K; Sese, Jun; Ogura, Atsushi

    2011-09-01

    Comparative genome structure analysis allows us to identify novel genes, repetitive sequences and gene duplications. To explore lineage-specific genomic changes of the molluscs that is good model for development of nervous system in invertebrate, we conducted comparative genome structure analyses of three molluscs, pygmy squid, nautilus and scallops using partial genome shotgun sequencing. Most effective elements on the genome structural changes are repetitive elements (REs) causing expansion of genome size and whole genome duplication producing large amount of novel functional genes. Therefore, we investigated variation and proportion of REs and whole genome duplication. We, first, identified variations of REs in the three molluscan genomes by homology-based and de novo RE detection. Proportion of REs were 9.2%, 4.0%, and 3.8% in the pygmy squid, nautilus and scallop, respectively. We, then, estimated genome size of the species as 2.1, 4.2 and 1.8 Gb, respectively, with 2× coverage frequency and DNA sequencing theory. We also performed a gene duplication assay based on coding genes, and found that large-scale duplication events occurred after divergence from the limpet Lottia, an out-group of the three molluscan species. Comparison of all the results suggested that RE expansion did not relate to the increase in genome size of nautilus. Despite close relationships to nautilus, the squid has the largest portion of REs and smaller genome size than nautilus. We also identified lineage-specific RE and gene-family expansions, possibly relate to acquisition of the most complicated eye and brain systems in the three species. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Across language families: Genome diversity mirrors linguistic variation within Europe.

    Science.gov (United States)

    Longobardi, Giuseppe; Ghirotto, Silvia; Guardiano, Cristina; Tassi, Francesca; Benazzo, Andrea; Ceolin, Andrea; Barbujani, Guido

    2015-08-01

    The notion that patterns of linguistic and biological variation may cast light on each other and on population histories dates back to Darwin's times; yet, turning this intuition into a proper research program has met with serious methodological difficulties, especially affecting language comparisons. This article takes advantage of two new tools of comparative linguistics: a refined list of Indo-European cognate words, and a novel method of language comparison estimating linguistic diversity from a universal inventory of grammatical polymorphisms, and hence enabling comparison even across different families. We corroborated the method and used it to compare patterns of linguistic and genomic variation in Europe. Two sets of linguistic distances, lexical and syntactic, were inferred from these data and compared with measures of geographic and genomic distance through a series of matrix correlation tests. Linguistic and genomic trees were also estimated and compared. A method (Treemix) was used to infer migration episodes after the main population splits. We observed significant correlations between genomic and linguistic diversity, the latter inferred from data on both Indo-European and non-Indo-European languages. Contrary to previous observations, on the European scale, language proved a better predictor of genomic differences than geography. Inferred episodes of genetic admixture following the main population splits found convincing correlates also in the linguistic realm. These results pave the ground for previously unfeasible cross-disciplinary analyses at the worldwide scale, encompassing populations of distant language families. © 2015 Wiley Periodicals, Inc.

  15. Genome size variation affects song attractiveness in grasshoppers: evidence for sexual selection against large genomes.

    Science.gov (United States)

    Schielzeth, Holger; Streitner, Corinna; Lampe, Ulrike; Franzke, Alexandra; Reinhold, Klaus

    2014-12-01

    Genome size is largely uncorrelated to organismal complexity and adaptive scenarios. Genetic drift as well as intragenomic conflict have been put forward to explain this observation. We here study the impact of genome size on sexual attractiveness in the bow-winged grasshopper Chorthippus biguttulus. Grasshoppers show particularly large variation in genome size due to the high prevalence of supernumerary chromosomes that are considered (mildly) selfish, as evidenced by non-Mendelian inheritance and fitness costs if present in high numbers. We ranked male grasshoppers by song characteristics that are known to affect female preferences in this species and scored genome sizes of attractive and unattractive individuals from the extremes of this distribution. We find that attractive singers have significantly smaller genomes, demonstrating that genome size is reflected in male courtship songs and that females prefer songs of males with small genomes. Such a genome size dependent mate preference effectively selects against selfish genetic elements that tend to increase genome size. The data therefore provide a novel example of how sexual selection can reinforce natural selection and can act as an agent in an intragenomic arms race. Furthermore, our findings indicate an underappreciated route of how choosy females could gain indirect benefits. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  16. The genomic signature of parallel adaptation from shared genetic variation.

    Science.gov (United States)

    Roesti, Marius; Gavrilets, Sergey; Hendry, Andrew P; Salzburger, Walter; Berner, Daniel

    2014-08-01

    Parallel adaptation is common and may often occur from shared genetic variation, but the genomic consequences of this process remain poorly understood. We first use individual-based simulations to demonstrate that comparisons between populations adapted in parallel to similar environments from shared variation reveal a characteristic genomic signature around a selected locus: a low-divergence valley centred at the locus and flanked by twin peaks of high divergence. This signature is initiated by the hitchhiking of haplotype tracts differing between derived populations in the broader neighbourhood of the selected locus (driving the high-divergence twin peaks) and shared haplotype tracts in the tight neighbourhood of the locus (driving the low-divergence valley). This initial hitchhiking signature is reinforced over time because the selected locus acts as a barrier to gene flow from the source to the derived populations, thus promoting divergence by drift in its close neighbourhood. We next empirically confirm the peak-valley-peak signature by combining targeted and RAD sequence data at three candidate adaptation genes in multiple marine (source) and freshwater (derived) populations of threespine stickleback. Finally, we use a genome-wide screen for the peak-valley-peak signature to discover additional genome regions involved in parallel marine-freshwater divergence. Our findings offer a new explanation for heterogeneous genomic divergence and thus challenge the standard view that peaks in population divergence harbour divergently selected loci and that low-divergence regions result from balancing selection or localized introgression. We anticipate that genome scans for peak-valley-peak divergence signatures will promote the discovery of adaptation genes in other organisms. © 2014 John Wiley & Sons Ltd.

  17. Potential Value of Genomic Copy Number Variations in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Chuanjun Zhuo

    2017-06-01

    Full Text Available Schizophrenia is a devastating neuropsychiatric disorder affecting approximately 1% of the global population, and the disease has imposed a considerable burden on families and society. Although, the exact cause of schizophrenia remains unknown, several lines of scientific evidence have revealed that genetic variants are strongly correlated with the development and early onset of the disease. In fact, the heritability among patients suffering from schizophrenia is as high as 80%. Genomic copy number variations (CNVs are one of the main forms of genomic variations, ubiquitously occurring in the human genome. An increasing number of studies have shown that CNVs account for population diversity and genetically related diseases, including schizophrenia. The last decade has witnessed rapid advances in the development of novel genomic technologies, which have led to the identification of schizophrenia-associated CNVs, insight into the roles of the affected genes in their intervals in schizophrenia, and successful manipulation of the target CNVs. In this review, we focus on the recent discoveries of important CNVs that are associated with schizophrenia and outline the potential values that the study of CNVs will bring to the areas of schizophrenia research, diagnosis, and therapy. Furthermore, with the help of the novel genetic tool known as the Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9 system, the pathogenic CNVs as genomic defects could be corrected. In conclusion, the recent novel findings of schizophrenia-associated CNVs offer an exciting opportunity for schizophrenia research to decipher the pathological mechanisms underlying the onset and development of schizophrenia as well as to provide potential clinical applications in genetic counseling, diagnosis, and therapy for this complex mental disease.

  18. Genomic Variation in Natural Populations of Drosophila melanogaster

    Science.gov (United States)

    Langley, Charles H.; Stevens, Kristian; Cardeno, Charis; Lee, Yuh Chwen G.; Schrider, Daniel R.; Pool, John E.; Langley, Sasha A.; Suarez, Charlyn; Corbett-Detig, Russell B.; Kolaczkowski, Bryan; Fang, Shu; Nista, Phillip M.; Holloway, Alisha K.; Kern, Andrew D.; Dewey, Colin N.; Song, Yun S.; Hahn, Matthew W.; Begun, David J.

    2012-01-01

    This report of independent genome sequences of two natural populations of Drosophila melanogaster (37 from North America and 6 from Africa) provides unique insight into forces shaping genomic polymorphism and divergence. Evidence of interactions between natural selection and genetic linkage is abundant not only in centromere- and telomere-proximal regions, but also throughout the euchromatic arms. Linkage disequilibrium, which decays within 1 kbp, exhibits a strong bias toward coupling of the more frequent alleles and provides a high-resolution map of recombination rate. The juxtaposition of population genetics statistics in small genomic windows with gene structures and chromatin states yields a rich, high-resolution annotation, including the following: (1) 5′- and 3′-UTRs are enriched for regions of reduced polymorphism relative to lineage-specific divergence; (2) exons overlap with windows of excess relative polymorphism; (3) epigenetic marks associated with active transcription initiation sites overlap with regions of reduced relative polymorphism and relatively reduced estimates of the rate of recombination; (4) the rate of adaptive nonsynonymous fixation increases with the rate of crossing over per base pair; and (5) both duplications and deletions are enriched near origins of replication and their density correlates negatively with the rate of crossing over. Available demographic models of X and autosome descent cannot account for the increased divergence on the X and loss of diversity associated with the out-of-Africa migration. Comparison of the variation among these genomes to variation among genomes from D. simulans suggests that many targets of directional selection are shared between these species. PMID:22673804

  19. Genomic variability in Mexican chicken population using Copy Number Variation

    Directory of Open Access Journals (Sweden)

    Erica Gorla

    2017-05-01

    Full Text Available Copy number variants (CNVs are polymorphisms which influence phenotypic variation and are an important source of genetic variability [1]. In Mexico the backyard poultry population is a unique widespread Creole chicken (Gallus gallus domesticus population, an undefined cross among different breeds brought to Mexico from Europe and under natural selection for almost 500 years [2-3]. The aim of this study was to investigate genomic variation in the Mexican chicken population using CNVs. A total of 256 DNA samples genotyped with Axiom® Genome-Wide Chicken Genotyping Array were used in the analyses. The individual CNV calling, based on log-R ratio and B-allele frequency values, was performed using the Hidden Markov Model (HMM of PennCNV software on the autosomes [4-5]. CNVs were summarized to CNV regions (CNVRs at a population level (i.e. overlapping CNVs, using BEDTools. The HMM detected a total of 1924 CNVs in the genome of 256 samples resulting, at population level, in 1216 CNV regions, of which 959 gains, 226 losses and 31 complex CNVRs (i.e. containing both losses and gains, covering a total of 47 Mb of sequence length corresponding to 5,12 % of the chicken galGal4 assembly autosome. A comparison among this study and 7 previous reports about CNVs in chicken was performed, finding that the 1,216 CNVRs detected in this study overlap with 617 regions (51% mapped by others studies.   This study allowed a deep insight into the structural variation in the genome of unselected Mexican chicken population, which up to now has not been never genetically characterized with SNP markers. Based on a cluster analysis (pvclust – R package on CNV markers the population, even if presenting extreme morphological variation, does not resulted divided in differentiated genetic subpopulations. Finally this study provides a CNV map based on the 600K SNP chip array jointly with a genome-wide gene copy number estimates in Mexican chicken population.

  20. Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly

    DEFF Research Database (Denmark)

    Li, Yingrui; Zheng, Hancheng; Luo, Ruibang

    2011-01-01

    Here we use whole-genome de novo assembly of second-generation sequencing reads to map structural variation (SV) in an Asian genome and an African genome. Our approach identifies small- and intermediate-size homozygous variants (1-50 kb) including insertions, deletions, inversions and their precise...

  1. PolyTB: A genomic variation map for Mycobacterium tuberculosis

    KAUST Repository

    Coll, Francesc

    2014-02-15

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the second major cause of death from an infectious disease worldwide. Recent advances in DNA sequencing are leading to the ability to generate whole genome information in clinical isolates of M. tuberculosis complex (MTBC). The identification of informative genetic variants such as phylogenetic markers and those associated with drug resistance or virulence will help barcode Mtb in the context of epidemiological, diagnostic and clinical studies. Mtb genomic datasets are increasingly available as raw sequences, which are potentially difficult and computer intensive to process, and compare across studies. Here we have processed the raw sequence data (>1500 isolates, eight studies) to compile a catalogue of SNPs (n = 74,039, 63% non-synonymous, 51.1% in more than one isolate, i.e. non-private), small indels (n = 4810) and larger structural variants (n = 800). We have developed the PolyTB web-based tool (http://pathogenseq.lshtm.ac.uk/polytb) to visualise the resulting variation and important meta-data (e.g. in silico inferred strain-types, location) within geographical map and phylogenetic views. This resource will allow researchers to identify polymorphisms within candidate genes of interest, as well as examine the genomic diversity and distribution of strains. PolyTB source code is freely available to researchers wishing to develop similar tools for their pathogen of interest. 2014 Elsevier Ltd. All rights reserved.

  2. Genomic copy number variations in three Southeast Asian populations.

    Science.gov (United States)

    Ku, Chee-Seng; Pawitan, Yudi; Sim, Xueling; Ong, Rick T H; Seielstad, Mark; Lee, Edmund J D; Teo, Yik-Ying; Chia, Kee-Seng; Salim, Agus

    2010-07-01

    Research on the role of copy number variations (CNVs) in the genetic risk of diseases in Asian populations has been hampered by a relative lack of reference CNV maps for Asian populations outside the East Asians. In this article, we report the population characteristics of CNVs in Chinese, Malay, and Asian Indian populations in Singapore. Using the Illumina Human 1M Beadchip array, we identify 1,174 CNV loci in these populations that corroborated with findings when the same samples were typed on the Affymetrix 6.0 platform. We identify 441 novel loci not previously reported in the Database of Genomic Variations (DGV). We observe a considerable number of loci that span all three populations and were previously unreported, as well as population-specific loci that are quite common in the respective populations. From this we observe the distribution of CNVs in the Asian Indian population to be considerably different from the Chinese and Malay populations. About half of the deletion loci and three-quarters of duplication loci overlap UCSC genes. Tens of loci show population differentiation and overlap with genes previously known to be associated with genetic risk of diseases. One of these loci is the CYP2A6 deletion, previously linked to reduced susceptibility to lung cancer. (c) 2010 Wiley-Liss, Inc.

  3. Karyotype diversity and genome size variation in Neotropical Maxillariinae orchids.

    Science.gov (United States)

    Moraes, A P; Koehler, S; Cabral, J S; Gomes, S S L; Viccini, L F; Barros, F; Felix, L P; Guerra, M; Forni-Martins, E R

    2017-03-01

    Orchidaceae is a widely distributed plant family with very diverse vegetative and floral morphology, and such variability is also reflected in their karyotypes. However, since only a low proportion of Orchidaceae has been analysed for chromosome data, greater diversity may await to be unveiled. Here we analyse both genome size (GS) and karyotype in two subtribes recently included in the broadened Maxillariinea to detect how much chromosome and GS variation there is in these groups and to evaluate which genome rearrangements are involved in the species evolution. To do so, the GS (14 species), the karyotype - based on chromosome number, heterochromatic banding and 5S and 45S rDNA localisation (18 species) - was characterised and analysed along with published data using phylogenetic approaches. The GS presented a high phylogenetic correlation and it was related to morphological groups in Bifrenaria (larger plants - higher GS). The two largest GS found among genera were caused by different mechanisms: polyploidy in Bifrenaria tyrianthina and accumulation of repetitive DNA in Scuticaria hadwenii. The chromosome number variability was caused mainly through descending dysploidy, and x=20 was estimated as the base chromosome number. Combining GS and karyotype data with molecular phylogeny, our data provide a more complete scenario of the karyotype evolution in Maxillariinae orchids, allowing us to suggest, besides dysploidy, that inversions and transposable elements as two mechanisms involved in the karyotype evolution. Such karyotype modifications could be associated with niche changes that occurred during species evolution. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Genomic variations in the counterpart normal controls of lung squamous cell carcinomas.

    Science.gov (United States)

    Qu, Liwei; Zhou, Bo; Wang, Guizhen; Zhou, Guangbiao

    2017-11-28

    Lung squamous cell carcinoma (LUSC) causes approximately 400 000 deaths each year worldwide. The occurrence of LUSC is attributed to exposure to cigarette smoke, which induces the development of numerous genomic abnormalities. However, few studies have investigated the genomic variations that occur only in normal tissues that have been similarly exposed to tobacco smoke as tumor tissues. In this study, we sequenced the whole genomes of three normal lung tissue samples and their paired adjacent squamous cell carcinomas.We then called genomic variations specific to the normal lung tissues through filtering the genomic sequence of the normal lung tissues against that of the paired tumors, the reference human genome, the dbSNP138 common germline variants, and the variations derived from sequencing artifacts. To expand these observations, the whole exome sequences of 478 counterpart normal controls (CNCs) and paired LUSCs of The Cancer Genome Atlas (TCGA) dataset were analyzed. Sixteen genomic variations were called in the three normal lung tissues. These variations were confirmed by Sanger capillary sequencing. A mean of 0.5661 exonic variations/Mb and 7.7887 altered genes per sample were identified in the CNC genome sequences of TCGA. In these CNCs, C:G→T:A transitions, which are the genomic signatures of tobacco carcinogen N-methyl-N-nitro-N-nitrosoguanidine, were the predominant nucleotide changes. Twenty five genes in CNCs had a variation rate that exceeded 2%, including ARSD (18.62%), MUC4 (8.79%), and RBMX (7.11%). CNC variations in CTAGE5 and USP17L7 were associated with the poor prognosis of patients with LUSC. Our results uncovered previously unreported genomic variations in CNCs, rather than LUSCs, that may be involved in the development of LUSC.

  5. Somatic genomic variations in extra-embryonic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Jingly F.; Ferlatte, Christy; Weier, Heinz-Ulli G.

    2010-05-21

    In the mature chorion, one of the membranes that exist during pregnancy between the developing fetus and mother, human placental cells form highly specialized tissues composed of mesenchyme and floating or anchoring villi. Using fluorescence in situ hybridization, we found that human invasive cytotrophoblasts isolated from anchoring villi or the uterine wall had gained individual chromosomes; however, chromosome losses were detected infrequently. With chromosomes gained in what appeared to be a chromosome-specific manner, more than half of the invasive cytotrophoblasts in normal pregnancies were found to be hyperdiploid. Interestingly, the rates of hyperdiploid cells depended not only on gestational age, but were strongly associated with the extraembryonic compartment at the fetal-maternal interface from which they were isolated. Since hyperdiploid cells showed drastically reduced DNA replication as measured by bromodeoxyuridine incorporation, we conclude that aneuploidy is a part of the normal process of placentation potentially limiting the proliferative capabilities of invasive cytotrophoblasts. Thus, under the special circumstances of human reproduction, somatic genomic variations may exert a beneficial, anti-neoplastic effect on the organism.

  6. Transposable Elements and Genome Size Variations in Plants

    Directory of Open Access Journals (Sweden)

    Sung-Il Lee

    2014-09-01

    Full Text Available Although the number of protein-coding genes is not highly variable between plant taxa, the DNA content in their genomes is highly variable, by as much as 2,056-fold from a 1C amount of 0.0648 pg to 132.5 pg. The mean 1C-value in plants is 2.4 pg, and genome size expansion/contraction is lineage-specific in plant taxonomy. Transposable element fractions in plant genomes are also variable, as low as ~3% in small genomes and as high as ~85% in large genomes, indicating that genome size is a linear function of transposable element content. Of the 2 classes of transposable elements, the dynamics of class 1 long terminal repeat (LTR retrotransposons is a major contributor to the 1C value differences among plants. The activity of LTR retrotransposons is under the control of epigenetic suppressing mechanisms. Also, genome-purging mechanisms have been adopted to counter-balance the genome size amplification. With a wealth of information on whole-genome sequences in plant genomes, it was revealed that several genome-purging mechanisms have been employed, depending on plant taxa. Two genera, Lilium and Fritillaria, are known to have large genomes in angiosperms. There were twice times of concerted genome size evolutions in the family Liliaceae during the divergence of the current genera in Liliaceae. In addition to the LTR retrotransposons, non-LTR retrotransposons and satellite DNAs contributed to the huge genomes in the two genera by possible failure of genome counter-balancing mechanisms.

  7. Comprehensive characterization of human genome variation by high coverage whole-genome sequencing of forty four Caucasians.

    Directory of Open Access Journals (Sweden)

    Hui Shen

    Full Text Available Whole genome sequencing studies are essential to obtain a comprehensive understanding of the vast pattern of human genomic variations. Here we report the results of a high-coverage whole genome sequencing study for 44 unrelated healthy Caucasian adults, each sequenced to over 50-fold coverage (averaging 65.8×. We identified approximately 11 million single nucleotide polymorphisms (SNPs, 2.8 million short insertions and deletions, and over 500,000 block substitutions. We showed that, although previous studies, including the 1000 Genomes Project Phase 1 study, have catalogued the vast majority of common SNPs, many of the low-frequency and rare variants remain undiscovered. For instance, approximately 1.4 million SNPs and 1.3 million short indels that we found were novel to both the dbSNP and the 1000 Genomes Project Phase 1 data sets, and the majority of which (∼96% have a minor allele frequency less than 5%. On average, each individual genome carried ∼3.3 million SNPs and ∼492,000 indels/block substitutions, including approximately 179 variants that were predicted to cause loss of function of the gene products. Moreover, each individual genome carried an average of 44 such loss-of-function variants in a homozygous state, which would completely "knock out" the corresponding genes. Across all the 44 genomes, a total of 182 genes were "knocked-out" in at least one individual genome, among which 46 genes were "knocked out" in over 30% of our samples, suggesting that a number of genes are commonly "knocked-out" in general populations. Gene ontology analysis suggested that these commonly "knocked-out" genes are enriched in biological process related to antigen processing and immune response. Our results contribute towards a comprehensive characterization of human genomic variation, especially for less-common and rare variants, and provide an invaluable resource for future genetic studies of human variation and diseases.

  8. Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae

    Directory of Open Access Journals (Sweden)

    Vladimir Gokhman

    2011-08-01

    Full Text Available Drosophila melanogaster Meigen, 1830 has served as a model insect for over a century. Sequencing of the 11 additional Drosophila Fallen, 1823 species marks substantial progress in comparative genomics of this genus. By comparison, practically nothing is known about the genome size or genome sequences of parasitic wasps of Drosophila. Here, we present the first comparative analysis of genome size and karyotype structures of Drosophila parasitoids of the Leptopilina Förster, 1869 and Ganaspis Förster, 1869 species. The gametic genome size of Ganaspis xanthopoda (Ashmead, 1896 is larger than those of the three Leptopilina species studied. The genome sizes of all parasitic wasps studied here are also larger than those known for all Drosophila species. Surprisingly, genome sizes of these Drosophila parasitoids exceed the average value known for all previously studied Hymenoptera. The haploid chromosome number of both Leptopilina heterotoma (Thomson, 1862 and L. victoriae Nordlander, 1980 is ten. A chromosomal fusion appears to have produced a distinct karyotype for L. boulardi (Barbotin, Carton et Keiner-Pillault, 1979 (n = 9, whose genome size is smaller than that of wasps of the L. heterotoma clade. Like L. boulardi, the haploid chromosome number for G. xanthopoda is also nine. Our studies reveal a positive, but non linear, correlation between the genome size and total chromosome length in Drosophila parasitoids. These Drosophila parasitoids differ widely in their host range, and utilize different infection strategies to overcome host defense. Their comparative genomics, in relation to their exceptionally well-characterized hosts, will prove to be valuable for understanding the molecular basis of the host-parasite arms race and how such mechanisms shape the genetic structures of insect communities.

  9. Analysis of the genetic variation in Mycobacterium tuberculosis strains by multiple genome alignments

    Directory of Open Access Journals (Sweden)

    Morales Juan

    2008-11-01

    Full Text Available Abstract Background The recent determination of the complete nucleotide sequence of several Mycobacterium tuberculosis (MTB genomes allows the use of comparative genomics as a tool for dissecting the nature and consequence of genetic variability within this species. The multiple alignment of the genomes of clinical strains (CDC1551, F11, Haarlem and C, along with the genomes of laboratory strains (H37Rv and H37Ra, provides new insights on the mechanisms of adaptation of this bacterium to the human host. Findings The genetic variation found in six M. tuberculosis strains does not involve significant genomic rearrangements. Most of the variation results from deletion and transposition events preferentially associated with insertion sequences and genes of the PE/PPE family but not with genes implicated in virulence. Using a Perl-based software islandsanalyser, which creates a representation of the genetic variation in the genome, we identified differences in the patterns of distribution and frequency of the polymorphisms across the genome. The identification of genes displaying strain-specific polymorphisms and the extrapolation of the number of strain-specific polymorphisms to an unlimited number of genomes indicates that the different strains contain a limited number of unique polymorphisms. Conclusion The comparison of multiple genomes demonstrates that the M. tuberculosis genome is currently undergoing an active process of gene decay, analogous to the adaptation process of obligate bacterial symbionts. This observation opens new perspectives into the evolution and the understanding of the pathogenesis of this bacterium.

  10. Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes.

    Science.gov (United States)

    Astolfi, P A; Salamini, F; Sgaramella, V

    2010-09-01

    Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans', could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the "nature vs nurture" dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes "completed" so far. They may compound the variations associated to our epigenomes and make of each of us an "(epi)genomic" mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments.

  11. Host genome variations and risk of infections during induction treatment for childhood acute lymphoblastic leukaemia

    DEFF Research Database (Denmark)

    Lund, Bendik; Wesolowska-Andersen, Agata; Lausen, Birgitte

    2014-01-01

    Objectives: To investigate association of host genomic variation and risk of infections during treatment for childhood acute lymphoblastic leukaemia (ALL). Methods: We explored association of 34 000 singlenucleotide polymorphisms (SNPs) related primarily to pharmacogenomics and immune function...

  12. A high-definition view of functional genetic variation from natural yeast genomes.

    Science.gov (United States)

    Bergström, Anders; Simpson, Jared T; Salinas, Francisco; Barré, Benjamin; Parts, Leopold; Zia, Amin; Nguyen Ba, Alex N; Moses, Alan M; Louis, Edward J; Mustonen, Ville; Warringer, Jonas; Durbin, Richard; Liti, Gianni

    2014-04-01

    The question of how genetic variation in a population influences phenotypic variation and evolution is of major importance in modern biology. Yet much is still unknown about the relative functional importance of different forms of genome variation and how they are shaped by evolutionary processes. Here we address these questions by population level sequencing of 42 strains from the budding yeast Saccharomyces cerevisiae and its closest relative S. paradoxus. We find that genome content variation, in the form of presence or absence as well as copy number of genetic material, is higher within S. cerevisiae than within S. paradoxus, despite genetic distances as measured in single-nucleotide polymorphisms being vastly smaller within the former species. This genome content variation, as well as loss-of-function variation in the form of premature stop codons and frameshifting indels, is heavily enriched in the subtelomeres, strongly reinforcing the relevance of these regions to functional evolution. Genes affected by these likely functional forms of variation are enriched for functions mediating interaction with the external environment (sugar transport and metabolism, flocculation, metal transport, and metabolism). Our results and analyses provide a comprehensive view of genomic diversity in budding yeast and expose surprising and pronounced differences between the variation within S. cerevisiae and that within S. paradoxus. We also believe that the sequence data and de novo assemblies will constitute a useful resource for further evolutionary and population genomics studies.

  13. An integrated map of genetic variation from 1.092 human genomes

    DEFF Research Database (Denmark)

    Abecasis, Goncalo R.; Auton, Adam; Brooks, Lisa D.

    2012-01-01

    By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination ...

  14. New Regions of the Human Genome Linked to Skin Color Variation in Some African Populations

    Science.gov (United States)

    In the first study of its kind, an international team of genomics researchers has identified new regions of the human genome that are associated with skin color variation in some African populations, opening new avenues for research on skin diseases and cancer in all populations.

  15. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing

    DEFF Research Database (Denmark)

    Hou, Yong; Wu, Kui; Shi, Xulian

    2015-01-01

    BACKGROUND: Single-cell resequencing (SCRS) provides many biomedical advances in variations detection at the single-cell level, but it currently relies on whole genome amplification (WGA). Three methods are commonly used for WGA: multiple displacement amplification (MDA), degenerate-oligonucleoti......BACKGROUND: Single-cell resequencing (SCRS) provides many biomedical advances in variations detection at the single-cell level, but it currently relies on whole genome amplification (WGA). Three methods are commonly used for WGA: multiple displacement amplification (MDA), degenerate...

  16. The Rules of Variation Expanded, Implications for the Research on Compatible Genomics

    OpenAIRE

    Castro-Chavez, Fernando

    2011-01-01

    The main focus of this article is to present the practical aspect of the code rules of variation and the search for a second set of genomic rules, including comparison of sequences to understand how to preserve compatible organisms in danger of extinction and how to generate biodiversity. Three new rules of variation are introduced: 1) homologous recombination, 2) a healthy fertile offspring, and 3) comparison of compatible genomes. The novel search in the natural world for fully compatible g...

  17. Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate.

    Science.gov (United States)

    Lasky, Jesse R; Des Marais, David L; McKay, John K; Richards, James H; Juenger, Thomas E; Keitt, Timothy H

    2012-11-01

    Arabidopsis thaliana inhabits diverse climates and exhibits varied phenology across its range. Although A. thaliana is an extremely well-studied model species, the relationship between geography, growing season climate and its genetic variation is poorly characterized. We used redundancy analysis (RDA) to quantify the association of genomic variation [214 051 single nucleotide polymorphisms (SNPs)] with geography and climate among 1003 accessions collected from 447 locations in Eurasia. We identified climate variables most correlated with genomic variation, which may be important selective gradients related to local adaptation across the species range. Climate variation among sites of origin explained slightly more genomic variation than geographical distance. Large-scale spatial gradients and early spring temperatures explained the most genomic variation, while growing season and summer conditions explained the most after controlling for spatial structure. SNP variation in Scandinavia showed the greatest climate structure among regions, possibly because of relatively consistent phenology and life history of populations in this region. Climate variation explained more variation among nonsynonymous SNPs than expected by chance, suggesting that much of the climatic structure of SNP correlations is due to changes in coding sequence that may underlie local adaptation. © 2012 Blackwell Publishing Ltd.

  18. Detecting microsatellites within genomes: significant variation among algorithms

    Directory of Open Access Journals (Sweden)

    Rivals Eric

    2007-04-01

    Full Text Available Abstract Background Microsatellites are short, tandemly-repeated DNA sequences which are widely distributed among genomes. Their structure, role and evolution can be analyzed based on exhaustive extraction from sequenced genomes. Several dedicated algorithms have been developed for this purpose. Here, we compared the detection efficiency of five of them (TRF, Mreps, Sputnik, STAR, and RepeatMasker. Results Our analysis was first conducted on the human X chromosome, and microsatellite distributions were characterized by microsatellite number, length, and divergence from a pure motif. The algorithms work with user-defined parameters, and we demonstrate that the parameter values chosen can strongly influence microsatellite distributions. The five algorithms were then compared by fixing parameters settings, and the analysis was extended to three other genomes (Saccharomyces cerevisiae, Neurospora crassa and Drosophila melanogaster spanning a wide range of size and structure. Significant differences for all characteristics of microsatellites were observed among algorithms, but not among genomes, for both perfect and imperfect microsatellites. Striking differences were detected for short microsatellites (below 20 bp, regardless of motif. Conclusion Since the algorithm used strongly influences empirical distributions, studies analyzing microsatellite evolution based on a comparison between empirical and theoretical size distributions should therefore be considered with caution. We also discuss why a typological definition of microsatellites limits our capacity to capture their genomic distributions.

  19. Draft genome sequence of an elite Dura palm and whole-genome patterns of DNA variation in oil palm.

    Science.gov (United States)

    Jin, Jingjing; Lee, May; Bai, Bin; Sun, Yanwei; Qu, Jing; Rahmadsyah; Alfiko, Yuzer; Lim, Chin Huat; Suwanto, Antonius; Sugiharti, Maria; Wong, Limsoon; Ye, Jian; Chua, Nam-Hai; Yue, Gen Hua

    2016-12-01

    Oil palm is the world's leading source of vegetable oil and fat. Dura, Pisifera and Tenera are three forms of oil palm. The genome sequence of Pisifera is available whereas the Dura form has not been sequenced yet. We sequenced the genome of one elite Dura palm, and re-sequenced 17 palm genomes. The assemble genome sequence of the elite Dura tree contained 10,971 scaffolds and was 1.701 Gb in length, covering 94.49% of the oil palm genome. 36,105 genes were predicted. Re-sequencing of 17 additional palm trees identified 18.1 million SNPs. We found high genetic variation among palms from different geographical regions, but lower variation among Southeast Asian Dura and Pisifera palms. We mapped 10,000 SNPs on the linkage map of oil palm. In addition, high linkage disequilibrium (LD) was detected in the oil palms used in breeding populations of Southeast Asia, suggesting that LD mapping is likely to be practical in this important oil crop. Our data provide a valuable resource for accelerating genetic improvement and studying the mechanism underlying phenotypic variations of important oil palm traits. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  20. Pan-Genome Analysis Links the Hereditary Variation of Leptospirillum ferriphilum With Its Evolutionary Adaptation

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    2018-03-01

    Full Text Available Niche adaptation has long been recognized to drive intra-species differentiation and speciation, yet knowledge about its relatedness with hereditary variation of microbial genomes is relatively limited. Using Leptospirillum ferriphilum species as a case study, we present a detailed analysis of genomic features of five recognized strains. Genome-to-genome distance calculation preliminarily determined the roles of spatial distance and environmental heterogeneity that potentially contribute to intra-species variation within L. ferriphilum species at the genome level. Mathematical models were further constructed to extrapolate the expansion of L. ferriphilum genomes (an ‘open’ pan-genome, indicating the emergence of novel genes with new sequenced genomes. The identification of diverse mobile genetic elements (MGEs (such as transposases, integrases, and phage-associated genes revealed the prevalence of horizontal gene transfer events, which is an important evolutionary mechanism that provides avenues for the recruitment of novel functionalities and further for the genetic divergence of microbial genomes. Comprehensive analysis also demonstrated that the genome reduction by gene loss in a broad sense might contribute to the observed diversification. We thus inferred a plausible explanation to address this observation: the community-dependent adaptation that potentially economizes the limiting resources of the entire community. Now that the introduction of new genes is accompanied by a parallel abandonment of some other ones, our results provide snapshots on the biological fitness cost of environmental adaptation within the L. ferriphilum genomes. In short, our genome-wide analyses bridge the relation between genetic variation of L. ferriphilum with its evolutionary adaptation.

  1. Genomic Determinants of Protein Abundance Variation in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Theodoros I. Roumeliotis

    2017-08-01

    Full Text Available Assessing the impact of genomic alterations on protein networks is fundamental in identifying the mechanisms that shape cancer heterogeneity. We have used isobaric labeling to characterize the proteomic landscapes of 50 colorectal cancer cell lines and to decipher the functional consequences of somatic genomic variants. The robust quantification of over 9,000 proteins and 11,000 phosphopeptides on average enabled the de novo construction of a functional protein correlation network, which ultimately exposed the collateral effects of mutations on protein complexes. CRISPR-cas9 deletion of key chromatin modifiers confirmed that the consequences of genomic alterations can propagate through protein interactions in a transcript-independent manner. Lastly, we leveraged the quantified proteome to perform unsupervised classification of the cell lines and to build predictive models of drug response in colorectal cancer. Overall, we provide a deep integrative view of the functional network and the molecular structure underlying the heterogeneity of colorectal cancer cells.

  2. ChickVD: a sequence variation database for the chicken genome

    DEFF Research Database (Denmark)

    Wang, Jing; He, Ximiao; Ruan, Jue

    2005-01-01

    Variation Database' (ChickVD). A graphical MapView shows variants mapped onto the chicken genome in the context of gene annotations and other features, including genetic markers, trait loci, cDNAs, chicken orthologs of human disease genes and raw sequence traces. ChickVD also stores information......Working in parallel with the efforts to sequence the chicken (Gallus gallus) genome, the Beijing Genomics Institute led an international team of scientists from China, USA, UK, Sweden, The Netherlands and Germany to map extensive DNA sequence variation throughout the chicken genome by sampling DNA...... from domestic breeds. Using the Red Jungle Fowl genome sequence as a reference, we identified 3.1 million non-redundant DNA sequence variants. To facilitate the application of our data to avian genetics and to provide a foundation for functional and evolutionary studies, we created the 'Chicken...

  3. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content.

    Science.gov (United States)

    Springer, Nathan M; Ying, Kai; Fu, Yan; Ji, Tieming; Yeh, Cheng-Ting; Jia, Yi; Wu, Wei; Richmond, Todd; Kitzman, Jacob; Rosenbaum, Heidi; Iniguez, A Leonardo; Barbazuk, W Brad; Jeddeloh, Jeffrey A; Nettleton, Daniel; Schnable, Patrick S

    2009-11-01

    Following the domestication of maize over the past approximately 10,000 years, breeders have exploited the extensive genetic diversity of this species to mold its phenotype to meet human needs. The extent of structural variation, including copy number variation (CNV) and presence/absence variation (PAV), which are thought to contribute to the extraordinary phenotypic diversity and plasticity of this important crop, have not been elucidated. Whole-genome, array-based, comparative genomic hybridization (CGH) revealed a level of structural diversity between the inbred lines B73 and Mo17 that is unprecedented among higher eukaryotes. A detailed analysis of altered segments of DNA conservatively estimates that there are several hundred CNV sequences among the two genotypes, as well as several thousand PAV sequences that are present in B73 but not Mo17. Haplotype-specific PAVs contain hundreds of single-copy, expressed genes that may contribute to heterosis and to the extraordinary phenotypic diversity of this important crop.

  4. Genomic and gene variation in Mycoplasma hominis strains

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Andersen, H; Birkelund, Svend

    1987-01-01

    DNAs from 14 strains of Mycoplasma hominis isolated from various habitats, including strain PG21, were analyzed for genomic heterogeneity. DNA-DNA filter hybridization values were from 51 to 91%. Restriction endonuclease digestion patterns, analyzed by agarose gel electrophoresis, revealed no ide...

  5. Studying Cattle Genomic Structural Variations in the Green Economy Era

    Science.gov (United States)

    Transgenic cattle carrying multiple genomic modifications have been produced by serial rounds of somatic cell chromatin transfer (cloning) of sequentially genetically targeted somatic cells. However, cloning efficiency tends to decline with the increase of rounds of cloning. It is possible that mult...

  6. Using large-scale genome variation cohorts to decipher the molecular mechanism of cancer.

    Science.gov (United States)

    Habermann, Nina; Mardin, Balca R; Yakneen, Sergei; Korbel, Jan O

    2016-01-01

    Characterizing genomic structural variations (SVs) in the human genome remains challenging, and there is a growing interest to understand somatic SVs occurring in cancer, a disease of the genome. A havoc-causing SV process known as chromothripsis scars the genome when localized chromosome shattering and repair occur in a one-off catastrophe. Recent efforts led to the development of a set of conceptual criteria for the inference of chromothripsis events in cancer genomes and to the development of experimental model systems for studying this striking DNA alteration process in vitro. We discuss these approaches, and additionally touch upon current "Big Data" efforts that employ hybrid cloud computing to enable studies of numerous cancer genomes in an effort to search for commonalities and differences in molecular DNA alteration processes in cancer. Copyright © 2016. Published by Elsevier SAS.

  7. Mapping copy number variation by population-scale genome sequencing

    DEFF Research Database (Denmark)

    Mills, Ryan E.; Walter, Klaudia; Stewart, Chip

    2011-01-01

    , copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications....... Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed...... differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies....

  8. Substantial Genome Size Variation in Taraxacum stenocephalum (Asteraceae, Lactuceae)

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Pavel; Kirschner, Jan; Chudáčková, H.; Rooks, Frederick; Štěpánek, Jan

    2013-01-01

    Roč. 48, č. 2 (2013), s. 271-284 ISSN 1211-9520 R&D Projects: GA ČR GD206/08/H049; GA ČR GA206/05/0970 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : flow cytometry * genome size * Taraxacum stenocephalum Subject RIV: EF - Botanics Impact factor: 1.612, year: 2013

  9. Structural genomic variation as risk factor for idiopathic recurrent miscarriage

    DEFF Research Database (Denmark)

    Nagirnaja, Liina; Palta, Priit; Kasak, Laura

    2014-01-01

    Recurrent miscarriage (RM) is a multifactorial disorder with acknowledged genetic heritability that affects ∼3% of couples aiming at childbirth. As copy number variants (CNVs) have been shown to contribute to reproductive disease susceptibility, we aimed to describe genome-wide profile of CNVs an...... similar low duplication prevalence worldwide (0.7%-1.2%) compared to RM cases of this study (6.6%-7.5%). The CNV disrupts PDZD2 and GOLPH3 genes predominantly expressed in placenta and it may represent a novel risk factor for pregnancy complications....... and identify common rearrangements modulating risk to RM. Genome-wide screening of Estonian RM patients and fertile controls identified excessive cumulative burden of CNVs (5.4 and 6.1 Mb per genome) in two RM cases possibly increasing their individual disease risk. Functional profiling of all rearranged genes...... within RM study group revealed significant enrichment of loci related to innate immunity and immunoregulatory pathways essential for immune tolerance at fetomaternal interface. As a major finding, we report a multicopy duplication (61.6 kb) at 5p13.3 conferring increased maternal risk to RM in Estonia...

  10. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan

    2014-01-01

    BACKGROUND: Structural variants (SVs) are less common than single nucleotide polymorphisms and indels in the population, but collectively account for a significant fraction of genetic polymorphism and diseases. Base pair differences arising from SVs are on a much higher order (>100 fold) than point...... mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost......-effective genome mapping technology to comprehensively discover genome-wide SVs and characterize complex regions of the YH genome using long single molecules (>150 kb) in a global fashion. RESULTS: Utilizing nanochannel-based genome mapping technology, we obtained 708 insertions/deletions and 17 inversions larger...

  11. Identification of genomic indels and structural variations using split reads

    Directory of Open Access Journals (Sweden)

    Urban Alexander E

    2011-07-01

    Full Text Available Abstract Background Recent studies have demonstrated the genetic significance of insertions, deletions, and other more complex structural variants (SVs in the human population. With the development of the next-generation sequencing technologies, high-throughput surveys of SVs on the whole-genome level have become possible. Here we present split-read identification, calibrated (SRiC, a sequence-based method for SV detection. Results We start by mapping each read to the reference genome in standard fashion using gapped alignment. Then to identify SVs, we score each of the many initial mappings with an assessment strategy designed to take into account both sequencing and alignment errors (e.g. scoring more highly events gapped in the center of a read. All current SV calling methods have multilevel biases in their identifications due to both experimental and computational limitations (e.g. calling more deletions than insertions. A key aspect of our approach is that we calibrate all our calls against synthetic data sets generated from simulations of high-throughput sequencing (with realistic error models. This allows us to calculate sensitivity and the positive predictive value under different parameter-value scenarios and for different classes of events (e.g. long deletions vs. short insertions. We run our calculations on representative data from the 1000 Genomes Project. Coupling the observed numbers of events on chromosome 1 with the calibrations gleaned from the simulations (for different length events allows us to construct a relatively unbiased estimate for the total number of SVs in the human genome across a wide range of length scales. We estimate in particular that an individual genome contains ~670,000 indels/SVs. Conclusions Compared with the existing read-depth and read-pair approaches for SV identification, our method can pinpoint the exact breakpoints of SV events, reveal the actual sequence content of insertions, and cover the whole

  12. A Variational Bayes Genomic-Enabled Prediction Model with Genotype × Environment Interaction

    Directory of Open Access Journals (Sweden)

    Osval A. Montesinos-López

    2017-06-01

    Full Text Available There are Bayesian and non-Bayesian genomic models that take into account G×E interactions. However, the computational cost of implementing Bayesian models is high, and becomes almost impossible when the number of genotypes, environments, and traits is very large, while, in non-Bayesian models, there are often important and unsolved convergence problems. The variational Bayes method is popular in machine learning, and, by approximating the probability distributions through optimization, it tends to be faster than Markov Chain Monte Carlo methods. For this reason, in this paper, we propose a new genomic variational Bayes version of the Bayesian genomic model with G×E using half-t priors on each standard deviation (SD term to guarantee highly noninformative and posterior inferences that are not sensitive to the choice of hyper-parameters. We show the complete theoretical derivation of the full conditional and the variational posterior distributions, and their implementations. We used eight experimental genomic maize and wheat data sets to illustrate the new proposed variational Bayes approximation, and compared its predictions and implementation time with a standard Bayesian genomic model with G×E. Results indicated that prediction accuracies are slightly higher in the standard Bayesian model with G×E than in its variational counterpart, but, in terms of computation time, the variational Bayes genomic model with G×E is, in general, 10 times faster than the conventional Bayesian genomic model with G×E. For this reason, the proposed model may be a useful tool for researchers who need to predict and select genotypes in several environments.

  13. Sex-linked genomic variation and its relationship to avian plumage dichromatism and sexual selection.

    Science.gov (United States)

    Huang, Huateng; Rabosky, Daniel L

    2015-09-16

    Sexual dichromatism is the tendency for sexes to differ in color pattern and represents a striking form of within-species morphological variation. Conspicuous intersexual differences in avian plumage are generally thought to result from Darwinian sexual selection, to the extent that dichromatism is often treated as a surrogate for the intensity of sexual selection in phylogenetic comparative studies. Intense sexual selection is predicted to leave a footprint on genetic evolution by reducing the relative genetic diversity on sex chromosome to that on the autosomes. In this study, we test the association between plumage dichromatism and sex-linked genetic diversity using eight species pairs with contrasting levels of dichromatism. We estimated Z-linked and autosomal genetic diversity for these non-model avian species using restriction-site associated (RAD) loci that covered ~3 % of the genome. We find that monochromatic birds consistently have reduced sex-linked genomic variation relative to phylogenetically-paired dichromatic species and this pattern is robust to mutational biases. Our results are consistent with several interpretations. If present-day sexual selection is stronger in dichromatic birds, our results suggest that its impact on sex-linked genomic variation is offset by other processes that lead to proportionately lower Z-linked variation in monochromatic species. We discuss possible factors that may contribute to this discrepancy between phenotypes and genomic variation. Conversely, it is possible that present-day sexual selection -- as measured by the variance in male reproductive success -- is stronger in the set of monochromatic taxa we have examined, potentially reflecting the importance of song, behavior and other non-plumage associated traits as targets of sexual selection. This counterintuitive finding suggests that the relationship between genomic variation and sexual selection is complex and highlights the need for a more comprehensive survey

  14. Insights From Genomics Into Spatial and Temporal Variation in Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Byrne, A Q; Voyles, J; Rios-Sotelo, G; Rosenblum, E B

    2016-01-01

    Advances in genetics and genomics have provided new tools for the study of emerging infectious diseases. Researchers can now move quickly from simple hypotheses to complex explanations for pathogen origin, spread, and mechanisms of virulence. Here we focus on the application of genomics to understanding the biology of the fungal pathogen Batrachochytrium dendrobatidis (Bd), a novel and deadly pathogen of amphibians. We provide a brief history of the system, then focus on key insights into Bd variation garnered from genomics approaches, and finally, highlight new frontiers for future discoveries. Genomic tools have revealed unexpected complexity and variation in the Bd system suggesting that the history and biology of emerging pathogens may not be as simple as they initially seem. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Worldwide patterns of genomic variation and admixture in gray wolves.

    Science.gov (United States)

    Fan, Zhenxin; Silva, Pedro; Gronau, Ilan; Wang, Shuoguo; Armero, Aitor Serres; Schweizer, Rena M; Ramirez, Oscar; Pollinger, John; Galaverni, Marco; Ortega Del-Vecchyo, Diego; Du, Lianming; Zhang, Wenping; Zhang, Zhihe; Xing, Jinchuan; Vilà, Carles; Marques-Bonet, Tomas; Godinho, Raquel; Yue, Bisong; Wayne, Robert K

    2016-02-01

    The gray wolf (Canis lupus) is a widely distributed top predator and ancestor of the domestic dog. To address questions about wolf relationships to each other and dogs, we assembled and analyzed a data set of 34 canine genomes. The divergence between New and Old World wolves is the earliest branching event and is followed by the divergence of Old World wolves and dogs, confirming that the dog was domesticated in the Old World. However, no single wolf population is more closely related to dogs, supporting the hypothesis that dogs were derived from an extinct wolf population. All extant wolves have a surprisingly recent common ancestry and experienced a dramatic population decline beginning at least ∼30 thousand years ago (kya). We suggest this crisis was related to the colonization of Eurasia by modern human hunter-gatherers, who competed with wolves for limited prey but also domesticated them, leading to a compensatory population expansion of dogs. We found extensive admixture between dogs and wolves, with up to 25% of Eurasian wolf genomes showing signs of dog ancestry. Dogs have influenced the recent history of wolves through admixture and vice versa, potentially enhancing adaptation. Simple scenarios of dog domestication are confounded by admixture, and studies that do not take admixture into account with specific demographic models are problematic. © 2016 Fan et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Human-specific HERV-K insertion causes genomic variations in the human genome.

    Directory of Open Access Journals (Sweden)

    Wonseok Shin

    Full Text Available Human endogenous retroviruses (HERV sequences account for about 8% of the human genome. Through comparative genomics and literature mining, we identified a total of 29 human-specific HERV-K insertions. We characterized them focusing on their structure and flanking sequence. The results showed that four of the human-specific HERV-K insertions deleted human genomic sequences via non-classical insertion mechanisms. Interestingly, two of the human-specific HERV-K insertion loci contained two HERV-K internals and three LTR elements, a pattern which could be explained by LTR-LTR ectopic recombination or template switching. In addition, we conducted a polymorphic test and observed that twelve out of the 29 elements are polymorphic in the human population. In conclusion, human-specific HERV-K elements have inserted into human genome since the divergence of human and chimpanzee, causing human genomic changes. Thus, we believe that human-specific HERV-K activity has contributed to the genomic divergence between humans and chimpanzees, as well as within the human population.

  17. Within-Host Variations of Human Papillomavirus Reveal APOBEC-Signature Mutagenesis in the Viral Genome.

    Science.gov (United States)

    Hirose, Yusuke; Onuki, Mamiko; Tenjimbayashi, Yuri; Mori, Seiichiro; Ishii, Yoshiyuki; Takeuchi, Takamasa; Tasaka, Nobutaka; Satoh, Toyomi; Morisada, Tohru; Iwata, Takashi; Miyamoto, Shingo; Matsumoto, Koji; Sekizawa, Akihiko; Kukimoto, Iwao

    2018-03-28

    Persistent infection with oncogenic human papillomaviruses (HPVs) causes cervical cancer, accompanied with the accumulation of somatic mutations into the host genome. There are concomitant genetic changes in the HPV genome during viral infection; however, their relevance to cervical carcinogenesis is poorly understood. Here we explored within-host genetic diversity of HPV by performing deep sequencing analyses of viral whole-genome sequences in clinical specimens. The whole genomes of HPV types 16, 52 and 58 were amplified by type-specific PCR from total cellular DNA of cervical exfoliated cells collected from patients with cervical intraepithelial neoplasia (CIN) and invasive cervical cancer (ICC), and were deep-sequenced. After constructing a reference vial genome sequence for each specimen, nucleotide positions showing changes with > 0.5% frequencies compared to the reference sequence were determined for individual samples. In total, 1,052 positions of nucleotide variations were detected in HPV genomes from 151 samples (CIN1, n = 56; CIN2/3, n = 68; ICC, n = 27), with varying numbers per sample. Overall, C-to-T and C-to-A substitutions were the dominant changes observed across all histological grades. While C-to-T transitions were predominantly detected in CIN1, their prevalence was decreased in CIN2/3 and fell below that of C-to-A transversions in ICC. Analysis of the tri-nucleotides context encompassing substituted bases revealed that Tp C pN, a preferred target sequence for cellular APOBEC cytosine deaminases, was a primary site for C-to-T substitutions in the HPV genome. These results strongly imply that the APOBEC proteins are drivers of HPV genome mutation, particularly in CIN1 lesions. IMPORTANCE HPVs exhibit surprisingly high levels of genetic diversity, including a large repertoire of minor genomic variants in each viral genotype. Here, by conducting deep sequencing analyses, we show for the first time a comprehensive snapshot of the "within

  18. Genomic variation in recently collected maize landraces from Mexico

    Science.gov (United States)

    Arteaga, María Clara; Moreno-Letelier, Alejandra; Mastretta-Yanes, Alicia; Vázquez-Lobo, Alejandra; Breña-Ochoa, Alejandra; Moreno-Estrada, Andrés; Eguiarte, Luis E.; Piñero, Daniel

    2015-01-01

    The present dataset comprises 36,931 SNPs genotyped in 46 maize landraces native to Mexico as well as the teosinte subspecies Zea maiz ssp. parviglumis and ssp. mexicana. These landraces were collected directly from farmers mostly between 2006 and 2010. We accompany these data with a short description of the variation within each landrace, as well as maps, principal component analyses and neighbor joining trees showing the distribution of the genetic diversity relative to landrace, geographical features and maize biogeography. High levels of genetic variation were detected for the maize landraces (HE = 0.234 to 0.318 (mean 0.311), while slightly lower levels were detected in Zea m. mexicana and Zea m. parviglumis (HE = 0.262 and 0.234, respectively). The distribution of genetic variation was better explained by environmental variables given by the interaction of altitude and latitude than by landrace identity. This dataset is a follow up product of the Global Native Maize Project, an initiative to update the data on Mexican maize landraces and their wild relatives, and to generate information that is necessary for implementing the Mexican Biosafety Law. PMID:26981357

  19. Genomic variation in recently collected maize landraces from Mexico

    Directory of Open Access Journals (Sweden)

    María Clara Arteaga

    2016-03-01

    Full Text Available The present dataset comprises 36,931 SNPs genotyped in 46 maize landraces native to Mexico as well as the teosinte subspecies Zea maiz ssp. parviglumis and ssp. mexicana. These landraces were collected directly from farmers mostly between 2006 and 2010. We accompany these data with a short description of the variation within each landrace, as well as maps, principal component analyses and neighbor joining trees showing the distribution of the genetic diversity relative to landrace, geographical features and maize biogeography. High levels of genetic variation were detected for the maize landraces (HE = 0.234 to 0.318 (mean 0.311, while slightly lower levels were detected in Zea m. mexicana and Zea m. parviglumis (HE = 0.262 and 0.234, respectively. The distribution of genetic variation was better explained by environmental variables given by the interaction of altitude and latitude than by landrace identity. This dataset is a follow up product of the Global Native Maize Project, an initiative to update the data on Mexican maize landraces and their wild relatives, and to generate information that is necessary for implementing the Mexican Biosafety Law.

  20. Genome size variation and incidence of polyploidy in Scrophulariaceae sensu lato from the Iberian Peninsula.

    Science.gov (United States)

    Castro, Mariana; Castro, Sílvia; Loureiro, João

    2012-01-01

    In the last decade, genomic studies using DNA markers have strongly influenced the current phylogeny of angiosperms. Genome size and ploidy level have contributed to this discussion, being considered important characters in biosystematics, ecology and population biology. Despite the recent increase in studies related to genome size evolution and polyploidy incidence, only a few are available for Scrophulariaceae. In this context, we assessed the value of genome size, mostly as a taxonomic marker, and the role of polyploidy as a process of genesis and maintenance of plant diversity in Scrophulariaceae sensu lato in the Iberian Peninsula. Large-scale analyses of genome size and ploidy-level variation across the Iberian Peninsula were performed using flow cytometry. One hundred and sixty-two populations of 59 distinct taxa were analysed. A bibliographic review on chromosome counts was also performed. From the 59 sampled taxa, 51 represent first estimates of genome size. The majority of the Scrophulariaceae species presented very small to small genome sizes (2C ≤ 7.0 pg). Furthermore, in most of the analysed genera it was possible to use this character to separate several taxa, independently if these genera were homoploid or heteroploid. Also, some genome-related phenomena were detected, such as intraspecific variation of genome size in some genera and the possible occurrence of dysploidy in Verbascum spp. With respect to polyploidy, despite a few new DNA ploidy levels having been detected in Veronica, no multiple cytotypes have been found in any taxa. This work contributed with important basic scientific knowledge on genome size and polyploid incidence in the Scrophulariaceae, providing important background information for subsequent studies, with several perspectives for future studies being opened.

  1. High density LD-based structural variations analysis in cattle genome.

    Directory of Open Access Journals (Sweden)

    Ricardo Salomon-Torres

    Full Text Available Genomic structural variations represent an important source of genetic variation in mammal genomes, thus, they are commonly related to phenotypic expressions. In this work, ∼ 770,000 single nucleotide polymorphism genotypes from 506 animals from 19 cattle breeds were analyzed. A simple LD-based structural variation was defined, and a genome-wide analysis was performed. After applying some quality control filters, for each breed and each chromosome we calculated the linkage disequilibrium (r2 of short range (≤ 100 Kb. We sorted SNP pairs by distance and obtained a set of LD means (called the expected means using bins of 5 Kb. We identified 15,246 segments of at least 1 Kb, among the 19 breeds, consisting of sets of at least 3 adjacent SNPs so that, for each SNP, r2 within its neighbors in a 100 Kb range, to the right side of that SNP, were all bigger than, or all smaller than, the corresponding expected mean, and their P-value were significant after a Benjamini-Hochberg multiple testing correction. In addition, to account just for homogeneously distributed regions we considered only SNPs having at least 15 SNP neighbors within 100 Kb. We defined such segments as structural variations. By grouping all variations across all animals in the sample we defined 9,146 regions, involving a total of 53,137 SNPs; representing the 6.40% (160.98 Mb from the bovine genome. The identified structural variations covered 3,109 genes. Clustering analysis showed the relatedness of breeds given the geographic region in which they are evolving. In summary, we present an analysis of structural variations based on the deviation of the expected short range LD between SNPs in the bovine genome. With an intuitive and simple definition based only on SNPs data it was possible to discern closeness of breeds due to grouping by geographic region in which they are evolving.

  2. Identification of Genome-Wide Variations among Three Elite Restorer Lines for Hybrid-Rice

    Science.gov (United States)

    Li, Shuangcheng; Wang, Shiquan; Deng, Qiming; Zheng, Aiping; Zhu, Jun; Liu, Huainian; Wang, Lingxia; Gao, Fengyan; Zou, Ting; Huang, Bin; Cao, Xuemei; Xu, Lizhi; Yu, Chuang; Ai, Peng; Li, Ping

    2012-01-01

    Rice restorer lines play an important role in three-line hybrid rice production. Previous research based on molecular tagging has suggested that the restorer lines used widely today have narrow genetic backgrounds. However, patterns of genetic variation at a genome-wide scale in these restorer lines remain largely unknown. The present study performed re-sequencing and genome-wide variation analysis of three important representative restorer lines, namely, IR24, MH63, and SH527, using the Solexa sequencing technology. With the genomic sequence of the Indica cultivar 9311 as the reference, the following genetic features were identified: 267,383 single-nucleotide polymorphisms (SNPs), 52,847 insertion/deletion polymorphisms (InDels), and 3,286 structural variations (SVs) in the genome of IR24; 288,764 SNPs, 59,658 InDels, and 3,226 SVs in MH63; and 259,862 SNPs, 55,500 InDels, and 3,127 SVs in SH527. Variations between samples were also determined by comparative analysis of authentic collections of SNPs, InDels, and SVs, and were functionally annotated. Furthermore, variations in several important genes were also surveyed by alignment analysis in these lines. Our results suggest that genetic variations among these lines, although far lower than those reported in the landrace population, are greater than expected, indicating a complicated genetic basis for the phenotypic diversity of the restorer lines. Identification of genome-wide variation and pattern analysis among the restorer lines will facilitate future genetic studies and the molecular improvement of hybrid rice. PMID:22383984

  3. Structural genomic variation in childhood epilepsies with complex phenotypes

    DEFF Research Database (Denmark)

    Helbig, Ingo; Swinkels, Marielle E M; Aten, Emmelien

    2014-01-01

    A genetic contribution to a broad range of epilepsies has been postulated, and particularly copy number variations (CNVs) have emerged as significant genetic risk factors. However, the role of CNVs in patients with epilepsies with complex phenotypes is not known. Therefore, we investigated the role...... of CNVs in patients with unclassified epilepsies and complex phenotypes. A total of 222 patients from three European countries, including patients with structural lesions on magnetic resonance imaging (MRI), dysmorphic features, and multiple congenital anomalies, were clinically evaluated and screened...

  4. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden

    Science.gov (United States)

    Platzer, Alexander; Zhang, Qingrun; Vilhjálmsson, Bjarni J; Korte, Arthur; Nizhynska, Viktoria; Voronin, Viktor; Korte, Pamela; Sedman, Laura; Mandáková, Terezie; Lysak, Martin A; Seren, Ümit; Hellmann, Ines; Nordborg, Magnus

    2013-01-01

    Despite advances in sequencing, the goal of obtaining a comprehensive view of genetic variation in populations is still far from reached. We sequenced 180 lines of A. thaliana from Sweden to obtain as complete a picture as possible of variation in a single region. Whereas simple polymorphisms in the unique portion of the genome are readily identified, other polymorphisms are not. The massive variation in genome size identified by flow cytometry seems largely to be due to 45S rDNA copy number variation, with lines from northern Sweden having particularly large numbers of copies. Strong selection is evident in the form of long-range linkage disequilibrium (LD), as well as in LD between nearby compensatory mutations. Many footprints of selective sweeps were found in lines from northern Sweden, and a massive global sweep was shown to have involved a 700-kb transposition. PMID:23793030

  5. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions

    OpenAIRE

    Blanca, José; Montero-Pau, Javier; Sauvage, Christopher; Bauchet, Guillaume; Illa, Eudald; Díez, María José; Francis, David; Causse, Mathilde; Cañizares, Joaquín

    2015-01-01

    [EN] Background: Domestication modifies the genomic variation of species. Quantifying this variation provides insights into the domestication process, facilitates the management of resources used by breeders and germplasm centers, and enables the design of experiments to associate traits with genes. We described and analyzed the genetic diversity of 1,008 tomato accessions including Solanum lycopersicum var. lycopersicum (SLL), S. lycopersicum var. cerasiforme (SLC), and S. pimpin...

  6. Identifying tagging SNPs for African specific genetic variation from the African Diaspora Genome.

    Science.gov (United States)

    Johnston, Henry Richard; Hu, Yi-Juan; Gao, Jingjing; O'Connor, Timothy D; Abecasis, Gonçalo R; Wojcik, Genevieve L; Gignoux, Christopher R; Gourraud, Pierre-Antoine; Lizee, Antoine; Hansen, Mark; Genuario, Rob; Bullis, Dave; Lawley, Cindy; Kenny, Eimear E; Bustamante, Carlos; Beaty, Terri H; Mathias, Rasika A; Barnes, Kathleen C; Qin, Zhaohui S

    2017-04-21

    A primary goal of The Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to develop an 'African Diaspora Power Chip' (ADPC), a genotyping array consisting of tagging SNPs, useful in comprehensively identifying African specific genetic variation. This array is designed based on the novel variation identified in 642 CAAPA samples of African ancestry with high coverage whole genome sequence data (~30× depth). This novel variation extends the pattern of variation catalogued in the 1000 Genomes and Exome Sequencing Projects to a spectrum of populations representing the wide range of West African genomic diversity. These individuals from CAAPA also comprise a large swath of the African Diaspora population and incorporate historical genetic diversity covering nearly the entire Atlantic coast of the Americas. Here we show the results of designing and producing such a microchip array. This novel array covers African specific variation far better than other commercially available arrays, and will enable better GWAS analyses for researchers with individuals of African descent in their study populations. A recent study cataloging variation in continental African populations suggests this type of African-specific genotyping array is both necessary and valuable for facilitating large-scale GWAS in populations of African ancestry.

  7. Singapore Genome Variation Project: a haplotype map of three Southeast Asian populations.

    Science.gov (United States)

    Teo, Yik-Ying; Sim, Xueling; Ong, Rick T H; Tan, Adrian K S; Chen, Jieming; Tantoso, Erwin; Small, Kerrin S; Ku, Chee-Seng; Lee, Edmund J D; Seielstad, Mark; Chia, Kee-Seng

    2009-11-01

    The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser.

  8. Variation in synonymous codon usage in Paenibacillus sp. 32O-W genome.

    Science.gov (United States)

    Deb, Sushanta; Basak, Surajit

    2016-01-01

    Paenibacillus sp. 32O-W, which is attributed for biodesulfurization of petroleum, has 56.34% genomic G+C content. Correspondence analysis on Relative Synonymous Codon Usage (RSCU) of the Paenibacillus sp. 32O-W genome has revealed the two different trends of codon usage variation. Two sets of genes have been identified representing the two distinct pattern of codon usage in this bacterial genome. We have measured several codon usage indices to understand the influencing factors governing the differential pattern of codon usage variation in this bacterial genome. We also observed significant differences in many protein properties between the two gene sets (e.g., hydrophobicity, protein biosynthetic cost, protein aggregation propensity). The compositional difference between the two sets of genes and the difference in their potential gene expressivity are the driving force for the differences in protein biosynthetic cost and aggregation propensity. Based on our results we argue that codon usage variation in Paenibacillus sp. 32O-W genome is actually influenced by both mutational bias and translational selection.

  9. Ultra Deep Sequencing of a Baculovirus Population Reveals Widespread Genomic Variations

    Directory of Open Access Journals (Sweden)

    Aurélien Chateigner

    2015-07-01

    Full Text Available Viruses rely on widespread genetic variation and large population size for adaptation. Large DNA virus populations are thought to harbor little variation though natural populations may be polymorphic. To measure the genetic variation present in a dsDNA virus population, we deep sequenced a natural strain of the baculovirus Autographa californica multiple nucleopolyhedrovirus. With 124,221X average genome coverage of our 133,926 bp long consensus, we could detect low frequency mutations (0.025%. K-means clustering was used to classify the mutations in four categories according to their frequency in the population. We found 60 high frequency non-synonymous mutations under balancing selection distributed in all functional classes. These mutants could alter viral adaptation dynamics, either through competitive or synergistic processes. Lastly, we developed a technique for the delimitation of large deletions in next generation sequencing data. We found that large deletions occur along the entire viral genome, with hotspots located in homologous repeat regions (hrs. Present in 25.4% of the genomes, these deletion mutants presumably require functional complementation to complete their infection cycle. They might thus have a large impact on the fitness of the baculovirus population. Altogether, we found a wide breadth of genomic variation in the baculovirus population, suggesting it has high adaptive potential.

  10. Genomic Variation of Inbreeding and Ancestry in the Remaining Two Isle Royale Wolves.

    Science.gov (United States)

    Hedrick, Philip W; Kardos, Marty; Peterson, Rolf O; Vucetich, John A

    2017-03-01

    Inbreeding, relatedness, and ancestry have traditionally been estimated with pedigree information, however, molecular genomic data can provide more detailed examination of these properties. For example, pedigree information provides estimation of the expected value of these measures but molecular genomic data can estimate the realized values of these measures in individuals. Here, we generate the theoretical distribution of inbreeding, relatedness, and ancestry for the individuals in the pedigree of the Isle Royale wolves, the first examination of such variation in a wild population with a known pedigree. We use the 38 autosomes of the dog genome and their estimated map lengths in our genomic analysis. Although it is known that the remaining wolves are highly inbred, closely related, and descend from only 3 ancestors, our analyses suggest that there is significant variation in the realized inbreeding and relatedness around pedigree expectations. For example, the expected inbreeding in a hypothetical offspring from the 2 remaining wolves is 0.438 but the realized 95% genomic confidence interval is from 0.311 to 0.565. For individual chromosomes, a substantial proportion of the whole chromosomes are completely identical by descent. This examination provides a background to use when analyzing molecular genomic data for individual levels of inbreeding, relatedness, and ancestry. The level of variation in these measures is a function of the time to the common ancestor(s), the number of chromosomes, and the rate of recombination. In the Isle Royale wolf population, the few generations to a common ancestor results in the high variance in genomic inbreeding. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome

    Directory of Open Access Journals (Sweden)

    Mei Lingling

    2011-11-01

    Full Text Available Abstract Background To complement next-generation sequencing technologies, there is a pressing need for efficient pre-sequencing capture methods with reduced costs and DNA requirement. The Alu family of short interspersed nucleotide elements is the most abundant type of transposable elements in the human genome and a recognized source of genome instability. With over one million Alu elements distributed throughout the genome, they are well positioned to facilitate genome-wide sequence amplification and capture of regions likely to harbor genetic variation hotspots of biological relevance. Results Here we report on the use of inter-Alu PCR with an enhanced range of amplicons in conjunction with next-generation sequencing to generate an Alu-anchored scan, or 'AluScan', of DNA sequences between Alu transposons, where Alu consensus sequence-based 'H-type' PCR primers that elongate outward from the head of an Alu element are combined with 'T-type' primers elongating from the poly-A containing tail to achieve huge amplicon range. To illustrate the method, glioma DNA was compared with white blood cell control DNA of the same patient by means of AluScan. The over 10 Mb sequences obtained, derived from more than 8,000 genes spread over all the chromosomes, revealed a highly reproducible capture of genomic sequences enriched in genic sequences and cancer candidate gene regions. Requiring only sub-micrograms of sample DNA, the power of AluScan as a discovery tool for genetic variations was demonstrated by the identification of 357 instances of loss of heterozygosity, 341 somatic indels, 274 somatic SNVs, and seven potential somatic SNV hotspots between control and glioma DNA. Conclusions AluScan, implemented with just a small number of H-type and T-type inter-Alu PCR primers, provides an effective capture of a diversity of genome-wide sequences for analysis. The method, by enabling an examination of gene-enriched regions containing exons, introns, and

  12. Genic intolerance to functional variation and the interpretation of personal genomes.

    Directory of Open Access Journals (Sweden)

    Slavé Petrovski

    Full Text Available A central challenge in interpreting personal genomes is determining which mutations most likely influence disease. Although progress has been made in scoring the functional impact of individual mutations, the characteristics of the genes in which those mutations are found remain largely unexplored. For example, genes known to carry few common functional variants in healthy individuals may be judged more likely to cause certain kinds of disease than genes known to carry many such variants. Until now, however, it has not been possible to develop a quantitative assessment of how well genes tolerate functional genetic variation on a genome-wide scale. Here we describe an effort that uses sequence data from 6503 whole exome sequences made available by the NHLBI Exome Sequencing Project (ESP. Specifically, we develop an intolerance scoring system that assesses whether genes have relatively more or less functional genetic variation than expected based on the apparently neutral variation found in the gene. To illustrate the utility of this intolerance score, we show that genes responsible for Mendelian diseases are significantly more intolerant to functional genetic variation than genes that do not cause any known disease, but with striking variation in intolerance among genes causing different classes of genetic disease. We conclude by showing that use of an intolerance ranking system can aid in interpreting personal genomes and identifying pathogenic mutations.

  13. Chromosome number and genome size variation in Colocasia (Araceae) from China.

    Science.gov (United States)

    Wang, Guang-Yan; Zhang, Xiao-Ming; Qian, Min; Hu, Xiang-Yang; Yang, Yong-Ping

    2017-11-01

    Chromosome number and genome size are important cytological characters that significantly influence various organismal traits. We investigated chromosome number and genome size variation in 73 accessions belonging to four Colocasia species from China. Five different chromosome counts (2n = 26, 28, 38, 42, and 56) were found, the largest one representing a new record in Colocasia. The basic chromosome numbers are x = 13, 14, and 19, corresponding to 2x, 3x, and 4x cytotypes. Yunnan Province, China is considered the center of Colocasia polyploid origin. The 2C values in our accessions ranged from 3.29 pg in C. gigantea to 12.51 pg in C. esculenta. All species exhibit inter- and intraspecific chromosomal variation. Differences in DNA content among the Colocasia species seem to have occurred by chromosomal gain under similar habitats. Polyploidization also obviously contributes to 2C value variation.

  14. Genomic profiling of plastid DNA variation in the Mediterranean olive tree.

    Science.gov (United States)

    Besnard, Guillaume; Hernández, Pilar; Khadari, Bouchaib; Dorado, Gabriel; Savolainen, Vincent

    2011-05-10

    Characterisation of plastid genome (or cpDNA) polymorphisms is commonly used for phylogeographic, population genetic and forensic analyses in plants, but detecting cpDNA variation is sometimes challenging, limiting the applications of such an approach. In the present study, we screened cpDNA polymorphism in the olive tree (Olea europaea L.) by sequencing the complete plastid genome of trees with a distinct cpDNA lineage. Our objective was to develop new markers for a rapid genomic profiling (by Multiplex PCRs) of cpDNA haplotypes in the Mediterranean olive tree. Eight complete cpDNA genomes of Olea were sequenced de novo. The nucleotide divergence between olive cpDNA lineages was low and not exceeding 0.07%. Based on these sequences, markers were developed for studying two single nucleotide substitutions and length polymorphism of 62 regions (with variable microsatellite motifs or other indels). They were then used to genotype the cpDNA variation in cultivated and wild Mediterranean olive trees (315 individuals). Forty polymorphic loci were detected on this sample, allowing the distinction of 22 haplotypes belonging to the three Mediterranean cpDNA lineages known as E1, E2 and E3. The discriminating power of cpDNA variation was particularly low for the cultivated olive tree with one predominating haplotype, but more diversity was detected in wild populations. We propose a method for a rapid characterisation of the Mediterranean olive germplasm. The low variation in the cultivated olive tree indicated that the utility of cpDNA variation for forensic analyses is limited to rare haplotypes. In contrast, the high cpDNA variation in wild populations demonstrated that our markers may be useful for phylogeographic and populations genetic studies in O. europaea.

  15. Genomic profiling of plastid DNA variation in the Mediterranean olive tree

    Science.gov (United States)

    2011-01-01

    Background Characterisation of plastid genome (or cpDNA) polymorphisms is commonly used for phylogeographic, population genetic and forensic analyses in plants, but detecting cpDNA variation is sometimes challenging, limiting the applications of such an approach. In the present study, we screened cpDNA polymorphism in the olive tree (Olea europaea L.) by sequencing the complete plastid genome of trees with a distinct cpDNA lineage. Our objective was to develop new markers for a rapid genomic profiling (by Multiplex PCRs) of cpDNA haplotypes in the Mediterranean olive tree. Results Eight complete cpDNA genomes of Olea were sequenced de novo. The nucleotide divergence between olive cpDNA lineages was low and not exceeding 0.07%. Based on these sequences, markers were developed for studying two single nucleotide substitutions and length polymorphism of 62 regions (with variable microsatellite motifs or other indels). They were then used to genotype the cpDNA variation in cultivated and wild Mediterranean olive trees (315 individuals). Forty polymorphic loci were detected on this sample, allowing the distinction of 22 haplotypes belonging to the three Mediterranean cpDNA lineages known as E1, E2 and E3. The discriminating power of cpDNA variation was particularly low for the cultivated olive tree with one predominating haplotype, but more diversity was detected in wild populations. Conclusions We propose a method for a rapid characterisation of the Mediterranean olive germplasm. The low variation in the cultivated olive tree indicated that the utility of cpDNA variation for forensic analyses is limited to rare haplotypes. In contrast, the high cpDNA variation in wild populations demonstrated that our markers may be useful for phylogeographic and populations genetic studies in O. europaea. PMID:21569271

  16. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae.

    Directory of Open Access Journals (Sweden)

    Jiří Macas

    Full Text Available The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57% of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%. Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.

  17. Genomic variation among contemporary Pseudomonas aeruginosa isolates from chronically infected cystic fibrosis patients.

    Science.gov (United States)

    Chung, Jade C S; Becq, Jennifer; Fraser, Louise; Schulz-Trieglaff, Ole; Bond, Nicholas J; Foweraker, Juliet; Bruce, Kenneth D; Smith, Geoffrey P; Welch, Martin

    2012-09-01

    The airways of individuals with cystic fibrosis (CF) often become chronically infected with unique strains of the opportunistic pathogen Pseudomonas aeruginosa. Several lines of evidence suggest that the infecting P. aeruginosa lineage diversifies in the CF lung niche, yet so far this contemporary diversity has not been investigated at a genomic level. In this work, we sequenced the genomes of pairs of randomly selected contemporary isolates sampled from the expectorated sputum of three chronically infected adult CF patients. Each patient was infected by a distinct strain of P. aeruginosa. Single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were identified in the DNA common to the paired isolates from different patients. The paired isolates from one patient differed due to just 1 SNP and 8 indels. The paired isolates from a second patient differed due to 54 SNPs and 38 indels. The pair of isolates from the third patient both contained a mutS mutation, which conferred a hypermutator phenotype; these isolates cumulatively differed due to 344 SNPs and 93 indels. In two of the pairs of isolates, a different accessory genome composition, specifically integrated prophage, was identified in one but not the other isolate of each pair. We conclude that contemporary isolates from a single sputum sample can differ at the SNP, indel, and accessory genome levels and that the cross-sectional genomic variation among coeval pairs of P. aeruginosa CF isolates can be comparable to the variation previously reported to differentiate between paired longitudinally sampled isolates.

  18. findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies.

    Science.gov (United States)

    Sun, Hequan; Ding, Jia; Piednoël, Mathieu; Schneeberger, Korbinian

    2018-02-15

    Analyzing k-mer frequencies in whole-genome sequencing data is becoming a common method for estimating genome size (GS). However, it remains uninvestigated how accurate the method is, especially if it can capture intra-species GS variation. We present findGSE, which fits skew normal distributions to k-mer frequencies to estimate GS. findGSE outperformed existing tools in an extensive simulation study. Estimating GSs of 89 Arabidopsis thaliana accessions, findGSE showed the highest capability in capturing GS variations. In an application with 71 female and 71 male human individuals, findGSE delivered an average of 3039 Mb as haploid human GS, while female genomes were on average 41 Mb larger than male genomes, in astonishing agreement with size difference of the X and Y chromosomes. Further analysis showed that human GS variations link to geographical patterns and significant differences between populations, which can be explained by variable abundances of LINE-1 retrotransposons. R package of findGSE is freely available at https://github.com/schneebergerlab/findGSE and supported on linux and Mac systems. schneeberger@mpipz.mpg.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. Read clouds uncover variation in complex regions of the human genome.

    Science.gov (United States)

    Bishara, Alex; Liu, Yuling; Weng, Ziming; Kashef-Haghighi, Dorna; Newburger, Daniel E; West, Robert; Sidow, Arend; Batzoglou, Serafim

    2015-10-01

    Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies. © 2015 Bishara et al.; Published by Cold Spring Harbor Laboratory Press.

  20. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Héloïse Bastide

    2013-06-01

    Full Text Available Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome.

  1. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.

    Science.gov (United States)

    Bastide, Héloïse; Betancourt, Andrea; Nolte, Viola; Tobler, Raymond; Stöbe, Petra; Futschik, Andreas; Schlötterer, Christian

    2013-06-01

    Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS) to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs) segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome.

  2. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome.

    Science.gov (United States)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui; Kim, Su Yeon; Korneliussen, Thorfinn; Vinckenbosch, Nicolas; Tian, Geng; Huerta-Sanchez, Emilia; Feder, Alison F; Grarup, Niels; Jørgensen, Torben; Jiang, Tao; Witte, Daniel R; Sandbæk, Annelli; Hellmann, Ines; Lauritzen, Torsten; Hansen, Torben; Pedersen, Oluf; Wang, Jun; Nielsen, Rasmus

    2011-10-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations.

  3. The Rules of Variation Expanded, Implications for the Research on Compatible Genomics.

    Science.gov (United States)

    Castro-Chavez, Fernando

    2011-05-12

    The main focus of this article is to present the practical aspect of the code rules of variation and the search for a second set of genomic rules, including comparison of sequences to understand how to preserve compatible organisms in danger of extinction and how to generate biodiversity. Three new rules of variation are introduced: 1) homologous recombination, 2) a healthy fertile offspring, and 3) comparison of compatible genomes. The novel search in the natural world for fully compatible genomes capable of homologous recombination is explored by using examples of human polymorphisms in the LDLRAP1 gene, and by the production of fertile offspring by crossbreeding. Examples of dogs, llamas and finches will be presented by a rational control of: natural crossbreeding of organisms with compatible genomes (something already happening in nature), the current work focuses on the generation of new varieties after a careful plan. This study is presented within the context of biosemiotics, which studies the processing of information, signaling and signs by living systems. I define a group of organisms having compatible genomes as a single theme: the genomic species or population, able to speak the same molecular language through different accents, with each variety within a theme being a different version of the same book. These studies have a molecular, compatible genetics context. Population and ecosystem biosemiotics will be exemplified by a possible genetic damage capable of causing mutations by breaking the rules of variation through the coordinated patterns of atoms present in the 9/11 World Trade Center contaminated dust (U, Ba, La, Ce, Sr, Rb, K, Mn, Mg, etc.), combination that may be able to overload the molecular quality control mechanisms of the human body. I introduce here the balance of codons in the circular genetic code: 2[1(1)+1(3)+1(4)+4(2)]=2[2(2)+3(4)].

  4. VarB Plus: An Integrated Tool for Visualization of Genome Variation Datasets

    KAUST Repository

    Hidayah, Lailatul

    2012-07-01

    Research on genomic sequences has been improving significantly as more advanced technology for sequencing has been developed. This opens enormous opportunities for sequence analysis. Various analytical tools have been built for purposes such as sequence assembly, read alignments, genome browsing, comparative genomics, and visualization. From the visualization perspective, there is an increasing trend towards use of large-scale computation. However, more than power is required to produce an informative image. This is a challenge that we address by providing several ways of representing biological data in order to advance the inference endeavors of biologists. This thesis focuses on visualization of variations found in genomic sequences. We develop several visualization functions and embed them in an existing variation visualization tool as extensions. The tool we improved is named VarB, hence the nomenclature for our enhancement is VarB Plus. To the best of our knowledge, besides VarB, there is no tool that provides the capability of dynamic visualization of genome variation datasets as well as statistical analysis. Dynamic visualization allows users to toggle different parameters on and off and see the results on the fly. The statistical analysis includes Fixation Index, Relative Variant Density, and Tajima’s D. Hence we focused our efforts on this tool. The scope of our work includes plots of per-base genome coverage, Principal Coordinate Analysis (PCoA), integration with a read alignment viewer named LookSeq, and visualization of geo-biological data. In addition to description of embedded functionalities, significance, and limitations, future improvements are discussed. The result is four extensions embedded successfully in the original tool, which is built on the Qt framework in C++. Hence it is portable to numerous platforms. Our extensions have shown acceptable execution time in a beta testing with various high-volume published datasets, as well as positive

  5. Background selection as baseline for nucleotide variation across the Drosophila genome.

    Directory of Open Access Journals (Sweden)

    Josep M Comeron

    2014-06-01

    Full Text Available The constant removal of deleterious mutations by natural selection causes a reduction in neutral diversity and efficacy of selection at genetically linked sites (a process called Background Selection, BGS. Population genetic studies, however, often ignore BGS effects when investigating demographic events or the presence of other types of selection. To obtain a more realistic evolutionary expectation that incorporates the unavoidable consequences of deleterious mutations, we generated high-resolution landscapes of variation across the Drosophila melanogaster genome under a BGS scenario independent of polymorphism data. We find that BGS plays a significant role in shaping levels of variation across the entire genome, including long introns and intergenic regions distant from annotated genes. We also find that a very large percentage of the observed variation in diversity across autosomes can be explained by BGS alone, up to 70% across individual chromosome arms at 100-kb scale, thus indicating that BGS predictions can be used as baseline to infer additional types of selection and demographic events. This approach allows detecting several outlier regions with signal of recent adaptive events and selective sweeps. The use of a BGS baseline, however, is particularly appropriate to investigate the presence of balancing selection and our study exposes numerous genomic regions with the predicted signature of higher polymorphism than expected when a BGS context is taken into account. Importantly, we show that these conclusions are robust to the mutation and selection parameters of the BGS model. Finally, analyses of protein evolution together with previous comparisons of genetic maps between Drosophila species, suggest temporally variable recombination landscapes and, thus, local BGS effects that may differ between extant and past phases. Because genome-wide BGS and temporal changes in linkage effects can skew approaches to estimate demographic and

  6. Background selection as baseline for nucleotide variation across the Drosophila genome.

    Science.gov (United States)

    Comeron, Josep M

    2014-06-01

    The constant removal of deleterious mutations by natural selection causes a reduction in neutral diversity and efficacy of selection at genetically linked sites (a process called Background Selection, BGS). Population genetic studies, however, often ignore BGS effects when investigating demographic events or the presence of other types of selection. To obtain a more realistic evolutionary expectation that incorporates the unavoidable consequences of deleterious mutations, we generated high-resolution landscapes of variation across the Drosophila melanogaster genome under a BGS scenario independent of polymorphism data. We find that BGS plays a significant role in shaping levels of variation across the entire genome, including long introns and intergenic regions distant from annotated genes. We also find that a very large percentage of the observed variation in diversity across autosomes can be explained by BGS alone, up to 70% across individual chromosome arms at 100-kb scale, thus indicating that BGS predictions can be used as baseline to infer additional types of selection and demographic events. This approach allows detecting several outlier regions with signal of recent adaptive events and selective sweeps. The use of a BGS baseline, however, is particularly appropriate to investigate the presence of balancing selection and our study exposes numerous genomic regions with the predicted signature of higher polymorphism than expected when a BGS context is taken into account. Importantly, we show that these conclusions are robust to the mutation and selection parameters of the BGS model. Finally, analyses of protein evolution together with previous comparisons of genetic maps between Drosophila species, suggest temporally variable recombination landscapes and, thus, local BGS effects that may differ between extant and past phases. Because genome-wide BGS and temporal changes in linkage effects can skew approaches to estimate demographic and selective events, future

  7. Evaluation of genetic variation among Brazilian soybean cultivars through genome resequencing.

    Science.gov (United States)

    Maldonado dos Santos, João Vitor; Valliyodan, Babu; Joshi, Trupti; Khan, Saad M; Liu, Yang; Wang, Juexin; Vuong, Tri D; de Oliveira, Marcelo Fernandes; Marcelino-Guimarães, Francismar Corrêa; Xu, Dong; Nguyen, Henry T; Abdelnoor, Ricardo Vilela

    2016-02-13

    Soybean [Glycine max (L.) Merrill] is one of the most important legumes cultivated worldwide, and Brazil is one of the main producers of this crop. Since the sequencing of its reference genome, interest in structural and allelic variations of cultivated and wild soybean germplasm has grown. To investigate the genetics of the Brazilian soybean germplasm, we selected soybean cultivars based on the year of commercialization, geographical region and maturity group and resequenced their genomes. We resequenced the genomes of 28 Brazilian soybean cultivars with an average genome coverage of 14.8X. A total of 5,835,185 single nucleotide polymorphisms (SNPs) and 1,329,844 InDels were identified across the 20 soybean chromosomes, with 541,762 SNPs, 98,922 InDels and 1,093 CNVs that were exclusive to the 28 Brazilian cultivars. In addition, 668 allelic variations of 327 genes were shared among all of the Brazilian cultivars, including genes related to DNA-dependent transcription-elongation, photosynthesis, ATP synthesis-coupled electron transport, cellular respiration, and precursors of metabolite generation and energy. A very homogeneous structure was also observed for the Brazilian soybean germplasm, and we observed 41 regions putatively influenced by positive selection. Finally, we detected 3,880 regions with copy-number variations (CNVs) that could help to explain the divergence among the accessions evaluated. The large number of allelic and structural variations identified in this study can be used in marker-assisted selection programs to detect unique SNPs for cultivar fingerprinting. The results presented here suggest that despite the diversification of modern Brazilian cultivars, the soybean germplasm remains very narrow because of the large number of genome regions that exhibit low diversity. These results emphasize the need to introduce new alleles to increase the genetic diversity of the Brazilian germplasm.

  8. Genome-wide detection of copy number variations among diverse horse breeds by array CGH.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Recent studies have found that copy number variations (CNVs are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs. The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO, genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses.

  9. Genomic analysis of natural selection and phenotypic variation in high-altitude mongolians.

    Science.gov (United States)

    Xing, Jinchuan; Wuren, Tana; Simonson, Tatum S; Watkins, W Scott; Witherspoon, David J; Wu, Wilfred; Qin, Ga; Huff, Chad D; Jorde, Lynn B; Ge, Ri-Li

    2013-01-01

    Deedu (DU) Mongolians, who migrated from the Mongolian steppes to the Qinghai-Tibetan Plateau approximately 500 years ago, are challenged by environmental conditions similar to native Tibetan highlanders. Identification of adaptive genetic factors in this population could provide insight into coordinated physiological responses to this environment. Here we examine genomic and phenotypic variation in this unique population and present the first complete analysis of a Mongolian whole-genome sequence. High-density SNP array data demonstrate that DU Mongolians share genetic ancestry with other Mongolian as well as Tibetan populations, specifically in genomic regions related with adaptation to high altitude. Several selection candidate genes identified in DU Mongolians are shared with other Asian groups (e.g., EDAR), neighboring Tibetan populations (including high-altitude candidates EPAS1, PKLR, and CYP2E1), as well as genes previously hypothesized to be associated with metabolic adaptation (e.g., PPARG). Hemoglobin concentration, a trait associated with high-altitude adaptation in Tibetans, is at an intermediate level in DU Mongolians compared to Tibetans and Han Chinese at comparable altitude. Whole-genome sequence from a DU Mongolian (Tianjiao1) shows that about 2% of the genomic variants, including more than 300 protein-coding changes, are specific to this individual. Our analyses of DU Mongolians and the first Mongolian genome provide valuable insight into genetic adaptation to extreme environments.

  10. Genomic analysis of natural selection and phenotypic variation in high-altitude mongolians.

    Directory of Open Access Journals (Sweden)

    Jinchuan Xing

    Full Text Available Deedu (DU Mongolians, who migrated from the Mongolian steppes to the Qinghai-Tibetan Plateau approximately 500 years ago, are challenged by environmental conditions similar to native Tibetan highlanders. Identification of adaptive genetic factors in this population could provide insight into coordinated physiological responses to this environment. Here we examine genomic and phenotypic variation in this unique population and present the first complete analysis of a Mongolian whole-genome sequence. High-density SNP array data demonstrate that DU Mongolians share genetic ancestry with other Mongolian as well as Tibetan populations, specifically in genomic regions related with adaptation to high altitude. Several selection candidate genes identified in DU Mongolians are shared with other Asian groups (e.g., EDAR, neighboring Tibetan populations (including high-altitude candidates EPAS1, PKLR, and CYP2E1, as well as genes previously hypothesized to be associated with metabolic adaptation (e.g., PPARG. Hemoglobin concentration, a trait associated with high-altitude adaptation in Tibetans, is at an intermediate level in DU Mongolians compared to Tibetans and Han Chinese at comparable altitude. Whole-genome sequence from a DU Mongolian (Tianjiao1 shows that about 2% of the genomic variants, including more than 300 protein-coding changes, are specific to this individual. Our analyses of DU Mongolians and the first Mongolian genome provide valuable insight into genetic adaptation to extreme environments.

  11. Rare and common regulatory variation in population-scale sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Stephen B Montgomery

    2011-07-01

    Full Text Available Population-scale genome sequencing allows the characterization of functional effects of a broad spectrum of genetic variants underlying human phenotypic variation. Here, we investigate the influence of rare and common genetic variants on gene expression patterns, using variants identified from sequencing data from the 1000 genomes project in an African and European population sample and gene expression data from lymphoblastoid cell lines. We detect comparable numbers of expression quantitative trait loci (eQTLs when compared to genotypes obtained from HapMap 3, but as many as 80% of the top expression quantitative trait variants (eQTVs discovered from 1000 genomes data are novel. The properties of the newly discovered variants suggest that mapping common causal regulatory variants is challenging even with full resequencing data; however, we observe significant enrichment of regulatory effects in splice-site and nonsense variants. Using RNA sequencing data, we show that 46.2% of nonsynonymous variants are differentially expressed in at least one individual in our sample, creating widespread potential for interactions between functional protein-coding and regulatory variants. We also use allele-specific expression to identify putative rare causal regulatory variants. Furthermore, we demonstrate that outlier expression values can be due to rare variant effects, and we approximate the number of such effects harboured in an individual by effect size. Our results demonstrate that integration of genomic and RNA sequencing analyses allows for the joint assessment of genome sequence and genome function.

  12. Variations and classification of toxic epitopes related to celiac disease among α-gliadin genes from four Aegilops genomes.

    Science.gov (United States)

    Li, Jie; Wang, Shunli; Li, Shanshan; Ge, Pei; Li, Xiaohui; Ma, Wujun; Zeller, F J; Hsam, Sai L K; Yan, Yueming

    2012-07-01

    The α-gliadins are associated with human celiac disease. A total of 23 noninterrupted full open reading frame α-gliadin genes and 19 pseudogenes were cloned and sequenced from C, M, N, and U genomes of four diploid Aegilops species. Sequence comparison of α-gliadin genes from Aegilops and Triticum species demonstrated an existence of extensive allelic variations in Gli-2 loci of the four Aegilops genomes. Specific structural features were found including the compositions and variations of two polyglutamine domains (QI and QII) and four T cell stimulatory toxic epitopes. The mean numbers of glutamine residues in the QI domain in C and N genomes and the QII domain in C, N, and U genomes were much higher than those in Triticum genomes, and the QI domain in C and N genomes and the QII domain in C, M, N, and U genomes displayed greater length variations. Interestingly, the types and numbers of four T cell stimulatory toxic epitopes in α-gliadins from the four Aegilops genomes were significantly less than those from Triticum A, B, D, and their progenitor genomes. Relationships between the structural variations of the two polyglutamine domains and the distributions of four T cell stimulatory toxic epitopes were found, resulting in the α-gliadin genes from the Aegilops and Triticum genomes to be classified into three groups.

  13. Natural selection affects multiple aspects of genetic variation at putatively peutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui

    2011-01-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries...... and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations...... throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has...

  14. [RAPD analysis of the intraspecific and interspecific variation and phylogenetic relationships of Aegilops L. species with the U genome].

    Science.gov (United States)

    Goriunova, S V; Chikida, N N; Kochieva, E Z

    2010-07-01

    RAPD analysis was used to study the genetic variation and phylogenetic relationships of polyploid Aegilops species with the U genome. In total, 115 DNA samples of eight polyploid species containing the U genome and the diploid species Ae. umbellulata (U) were examined. Substantial interspecific polymorphism was observed for the majority of the polyploid species with the U genome (interspecific differences, 0.01-0,2; proportion of polymorphic loci, 56.6-88.2%). Aegilops triuncialis was identified as the only alloploid species with low interspecific polymorphism (interspecific differences, 0-0.01, P = 50%) in the U-genome group. The U-genome Aegilops species proved to be separated from other species of the genus. The phylogenetic relationships were established for the U-genome species. The greatest separation within the U-genome group was observed for the US-genome species Ae. kotschyi and Ae. variabilis. The tetraploid species Ae. triaristata and Ae. columnaris, which had the UX genome, and the hexaploid species Ae. recta (UXN) were found to be related to each other and separate from the UM-genome species. A similarity was observed between the U M-genome species Ae. ovata and Ae. biuncialis, which had the UM genome, and the ancestral diploid U-genome species Ae. umbellulata. The UC-genome species Ae. triuncialis was rather separate and slightly similar to the UX-genome species.

  15. Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data

    Directory of Open Access Journals (Sweden)

    Wilhelm Larry J

    2007-11-01

    Full Text Available Abstract Background One objective of metagenomics is to reconstruct information about specific uncultured organisms from fragmentary environmental DNA sequences. We used the genome of an isolate of the marine alphaproteobacterium SAR11 ('Candidatus Pelagibacter ubique'; strain HTCC1062, obtained from the cold, productive Oregon coast, as a query sequence to study variation in SAR11 metagenome sequence data from the Sargasso Sea, a warm, oligotrophic ocean gyre. Results The average amino acid identity of SAR11 genes encoded by the metagenomic data to the query genome was only 71%, indicating significant evolutionary divergence between the coastal isolates and Sargasso Sea populations. However, an analysis of gene neighbors indicated that SAR11 genes in the Sargasso Sea metagenomic data match the gene order of the HTCC1062 genome in 96% of cases (> 85,000 observations, and that rearrangements are most frequent at predicted operon boundaries. There were no conserved examples of genes with known functions being found in the coastal isolates, but not the Sargasso Sea metagenomic data, or vice versa, suggesting that core regions of these diverse SAR11 genomes are relatively conserved in gene content. However, four hypervariable regions were observed, which may encode properties associated with variation in SAR11 ecotypes. The largest of these, HVR2, is a 48 kb region flanked by the sole 5S and 23S genes in the HTCC1062 genome, and mainly encodes genes that determine cell surface properties. A comparison of two closely related 'Candidatus Pelagibacter' genomes (HTCC1062 and HTCC1002 revealed a number of "gene indels" in core regions. Most of these were found to be polymorphic in the metagenomic data and showed evidence of purifying selection, suggesting that the same "polymorphic gene indels" are maintained in physically isolated SAR11 populations. Conclusion These findings suggest that natural selection has conserved many core features of SAR11

  16. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping

    DEFF Research Database (Denmark)

    Vaysse, Amaury; Ratnakumar, Abhirami; Derrien, Thomas

    2011-01-01

    across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease.......The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse...... breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary...

  17. Modelling human regulatory variation in mouse: finding the function in genome-wide association studies and whole-genome sequencing.

    Directory of Open Access Journals (Sweden)

    Jean-François Schmouth

    Full Text Available An increasing body of literature from genome-wide association studies and human whole-genome sequencing highlights the identification of large numbers of candidate regulatory variants of potential therapeutic interest in numerous diseases. Our relatively poor understanding of the functions of non-coding genomic sequence, and the slow and laborious process of experimental validation of the functional significance of human regulatory variants, limits our ability to fully benefit from this information in our efforts to comprehend human disease. Humanized mouse models (HuMMs, in which human genes are introduced into the mouse, suggest an approach to this problem. In the past, HuMMs have been used successfully to study human disease variants; e.g., the complex genetic condition arising from Down syndrome, common monogenic disorders such as Huntington disease and β-thalassemia, and cancer susceptibility genes such as BRCA1. In this commentary, we highlight a novel method for high-throughput single-copy site-specific generation of HuMMs entitled High-throughput Human Genes on the X Chromosome (HuGX. This method can be applied to most human genes for which a bacterial artificial chromosome (BAC construct can be derived and a mouse-null allele exists. This strategy comprises (1 the use of recombineering technology to create a human variant-harbouring BAC, (2 knock-in of this BAC into the mouse genome using Hprt docking technology, and (3 allele comparison by interspecies complementation. We demonstrate the throughput of the HuGX method by generating a series of seven different alleles for the human NR2E1 gene at Hprt. In future challenges, we consider the current limitations of experimental approaches and call for a concerted effort by the genetics community, for both human and mouse, to solve the challenge of the functional analysis of human regulatory variation.

  18. Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster.

    Science.gov (United States)

    Machado, Heather E; Bergland, Alan O; O'Brien, Katherine R; Behrman, Emily L; Schmidt, Paul S; Petrov, Dmitri A

    2016-02-01

    Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster. © 2015 John Wiley & Sons Ltd.

  19. Chromosome Numbers and Genome Size Variation in Indian Species of Curcuma (Zingiberaceae)

    Science.gov (United States)

    Leong-Škorničková, Jana; Šída, Otakar; Jarolímová, Vlasta; Sabu, Mamyil; Fér, Tomáš; Trávníček, Pavel; Suda, Jan

    2007-01-01

    Background and Aims Genome size and chromosome numbers are important cytological characters that significantly influence various organismal traits. However, geographical representation of these data is seriously unbalanced, with tropical and subtropical regions being largely neglected. In the present study, an investigation was made of chromosomal and genome size variation in the majority of Curcuma species from the Indian subcontinent, and an assessment was made of the value of these data for taxonomic purposes. Methods Genome size of 161 homogeneously cultivated plant samples classified into 51 taxonomic entities was determined by propidium iodide flow cytometry. Chromosome numbers were counted in actively growing root tips using conventional rapid squash techniques. Key Results Six different chromosome counts (2n = 22, 42, 63, >70, 77 and 105) were found, the last two representing new generic records. The 2C-values varied from 1·66 pg in C. vamana to 4·76 pg in C. oligantha, representing a 2·87-fold range. Three groups of taxa with significantly different homoploid genome sizes (Cx-values) and distinct geographical distribution were identified. Five species exhibited intraspecific variation in nuclear DNA content, reaching up to 15·1 % in cultivated C. longa. Chromosome counts and genome sizes of three Curcuma-like species (Hitchenia caulina, Kaempferia scaposa and Paracautleya bhatii) corresponded well with typical hexaploid (2n = 6x = 42) Curcuma spp. Conclusions The basic chromosome number in the majority of Indian taxa (belonging to subgenus Curcuma) is x = 7; published counts correspond to 6x, 9x, 11x, 12x and 15x ploidy levels. Only a few species-specific C-values were found, but karyological and/or flow cytometric data may support taxonomic decisions in some species alliances with morphological similarities. Close evolutionary relationships among some cytotypes are suggested based on the similarity in homoploid genome sizes and geographical grouping

  20. [Analysis of genomic copy number variations in two sisters with primary amenorrhea and hyperandrogenism].

    Science.gov (United States)

    Zhang, Yanliang; Xu, Qiuyue; Cai, Xuemei; Li, Yixun; Song, Guibo; Wang, Juan; Zhang, Rongchen; Dai, Yong; Duan, Yong

    2015-12-01

    To analyze genomic copy number variations (CNVs) in two sisters with primary amenorrhea and hyperandrogenism. G-banding was performed for karyotype analysis. The whole genome of the two sisters were scanned and analyzed by array-based comparative genomic hybridization (array-CGH). The results were confirmed with real-time quantitative PCR (RT-qPCR). No abnormality was found by conventional G-banded chromosome analysis. Array-CGH has identified 11 identical CNVs from the sisters which, however, overlapped with CNVs reported by the Database of Genomic Variants (http://projects.tcag.ca/variation/). Therefore, they are likely to be benign. In addition, a -8.44 Mb 9p11.1-p13.1 duplication (38,561,587-47,002,387 bp, hg18) and a -80.9 kb 4q13.2 deletion (70,183,990-70,264,889 bp, hg18) were also detected in the elder and younger sister, respectively. The relationship between such CNVs and primary amenorrhea and hyperandrogenism was however uncertain. RT-qPCR results were in accordance with array-CGH. Two CNVs were detected in two sisters by array-CGH, for which further studies are needed to clarify their correlation with primary amenorrhea and hyperandrogenism.

  1. Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping

    Science.gov (United States)

    Derrien, Thomas; Axelsson, Erik; Rosengren Pielberg, Gerli; Sigurdsson, Snaevar; Fall, Tove; Seppälä, Eija H.; Hansen, Mark S. T.; Lawley, Cindy T.; Karlsson, Elinor K.; Bannasch, Danika; Vilà, Carles; Lohi, Hannes; Galibert, Francis; Fredholm, Merete; Häggström, Jens; Hedhammar, Åke; André, Catherine; Lindblad-Toh, Kerstin; Hitte, Christophe; Webster, Matthew T.

    2011-01-01

    The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary between breeds, and we identify novel associations with both morphological and behavioral traits. We next scan the genome for signatures of selective sweeps in single breeds, characterized by long regions of reduced heterozygosity and fixation of extended haplotypes. These scans identify hundreds of regions, including 22 blocks of homozygosity longer than one megabase in certain breeds. Candidate selection loci are strongly enriched for developmental genes. We chose one highly differentiated region, associated with body size and ear morphology, and characterized it using high-throughput sequencing to provide a list of variants that may directly affect these traits. This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation. The many blocks of reduced haplotype diversity observed across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease. PMID:22022279

  2. A genome-wide characterization of copy number variations in native populations of Peninsular Malaysia.

    Science.gov (United States)

    Fu, Ruiqing; Mokhtar, Siti Shuhada; Phipps, Maude Elvira; Hoh, Boon-Peng; Xu, Shuhua

    2018-02-23

    Copy number variations (CNVs) are genomic structural variations that result from the deletion or duplication of large genomic segments. The characterization of CNVs is largely underrepresented, particularly those of indigenous populations, such as the Orang Asli in Peninsular Malaysia. In the present study, we first characterized the genome-wide CNVs of four major native populations from Peninsular Malaysia, including the Malays and three Orang Asli populations; namely, Proto-Malay, Senoi, and Negrito (collectively called PM). We subsequently assessed the distribution of CNVs across the four populations. The resulting global CNV map revealed 3102 CNVs, with an average of more than 100 CNVs per individual. We identified genes harboring CNVs that are highly differentiated between PM and global populations, indicating that these genes are predominantly enriched in immune responses and defense functions, including APOBEC3A_B, beta-defensin genes, and CCL3L1, followed by other biological functions, such as drug and toxin metabolism and responses to radiation, suggesting some attributions between CNV variations and adaptations of the PM groups to the local environmental conditions of tropical rainforests.

  3. A genomic overview of short genetic variations in a basal chordate, Ciona intestinalis

    Directory of Open Access Journals (Sweden)

    Satou Yutaka

    2012-05-01

    Full Text Available Abstract Background Although the Ciona intestinalis genome contains many allelic polymorphisms, there is only limited data analyzed systematically. Establishing a dense map of genetic variations in C. intestinalis is necessary not only for linkage analysis, but also for other experimental biology including molecular developmental and evolutionary studies, because animals from natural populations are typically used for experiments. Results Here, we identified over three million candidate short genomic variations within a 110 Mb euchromatin region among five C. intestinalis individuals. The average nucleotide diversity was approximately 1.1%. Genetic variations were found at a similar density in intergenic and gene regions. Non-synonymous and nonsense nucleotide substitutions were found in 12,493 and 1,214 genes accounting for 81.9% and 8.0% of the entire gene set, respectively, and over 60% of genes in the single animal encode non-identical proteins between maternal and paternal alleles. Conclusions Our results provide a framework for studying evolution of the animal genome, as well as a useful resource for a wide range of C. intestinalis researchers.

  4. The Genome of the Trinidadian Guppy, Poecilia reticulata, and Variation in the Guanapo Population.

    Directory of Open Access Journals (Sweden)

    Axel Künstner

    Full Text Available For over a century, the live bearing guppy, Poecilia reticulata, has been used to study sexual selection as well as local adaptation. Natural guppy populations differ in many traits that are of intuitively adaptive significance such as ornamentation, age at maturity, brood size and body shape. Water depth, light supply, food resources and predation regime shape these traits, and barrier waterfalls often separate contrasting environments in the same river. We have assembled and annotated the genome of an inbred single female from a high-predation site in the Guanapo drainage. The final assembly comprises 731.6 Mb with a scaffold N50 of 5.3 MB. Scaffolds were mapped to linkage groups, placing 95% of the genome assembly on the 22 autosomes and the X-chromosome. To investigate genetic variation in the population used for the genome assembly, we sequenced 10 wild caught male individuals. The identified 5 million SNPs correspond to an average nucleotide diversity (π of 0.0025. The genome assembly and SNP map provide a rich resource for investigating adaptation to different predation regimes. In addition, comparisons with the genomes of other Poeciliid species, which differ greatly in mechanisms of sex determination and maternal resource allocation, as well as comparisons to other teleost genera can begin to reveal how live bearing evolved in teleost fish.

  5. Genome variations associated with viral susceptibility and calcification in Emiliania huxleyi.

    Directory of Open Access Journals (Sweden)

    Jessica U Kegel

    Full Text Available Emiliania huxleyi, a key player in the global carbon cycle is one of the best studied coccolithophores with respect to biogeochemical cycles, climatology, and host-virus interactions. Strains of E. huxleyi show phenotypic plasticity regarding growth behaviour, light-response, calcification, acidification, and virus susceptibility. This phenomenon is likely a consequence of genomic differences, or transcriptomic responses, to environmental conditions or threats such as viral infections. We used an E. huxleyi genome microarray based on the sequenced strain CCMP1516 (reference strain to perform comparative genomic hybridizations (CGH of 16 E. huxleyi strains of different geographic origin. We investigated the genomic diversity and plasticity and focused on the identification of genes related to virus susceptibility and coccolith production (calcification. Among the tested 31940 gene models a core genome of 14628 genes was identified by hybridization among 16 E. huxleyi strains. 224 probes were characterized as specific for the reference strain CCMP1516. Compared to the sequenced E. huxleyi strain CCMP1516 variation in gene content of up to 30 percent among strains was observed. Comparison of core and non-core transcripts sets in terms of annotated functions reveals a broad, almost equal functional coverage over all KOG-categories of both transcript sets within the whole annotated genome. Within the variable (non-core genome we identified genes associated with virus susceptibility and calcification. Genes associated with virus susceptibility include a Bax inhibitor-1 protein, three LRR receptor-like protein kinases, and mitogen-activated protein kinase. Our list of transcripts associated with coccolith production will stimulate further research, e.g. by genetic manipulation. In particular, the V-type proton ATPase 16 kDa proteolipid subunit is proposed to be a plausible target gene for further calcification studies.

  6. Genome variations associated with viral susceptibility and calcification in Emiliania huxleyi.

    Science.gov (United States)

    Kegel, Jessica U; John, Uwe; Valentin, Klaus; Frickenhaus, Stephan

    2013-01-01

    Emiliania huxleyi, a key player in the global carbon cycle is one of the best studied coccolithophores with respect to biogeochemical cycles, climatology, and host-virus interactions. Strains of E. huxleyi show phenotypic plasticity regarding growth behaviour, light-response, calcification, acidification, and virus susceptibility. This phenomenon is likely a consequence of genomic differences, or transcriptomic responses, to environmental conditions or threats such as viral infections. We used an E. huxleyi genome microarray based on the sequenced strain CCMP1516 (reference strain) to perform comparative genomic hybridizations (CGH) of 16 E. huxleyi strains of different geographic origin. We investigated the genomic diversity and plasticity and focused on the identification of genes related to virus susceptibility and coccolith production (calcification). Among the tested 31940 gene models a core genome of 14628 genes was identified by hybridization among 16 E. huxleyi strains. 224 probes were characterized as specific for the reference strain CCMP1516. Compared to the sequenced E. huxleyi strain CCMP1516 variation in gene content of up to 30 percent among strains was observed. Comparison of core and non-core transcripts sets in terms of annotated functions reveals a broad, almost equal functional coverage over all KOG-categories of both transcript sets within the whole annotated genome. Within the variable (non-core) genome we identified genes associated with virus susceptibility and calcification. Genes associated with virus susceptibility include a Bax inhibitor-1 protein, three LRR receptor-like protein kinases, and mitogen-activated protein kinase. Our list of transcripts associated with coccolith production will stimulate further research, e.g. by genetic manipulation. In particular, the V-type proton ATPase 16 kDa proteolipid subunit is proposed to be a plausible target gene for further calcification studies.

  7. Analysis of genetic variation and potential applications in genome-scale metabolic modeling

    Directory of Open Access Journals (Sweden)

    João Gonçalo Rocha Cardoso

    2015-02-01

    Full Text Available Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic variation during a long term production process may lead to significant economic losses and it is important to understand how to control this type of variation. With the emergence of next-generation sequencing technologies, genetic variation in microbial strains can now be determined on an unprecedented scale and resolution by re-sequencing thousands of strains systematically. In this article, we review challenges in the integration and analysis of large-scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting the effects of genetic variants on protein function, and discuss approaches for interfacing existing bioinformatics approaches with genome-scale models of cellular processes in order to predict effects of sequence variation on cellular phenotypes.

  8. A map of human genome variation from population-scale sequencing.

    Science.gov (United States)

    Abecasis, Gonçalo R; Altshuler, David; Auton, Adam; Brooks, Lisa D; Durbin, Richard M; Gibbs, Richard A; Hurles, Matt E; McVean, Gil A

    2010-10-28

    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

  9. Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC

    Directory of Open Access Journals (Sweden)

    Cheng Yuanyuan

    2012-03-01

    Full Text Available Abstract Background The Tasmanian devil (Sarcophilus harrisii is currently under threat of extinction due to an unusual fatal contagious cancer called Devil Facial Tumour Disease (DFTD. DFTD is caused by a clonal tumour cell line that is transmitted between unrelated individuals as an allograft without triggering immune rejection due to low levels of Major Histocompatibility Complex (MHC diversity in Tasmanian devils. Results Here we report the characterization of the genomic regions encompassing MHC Class I and Class II genes in the Tasmanian devil. Four genomic regions approximately 960 kb in length were assembled and annotated using BAC contigs and physically mapped to devil Chromosome 4q. 34 genes and pseudogenes were identified, including five Class I and four Class II loci. Interestingly, when two haplotypes from two individuals were compared, three genomic copy number variants with sizes ranging from 1.6 to 17 kb were observed within the classical Class I gene region. One deletion is particularly important as it turns a Class Ia gene into a pseudogene in one of the haplotypes. This deletion explains the previously observed variation in the Class I allelic number between individuals. The frequency of this deletion is highest in the northwestern devil population and lowest in southeastern areas. Conclusions The third sequenced marsupial MHC provides insights into the evolution of this dynamic genomic region among the diverse marsupial species. The two sequenced devil MHC haplotypes revealed three copy number variations that are likely to significantly affect immune response and suggest that future work should focus on the role of copy number variations in disease susceptibility in this species.

  10. Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study.

    Science.gov (United States)

    Kasperaviciūte, Dalia; Catarino, Claudia B; Heinzen, Erin L; Depondt, Chantal; Cavalleri, Gianpiero L; Caboclo, Luis O; Tate, Sarah K; Jamnadas-Khoda, Jenny; Chinthapalli, Krishna; Clayton, Lisa M S; Shianna, Kevin V; Radtke, Rodney A; Mikati, Mohamad A; Gallentine, William B; Husain, Aatif M; Alhusaini, Saud; Leppert, David; Middleton, Lefkos T; Gibson, Rachel A; Johnson, Michael R; Matthews, Paul M; Hosford, David; Heuser, Kjell; Amos, Leslie; Ortega, Marcos; Zumsteg, Dominik; Wieser, Heinz-Gregor; Steinhoff, Bernhard J; Krämer, Günter; Hansen, Jörg; Dorn, Thomas; Kantanen, Anne-Mari; Gjerstad, Leif; Peuralinna, Terhi; Hernandez, Dena G; Eriksson, Kai J; Kälviäinen, Reetta K; Doherty, Colin P; Wood, Nicholas W; Pandolfo, Massimo; Duncan, John S; Sander, Josemir W; Delanty, Norman; Goldstein, David B; Sisodiya, Sanjay M

    2010-07-01

    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio<1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studies.

  11. MicroRNAs and genomic variations: from Proteus tricks to Prometheus gift.

    Science.gov (United States)

    Fabbri, Muller; Valeri, Nicola; Calin, George A

    2009-06-01

    MicroRNAs (miRNAs) are small non-coding RNAs with regulatory functions. MiRNAs are aberrantly expressed in almost all human cancers, leading to abnormal levels of target genes. Recently, an increasing number of studies have addressed whether genomic variations including germ line or somatic mutations and single-nucleotide polymorphisms can count for miRNA abnormal expression by altering their biogenesis and/or affect the ability of miRNAs to bind to target messenger RNAs. Here, we provide an extensive review of the studies that have investigated variations occurring both in miRNA genes and in target genes and we discuss the possible clinical implications of these findings. Furthermore, we propose that sequence variations in miRNAs or interactor sites located in mRNAs can be involved in cancer predisposition.

  12. Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces cerevisiae strains.

    Directory of Open Access Journals (Sweden)

    Joseph Schacherer

    2007-03-01

    Full Text Available Ten years have passed since the genome of Saccharomyces cerevisiae-more precisely, the S288c strain-was completely sequenced. However, experimental work in yeast is commonly performed using strains that are of unknown genetic relationship to S288c. Here, we characterized the nucleotide-level similarity between S288c and seven commonly used lab strains (A364A, W303, FL100, CEN.PK, summation 1278b, SK1 and BY4716 using 25mer oligonucleotide microarrays that provide complete and redundant coverage of the approximately 12 Mb Saccharomyces cerevisiae genome. Using these data, we assessed the frequency and distribution of nucleotide variation in comparison to the sequenced reference genome. These data allow us to infer the relationships between experimentally important strains of yeast and provide insight for experimental designs that are sensitive to sequence variation. We propose a rational approach for near complete sequencing of strains related to the reference using these data and directed re-sequencing. These data and new visualization tools are accessible online in a new resource: the Yeast SNPs Browser (YSB; http://gbrowse.princeton.edu/cgi-bin/gbrowse/yeast_strains_snps that is available to all researchers.

  13. Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes.

    Directory of Open Access Journals (Sweden)

    Joseph Evans

    Full Text Available Sorghum genotypes currently used for grain production in the United States were developed from African landraces that were imported starting in the mid-to-late 19(th century. Farmers and plant breeders selected genotypes for grain production with reduced plant height, early flowering, increased grain yield, adaptation to drought, and improved resistance to lodging, diseases and pests. DNA polymorphisms that distinguish three historically important grain sorghum genotypes, BTx623, BTx642 and Tx7000, were characterized by genome sequencing, genotyping by sequencing, genetic mapping, and pedigree-based haplotype analysis. The distribution and density of DNA polymorphisms in the sequenced genomes varied widely, in part because the lines were derived through breeding and selection from diverse Kafir, Durra, and Caudatum race accessions. Genomic DNA spanning dw1 (SBI-09 and dw3 (SBI-07 had identical haplotypes due to selection for reduced height. Lower SNP density in genes located in pericentromeric regions compared with genes located in euchromatic regions is consistent with background selection in these regions of low recombination. SNP density was higher in euchromatic DNA and varied >100-fold in contiguous intervals that spanned up to 300 Kbp. The localized variation in DNA polymorphism density occurred throughout euchromatic regions where recombination is elevated, however, polymorphism density was not correlated with gene density or DNA methylation. Overall, sorghum chromosomes contain distal euchromatic regions characterized by extensive, localized variation in DNA polymorphism density, and large pericentromeric regions of low gene density, diversity, and recombination.

  14. Genome size and phenotypic variation of Nymphaea (Nymphaeaceae species from Eastern Europe and temperate Asia

    Directory of Open Access Journals (Sweden)

    Magdalena Anna Dąbrowska

    2015-07-01

    Full Text Available Despite long-term research, the aquatic genus Nymphaea still possesses major taxonomic challenges. High phenotypic plasticity and possible interspecific hybridization often make it impossible to identify individual specimens. The main aim of this study was to assess phenotypic variation in Nymphaea taxa sampled over a wide area of Eastern Europe and temperate Asia. Samples were identified based on species-specific genome sizes and diagnostic morphological characters for each taxon were then selected. A total of 353 specimens from 32 populations in Poland, Russia and Ukraine were studied, with nine biometric traits being examined. Although some specimens morphologically matched N. ×borealis (a hybrid between N. alba and N. candida according to published determination keys, only one hybrid individual was revealed based on genome size data. Other specimens with intermediate morphology possessed genome size corresponding to N. alba, N. candida or N. tetragona. This indicates that natural hybridization between N. alba and N. candida is not as frequent as previously suggested. Our results also revealed a considerably higher variation in the studied morphological traits (especially the quantitative ones in N. alba and N. candida than reported in the literature. A determination key for the investigated Nymphaea species is provided, based on taxonomically-informative morphological characters identified in our study.

  15. Excessive genomic DNA copy number variation in the Li-Fraumeni cancer predisposition syndrome.

    Science.gov (United States)

    Shlien, Adam; Tabori, Uri; Marshall, Christian R; Pienkowska, Malgorzata; Feuk, Lars; Novokmet, Ana; Nanda, Sonia; Druker, Harriet; Scherer, Stephen W; Malkin, David

    2008-08-12

    DNA copy number variations (CNVs) are a significant and ubiquitous source of inherited human genetic variation. However, the importance of CNVs to cancer susceptibility and tumor progression has not yet been explored. Li-Fraumeni syndrome (LFS) is an autosomal dominantly inherited disorder characterized by a strikingly increased risk of early-onset breast cancer, sarcomas, brain tumors and other neoplasms in individuals harboring germline TP53 mutations. Known genetic determinants of LFS do not fully explain the variable clinical phenotype in affected family members. As part of a wider study of CNVs and cancer, we conducted a genome-wide profile of germline CNVs in LFS families. Here, by examining DNA from a large healthy population and an LFS cohort using high-density oligonucleotide arrays, we show that the number of CNVs per genome is well conserved in the healthy population, but strikingly enriched in these cancer-prone individuals. We found a highly significant increase in CNVs among carriers of germline TP53 mutations with a familial cancer history. Furthermore, we identified a remarkable number of genomic regions in which known cancer-related genes coincide with CNVs, in both LFS families and healthy individuals. Germline CNVs may provide a foundation that enables the more dramatic chromosomal changes characteristic of TP53-related tumors to be established. Our results suggest that screening families predisposed to cancer for CNVs may identify individuals with an abnormally high number of these events.

  16. Illumina based whole mitochondrial genome of Junonia iphita reveals minor intraspecific variation

    Directory of Open Access Journals (Sweden)

    Catherine Vanlalruati

    2015-12-01

    Full Text Available In the present study, the near complete mitochondrial genome (mitogenome of Junonia iphita (Lepidoptera: Nymphalidae: Nymphalinae was determined to be 14,892 bp. The gene order and orientation are identical to those in other butterfly species. The phylogenetic tree constructed from the whole mitogenomes using the 13 protein coding genes (PCGs defines the genetic relatedness of the two J. iphita species collected from two different regions. All the Junonia species clustered together, and were further subdivided into clade one consisting of J. almana and J. orithya and clade two comprising of the two J. iphita which were collected from Indo and Indochinese subregions separated by river barrier. Comparison between the two J. iphita sequences revealed minor variations and Single Nucleotide Polymorphisms were identified at 51 sites amounting to 0.4% of the entire mitochondrial genome.

  17. Sequence variation of the feline immunodeficiency virus genome and its clinical relevance.

    Science.gov (United States)

    Stickney, A L; Dunowska, M; Cave, N J

    2013-06-08

    The ongoing evolution of feline immunodeficiency virus (FIV) has resulted in the existence of a diverse continuum of viruses. FIV isolates differ with regards to their mutation and replication rates, plasma viral loads, cell tropism and the ability to induce apoptosis. Clinical disease in FIV-infected cats is also inconsistent. Genomic sequence variation of FIV is likely to be responsible for some of the variation in viral behaviour. The specific genetic sequences that influence these key viral properties remain to be determined. With knowledge of the specific key determinants of pathogenicity, there is the potential for veterinarians in the future to apply this information for prognostic purposes. Genomic sequence variation of FIV also presents an obstacle to effective vaccine development. Most challenge studies demonstrate acceptable efficacy of a dual-subtype FIV vaccine (Fel-O-Vax FIV) against FIV infection under experimental settings; however, vaccine efficacy in the field still remains to be proven. It is important that we discover the key determinants of immunity induced by this vaccine; such data would compliment vaccine field efficacy studies and provide the basis to make informed recommendations on its use.

  18. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions.

    Science.gov (United States)

    Blanca, José; Montero-Pau, Javier; Sauvage, Christopher; Bauchet, Guillaume; Illa, Eudald; Díez, María José; Francis, David; Causse, Mathilde; van der Knaap, Esther; Cañizares, Joaquín

    2015-04-01

    Domestication modifies the genomic variation of species. Quantifying this variation provides insights into the domestication process, facilitates the management of resources used by breeders and germplasm centers, and enables the design of experiments to associate traits with genes. We described and analyzed the genetic diversity of 1,008 tomato accessions including Solanum lycopersicum var. lycopersicum (SLL), S. lycopersicum var. cerasiforme (SLC), and S. pimpinellifolium (SP) that were genotyped using 7,720 SNPs. Additionally, we explored the allelic frequency of six loci affecting fruit weight and shape to infer patterns of selection. Our results revealed a pattern of variation that strongly supported a two-step domestication process, occasional hybridization in the wild, and differentiation through human selection. These interpretations were consistent with the observed allele frequencies for the six loci affecting fruit weight and shape. Fruit weight was strongly selected in SLC in the Andean region of Ecuador and Northern Peru prior to the domestication of tomato in Mesoamerica. Alleles affecting fruit shape were differentially selected among SLL genetic subgroups. Our results also clarified the biological status of SLC. True SLC was phylogenetically positioned between SP and SLL and its fruit morphology was diverse. SLC and "cherry tomato" are not synonymous terms. The morphologically-based term "cherry tomato" included some SLC, contemporary varieties, as well as many admixtures between SP and SLL. Contemporary SLL showed a moderate increase in nucleotide diversity, when compared with vintage groups. This study presents a broad and detailed representation of the genomic variation in tomato. Tomato domestication seems to have followed a two step-process; a first domestication in South America and a second step in Mesoamerica. The distribution of fruit weight and shape alleles supports that domestication of SLC occurred in the Andean region. Our results also

  19. Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Thudi, Mahendar; Khan, Aamir W; Kumar, Vinay; Gaur, Pooran M; Katta, Krishnamohan; Garg, Vanika; Roorkiwal, Manish; Samineni, Srinivasan; Varshney, Rajeev K

    2016-01-27

    Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in South Asia and Sub-Saharan Africa. In order to harness the untapped genetic potential available for chickpea improvement, we re-sequenced 35 chickpea genotypes representing parental lines of 16 mapping populations segregating for abiotic (drought, heat, salinity), biotic stresses (Fusarium wilt, Ascochyta blight, Botrytis grey mould, Helicoverpa armigera) and nutritionally important (protein content) traits using whole genome re-sequencing approach. A total of 192.19 Gb data, generated on 35 genotypes of chickpea, comprising 973.13 million reads, with an average sequencing depth of ~10 X for each line. On an average 92.18 % reads from each genotype were aligned to the chickpea reference genome with 82.17 % coverage. A total of 2,058,566 unique single nucleotide polymorphisms (SNPs) and 292,588 Indels were detected while comparing with the reference chickpea genome. Highest number of SNPs were identified on the Ca4 pseudomolecule. In addition, copy number variations (CNVs) such as gene deletions and duplications were identified across the chickpea parental genotypes, which were minimum in PI 489777 (1 gene deletion) and maximum in JG 74 (1,497). A total of 164,856 line specific variations (144,888 SNPs and 19,968 Indels) with the highest percentage were identified in coding regions in ICC 1496 (21 %) followed by ICCV 97105 (12 %). Of 539 miscellaneous variations, 339, 138 and 62 were inter-chromosomal variations (CTX), intra-chromosomal variations (ITX) and inversions (INV) respectively. Genome-wide SNPs, Indels, CNVs, PAVs, and miscellaneous variations identified in different mapping populations are a valuable resource in genetic research and helpful in locating genes/genomic segments responsible for economically important traits. Further, the genome-wide variations identified in the present study can be used for developing high density SNP arrays for

  20. Genomic regulation of natural variation in cortical and noncortical brain volume

    Directory of Open Access Journals (Sweden)

    Laughlin Rick E

    2006-02-01

    Full Text Available Abstract Background The relative growth of the neocortex parallels the emergence of complex cognitive functions across species. To determine the regions of the mammalian genome responsible for natural variations in cortical volume, we conducted a complex trait analysis using 34 strains of recombinant inbred (Rl strains of mice (BXD, as well as their two parental strains (C57BL/6J and DBA/2J. We measured both neocortical volume and total brain volume in 155 coronally sectioned mouse brains that were Nissl stained and embedded in celloidin. After correction for shrinkage, the measured cortical and noncortical brain volumes were entered into a multiple regression analysis, which removed the effects of body size and age from the measurements. Marker regression and interval mapping were computed using WebQTL. Results An ANOVA revealed that more than half of the variance of these regressed phenotypes is genetically determined. We then identified the regions of the genome regulating this heritability. We located genomic regions in which a linkage disequilibrium was present using WebQTL as both a mapping engine and genomic database. For neocortex, we found a genome-wide significant quantitative trait locus (QTL on chromosome 11 (marker D11Mit19, as well as a suggestive QTL on chromosome 16 (marker D16Mit100. In contrast, for noncortex the effect of chromosome 11 was markedly reduced, and a significant QTL appeared on chromosome 19 (D19Mit22. Conclusion This classic pattern of double dissociation argues strongly for different genetic factors regulating relative cortical size, as opposed to brain volume more generally. It is likely, however, that the effects of proximal chromosome 11 extend beyond the neocortex strictly defined. An analysis of single nucleotide polymorphisms in these regions indicated that ciliary neurotrophic factor (Cntf is quite possibly the gene underlying the noncortical QTL. Evidence for a candidate gene modulating neocortical

  1. Genomic dissection of variation in clutch size and egg mass in a wild great tit (Parus major) population.

    Science.gov (United States)

    Santure, Anna W; De Cauwer, Isabelle; Robinson, Matthew R; Poissant, Jocelyn; Sheldon, Ben C; Slate, Jon

    2013-08-01

    Clutch size and egg mass are life history traits that have been extensively studied in wild bird populations, as life history theory predicts a negative trade-off between them, either at the phenotypic or at the genetic level. Here, we analyse the genomic architecture of these heritable traits in a wild great tit (Parus major) population, using three marker-based approaches - chromosome partitioning, quantitative trait locus (QTL) mapping and a genome-wide association study (GWAS). The variance explained by each great tit chromosome scales with predicted chromosome size, no location in the genome contains genome-wide significant QTL, and no individual SNPs are associated with a large proportion of phenotypic variation, all of which may suggest that variation in both traits is due to many loci of small effect, located across the genome. There is no evidence that any regions of the genome contribute significantly to both traits, which combined with a small, nonsignificant negative genetic covariance between the traits, suggests the absence of genetic constraints on the independent evolution of these traits. Our findings support the hypothesis that variation in life history traits in natural populations is likely to be determined by many loci of small effect spread throughout the genome, which are subject to continued input of variation by mutation and migration, although we cannot exclude the possibility of an additional input of major effect genes influencing either trait. © 2013 John Wiley & Sons Ltd.

  2. Orion: Detecting regions of the human non-coding genome that are intolerant to variation using population genetics.

    Science.gov (United States)

    Gussow, Ayal B; Copeland, Brett R; Dhindsa, Ryan S; Wang, Quanli; Petrovski, Slavé; Majoros, William H; Allen, Andrew S; Goldstein, David B

    2017-01-01

    There is broad agreement that genetic mutations occurring outside of the protein-coding regions play a key role in human disease. Despite this consensus, we are not yet capable of discerning which portions of non-coding sequence are important in the context of human disease. Here, we present Orion, an approach that detects regions of the non-coding genome that are depleted of variation, suggesting that the regions are intolerant of mutations and subject to purifying selection in the human lineage. We show that Orion is highly correlated with known intolerant regions as well as regions that harbor putatively pathogenic variation. This approach provides a mechanism to identify pathogenic variation in the human non-coding genome and will have immediate utility in the diagnostic interpretation of patient genomes and in large case control studies using whole-genome sequences.

  3. Genetic analysis of within-litter variation in piglets’ birth weight using genomic or pedigree relationship matrices

    NARCIS (Netherlands)

    Sell, E.B.; Wang, Q.; Mulder, H.A.; Knol, E.F.

    2015-01-01

    The objective of this study was to estimate the genetic variance for within-litter variation of birth weight (BW0) using genomic (GRM) or pedigree relationship matrices (PRM) and to compare the accuracy of estimated breeding values (EBV) for within-litter variation of BW0 using GRM and PRM. The BW0

  4. EVA: Exome Variation Analyzer, an efficient and versatile tool for filtering strategies in medical genomics

    Directory of Open Access Journals (Sweden)

    Coutant Sophie

    2012-09-01

    Full Text Available Abstract Background Whole exome sequencing (WES has become the strategy of choice to identify a coding allelic variant for a rare human monogenic disorder. This approach is a revolution in medical genetics history, impacting both fundamental research, and diagnostic methods leading to personalized medicine. A plethora of efficient algorithms has been developed to ensure the variant discovery. They generally lead to ~20,000 variations that have to be narrow down to find the potential pathogenic allelic variant(s and the affected gene(s. For this purpose, commonly adopted procedures which implicate various filtering strategies have emerged: exclusion of common variations, type of the allelics variants, pathogenicity effect prediction, modes of inheritance and multiple individuals for exome comparison. To deal with the expansion of WES in medical genomics individual laboratories, new convivial and versatile software tools have to implement these filtering steps. Non-programmer biologists have to be autonomous combining themselves different filtering criteria and conduct a personal strategy depending on their assumptions and study design. Results We describe EVA (Exome Variation Analyzer, a user-friendly web-interfaced software dedicated to the filtering strategies for medical WES. Thanks to different modules, EVA (i integrates and stores annotated exome variation data as strictly confidential to the project owner, (ii allows to combine the main filters dealing with common variations, molecular types, inheritance mode and multiple samples, (iii offers the browsing of annotated data and filtered results in various interactive tables, graphical visualizations and statistical charts, (iv and finally offers export files and cross-links to external useful databases and softwares for further prioritization of the small subset of sorted candidate variations and genes. We report a demonstrative case study that allowed to identify a new candidate gene

  5. ViVar: a comprehensive platform for the analysis and visualization of structural genomic variation.

    Directory of Open Access Journals (Sweden)

    Tom Sante

    Full Text Available Structural genomic variations play an important role in human disease and phenotypic diversity. With the rise of high-throughput sequencing tools, mate-pair/paired-end/single-read sequencing has become an important technique for the detection and exploration of structural variation. Several analysis tools exist to handle different parts and aspects of such sequencing based structural variation analyses pipelines. A comprehensive analysis platform to handle all steps, from processing the sequencing data, to the discovery and visualization of structural variants, is missing. The ViVar platform is built to handle the discovery of structural variants, from Depth Of Coverage analysis, aberrant read pair clustering to split read analysis. ViVar provides you with powerful visualization options, enables easy reporting of results and better usability and data management. The platform facilitates the processing, analysis and visualization, of structural variation based on massive parallel sequencing data, enabling the rapid identification of disease loci or genes. ViVar allows you to scale your analysis with your work load over multiple (cloud servers, has user access control to keep your data safe and is easy expandable as analysis techniques advance. URL: https://www.cmgg.be/vivar/

  6. Genome-Wide analysis of the role of copy-number variation in pancreatic cancer risk

    Directory of Open Access Journals (Sweden)

    Jason eWillis

    2014-02-01

    Full Text Available Although family history is a risk factor for pancreatic adenocarcinoma, much of the genetic etiology of this disease remains unknown. While genome-wide association studies have identified some common single nucleotide polymorphisms (SNPs associated with pancreatic cancer risk, these SNPs do not explain all the heritability of this disease. We hypothesized that copy number variation (CNVs in the genome may play a role in genetic predisposition to pancreatic adenocarcinoma. Here, we report a genome-wide analysis of CNVs in a small hospital-based, European ancestry cohort of pancreatic cancer cases and controls. Germline CNV discovery was performed using the Illumina Human CNV370 platform in 223 pancreatic cancer cases (both sporadic and familial and 169 controls. Following stringent quality control, we asked if global CNV burden was a risk factor for pancreatic cancer. Finally, we performed in silico CNV genotyping and association testing to discover novel CNV risk loci. When we examined the global CNV burden, we found no strong evidence that CNV burden plays a role in pancreatic cancer risk either overall or specifically in individuals with a family history of the disease. Similarly, we saw no significant evidence that any particular CNV is associated with pancreatic cancer risk. Taken together, these data suggest that CNVs do not contribute substantially to the genetic etiology of pancreatic cancer, though the results are tempered by small sample size and large experimental variability inherent in array-based CNV studies

  7. Genomic variation associated with local adaptation of weedy rice during de-domestication

    Science.gov (United States)

    Qiu, Jie; Zhou, Yongjun; Mao, Lingfeng; Ye, Chuyu; Wang, Weidi; Zhang, Jianping; Yu, Yongyi; Fu, Fei; Wang, Yunfei; Qian, Feijian; Qi, Ting; Wu, Sanling; Sultana, Most Humaira; Cao, Ya-Nan; Wang, Yu; Timko, Michael P.; Ge, Song; Fan, Longjiang; Lu, Yongliang

    2017-01-01

    De-domestication is a unique evolutionary process by which domesticated crops are converted into ‘wild predecessor like' forms. Weedy rice (Oryza sativa f. spontanea) is an excellent model to dissect the molecular processes underlying de-domestication. Here, we analyse the genomes of 155 weedy and 76 locally cultivated rice accessions from four representative regions in China that were sequenced to an average 18.2 × coverage. Phylogenetic and demographic analyses indicate that Chinese weedy rice was de-domesticated independently from cultivated rice and experienced a strong genetic bottleneck. Although evolving from multiple origins, critical genes underlying convergent evolution of different weedy types can be found. Allele frequency analyses suggest that standing variations and new mutations contribute differently to japonica and indica weedy rice. We identify a Mb-scale genomic region present in weedy rice but not cultivated rice genomes that shows evidence of balancing selection, thereby suggesting that there might be more complexity inherent to the process of de-domestication. PMID:28537247

  8. A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits

    Directory of Open Access Journals (Sweden)

    Hayashi Takeshi

    2013-01-01

    Full Text Available Abstract Background Genomic selection is an effective tool for animal and plant breeding, allowing effective individual selection without phenotypic records through the prediction of genomic breeding value (GBV. To date, genomic selection has focused on a single trait. However, actual breeding often targets multiple correlated traits, and, therefore, joint analysis taking into consideration the correlation between traits, which might result in more accurate GBV prediction than analyzing each trait separately, is suitable for multi-trait genomic selection. This would require an extension of the prediction model for single-trait GBV to multi-trait case. As the computational burden of multi-trait analysis is even higher than that of single-trait analysis, an effective computational method for constructing a multi-trait prediction model is also needed. Results We described a Bayesian regression model incorporating variable selection for jointly predicting GBVs of multiple traits and devised both an MCMC iteration and variational approximation for Bayesian estimation of parameters in this multi-trait model. The proposed Bayesian procedures with MCMC iteration and variational approximation were referred to as MCBayes and varBayes, respectively. Using simulated datasets of SNP genotypes and phenotypes for three traits with high and low heritabilities, we compared the accuracy in predicting GBVs between multi-trait and single-trait analyses as well as between MCBayes and varBayes. The results showed that, compared to single-trait analysis, multi-trait analysis enabled much more accurate GBV prediction for low-heritability traits correlated with high-heritability traits, by utilizing the correlation structure between traits, while the prediction accuracy for uncorrelated low-heritability traits was comparable or less with multi-trait analysis in comparison with single-trait analysis depending on the setting for prior probability that a SNP has zero

  9. Shifting patterns of natural variation in the nuclear genome of caenorhabditis elegans.

    Science.gov (United States)

    Solorzano, Eleanne; Okamoto, Kazufusa; Datla, Pushpa; Sung, Way; Bergeron, R D; Thomas, W K

    2011-06-16

    Genome wide analysis of variation within a species can reveal the evolution of fundamental biological processes such as mutation, recombination, and natural selection. We compare genome wide sequence differences between two independent isolates of the nematode Caenorhabditis elegans (CB4856 and CB4858) and the reference genome (N2). The base substitution pattern when comparing N2 against CB4858 reveals a transition over transversion bias (1.32:1) that is not present in CB4856. In CB4856, there is a significant bias in the direction of base substitution. The frequency of A or T bases in N2 that are G or C bases in CB4856 outnumber the opposite frequencies for transitions as well as transversions. These differences were not observed in the N2/CB4858 comparison. Similarly, we observed a strong bias for deletions over insertions in CB4856 (1.44: 1) that is not present in CB4858. In both CB4856 and CB4858, there is a significant correlation between SNP rate and recombination rate on the autosomes but not on the X chromosome. Furthermore, we identified numerous significant hotspots of variation in the CB4856-N2 comparison.In both CB4856 and CB4858, based on a measure of the strength of selection (ka/ks), all the chromosomes are under negative selection and in CB4856, there is no difference in the strength of natural selection in either the autosomes versus X or between any of the chromosomes. By contrast, in CB4858, ka/ks values are smaller in the autosomes than in the X chromosome. In addition, in CB4858, ka/ks values differ between chromosomes. The clear bias of deletions over insertions in CB4856 suggests that either the CB4856 genome is becoming smaller or the N2 genome is getting larger. We hypothesize the hotspots found represent alleles that are shared between CB4856 and CB4858 but not N2. Because the ka/ks ratio in the X chromosome is higher than the autosomes on average in CB4858, purifying selection is reduced on the X chromosome.

  10. Shifting patterns of natural variation in the nuclear genome of caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Okamoto Kazufusa

    2011-06-01

    Full Text Available Abstract Background Genome wide analysis of variation within a species can reveal the evolution of fundamental biological processes such as mutation, recombination, and natural selection. We compare genome wide sequence differences between two independent isolates of the nematode Caenorhabditis elegans (CB4856 and CB4858 and the reference genome (N2. Results The base substitution pattern when comparing N2 against CB4858 reveals a transition over transversion bias (1.32:1 that is not present in CB4856. In CB4856, there is a significant bias in the direction of base substitution. The frequency of A or T bases in N2 that are G or C bases in CB4856 outnumber the opposite frequencies for transitions as well as transversions. These differences were not observed in the N2/CB4858 comparison. Similarly, we observed a strong bias for deletions over insertions in CB4856 (1.44: 1 that is not present in CB4858. In both CB4856 and CB4858, there is a significant correlation between SNP rate and recombination rate on the autosomes but not on the X chromosome. Furthermore, we identified numerous significant hotspots of variation in the CB4856-N2 comparison. In both CB4856 and CB4858, based on a measure of the strength of selection (ka/ks, all the chromosomes are under negative selection and in CB4856, there is no difference in the strength of natural selection in either the autosomes versus X or between any of the chromosomes. By contrast, in CB4858, ka/ks values are smaller in the autosomes than in the X chromosome. In addition, in CB4858, ka/ks values differ between chromosomes. Conclusions The clear bias of deletions over insertions in CB4856 suggests that either the CB4856 genome is becoming smaller or the N2 genome is getting larger. We hypothesize the hotspots found represent alleles that are shared between CB4856 and CB4858 but not N2. Because the ka/ks ratio in the X chromosome is higher than the autosomes on average in CB4858, purifying selection is

  11. Genome-size Variation in Switchgrass (Panicum virgatum: Flow Cytometry and Cytology Reveal Rampant Aneuploidy

    Directory of Open Access Journals (Sweden)

    Denise E. Costich

    2010-11-01

    Full Text Available Switchgrass ( L., a native perennial dominant of the prairies of North America, has been targeted as a model herbaceous species for biofeedstock development. A flow-cytometric survey of a core set of 11 primarily upland polyploid switchgrass accessions indicated that there was considerable variation in genome size within each accession, particularly at the octoploid (2 = 8 = 72 chromosome ploidy level. Highly variable chromosome counts in mitotic cell preparations indicated that aneuploidy was more common in octoploids (86.3% than tetraploids (23.2%. Furthermore, the incidence of hyper- versus hypoaneuploidy is equivalent in tetraploids. This is clearly not the case in octoploids, where close to 90% of the aneuploid counts are lower than the euploid number. Cytogenetic investigation using fluorescent in situ hybridization (FISH revealed an unexpected degree of variation in chromosome structure underlying the apparent genomic instability of this species. These results indicate that rapid advances in the breeding of polyploid biofuel feedstocks, based on the molecular-genetic dissection of biomass characteristics and yield, will be predicated on the continual improvement of our understanding of the cytogenetics of these species.

  12. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data.

    Science.gov (United States)

    Mönchgesang, Susann; Strehmel, Nadine; Schmidt, Stephan; Westphal, Lore; Taruttis, Franziska; Müller, Erik; Herklotz, Siska; Neumann, Steffen; Scheel, Dierk

    2016-07-01

    Many metabolomics studies focus on aboveground parts of the plant, while metabolism within roots and the chemical composition of the rhizosphere, as influenced by exudation, are not deeply investigated. In this study, we analysed exudate metabolic patterns of Arabidopsis thaliana and their variation in genetically diverse accessions. For this project, we used the 19 parental accessions of the Arabidopsis MAGIC collection. Plants were grown in a hydroponic system, their exudates were harvested before bolting and subjected to UPLC/ESI-QTOF-MS analysis. Metabolite profiles were analysed together with the genome sequence information. Our study uncovered distinct metabolite profiles for root exudates of the 19 accessions. Hierarchical clustering revealed similarities in the exudate metabolite profiles, which were partly reflected by the genetic distances. An association of metabolite absence with nonsense mutations was detected for the biosynthetic pathways of an indolic glucosinolate hydrolysis product, a hydroxycinnamic acid amine and a flavonoid triglycoside. Consequently, a direct link between metabolic phenotype and genotype was detected without using segregating populations. Moreover, genomics can help to identify biosynthetic enzymes in metabolomics experiments. Our study elucidates the chemical composition of the rhizosphere and its natural variation in A. thaliana, which is important for the attraction and shaping of microbial communities.

  13. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence

    Science.gov (United States)

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Smith, G D; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-01-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case–control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence. PMID:26239293

  14. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    Science.gov (United States)

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Davey Smith, G; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  15. Identification of genome-wide copy number variations among diverse pig breeds by array CGH

    Directory of Open Access Journals (Sweden)

    Li Yan

    2012-12-01

    Full Text Available Abstract Background Recent studies have shown that copy number variation (CNV in mammalian genomes contributes to phenotypic diversity, including health and disease status. In domestic pigs, CNV has been catalogued by several reports, but the extent of CNV and the phenotypic effects are far from clear. The goal of this study was to identify CNV regions (CNVRs in pigs based on array comparative genome hybridization (aCGH. Results Here a custom-made tiling oligo-nucleotide array was used with a median probe spacing of 2506 bp for screening 12 pigs including 3 Chinese native pigs (one Chinese Erhualian, one Tongcheng and one Yangxin pig, 5 European pigs (one Large White, one Pietrain, one White Duroc and two Landrace pigs, 2 synthetic pigs (Chinese new line DIV pigs and 2 crossbred pigs (Landrace × DIV pigs with a Duroc pig as the reference. Two hundred and fifty-nine CNVRs across chromosomes 1–18 and X were identified, with an average size of 65.07 kb and a median size of 98.74 kb, covering 16.85 Mb or 0.74% of the whole genome. Concerning copy number status, 93 (35.91% CNVRs were called as gains, 140 (54.05% were called as losses and the remaining 26 (10.04% were called as both gains and losses. Of all detected CNVRs, 171 (66.02% and 34 (13.13% CNVRs directly overlapped with Sus scrofa duplicated sequences and pig QTLs, respectively. The CNVRs encompassed 372 full length Ensembl transcripts. Two CNVRs identified by aCGH were validated using real-time quantitative PCR (qPCR. Conclusions Using 720 K array CGH (aCGH we described a map of porcine CNVs which facilitated the identification of structural variations for important phenotypes and the assessment of the genetic diversity of pigs.

  16. A high-density genetic map reveals variation in recombination rate across the genome of Daphnia magna.

    Science.gov (United States)

    Dukić, Marinela; Berner, Daniel; Roesti, Marius; Haag, Christoph R; Ebert, Dieter

    2016-10-13

    Recombination rate is an essential parameter for many genetic analyses. Recombination rates are highly variable across species, populations, individuals and different genomic regions. Due to the profound influence that recombination can have on intraspecific diversity and interspecific divergence, characterization of recombination rate variation emerges as a key resource for population genomic studies and emphasises the importance of high-density genetic maps as tools for studying genome biology. Here we present such a high-density genetic map for Daphnia magna, and analyse patterns of recombination rate across the genome. A F2 intercross panel was genotyped by Restriction-site Associated DNA sequencing to construct the third-generation linkage map of D. magna. The resulting high-density map included 4037 markers covering 813 scaffolds and contigs that sum up to 77 % of the currently available genome draft sequence (v2.4) and 55 % of the estimated genome size (238 Mb). Total genetic length of the map presented here is 1614.5 cM and the genome-wide recombination rate is estimated to 6.78 cM/Mb. Merging genetic and physical information we consistently found that recombination rate estimates are high towards the peripheral parts of the chromosomes, while chromosome centres, harbouring centromeres in D. magna, show very low recombination rate estimates. Due to its high-density, the third-generation linkage map for D. magna can be coupled with the draft genome assembly, providing an essential tool for genome investigation in this model organism. Thus, our linkage map can be used for the on-going improvements of the genome assembly, but more importantly, it has enabled us to characterize variation in recombination rate across the genome of D. magna for the first time. These new insights can provide a valuable assistance in future studies of the genome evolution, mapping of quantitative traits and population genetic studies.

  17. Structural variation in the chicken genome identified by paired-end next-generation DNA sequencing of reduced representation libraries

    Directory of Open Access Journals (Sweden)

    Okimoto Ron

    2011-02-01

    Full Text Available Abstract Background Variation within individual genomes ranges from single nucleotide polymorphisms (SNPs to kilobase, and even megabase, sized structural variants (SVs, such as deletions, insertions, inversions, and more complex rearrangements. Although much is known about the extent of SVs in humans and mice, species in which they exert significant effects on phenotypes, very little is known about the extent of SVs in the 2.5-times smaller and less repetitive genome of the chicken. Results We identified hundreds of shared and divergent SVs in four commercial chicken lines relative to the reference chicken genome. The majority of SVs were found in intronic and intergenic regions, and we also found SVs in the coding regions. To identify the SVs, we combined high-throughput short read paired-end sequencing of genomic reduced representation libraries (RRLs of pooled samples from 25 individuals and computational mapping of DNA sequences from a reference genome. Conclusion We provide a first glimpse of the high abundance of small structural genomic variations in the chicken. Extrapolating our results, we estimate that there are thousands of rearrangements in the chicken genome, the majority of which are located in non-coding regions. We observed that structural variation contributes to genetic differentiation among current domesticated chicken breeds and the Red Jungle Fowl. We expect that, because of their high abundance, SVs might explain phenotypic differences and play a role in the evolution of the chicken genome. Finally, our study exemplifies an efficient and cost-effective approach for identifying structural variation in sequenced genomes.

  18. Trait variation and genetic diversity in a banana genomic selection training population.

    Directory of Open Access Journals (Sweden)

    Moses Nyine

    Full Text Available Banana (Musa spp. is an important crop in the African Great Lakes region in terms of income and food security, with the highest per capita consumption worldwide. Pests, diseases and climate change hamper sustainable production of bananas. New breeding tools with increased crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of East African Highland banana (EAHB. These include genomic selection (GS, which will benefit breeding through increased genetic gain per unit time. Understanding trait variation and the correlation among economically important traits is an essential first step in the development and selection of suitable GS models for banana. In this study, we tested the hypothesis that trait variations in bananas are not affected by cross combination, cycle, field management and their interaction with genotype. A training population created using EAHB breeding material and its progeny was phenotyped in two contrasting conditions. A high level of correlation among vegetative and yield related traits was observed. Therefore, genomic selection models could be developed for traits that are easily measured. It is likely that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are highly correlated with. Genotype response to cycle and field management practices varied greatly with respect to traits. Yield related traits accounted for 31-35% of principal component variation under low and high input field management conditions. Resistance to Black Sigatoka was stable across cycles but varied under different field management depending on the genotype. The best cross combination was 1201K-1xSH3217 based on selection response (R of hybrids. Genotyping using simple sequence repeat (SSR markers revealed that the training population was genetically diverse, reflecting a complex pedigree background, which was mostly influenced by the male parents.

  19. Trait variation and genetic diversity in a banana genomic selection training population.

    Science.gov (United States)

    Nyine, Moses; Uwimana, Brigitte; Swennen, Rony; Batte, Michael; Brown, Allan; Christelová, Pavla; Hřibová, Eva; Lorenzen, Jim; Doležel, Jaroslav

    2017-01-01

    Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income and food security, with the highest per capita consumption worldwide. Pests, diseases and climate change hamper sustainable production of bananas. New breeding tools with increased crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of East African Highland banana (EAHB). These include genomic selection (GS), which will benefit breeding through increased genetic gain per unit time. Understanding trait variation and the correlation among economically important traits is an essential first step in the development and selection of suitable GS models for banana. In this study, we tested the hypothesis that trait variations in bananas are not affected by cross combination, cycle, field management and their interaction with genotype. A training population created using EAHB breeding material and its progeny was phenotyped in two contrasting conditions. A high level of correlation among vegetative and yield related traits was observed. Therefore, genomic selection models could be developed for traits that are easily measured. It is likely that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are highly correlated with. Genotype response to cycle and field management practices varied greatly with respect to traits. Yield related traits accounted for 31-35% of principal component variation under low and high input field management conditions. Resistance to Black Sigatoka was stable across cycles but varied under different field management depending on the genotype. The best cross combination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping using simple sequence repeat (SSR) markers revealed that the training population was genetically diverse, reflecting a complex pedigree background, which was mostly influenced by the male parents.

  20. Trait variation and genetic diversity in a banana genomic selection training population

    Science.gov (United States)

    Nyine, Moses; Uwimana, Brigitte; Swennen, Rony; Batte, Michael; Brown, Allan; Christelová, Pavla; Hřibová, Eva; Lorenzen, Jim

    2017-01-01

    Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income and food security, with the highest per capita consumption worldwide. Pests, diseases and climate change hamper sustainable production of bananas. New breeding tools with increased crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of East African Highland banana (EAHB). These include genomic selection (GS), which will benefit breeding through increased genetic gain per unit time. Understanding trait variation and the correlation among economically important traits is an essential first step in the development and selection of suitable GS models for banana. In this study, we tested the hypothesis that trait variations in bananas are not affected by cross combination, cycle, field management and their interaction with genotype. A training population created using EAHB breeding material and its progeny was phenotyped in two contrasting conditions. A high level of correlation among vegetative and yield related traits was observed. Therefore, genomic selection models could be developed for traits that are easily measured. It is likely that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are highly correlated with. Genotype response to cycle and field management practices varied greatly with respect to traits. Yield related traits accounted for 31–35% of principal component variation under low and high input field management conditions. Resistance to Black Sigatoka was stable across cycles but varied under different field management depending on the genotype. The best cross combination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping using simple sequence repeat (SSR) markers revealed that the training population was genetically diverse, reflecting a complex pedigree background, which was mostly influenced by the male parents. PMID:28586365

  1. Genome sequencing of Metrosideros polymorpha (Myrtaceae), a dominant species in various habitats in the Hawaiian Islands with remarkable phenotypic variations.

    Science.gov (United States)

    Izuno, Ayako; Hatakeyama, Masaomi; Nishiyama, Tomoaki; Tamaki, Ichiro; Shimizu-Inatsugi, Rie; Sasaki, Ryuta; Shimizu, Kentaro K; Isagi, Yuji

    2016-07-01

    Whole genome sequences, which can be provided even for non-model organisms owing to high-throughput sequencers, are valuable in enhancing the understanding of adaptive evolution. Metrosideros polymorpha, a tree species endemic to the Hawaiian Islands, occupies a wide range of ecological habitats and shows remarkable polymorphism in phenotypes among/within populations. The biological functions of genetic variations observed within this species could provide significant insights into the adaptive radiation found in a single species. Here de novo assembled genome sequences of M. polymorpha are presented to reveal basic genomic parameters about this species and to develop our knowledge of ecological divergences. The assembly yielded 304-Mbp genome sequences, half of which were covered by 19 scaffolds with >5 Mbp, and contained 30 K protein-coding genes. Demographic history inferred from the genome-wide heterozygosity indicated that this species experienced a dramatic rise and fall in the effective population size, possibly owing to past geographic or climatic changes in the Hawaiian Islands. This M. polymorpha genome assembly represents a high-quality genome resource useful for future functional analyses of both intra- and interspecies genetic variations or comparative genomics.

  2. Nuclear genomic control of naturally occurring variation in mitochondrial function in Drosophila melanogaster

    Science.gov (United States)

    2012-01-01

    Background Mitochondria are organelles found in nearly all eukaryotic cells that play a crucial role in cellular survival and function. Mitochondrial function is under the control of nuclear and mitochondrial genomes. While the latter has been the focus of most genetic research, we remain largely ignorant about the nuclear-encoded genomic control of inter-individual variability in mitochondrial function. Here, we used Drosophila melanogaster as our model organism to address this question. Results We quantified mitochondrial state 3 and state 4 respiration rates and P:O ratio in mitochondria isolated from the thoraces of 40 sequenced inbred lines of the Drosophila Genetic Reference Panel. We found significant within-population genetic variability for all mitochondrial traits. Hence, we performed genome-wide association mapping and identified 141 single nucleotide polymorphisms (SNPs) associated with differences in mitochondrial respiration and efficiency (P ≤1 × 10-5). Gene-centered regression models showed that 2–3 SNPs can explain 31, 13, and 18% of the phenotypic variation in state 3, state 4, and P:O ratio, respectively. Most of the genes tagged by the SNPs are involved in organ development, second messenger-mediated signaling pathways, and cytoskeleton remodeling. One of these genes, sallimus (sls), encodes a component of the muscle sarcomere. We confirmed the direct effect of sls on mitochondrial respiration using two viable mutants and their coisogenic wild-type strain. Furthermore, correlation network analysis revealed that sls functions as a transcriptional hub in a co-regulated module associated with mitochondrial respiration and is connected to CG7834, which is predicted to encode a protein with mitochondrial electron transfer flavoprotein activity. This latter finding was also verified in the sls mutants. Conclusions Our results provide novel insights into the genetic factors regulating natural variation in mitochondrial function in D

  3. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history

    International Nuclear Information System (INIS)

    Yuhki, Naoya; O'Brien, S.J.

    1990-01-01

    The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. The authors present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations

  4. Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Harsh Raman

    Full Text Available Resistance to pod shattering (shatter resistance is a target trait for global rapeseed (canola, Brassica napus L., improvement programs to minimise grain loss in the mature standing crop, and during windrowing and mechanical harvest. We describe the genetic basis of natural variation for shatter resistance in B. napus and show that several quantitative trait loci (QTL control this trait. To identify loci underlying shatter resistance, we used a novel genotyping-by-sequencing approach DArT-Seq. QTL analysis detected a total of 12 significant QTL on chromosomes A03, A07, A09, C03, C04, C06, and C08; which jointly account for approximately 57% of the genotypic variation in shatter resistance. Through Genome-Wide Association Studies, we show that a large number of loci, including those that are involved in shattering in Arabidopsis, account for variation in shatter resistance in diverse B. napus germplasm. Our results indicate that genetic diversity for shatter resistance genes in B. napus is limited; many of the genes that might control this trait were not included during the natural creation of this species, or were not retained during the domestication and selection process. We speculate that valuable diversity for this trait was lost during the natural creation of B. napus. To improve shatter resistance, breeders will need to target the introduction of useful alleles especially from genotypes of other related species of Brassica, such as those that we have identified.

  5. Beyond genomic variation--comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage.

    Science.gov (United States)

    Lin, Ke; Zhang, Ningwen; Severing, Edouard I; Nijveen, Harm; Cheng, Feng; Visser, Richard G F; Wang, Xiaowu; de Ridder, Dick; Bonnema, Guusje

    2014-03-31

    Brassica rapa is an economically important crop species. During its long breeding history, a large number of morphotypes have been generated, including leafy vegetables such as Chinese cabbage and pakchoi, turnip tuber crops and oil crops. To investigate the genetic variation underlying this morphological variation, we re-sequenced, assembled and annotated the genomes of two B. rapa subspecies, turnip crops (turnip) and a rapid cycling. We then analysed the two resulting genomes together with the Chinese cabbage Chiifu reference genome to obtain an impression of the B. rapa pan-genome. The number of genes with protein-coding changes between the three genotypes was lower than that among different accessions of Arabidopsis thaliana, which can be explained by the smaller effective population size of B. rapa due to its domestication. Based on orthology to a number of non-brassica species, we estimated the date of divergence among the three B. rapa morphotypes at approximately 250,000 YA, far predating Brassica domestication (5,000-10,000 YA). By analysing genes unique to turnip we found evidence for copy number differences in peroxidases, pointing to a role for the phenylpropanoid biosynthesis pathway in the generation of morphological variation. The estimated date of divergence among three B. rapa morphotypes implies that prior to domestication there was already considerably divergence among B. rapa genotypes. Our study thus provides two new B. rapa reference genomes, delivers a set of computer tools to analyse the resulting pan-genome and uses these to shed light on genetic drivers behind the rich morphological variation found in B. rapa.

  6. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance [version 1; referees: 5 approved

    Directory of Open Access Journals (Sweden)

    Marie-Claude N. Laffitte

    2016-09-01

    Full Text Available Leishmania has a plastic genome, and drug pressure can select for gene copy number variation (CNV. CNVs can apply either to whole chromosomes, leading to aneuploidy, or to specific genomic regions. For the latter, the amplification of chromosomal regions occurs at the level of homologous direct or inverted repeated sequences leading to extrachromosomal circular or linear amplified DNAs. This ability of Leishmania to respond to drug pressure by CNVs has led to the development of genomic screens such as Cos-Seq, which has the potential of expediting the discovery of drug targets for novel promising drug candidates.

  7. DESCARTES' RULE OF SIGNS AND THE IDENTIFIABILITY OF POPULATION DEMOGRAPHIC MODELS FROM GENOMIC VARIATION DATA.

    Science.gov (United States)

    Bhaskar, Anand; Song, Yun S

    2014-01-01

    The sample frequency spectrum (SFS) is a widely-used summary statistic of genomic variation in a sample of homologous DNA sequences. It provides a highly efficient dimensional reduction of large-scale population genomic data and its mathematical dependence on the underlying population demography is well understood, thus enabling the development of efficient inference algorithms. However, it has been recently shown that very different population demographies can actually generate the same SFS for arbitrarily large sample sizes. Although in principle this nonidentifiability issue poses a thorny challenge to statistical inference, the population size functions involved in the counterexamples are arguably not so biologically realistic. Here, we revisit this problem and examine the identifiability of demographic models under the restriction that the population sizes are piecewise-defined where each piece belongs to some family of biologically-motivated functions. Under this assumption, we prove that the expected SFS of a sample uniquely determines the underlying demographic model, provided that the sample is sufficiently large. We obtain a general bound on the sample size sufficient for identifiability; the bound depends on the number of pieces in the demographic model and also on the type of population size function in each piece. In the cases of piecewise-constant, piecewise-exponential and piecewise-generalized-exponential models, which are often assumed in population genomic inferences, we provide explicit formulas for the bounds as simple functions of the number of pieces. Lastly, we obtain analogous results for the "folded" SFS, which is often used when there is ambiguity as to which allelic type is ancestral. Our results are proved using a generalization of Descartes' rule of signs for polynomials to the Laplace transform of piecewise continuous functions.

  8. DESCARTES’ RULE OF SIGNS AND THE IDENTIFIABILITY OF POPULATION DEMOGRAPHIC MODELS FROM GENOMIC VARIATION DATA1

    Science.gov (United States)

    Bhaskar, Anand; Song, Yun S.

    2016-01-01

    The sample frequency spectrum (SFS) is a widely-used summary statistic of genomic variation in a sample of homologous DNA sequences. It provides a highly efficient dimensional reduction of large-scale population genomic data and its mathematical dependence on the underlying population demography is well understood, thus enabling the development of efficient inference algorithms. However, it has been recently shown that very different population demographies can actually generate the same SFS for arbitrarily large sample sizes. Although in principle this nonidentifiability issue poses a thorny challenge to statistical inference, the population size functions involved in the counterexamples are arguably not so biologically realistic. Here, we revisit this problem and examine the identifiability of demographic models under the restriction that the population sizes are piecewise-defined where each piece belongs to some family of biologically-motivated functions. Under this assumption, we prove that the expected SFS of a sample uniquely determines the underlying demographic model, provided that the sample is sufficiently large. We obtain a general bound on the sample size sufficient for identifiability; the bound depends on the number of pieces in the demographic model and also on the type of population size function in each piece. In the cases of piecewise-constant, piecewise-exponential and piecewise-generalized-exponential models, which are often assumed in population genomic inferences, we provide explicit formulas for the bounds as simple functions of the number of pieces. Lastly, we obtain analogous results for the “folded” SFS, which is often used when there is ambiguity as to which allelic type is ancestral. Our results are proved using a generalization of Descartes’ rule of signs for polynomials to the Laplace transform of piecewise continuous functions. PMID:28018011

  9. Variation in the OC locus of Acinetobacter baumannii genomes predicts extensive structural diversity in the lipooligosaccharide.

    Directory of Open Access Journals (Sweden)

    Johanna J Kenyon

    Full Text Available Lipooligosaccharide (LOS is a complex surface structure that is linked to many pathogenic properties of Acinetobacter baumannii. In A. baumannii, the genes responsible for the synthesis of the outer core (OC component of the LOS are located between ilvE and aspS. The content of the OC locus is usually variable within a species, and examination of 6 complete and 227 draft A. baumannii genome sequences available in GenBank non-redundant and Whole Genome Shotgun databases revealed nine distinct new types, OCL4-OCL12, in addition to the three known ones. The twelve gene clusters fell into two distinct groups, designated Group A and Group B, based on similarities in the genes present. OCL6 (Group B was unique in that it included genes for the synthesis of L-Rhamnosep. Genetic exchange of the different configurations between strains has occurred as some OC forms were found in several different sequence types (STs. OCL1 (Group A was the most widely distributed being present in 18 STs, and OCL6 was found in 16 STs. Variation within clones was also observed, with more than one OC locus type found in the two globally disseminated clones, GC1 and GC2, that include the majority of multiply antibiotic resistant isolates. OCL1 was the most abundant gene cluster in both GC1 and GC2 genomes but GC1 isolates also carried OCL2, OCL3 or OCL5, and OCL3 was also present in GC2. As replacement of the OC locus in the major global clones indicates the presence of sub-lineages, a PCR typing scheme was developed to rapidly distinguish Group A and Group B types, and to distinguish the specific forms found in GC1 and GC2 isolates.

  10. Distinct Contributions of Replication and Transcription to Mutation Rate Variation of Human Genomes

    KAUST Repository

    Cui, Peng

    2012-03-23

    Here, we evaluate the contribution of two major biological processes—DNA replication and transcription—to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes.

  11. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives

    Science.gov (United States)

    Liu, Biao; Conroy, Jeffrey M.; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin

    2015-01-01

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an overview of current analytic tools used for SV detection in NGS-based cancer studies. We summarize the features of common SV groups and the primary types of NGS signatures that can be used in SV detection methods. We discuss the principles and key similarities and differences of existing computational programs and comment on unresolved issues related to this research field. The aim of this article is to provide a practical guide of relevant concepts, computational methods, software tools and important factors for analyzing and interpreting NGS data for the detection of SVs in the cancer genome. PMID:25849937

  12. A refined model of the genomic basis for phenotypic variation in vertebrate hemostasis.

    Science.gov (United States)

    Ribeiro, Ângela M; Zepeda-Mendoza, M Lisandra; Bertelsen, Mads F; Kristensen, Annemarie T; Jarvis, Erich D; Gilbert, M Thomas P; da Fonseca, Rute R

    2015-06-30

    Hemostasis is a defense mechanism that enhances an organism's survival by minimizing blood loss upon vascular injury. In vertebrates, hemostasis has been evolving with the cardio-vascular and hemodynamic systems over the last 450 million years. Birds and mammals have very similar vascular and hemodynamic systems, thus the mechanism that blocks ruptures in the vasculature is expected to be the same. However, the speed of the process varies across vertebrates, and is particularly slow for birds. Understanding the differences in the hemostasis pathway between birds and mammals, and placing them in perspective to other vertebrates may provide clues to the genetic contribution to variation in blood clotting phenotype in vertebrates. We compiled genomic data corresponding to key elements involved in hemostasis across vertebrates to investigate its genetic basis and understand how it affects fitness. We found that: i) fewer genes are involved in hemostasis in birds compared to mammals; and ii) the largest differences concern platelet membrane receptors and components from the kallikrein-kinin system. We propose that lack of the cytoplasmic domain of the GPIb receptor subunit alpha could be a strong contributor to the prolonged bleeding phenotype in birds. Combined analysis of laboratory assessments of avian hemostasis with the first avian phylogeny based on genomic-scale data revealed that differences in hemostasis within birds are not explained by phylogenetic relationships, but more so by genetic variation underlying components of the hemostatic process, suggestive of natural selection. This work adds to our understanding of the evolution of hemostasis in vertebrates. The overlap with the inflammation, complement and renin-angiotensin (blood pressure regulation) pathways is a potential driver of rapid molecular evolution in the hemostasis network. Comparisons between avian species and mammals allowed us to hypothesize that the observed mammalian innovations might have

  13. A genome-wide association study demonstrates significant genetic variation for fracture risk in Thoroughbred racehorses

    Science.gov (United States)

    2014-01-01

    Background Thoroughbred racehorses are subject to non-traumatic distal limb bone fractures that occur during racing and exercise. Susceptibility to fracture may be due to underlying disturbances in bone metabolism which have a genetic cause. Fracture risk has been shown to be heritable in several species but this study is the first genetic analysis of fracture risk in the horse. Results Fracture cases (n = 269) were horses that sustained catastrophic distal limb fractures while racing on UK racecourses, necessitating euthanasia. Control horses (n = 253) were over 4 years of age, were racing during the same time period as the cases, and had no history of fracture at the time the study was carried out. The horses sampled were bred for both flat and National Hunt (NH) jump racing. 43,417 SNPs were employed to perform a genome-wide association analysis and to estimate the proportion of genetic variance attributable to the SNPs on each chromosome using restricted maximum likelihood (REML). Significant genetic variation associated with fracture risk was found on chromosomes 9, 18, 22 and 31. Three SNPs on chromosome 18 (62.05 Mb – 62.15 Mb) and one SNP on chromosome 1 (14.17 Mb) reached genome-wide significance (p fracture than cases, p = 1 × 10-4), while a second haplotype increases fracture risk (cases at 3.39 times higher risk of fracture than controls, p = 0.042). Conclusions Fracture risk in the Thoroughbred horse is a complex condition with an underlying genetic basis. Multiple genomic regions contribute to susceptibility to fracture risk. This suggests there is the potential to develop SNP-based estimators for genetic risk of fracture in the Thoroughbred racehorse, using methods pioneered in livestock genetics such as genomic selection. This information would be useful to racehorse breeders and owners, enabling them to reduce the risk of injury in their horses. PMID:24559379

  14. Allelic variation in a single genomic region alters the microbiome of the snail Biomphalaria glabrata.

    Science.gov (United States)

    Allan, Euan R O; Tennessen, Jacob A; Sharpton, Thomas J; Blouin, Michael S

    2018-03-16

    Freshwater snails are the intermediate hosts for numerous parasitic worms which can have negative consequences for human health and agriculture. Understanding the transmission of these diseases requires a more complete characterization of the immunobiology of snail hosts. This includes the characterization of its microbiome and genetic factors which may interact with this important commensal community. Allelic variation in the Guadeloupe Resistance Complex (GRC) genomic region of Guadeloupean Biomphalaria glabrata influences their susceptibility to schistosome infection, and may have other roles in the snail immune response. In the present study, we examined whether a snail's GRC genotype has a role in shaping the bacterial diversity and composition present on or in whole snails. We show that the GRC haplotype, including the resistant genotype, has a significant effect on the diversity of bacterial species present in or on whole snails, including the relative abundances of Gemmatimonas aurantiaca and Micavibrio aeruginosavorus. These findings support the hypothesis that the GRC region is likely involved in pathways that can modify the microbial community of these snails, and may have more immune roles in B. glabrata than originally believed. This is also one of few examples in which allelic variation at a particular locus has been shown to affect the microbiome in any species.

  15. Developments in FINDbase worldwide database for clinically relevant genomic variation allele frequencies.

    Science.gov (United States)

    Papadopoulos, Petros; Viennas, Emmanouil; Gkantouna, Vassiliki; Pavlidis, Cristiana; Bartsakoulia, Marina; Ioannou, Zafeiria-Marina; Ratbi, Ilham; Sefiani, Abdelaziz; Tsaknakis, John; Poulas, Konstantinos; Tzimas, Giannis; Patrinos, George P

    2014-01-01

    FINDbase (http://www.findbase.org) aims to document frequencies of clinically relevant genomic variations, namely causative mutations and pharmacogenomic markers, worldwide. Each database record includes the population, ethnic group or geographical region, the disorder name and the related gene, accompanied by links to any related databases and the genetic variation together with its frequency in that population. Here, we report, in addition to the regular data content updates, significant developments in FINDbase, related to data visualization and querying, data submission, interrelation with other resources and a new module for genetic disease summaries. In particular, (i) we have developed new data visualization tools that facilitate data querying and comparison among different populations, (ii) we have generated a new FINDbase module, built around Microsoft's PivotViewer (http://www.getpivot.com) software, based on Microsoft Silverlight technology (http://www.silverlight.net), that includes 259 genetic disease summaries from five populations, systematically collected from the literature representing the documented genetic makeup of these populations and (iii) the implementation of a generic data submission tool for every module currently available in FINDbase.

  16. Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms.

    Directory of Open Access Journals (Sweden)

    Rajini R Haraksingh

    Full Text Available Accurate and efficient genome-wide detection of copy number variants (CNVs is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH, Single Nucleotide Polymorphism (SNP genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications.

  17. Copy number variation identification and analysis of the chicken genome using a 60K SNP BeadChip.

    Science.gov (United States)

    Rao, Y S; Li, J; Zhang, R; Lin, X R; Xu, J G; Xie, L; Xu, Z Q; Wang, L; Gan, J K; Xie, X J; He, J; Zhang, X Q

    2016-08-01

    Copy number variation (CNV) is an important source of genetic variation in organisms and a main factor that affects phenotypic variation. A comprehensive study of chicken CNV can provide valuable information on genetic diversity and facilitate future analyses of associations between CNV and economically important traits in chickens. In the present study, an F2 full-sib chicken population (554 individuals), established from a cross between Xinghua and White Recessive Rock chickens, was used to explore CNV in the chicken genome. Genotyping was performed using a chicken 60K SNP BeadChip. A total of 1,875 CNV were detected with the PennCNV algorithm, and the average number of CNV was 3.42 per individual. The CNV were distributed across 383 independent CNV regions (CNVR) and covered 41 megabases (3.97%) of the chicken genome. Seven CNVR in 108 individuals were validated by quantitative real-time PCR, and 81 of these individuals (75%) also were detected with the PennCNV algorithm. In total, 274 CNVR (71.54%) identified in the current study were previously reported. Of these, 147 (38.38%) were reported in at least 2 studies. Additionally, 109 of the CNVR (28.46%) discovered here are novel. A total of 709 genes within or overlapping with the CNVR was retrieved. Out of the 2,742 quantitative trait loci (QTL) collected in the chicken QTL database, 43 QTL had confidence intervals overlapping with the CNVR, and 32 CNVR encompassed one or more functional genes. The functional genes located in the CNVR are likely to be the QTG that are associated with underlying economic traits. This study considerably expands our insight into the structural variation in the genome of chickens and provides an important resource for genomic variation, especially for genomic structural variation related to economic traits in chickens. © 2016 Poultry Science Association Inc.

  18. Variation in genome size and karyotype among closely related parasitoids of aphids

    Science.gov (United States)

    Genome sizes and karyotypes can provide crucial insights into important characteristics of genomes, as well as providing data for phylogenetic inferences. We measured genome sizes and determined the karyotypes of nine species of aphid parasitoids in the genus Aphelinus. Genome sizes estimated from...

  19. [Analysis of copy number variations in an infant with Cri du Chat syndrome by array-based comparative genomic hybridization].

    Science.gov (United States)

    Luo, Fu-wei; Luo, Cai-qun; Xie, Jian-sheng; Gen, Qian; Liu, Hong; Li, Fang; Chen, Wu-bing; Wang, Li

    2013-08-01

    To analyze genomic copy number variations in an infant with Cri du Chat syndrome, and to explore the underlying genetic cause. G-banding analysis was carried out on cultured peripheral blood sample from the patient. Copy number variation analysis was performed using microarray comparative genomic hybridization, and the result was verified with fluorescence in situ hybridization. The infant was found to have a 46, XY, der(5) (p?) karyotype. By microarray comparative genomic hybridization, a 23.263 Mb deletion was detected in 5p14.2-p15.3 region in addition to a 14.602 Mb duplication in 12p31 region. A derivative chromosome was formed by rejoining of 12p31 region with the 5p14.2 breakpoint. The patient therefore has a karyotype of arr cgh 5p15.3p14.2 (PLEKHG4B>CDH12)× 1 pat, 12p13.33p13.1 (IQSEC3>GUC Y2C)× 3 pat. Loss of distal 5p and gain of distal 12p were verified with fluorescence in situ hybridization. The Cri du Chat syndrome manifested by the patient was caused by deletion of distal 5p from an unbalanced translocation involving chromosome 5. Microarray comparative genomic hybridization is a powerful tool for revealing genomic copy number variations for its high-resolution, high-throughput and high accuracy.

  20. Detecting single DNA copy number variations in complex genomes using one nanogram of starting DNA and BAC-array CGH.

    Science.gov (United States)

    Guillaud-Bataille, Marine; Valent, Alexander; Soularue, Pascal; Perot, Christine; Inda, Maria Mar; Receveur, Aline; Smaïli, Sadek; Roest Crollius, Hugues; Bénard, Jean; Bernheim, Alain; Gidrol, Xavier; Danglot, Gisèle

    2004-07-29

    Comparative genomic hybridization to bacterial artificial chromosome (BAC)-arrays (array-CGH) is a highly efficient technique, allowing the simultaneous measurement of genomic DNA copy number at hundreds or thousands of loci, and the reliable detection of local one-copy-level variations. We report a genome-wide amplification method allowing the same measurement sensitivity, using 1 ng of starting genomic DNA, instead of the classical 1 microg usually necessary. Using a discrete series of DNA fragments, we defined the parameters adapted to the most faithful ligation-mediated PCR amplification and the limits of the technique. The optimized protocol allows a 3000-fold DNA amplification, retaining the quantitative characteristics of the initial genome. Validation of the amplification procedure, using DNA from 10 tumour cell lines hybridized to BAC-arrays of 1500 spots, showed almost perfectly superimposed ratios for the non-amplified and amplified DNAs. Correlation coefficients of 0.96 and 0.99 were observed for regions of low-copy-level variations and all regions, respectively (including in vivo amplified oncogenes). Finally, labelling DNA using two nucleotides bearing the same fluorophore led to a significant increase in reproducibility and to the correct detection of one-copy gain or loss in >90% of the analysed data, even for pseudotriploid tumour genomes.

  1. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    Science.gov (United States)

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.

  2. Analysis of the genome-wide variations among multiple strains of the plant pathogenic bacterium Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2006-09-01

    Full Text Available Abstract Background The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa is responsible for causing economically important diseases in grapevine, citrus and many other plant species. Despite its economic impact, relatively little is known about the genomic variations among strains isolated from different hosts and their influence on the population genetics of this pathogen. With the availability of genome sequence information for four strains, it is now possible to perform genome-wide analyses to identify and categorize such DNA variations and to understand their influence on strain functional divergence. Results There are 1,579 genes and 194 non-coding homologous sequences present in the genomes of all four strains, representing a 76. 2% conservation of the sequenced genome. About 60% of the X. fastidiosa unique sequences exist as tandem gene clusters of 6 or more genes. Multiple alignments identified 12,754 SNPs and 14,449 INDELs in the 1528 common genes and 20,779 SNPs and 10,075 INDELs in the 194 non-coding sequences. The average SNP frequency was 1.08 × 10-2 per base pair of DNA and the average INDEL frequency was 2.06 × 10-2 per base pair of DNA. On an average, 60.33% of the SNPs were synonymous type while 39.67% were non-synonymous type. The mutation frequency, primarily in the form of external INDELs was the main type of sequence variation. The relative similarity between the strains was discussed according to the INDEL and SNP differences. The number of genes unique to each strain were 60 (9a5c, 54 (Dixon, 83 (Ann1 and 9 (Temecula-1. A sub-set of the strain specific genes showed significant differences in terms of their codon usage and GC composition from the native genes suggesting their xenologous origin. Tandem repeat analysis of the genomic sequences of the four strains identified associations of repeat sequences with hypothetical and phage related functions. Conclusion INDELs and strain specific genes

  3. Overlap in genomic variation associated with milk fat composition in Holstein Friesian and Dutch native dual-purpose breeds

    NARCIS (Netherlands)

    Maurice - Van Eijndhoven, M.H.T.; Bovenhuis, H.; Veerkamp, R.F.; Calus, M.P.L.

    2015-01-01

    The aim of this study was to identify if genomic variations associated with fatty acid (FA) composition are similar between the Holstein-Friesian (HF) and native dual-purpose breeds used in the Dutch dairy industry. Phenotypic and genotypic information were available for the breeds Meuse-Rhine-Yssel

  4. Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber

    NARCIS (Netherlands)

    Zhang, Z.; Mao, L.; Chen, Junshi; Bu, F.; Li, G.; Sun, J.; Li, S.; Sun, H.; Jiao, C.; Blakely, R.; Pan, J.; Cai, R.; Luo, R.; Peer, Van de Y.; Jacobsen, E.; Fei, Z.; Huang, S.

    2015-01-01

    Structural variations (SVs) represent a major source of genetic diversity. However, the functional impact and formation mechanisms of SVs in plant genomes remain largely unexplored. Here, we report a nucleotide-resolution SV map of cucumber (Cucumis sativas) that comprises 26,788 SVs based on deep

  5. Whole genome association mapping of grain shape variation among Oryza sativa L. germplasms based on elliptic Fourier analysis

    Science.gov (United States)

    Although grain shape is an important cereal breeding target, it has been evaluated using simple measurements, e.g. the length : width ratio. We used elliptic Fourier analysis to evaluate grain shape variation and conducted whole genome association mapping of grain shape using a germplasm collectio...

  6. Pan-genomic analysis to redefine species and subspecies based on quantum discontinuous variation: the Klebsiella paradigm.

    Science.gov (United States)

    Caputo, Aurélia; Merhej, Vicky; Georgiades, Kalliopi; Fournier, Pierre-Edouard; Croce, Olivier; Robert, Catherine; Raoult, Didier

    2015-09-30

    Various methods are currently used to define species and are based on the phylogenetic marker 16S ribosomal RNA gene sequence, DNA-DNA hybridization and DNA GC content. However, these are restricted genetic tools and showed significant limitations. In this work, we describe an alternative method to build taxonomy by analyzing the pan-genome composition of different species of the Klebsiella genus. Klebsiella species are Gram-negative bacilli belonging to the large Enterobacteriaceae family. Interestingly, when comparing the core/pan-genome ratio; we found a clear discontinuous variation that can define a new species. Using this pan-genomic approach, we showed that Klebsiella pneumoniae subsp. ozaenae and Klebsiella pneumoniae subsp. rhinoscleromatis are species of the Klebsiella genus, rather than subspecies of Klebsiella pneumoniae. This pan-genomic analysis, helped to develop a new tool for defining species introducing a quantic perspective for taxonomy.

  7. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.

    Science.gov (United States)

    Glessner, Joseph T; Wang, Kai; Cai, Guiqing; Korvatska, Olena; Kim, Cecilia E; Wood, Shawn; Zhang, Haitao; Estes, Annette; Brune, Camille W; Bradfield, Jonathan P; Imielinski, Marcin; Frackelton, Edward C; Reichert, Jennifer; Crawford, Emily L; Munson, Jeffrey; Sleiman, Patrick M A; Chiavacci, Rosetta; Annaiah, Kiran; Thomas, Kelly; Hou, Cuiping; Glaberson, Wendy; Flory, James; Otieno, Frederick; Garris, Maria; Soorya, Latha; Klei, Lambertus; Piven, Joseph; Meyer, Kacie J; Anagnostou, Evdokia; Sakurai, Takeshi; Game, Rachel M; Rudd, Danielle S; Zurawiecki, Danielle; McDougle, Christopher J; Davis, Lea K; Miller, Judith; Posey, David J; Michaels, Shana; Kolevzon, Alexander; Silverman, Jeremy M; Bernier, Raphael; Levy, Susan E; Schultz, Robert T; Dawson, Geraldine; Owley, Thomas; McMahon, William M; Wassink, Thomas H; Sweeney, John A; Nurnberger, John I; Coon, Hilary; Sutcliffe, James S; Minshew, Nancy J; Grant, Struan F A; Bucan, Maja; Cook, Edwin H; Buxbaum, Joseph D; Devlin, Bernie; Schellenberg, Gerard D; Hakonarson, Hakon

    2009-05-28

    Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with approximately 550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 x 10(-3)). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 x 10(-3)). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 x 10(-6)). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.

  8. Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions.

    Directory of Open Access Journals (Sweden)

    Chieh-Chun Chen

    Full Text Available Despite explosive growth in genomic datasets, the methods for studying epigenomic mechanisms of gene regulation remain primitive. Here we present a model-based approach to systematically analyze the epigenomic functions in modulating transcription factor-DNA binding. Based on the first principles of statistical mechanics, this model considers the interactions between epigenomic modifications and a cis-regulatory module, which contains multiple binding sites arranged in any configurations. We compiled a comprehensive epigenomic dataset in mouse embryonic stem (mES cells, including DNA methylation (MeDIP-seq and MRE-seq, DNA hydroxymethylation (5-hmC-seq, and histone modifications (ChIP-seq. We discovered correlations of transcription factors (TFs for specific combinations of epigenomic modifications, which we term epigenomic motifs. Epigenomic motifs explained why some TFs appeared to have different DNA binding motifs derived from in vivo (ChIP-seq and in vitro experiments. Theoretical analyses suggested that the epigenome can modulate transcriptional noise and boost the cooperativity of weak TF binding sites. ChIP-seq data suggested that epigenomic boost of binding affinities in weak TF binding sites can function in mES cells. We showed in theory that the epigenome should suppress the TF binding differences on SNP-containing binding sites in two people. Using personal data, we identified strong associations between H3K4me2/H3K9ac and the degree of personal differences in NFκB binding in SNP-containing binding sites, which may explain why some SNPs introduce much smaller personal variations on TF binding than other SNPs. In summary, this model presents a powerful approach to analyze the functions of epigenomic modifications. This model was implemented into an open source program APEG (Affinity Prediction by Epigenome and Genome, http://systemsbio.ucsd.edu/apeg.

  9. Genetic variation in the Staphylococcus aureus 8325 strain lineage revealed by whole-genome sequencing.

    Directory of Open Access Journals (Sweden)

    Kristoffer T Bæk

    Full Text Available Staphylococcus aureus strains of the 8325 lineage, especially 8325-4 and derivatives lacking prophage, have been used extensively for decades of research. We report herein the results of our deep sequence analysis of strain 8325-4. Assignment of sequence variants compared with the reference strain 8325 (NRS77/PS47 required correction of errors in the 8325 reference genome, and reassessment of variation previously attributed to chemical mutagenesis of the restriction-defective RN4220. Using an extensive strain pedigree analysis, we discovered that 8325-4 contains 16 single nucleotide polymorphisms (SNP arising prior to the construction of RN4220. We identified 5 indels in 8325-4 compared with 8325. Three indels correspond to expected Φ11, 12, 13 excisions, one indel is explained by a sequence assembly artifact, and the final indel (Δ63bp in the spa-sarS intergenic region is common to only a sub-lineage of 8325-4 strains including SH1000. This deletion was found to significantly decrease (75% steady state sarS but not spa transcript levels in post-exponential phase. The sub-lineage 8325-4 was also found to harbor 4 additional SNPs. We also found large sequence variation between 8325, 8325-4 and RN4220 in a cluster of repetitive hypothetical proteins (SA0282 homologs near the Ess secretion cluster. The overall 8325-4 SNP set results in 17 alterations within coding sequences. Remarkably, we discovered that all tested strains of the 8325-4 lineage lack phenol soluble modulin α3 (PSMα3, a virulence determinant implicated in neutrophil chemotaxis, biofilm architecture and surface spreading. Collectively, our results clarify and define the 8325-4 pedigree and reveal clear evidence that mutations existing throughout all branches of this lineage, including the widely used RN6390 and SH1000 strains, could conceivably impact virulence regulation.

  10. Discordance between genomic divergence and phenotypic variation in a rapidly evolving avian genus (Motacilla).

    Science.gov (United States)

    Harris, Rebecca B; Alström, Per; Ödeen, Anders; Leaché, Adam D

    2018-03-01

    Generally, genotypes and phenotypes are expected to be spatially congruent; however, in widespread species complexes with few barriers to dispersal, multiple contact zones, and limited reproductive isolation, discordance between phenotypes and phylogeographic groups is more probable. Wagtails (Motacilla) are a genus of birds with striking plumage pattern variation across the Old World. Up to 13 subspecies are recognized within a single species, yet previous studies using mitochondrial DNA have supported polyphyletic phylogeographic groups that are inconsistent with subspecies plumage characteristics. In this study, we investigate the link between phenotypes and genotype by taking a phylogenetic approach. We use genome-wide SNPs, nuclear introns, and mitochondrial DNA to estimate population structure, isolation by distance, and species relationships. Together, our genetic sampling includes complete species-level sampling and comprehensive coverage of the three most phenotypically diverse Palearctic species. Our study provides strong evidence for species-level patterns of differentiation, however population-level differentiation is less pronounced. SNPs provide a robust estimate of species-level relationships, which are mostly corroborated by a combined analysis of mtDNA and nuclear introns (the first time-calibrated species tree for the genus). However, the mtDNA tree is strongly incongruent and is considered to misrepresent the species phylogeny. The extant wagtail lineages originated during the Pliocene and the Eurasian lineage underwent rapid diversification during the Pleistocene. Three of four widespread Eurasian species exhibit an east-west divide that contradicts both subspecies taxonomy and phenotypic variation. Indeed, SNPs fail to distinguish between phenotypically distinct subspecies within the M. alba and M. flava complexes, and instead support geographical regions, each of which is home to two or more different looking subspecies. This is a major step

  11. De novo Genome Assembly and Single Nucleotide Variations for Soybean Mosaic Virus Using Soybean Seed Transcriptome Data

    Directory of Open Access Journals (Sweden)

    Yeonhwa Jo

    2017-10-01

    Full Text Available Soybean is the most important legume crop in the world. Several diseases in soybean lead to serious yield losses in major soybean-producing countries. Moreover, soybean can be infected by diverse viruses. Recently, we carried out a large-scale screening to identify viruses infecting soybean using available soybean transcriptome data. Of the screened transcriptomes, a soybean transcriptome for soybean seed development analysis contains several virus-associated sequences. In this study, we identified five viruses, including soybean mosaic virus (SMV, infecting soybean by de novo transcriptome assembly followed by blast search. We assembled a nearly complete consensus genome sequence of SMV China using transcriptome data. Based on phylogenetic analysis, the consensus genome sequence of SMV China was closely related to SMV isolates from South Korea. We examined single nucleotide variations (SNVs for SMVs in the soybean seed transcriptome revealing 780 SNVs, which were evenly distributed on the SMV genome. Four SNVs, C-U, U-C, A-G, and G-A, were frequently identified. This result demonstrated the quasispecies variation of the SMV genome. Taken together, this study carried out bioinformatics analyses to identify viruses using soybean transcriptome data. In addition, we demonstrated the application of soybean transcriptome data for virus genome assembly and SNV analysis.

  12. Can AFLP genome scans detect small islands of differentiation? The case of shell sculpture variation in the periwinkle Echinolittorina hawaiiensis.

    Science.gov (United States)

    Tice, K A; Carlon, D B

    2011-08-01

    Genome scans have identified candidate regions of the genome undergoing selection in a wide variety of organisms, yet have rarely been applied to broadly dispersing marine organisms experiencing divergent selection pressures, where high recombination rates can reduce the extent of linkage disequilibrium (LD) and the ability to detect genomic regions under selection. The broadly dispersing periwinkle Echinolittorina hawaiiensis exhibits a heritable shell sculpture polymorphism that is correlated with environmental variation. To elucidate the genetic basis of phenotypic variation, a genome scan using over 1000 AFLP loci was conducted on smooth and sculptured snails from divergent habitats at four replicate sites. Approximately 5% of loci were identified as outliers with Dfdist, whereas no outliers were identified by BayeScan. Closer examination of the Dfdist outliers supported the conclusion that these loci were false positives. These results highlight the importance of controlling for Type I error using multiple outlier detection approaches, multitest corrections and replicate population comparisons. Assuming shell phenotypes have a genetic basis, our failure to detect outliers suggests that the life history of the target species needs to be considered when designing a genome scan. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  13. Patterns of genomic variation in the poplar rust fungus Melampsora larici-populina identify pathogenesis-related factors

    Directory of Open Access Journals (Sweden)

    Antoine ePersoons

    2014-09-01

    Full Text Available Melampsora larici-populina is a fungal pathogen responsible for foliar rust disease on poplar trees, which causes damage to forest plantations worldwide, particularly in Northern Europe. The reference genome of the isolate 98AG31 was previously sequenced using a whole genome shotgun strategy, revealing a large genome of 101 megabases containing 16,399 predicted genes, which included secreted protein genes representing poplar rust candidate effectors. In the present study, the genomes of 15 isolates collected over the past 20 years throughout the French territory, representing distinct virulence profiles, were characterized by massively parallel sequencing to assess genetic variation in the poplar rust fungus. Comparison to the reference genome revealed striking structural variations. Analysis of coverage and sequencing depth identified large missing regions between isolates related to the mating type loci. More than 611,824 single-nucleotide polymorphism (SNP positions were uncovered overall, indicating a remarkable level of polymorphism. Based on the accumulation of non-synonymous substitutions in coding sequences and the relative frequencies of synonymous and non-synonymous polymorphisms (i.e. PN/PS, we identify candidate genes that may be involved in fungal pathogenesis. Correlation between non-synonymous SNPs in genes encoding secreted proteins and pathotypes of the studied isolates revealed candidate genes potentially related to virulences 1, 6 and 8 of the poplar rust fungus.

  14. ESTIMATION OF GENOMIC VARIATION IN CERVIDS USING CROSS-SPECIES APPLICATION OF SNP ARRAYS

    Directory of Open Access Journals (Sweden)

    Nina Moravčíková

    2015-09-01

    Full Text Available The aim of this study was to assess the utility of commercially developed genotyping array for cross-species genotyping in order to estimate the genetic variation across two species from family Cervidae. The genotyping of individuals was carried out using Illumina BovineSNP50 BeadChip. The cross-species application of bovine array was tested overall in 3 farmed and 5 free range Red deer (Cervus elaphus and 2 free range Fallow deer (Dama dama. After applying data quality control 97.2% of SNPs localized on the chip were removed and only 1,530 autosomal markers showed polymorphism across all analysed individuals. Across all polymorphic SNPs the minor allele frequency reached the average value 0.23±0.16. The analysis based on Bayesian clustering approach clearly showed a partition of deer in two separate clusters in relation to their phylogenetical relationship. Moreover, the PCA analysis indicated that the genetic differences between farmed and free range Red deer caused the division of analysed individuals into the two subpopulations. But the results of cross-species genotyping should be present with caution, because the bovine chip developed primarily for taurine cattle breeds is not fully representative to the evolutionary changes in genome of cervids. Nevertheless, our results suggested that the utility of bovine array alongside microsatellite markers and mtDNA can be very perspective for genetic diversity estimation in deer populations.

  15. A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis

    Directory of Open Access Journals (Sweden)

    Mezey Jason G

    2010-01-01

    Full Text Available Abstract Background The success achieved by genome-wide association (GWA studies in the identification of candidate loci for complex diseases has been accompanied by an inability to explain the bulk of heritability. Here, we describe the algorithm V-Bay, a variational Bayes algorithm for multiple locus GWA analysis, which is designed to identify weaker associations that may contribute to this missing heritability. Results V-Bay provides a novel solution to the computational scaling constraints of most multiple locus methods and can complete a simultaneous analysis of a million genetic markers in a few hours, when using a desktop. Using a range of simulated genetic and GWA experimental scenarios, we demonstrate that V-Bay is highly accurate, and reliably identifies associations that are too weak to be discovered by single-marker testing approaches. V-Bay can also outperform a multiple locus analysis method based on the lasso, which has similar scaling properties for large numbers of genetic markers. For demonstration purposes, we also use V-Bay to confirm associations with gene expression in cell lines derived from the Phase II individuals of HapMap. Conclusions V-Bay is a versatile, fast, and accurate multiple locus GWA analysis tool for the practitioner interested in identifying weaker associations without high false positive rates.

  16. Effects of Sublethal Fungicides on Mutation Rates and Genomic Variation in Fungal Plant Pathogen, Sclerotinia sclerotiorum.

    Directory of Open Access Journals (Sweden)

    B Sajeewa Amaradasa

    experiment, and when repeated, only one isolate had higher EC50 while most isolates showed no difference. Results of this support the hypothesis that sublethal fungicide stress increases mutation rates in a largely clonal plant pathogen under in vitro conditions. Collectively, this work will aid our understanding how non-lethal fungicide exposure may affect genomic variation, which may be an important mechanism of novel trait emergence, adaptation, and evolution for clonal organisms.

  17. IW-Scoring: an Integrative Weighted Scoring framework for annotating and prioritizing genetic variations in the noncoding genome.

    Science.gov (United States)

    Wang, Jun; Dayem Ullah, Abu Z; Chelala, Claude

    2018-01-30

    The vast majority of germline and somatic variations occur in the noncoding part of the genome, only a small fraction of which are believed to be functional. From the tens of thousands of noncoding variations detectable in each genome, identifying and prioritizing driver candidates with putative functional significance is challenging. To address this, we implemented IW-Scoring, a new Integrative Weighted Scoring model to annotate and prioritise functionally relevant noncoding variations. We evaluate 11 scoring methods, and apply an unsupervised spectral approach for subsequent selective integration into two linear weighted functional scoring schemas for known and novel variations. IW-Scoring produces stable high-quality performance as the best predictors for three independent data sets. We demonstrate the robustness of IW-Scoring in identifying recurrent functional mutations in the TERT promoter, as well as disease SNPs in proximity to consensus motifs and with gene regulatory effects. Using follicular lymphoma as a paradigmatic cancer model, we apply IW-Scoring to locate 11 recurrently mutated noncoding regions in 14 follicular lymphoma genomes, and validate 9 of these regions in an extension cohort, including the promoter and enhancer regions of PAX5. Overall, IW-Scoring demonstrates greater versatility in identifying trait- and disease-associated noncoding variants. Scores from IW-Scoring as well as other methods are freely available from http://www.snp-nexus.org/IW-Scoring/. © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Serial gene losses and foreign DNA underlie size and sequence variation in the plastid genomes of diatoms.

    Science.gov (United States)

    Ruck, Elizabeth C; Nakov, Teofil; Jansen, Robert K; Theriot, Edward C; Alverson, Andrew J

    2014-03-01

    Photosynthesis by diatoms accounts for roughly one-fifth of global primary production, but despite this, relatively little is known about their plastid genomes. We report the completely sequenced plastid genomes for eight phylogenetically diverse diatoms and show them to be variable in size, gene and foreign sequence content, and gene order. The genomes contain a core set of 122 protein-coding genes, with 15 additional genes exhibiting complex patterns of 1) gene losses at varying phylogenetic scales, 2) functional transfers to the nucleus, 3) gene duplication, divergence, and differential retention of paralogs, and 4) acquisitions of putatively functional recombinase genes from resident plasmids. The newly sequenced genomes also contain several previously unreported genes, highlighting how poorly characterized diatom plastid genomes are overall. Genome size variation reflects major expansions of the inverted repeat region in some cases but, more commonly, large-scale expansions of intergenic regions, many of which contain unique open reading frames of likely foreign origin. Although many gene clusters are conserved across species, rearrangements appear to be frequent in most lineages.

  19. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations.

    Directory of Open Access Journals (Sweden)

    Victor Renault

    Full Text Available Copy number variations (CNV include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher gene expression. On the other hand, loss of heterozygosity (LOH and cn-LOH are common events in cancer and may be associated with the loss of a functional tumor suppressor gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they may highlight common biological components and give insights into the development or mechanisms of a disease. However, no currently available tools allow a comprehensive whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing absolute quantification of the aberrations leading to the loss of potentially important information.To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer, a visualization tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes three graphical representations: dendrograms, bi-dimensional heatmaps showing chromosomal regions sharing similar abnormality patterns, and quantitative stacked histograms facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCNViewer using publically available hepatocellular carcinomas (HCCs Affymetrix SNP Array data (Fig 1A. Regions 1q and 8q present a similar percentage of total gains but significantly different copy number gain categories (p-value of 0.0103 with a Fisher exact test, validated by another cohort of HCCs (p-value of 5.6e-7 (Fig 2B.aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on GitHub https://github.com/FJD-CEPH/aCNViewer and Docker https://hub.docker.com/r/fjdceph/acnviewer/.aCNViewer@cephb.fr.

  20. Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform

    Directory of Open Access Journals (Sweden)

    Kardia Sharon LR

    2011-05-01

    Full Text Available Abstract Background Copy number data are routinely being extracted from genome-wide association study chips using a variety of software. We empirically evaluated and compared four freely-available software packages designed for Affymetrix SNP chips to estimate copy number: Affymetrix Power Tools (APT, Aroma.Affymetrix, PennCNV and CRLMM. Our evaluation used 1,418 GENOA samples that were genotyped on the Affymetrix Genome-Wide Human SNP Array 6.0. We compared bias and variance in the locus-level copy number data, the concordance amongst regions of copy number gains/deletions and the false-positive rate amongst deleted segments. Results APT had median locus-level copy numbers closest to a value of two, whereas PennCNV and Aroma.Affymetrix had the smallest variability associated with the median copy number. Of those evaluated, only PennCNV provides copy number specific quality-control metrics and identified 136 poor CNV samples. Regions of copy number variation (CNV were detected using the hidden Markov models provided within PennCNV and CRLMM/VanillaIce. PennCNV detected more CNVs than CRLMM/VanillaIce; the median number of CNVs detected per sample was 39 and 30, respectively. PennCNV detected most of the regions that CRLMM/VanillaIce did as well as additional CNV regions. The median concordance between PennCNV and CRLMM/VanillaIce was 47.9% for duplications and 51.5% for deletions. The estimated false-positive rate associated with deletions was similar for PennCNV and CRLMM/VanillaIce. Conclusions If the objective is to perform statistical tests on the locus-level copy number data, our empirical results suggest that PennCNV or Aroma.Affymetrix is optimal. If the objective is to perform statistical tests on the summarized segmented data then PennCNV would be preferred over CRLMM/VanillaIce. Specifically, PennCNV allows the analyst to estimate locus-level copy number, perform segmentation and evaluate CNV-specific quality-control metrics within a

  1. Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform.

    Science.gov (United States)

    Eckel-Passow, Jeanette E; Atkinson, Elizabeth J; Maharjan, Sooraj; Kardia, Sharon L R; de Andrade, Mariza

    2011-05-31

    Copy number data are routinely being extracted from genome-wide association study chips using a variety of software. We empirically evaluated and compared four freely-available software packages designed for Affymetrix SNP chips to estimate copy number: Affymetrix Power Tools (APT), Aroma.Affymetrix, PennCNV and CRLMM. Our evaluation used 1,418 GENOA samples that were genotyped on the Affymetrix Genome-Wide Human SNP Array 6.0. We compared bias and variance in the locus-level copy number data, the concordance amongst regions of copy number gains/deletions and the false-positive rate amongst deleted segments. APT had median locus-level copy numbers closest to a value of two, whereas PennCNV and Aroma.Affymetrix had the smallest variability associated with the median copy number. Of those evaluated, only PennCNV provides copy number specific quality-control metrics and identified 136 poor CNV samples. Regions of copy number variation (CNV) were detected using the hidden Markov models provided within PennCNV and CRLMM/VanillaIce. PennCNV detected more CNVs than CRLMM/VanillaIce; the median number of CNVs detected per sample was 39 and 30, respectively. PennCNV detected most of the regions that CRLMM/VanillaIce did as well as additional CNV regions. The median concordance between PennCNV and CRLMM/VanillaIce was 47.9% for duplications and 51.5% for deletions. The estimated false-positive rate associated with deletions was similar for PennCNV and CRLMM/VanillaIce. If the objective is to perform statistical tests on the locus-level copy number data, our empirical results suggest that PennCNV or Aroma.Affymetrix is optimal. If the objective is to perform statistical tests on the summarized segmented data then PennCNV would be preferred over CRLMM/VanillaIce. Specifically, PennCNV allows the analyst to estimate locus-level copy number, perform segmentation and evaluate CNV-specific quality-control metrics within a single software package. PennCNV has relatively small bias

  2. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes

    DEFF Research Database (Denmark)

    Kaas, Rolf Sommer; Rundsten, Carsten Friis; Ussery, David

    2012-01-01

    for creating better phylogenies, for determination of molecular clocks and for improved typing techniques. Results We find 3,051 gene clusters/families present in at least 95% of the genomes and 1,702 gene clusters present in 100% of the genomes. The former 'soft core' of about 3,000 gene families is perhaps...... more biologically relevant, especially considering that many of these genome sequences are draft quality. The E. coli pan-genome for this set of isolates contains 16,373 gene clusters. A core-gene tree, based on alignment and a pan-genome tree based on gene presence/absence, maps the relatedness...... of the 186 sequenced E. coli genomes. The core-gene tree displays high confidence and divides the E. coli strains into the observed MLST type clades and also separates defined phylotypes. Conclusion The results of comparing a large and diverse E. coli dataset support the theory that reliable and good...

  3. A genome-wide investigation of copy number variation in patients with sporadic brain arteriovenous malformation.

    Directory of Open Access Journals (Sweden)

    Nasrine Bendjilali

    Full Text Available Brain arteriovenous malformations (BAVM are clusters of abnormal blood vessels, with shunting of blood from the arterial to venous circulation and a high risk of rupture and intracranial hemorrhage. Most BAVMs are sporadic, but also occur in patients with Hereditary Hemorrhagic Telangiectasia, a Mendelian disorder caused by mutations in genes in the transforming growth factor beta (TGFβ signaling pathway.To investigate whether copy number variations (CNVs contribute to risk of sporadic BAVM, we performed a genome-wide association study in 371 sporadic BAVM cases and 563 healthy controls, all Caucasian. Cases and controls were genotyped using the Affymetrix 6.0 array. CNVs were called using the PennCNV and Birdsuite algorithms and analyzed via segment-based and gene-based approaches. Common and rare CNVs were evaluated for association with BAVM.A CNV region on 1p36.13, containing the neuroblastoma breakpoint family, member 1 gene (NBPF1, was significantly enriched with duplications in BAVM cases compared to controls (P = 2.2×10(-9; NBPF1 was also significantly associated with BAVM in gene-based analysis using both PennCNV and Birdsuite. We experimentally validated the 1p36.13 duplication; however, the association did not replicate in an independent cohort of 184 sporadic BAVM cases and 182 controls (OR = 0.81, P = 0.8. Rare CNV analysis did not identify genes significantly associated with BAVM.We did not identify common CNVs associated with sporadic BAVM that replicated in an independent cohort. Replication in larger cohorts is required to elucidate the possible role of common or rare CNVs in BAVM pathogenesis.

  4. Whole-genome copy number variation analysis in anophthalmia and microphthalmia.

    Science.gov (United States)

    Schilter, K F; Reis, L M; Schneider, A; Bardakjian, T M; Abdul-Rahman, O; Kozel, B A; Zimmerman, H H; Broeckel, U; Semina, E V

    2013-11-01

    Anophthalmia/microphthalmia (A/M) represent severe developmental ocular malformations. Currently, mutations in known genes explain less than 40% of A/M cases. We performed whole-genome copy number variation analysis in 60 patients affected with isolated or syndromic A/M. Pathogenic deletions of 3q26 (SOX2) were identified in four independent patients with syndromic microphthalmia. Other variants of interest included regions with a known role in human disease (likely pathogenic) as well as novel rearrangements (uncertain significance). A 2.2-Mb duplication of 3q29 in a patient with non-syndromic anophthalmia and an 877-kb duplication of 11p13 (PAX6) and a 1.4-Mb deletion of 17q11.2 (NF1) in two independent probands with syndromic microphthalmia and other ocular defects were identified; while ocular anomalies have been previously associated with 3q29 duplications, PAX6 duplications, and NF1 mutations in some cases, the ocular phenotypes observed here are more severe than previously reported. Three novel regions of possible interest included a 2q14.2 duplication which cosegregated with microphthalmia/microcornea and congenital cataracts in one family, and 2q21 and 15q26 duplications in two additional cases; each of these regions contains genes that are active during vertebrate ocular development. Overall, this study identified causative copy number mutations and regions with a possible role in ocular disease in 17% of A/M cases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Genome-wide association implicates numerous genes and pleiotropy underlying ecological trait variation in natural populations of Populus trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    McKown, Athena [University of British Columbia, Vancouver; Klapste, Jaroslav [University of British Columbia, Vancouver; Guy, Robert [University of British Columbia, Vancouver; Geraldes, Armando [University of British Columbia, Vancouver; Porth, Ilga [University of British Columbia, Vancouver; Hannemann, Jan [University of Victoria, Canada; Friedmann, Michael [University of British Columbia, Vancouver; Muchero, Wellington [ORNL; Tuskan, Gerald A [ORNL; Ehlting, Juergen [University of Victoria, Canada; Cronk, Quentin [University of British Columbia, Vancouver; El-Kassaby, Yousry [University of British Columbia, Vancouver; Mansfield, Shawn [University of British Columbia, Vancouver; Douglas, Carl [University of British Columbia, Vancouver

    2014-01-01

    To uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa Torr. & Gray) from natural populations throughout western North America. Extensive information from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34K Populus SNP array) of all accessions were used for gene discovery in a genome-wide association study (GWAS).

  6. Whole Genome Re-Sequencing and Characterization of Powdery Mildew Disease-Associated Allelic Variation in Melon.

    Directory of Open Access Journals (Sweden)

    Sathishkumar Natarajan

    Full Text Available Powdery mildew is one of the most common fungal diseases in the world. This disease frequently affects melon (Cucumis melo L. and other Cucurbitaceous family crops in both open field and greenhouse cultivation. One of the goals of genomics is to identify the polymorphic loci responsible for variation in phenotypic traits. In this study, powdery mildew disease assessment scores were calculated for four melon accessions, 'SCNU1154', 'Edisto47', 'MR-1', and 'PMR5'. To investigate the genetic variation of these accessions, whole genome re-sequencing using the Illumina HiSeq 2000 platform was performed. A total of 754,759,704 quality-filtered reads were generated, with an average of 82.64% coverage relative to the reference genome. Comparisons of the sequences for the melon accessions revealed around 7.4 million single nucleotide polymorphisms (SNPs, 1.9 million InDels, and 182,398 putative structural variations (SVs. Functional enrichment analysis of detected variations classified them into biological process, cellular component and molecular function categories. Further, a disease-associated QTL map was constructed for 390 SNPs and 45 InDels identified as related to defense-response genes. Among them 112 SNPs and 12 InDels were observed in powdery mildew responsive chromosomes. Accordingly, this whole genome re-sequencing study identified SNPs and InDels associated with defense genes that will serve as candidate polymorphisms in the search for sources of resistance against powdery mildew disease and could accelerate marker-assisted breeding in melon.

  7. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.

    Science.gov (United States)

    Collins, Ryan L; Brand, Harrison; Redin, Claire E; Hanscom, Carrie; Antolik, Caroline; Stone, Matthew R; Glessner, Joseph T; Mason, Tamara; Pregno, Giulia; Dorrani, Naghmeh; Mandrile, Giorgia; Giachino, Daniela; Perrin, Danielle; Walsh, Cole; Cipicchio, Michelle; Costello, Maura; Stortchevoi, Alexei; An, Joon-Yong; Currall, Benjamin B; Seabra, Catarina M; Ragavendran, Ashok; Margolin, Lauren; Martinez-Agosto, Julian A; Lucente, Diane; Levy, Brynn; Sanders, Stephan J; Wapner, Ronald J; Quintero-Rivera, Fabiola; Kloosterman, Wigard; Talkowski, Michael E

    2017-03-06

    Structural variation (SV) influences genome organization and contributes to human disease. However, the complete mutational spectrum of SV has not been routinely captured in disease association studies. We sequenced 689 participants with autism spectrum disorder (ASD) and other developmental abnormalities to construct a genome-wide map of large SV. Using long-insert jumping libraries at 105X mean physical coverage and linked-read whole-genome sequencing from 10X Genomics, we document seven major SV classes at ~5 kb SV resolution. Our results encompass 11,735 distinct large SV sites, 38.1% of which are novel and 16.8% of which are balanced or complex. We characterize 16 recurrent subclasses of complex SV (cxSV), revealing that: (1) cxSV are larger and rarer than canonical SV; (2) each genome harbors 14 large cxSV on average; (3) 84.4% of large cxSVs involve inversion; and (4) most large cxSV (93.8%) have not been delineated in previous studies. Rare SVs are more likely to disrupt coding and regulatory non-coding loci, particularly when truncating constrained and disease-associated genes. We also identify multiple cases of catastrophic chromosomal rearrangements known as chromoanagenesis, including somatic chromoanasynthesis, and extreme balanced germline chromothripsis events involving up to 65 breakpoints and 60.6 Mb across four chromosomes, further defining rare categories of extreme cxSV. These data provide a foundational map of large SV in the morbid human genome and demonstrate a previously underappreciated abundance and diversity of cxSV that should be considered in genomic studies of human disease.

  8. Defining the role of common variation in the genomic and biological architecture of adult human height

    NARCIS (Netherlands)

    Wood, A.R.; Esko, T.; Yang, J.; Vedantam, S.; Pers, T.H.; Gustafsson, S.; Chu, A.Y.; Estrada, K.; Luan, J.; Kutalik, Z.; Amin, N.; Buchkovich, M.L.; Croteau-Chonka, D.C.; Day, F.R.; Duan, Y.; Fall, T.; Fehrmann, R.; Ferreira, T.; Jackson, A.U.; Karjalainen, J.; Lo, K.S.; Locke, A.E.; Magi, R.; Mihailov, E.; Porcu, E.; Randall, J.C.; Scherag, A.; Vinkhuyzen, A.A.E.; Westra, H.J.; Winkler, T.W.; Workalemahu, T.; Zhao, J.H.; Absher, D.; Albrecht, E.; Anderson, D.; Baron, J.; Beekman, M.; Demirkan, A.; Ehret, G.B.; Feenstra, B.; Feitosa, M.F.; Fischer, K.; Fraser, R.M.; Goel, A.; Gong, J.; Justice, A.E.; Kanoni, S.; Kleber, M.E.; Kristiansson, K.; Lim, U.; Lotay, V.; Lui, J.C.; Mangino, M.; Leach, I.M.; Medina-Gomez, C.; Nalls, M.A.; Nyholt, D.R.; Palmer, C.D.; Pasko, D.; Pechlivanis, S.; Prokopenko, I.; Ried, J.S.; Ripke, S.; Shungin, D.; Stancakova, A.; Strawbridge, R.J.; Sung, Y.J.; Tanaka, T.; Teumer, A.; Trompet, S.; Laan, S.W. van der; Setten, J. van; Vliet-Ostaptchouk, J.V. Van; Wang, Z.; Yengo, L.; Zhang, W.; Afzal, U.; Arnlov, J.; Arscott, G.M.; Bandinelli, S.; Barrett, A.; Bellis, C.; Bennett, A.J.; Berne, C.; Bluher, M.; Bolton, J.L.; Bottcher, Y.; Boyd, H.A.; Bruinenberg, M.; Buckley, B.M.; Buyske, S.; Caspersen, I.H.; Chines, P.S.; Clarke, R.; Claudi-Boehm, S.; Cooper, M.; Daw, E.W.; Jong, P.A. de; Deelen, J.; Delgado, G.; Vermeulen, S.; Kiemeney, L.A.; et al.,

    2014-01-01

    Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated approximately

  9. Defining the role of common variation in the genomic and biological architecture of adult human height

    NARCIS (Netherlands)

    Wood, Andrew R.; Esko, Tonu; Yang, Jian; Vedantam, Sailaja; Pers, Tune H.; Gustafsson, Stefan; Chun, Audrey Y.; Estrada, Karol; Luan, Jian'an; Kutalik, Zoltan; Amin, Najaf; Buchkovich, Martin L.; Croteau-Chonka, Damien C.; Day, Felix R.; Duan, Yanan; Fall, Tove; Fehrmann, Rudolf; Ferreira, Teresa; Jackson, Anne U.; Karjalainen, Juha; Lo, Ken Sin; Locke, Adam E.; Maegi, Reedik; Mihailov, Evelin; Porcu, Eleonora; Randall, Joshua C.; Scherag, Andre; Vinkhuyzen, Anna A. E.; Westra, Harm-Jan; Winkler, Thomas W.; Workalemahu, Tsegaselassie; Zhao, Jing Hua; Absher, Devin; Albrecht, Eva; Anderson, Denise; Baron, Jeffrey; Beekman, Marian; Demirkan, Ayse; Ehret, Georg B.; Feenstra, Bjarke; Feitosa, Mary F.; Fischer, Krista; Fraser, Ross M.; Goel, Anuj; Gong, Jian; Justice, Anne E.; Kanoni, Stavroula; Kleber, Marcus E.; Kristiansson, Kati; Lim, Unhee; Lotay, Vaneet; Lui, Julian C.; Mangino, Massimo; Mateo Leach, Irene; Medina-Gomez, Carolina; Nalls, Michael A.; Nyholt, Dale R.; Palmer, Cameron D.; Pasko, Dorota; Pechlivanis, Sonali; Prokopenko, Inga; Ried, Janina S.; Ripke, Stephan; Shungin, Dmitry; Stancakova, Alena; Strawbridge, Rona J.; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W.; van Setten, Jessica; Van Vliet-Ostaptchouk, Jana V.; Wang, Zhaoming; Yengo, Loic; Zhang, Weihua; Afzal, Uzma; Arnloev, Johan; Arscott, Gillian M.; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J.; Berne, Christian; Blueher, Matthias; Bolton, Jennifer L.; Boettcher, Yvonne; Boyd, Heather A.; Bruinenberg, Marcel; Buckley, Brendan M.; Buyske, Steven; Caspersen, Ida H.; Chines, Peter S.; Clarke, Robert; Claudi-Boehm, Simone; Cooper, Matthew; Daw, E. Warwick; De Jong, Pim A.; Deelen, Joris; Delgado, Graciela; Denny, Josh C.; Dhonukshe-Rutten, Rosalie; Dimitriou, Maria; Doney, Alex S. F.; Doerr, Marcus; Eklund, Niina; Eury, Elodie; Folkersen, Lasse; Garcia, Melissa E.; Geller, Frank; Giedraitis, Vilmantas; Go, Alan S.; Grallert, Harald; Grammer, Tanja B.; Graessler, Juergen; Groenberg, Henrik; de Groot, Lisette C. P. G. M.; Groves, Christopher J.; Haessler, Jeffrey; Hall, Per; Haller, Toomas; Hallmans, Goran; Hannemann, Anke; Hartman, Catharina A.; Hassinen, Maija; Hayward, Caroline; Heard-Costa, Nancy L.; Helmer, Quinta; Hemani, Gibran; Henders, Anjali K.; Hillege, Hans L.; Hlatky, Mark A.; Hoffmann, Wolfgang; Hoffmann, Per; Holmen, Oddgeir; Houwing-Duistermaat, Jeanine J.; Illig, Thomas; Isaacs, Aaron; James, Alan L.; Jeff, Janina; Johansen, Bent; Johansson, Asa; Jolley, Jennifer; Juliusdottir, Thorhildur; Junttila, Juhani; Kho, Abel N.; Kinnunen, Leena; Klopp, Norman; Kocher, Thomas; Kratzer, Wolfgang; Lichtner, Peter; Lind, Lars; Lindstroem, Jaana; Lobbens, Stephane; Lorentzon, Mattias; Lu, Yingchang; Lyssenko, Valeriya; Magnusson, Patrik K. E.; Mahajan, Anubha; Maillard, Marc; McArdle, Wendy L.; McKenzie, Colin A.; McLachlan, Stela; McLaren, Paul J.; Menni, Cristina; Merger, Sigrun; Milani, Lili; Moayyeri, Alireza; Monda, Keri L.; Morken, Mario A.; Mueller, Gabriele; Mueller-Nurasyid, Martina; Musk, Arthur W.; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M.; Noethen, Markus M.; Oozageer, Laticia; Pilz, Stefan; Rayner, Nigel W.; Renstrom, Frida; Robertson, Neil R.; Rose, Lynda M.; Roussel, Ronan; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Schumacher, Fredrick R.; Schunkert, Heribert; Scott, Robert A.; Sehmi, Joban; Seufferlein, Thomas; Shin, Jianxin; Silventoinen, Karri; Smit, Johannes H.; Smith, Albert Vernon; Smolonska, Joanna; Stanton, Alice V.; Stirrups, Kathleen; Stott, David J.; Stringham, Heather M.; Sundstrom, Johan; Swertz, Morris A.; Syvanen, Ann-Christine; Tayo, Bamidele O.; Thorleifsson, Gudmar; Tyrer, Jonathan P.; van Dijk, Suzanne; van Schoor, Natasja M.; van der Velde, Nathalie; van Heemst, Diana; van Oort, Floor V. A.; Vermeulen, Sita H.; Verweij, Niek; Vonk, Judith M.; Waite, Lindsay L.; Waldenberger, Melanie; Wennauer, Roman; Wilkens, Lynne R.; Willenborg, Christina; Wilsgaard, Tom; Wojczynski, Mary K.; Wong, Andrew; Wright, Alan F.; Zhang, Qunyuan; Arveiler, Dominique; Bakker, Stephan J. L.; Beilby, John; Bergman, Richard N.; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boomsma, Dorret I.; Bornstein, Stefan R.; Bovet, Pascal; Brambilla, Paolo; Brown, Morris J.; Campbell, Harry; Caulfield, Mark J.; Chakravarti, Aravinda; Collins, Rory; Collins, Francis S.; Crawford, Dana C.; Cupples, L. Adrienne; Danesh, John; de Faire, Ulf; den Ruijter, Hester M.; Erbel, Raimund; Erdmann, Jeanette; Eriksson, Johan G.; Farrall, Martin; Ferrannini, Ele; Ferrieres, Jean; Ford, Ian; Forouhi, Nita G.; Forrester, Terrence; Gansevoort, Ron T.; Gejman, Pablo V.; Gieger, Christian; Golay, Alain; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Haas, David W.; Hall, Alistair S.; Harris, Tamara B.; Hattersley, Andrew T.; Heath, Andrew C.; Hengstenberg, Christian; Hicks, Andrew A.; Hindorff, Lucia A.; Hingorani, Aroon D.; Hofman, Albert; Hovingh, G. Kees; Humphries, Steve E.; Hunt, Steven C.; Hypponen, Elina; Jacobs, Kevin B.; Jarvelin, Marjo-Riitta; Jousilahti, Pekka; Jula, Antti M.; Kaprio, Jaakko; Kastelein, John J. P.; Kayser, Manfred; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Kooner, Jaspal S.; Kooperberg, Charles; Koskinen, Seppo; Kovacs, Peter; Kraja, Aldi T.; Kumari, Meena; Kuusisto, Johanna; Lakka, Timo A.; Langenberg, Claudia; Le Marchand, Loic; Lehtimaki, Terho; Lupoli, Sara; Madden, Pamela A. F.; Mannisto, Satu; Manunta, Paolo; Marette, Andre; Matise, Tara C.; McKnight, Barbara; Meitinger, Thomas; Moll, Frans L.; Montgomery, Grant W.; Morris, Andrew D.; Morris, Andrew P.; Murray, Jeffrey C.; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J.; Ong, Ken K.; Ouwehand, Willem H.; Pasterkamp, Gerard; Peters, Annette; Pramstaller, Peter P.; Price, Jackie F.; Qi, Lu; Raitakari, Olli T.; Rankinen, Tuomo; Rao, D. C.; Rice, Treva K.; Ritchie, Marylyn; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J.; Saramies, Jouko; Sarzynski, Mark A.; Schwarz, Peter E. H.; Sebert, Sylvain; Sever, Peter; Shuldiner, Alan R.; Sinisalo, Juha; Steinthorsdottir, Valgerdur; Stolk, Ronald P.; Tardif, Jean-Claude; Toenjes, Anke; Tremblay, Angelo; Tremoli, Elena; Virtamo, Jarmo; Vohl, Marie-Claude; Amouyel, Philippe; Asselbergs, Folkert W.; Assimes, Themistocles L.; Bochud, Murielle; Boehm, Bernhard O.; Boerwinkle, Eric; Bottinger, Erwin P.; Bouchard, Claude; Cauchi, Stephane; Chambers, John C.; Chanock, Stephen J.; Cooper, Richard S.; de Bakker, Paul I. W.; Dedoussis, George; Ferrucci, Luigi; Franks, Paul W.; Froguel, Philippe; Groop, Leif C.; Haiman, Christopher A.; Hamsten, Anders; Hayes, M. Geoffrey; Hui, Jennie; Hunter, David J.; Hveem, Kristian; Jukema, J. Wouter; Kaplan, Robert C.; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; Martin, Nicholas G.; Maerz, Winfried; Melbye, Mads; Moebus, Susanne; Munroe, Patricia B.; Njolstad, Inger; Oostra, Ben A.; Palmer, Colin N. A.; Pedersen, Nancy L.; Perola, Markus; Perusse, Louis; Peters, Ulrike; Powell, Joseph E.; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Reinmaa, Eva; Ridker, Paul M.; Rivadeneira, Fernando; Rotter, Jerome I.; Saaristo, Timo E.; Saleheen, Danish; Schlessinger, David; Slagboom, P. Eline; Snieder, Harold; Spector, Tim D.; Strauch, Konstantin; Stumvoll, Michael; Tuomilehto, Jaakko; Uusitupa, Matti; van der Harst, Pim; Voelzke, Henry; Walker, Mark; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F.; Zanen, Pieter; Deloukas, Panos; Heid, Iris M.; Lindgren, Cecilia M.; Mohlke, Karen L.; Speliotes, Elizabeth K.; Thorsteinsdottir, Unnur; Barroso, Ines; Fox, Caroline S.; North, Kari E.; Strachan, David P.; Beckmann, Jacques S.; Berndt, Sonja I.; Boehnke, Michael; Borecki, Ingrid B.; McCarthy, Mark I.; Metspalu, Andres; Stefansson, Kari; Uitterlinden, Andre G.; van Duijn, Cornelia M.; Franke, Lude; Willer, Cristen J.; Price, Alkes L.; Lettre, Guillaume; Loos, Ruth J. F.; Weedon, Michael N.; Ingelsson, Erik; O'Connell, Jeffrey R.; Abecasis, Goncalo R.; Chasman, Daniel I.; Goddard, Michael E.; Visscher, Peter M.; Hirschhorn, Joel N.; Frayling, Timothy M.

    2014-01-01

    Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated similar to 2,000,

  10. Defining the role of common variation in the genomic and biological architecture of adult human height

    NARCIS (Netherlands)

    A.R. Wood (Andrew); T. Esko (Tõnu); J. Yang (Jian); S. Vedantam (Sailaja); T.H. Pers (Tune); S. Gustafsson (Stefan); A.Y. Chu (Audrey Y); K. Estrada Gil (Karol); J. Luan; Z. Kutalik; N. Amin (Najaf); M.L. Buchkovich (Martin); D.C. Croteau-Chonka (Damien); F.R. Day (Felix); Y. Duan (Yanan); M. Fall (Magnus); R.S.N. Fehrmann (Rudolf); T. Ferreira (Teresa); A.U. Jackson (Anne); J. Karjalainen (Juha); K.S. Lo (Ken Sin); A. Locke (Adam); R. Mägi (Reedik); E. Mihailov (Evelin); E. Porcu (Eleonora); J.C. Randall (Joshua); A. Scherag (Andre); A.A.E. Vinkhuyzen (Anna A.); H.J. Westra (Harm-Jan); T.W. Winkler (Thomas W.); T. Workalemahu (Tsegaselassie); J.H. Zhao (Jing Hua); D. Absher (Devin); E. Albrecht (Eva); J. Baron (Jeffrey); M. Beekman (Marian); A. Demirkan (Ayşe); G.B. Ehret (Georg); B. Feenstra; M.F. Feitosa (Mary Furlan); K. Fischer (Krista); R.M. Fraser (Ross); A. Goel (Anuj); J. Gong (Jian); A.E. Justice (Anne); S. Kanoni (Stavroula); M.E. Kleber (Marcus); K. Kristiansson (Kati); U. Lim (Unhee); V. Lotay (Vaneet); J.C. Lui (Julian C); M. Mangino (Massimo); I.M. Leach (Irene Mateo); M.C. Medina-Gomez (Carolina); M.A. Nalls (Michael); A.S. Dimas (Antigone); C. Palmer (Cameron); D. Pasko (Dorota); S. Pechlivanis (Sonali); I. Prokopenko (Inga); J.S. Ried (Janina); S. Ripke (Stephan); D. Shungin (Dmitry); A. Stancáková (Alena); R.J. Strawbridge (Rona); Y.J. Sung (Yun Ju); T. Tanaka (Toshiko); A. Teumer (Alexander); S. Trompet (Stella); S.W. Van Der Laan (Sander W.); J. van Setten (Jessica); J.V. van Vliet-Ostaptchouk (Jana); Z. Wang (Zhaoming); L. Yengo (Loic); W. Zhang (Weihua); U. Afzal (Uzma); J. Ärnlöv (Johan); G.M. Arscott (Gillian M.); S. Bandinelli (Stefania); A. Barrett (Angela); C. Bellis (Claire); A.J. Bennett (Amanda); C. Berne (Christian); M. Blüher (Matthias); J.L. Bolton (Jennifer); Y. Böttcher (Yvonne); H.A. Boyd; M. Bruinenberg (M.); B.M. Buckley (Brendan M.); S. Buyske (Steven); I.H. Caspersen (Ida H.); P.S. Chines (Peter); R. Clarke (Robert); S. Claudi-Boehm (Simone); M.N. Cooper (Matthew); E.W. Daw (E Warwick); P.A. De Jong (Pim A); J. Deelen (Joris); G. Delgado; J.C. Denny (Josh C); R.A.M. Dhonukshe-Rutten (Rosalie); M. Dimitriou (Maria); A.S.F. Doney (Alex); M. Dörr (Marcus); N. Eklund (Niina); E. Eury (Elodie); L. Folkersen (Lasse); M. Garcia (Melissa); F. Geller (Frank); V. Giedraitis (Vilmantas); A. Go (Attie); H. Grallert (Harald); T.B. Grammer (Tanja B); J. Gräßler (Jürgen); H. Grönberg (Henrik); L.C.P.G.M. de Groot (Lisette); C.J. Groves (Christopher J.); J. Haessler (Jeff); P. Hall (Per); T. Haller (Toomas); G. Hallmans (Göran); M. Hannemann (Mario); C.A. Hartman (Catharina); M. Hassinen (Maija); C. Hayward (Caroline); N.L. Heard-Costa (Nancy); Q. Helmer (Quinta); G. Hemani; A.K. Henders (Anjali); H.L. Hillege (Hans); M.A. Hlatky (Mark); W. Hoffmann (Wolfgang); P. Hoffmann (Per); O.L. Holmen (Oddgeir); J.J. Houwing-Duistermaat (Jeanine); T. Illig (Thomas); A. Isaacs (Aaron); A.L. James (Alan); J. Jeff (Janina); B. Johansen (Berit); A. Johansson (Åsa); G.J. Jolley (Jason); T. Juliusdottir (Thorhildur); M.J. Junttila (Juhani); M.M.L. Kho (Marcia); L. Kinnunen (Leena); N. Klopp (Norman); T. Kocher; W. Kratzer (Wolfgang); P. Lichtner (Peter); L. Lind (Lars); J. Lindström (Jaana); S. Lobbens (Stéphane); M. Lorentzon (Mattias); Y. Lu (Yingchang); V. Lyssenko (Valeriya); P.K. Magnusson (Patrik); A. Mahajan (Anubha); M. Maillard (Marc); W.L. McArdle (Wendy); C.A. McKenzie (Colin A.); S. McLachlan (Stela); P.J. McLaren (Paul J); C. Menni (Cristina); S. Merger (Sigrun); L. Milani (Lili); A. Moayyeri (Alireza); K.L. Monda (Keri); M.A. Morken (Mario); G. Müller (Gabriele); M. Müller-Nurasyid (Martina); A.W. Musk (Arthur); N. Narisu (Narisu); M. Nauck (Matthias); I.M. Nolte (Ilja M.); M.M. Nöthen (Markus); L. Oozageer (Laticia); S. Pilz (Stefan); N.W. Rayner (Nigel William); F. Renström (Frida); N.R. Robertson (Neil R.); L.M. Rose (Lynda M.); R. Roussel (Ronan); S. Sanna (Serena); H. Scharnagl (Hubert); S. Scholtens (Salome); F.R. Schumacher (Fredrick R); H. Schunkert (Heribert); R.A. Scott (Robert); J.S. Sehmi (Joban); T. Seufferlein (Thomas); J. Shi (Jianxin); K. Silventoinen (Karri); J.H. Smit (Johannes); G.D. Smith; J. Smolonska (Joanna); A. Stanton (Alice); K. Stirrups (Kathy); D.J. Stott (David J); H.M. Stringham (Heather); J. Sundstrom (Johan); M. Swertz (Morris); A.C. Syvanen; B. Tayo (Bamidele); G. Thorleifsson (Gudmar); J.P. Tyrer (Jonathan); S. Van Dijk (Suzanne); N.M. van Schoor (Natasja); N. van der Velde (Nathalie); D. van Heemst (Diana); F.V.A. Van Oort (Floor V A); S.H.H.M. Vermeulen (Sita); N. Verweij (Niek); J.M. Vonk (Judith M); L. Waite (Lindsay); M. Waldenberger (Melanie); R. Wennauer (Roman); L.R. Wilkens (Lynne R.); C. Willenborg (Christina); T. Wilsgaard (Tom); M.K. Wojczynski (Mary ); A. Wong (Andrew); A. Wright (Alan); Q. Zhang (Qunyuan); D. Arveiler (Dominique); S.J.L. Bakker (Stephan); J. Beilby (John); R.N. Bergman (Richard); S.M. Bergmann (Sven); R. Biffar; J. Blangero (John); D.I. Boomsma (Dorret); S.R. Bornstein (Stefan R.); P. Bovet (Pascal); P. Brambilla (Paolo); M.J. Brown (Morris); H. Campbell (Harry); M. Caulfield (Mark); A. Chakravarti (Aravinda); F.S. Collins (Francis); D.C. Crawford (Dana); L.A. Cupples (Adrienne); J. Danesh (John); U. de Faire (Ulf); H.M. den Ruijter (Hester ); R. Erbel (Raimund); J. Erdmann (Jeanette); J. Eriksson; M. Farrall (Martin); E. Ferrannini (Ele); J. Ferrieres (Jean); I. Ford; N.G. Forouhi (Nita); T. Forrester (Terrence); R.T. Gansevoort (Ron); P.V. Gejman (Pablo); C. Gieger (Christian); A. Golay (Alain); R.F. Gottesman (Rebecca); V. Gudnason (Vilmundur); U. Gyllensten (Ulf); D.W. Haas (David W); A.S. Hall (Alistair); T.B. Harris (Tamara); A.T. Hattersley (Andrew); A.C. Heath (Andrew C); C. Hengstenberg (Christian); A.A. Hicks (Andrew); L.A. Hindorff (Lucia A); A. Hingorani (Aroon); A. Hofman (Albert); G.K. Hovingh (Kees); S.E. Humphries (Steve E.); S.C. Hunt (Steven); E. Hypponen (Elina); K.B. Jacobs (Kevin); M.-R. Jarvelin (Marjo-Riitta); P. Jousilahti (Pekka); A. Jula (Antti); J. Kaprio (Jaakko); J.J.P. Kastelein (John); M.H. Kayser (Manfred); F. Kee (Frank); S. Keinanen-Kiukaanniemi (Sirkka); L.A.L.M. Kiemeney (Bart); J.S. Kooner (Jaspal S.); C. Kooperberg (Charles); S. Koskinen (Seppo); P. Kovacs (Peter); A. Kraja (Aldi); M. Kumari (Meena); J. Kuusisto (Johanna); T.A. Lakka (Timo); C. Langenberg (Claudia); L. Le Marchand (Loic); T. Lehtimäki (Terho); S. Lupoli (Sara); P.A. Madden; S. Männistö (Satu); P. Manunta (Paolo); A. Marette (Andre'); T.C. Matise (Tara C.); B. McKnight (Barbara); T. Meitinger (Thomas); F.L. Moll (Frans); G.W. Montgomery (Grant W.); A.D. Morris (Andrew); A.P. Morris (Andrew); J.C. Murray (Jeffrey); M. Nelis (Mari); C. Ohlsson (Claes); A.J. Oldehinkel (Albertine); K.K. Ong (Ken K.); W.H. Ouwehand (Willem); G. Pasterkamp (Gerard); A. Peters (Annette); P.P. Pramstaller (Peter Paul); J.F. Price (Jackie F.); L. Qi (Lu); O. Raitakari (Olli); T. Rankinen (Tuomo); D.C. Rao (Dabeeru C.); T.K. Rice (Treva K.); M.D. Ritchie (Marylyn D.); I. Rudan (Igor); V. Salomaa (Veikko); N.J. Samani (Nilesh); J. Saramies (Jouko); M.A. Sarzynski (Mark A.); P.E.H. Schwarz (Peter E. H.); S. Sebert (Sylvain); P. Sever (Peter); A.R. Shuldiner (Alan); J. Sinisalo (Juha); V. Steinthorsdottir (Valgerdur); R.P. Stolk; J.-C. Tardif (Jean-Claude); A. Tönjes (Anke); A. Tremblay (Angelo); E. Tremoli (Elena); J. Virtamo (Jarmo); M.-C. Vohl (Marie-Claude); P. Amouyel (Philippe); F.W. Asselbergs (Folkert W.); T.L. Assimes (Themistocles); M. Bochud (Murielle); B.O. Boehm (Bernhard); E.A. Boerwinkle (Eric); E.P. Bottinger (Erwin P.); C. Bouchard (Claude); S. Cauchi (Stéphane); J.C. Chambers (John C.); S.J. Chanock (Stephen); R.S. Cooper (Richard S.); P.I.W. de Bakker (Paul); G.V. Dedoussis (George); L. Ferrucci (Luigi); P.W. Franks; P. Froguel (Philippe); L. Groop (Leif); C.A. Haiman (Christopher); A. Hamsten (Anders); M.G. Hayes (M. Geoffrey); J. Hui (Jennie); D. Hunter (David); K. Hveem (Kristian); J.W. Jukema (Jan Wouter); R.C. Kaplan (Robert); M. Kivimaki (Mika); D. Kuh (Diana); M. Laakso (Markku); Y. Liu (YongMei); N.G. Martin (Nicholas); W. März (Winfried); M. Melbye (Mads); S. Moebus (Susanne); P. Munroe (Patricia); I. Njølstad (Inger); B.A. Oostra (Ben); C.N.A. Palmer (Colin); N.L. Pedersen (Nancy L.); M. Perola (Markus); L. Perusse (Louis); U. Peters (Ulrike); J.E. Powell (Joseph); C. Power (Christine); T. Quertermous (Thomas); R. Rauramaa (Rainer); E. Reinmaa (Eva); P.M. Ridker (Paul); F. Rivadeneira Ramirez (Fernando); J.I. Rotter (Jerome I.); T. Saaristo (Timo); D. Saleheen; D. Schlessinger (David); P.E. Slagboom (P Eline); H. Snieder (Harold); T.D. Spector (Timothy); K. Strauch (Konstantin); M. Stumvoll (Michael); J. Tuomilehto (Jaakko); M. Uusitupa (Matti); P. van der Harst (Pim); H. Völzke (Henry); M. Walker (Mark); N.J. Wareham (Nick); H. Watkins (Hugh); H.E. Wichmann (Heinz Erich); J.F. Wilson (James F); P. Zanen (Pieter); P. Deloukas (Panagiotis); I.M. Heid (Iris); C.M. Lindgren (Cecilia); K.L. Mohlke (Karen); E.K. Speliotes (Elizabeth); U. Thorsteinsdottir (Unnur); I. Barroso (Inês); C.S. Fox (Caroline S.); K.E. North (Kari); D.P. Strachan (David P.); J.S. Beckmann (Jacques); S.I. Berndt (Sonja); M. Boehnke (Michael); I.B. Borecki (Ingrid); M.I. McCarthy (Mark); A. Metspalu (Andres); J-A. Zwart (John-Anker); A.G. Uitterlinden (André); C.M. van Duijn (Cornelia); L. Franke (Lude); C.J. Willer (Cristen); A. Price (Alkes); G. Lettre (Guillaume); R.J.F. Loos (Ruth); M.N. Weedon (Michael); E. Ingelsson (Erik); J.R. O´Connell; G.R. Abecasis (Gonçalo); D.I. Chasman (Daniel); D. Anderson (Denise); M.E. Goddard (Michael); P.M. Visscher (Peter); J.N. Hirschhorn (Joel); T.M. Frayling (Timothy)

    2014-01-01

    textabstractUsing genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated

  11. Defining the role of common variation in the genomic and biological architecture of adult human height

    NARCIS (Netherlands)

    Wood, Andrew R.; Esko, Tonu; Yang, Jian; Vedantam, Sailaja; Pers, Tune H.; Gustafsson, Stefan; Chu, Audrey Y.; Estrada, Karol; Luan, Jian'an; Kutalik, Zoltán; Amin, Najaf; Buchkovich, Martin L.; Croteau-Chonka, Damien C.; Day, Felix R.; Duan, Yanan; Fall, Tove; Fehrmann, Rudolf; Ferreira, Teresa; Jackson, Anne U.; Karjalainen, Juha; Lo, Ken Sin; Locke, Adam E.; Mägi, Reedik; Mihailov, Evelin; Porcu, Eleonora; Randall, Joshua C.; Scherag, André; Vinkhuyzen, Anna A. E.; Westra, Harm-Jan; Winkler, Thomas W.; Workalemahu, Tsegaselassie; Zhao, Jing Hua; Absher, Devin; Albrecht, Eva; Anderson, Denise; Baron, Jeffrey; Beekman, Marian; Demirkan, Ayse; Ehret, Georg B.; Feenstra, Bjarke; Feitosa, Mary F.; Fischer, Krista; Fraser, Ross M.; Goel, Anuj; Gong, Jian; Justice, Anne E.; Kanoni, Stavroula; Kleber, Marcus E.; Kristiansson, Kati; Lim, Unhee; Lotay, Vaneet; Lui, Julian C.; Mangino, Massimo; Mateo Leach, Irene; Medina-Gomez, Carolina; Nalls, Michael A.; Nyholt, Dale R.; Palmer, Cameron D.; Pasko, Dorota; Pechlivanis, Sonali; Prokopenko, Inga; Ried, Janina S.; Ripke, Stephan; Shungin, Dmitry; Stancáková, Alena; Strawbridge, Rona J.; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W.; van Setten, Jessica; van Vliet-Ostaptchouk, Jana V.; Wang, Zhaoming; Yengo, Loïc; Zhang, Weihua; Afzal, Uzma; Arnlöv, Johan; Arscott, Gillian M.; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J.; Berne, Christian; Blüher, Matthias; Bolton, Jennifer L.; Böttcher, Yvonne; Boyd, Heather A.; Bruinenberg, Marcel; Buckley, Brendan M.; Buyske, Steven; Caspersen, Ida H.; Chines, Peter S.; Clarke, Robert; Claudi-Boehm, Simone; Cooper, Matthew; Daw, E. Warwick; de Jong, Pim A.; Deelen, Joris; Delgado, Graciela; Denny, Josh C.; Dhonukshe-Rutten, Rosalie; Dimitriou, Maria; Doney, Alex S. F.; Dörr, Marcus; Eklund, Niina; Eury, Elodie; Folkersen, Lasse; Garcia, Melissa E.; Geller, Frank; Giedraitis, Vilmantas; Go, Alan S.; Grallert, Harald; Grammer, Tanja B.; Gräßler, Jürgen; Grönberg, Henrik; de Groot, Lisette C. P. G. M.; Groves, Christopher J.; Haessler, Jeffrey; Hall, Per; Haller, Toomas; Hallmans, Goran; Hannemann, Anke; Hartman, Catharina A.; Hassinen, Maija; Hayward, Caroline; Heard-Costa, Nancy L.; Helmer, Quinta; Hemani, Gibran; Henders, Anjali K.; Hillege, Hans L.; Hlatky, Mark A.; Hoffmann, Wolfgang; Hoffmann, Per; Holmen, Oddgeir; Houwing-Duistermaat, Jeanine J.; Illig, Thomas; Isaacs, Aaron; James, Alan L.; Jeff, Janina; Johansen, Berit; Johansson, Åsa; Jolley, Jennifer; Juliusdottir, Thorhildur; Junttila, Juhani; Kho, Abel N.; Kinnunen, Leena; Klopp, Norman; Kocher, Thomas; Kratzer, Wolfgang; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Lu, Yingchang; Lyssenko, Valeriya; Magnusson, Patrik K. E.; Mahajan, Anubha; Maillard, Marc; McArdle, Wendy L.; McKenzie, Colin A.; McLachlan, Stela; McLaren, Paul J.; Menni, Cristina; Merger, Sigrun; Milani, Lili; Moayyeri, Alireza; Monda, Keri L.; Morken, Mario A.; Müller, Gabriele; Müller-Nurasyid, Martina; Musk, Arthur W.; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M.; Nöthen, Markus M.; Oozageer, Laticia; Pilz, Stefan; Rayner, Nigel W.; Renstrom, Frida; Robertson, Neil R.; Rose, Lynda M.; Roussel, Ronan; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Schumacher, Fredrick R.; Schunkert, Heribert; Scott, Robert A.; Sehmi, Joban; Seufferlein, Thomas; Shi, Jianxin; Silventoinen, Karri; Smit, Johannes H.; Smith, Albert Vernon; Smolonska, Joanna; Stanton, Alice V.; Stirrups, Kathleen; Stott, David J.; Stringham, Heather M.; Sundström, Johan; Swertz, Morris A.; Syvänen, Ann-Christine; Tayo, Bamidele O.; Thorleifsson, Gudmar; Tyrer, Jonathan P.; van Dijk, Suzanne; van Schoor, Natasja M.; van der Velde, Nathalie; van Heemst, Diana; van Oort, Floor V. A.; Vermeulen, Sita H.; Verweij, Niek; Vonk, Judith M.; Waite, Lindsay L.; Waldenberger, Melanie; Wennauer, Roman; Wilkens, Lynne R.; Willenborg, Christina; Wilsgaard, Tom; Wojczynski, Mary K.; Wong, Andrew; Wright, Alan F.; Zhang, Qunyuan; Arveiler, Dominique; Bakker, Stephan J. L.; Beilby, John; Bergman, Richard N.; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boomsma, Dorret I.; Bornstein, Stefan R.; Bovet, Pascal; Brambilla, Paolo; Brown, Morris J.; Campbell, Harry; Caulfield, Mark J.; Chakravarti, Aravinda; Collins, Rory; Collins, Francis S.; Crawford, Dana C.; Cupples, L. Adrienne; Danesh, John; de Faire, Ulf; den Ruijter, Hester M.; Erbel, Raimund; Erdmann, Jeanette; Eriksson, Johan G.; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Ford, Ian; Forouhi, Nita G.; Forrester, Terrence; Gansevoort, Ron T.; Gejman, Pablo V.; Gieger, Christian; Golay, Alain; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Haas, David W.; Hall, Alistair S.; Harris, Tamara B.; Hattersley, Andrew T.; Heath, Andrew C.; Hengstenberg, Christian; Hicks, Andrew A.; Hindorff, Lucia A.; Hingorani, Aroon D.; Hofman, Albert; Hovingh, G. Kees; Humphries, Steve E.; Hunt, Steven C.; Hypponen, Elina; Jacobs, Kevin B.; Jarvelin, Marjo-Riitta; Jousilahti, Pekka; Jula, Antti M.; Kaprio, Jaakko; Kastelein, John J. P.; Kayser, Manfred; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Kooner, Jaspal S.; Kooperberg, Charles; Koskinen, Seppo; Kovacs, Peter; Kraja, Aldi T.; Kumari, Meena; Kuusisto, Johanna; Lakka, Timo A.; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lupoli, Sara; Madden, Pamela A. F.; Männistö, Satu; Manunta, Paolo; Marette, André; Matise, Tara C.; McKnight, Barbara; Meitinger, Thomas; Moll, Frans L.; Montgomery, Grant W.; Morris, Andrew D.; Morris, Andrew P.; Murray, Jeffrey C.; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J.; Ong, Ken K.; Ouwehand, Willem H.; Pasterkamp, Gerard; Peters, Annette; Pramstaller, Peter P.; Price, Jackie F.; Qi, Lu; Raitakari, Olli T.; Rankinen, Tuomo; Rao, D. C.; Rice, Treva K.; Ritchie, Marylyn; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J.; Saramies, Jouko; Sarzynski, Mark A.; Schwarz, Peter E. H.; Sebert, Sylvain; Sever, Peter; Shuldiner, Alan R.; Sinisalo, Juha; Steinthorsdottir, Valgerdur; Stolk, Ronald P.; Tardif, Jean-Claude; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Virtamo, Jarmo; Vohl, Marie-Claude; Amouyel, Philippe; Asselbergs, Folkert W.; Assimes, Themistocles L.; Bochud, Murielle; Boehm, Bernhard O.; Boerwinkle, Eric; Bottinger, Erwin P.; Bouchard, Claude; Cauchi, Stéphane; Chambers, John C.; Chanock, Stephen J.; Cooper, Richard S.; de Bakker, Paul I. W.; Dedoussis, George; Ferrucci, Luigi; Franks, Paul W.; Froguel, Philippe; Groop, Leif C.; Haiman, Christopher A.; Hamsten, Anders; Hayes, M. Geoffrey; Hui, Jennie; Hunter, David J.; Hveem, Kristian; Jukema, J. Wouter; Kaplan, Robert C.; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; Martin, Nicholas G.; März, Winfried; Melbye, Mads; Moebus, Susanne; Munroe, Patricia B.; Njølstad, Inger; Oostra, Ben A.; Palmer, Colin N. A.; Pedersen, Nancy L.; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Powell, Joseph E.; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Reinmaa, Eva; Ridker, Paul M.; Rivadeneira, Fernando; Rotter, Jerome I.; Saaristo, Timo E.; Saleheen, Danish; Schlessinger, David; Slagboom, P. Eline; Snieder, Harold; Spector, Tim D.; Strauch, Konstantin; Stumvoll, Michael; Tuomilehto, Jaakko; Uusitupa, Matti; van der Harst, Pim; Völzke, Henry; Walker, Mark; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H.-Erich; Wilson, James F.; Zanen, Pieter; Deloukas, Panos; Heid, Iris M.; Lindgren, Cecilia M.; Mohlke, Karen L.; Speliotes, Elizabeth K.; Thorsteinsdottir, Unnur; Barroso, Inês; Fox, Caroline S.; North, Kari E.; Strachan, David P.; Beckmann, Jacques S.; Berndt, Sonja I.; Boehnke, Michael; Borecki, Ingrid B.; McCarthy, Mark I.; Metspalu, Andres; Stefansson, Kari; Uitterlinden, André G.; van Duijn, Cornelia M.; Franke, Lude; Willer, Cristen J.; Price, Alkes L.; Lettre, Guillaume; Loos, Ruth J. F.; Weedon, Michael N.; Ingelsson, Erik; O'Connell, Jeffrey R.; Abecasis, Goncalo R.; Chasman, Daniel I.; Goddard, Michael E.; Visscher, Peter M.; Hirschhorn, Joel N.; Frayling, Timothy M.; McCarty, Catherine A.; Starren, Justin; Peissig, Peggy; Berg, Richard; Rasmussen, Luke; Linneman, James; Miller, Aaron; Choudary, Vidhu; Chen, Lin; Waudby, Carol; Kitchner, Terrie; Reeser, Jonathan; Fost, Norman; Wilke, Russell A.; Chisholm, Rex L.; Avila, Pedro C.; Greenland, Philip; Hayes, M. Geoff; Kho, Abel; Kibbe, Warren A.; Lemke, Amy A.; Lowe, William L.; Smith, Maureen E.; Wolf, Wendy A.; Pacheco, Jennifer A.; Thompson, William K.; Humowiecki, Joel; Law, May; Chute, Christopher; Kullo, Iftikar; Koenig, Barbara; de Andrade, Mariza; Bielinski, Suzette; Pathak, Jyotishman; Savova, Guergana; Wu, Joel; Henriksen, Joan; Ding, Keyue; Hart, Lacey; Palbicki, Jeremy; Larson, Eric B.; Newton, Katherine; Ludman, Evette; Spangler, Leslie; Hart, Gene; Carrell, David; Jarvik, Gail; Crane, Paul; Burke, Wylie; Fullerton, Stephanie Malia; Trinidad, Susan Brown; Carlson, Chris; Hutchinson, Fred; McDavid, Andrew; Roden, Dan M.; Clayton, Ellen; Haines, Jonathan L.; Masys, Daniel R.; Churchill, Larry R.; Cornfield, Daniel; Crawford, Dana; Darbar, Dawood; Denny, Joshua C.; Malin, Bradley A.; Ritchie, Marylyn D.; Schildcrout, Jonathan S.; Xu, Hua; Ramirez, Andrea Havens; Basford, Melissa; Pulley, Jill; Alizadeh, Behrooz Z.; de Boer, Rudolf A.; Boezen, H. Marike; van der Klauw, Melanie M.; Navis, Gerjan; Ormel, Johan; Postma, Dirkje S.; Rosmalen, Judith G. M.; Slaets, Joris P.; Wolffenbuttel, Bruce H. R.; Wijmenga, Cisca; Kathiresan, Sekar; Voight, Benjamin F.; Purcell, Shaun; Musunuru, Kiran; Ardissino, Diego; Mannucci, Pier M.; Anand, Sonia; Engert, James C.; Reilly, Muredach P.; Rader, Daniel J.; Morgan, Thomas; Spertus, John A.; Stoll, Monika; Girelli, Domenico; McKeown, Pascal P.; Patterson, Chris C.; Siscovick, David S.; O'Donnell, Christopher J.; Elosua, Roberto; Peltonen, Leena; Schwartz, Stephen M.; Melander, Olle; Altshuler, David; Merlini, Pier Angelica; Berzuini, Carlo; Bernardinelli, Luisa; Peyvandi, Flora; Tubaro, Marco; Celli, Patrizia; Ferrario, Maurizio; Fetiveau, Raffaela; Marziliano, Nicola; Casari, Giorgio; Galli, Michele; Ribichini, Flavio; Rossi, Marco; Bernardi, Francesco; Zonzin, Pietro; Piazza, Alberto; Yee, Jean; Friedlander, Yechiel; Marrugat, Jaume; Lucas, Gavin; Subirana, Isaac; Sala, Joan; Ramos, Rafael; Meigs, James B.; Williams, Gordon; Nathan, David M.; MacRae, Calum A.; Havulinna, Aki S.; Berglund, Goran; Asselta, Rosanna; Duga, Stefano; Spreafico, Marta; Daly, Mark J.; Nemesh, James; Korn, Joshua M.; McCarroll, Steven A.; Surti, Aarti; Guiducci, Candace; Gianniny, Lauren; Mirel, Daniel; Parkin, Melissa; Burtt, Noel; Gabriel, Stacey B.; Thompson, John R.; Braund, Peter S.; Wright, Benjamin J.; Balmforth, Anthony J.; Ball, Stephen G.; Schunkert, I. Heribert; Linsel-Nitschke, Patrick; Lieb, Wolfgang; Ziegler, Andreas; König, Inke R.; Fischer, Marcus; Stark, Klaus; Grosshennig, Anika; Preuss, Michael; Schreiber, Stefan; Ouwehand, Willem; Scholz, Michael; Cambien, Francois; Goodall, Alison; Li, Mingyao; Chen, Zhen; Wilensky, Robert; Matthai, William; Qasim, Atif; Hakonarson, Hakon H.; Devaney, Joe; Burnett, Mary-Susan; Pichard, Augusto D.; Kent, Kenneth M.; Satler, Lowell; Lindsay, Joseph M.; Waksman, Ron; Knouff, Christopher W.; Waterworth, Dawn M.; Walker, Max C.; Mooser, Vincent; Epstein, Stephen E.; Scheffold, Thomas; Berger, Klaus; Huge, Andreas; Martinelli, Nicola; Olivieri, Oliviero; Corrocher, Roberto; Hólm, Hilma; Do, Ron; Xie, Changchun; Siscovick, David; Matise, Tara; Buyske, Steve; Higashio, Julia; Williams, Rasheeda; Nato, Andrew; Ambite, Jose Luis; Deelman, Ewa; Manolio, Teri; Hindorff, Lucia; Heiss, Gerardo; Taylor, Kira; Franceschini, Nora; Avery, Christy; Graff, Misa; Lin, Danyu; Quibrera, Miguel; Cochran, Barbara; Kao, Linda; Umans, Jason; Cole, Shelley; MacCluer, Jean; Person, Sharina; Pankow, James; Gross, Myron; Fornage, Myriam; Durda, Peter; Jenny, Nancy; Patsy, Bruce; Arnold, Alice; Buzkova, Petra; Haines, Jonathan; Murdock, Deborah; Glenn, Kim; Brown-Gentry, Kristin; Thornton-Wells, Tricia; Dumitrescu, Logan; Bush, William S.; Mitchell, Sabrina L.; Goodloe, Robert; Wilson, Sarah; Boston, Jonathan; Malinowski, Jennifer; Restrepo, Nicole; Oetjens, Matthew; Fowke, Jay; Zheng, Wei; Spencer, Kylee; Pendergrass, Sarah; Le Marchand, Loïc; Wilkens, Lynne; Park, Lani; Tiirikainen, Maarit; Kolonel, Laurence; Cheng, Iona; Wang, Hansong; Shohet, Ralph; Haiman, Christopher; Stram, Daniel; Henderson, Brian; Monroe, Kristine; Schumacher, Fredrick; Anderson, Garnet; Prentice, Ross; LaCroix, Andrea; Wu, Chunyuan; Carty, Cara; Rosse, Stephanie; Young, Alicia; Haessler, Jeff; Kocarnik, Jonathan; Lin, Yi; Jackson, Rebecca; Duggan, David; Kuller, Lew

    2014-01-01

    Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700

  12. Genomic diversity and antigenic variation of HIV-1: links between pathogenesis, epidemiology and vaccine development

    NARCIS (Netherlands)

    Goudsmit, J.; Back, N. K.; Nara, P. L.

    1991-01-01

    Recent analysis of primate lentivirus genomes indicates that lentiviruses have infected primates for hundreds of years. The pathogenicity of such viruses may fluctuate due to the high evolution rate of some parts of the viral genome. Fixed nucleic acid substitutions in the gag gene appear to be

  13. GENOMICS SYMPOSIUM: Using genomic approaches to uncover sources of variation in age at puberty and reproductive longevity in sows

    Science.gov (United States)

    Genetic variants associated with traits such as age at puberty and litter size could provide insight into the underlying genetic sources of variation impacting sow reproductive longevity and productivity. Genomewide characterization and gene expression profiling were used using gilts from the Univer...

  14. Variation, Evolution, and Correlation Analysis of C+G Content and Genome or Chromosome Size in Different Kingdoms and Phyla

    Science.gov (United States)

    Li, Xiu-Qing; Du, Donglei

    2014-01-01

    C+G content (GC content or G+C content) is known to be correlated with genome/chromosome size in bacteria but the relationship for other kingdoms remains unclear. This study analyzed genome size, chromosome size, and base composition in most of the available sequenced genomes in various kingdoms. Genome size tends to increase during evolution in plants and animals, and the same is likely true for bacteria. The genomic C+G contents were found to vary greatly in microorganisms but were quite similar within each animal or plant subkingdom. In animals and plants, the C+G contents are ranked as follows: monocot plants>mammals>non-mammalian animals>dicot plants. The variation in C+G content between chromosomes within species is greater in animals than in plants. The correlation between average chromosome C+G content and chromosome length was found to be positive in Proteobacteria, Actinobacteria (but not in other analyzed bacterial phyla), Ascomycota fungi, and likely also in some plants; negative in some animals, insignificant in two protist phyla, and likely very weak in Archaea. Clearly, correlations between C+G content and chromosome size can be positive, negative, or not significant depending on the kingdoms/groups or species. Different phyla or species exhibit different patterns of correlation between chromosome-size and C+G content. Most chromosomes within a species have a similar pattern of variation in C+G content but outliers are common. The data presented in this study suggest that the C+G content is under genetic control by both trans- and cis- factors and that the correlation between C+G content and chromosome length can be positive, negative, or not significant in different phyla. PMID:24551092

  15. Survival analysis of infected mice reveals pathogenic variations in the genome of avian H1N1 viruses

    Science.gov (United States)

    Koçer, Zeynep A.; Fan, Yiping; Huether, Robert; Obenauer, John; Webby, Richard J.; Zhang, Jinghui; Webster, Robert G.; Wu, Gang

    2014-01-01

    Most influenza pandemics have been caused by H1N1 viruses of purely or partially avian origin. Here, using Cox proportional hazard model, we attempt to identify the genetic variations in the whole genome of wild-type North American avian H1N1 influenza A viruses that are associated with their virulence in mice by residue variations, host origins of virus (Anseriformes-ducks or Charadriiformes-shorebirds), and host-residue interactions. In addition, through structural modeling, we predicted that several polymorphic sites associated with pathogenicity were located in structurally important sites, especially in the polymerase complex and NS genes. Our study introduces a new approach to identify pathogenic variations in wild-type viruses circulating in the natural reservoirs and ultimately to understand their infectious risks to humans as part of risk assessment efforts towards the emergence of future pandemic strains. PMID:25503687

  16. Genomic Heterogeneity of Methicillin Resistant Staphylococcus aureus Associated with Variation in Severity of Illness among Children with Acute Hematogenous Osteomyelitis.

    Directory of Open Access Journals (Sweden)

    Claudia Gaviria-Agudelo

    Full Text Available The association between severity of illness of children with osteomyelitis caused by Methicillin-resistant Staphylococcus aureus (MRSA and genomic variation of the causative organism has not been previously investigated. The purpose of this study is to assess genomic heterogeneity among MRSA isolates from children with osteomyelitis who have diverse severity of illness.Children with osteomyelitis were prospectively studied between 2010 and 2011. Severity of illness of the affected children was determined from clinical and laboratory parameters. MRSA isolates were analyzed with next generation sequencing (NGS and optical mapping. Sequence data was used for multi-locus sequence typing (MLST, phylogenetic analysis by maximum likelihood (PAML, and identification of virulence genes and single nucleotide polymorphisms (SNP relative to reference strains.The twelve children studied demonstrated severity of illness scores ranging from 0 (mild to 9 (severe. All isolates were USA300, ST 8, SCC mec IVa MRSA by MLST. The isolates differed from reference strains by 2 insertions (40 Kb each and 2 deletions (10 and 25 Kb but had no rearrangements or copy number variations. There was a higher occurrence of virulence genes among study isolates when compared to the reference strains (p = 0.0124. There were an average of 11 nonsynonymous SNPs per strain. PAML demonstrated heterogeneity of study isolates from each other and from the reference strains.Genomic heterogeneity exists among MRSA isolates causing osteomyelitis among children in a single community. These variations may play a role in the pathogenesis of variation in clinical severity among these children.

  17. Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Matsuoka

    Full Text Available The complex process of allopolyploid speciation includes various mechanisms ranging from species crosses and hybrid genome doubling to genome alterations and the establishment of new allopolyploids as persisting natural entities. Currently, little is known about the genetic mechanisms that underlie hybrid genome doubling, despite the fact that natural allopolyploid formation is highly dependent on this phenomenon. We examined the genetic basis for the spontaneous genome doubling of triploid F1 hybrids between the direct ancestors of allohexaploid common wheat (Triticum aestivum L., AABBDD genome, namely Triticumturgidum L. (AABB genome and Aegilopstauschii Coss. (DD genome. An Ae. tauschii intraspecific lineage that is closely related to the D genome of common wheat was identified by population-based analysis. Two representative accessions, one that produces a high-genome-doubling-frequency hybrid when crossed with a T. turgidum cultivar and the other that produces a low-genome-doubling-frequency hybrid with the same cultivar, were chosen from that lineage for further analyses. A series of investigations including fertility analysis, immunostaining, and quantitative trait locus (QTL analysis showed that (1 production of functional unreduced gametes through nonreductional meiosis is an early step key to successful hybrid genome doubling, (2 first division restitution is one of the cytological mechanisms that cause meiotic nonreduction during the production of functional male unreduced gametes, and (3 six QTLs in the Ae. tauschii genome, most of which likely regulate nonreductional meiosis and its subsequent gamete production processes, are involved in hybrid genome doubling. Interlineage comparisons of Ae. tauschii's ability to cause hybrid genome doubling suggested an evolutionary model for the natural variation pattern of the trait in which non-deleterious mutations in six QTLs may have important roles. The findings of this study demonstrated

  18. Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.

    Science.gov (United States)

    Matsuoka, Yoshihiro; Nasuda, Shuhei; Ashida, Yasuyo; Nitta, Miyuki; Tsujimoto, Hisashi; Takumi, Shigeo; Kawahara, Taihachi

    2013-01-01

    The complex process of allopolyploid speciation includes various mechanisms ranging from species crosses and hybrid genome doubling to genome alterations and the establishment of new allopolyploids as persisting natural entities. Currently, little is known about the genetic mechanisms that underlie hybrid genome doubling, despite the fact that natural allopolyploid formation is highly dependent on this phenomenon. We examined the genetic basis for the spontaneous genome doubling of triploid F1 hybrids between the direct ancestors of allohexaploid common wheat (Triticum aestivum L., AABBDD genome), namely Triticumturgidum L. (AABB genome) and Aegilopstauschii Coss. (DD genome). An Ae. tauschii intraspecific lineage that is closely related to the D genome of common wheat was identified by population-based analysis. Two representative accessions, one that produces a high-genome-doubling-frequency hybrid when crossed with a T. turgidum cultivar and the other that produces a low-genome-doubling-frequency hybrid with the same cultivar, were chosen from that lineage for further analyses. A series of investigations including fertility analysis, immunostaining, and quantitative trait locus (QTL) analysis showed that (1) production of functional unreduced gametes through nonreductional meiosis is an early step key to successful hybrid genome doubling, (2) first division restitution is one of the cytological mechanisms that cause meiotic nonreduction during the production of functional male unreduced gametes, and (3) six QTLs in the Ae. tauschii genome, most of which likely regulate nonreductional meiosis and its subsequent gamete production processes, are involved in hybrid genome doubling. Interlineage comparisons of Ae. tauschii's ability to cause hybrid genome doubling suggested an evolutionary model for the natural variation pattern of the trait in which non-deleterious mutations in six QTLs may have important roles. The findings of this study demonstrated that the

  19. Genomic Variation among Contemporary Pseudomonas aeruginosa Isolates from Chronically Infected Cystic Fibrosis Patients

    OpenAIRE

    Chung, Jade C. S.; Becq, Jennifer; Fraser, Louise; Schulz-Trieglaff, Ole; Bond, Nicholas J.; Foweraker, Juliet; Bruce, Kenneth D.; Smith, Geoffrey P.; Welch, Martin

    2012-01-01

    The airways of individuals with cystic fibrosis (CF) often become chronically infected with unique strains of the opportunistic pathogen Pseudomonas aeruginosa. Several lines of evidence suggest that the infecting P. aeruginosa lineage diversifies in the CF lung niche, yet so far this contemporary diversity has not been investigated at a genomic level. In this work, we sequenced the genomes of pairs of randomly selected contemporary isolates sampled from the expectorated sputum of three chron...

  20. ANALYZING THE GENOMIC VARIATION OF MICROBIAL CELL FACTORIES IN THE ERA OF “NEW BIOTECHNOLOGY”

    OpenAIRE

    Markus Herrgård; Gianni Panagiotou

    2012-01-01

    The application of genome-scale technologies, both experimental and in silico, to industrial biotechnology has allowed improving the conversion of biomass-derived feedstocks to chemicals, materials and fuels through microbial fermentation. In particular, due to rapidly decreasing costs and its suitability for identifying the genetic determinants of a phenotypic trait of interest, whole genome sequencing is expected to be one of the major driving forces in industrial biotechnology in the comin...

  1. Role of adaptive and non-adaptive mechanisms forming complex patterns of genome size variation in six cytotypes of polyploid Allium oleraceum (Amaryllidaceae) on a continental scale

    Science.gov (United States)

    Duchoslav, Martin; Šafářová, Lenka; Jandová, Michaela

    2013-01-01

    Background and Aims Although the large variation in genome size among different species is widely acknowledged, the occurrence and extent of variation below the species level are still controversial and have not yet been satisfactorily analysed. The aim of this study was to assess genome size variation in six ploidy levels (2n = 3x–8x) of the polyploid Allium oleraceum over a large geographical gradient and to search for potential interpretations of the size variation. Methods The genome sizes of 407 individuals of A. oleraceum collected from 114 populations across Europe were determined by flow cytometry using propidium iodide staining. The genome size variation was correlated with spatial, climatic and habitat variables. Key Results The mean holoploid genome size (2C DNA) was 42·49, 52·14, 63·34, 71·94, 85·51 and 92·12 pg at the tri-, tetra-, penta-, hexa-, hepta- and octoploid levels, respectively. Genome size varied from a minimum of 2·3 % in the octoploids to a maximum of 18·3 % in the tetraploids. Spatial structuring of genome size was observed within the tetra- and pentaploids, where 2C DNA significantly increased with both latitude and longitude, and correlated with several climatic variables, suggesting a gradient of continentality. Genome size in hexaploids showed low variation, weak correlation with climatic variables and no spatial structuring. Downsizing in monoploid genome size was observed between all cytotypes except for heptaploids. Splitting populations into western and eastern European groups resulted in strong differences in monoploid genome size between groups in tetra- and pentaploids but not in hexaploids. The monoploid genome sizes of the cytotypes were similar in the western group but diverged in the eastern group. Conclusions Complex patterns of holoploid and monoploid genome size variation found both within and between A. oleraceum cytotypes are most likely the result of several interacting factors, including different

  2. Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda

    Directory of Open Access Journals (Sweden)

    Andrea Gloria-Soria

    2016-06-01

    Full Text Available The tsetse fly Glossina fuscipes fuscipes (Gff is the insect vector of the two forms of Human African Trypanosomiasis (HAT that exist in Uganda. Understanding Gff population dynamics, and the underlying genetics of epidemiologically relevant phenotypes is key to reducing disease transmission. Using ddRAD sequence technology, complemented with whole-genome sequencing, we developed a panel of ∼73,000 single-nucleotide polymorphisms (SNPs distributed across the Gff genome that can be used for population genomics and to perform genome-wide-association studies. We used these markers to estimate genomic patterns of linkage disequilibrium (LD in Gff, and used the information, in combination with outlier-locus detection tests, to identify candidate regions of the genome under selection. LD in individual populations decays to half of its maximum value (r2max/2 between 1359 and 2429 bp. The overall LD estimated for the species reaches r2max/2 at 708 bp, an order of magnitude slower than in Drosophila. Using 53 infected (Trypanosoma spp. and uninfected flies from four genetically distinct Ugandan populations adapted to different environmental conditions, we were able to identify SNPs associated with the infection status of the fly and local environmental adaptation. The extent of LD in Gff likely facilitated the detection of loci under selection, despite the small sample size. Furthermore, it is probable that LD in the regions identified is much higher than the average genomic LD due to strong selection. Our results show that even modest sample sizes can reveal significant genetic associations in this species, which has implications for future studies given the difficulties of collecting field specimens with contrasting phenotypes for association analysis.

  3. Alternative outcomes of pathogenic complex somatic structural variations in the genomes of NF1 and NF2 patients.

    Science.gov (United States)

    Hsiao, Meng-Chang; Piotrowski, Arkadiusz; Poplawski, Andrzej Brunon; Callens, Tom; Fu, Chuanhua; Messiaen, Ludwine

    2017-07-01

    Multiplex ligation-dependent probe amplification (MLPA) has been widely used to identify copy-number variations (CNVs), but MLPA's sensitivity and specificity in mosaic CNV detection are largely unknown. Here, we present two mosaic deletions identified by MLPA as NF1 deletion of exons 17-21 and NF2 deletion of exons 9-10. Through cDNA analysis, genomic breakpoint-spanning PCR and Sanger sequencing, we found however both NF1 and NF2 deletions are each composed of two consecutive deletions, which cannot be differentiated by MLPA. Importantly, these consecutive deletions are most likely originating from a single genomic rearrangement and have been preserved independently in different populations of cells.

  4. Genomic Microarray in Intellectual Disability: The Usefulness of Existing Systems in the Interpretation of Copy Number Variation.

    Science.gov (United States)

    Ben Khelifa, Hela; Soyah, Najla; Labalme, Audrey; Guilbert, Helene; Sanlaville, Damien; Saad, Ali; Mougou-Zerelli, Soumaya

    2017-06-01

    Whole genome array technology is an essential tool for the detection of a large number of copy number variants (CNVs) in patients with ID and/or multiple congenital anomalies. However, the clinical significance of some microimbalances is not known. In this article, we succeeded to detect seven new variations of unknown significance (dup12p13.33, dup2p16.3, dupXq13.2, del12q24.33, dup16p13.11, trip4q22.1, and dup9p21.3), one CNV classified as known pathogenic syndrome (del22q13.31-q33), and one CNV classified as potentially pathogenic (del11q24.3). We emphasize the role of comparative genomic hybridization arrays in the investigation of intellectual disability and evaluate the usefulness of existing systems in the interpretation of CNVs.

  5. Genome-Wide Variation Patterns Uncover the Origin and Selection in Cultivated Ginseng (Panax ginseng Meyer).

    Science.gov (United States)

    Li, Ming-Rui; Shi, Feng-Xue; Li, Ya-Ling; Jiang, Peng; Jiao, Lili; Liu, Bao; Li, Lin-Feng

    2017-09-01

    Chinese ginseng (Panax ginseng Meyer) is a medicinally important herb and plays crucial roles in traditional Chinese medicine. Pharmacological analyses identified diverse bioactive components from Chinese ginseng. However, basic biological attributes including domestication and selection of the ginseng plant remain under-investigated. Here, we presented a genome-wide view of the domestication and selection of cultivated ginseng based on the whole genome data. A total of 8,660 protein-coding genes were selected for genome-wide scanning of the 30 wild and cultivated ginseng accessions. In complement, the 45s rDNA, chloroplast and mitochondrial genomes were included to perform phylogenetic and population genetic analyses. The observed spatial genetic structure between northern cultivated ginseng (NCG) and southern cultivated ginseng (SCG) accessions suggested multiple independent origins of cultivated ginseng. Genome-wide scanning further demonstrated that NCG and SCG have undergone distinct selection pressures during the domestication process, with more genes identified in the NCG (97 genes) than in the SCG group (5 genes). Functional analyses revealed that these genes are involved in diverse pathways, including DNA methylation, lignin biosynthesis, and cell differentiation. These findings suggested that the SCG and NCG groups have distinct demographic histories. Candidate genes identified are useful for future molecular breeding of cultivated ginseng. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Genomic plasticity enables phenotypic variation of Pseudomonas syringae pv. tomato DC3000.

    Directory of Open Access Journals (Sweden)

    Zhongmeng Bao

    Full Text Available Whole genome sequencing revealed the presence of a genomic anomaly in the region of 4.7 to 4.9 Mb of the Pseudomonas syringae pv. tomato (Pst DC3000 genome. The average read depth coverage of Pst DC3000 whole genome sequencing results suggested that a 165 kb segment of the chromosome had doubled in copy number. Further analysis confirmed the 165 kb duplication and that the two copies were arranged as a direct tandem repeat. Examination of the corresponding locus in Pst NCPPB1106, the parent strain of Pst DC3000, suggested that the 165 kb duplication most likely formed after the two strains diverged via transposition of an ISPsy5 insertion sequence (IS followed by unequal crossing over between ISPsy5 elements at each end of the duplicated region. Deletion of one copy of the 165 kb region demonstrated that the duplication facilitated enhanced growth in some culture conditions, but did not affect pathogenic growth in host tomato plants. These types of chromosomal structures are predicted to be unstable and we have observed resolution of the 165 kb duplication to single copy and its subsequent re-duplication. These data demonstrate the role of IS elements in recombination events that facilitate genomic reorganization in P. syringae.

  7. Genomes

    National Research Council Canada - National Science Library

    Brown, T. A. (Terence A.)

    2002-01-01

    ... of genome expression and replication processes, and transcriptomics and proteomics. This text is richly illustrated with clear, easy-to-follow, full color diagrams, which are downloadable from the book's website...

  8. Single-Nucleotide Variations in Cardiac Arrhythmias: Prospects for Genomics and Proteomics Based Biomarker Discovery and Diagnostics

    Directory of Open Access Journals (Sweden)

    Ayman Abunimer

    2014-03-01

    Full Text Available Cardiovascular diseases are a large contributor to causes of early death in developed countries. Some of these conditions, such as sudden cardiac death and atrial fibrillation, stem from arrhythmias—a spectrum of conditions with abnormal electrical activity in the heart. Genome-wide association studies can identify single nucleotide variations (SNVs that may predispose individuals to developing acquired forms of arrhythmias. Through manual curation of published genome-wide association studies, we have collected a comprehensive list of 75 SNVs associated with cardiac arrhythmias. Ten of the SNVs result in amino acid changes and can be used in proteomic-based detection methods. In an effort to identify additional non-synonymous mutations that affect the proteome, we analyzed the post-translational modification S-nitrosylation, which is known to affect cardiac arrhythmias. We identified loss of seven known S-nitrosylation sites due to non-synonymous single nucleotide variations (nsSNVs. For predicted nitrosylation sites we found 1429 proteins where the sites are modified due to nsSNV. Analysis of the predicted S-nitrosylation dataset for over- or under-representation (compared to the complete human proteome of pathways and functional elements shows significant statistical over-representation of the blood coagulation pathway. Gene Ontology (GO analysis displays statistically over-represented terms related to muscle contraction, receptor activity, motor activity, cystoskeleton components, and microtubule activity. Through the genomic and proteomic context of SNVs and S-nitrosylation sites presented in this study, researchers can look for variation that can predispose individuals to cardiac arrhythmias. Such attempts to elucidate mechanisms of arrhythmia thereby add yet another useful parameter in predicting susceptibility for cardiac diseases.

  9. Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation.

    Directory of Open Access Journals (Sweden)

    Sheri L Simmons

    2008-07-01

    Full Text Available Deeply sampled community genomic (metagenomic datasets enable comprehensive analysis of heterogeneity in natural microbial populations. In this study, we used sequence data obtained from the dominant member of a low-diversity natural chemoautotrophic microbial community to determine how coexisting closely related individuals differ from each other in terms of gene sequence and gene content, and to uncover evidence of evolutionary processes that occur over short timescales. DNA sequence obtained from an acid mine drainage biofilm was reconstructed, taking into account the effects of strain variation, to generate a nearly complete genome tiling path for a Leptospirillum group II species closely related to L. ferriphilum (sampling depth approximately 20x. The population is dominated by one sequence type, yet we detected evidence for relatively abundant variants (>99.5% sequence identity to the dominant type at multiple loci, and a few rare variants. Blocks of other Leptospirillum group II types ( approximately 94% sequence identity have recombined into one or more variants. Variant blocks of both types are more numerous near the origin of replication. Heterogeneity in genetic potential within the population arises from localized variation in gene content, typically focused in integrated plasmid/phage-like regions. Some laterally transferred gene blocks encode physiologically important genes, including quorum-sensing genes of the LuxIR system. Overall, results suggest inter- and intrapopulation genetic exchange involving distinct parental genome types and implicate gain and loss of phage and plasmid genes in recent evolution of this Leptospirillum group II population. Population genetic analyses of single nucleotide polymorphisms indicate variation between closely related strains is not maintained by positive selection, suggesting that these regions do not represent adaptive differences between strains. Thus, the most likely explanation for the

  10. Mitochondrial genome variation and prostate cancer: a review of the mutational landscape and application to clinical management.

    Science.gov (United States)

    Kalsbeek, Anton M F; Chan, Eva K F; Corcoran, Niall M; Hovens, Christopher M; Hayes, Vanessa M

    2017-09-19

    Prostate cancer is a genetic disease. While next generation sequencing has allowed for the emergence of molecular taxonomy, classification is restricted to the nuclear genome. Mutations within the maternally inherited mitochondrial genome are known to impact cancer pathogenesis, as a result of disturbances in energy metabolism and apoptosis. With a higher mutation rate, limited repair and increased copy number compared to the nuclear genome, the clinical relevance of mitochondrial DNA (mtDNA) variation requires deeper exploration. Here we provide a systematic review of the landscape of prostate cancer associated mtDNA variation. While the jury is still out on the association between inherited mtDNA variation and prostate cancer risk, we collate a total of 749 uniquely reported prostate cancer associated somatic mutations. Support exists for number of somatic events, extent of heteroplasmy, and rate of recurrence of mtDNA mutations, increasing with disease aggression. While, the predicted pathogenic impact for recurrent prostate cancer associated mutations appears negligible, evidence exists for carcinogenic mutations impacting the cytochrome c oxidase complex and regulating metastasis through elevated reactive oxygen species production. Due to a lack of lethal cohort analyses, we provide additional unpublished data for metastatic disease. Discussing the advantages of mtDNA as a prostate cancer biomarker, we provide a review of current progress of including elevated mtDNA levels, of a large somatic deletion, acquired tRNAs mutations, heteroplasmy and total number of somatic events (mutational load). We confirm via meta-analysis a significant association between mtDNA mutational load and pathological staging at diagnosis or surgery ( p < 0.0001).

  11. Predicting the Pathogenic Impact of Sequence Variation in the Human Genome.

    Science.gov (United States)

    Rogers, Mark F; Shihab, Hashem A; Ferlaino, Michael; Gaunt, Tom R; Campbell, Colin

    2017-01-01

    Sequencing data will become widely available in clinical practice within the near future. Uptake of sequence data is currently being stimulated within the UK through the government-funded 100,000 genomes project (Genomics England), with many similar initiatives being planned and supported internationally. The analysis of the large volumes of data derived from sequencing programmes poses a major challenge for data analysis. In this paper we outline progress we have made in the development of predictors for estimating the pathogenic impact of single nucleotide variants, indels and haploinsufficiency in the human genome. The accuracy of these methods is enhanced through the development of disease-specific predictors, trained on appropriate data, and used within a specific disease context. We outline current research on the development of disease-specific predictors, specifically in the context of cancer research.

  12. Copy Number Variation Analysis in the Context of Electronic Medical Records & Large-Scale Genomics Consortium Efforts

    Directory of Open Access Journals (Sweden)

    John J Connolly

    2014-03-01

    Full Text Available The goal of this paper is to review recent research on copy number variations (CNVs and their association with complex and rare diseases. In the latter part of this paper, we focus on how large biorepositories such as the electronic medical record and genomics (eMERGE consortium may be best leveraged to systematically mine for potentially pathogenic CNVs, and we end with a discussion of how such variants might be reported back for inclusion in electronic medical records as part of medical history.

  13. High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE.

    Directory of Open Access Journals (Sweden)

    Stefano Castellana

    2017-06-01

    Full Text Available 24,189 are all the possible non-synonymous amino acid changes potentially affecting the human mitochondrial DNA. Only a tiny subset was functionally evaluated with certainty so far, while the pathogenicity of the vast majority was only assessed in-silico by software predictors. Since these tools proved to be rather incongruent, we have designed and implemented APOGEE, a machine-learning algorithm that outperforms all existing prediction methods in estimating the harmfulness of mitochondrial non-synonymous genome variations. We provide a detailed description of the underlying algorithm, of the selected and manually curated training and test sets of variants, as well as of its classification ability.

  14. Population-Genomic Insights into Variation in Prevotella intermedia and Prevotella nigrescens Isolates and Its Association with Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Yifei Zhang

    2017-09-01

    Full Text Available High-throughput sequencing has helped to reveal the close relationship between Prevotella and periodontal disease, but the roles of subspecies diversity and genomic variation within this genus in periodontal diseases still need to be investigated. We performed a comparative genome analysis of 48 Prevotella intermedia and Prevotella nigrescens isolates that from the same cohort of subjects to identify the main drivers of their pathogenicity and adaptation to different environments. The comparisons were done between two species and between disease and health based on pooled sequences. The results showed that both P. intermedia and P. nigrescens have highly dynamic genomes and can take up various exogenous factors through horizontal gene transfer. The major differences between disease-derived and health-derived samples of P. intermedia and P. nigrescens were factors related to genome modification and recombination, indicating that the Prevotella isolates from disease sites may be more capable of genomic reconstruction. We also identified genetic elements specific to each sample, and found that disease groups had more unique virulence factors related to capsule and lipopolysaccharide synthesis, secretion systems, proteinases, and toxins, suggesting that strains from disease sites may have more specific virulence, particularly for P. intermedia. The differentially represented pathways between samples from disease and health were related to energy metabolism, carbohydrate and lipid metabolism, and amino acid metabolism, consistent with data from the whole subgingival microbiome in periodontal disease and health. Disease-derived samples had gained or lost several metabolic genes compared to healthy-derived samples, which could be linked with the difference in virulence performance between diseased and healthy sample groups. Our findings suggest that P. intermedia and P. nigrescens may serve as “crucial substances” in subgingival plaque, which may

  15. Population-Genomic Insights into Variation in Prevotella intermedia and Prevotella nigrescens Isolates and Its Association with Periodontal Disease

    Science.gov (United States)

    Zhang, Yifei; Zhen, Min; Zhan, Yalin; Song, Yeqing; Zhang, Qian; Wang, Jinfeng

    2017-01-01

    High-throughput sequencing has helped to reveal the close relationship between Prevotella and periodontal disease, but the roles of subspecies diversity and genomic variation within this genus in periodontal diseases still need to be investigated. We performed a comparative genome analysis of 48 Prevotella intermedia and Prevotella nigrescens isolates that from the same cohort of subjects to identify the main drivers of their pathogenicity and adaptation to different environments. The comparisons were done between two species and between disease and health based on pooled sequences. The results showed that both P. intermedia and P. nigrescens have highly dynamic genomes and can take up various exogenous factors through horizontal gene transfer. The major differences between disease-derived and health-derived samples of P. intermedia and P. nigrescens were factors related to genome modification and recombination, indicating that the Prevotella isolates from disease sites may be more capable of genomic reconstruction. We also identified genetic elements specific to each sample, and found that disease groups had more unique virulence factors related to capsule and lipopolysaccharide synthesis, secretion systems, proteinases, and toxins, suggesting that strains from disease sites may have more specific virulence, particularly for P. intermedia. The differentially represented pathways between samples from disease and health were related to energy metabolism, carbohydrate and lipid metabolism, and amino acid metabolism, consistent with data from the whole subgingival microbiome in periodontal disease and health. Disease-derived samples had gained or lost several metabolic genes compared to healthy-derived samples, which could be linked with the difference in virulence performance between diseased and healthy sample groups. Our findings suggest that P. intermedia and P. nigrescens may serve as “crucial substances” in subgingival plaque, which may reflect changes in

  16. Defining the role of common variation in the genomic and biological architecture of adult human height

    OpenAIRE

    Wood, Andrew; Esko, Tõnu; Yang, Jian; Vedantam, Sailaja; Pers, Tune; Gustafsson, Stefan; Chu, Audrey Y; Estrada Gil, Karol; Luan, J.; Kutalik, Z.; Amin, Najaf; Buchkovich, Martin; Croteau-Chonka, Damien; Day, Felix; Duan, Yanan

    2014-01-01

    textabstractUsing genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated 1/42,000, 1/43,700 and 1/49,500 SNPs explained 1/421%, 1/424% and 1/429% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423...

  17. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair

    NARCIS (Netherlands)

    F. Liu; Chen, Y. (Yan); Zhu, G. (Gu); P.G. Hysi (Pirro); Wu, S. (Sijie); Adhikari, K. (Kaustubh); Breslin, K. (Krystal); E. Pośpiech (Ewelina); M.A. Hamer (Merel); Peng, F. (Fuduan); Muralidharan, C. (Charanya); Acuna-Alonzo, V. (Victor); Canizales-Quinteros, S. (Samuel); E.G. Bedoya (Elsie); Gallo, C. (Carla); Poletti, G. (Giovanni); Rothhammer, F. (Francisco); Bortolini, M.C. (Maria Catira); Gonzalez-Jose, R. (Rolando); Zeng, C. (Changqing); Xu, S. (Shuhua); Jin, L. (Li); A.G. Uitterlinden (André); M.A. Ikram (Arfan); C.M. van Duijn (Cornelia); T.E.C. Nijsten (Tamar); S. Walsh (Susan); W. Branicki (Wojciech); Wang, S. (Sijia); A. Ruiz-Linares (Andres); T.D. Spector (Timothy); Martin, N.G. (Nicholas G.); S.E. Medland (Sarah Elizabeth); M.H. Kayser (Manfred)

    2018-01-01

    textabstractShape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts

  18. Ancestry variation and footprints of natural selection along the genome in Latin American populations.

    Science.gov (United States)

    Deng, Lian; Ruiz-Linares, Andrés; Xu, Shuhua; Wang, Sijia

    2016-02-18

    Latin American populations stem from the admixture of Europeans, Africans and Native Americans, which started over 400 years ago and had lasted for several centuries. Extreme deviation over the genome-wide average in ancestry estimations at certain genomic locations could reflect recent natural selection. We evaluated the distribution of ancestry estimations using 678 genome-wide microsatellite markers in 249 individuals from 13 admixed populations across Latin America. We found significant deviations in ancestry estimations including three locations with more than 3.5 times standard deviations from the genome-wide average: an excess of European ancestry at 1p36 and 14q32, and an excess of African ancestry at 6p22. Using simulations, we could show that at least the deviation at 6p22 was unlikely to result from genetic drift alone. By applying different linguistic groups as well as the most likely ancestral Native American populations as the ancestry, we showed that the choice of Native American ancestry could affect the local ancestry estimation. However, the signal at 6p22 consistently appeared in most of the analyses using various ancestral groups. This study provided important insights for recent natural selection in the context of the unique history of the New World and implications for disease mapping.

  19. Genome size and phenotypic variation of Nymphaea (Nymphaeaceae) species from Eastern Europe and temperate Asia

    Czech Academy of Sciences Publication Activity Database

    Dąbrowska, M. A.; Rola, K.; Volkova, P.; Suda, Jan; Zalewska-Gałosz, J.

    2015-01-01

    Roč. 84, č. 2 (2015), s. 277-286 ISSN 0001-6977 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : flow cytometry * genome size * morphometrics Subject RIV: EF - Botanics Impact factor: 1.213, year: 2015

  20. Detection of genomic variation by selection of a 9 mb DNA region and high throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Sergey I Nikolaev

    Full Text Available Detection of the rare polymorphisms and causative mutations of genetic diseases in a targeted genomic area has become a major goal in order to understand genomic and phenotypic variability. We have interrogated repeat-masked regions of 8.9 Mb on human chromosomes 21 (7.8 Mb and 7 (1.1 Mb from an individual from the International HapMap Project (NA12872. We have optimized a method of genomic selection for high throughput sequencing. Microarray-based selection and sequencing resulted in 260-fold enrichment, with 41% of reads mapping to the target region. 83% of SNPs in the targeted region had at least 4-fold sequence coverage and 54% at least 15-fold. When assaying HapMap SNPs in NA12872, our sequence genotypes are 91.3% concordant in regions with coverage > or = 4-fold, and 97.9% concordant in regions with coverage > or = 15-fold. About 81% of the SNPs recovered with both thresholds are listed in dbSNP. We observed that regions with low sequence coverage occur in close proximity to low-complexity DNA. Validation experiments using Sanger sequencing were performed for 46 SNPs with 15-20 fold coverage, with a confirmation rate of 96%, suggesting that DNA selection provides an accurate and cost-effective method for identifying rare genomic variants.

  1. How genome size variation is linked with evolution within Chenopodium sensu lato

    Czech Academy of Sciences Publication Activity Database

    Mandák, Bohumil; Krak, Karol; Vít, Petr; Pavlíková, Zuzana; Lomonosova, M. N.; Habibi, Farzaneh; Lei, Wang; Jellen, E.N.; Douda, Jan

    2016-01-01

    Roč. 23, DEC 2016 (2016), s. 18-32 ISSN 1433-8319 R&D Projects: GA ČR GA13-02290S Institutional support: RVO:67985939 Keywords : Chenopodium * genome size evolution * flow cytometry Subject RIV: EF - Botanics Impact factor: 3.123, year: 2016

  2. Analyzing the genomic variation of microbial cell factories in the era of “New Biotechnology”

    DEFF Research Database (Denmark)

    Herrgard, Markus; Panagiotou, Gianni

    2012-01-01

    The application of genome-scale technologies, both experimental and in silico, to industrial biotechnology has allowed improving the conversion of biomass-derived feedstocks to chemicals, materials and fuels through microbial fermentation. In particular, due to rapidly decreasing costs and its...

  3. Systematic differences in the response of genetic variation to pedigree and genome-based selection methods

    NARCIS (Netherlands)

    Heidaritabar, M.; Vereijken, A.; Muir, W.M.; Meuwissen, T.H.E.; Cheng, H.; Megens, H.J.W.C.; Groenen, M.; Bastiaansen, J.W.M.

    2014-01-01

    Genomic selection (GS) is a DNA-based method of selecting for quantitative traits in animal and plant breeding, and offers a potentially superior alternative to traditional breeding methods that rely on pedigree and phenotype information. Using a 60¿K SNP chip with markers spaced throughout the

  4. Using an online genome resource to identify myostatin variation in U.S. sheep

    Science.gov (United States)

    We created a public, searchable DNA sequence resource for sheep that contained approximately 14x whole genome sequence of 96 rams. The animals represent 10 popular U.S. breeds and share minimal pedigree relationships, making the resource suitable for viewing gene variants in the user-friendly Integ...

  5. Single-cell paired-end genome sequencing reveals structural variation per cell cycle

    Science.gov (United States)

    Voet, Thierry; Kumar, Parveen; Van Loo, Peter; Cooke, Susanna L.; Marshall, John; Lin, Meng-Lay; Zamani Esteki, Masoud; Van der Aa, Niels; Mateiu, Ligia; McBride, David J.; Bignell, Graham R.; McLaren, Stuart; Teague, Jon; Butler, Adam; Raine, Keiran; Stebbings, Lucy A.; Quail, Michael A.; D’Hooghe, Thomas; Moreau, Yves; Futreal, P. Andrew; Stratton, Michael R.; Vermeesch, Joris R.; Campbell, Peter J.

    2013-01-01

    The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis. PMID:23630320

  6. Analysis of genetic variation and potential applications in genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Cardoso, Joao; Andersen, Mikael Rørdam; Herrgard, Markus

    2015-01-01

    , there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic......Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology...

  7. Genome-wide association study for milk somatic cell score in holstein cattle using copy number variation as markers.

    Science.gov (United States)

    Durán Aguilar, M; Román Ponce, S I; Ruiz López, F J; González Padilla, E; Vásquez Peláez, C G; Bagnato, A; Strillacci, M G

    2017-02-01

    Mastitis, the most common and expensive disease in dairy cows, implies significant losses in the dairy industry worldwide. Many efforts have been made to improve genetic mastitis resistance in dairy populations, but low heritability of this trait made this process not as effective as desired. The purpose of this study was to identify genomic regions explaining genetic variation of somatic cell count using copy number variations (CNVs) as markers in the Holstein population, genotyped with the Illumina BovineHD BeadChip. We found 24 and 47 copy number variation regions significantly associated with estimated breeding values for somatic cell score (SCS_EBVs) using SVS 8.3.1 and PennCNV-CNVRuler software, respectively. The association analysis performed with these two software allowed the identification of 18 candidate genes (TERT, NOTCH1, SLC6A3, CLPTM1L, PPARα, BCL-2, ABO, VAV2, CACNA1S, TRAF2, RELA, ELF3, DBH, CDK5, NF2, FASN, EWSR1 and MAP3K11) that result classified in the same functional cluster. These genes are also part of two gene networks, whose genes share the 'stress', 'cell death', 'inflammation' and 'immune response' GO terms. Combining CNV detection/association analysis based on two different algorithms helps towards a more complete identification of genes linked to phenotypic variation of the somatic cell count. © 2016 Blackwell Verlag GmbH.

  8. Variation in the genomic locations and sequence conservation of STAR elements among staphylococcal species provides insight into DNA repeat evolution.

    Science.gov (United States)

    Purves, Joanne; Blades, Matthew; Arafat, Yasrab; Malik, Salman A; Bayliss, Christopher D; Morrissey, Julie A

    2012-09-28

    Staphylococcus aureus Repeat (STAR) elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis.

  9. Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation.

    Science.gov (United States)

    Pinto, Miguel; Borges, Vítor; Antelo, Minia; Pinheiro, Miguel; Nunes, Alexandra; Azevedo, Jacinta; Borrego, Maria José; Mendonça, Joana; Carpinteiro, Dina; Vieira, Luís; Gomes, João Paulo

    2016-10-17

    Insights into the genomic adaptive traits of Treponema pallidum, the causative bacterium of syphilis, have long been hampered due to the absence of in vitro culture models and the constraints associated with its propagation in rabbits. Here, we have bypassed the culture bottleneck by means of a targeted strategy never applied to uncultivable bacterial human pathogens to directly capture whole-genome T. pallidum data in the context of human infection. This strategy has unveiled a scenario of discreet T. pallidum interstrain single-nucleotide-polymorphism-based microevolution, contrasting with a rampant within-patient genetic heterogeneity mainly targeting multiple phase-variable loci and a major antigen-coding gene (tprK). TprK demonstrated remarkable variability and redundancy, intra- and interpatient, suggesting ongoing parallel adaptive diversification during human infection. Some bacterial functions (for example, flagella- and chemotaxis-associated) were systematically targeted by both inter- and intrastrain single nucleotide polymorphisms, as well as by ongoing within-patient phase variation events. Finally, patient-derived genomes possess mutations targeting a penicillin-binding protein coding gene (mrcA) that had never been reported, unveiling it as a candidate target to investigate the impact on the susceptibility to penicillin. Our findings decode the major genetic mechanisms by which T. pallidum promotes immune evasion and survival, and demonstrate the exceptional power of characterizing evolving pathogen subpopulations during human infection.

  10. Variation in the genomic locations and sequence conservation of STAR elements among staphylococcal species provides insight into DNA repeat evolution

    Directory of Open Access Journals (Sweden)

    Purves Joanne

    2012-09-01

    Full Text Available Abstract Background Staphylococcus aureus Repeat (STAR elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Results Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. Conclusions The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis.

  11. Understanding the causes and implications of endothelial metabolic variation in cardiovascular disease through genome scale metabolic modeling

    Directory of Open Access Journals (Sweden)

    Sarah eMcGarrity

    2016-04-01

    Full Text Available High-throughput biochemical profiling has led to a requirement for advanced data interpretation techniques capable of integrating the analysis of gene, protein, and metabolic profiles to shed light on genotype-phenotype relationships. Herein, we consider the current state of knowledge of endothelial cell (EC metabolism and its connections to cardiovascular disease, and explore the use of genome scale metabolic models (GEMs for integrating metabolic and genomic data. GEMs combine gene expression and metabolic data acting as frameworks for their analysis and, ultimately, afford mechanistic understanding of how genetic variation impacts metabolism. We demonstrate how GEMs can be used to investigate cardiovascular disease-related genetic variation, drug resistance mechanisms, and novel metabolic pathways, in ECs. The application of GEMs in personalized medicine is also highlighted. Particularly, we focus on the potential of GEMs to identify metabolic biomarkers of endothelial dysfunction and to discover methods of stratifying treatments for cardiovascular diseases based on individual genetic markers. Recent advances in systems biology methodology, and how these methodologies can be applied to understand EC metabolism in both health and disease, are thus highlighted.

  12. Presence–Absence Variation in A. thaliana Is Primarily Associated with Genomic Signatures Consistent with Relaxed Selective Constraints

    Science.gov (United States)

    Bush, Stephen J.; Castillo-Morales, Atahualpa; Tovar-Corona, Jaime M.; Chen, Lu; Kover, Paula X.; Urrutia, Araxi O.

    2014-01-01

    The sequencing of multiple genomes of the same plant species has revealed polymorphic gene and exon loss. Genes associated with disease resistance are overrepresented among those showing structural variations, suggesting an adaptive role for gene and exon presence–absence variation (PAV). To shed light on the possible functional relevance of polymorphic coding region loss and the mechanisms driving this process, we characterized genes that have lost entire exons or their whole coding regions in 17 fully sequenced Arabidopsis thaliana accessions. We found that although a significant enrichment in genes associated with certain functional categories is observed, PAV events are largely restricted to genes with signatures of reduced essentiality: PAV genes tend to be newer additions to the genome, tissue specific, and lowly expressed. In addition, PAV genes are located in regions of lower gene density and higher transposable element density. Partial coding region PAV events were associated with only a marginal reduction in gene expression level in the affected accession and occurred in genes with higher levels of alternative splicing in the Col-0 accession. Together, these results suggest that although adaptive scenarios cannot be ruled out, PAV events can be explained without invoking them. PMID:24072814

  13. Systematic differences in the response of genetic variation to pedigree and genome-based selection methods.

    Science.gov (United States)

    Heidaritabar, M; Vereijken, A; Muir, W M; Meuwissen, T; Cheng, H; Megens, H-J; Groenen, M A M; Bastiaansen, J W M

    2014-12-01

    Genomic selection (GS) is a DNA-based method of selecting for quantitative traits in animal and plant breeding, and offers a potentially superior alternative to traditional breeding methods that rely on pedigree and phenotype information. Using a 60 K SNP chip with markers spaced throughout the entire chicken genome, we compared the impact of GS and traditional BLUP (best linear unbiased prediction) selection methods applied side-by-side in three different lines of egg-laying chickens. Differences were demonstrated between methods, both at the level and genomic distribution of allele frequency changes. In all three lines, the average allele frequency changes were larger with GS, 0.056 0.064 and 0.066, compared with BLUP, 0.044, 0.045 and 0.036 for lines B1, B2 and W1, respectively. With BLUP, 35 selected regions (empirical P selected regions were identified. Empirical thresholds for local allele frequency changes were determined from gene dropping, and differed considerably between GS (0.167-0.198) and BLUP (0.105-0.126). Between lines, the genomic regions with large changes in allele frequencies showed limited overlap. Our results show that GS applies selection pressure much more locally than BLUP, resulting in larger allele frequency changes. With these results, novel insights into the nature of selection on quantitative traits have been gained and important questions regarding the long-term impact of GS are raised. The rapid changes to a part of the genetic architecture, while another part may not be selected, at least in the short term, require careful consideration, especially when selection occurs before phenotypes are observed.

  14. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly

    OpenAIRE

    Lam, Ernest T; Hastie, Alex; Lin, Chin; Ehrlich, Dean; Das, Somes K; Austin, Michael D; Deshpande, Paru; Cao, Han; Nagarajan, Niranjan; Xiao, Ming; Kwok, Pui-Yan

    2012-01-01

    We describe genome mapping on nanochannel arrays. In this approach, specific sequence motifs in single DNA molecules are fluorescently labeled, and the DNA molecules are uniformly stretched in thousands of silicon channels on a nanofluidic device. Fluorescence imaging allows the construction of maps of the physical distances between occurrences of the sequence motifs. We demonstrate the analysis, individually and as mixtures, of 95 bacterial artificial chromosome (BAC) clones that cover the 4...

  15. Demographic history and biologically relevant genetic variation of Native Mexicans inferred from whole-genome sequencing

    OpenAIRE

    Romero-Hidalgo, Sandra; Ochoa-Leyva, Adrián; Garcíarrubio, Alejandro; Acuña-Alonzo, Victor; Antúnez-Argüelles, Erika; Balcazar-Quintero, Martha; Barquera-Lozano, Rodrigo; Carnevale, Alessandra; Cornejo-Granados, Fernanda; Fernández-López, Juan Carlos; García-Herrera, Rodrigo; García-Ortíz, Humberto; Granados-Silvestre, Ángeles; Granados, Julio; Guerrero-Romero, Fernando

    2017-01-01

    Understanding the genetic structure of Native American populations is important to clarify their diversity, demographic history, and to identify genetic factors relevant for biomedical traits. Here, we show a demographic history reconstruction from 12 Native American whole genomes belonging to six distinct ethnic groups representing the three main described genetic clusters of Mexico (Northern, Southern, and Maya). Effective population size estimates of all Native American groups remained bel...

  16. A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes.

    Science.gov (United States)

    Starkenburg, Shawn R; Kwon, Kyungyoon J; Jha, Ramesh K; McKay, Cedar; Jacobs, Michael; Chertkov, Olga; Twary, Scott; Rocap, Gabrielle; Cattolico, Rose Ann

    2014-03-19

    Microalgae in the genus Nannochloropsis are photosynthetic marine Eustigmatophytes of significant interest to the bioenergy and aquaculture sectors due to their ability to efficiently accumulate biomass and lipids for utilization in renewable transportation fuels, aquaculture feed, and other useful bioproducts. To better understand the genetic complement that drives the metabolic processes of these organisms, we present the assembly and comparative pangenomic analysis of the chloroplast and mitochondrial genomes from Nannochloropsis salina CCMP1776. The chloroplast and mitochondrial genomes of N. salina are 98.4% and 97% identical to their counterparts in Nannochloropsis gaditana. Comparison of the Nannochloropsis pangenome to other algae within and outside of the same phyla revealed regions of significant genetic divergence in key genes that encode proteins needed for regulation of branched chain amino synthesis (acetohydroxyacid synthase), carbon fixation (RuBisCO activase), energy conservation (ATP synthase), protein synthesis and homeostasis (Clp protease, ribosome). Many organellar gene modifications in Nannochloropsis are unique and deviate from conserved orthologs found across the tree of life. Implementation of secondary and tertiary structure prediction was crucial to functionally characterize many proteins and therefore should be implemented in automated annotation pipelines. The exceptional similarity of the N. salina and N. gaditana organellar genomes suggests that N. gaditana be reclassified as a strain of N. salina.

  17. Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality.

    Directory of Open Access Journals (Sweden)

    Xia Shen

    2014-12-01

    Full Text Available As Arabidopsis thaliana has colonized a wide range of habitats across the world it is an attractive model for studying the genetic mechanisms underlying environmental adaptation. Here, we used public data from two collections of A. thaliana accessions to associate genetic variability at individual loci with differences in climates at the sampling sites. We use a novel method to screen the genome for plastic alleles that tolerate a broader climate range than the major allele. This approach reduces confounding with population structure and increases power compared to standard genome-wide association methods. Sixteen novel loci were found, including an association between Chromomethylase 2 (CMT2 and temperature seasonality where the genome-wide CHH methylation was different for the group of accessions carrying the plastic allele. Cmt2 mutants were shown to be more tolerant to heat-stress, suggesting genetic regulation of epigenetic modifications as a likely mechanism underlying natural adaptation to variable temperatures, potentially through differential allelic plasticity to temperature-stress.

  18. Spectrum of mitochondrial genomic variation and associated clinical presentation of prostate cancer in South African men.

    Science.gov (United States)

    McCrow, John P; Petersen, Desiree C; Louw, Melanie; Chan, Eva K F; Harmeyer, Katherine; Vecchiarelli, Stefano; Lyons, Ruth J; Bornman, M S Riana; Hayes, Vanessa M

    2016-03-01

    Prostate cancer incidence and mortality rates are significantly increased in African-American men, but limited studies have been performed within Sub-Saharan African populations. As mitochondria control energy metabolism and apoptosis we speculate that somatic mutations within mitochondrial genomes are candidate drivers of aggressive prostate carcinogenesis. We used matched blood and prostate tissue samples from 87 South African men (77 with African ancestry) to perform deep sequencing of complete mitochondrial genomes. Clinical presentation was biased toward aggressive disease (Gleason score >7, 64%), and compared with men without prostate cancer either with or without benign prostatic hyperplasia. We identified 144 somatic mtDNA single nucleotide variants (SNVs), of which 80 were observed in 39 men presenting with aggressive disease. Both the number and frequency of somatic mtDNA SNVs were associated with higher pathological stage. Besides doubling the total number of somatic PCa-associated mitochondrial genome mutations identified to date, we associate mutational load with aggressive prostate cancer status in men of African ancestry. © 2015 The Authors. The Prostate published by Wiley Periodicals, Inc.

  19. Rice pseudomolecule-anchored cross-species DNA sequence alignments indicate regional genomic variation in expressed sequence conservation

    Directory of Open Access Journals (Sweden)

    Thomas Howard

    2007-08-01

    Full Text Available Abstract Background Various methods have been developed to explore inter-genomic relationships among plant species. Here, we present a sequence similarity analysis based upon comparison of transcript-assembly and methylation-filtered databases from five plant species and physically anchored rice coding sequences. Results A comparison of the frequency of sequence alignments, determined by MegaBLAST, between rice coding sequences in TIGR pseudomolecules and annotations vs 4.0 and comprehensive transcript-assembly and methylation-filtered databases from Lolium perenne (ryegrass, Zea mays (maize, Hordeum vulgare (barley, Glycine max (soybean and Arabidopsis thaliana (thale cress was undertaken. Each rice pseudomolecule was divided into 10 segments, each containing 10% of the functionally annotated, expressed genes. This indicated a correlation between relative segment position in the rice genome and numbers of alignments with all the queried monocot and dicot plant databases. Colour-coded moving windows of 100 functionally annotated, expressed genes along each pseudomolecule were used to generate 'heat-maps'. These revealed consistent intra- and inter-pseudomolecule variation in the relative concentrations of significant alignments with the tested plant databases. Analysis of the annotations and derived putative expression patterns of rice genes from 'hot-spots' and 'cold-spots' within the heat maps indicated possible functional differences. A similar comparison relating to ancestral duplications of the rice genome indicated that duplications were often associated with 'hot-spots'. Conclusion Physical positions of expressed genes in the rice genome are correlated with the degree of conservation of similar sequences in the transcriptomes of other plant species. This relative conservation is associated with the distribution of different sized gene families and segmentally duplicated loci and may have functional and evolutionary implications.

  20. A variable region within the genome of Streptococcus pneumoniae contributes to strain-strain variation in virulence.

    Directory of Open Access Journals (Sweden)

    Richard M Harvey

    2011-05-01

    Full Text Available The bacterial factors responsible for the variation in invasive potential between different clones and serotypes of Streptococcus pneumoniae are largely unknown. Therefore, the isolation of rare serotype 1 carriage strains in Indigenous Australian communities provided a unique opportunity to compare the genomes of non-invasive and invasive isolates of the same serotype in order to identify such factors. The human virulence status of non-invasive, intermediately virulent and highly virulent serotype 1 isolates was reflected in mice and showed that whilst both human non-invasive and highly virulent isolates were able to colonize the murine nasopharynx equally, only the human highly virulent isolates were able to invade and survive in the murine lungs and blood. Genomic sequencing comparisons between these isolates identified 8 regions >1 kb in size that were specific to only the highly virulent isolates, and included a version of the pneumococcal pathogenicity island 1 variable region (PPI-1v, phage-associated adherence factors, transporters and metabolic enzymes. In particular, a phage-associated endolysin, a putative iron/lead permease and an operon within PPI-1v exhibited niche-specific changes in expression that suggest important roles for these genes in the lungs and blood. Moreover, in vivo competition between pneumococci carrying PPI-1v derivatives representing the two identified versions of the region showed that the version of PPI-1v in the highly virulent isolates was more competitive than the version from the less virulent isolates in the nasopharyngeal tissue, blood and lungs. This study is the first to perform genomic comparisons between serotype 1 isolates with distinct virulence profiles that correlate between mice and humans, and has highlighted the important role that hypervariable genomic loci, such as PPI-1v, play in pneumococcal disease. The findings of this study have important implications for understanding the processes that

  1. Variation in abscisic acid responsiveness of Aegilops tauschii and hexaploid wheat synthetics due to the D-genome diversity.

    Science.gov (United States)

    Iehisa, Julio C M; Takumi, Shigeo

    2012-01-01

    Common wheat (Triticum aestivum L.) is an allohexaploid that originated from natural hybridization between tetraploid wheat (Triticum turgidum) and diploid Aegilops tauschii. Ae. tauschii is considered one of the potential sources of new genetic variation in abiotic stress tolerance for improving common wheat. Abscisic acid (ABA) plays an important role in plant adaptation to environmental stresses. In this study, ABA responsiveness of 67 Ae. tauschii accessions and their synthetic hexaploid wheat lines, derived from crosses between T. turgidum cv. Langdon and the Ae. tauschii accessions, was evaluated based on growth inhibition by 20 µM ABA. Wide variation was found in ABA responsiveness for both synthetic wheat lines and their parental Ae. tauschii accessions. The variations due to D-genome found at the diploid level were also expressed in a hexaploid genetic background. Two pairs of synthetic wheat lines differing in ABA responsiveness were then selected for gene expression analysis and to test abiotic stress tolerance, because their parental Ae. tauschii accessions similarly exhibited the differential response to ABA. Gene expression of ABA inducible transcription factor, WABI5, and the downstream Cor/Lea genes (Wrab17, Wdhn13 and Wrab18) were analysed. In one pair, the highly responsive line exhibited higher induction of Wrab17 by ABA treatment, but no significant difference in dehydration or salinity tolerance was observed between these lines. In contrast, in the second pair, the highly ABA-responsive line showed higher levels of Wdhn13 expression and dehydration and salinity tolerance. In synthetic wheat lines, the difference in the ABA responsiveness of the lines appeared to be determined by the different sets of D-genome genes. Our findings suggest that highly ABA-responsive Ae. tauschii accessions should be valuable genetic resources for improving the abiotic stress tolerance of common wheat.

  2. Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens

    Directory of Open Access Journals (Sweden)

    Nätt Daniel

    2012-02-01

    Full Text Available Abstract Background Variations in gene expression, mediated by epigenetic mechanisms, may cause broad phenotypic effects in animals. However, it has been debated to what extent expression variation and epigenetic modifications, such as patterns of DNA methylation, are transferred across generations, and therefore it is uncertain what role epigenetic variation may play in adaptation. Results In Red Junglefowl, ancestor of domestic chickens, gene expression and methylation profiles in thalamus/hypothalamus differed substantially from that of a domesticated egg laying breed. Expression as well as methylation differences were largely maintained in the offspring, demonstrating reliable inheritance of epigenetic variation. Some of the inherited methylation differences were tissue-specific, and the differential methylation at specific loci were little changed after eight generations of intercrossing between Red Junglefowl and domesticated laying hens. There was an over-representation of differentially expressed and methylated genes in selective sweep regions associated with chicken domestication. Conclusions Our results show that epigenetic variation is inherited in chickens, and we suggest that selection of favourable epigenomes, either by selection of genotypes affecting epigenetic states, or by selection of methylation states which are inherited independently of sequence differences, may have been an important aspect of chicken domestication.

  3. Trends in genome dynamics among major orders of insects revealed through variations in protein families.

    Science.gov (United States)

    Rappoport, Nadav; Linial, Michal

    2015-08-07

    Insects belong to a class that accounts for the majority of animals on earth. With over one million identified species, insects display a huge diversity and occupy extreme environments. At present, there are dozens of fully sequenced insect genomes that cover a range of habitats, social behavior and morphologies. In view of such diverse collection of genomes, revealing evolutionary trends and charting functional relationships of proteins remain challenging. We analyzed the relatedness of 17 complete proteomes representative of proteomes from insects including louse, bee, beetle, ants, flies and mosquitoes, as well as an out-group from the crustaceans. The analyzed proteomes mostly represented the orders of Hymenoptera and Diptera. The 287,405 protein sequences from the 18 proteomes were automatically clustered into 20,933 families, including 799 singletons. A comprehensive analysis based on statistical considerations identified the families that were significantly expanded or reduced in any of the studied organisms. Among all the tested species, ants are characterized by an exceptionally high rate of family gain and loss. By assigning annotations to hundreds of species-specific families, the functional diversity among species and between the major clades (Diptera and Hymenoptera) is revealed. We found that many species-specific families are associated with receptor signaling, stress-related functions and proteases. The highest variability among insects associates with the function of transposition and nucleic acids processes (collectively coined TNAP). Specifically, the wasp and ants have an order of magnitude more TNAP families and proteins relative to species that belong to Diptera (mosquitoes and flies). An unsupervised clustering methodology combined with a comparative functional analysis unveiled proteomic signatures in the major clades of winged insects. We propose that the expansion of TNAP families in Hymenoptera potentially contributes to the accelerated

  4. Host genome variations and risk of infections during induction treatment for childhood acute lymphoblastic leukaemia

    DEFF Research Database (Denmark)

    Lund, Bendik; Wesolowska-Andersen, Agata; Lausen, Birgitte

    2014-01-01

    .01). Classification and regression tree analysis demonstrated rs11033797 (OR51F1), rs2835265 (CBR1), rs28627172 (POLDIP3) and rs1129844 (CCL11) to be predictive of outcome. Among 61 patients for whom read-outs were available for all four SNPs, 40 of 41 patients with the worst SNP profile experienced at least one......’ and ‘Class I MHC-mediated antigen processing and presentation’ to be highly predictive of infections. Conclusions: Our data indicate that host genomic profiling may predict the risk of infections during induction therapy. This may facilitate development of individualised supportive care....

  5. Simultaneous inference of selection and population growth from patterns of variation in the human genome

    DEFF Research Database (Denmark)

    Williamson, Scott H.; Hernandez, Ryan; Fledel-Alon, Adi

    2005-01-01

    this method to a large polymorphism data set from 301 human genes and find (i) widespread negative selection acting on standing nonsynonymous variation, (ii) that the fitness effects of nonsynonymous mutations are well predicted by several measures of amino acid exchangeability, especially site...

  6. Defining the role of common variation in the genomic and biological architecture of adult human height

    Science.gov (United States)

    Chu, Audrey Y; Estrada, Karol; Luan, Jian’an; Kutalik, Zoltán; Amin, Najaf; Buchkovich, Martin L; Croteau-Chonka, Damien C; Day, Felix R; Duan, Yanan; Fall, Tove; Fehrmann, Rudolf; Ferreira, Teresa; Jackson, Anne U; Karjalainen, Juha; Lo, Ken Sin; Locke, Adam E; Mägi, Reedik; Mihailov, Evelin; Porcu, Eleonora; Randall, Joshua C; Scherag, André; Vinkhuyzen, Anna AE; Westra, Harm-Jan; Winkler, Thomas W; Workalemahu, Tsegaselassie; Zhao, Jing Hua; Absher, Devin; Albrecht, Eva; Anderson, Denise; Baron, Jeffrey; Beekman, Marian; Demirkan, Ayse; Ehret, Georg B; Feenstra, Bjarke; Feitosa, Mary F; Fischer, Krista; Fraser, Ross M; Goel, Anuj; Gong, Jian; Justice, Anne E; Kanoni, Stavroula; Kleber, Marcus E; Kristiansson, Kati; Lim, Unhee; Lotay, Vaneet; Lui, Julian C; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Nalls, Michael A; Nyholt, Dale R; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Prokopenko, Inga; Ried, Janina S; Ripke, Stephan; Shungin, Dmitry; Stancáková, Alena; Strawbridge, Rona J; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Trompet, Stella; van der Laan, Sander W; van Setten, Jessica; Van Vliet-Ostaptchouk, Jana V; Wang, Zhaoming; Yengo, Loïc; Zhang, Weihua; Afzal, Uzma; Ärnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Bolton, Jennifer L; Böttcher, Yvonne; Boyd, Heather A; Bruinenberg, Marcel; Buckley, Brendan M; Buyske, Steven; Caspersen, Ida H; Chines, Peter S; Clarke, Robert; Claudi-Boehm, Simone; Cooper, Matthew; Daw, E Warwick; De Jong, Pim A; Deelen, Joris; Delgado, Graciela; Denny, Josh C; Dhonukshe-Rutten, Rosalie; Dimitriou, Maria; Doney, Alex SF; Dörr, Marcus; Eklund, Niina; Eury, Elodie; Folkersen, Lasse; Garcia, Melissa E; Geller, Frank; Giedraitis, Vilmantas; Go, Alan S; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grönberg, Henrik; de Groot, Lisette C.P.G.M.; Groves, Christopher J; Haessler, Jeffrey; Hall, Per; Haller, Toomas; Hallmans, Goran; Hannemann, Anke; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heard-Costa, Nancy L; Helmer, Quinta; Hemani, Gibran; Henders, Anjali K; Hillege, Hans L; Hlatky, Mark A; Hoffmann, Wolfgang; Hoffmann, Per; Holmen, Oddgeir; Houwing-Duistermaat, Jeanine J; Illig, Thomas; Isaacs, Aaron; James, Alan L; Jeff, Janina; Johansen, Berit; Johansson, Åsa; Jolley, Jennifer; Juliusdottir, Thorhildur; Junttila, Juhani; Kho, Abel N; Kinnunen, Leena; Klopp, Norman; Kocher, Thomas; Kratzer, Wolfgang; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Lu, Yingchang; Lyssenko, Valeriya; Magnusson, Patrik KE; Mahajan, Anubha; Maillard, Marc; McArdle, Wendy L; McKenzie, Colin A; McLachlan, Stela; McLaren, Paul J; Menni, Cristina; Merger, Sigrun; Milani, Lili; Moayyeri, Alireza; Monda, Keri L; Morken, Mario A; Müller, Gabriele; Müller-Nurasyid, Martina; Musk, Arthur W; Narisu, Narisu; Nauck, Matthias; Nolte, Ilja M; Nöthen, Markus M; Oozageer, Laticia; Pilz, Stefan; Rayner, Nigel W; Renstrom, Frida; Robertson, Neil R; Rose, Lynda M; Roussel, Ronan; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Schumacher, Fredrick R; Schunkert, Heribert; Scott, Robert A; Sehmi, Joban; Seufferlein, Thomas; Shi, Jianxin; Silventoinen, Karri; Smit, Johannes H; Smith, Albert Vernon; Smolonska, Joanna; Stanton, Alice V; Stirrups, Kathleen; Stott, David J; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorleifsson, Gudmar; Tyrer, Jonathan P; van Dijk, Suzanne; van Schoor, Natasja M; van der Velde, Nathalie; van Heemst, Diana; van Oort, Floor VA; Vermeulen, Sita H; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Waldenberger, Melanie; Wennauer, Roman; Wilkens, Lynne R; Willenborg, Christina; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Wright, Alan F; Zhang, Qunyuan; Arveiler, Dominique; Bakker, Stephan JL; Beilby, John; Bergman, Richard N; Bergmann, Sven; Biffar, Reiner; Blangero, John; Boomsma, Dorret I; Bornstein, Stefan R; Bovet, Pascal; Brambilla, Paolo; Brown, Morris J; Campbell, Harry; Caulfield, Mark J; Chakravarti, Aravinda; Collins, Rory; Collins, Francis S; Crawford, Dana C; Cupples, L Adrienne; Danesh, John; de Faire, Ulf; den Ruijter, Hester M; Erbel, Raimund; Erdmann, Jeanette; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Ford, Ian; Forouhi, Nita G; Forrester, Terrence; Gansevoort, Ron T; Gejman, Pablo V; Gieger, Christian; Golay, Alain; Gottesman, Omri; Gudnason, Vilmundur; Gyllensten, Ulf; Haas, David W; Hall, Alistair S; Harris, Tamara B; Hattersley, Andrew T; Heath, Andrew C; Hengstenberg, Christian; Hicks, Andrew A; Hindorff, Lucia A; Hingorani, Aroon D; Hofman, Albert; Hovingh, G Kees; Humphries, Steve E; Hunt, Steven C; Hypponen, Elina; Jacobs, Kevin B; Jarvelin, Marjo-Riitta; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kastelein, John JP; Kayser, Manfred; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kiemeney, Lambertus A; Kooner, Jaspal S; Kooperberg, Charles; Koskinen, Seppo; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lupoli, Sara; Madden, Pamela AF; Männistö, Satu; Manunta, Paolo; Marette, André; Matise, Tara C; McKnight, Barbara; Meitinger, Thomas; Moll, Frans L; Montgomery, Grant W; Morris, Andrew D; Morris, Andrew P; Murray, Jeffrey C; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Ouwehand, Willem H; Pasterkamp, Gerard; Peters, Annette; Pramstaller, Peter P; Price, Jackie F; Qi, Lu; Raitakari, Olli T; Rankinen, Tuomo; Rao, DC; Rice, Treva K; Ritchie, Marylyn; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter EH; Sebert, Sylvain; Sever, Peter; Shuldiner, Alan R; Sinisalo, Juha; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Tardif, Jean-Claude; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Virtamo, Jarmo; Vohl, Marie-Claude; Amouyel, Philippe; Asselbergs, Folkert W; Assimes, Themistocles L; Bochud, Murielle; Boehm, Bernhard O; Boerwinkle, Eric; Bottinger, Erwin P; Bouchard, Claude; Cauchi, Stéphane; Chambers, John C; Chanock, Stephen J; Cooper, Richard S; de Bakker, Paul IW; Dedoussis, George; Ferrucci, Luigi; Franks, Paul W; Froguel, Philippe; Groop, Leif C; Haiman, Christopher A; Hamsten, Anders; Hayes, M Geoffrey; Hui, Jennie; Hunter, David J.; Hveem, Kristian; Jukema, J Wouter; Kaplan, Robert C; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; Martin, Nicholas G; März, Winfried; Melbye, Mads; Moebus, Susanne; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin NA; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Powell, Joseph E; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Reinmaa, Eva; Ridker, Paul M; Rivadeneira, Fernando; Rotter, Jerome I; Saaristo, Timo E; Saleheen, Danish; Schlessinger, David; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Strauch, Konstantin; Stumvoll, Michael; Tuomilehto, Jaakko; Uusitupa, Matti; van der Harst, Pim; Völzke, Henry; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Wilson, James F; Zanen, Pieter; Deloukas, Panos; Heid, Iris M; Lindgren, Cecilia M; Mohlke, Karen L; Speliotes, Elizabeth K; Thorsteinsdottir, Unnur; Barroso, Inês; Fox, Caroline S; North, Kari E; Strachan, David P; Beckmann, Jacques S.; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; McCarthy, Mark I; Metspalu, Andres; Stefansson, Kari; Uitterlinden, André G; van Duijn, Cornelia M; Franke, Lude; Willer, Cristen J; Price, Alkes L.; Lettre, Guillaume; Loos, Ruth JF; Weedon, Michael N; Ingelsson, Erik; O’Connell, Jeffrey R; Abecasis, Goncalo R; Chasman, Daniel I; Goddard, Michael E

    2014-01-01

    Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explain one-fifth of heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ~2,000, ~3,700 and ~9,500 SNPs explained ~21%, ~24% and ~29% of phenotypic variance. Furthermore, all common variants together captured the majority (60%) of heritability. The 697 variants clustered in 423 loci enriched for genes, pathways, and tissue-types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/beta-catenin, and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants. PMID:25282103

  7. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data

    OpenAIRE

    Susann Mönchgesang; Nadine Strehmel; Stephan Schmidt; Lore Westphal; Franziska Taruttis; Erik Müller; Siska Herklotz; Steffen Neumann; Dierk Scheel

    2016-01-01

    Many metabolomics studies focus on aboveground parts of the plant, while metabolism within roots and the chemical composition of the rhizosphere, as influenced by exudation, are not deeply investigated. In this study, we analysed exudate metabolic patterns of Arabidopsis thaliana and their variation in genetically diverse accessions. For this project, we used the 19 parental accessions of the Arabidopsis MAGIC collection. Plants were grown in a hydroponic system, their exudates were harvested...

  8. Bayesian Nonparametric Hidden Markov Models with application to the analysis of copy-number-variation in mammalian genomes.

    Science.gov (United States)

    Yau, C; Papaspiliopoulos, O; Roberts, G O; Holmes, C

    2011-01-01

    We consider the development of Bayesian Nonparametric methods for product partition models such as Hidden Markov Models and change point models. Our approach uses a Mixture of Dirichlet Process (MDP) model for the unknown sampling distribution (likelihood) for the observations arising in each state and a computationally efficient data augmentation scheme to aid inference. The method uses novel MCMC methodology which combines recent retrospective sampling methods with the use of slice sampler variables. The methodology is computationally efficient, both in terms of MCMC mixing properties, and robustness to the length of the time series being investigated. Moreover, the method is easy to implement requiring little or no user-interaction. We apply our methodology to the analysis of genomic copy number variation.

  9. Computational methods for detecting copy number variations in cancer genome using next generation sequencing: principles and challenges

    Science.gov (United States)

    Liu, Biao; Morrison, Carl D.; Johnson, Candace S.; Trump, Donald L.; Qin, Maochun; Conroy, Jeffrey C.; Wang, Jianmin; Liu, Song

    2013-01-01

    Accurate detection of somatic copy number variations (CNVs) is an essential part of cancer genome analysis, and plays an important role in oncotarget identifications. Next generation sequencing (NGS) holds the promise to revolutionize somatic CNV detection. In this review, we provide an overview of current analytic tools used for CNV detection in NGS-based cancer studies. We summarize the NGS data types used for CNV detection, decipher the principles for data preprocessing, segmentation, and interpretation, and discuss the challenges in somatic CNV detection. This review aims to provide a guide to the analytic tools used in NGS-based cancer CNV studies, and to discuss the important factors that researchers need to consider when analyzing NGS data for somatic CNV detections. PMID:24240121

  10. Rare Genome-Wide Copy Number Variation and Expression of Schizophrenia in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Bassett, Anne S; Lowther, Chelsea; Merico, Daniele; Costain, Gregory; Chow, Eva W C; van Amelsvoort, Therese; McDonald-McGinn, Donna; Gur, Raquel E; Swillen, Ann; Van den Bree, Marianne; Murphy, Kieran; Gothelf, Doron; Bearden, Carrie E; Eliez, Stephan; Kates, Wendy; Philip, Nicole; Sashi, Vandana; Campbell, Linda; Vorstman, Jacob; Cubells, Joseph; Repetto, Gabriela M; Simon, Tony; Boot, Erik; Heung, Tracy; Evers, Rens; Vingerhoets, Claudia; van Duin, Esther; Zackai, Elaine; Vergaelen, Elfi; Devriendt, Koen; Vermeesch, Joris R; Owen, Michael; Murphy, Clodagh; Michaelovosky, Elena; Kushan, Leila; Schneider, Maude; Fremont, Wanda; Busa, Tiffany; Hooper, Stephen; McCabe, Kathryn; Duijff, Sasja; Isaev, Karin; Pellecchia, Giovanna; Wei, John; Gazzellone, Matthew J; Scherer, Stephen W; Emanuel, Beverly S; Guo, Tingwei; Morrow, Bernice E; Marshall, Christian R

    2017-11-01

    Chromosome 22q11.2 deletion syndrome (22q11.2DS) is associated with a more than 20-fold increased risk for developing schizophrenia. The aim of this study was to identify additional genetic factors (i.e., "second hits") that may contribute to schizophrenia expression. Through an international consortium, the authors obtained DNA samples from 329 psychiatrically phenotyped subjects with 22q11.2DS. Using a high-resolution microarray platform and established methods to assess copy number variation (CNV), the authors compared the genome-wide burden of rare autosomal CNV, outside of the 22q11.2 deletion region, between two groups: a schizophrenia group and those with no psychotic disorder at age ≥25 years. The authors assessed whether genes overlapped by rare CNVs were overrepresented in functional pathways relevant to schizophrenia. Rare CNVs overlapping one or more protein-coding genes revealed significant between-group differences. For rare exonic duplications, six of 19 gene sets tested were enriched in the schizophrenia group; genes associated with abnormal nervous system phenotypes remained significant in a stepwise logistic regression model and showed significant interactions with 22q11.2 deletion region genes in a connectivity analysis. For rare exonic deletions, the schizophrenia group had, on average, more genes overlapped. The additional rare CNVs implicated known (e.g., GRM7, 15q13.3, 16p12.2) and novel schizophrenia risk genes and loci. The results suggest that additional rare CNVs overlapping genes outside of the 22q11.2 deletion region contribute to schizophrenia risk in 22q11.2DS, supporting a multigenic hypothesis for schizophrenia. The findings have implications for understanding expression of psychotic illness and herald the importance of whole-genome sequencing to appreciate the overall genomic architecture of schizophrenia.

  11. Induction and recovery of copy number variation in banana through gamma irradiation and low coverage whole genome sequencing.

    Science.gov (United States)

    Datta, Sneha; Jankowicz-Cieslak, Joanna; Nielen, Stephan; Ingelbrecht, Ivan; Till, Bradley J

    2018-02-24

    Traditional breeding methods are hindered in bananas due to the fact that major cultivars are sterile, parthenocarpic, triploid, and thus clonally propagated. This has resulted in a narrow genetic base and limited resilience to biotic and abiotic stresses. Mutagenesis of in vitro propagated bananas is one method to introduce novel alleles and broaden genetic diversity. We previously established a method for the induction and recovery of single nucleotide mutations generated with the chemical mutagen EMS. However, officially released mutant banana varieties have been created using gamma rays, a mutagen that can produce large genomic insertions and deletions (indels). Such dosage mutations may be important for generating observable phenotypes in polyploids. In this study we establish a low coverage whole genome sequencing approach in triploid bananas to recover large genomic indels caused by treatment with gamma irradiation. We first evaluated the commercially released mutant cultivar 'Novaria' and found that it harbors multiple predicted deletions, ranging from 0.3 to 3.8 million base pairs (Mbp). In total, predicted deleted regions span 189 coding regions. To evaluate the feasibility of generating and maintaining new mutations, we developed a pipeline for mutagenesis and screening for copy number variation in Cavendish bananas using the cultivar 'Williams'. Putative mutations were recovered in 70% of lines treated with 20 Gy and 60% of the lines treated with 40 Gy. While deletion events predominate, insertions were identified in 20 Gy treated material. Based on these results, we believe this approach can be scaled up to support large breeding projects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Investigating the genomic basis of discrete phenotypes using a Pool-Seq-only approach: New insights into the genetics underlying colour variation in diverse taxa.

    Science.gov (United States)

    Neethiraj, Ramprasad; Hornett, Emily A; Hill, Jason A; Wheat, Christopher W

    2017-10-01

    While large-scale genomic approaches are increasingly revealing the genetic basis of polymorphic phenotypes such as colour morphs, such approaches are almost exclusively conducted in species with high-quality genomes and annotations. Here, we use Pool-Seq data for both genome assembly and SNP frequency estimation, followed by scanning for F ST outliers to identify divergent genomic regions. Using paired-end, short-read sequencing data from two groups of individuals expressing divergent phenotypes, we generate a de novo rough-draft genome, identify SNPs and calculate genomewide F ST differences between phenotypic groups. As genomes generated by Pool-Seq data are highly fragmented, we also present an approach for super-scaffolding contigs using existing protein-coding data sets. Using this approach, we reanalysed genomic data from two recent studies of birds and butterflies investigating colour pattern variation and replicated their core findings, demonstrating the accuracy and power of a Pool-Seq-only approach. Additionally, we discovered new regions of high divergence and new annotations that together suggest novel parallels between birds and butterflies in the origins of their colour pattern variation. © 2017 John Wiley & Sons Ltd.

  13. Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Hyakukoku, M.; Houštěk, Josef; Zídek, Václav; Landa, Vladimír; Mlejnek, Petr; Mikšík, Ivan; Mothejzíková-Dudová, Kristýna; Pecina, Petr; Vrbacký, Marek; Drahota, Zdeněk; Vojtíšková, Alena; Mráček, Tomáš; Kazdová, L.; Oliyarnyk, O.; Wang, Ji.; Ho, Ch.; Qi, N.; Sugimoto, K.; Kurtz, T.

    2007-01-01

    Roč. 17, č. 9 (2007), s. 1319-1326 ISSN 1088-9051 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA301/06/0028; GA ČR GA303/07/0781 Grant - others:GA UK(CZ) 24/2005; GA UK(CZ) 26/2005; National Institutes of Health(US) HL35018; National Institutes of Health(US) HL56028; National Institutes of Health(US) HL63709; EURATOOLS(XE) LSHG-CT-2005-019015 Institutional research plan: CEZ:AV0Z50110509 Source of funding: R - rámcový projekt EK Keywords : mitochondrial genome * conplastic strains * risk factors for type 2 diabetes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.224, year: 2007

  14. Rapid and Inexpensive Screening of Genomic Copy Number Variations Using a Novel Quantitative Fluorescent PCR Method

    Directory of Open Access Journals (Sweden)

    Martin Stofanko

    2013-01-01

    Full Text Available Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations.

  15. A customized high-resolution array-comparative genomic hybridization to explore copy number variations in Parkinson's disease.

    Science.gov (United States)

    La Cognata, Valentina; Morello, Giovanna; Gentile, Giulia; D'Agata, Velia; Criscuolo, Chiara; Cavalcanti, Francesca; Cavallaro, Sebastiano

    2016-10-01

    Parkinson's disease (PD), the second most common progressive neurodegenerative disorder, was long believed to be a non-genetic sporadic syndrome. Today, only a small percentage of PD cases with genetic inheritance patterns are known, often complicated by reduced penetrance and variable expressivity. The few well-characterized Mendelian genes, together with a number of risk factors, contribute to the major sporadic forms of the disease, thus delineating an intricate genetic profile at the basis of this debilitating and incurable condition. Along with single nucleotide changes, gene-dosage abnormalities and copy number variations (CNVs) have emerged as significant disease-causing mutations in PD. However, due to their size variability and to the quantitative nature of the assay, CNV genotyping is particularly challenging. For this reason, innovative high-throughput platforms and bioinformatics algorithms are increasingly replacing classical CNV detection methods. Here, we report the design strategy, development, validation and implementation of NeuroArray, a customized exon-centric high-resolution array-based comparative genomic hybridization (aCGH) tailored to detect single/multi-exon deletions and duplications in a large panel of PD-related genes. This targeted design allows for a focused evaluation of structural imbalances in clinically relevant PD genes, combining exon-level resolution with genome-wide coverage. The NeuroArray platform may offer new insights in elucidating inherited potential or de novo structural alterations in PD patients and investigating new candidate genes.

  16. Genomic and transcriptome profiling identified both human and HBV genetic variations and their interactions in Chinese hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Hua Dong

    2015-12-01

    Full Text Available Interaction between HBV and host genome integrations in hepatocellular carcinoma (HCC development is a complex process and the mechanism is still unclear. Here we described in details the quality controls and data mining of aCGH and transcriptome sequencing data on 50 HCC samples from the Chinese patients, published by Dong et al. (2015 (GEO#: GSE65486. In additional to the HBV-MLL4 integration discovered, we also investigated the genetic aberrations of HBV and host genes as well as their genetic interactions. We reported human genome copy number changes and frequent transcriptome variations (e.g. TP53, CTNNB1 mutation, especially MLL family mutations in this cohort of the patients. For HBV genotype C, we identified a novel linkage disequilibrium region covering HBV replication regulatory elements, including basal core promoter, DR1, epsilon and poly-A regions, which is associated with HBV core antigen over-expression and almost exclusive to HBV-MLL4 integration.

  17. Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes.

    Directory of Open Access Journals (Sweden)

    Johanna J Kenyon

    Full Text Available Extracellular polysaccharides are major immunogenic components of the bacterial cell envelope. However, little is known about their biosynthesis in the genus Acinetobacter, which includes A. baumannii, an important nosocomial pathogen. Whether Acinetobacter sp. produce a capsule or a lipopolysaccharide carrying an O antigen or both is not resolved. To explore these issues, genes involved in the synthesis of complex polysaccharides were located in 10 complete A. baumannii genome sequences, and the function of each of their products was predicted via comparison to enzymes with a known function. The absence of a gene encoding a WaaL ligase, required to link the carbohydrate polymer to the lipid A-core oligosaccharide (lipooligosaccharide forming lipopolysaccharide, suggests that only a capsule is produced. Nine distinct arrangements of a large capsule biosynthesis locus, designated KL1 to KL9, were found in the genomes. Three forms of a second, smaller variable locus, likely to be required for synthesis of the outer core of the lipid A-core moiety, were designated OCL1 to OCL3 and also annotated. Each K locus includes genes for capsule export as well as genes for synthesis of activated sugar precursors, and for glycosyltransfer, glycan modification and oligosaccharide repeat-unit processing. The K loci all include the export genes at one end and genes for synthesis of common sugar precursors at the other, with a highly variable region that includes the remaining genes in between. Five different capsule loci, KL2, KL6, KL7, KL8 and KL9 were detected in multiply antibiotic resistant isolates belonging to global clone 2, and two other loci, KL1 and KL4, in global clone 1. This indicates that this region is being substituted repeatedly in multiply antibiotic resistant isolates from these clones.

  18. The standing pool of genomic structural variation in a natural population of Mimulus guttatus.

    Science.gov (United States)

    Flagel, Lex E; Willis, John H; Vision, Todd J

    2014-01-01

    Major unresolved questions in evolutionary genetics include determining the contributions of different mutational sources to the total pool of genetic variation in a species, and understanding how these different forms of genetic variation interact with natural selection. Recent work has shown that structural variants (SVs) (insertions, deletions, inversions, and transpositions) are a major source of genetic variation, often outnumbering single nucleotide variants in terms of total bases affected. Despite the near ubiquity of SVs, major questions about their interaction with natural selection remain. For example, how does the allele frequency spectrum of SVs differ when compared with single nucleotide variants? How often do SVs affect genes, and what are the consequences? To begin to address these questions, we have systematically identified and characterized a large set of submicroscopic insertion and deletion (indel) variants (between 1 and 200 kb in length) among ten inbred lines from a single natural population of the plant species Mimulus guttatus. After extensive computational filtering, we focused on a set of 4,142 high-confidence indels that showed an experimental validation rate of 73%. All but one of these indels were less than 200 kb. Although the largest were generally at lower frequencies in the population, a surprising number of large indels are at intermediate frequencies. Although indels overlapping with genes were much rarer than expected by chance, approximately 600 genes were affected by an indel. Nucleotide-binding site leucine-rich repeat (NBS-LRR) defense response genes were the most enriched among the gene families affected. Most indels associated with genes were rare and appeared to be under purifying selection, though we do find four high-frequency derived insertion alleles that show signatures of recent positive selection.

  19. Human variation database: an open-source database template for genomic discovery.

    Science.gov (United States)

    Fejes, Anthony P; Khodabakhshi, Alireza Hadj; Birol, Inanc; Jones, Steven J M

    2011-04-15

    Current public variation databases are based upon collaboratively pooling data into a single database with a single interface available to the public. This gives little control to the collaborator to mine the database and requires that they freely share their data with the owners of the repository. We aim to provide an alternative mechanism: providing the source code and application programming interface (API) of a database, enabling researchers to set up local versions without investing heavily in the development of the resource and allowing for confidential information to remain secure. We describe an open-source database that can be installed easily at any research facility for the storage and analysis of thousands of next-generation sequencing variations. This database is built using PostgreSQL 8.4 (The PostgreSQL Global Development Group. postgres 8.4: http://www.postgresql.org) and provides a novel method for collating and searching across the reported results from thousands of next-generation sequence samples, as well as rapidly accessing vital information on the origin of the samples. The schema of the database makes rapid and insightful queries simple and enables easy annotation of novel or known genetic variations. A modular and cross-platform Java API is provided to perform common functions, such as generation of standard experimental reports and graphical summaries of modifications to genes. Included libraries allow adopters of the database to quickly develop their own queries. The software is available for download through the Vancouver Short Read Analysis Package on Sourceforge, http://vancouvershortr.sourceforge.net. Instructions for use and deployment are provided on the accompanying wiki pages. afejes@bcgsc.ca.

  20. The evolutionary rate variation among genes of HOG-signaling pathway in yeast genomes.

    Science.gov (United States)

    Wu, Xuechang; Chi, Xiaoqin; Wang, Pinmei; Zheng, Daoqiong; Ding, Rui; Li, Yudong

    2010-07-10

    Responses to extracellular stress are required for microbes to survive in changing environments. Although the stress response mechanisms have been characterized extensively, the evolution of stress response pathway remains poorly understood. Here, we studied the evolution of High Osmolarity Glycerol (HOG) pathway, one of the important osmotic stress response pathways, across 10 yeast species and underpinned the evolutionary forces acting on the pathway evolution. Although the HOG pathway is well conserved across the surveyed yeast species, the evolutionary rate of the genes in this pathway varied substantially among or within different lineages. The fast divergence of MSB2 gene indicates that this gene is subjected to positive selection. Moreover, transcription factors in HOG pathway tend to evolve more rapidly, but the genes in conserved MAPK cascade underwent stronger functional selection. Remarkably, the dN/dS values are negatively correlated with pathway position along HOG pathway from Sln1 (Sho1) to Hog1 for transmitting external signal into nuclear. The increased gradient of selective constraints from upstream to downstream genes suggested that the downstream genes are more pleiotropic, being required for a wider range of pathways. In addition, protein length, codon usage, gene expression, and protein interaction appear to be important factors to determine the evolution of genes in HOG pathway. Taken together, our results suggest that functional constraints play a large role in the evolutionary rate variation in HOG pathway, but the genetic variation was influenced by quite complicated factors, such as pathway position, protein length and so on. These findings provide some insights into how HOG pathway genes evolved rapidly for responding to environmental osmotic stress changes. This article was reviewed by Han Liang (nominated by Laura Landweber), Georgy Bazykin (nominated by Mikhail Gelfand) and Zhenguo Lin (nominated by John Logsdon).

  1. The evolutionary rate variation among genes of HOG-signaling pathway in yeast genomes

    Directory of Open Access Journals (Sweden)

    Ding Rui

    2010-07-01

    Full Text Available Abstract Background Responses to extracellular stress are required for microbes to survive in changing environments. Although the stress response mechanisms have been characterized extensively, the evolution of stress response pathway remains poorly understood. Here, we studied the evolution of High Osmolarity Glycerol (HOG pathway, one of the important osmotic stress response pathways, across 10 yeast species and underpinned the evolutionary forces acting on the pathway evolution. Results Although the HOG pathway is well conserved across the surveyed yeast species, the evolutionary rate of the genes in this pathway varied substantially among or within different lineages. The fast divergence of MSB2 gene indicates that this gene is subjected to positive selection. Moreover, transcription factors in HOG pathway tend to evolve more rapidly, but the genes in conserved MAPK cascade underwent stronger functional selection. Remarkably, the dN/dS values are negatively correlated with pathway position along HOG pathway from Sln1 (Sho1 to Hog1 for transmitting external signal into nuclear. The increased gradient of selective constraints from upstream to downstream genes suggested that the downstream genes are more pleiotropic, being required for a wider range of pathways. In addition, protein length, codon usage, gene expression, and protein interaction appear to be important factors to determine the evolution of genes in HOG pathway. Conclusions Taken together, our results suggest that functional constraints play a large role in the evolutionary rate variation in HOG pathway, but the genetic variation was influenced by quite complicated factors, such as pathway position, protein length and so on. These findings provide some insights into how HOG pathway genes evolved rapidly for responding to environmental osmotic stress changes. Reviewers This article was reviewed by Han Liang (nominated by Laura Landweber, Georgy Bazykin (nominated by Mikhail Gelfand

  2. Allelic variation in a willow warbler genomic region is associated with climate clines.

    Directory of Open Access Journals (Sweden)

    Keith W Larson

    Full Text Available Local adaptation is an important process contributing to population differentiation which can occur in continuous or isolated populations connected by various amounts of gene flow. The willow warbler (Phylloscopus trochilus is one of the most common songbirds in Fennoscandia. It has a continuous breeding distribution where it is found in all forested habitats from sea level to the tree line and therefore constitutes an ideal species for the study of locally adapted genes associated with environmental gradients. Previous studies in this species identified a genetic marker (AFLP-WW1 that showed a steep north-south cline in central Sweden with one allele associated with coastal lowland habitats and the other with mountainous habitats. It was further demonstrated that this marker is embedded in a highly differentiated chromosome region that spans several megabases. In the present study, we sampled 2,355 individuals at 128 sites across all of Fennoscandia to study the geographic and climatic variables associated with the allele frequency distributions of WW1. Our results demonstrate that 1 allele frequency patterns significantly differ between mountain and lowland populations, 2 these allele differences coincide with extreme temperature conditions and the short growing season in the mountains, and milder conditions in coastal areas, and 3 the northern-allele or "altitude variant" of WW1 occurs in willow warblers that occupy mountainous habitat regardless of subspecies. Finally these results suggest that climate may exert selection on the genomic region associated with these alleles and would allow us to develop testable predictions for the distribution of the genetic marker based on climate change scenarios.

  3. Discovery, genotyping and characterization of structural variation and novel sequence at single nucleotide resolution from de novo genome assemblies on a population scale

    DEFF Research Database (Denmark)

    Liu, Siyang; Huang, Shujia; Rao, Junhua

    2015-01-01

    present a novel approach implemented in a single software package, AsmVar, to discover, genotype and characterize different forms of structural variation and novel sequence from population-scale de novo genome assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome......) as well as large deletions. However, these approaches consistently display a substantial bias against the recovery of complex structural variants and novel sequence in individual genomes and do not provide interpretation information such as the annotation of ancestral state and formation mechanism. We...... assemblies captures a wide spectrum of structural variants and novel sequences present in the human population in high sensitivity and specificity. Our method provides a direct solution for investigating structural variants and novel sequences from de novo genome assemblies, facilitating the construction...

  4. Intraspecific variations of Dekkera/Brettanomyces bruxellensis genome studied by capillary electrophoresis separation of the intron splice site profiles.

    Science.gov (United States)

    Vigentini, Ileana; De Lorenzis, Gabriella; Picozzi, Claudia; Imazio, Serena; Merico, Annamaria; Galafassi, Silvia; Piškur, Jure; Foschino, Roberto

    2012-06-15

    In enology, "Brett" character refers to the wine spoilage caused by the yeast Dekkera/Brettanomyces bruxellensis and its production of volatile phenolic off-flavours. However, the spoilage potential of this yeast is strain-dependent. Therefore, a rapid and reliable recognition at the strain level is a key point to avoid serious economic losses. The present work provides an operative tool to assess the genetic intraspecific variation in this species through the use of introns as molecular targets. Firstly, the available partial D./B. bruxellensis genome sequence was investigated in order to build primers annealing to introns 5' splice site sequence (ISS). This analysis allowed the detection of a non-random vocabulary flanking the site and, exploiting this feature, the creation of specific probes for strain discrimination. Secondly, the separation of the intron splice site PCR fragments was obtained throughout the set up of a capillary electrophoresis protocol, giving a 94% repeatability threshold in our experimental conditions. The comparison of results obtained with ISS-PCR/CE versus the ones performed by mtDNA RFLP revealed that the former protocol is more discriminating and allowed a reliable identification at strain level. Actually sixty D./B. bruxellensis isolates were recognised as unique strains, showing a level of similarity below 79% and confirming the high genetic polymorphism existing within the species. Two main clusters were grouped at similarity levels of about 46% and 47%, respectively, showing a poor correlation with the geographic area of isolation. Moreover, from the evolutionary point of view, the proposed technique could determine the frequency of the genome rearrangements that can occur in D./B. bruxellesis populations. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Genome-wide copy number variation pattern analysis and a classification signature for non-small cell lung cancer.

    Science.gov (United States)

    Qiu, Zhe-Wei; Bi, Jia-Hao; Gazdar, Adi F; Song, Kai

    2017-07-01

    The accurate classification of non-small cell lung carcinoma (NSCLC) into lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) is essential for both clinical practice and lung cancer research. Although the standard WHO diagnosis of NSCLC on biopsy material is rapid and economic, more than 13% of NSCLC tumors in the USA are not further classified. The purpose of this study was to analyze the genome-wide pattern differences in copy number variations (CNVs) and to develop a CNV signature as an adjunct test for the routine histopathologic classification of NSCLCs. We investigated the genome-wide CNV differences between these two tumor types using three independent patient datasets. Approximately half of the genes examined exhibited significant differences between LUAD and LUSC tumors and the corresponding non-malignant tissues. A new classifier was developed to identify signature genes out of 20 000 genes. Thirty-three genes were identified as a CNV signature of NSCLC. Using only their CNV values, the classification model separated the LUADs from the LUSCs with an accuracy of 0.88 and 0.84, respectively, in the training and validation datasets. The same signature also classified NSCLC tumors from their corresponding non-malignant samples with an accuracy of 0.96 and 0.98, respectively. We also compared the CNV patterns of NSCLC tumors with those of histologically similar tumors arising at other sites, such as the breast, head, and neck, and four additional tumors. Of greater importance, the significant differences between these tumors may offer the possibility of identifying the origin of tumors whose origin is unknown. © 2017 Wiley Periodicals, Inc.

  6. Next-Gen phylogeography of rainforest trees: exploring landscape-level cpDNA variation from whole-genome sequencing.

    Science.gov (United States)

    van der Merwe, M; McPherson, H; Siow, J; Rossetto, M

    2014-01-01

    Standardized phylogeographic studies across codistributed taxa can identify important refugia and biogeographic barriers, and potentially uncover how changes in adaptive constraints through space and time impact on the distribution of genetic diversity. The combination of next-generation sequencing and methodologies that enable uncomplicated analysis of the full chloroplast genome may provide an invaluable resource for such studies. Here, we assess the potential of a shotgun-based method across twelve nonmodel rainforest trees sampled from two evolutionary distinct regions. Whole genomic shotgun sequencing libraries consisting of pooled individuals were used to assemble species-specific chloroplast references (in silicio). For each species, the pooled libraries allowed for the detection of variation within and between data sets (each representing a geographic region). The potential use of nuclear rDNA as an additional marker from the NGS libraries was investigated by mapping reads against available references. We successfully obtained phylogeographically informative sequence data from a range of previously unstudied rainforest trees. Greater levels of diversity were found in northern refugial rainforests than in southern expansion areas. The genetic signatures of varying evolutionary histories were detected, and interesting associative patterns between functional characteristics and genetic diversity were identified. This approach can suit a wide range of landscape-level studies. As the key laboratory-based steps do not require prior species-specific knowledge and can be easily outsourced, the techniques described here are even suitable for researchers without access to wet-laboratory facilities, making evolutionary ecology questions increasingly accessible to the research community. © 2013 John Wiley & Sons Ltd.

  7. Genomic and Phenotypic Variation in Morphogenetic Networks of Two Candida albicans Isolates Subtends Their Different Pathogenic Potential

    Directory of Open Access Journals (Sweden)

    Duccio Cavalieri

    2018-01-01

    Full Text Available The transition from commensalism to pathogenicity of Candida albicans reflects both the host inability to mount specific immune responses and the microorganism’s dimorphic switch efficiency. In this study, we used whole genome sequencing and microarray analysis to investigate the genomic determinants of the phenotypic changes observed in two C. albicans clinical isolates (YL1 and YQ2. In vitro experiments employing epithelial, microglial, and peripheral blood mononuclear cells were thus used to evaluate C. albicans isolates interaction with first line host defenses, measuring adhesion, susceptibility to phagocytosis, and induction of secretory responses. Moreover, a murine model of peritoneal infection was used to compare the in vivo pathogenic potential of the two isolates. Genome sequence and gene expression analysis of C. albicans YL1 and YQ2 showed significant changes in cellular pathways involved in environmental stress response, adhesion, filamentous growth, invasiveness, and dimorphic transition. This was in accordance with the observed marked phenotypic differences in biofilm production, dimorphic switch efficiency, cell adhesion, invasion, and survival to phagocyte-mediated host defenses. The mutations in key regulators of the hyphal growth pathway in the more virulent strain corresponded to an overall greater number of budding yeast cells released. Compared to YQ2, YL1 consistently showed enhanced pathogenic potential, since in vitro, it was less susceptible to ingestion by phagocytic cells and more efficient in invading epithelial cells, while in vivo YL1 was more effective than YQ2 in recruiting inflammatory cells, eliciting IL-1β response and eluding phagocytic cells. Overall, these results indicate an unexpected isolate-specific variation in pathways important for host invasion and colonization, showing how the genetic background of C. albicans may greatly affect its behavior both in vitro and in vivo. Based on this approach, we

  8. Association between genome-wide copy number variation and arsenic-induced skin lesions: a prospective study.

    Science.gov (United States)

    Kibriya, Muhammad G; Jasmine, Farzana; Parvez, Faruque; Argos, Maria; Roy, Shantanu; Paul-Brutus, Rachelle; Islam, Tariqul; Ahmed, Alauddin; Rakibuz-Zaman, Muhammad; Shinkle, Justin; Slavkovich, Vesna; Graziano, Joseph H; Ahsan, Habibul

    2017-07-18

    Exposure to arsenic in drinking water is a global health problem and arsenic-induced skin lesions are hallmark of chronic arsenic toxicity. We and others have reported germline genetic variations as risk factors for such skin lesions. The role of copy number variation (CNV) in the germline DNA in this regard is unknown. From a large prospectively followed-up cohort, exposed to arsenic, we randomly selected 2171 subjects without arsenic-induced skin lesions at enrollment and genotyped their whole blood DNA samples on Illumina Cyto12v2.1 SNP chips to generate DNA copy number. Participants were followed up every 2 years for a total of 8 years, especially for the development of skin lesions. In Cox regression models, each CNV segment was used as a predictor, accounting for other potential covariates, for incidence of skin lesions. The presence of genomic deletion(s) in a number of genes (OR5J2, GOLGA6L7P, APBA2, GALNTL5, VN1R31P, PHKG1P2, SGCZ, ZNF658) and lincRNA genes (RP11-76I14.1, CTC-535 M15.2, RP11-73B2.2) were associated with higher risk [HR between 1.67 (CI 1.3-2.1) and 2.15 (CI 1.5-2.9) for different CNVs] for development of skin lesions independent of gender, age, and arsenic exposure. Some deletions had stronger effect in a specific gender (ZNF658 in males, SGCZ in females) and some had stronger effect in higher arsenic exposure (lincRNA CTD-3179P9.1) suggesting a possible gene-environment interaction. This first genome-wide CNV study in a prospectively followed-up large cohort, exposed to arsenic, suggests that DNA deletion in several genes and lincRNA genes may predispose an individual to a higher risk of development of arsenic-induced skin lesions.

  9. The distribution and impact of common copy-number variation in the genome of the domesticated apple, Malus x domestica Borkh.

    Science.gov (United States)

    Boocock, James; Chagné, David; Merriman, Tony R; Black, Michael A

    2015-10-23

    Copy number variation (CNV) is a common feature of eukaryotic genomes, and a growing body of evidence suggests that genes affected by CNV are enriched in processes that are associated with environmental responses. Here we use next generation sequence (NGS) data to detect copy-number variable regions (CNVRs) within the Malus x domestica genome, as well as to examine their distribution and impact. CNVRs were detected using NGS data derived from 30 accessions of M. x domestica analyzed using the read-depth method, as implemented in the CNVrd2 software. To improve the reliability of our results, we developed a quality control and analysis procedure that involved checking for organelle DNA, not repeat masking, and the determination of CNVR identity using a permutation testing procedure. Overall, we identified 876 CNVRs, which spanned 3.5 % of the apple genome. To verify that detected CNVRs were not artifacts, we analyzed the B- allele-frequencies (BAF) within a single nucleotide polymorphism (SNP) array dataset derived from a screening of 185 individual apple accessions and found the CNVRs were enriched for SNPs having aberrant BAFs (P apple scab. We present the first analysis and catalogue of CNVRs in the M. x domestica genome. The enrichment of the CNVRs with R gene models and their overlap with gene loci of agricultural significance draw attention to a form of unexplored genetic variation in apple. This research will underpin further investigation of the role that CNV plays within the apple genome.

  10. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder

    Science.gov (United States)

    Elia, Josephine; Glessner, Joseph T; Wang, Kai; Takahashi, Nagahide; Shtir, Corina J; Hadley, Dexter; Sleiman, Patrick M A; Zhang, Haitao; Kim, Cecilia E; Robison, Reid; Lyon, Gholson J; Flory, James H; Bradfield, Jonathan P; Imielinski, Marcin; Hou, Cuiping; Frackelton, Edward C; Chiavacci, Rosetta M; Sakurai, Takeshi; Rabin, Cara; Middleton, Frank A; Thomas, Kelly A; Garris, Maria; Mentch, Frank; Freitag, Christine M; Steinhausen, Hans-Christoph; Todorov, Alexandre A; Reif, Andreas; Rothenberger, Aribert; Franke, Barbara; Mick, Eric O; Roeyers, Herbert; Buitelaar, Jan; Lesch, Klaus-Peter; Banaschewski, Tobias; Ebstein, Richard P; Mulas, Fernando; Oades, Robert D; Sergeant, Joseph; Sonuga-Barke, Edmund; Renner, Tobias J; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Walitza, Susanne; Meyer, Jobst; Pálmason, Haukur; Seitz, Christiane; Loo, Sandra K; Smalley, Susan L; Biederman, Joseph; Kent, Lindsey; Asherson, Philip; Anney, Richard J L; Gaynor, J William; Shaw, Philip; Devoto, Marcella; White, Peter S; Grant, Struan F A; Buxbaum, Joseph D; Rapoport, Judith L; Williams, Nigel M; Nelson, Stanley F; Faraone, Stephen V; Hakonarson, Hakon

    2014-01-01

    Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10−9). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10−6). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ~10% of the cases (P = 4.38 × 10−10) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts. PMID:22138692

  11. Long tandem repeats as a form of genomic copy number variation: structure and length polymorphism of a chromosome 5p repeat in control and schizophrenia populations

    Science.gov (United States)

    Bruce, Heather A.; Sachs, Nancy A.; Rudnicki, Dobrila D.; Lin, Stephanie G.; Willour, Virginia L.; Cowell, John K.; Conroy, Jeffrey; McQuaid, Devin E.; Rossi, Michael; Gaile, Daniel P; Nowak, Norma J.; Holmes, Susan E.; Sklar, Pamela; Ross, Christopher A.; DeLisi, Lynn E.; Margolis, Russell L.

    2016-01-01

    Objectives Genomic copy number variations (CNVs) are a major form of variation in the human genome and play an etiologic role in several neuropsychiatric diseases. Tandem repeats, particularly with long (> 50bp) repeat units, are a relatively common yet underexplored type of CNV that may significantly contribute to human genomic variation and disease risk. We therefore performed a pilot experiment to explore the potential role of long tandem repeats as risk factors in psychiatric disorders. Methods A bacterial artificial chromosome (BAC)-based array comparative genomic hybridization (aCGH) platform was used to examine CNVs in genomic DNA from 34 probands with schizophrenia or schizoaffective disorder. Results The aCGH screen detected an apparent deletion on 5p15.1 in two probands, caused by the presence in each proband of two low copy number (short) alleles of a tandem repeat that ranges in length from 50 3.4 kb units in the population examined. Short alleles partially segregate with schizophrenia in a small number of families, though linkage was not significant. An association study showed no significant difference in repeat length between 406 schizophrenia cases and 392 controls. Conclusion Though we did not demonstrate a relationship between the 5p15.1 repeat and schizophrenia, our results illustrate that long tandem repeats represent an intriguing type of genetic variation that have not been previously studied in connection with psychiatric illness. aCGH can detect a small subset of these repeats, but systematic investigation will require the development of specific arrays and improved analytic methods. PMID:19672138

  12. A De Novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny.

    Directory of Open Access Journals (Sweden)

    Boas Pucker

    Full Text Available Arabidopsis thaliana is the most important model organism for fundamental plant biology. The genome diversity of different accessions of this species has been intensively studied, for example in the 1001 genome project which led to the identification of many small nucleotide polymorphisms (SNPs and small insertions and deletions (InDels. In addition, presence/absence variation (PAV, copy number variation (CNV and mobile genetic elements contribute to genomic differences between A. thaliana accessions. To address larger genome rearrangements between the A. thaliana reference accession Columbia-0 (Col-0 and another accession of about average distance to Col-0, we created a de novo next generation sequencing (NGS-based assembly from the accession Niederzenz-1 (Nd-1. The result was evaluated with respect to assembly strategy and synteny to Col-0. We provide a high quality genome sequence of the A. thaliana accession (Nd-1, LXSY01000000. The assembly displays an N50 of 0.590 Mbp and covers 99% of the Col-0 reference sequence. Scaffolds from the de novo assembly were positioned on the basis of sequence similarity to the reference. Errors in this automatic scaffold anchoring were manually corrected based on analyzing reciprocal best BLAST hits (RBHs of genes. Comparison of the final Nd-1 assembly to the reference revealed duplications and deletions (PAV. We identified 826 insertions and 746 deletions in Nd-1. Randomly selected candidates of PAV were experimentally validated. Our Nd-1 de novo assembly allowed reliable identification of larger genic and intergenic variants, which was difficult or error-prone by short read mapping approaches alone. While overall sequence similarity as well as synteny is very high, we detected short and larger (affecting more than 100 bp differences between Col-0 and Nd-1 based on bi-directional comparisons. The de novo assembly provided here and additional assemblies that will certainly be published in the future will

  13. Genome-wide analysis of 24-nt siRNAs dynamic variations during rice superior and inferior grain filling.

    Science.gov (United States)

    Peng, Ting; Du, Yanxiu; Zhang, Jing; Li, Junzhou; Liu, Yanxia; Zhao, Yafan; Sun, Hongzheng; Zhao, Quanzhi

    2013-01-01

    24 nt-siRNAs are the most abundant small interfering RNAs in rice grains aside from microRNAs. To investigate the roles that 24 nt-siRNAs played in the poor grain filling of rice inferior grains, dynamic variations of 24 nt-siRNAs in inferior grains were compared with those of superior grains by using small RNA deep sequencing technology. The results showed that 24 nt-siRNAs derived from multiple regions of rice genome, and the maintenance of the two strands of 24 nt-siRNA duplex was a non-random process. The amounts of 24 nt-siRNAs declined with the process of grain filling in both superior and inferior grains, but 24 nt-siRNAs in inferior grains was much higher than that of superior grains in each period we sampled. Bioinformatics prediction indicated that 24 nt-siRNAs targeted on more genes involved in most of the known KEGG rice pathways, such as the starch and sucrose biosynthesis pathway. Combined with digital gene expression profiling of target genes, 24 nt-siRNAs mapped on the antisense strands of exons were specifically investigated, but the abundance of 24 nt-siRNAs did not show negative correlations with their corresponding target genes. The results indicated that 24 nt-siRNAs were not involved in down-regulation of target genes. The potential biological meanings for this inconsistency were probably the results of methylation directed gene expression activation, or competition for small RNA stability methylation.

  14. A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits.

    Science.gov (United States)

    Bainard, Jillian D; Bainard, Luke D; Henry, Thomas A; Fazekas, Aron J; Newmaster, Steven G

    2012-12-01

    Genome size (C-value) and endopolyploidy (endoreduplication index, EI) are known to correlate with various morphological and ecological traits, in addition to phylogenetic placement. A phylogenetically controlled multivariate analysis was used to explore the relationships between DNA content and phenotype in angiosperms. Seeds from 41 angiosperm species (17 families) were grown in a common glasshouse experiment. Genome size (2C-value and 1Cx-value) and EI (in four tissues: leaf, stem, root, petal) were determined using flow cytometry. The phylogenetic signal was calculated for each measure of DNA content, and phylogenetic canonical correlation analysis (PCCA) explored how the variation in genome size and EI was correlated with 18 morphological and ecological traits. Phylogenetic signal (λ) was strongest for EI in all tissues, and λ was stronger for the 2C-value than the 1Cx-value. PCCA revealed that EI was correlated with pollen length, stem height, seed mass, dispersal mechanism, arbuscular mycorrhizal association, life history and flowering time, and EI and genome size were both correlated with stem height and life history. PCCA provided an effective way to explore multiple factors of DNA content variation and phenotypic traits in a phylogenetic context. Traits that were correlated significantly with DNA content were linked to plant competitive ability. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  15. Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a wild population of Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Johnston, Susan E; Orell, Panu; Pritchard, Victoria L; Kent, Matthew P; Lien, Sigbjørn; Niemelä, Eero; Erkinaro, Jaakko; Primmer, Craig R

    2014-07-01

    Delaying sexual maturation can lead to larger body size and higher reproductive success, but carries an increased risk of death before reproducing. Classical life history theory predicts that trade-offs between reproductive success and survival should lead to the evolution of an optimal strategy in a given population. However, variation in mating strategies generally persists, and in general, there remains a poor understanding of genetic and physiological mechanisms underlying this variation. One extreme case of this is in the Atlantic salmon (Salmo salar), which can show variation in the age at which they return from their marine migration to spawn (i.e. their 'sea age'). This results in large size differences between strategies, with direct implications for individual fitness. Here, we used an Illumina Infinium SNP array to identify regions of the genome associated with variation in sea age in a large population of Atlantic salmon in Northern Europe, implementing individual-based genome-wide association studies (GWAS) and population-based FST outlier analyses. We identified several regions of the genome which vary in association with phenotype and/or selection between sea ages, with nearby genes having functions related to muscle development, metabolism, immune response and mate choice. In addition, we found that individuals of different sea ages belong to different, yet sympatric populations in this system, indicating that reproductive isolation may be driven by divergence between stable strategies. Overall, this study demonstrates how genome-wide methodologies can be integrated with samples collected from wild, structured populations to understand their ecology and evolution in a natural context. © 2014 John Wiley & Sons Ltd.

  16. Common genetic variation and antidepressant efficacy in major depressive disorder: a meta-analysis of three genome-wide pharmacogenetic studies.

    Science.gov (United States)

    2013-02-01

    Indirect evidence suggests that common genetic variation contributes to individual differences in antidepressant efficacy among individuals with major depressive disorder, but previous studies may have been underpowered to detect these effects. A meta-analysis was performed on data from three genome-wide pharmacogenetic studies (the Genome-Based Therapeutic Drugs for Depression [GENDEP] project, the Munich Antidepressant Response Signature [MARS] project, and the Sequenced Treatment Alternatives to Relieve Depression [STAR*D] study), which included 2,256 individuals of Northern European descent with major depressive disorder, and antidepressant treatment outcomes were prospectively collected. After imputation, 1.2 million single-nucleotide polymorphisms were tested, capturing common variation for association with symptomatic improvement and remission after up to 12 weeks of antidepressant treatment. No individual association met a genome-wide threshold for statistical significance in the primary analyses. A polygenic score derived from a meta-analysis of GENDEP and MARS participants accounted for up to approximately 1.2% of the variance in outcomes in STAR*D, suggesting a weakly concordant signal distributed over many polymorphisms. An analysis restricted to 1,354 individuals treated with citalopram (STAR*D) or escitalopram (GENDEP) identified an intergenic region on chromosome 5 associated with early improvement after 2 weeks of treatment. Despite increased statistical power accorded by meta-analysis, the authors identified no reliable predictors of antidepressant treatment outcome, although they did identify modest, direct evidence that common genetic variation contributes to individual differences in antidepressant response.

  17. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton.

    Science.gov (United States)

    Su, Junji; Li, Libei; Zhang, Chi; Wang, Caixiang; Gu, Lijiao; Wang, Hantao; Wei, Hengling; Liu, Qibao; Huang, Long; Yu, Shuxun

    2018-03-01

    Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation

  18. Metabolic and genomic analysis elucidates strain-level variation in Microbacterium spp. isolated from chromate contaminated sediment

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data is in the form of genomic sequences deposited in a public database, growth curves, and bioinformatic analysis of sequences. This dataset is associated with...

  19. Salix transect of Europe: variation in ploidy and genome size in willow-associated common nettle, Urtica dioica L. sens. lat., from Greece to arctic Norway.

    Science.gov (United States)

    Cronk, Quentin; Hidalgo, Oriane; Pellicer, Jaume; Percy, Diana; Leitch, Ilia J

    2016-01-01

    The common stinging nettle, Urtica dioica L. sensu lato, is an invertebrate "superhost", its clonal patches maintaining large populations of insects and molluscs. It is extremely widespread in Europe and highly variable, and two ploidy levels (diploid and tetraploid) are known. However, geographical patterns in cytotype variation require further study. We assembled a collection of nettles in conjunction with a transect of Europe from the Aegean to Arctic Norway (primarily conducted to examine the diversity of Salix and Salix -associated insects). Using flow cytometry to measure genome size, our sample of 29 plants reveals 5 diploids and 24 tetraploids. Two diploids were found in SE Europe (Bulgaria and Romania) and three diploids in S. Finland. More detailed cytotype surveys in these regions are suggested. The tetraploid genome size (2C value) varied between accessions from 2.36 to 2.59 pg. The diploids varied from 1.31 to 1.35 pg per 2C nucleus, equivalent to a haploid genome size of c. 650 Mbp. Within the tetraploids, we find that the most northerly samples (from N. Finland and arctic Norway) have a generally higher genome size. This is possibly indicative of a distinct population in this region.

  20. Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains

    Directory of Open Access Journals (Sweden)

    Landry Christian R

    2005-11-01

    Full Text Available Abstract Background Sinorhizobium meliloti is a soil bacterium that forms nitrogen-fixing nodules on the roots of leguminous plants such as alfalfa (Medicago sativa. This species occupies different ecological niches, being present as a free-living soil bacterium and as a symbiont of plant root nodules. The genome of the type strain Rm 1021 contains one chromosome and two megaplasmids for a total genome size of 6 Mb. We applied comparative genomic hybridisation (CGH on an oligonucleotide microarrays to estimate genetic variation at the genomic level in four natural strains, two isolated from Italian agricultural soil and two from desert soil in the Aral Sea region. Results From 4.6 to 5.7 percent of the genes showed a pattern of hybridisation concordant with deletion, nucleotide divergence or ORF duplication when compared to the type strain Rm 1021. A large number of these polymorphisms were confirmed by sequencing and Southern blot. A statistically significant fraction of these variable genes was found on the pSymA megaplasmid and grouped in clusters. These variable genes were found to be mainly transposases or genes with unknown function. Conclusion The obtained results allow to conclude that the symbiosis-required megaplasmid pSymA can be considered the major hot-spot for intra-specific differentiation in S. meliloti.

  1. Genome sequencing and comparative genomics of enterohemorrhagic Escherichia coli O145:H25 and O145:H28 reveal distinct evolutionary paths and marked variations in traits associated with virulence & colonization.

    Science.gov (United States)

    Lorenz, Sandra C; Gonzalez-Escalona, Narjol; Kotewicz, Michael L; Fischer, Markus; Kase, Julie A

    2017-08-22

    Enterohemorrhagic Escherichia coli (EHEC) O145 are among the top non-O157 serogroups associated with severe human disease worldwide. Two serotypes, O145:H25 and O145:H28 have been isolated from human patients but little information is available regarding the virulence repertoire, origin and evolutionary relatedness of O145:H25. Hence, we sequenced the complete genome of two O145:H25 strains associated with hemolytic uremic syndrome (HUS) and compared the genomes with those of previously sequenced O145:H28 and other EHEC strains. The genomes of the two O145:H25 strains were 5.3 Mbp in size; slightly smaller than those of O145:H28 and other EHEC strains. Both strains contained three nearly identical plasmids and several prophages and integrative elements, many of which differed significantly in size, gene content and organization as compared to those present in O145:H28 and other EHECs. Furthermore, notable variations were observed in several fimbrial gene cluster and intimin types possessed by O145:H25 and O145:H28 indicating potential adaptation to distinct areas of host colonization. Comparative genomics further revealed that O145:H25 are genetically more similar to other non-O157 EHEC strains than to O145:H28. Phylogenetic analysis accompanied by comparative genomics revealed that O145:H25 and O145:H28 evolved from two separate clonal lineages and that horizontal gene transfer and gene loss played a major role in the divergence of these EHEC serotypes. The data provide further evidence that ruminants might be a possible reservoir for O145:H25 but that they might be impaired in their ability to establish a persistent colonization as compared to other EHEC strains.

  2. The role of copy number variation in susceptibility to amyotrophic lateral sclerosis: genome-wide association study and comparison with published loci.

    Science.gov (United States)

    Wain, Louise V; Pedroso, Inti; Landers, John E; Breen, Gerome; Shaw, Christopher E; Leigh, P Nigel; Brown, Robert H; Tobin, Martin D; Al-Chalabi, Ammar

    2009-12-04

    The genetic contribution to sporadic amyotrophic lateral sclerosis (ALS) has not been fully elucidated. There are increasing efforts to characterise the role of copy number variants (CNVs) in human diseases; two previous studies concluded that CNVs may influence risk of sporadic ALS, with multiple rare CNVs more important than common CNVs. A little-explored issue surrounding genome-wide CNV association studies is that of post-calling filtering and merging of raw CNV calls. We undertook simulations to define filter thresholds and considered optimal ways of merging overlapping CNV calls for association testing, taking into consideration possibly overlapping or nested, but distinct, CNVs and boundary estimation uncertainty. In this study we screened Illumina 300K SNP genotyping data from 730 ALS cases and 789 controls for copy number variation. Following quality control filters using thresholds defined by simulation, a total of 11321 CNV calls were made across 575 cases and 621 controls. Using region-based and gene-based association analyses, we identified several loci showing nominally significant association. However, the choice of criteria for combining calls for association testing has an impact on the ranking of the results by their significance. Several loci which were previously reported as being associated with ALS were identified here. However, of another 15 genes previously reported as exhibiting ALS-specific copy number variation, only four exhibited copy number variation in this study. Potentially interesting novel loci, including EEF1D, a translation elongation factor involved in the delivery of aminoacyl tRNAs to the ribosome (a process which has previously been implicated in genetic studies of spinal muscular atrophy) were identified but must be treated with caution due to concerns surrounding genomic location and platform suitability. Interpretation of CNV association findings must take into account the effects of filtering and combining CNV calls when

  3. The role of copy number variation in susceptibility to amyotrophic lateral sclerosis: genome-wide association study and comparison with published loci.

    Directory of Open Access Journals (Sweden)

    Louise V Wain

    2009-12-01

    Full Text Available The genetic contribution to sporadic amyotrophic lateral sclerosis (ALS has not been fully elucidated. There are increasing efforts to characterise the role of copy number variants (CNVs in human diseases; two previous studies concluded that CNVs may influence risk of sporadic ALS, with multiple rare CNVs more important than common CNVs. A little-explored issue surrounding genome-wide CNV association studies is that of post-calling filtering and merging of raw CNV calls. We undertook simulations to define filter thresholds and considered optimal ways of merging overlapping CNV calls for association testing, taking into consideration possibly overlapping or nested, but distinct, CNVs and boundary estimation uncertainty.In this study we screened Illumina 300K SNP genotyping data from 730 ALS cases and 789 controls for copy number variation. Following quality control filters using thresholds defined by simulation, a total of 11321 CNV calls were made across 575 cases and 621 controls. Using region-based and gene-based association analyses, we identified several loci showing nominally significant association. However, the choice of criteria for combining calls for association testing has an impact on the ranking of the results by their significance. Several loci which were previously reported as being associated with ALS were identified here. However, of another 15 genes previously reported as exhibiting ALS-specific copy number variation, only four exhibited copy number variation in this study. Potentially interesting novel loci, including EEF1D, a translation elongation factor involved in the delivery of aminoacyl tRNAs to the ribosome (a process which has previously been implicated in genetic studies of spinal muscular atrophy were identified but must be treated with caution due to concerns surrounding genomic location and platform suitability.Interpretation of CNV association findings must take into account the effects of filtering and combining

  4. Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kang, Xiangjin; Yu, Qian; Huang, Yuling; Song, Bing; Chen, Yaoyong; Gao, Xingcheng; He, Wenyin; Sun, Xiaofang; Fan, Yong

    2015-01-01

    Human-induced pluripotent stem cells (iPSCs) are derived from differentiated somatic cells using defined factors and provide a renewable source of autologous cells for cell therapy. Many reprogramming methods have been employed to generate human iPSCs, including the use of integrating vectors and non-integrating vectors. Maintenance of the genomic integrity of iPSCs is highly desirable if the cells are to be used in clinical applications. Here, using the Affymetrix Cytoscan HD array, we investigated the genomic aberration profiles of 19 human cell lines: 5 embryonic stem cell (ESC) lines, 6 iPSC lines derived using integrating vectors ("integrating iPSC lines"), 6 iPSC lines derived using non-integrating vectors ("non-integrating iPSC lines"), and the 2 parental cell lines from which the iPSCs were derived. The genome-wide copy number variation (CNV), loss of heterozygosity (LOH) and mosaicism patterns of integrating and non-integrating iPSC lines were investigated. The maximum sizes of CNVs in the genomes of the integrating iPSC lines were 20 times higher than those of the non-integrating iPSC lines. Moreover, the total number of CNVs was much higher in integrating iPSC lines than in other cell lines. The average numbers of novel CNVs with a low degree of overlap with the DGV and of likely pathogenic CNVs with a high degree of overlap with the ISCA (International Symposium on Computer Architecture) database were highest in integrating iPSC lines. Different single nucleotide polymorphisms (SNP) calls revealed that, using the parental cell genotype as a reference, integrating iPSC lines displayed more single nucleotide variations and mosaicism than did non-integrating iPSC lines. This study describes the genome stability of human iPSCs generated using either a DNA-integrating or non-integrating reprogramming method, of the corresponding somatic cells, and of hESCs. Our results highlight the importance of using a high-resolution method to monitor genomic aberrations

  5. Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Xiangjin Kang

    Full Text Available Human-induced pluripotent stem cells (iPSCs are derived from differentiated somatic cells using defined factors and provide a renewable source of autologous cells for cell therapy. Many reprogramming methods have been employed to generate human iPSCs, including the use of integrating vectors and non-integrating vectors. Maintenance of the genomic integrity of iPSCs is highly desirable if the cells are to be used in clinical applications. Here, using the Affymetrix Cytoscan HD array, we investigated the genomic aberration profiles of 19 human cell lines: 5 embryonic stem cell (ESC lines, 6 iPSC lines derived using integrating vectors ("integrating iPSC lines", 6 iPSC lines derived using non-integrating vectors ("non-integrating iPSC lines", and the 2 parental cell lines from which the iPSCs were derived. The genome-wide copy number variation (CNV, loss of heterozygosity (LOH and mosaicism patterns of integrating and non-integrating iPSC lines were investigated. The maximum sizes of CNVs in the genomes of the integrating iPSC lines were 20 times higher than those of the non-integrating iPSC lines. Moreover, the total number of CNVs was much higher in integrating iPSC lines than in other cell lines. The average numbers of novel CNVs with a low degree of overlap with the DGV and of likely pathogenic CNVs with a high degree of overlap with the ISCA (International Symposium on Computer Architecture database were highest in integrating iPSC lines. Different single nucleotide polymorphisms (SNP calls revealed that, using the parental cell genotype as a reference, integrating iPSC lines displayed more single nucleotide variations and mosaicism than did non-integrating iPSC lines. This study describes the genome stability of human iPSCs generated using either a DNA-integrating or non-integrating reprogramming method, of the corresponding somatic cells, and of hESCs. Our results highlight the importance of using a high-resolution method to monitor genomic

  6. Celiac disease T-cell epitopes from gamma-gliadins: immunoreactivity depends on the genome of origin, transcript frequency, and flanking protein variation

    Directory of Open Access Journals (Sweden)

    Salentijn Elma MJ

    2012-06-01

    Full Text Available Abstract Background Celiac disease (CD is caused by an uncontrolled immune response to gluten, a heterogeneous mixture of wheat storage proteins. The CD-toxicity of these proteins and their derived peptides is depending on the presence of specific T-cell epitopes (9-mer peptides; CD epitopes that mediate the stimulation of HLA-DQ2/8 restricted T-cells. Next to the thoroughly characterized major T-cell epitopes derived from the α-gliadin fraction of gluten, γ-gliadin peptides are also known to stimulate T-cells of celiac disease patients. To pinpoint CD-toxic γ-gliadins in hexaploid bread wheat, we examined the variation of T-cell epitopes involved in CD in γ-gliadin transcripts of developing bread wheat grains. Results A detailed analysis of the genetic variation present in γ-gliadin transcripts of bread wheat (T. aestivum, allo-hexaploid, carrying the A, B and D genome, together with genomic γ-gliadin sequences from ancestrally related diploid wheat species, enabled the assignment of sequence variants to one of the three genomic γ-gliadin loci, Gli-A1, Gli-B1 or Gli-D1. Almost half of the γ-gliadin transcripts of bread wheat (49% was assigned to locus Gli-D1. Transcripts from each locus differed in CD epitope content and composition. The Gli-D1 transcripts contained the highest frequency of canonical CD epitope cores (on average 10.1 per transcript followed by the Gli-A1 transcripts (8.6 and the Gli-B1 transcripts (5.4. The natural variants of the major CD epitope from γ-gliadins, DQ2-γ-I, showed variation in their capacity to induce in vitro proliferation of a DQ2-γ-I specific and HLA-DQ2 restricted T-cell clone. Conclusions Evaluating the CD epitopes derived from γ-gliadins in their natural context of flanking protein variation, genome specificity and transcript frequency is a significant step towards accurate quantification of the CD toxicity of bread wheat. This approach can be used to predict relative levels of CD toxicity of

  7. Population-Genomic Insights into Variation inPrevotella intermediaandPrevotella nigrescensIsolates and Its Association with Periodontal Disease.

    Science.gov (United States)

    Zhang, Yifei; Zhen, Min; Zhan, Yalin; Song, Yeqing; Zhang, Qian; Wang, Jinfeng

    2017-01-01

    High-throughput sequencing has helped to reveal the close relationship between Prevotella and periodontal disease, but the roles of subspecies diversity and genomic variation within this genus in periodontal diseases still need to be investigated. We performed a comparative genome analysis of 48 Prevotella intermedia and Prevotella nigrescens isolates that from the same cohort of subjects to identify the main drivers of their pathogenicity and adaptation to different environments. The comparisons were done between two species and between disease and health based on pooled sequences. The results showed that both P. intermedia and P. nigrescens have highly dynamic genomes and can take up various exogenous factors through horizontal gene transfer. The major differences between disease-derived and health-derived samples of P. intermedia and P. nigrescens were factors related to genome modification and recombination, indicating that the Prevotella isolates from disease sites may be more capable of genomic reconstruction. We also identified genetic elements specific to each sample, and found that disease groups had more unique virulence factors related to capsule and lipopolysaccharide synthesis, secretion systems, proteinases, and toxins, suggesting that strains from disease sites may have more specific virulence, particularly for P. intermedia . The differentially represented pathways between samples from disease and health were related to energy metabolism, carbohydrate and lipid metabolism, and amino acid metabolism, consistent with data from the whole subgingival microbiome in periodontal disease and health. Disease-derived samples had gained or lost several metabolic genes compared to healthy-derived samples, which could be linked with the difference in virulence performance between diseased and healthy sample groups. Our findings suggest that P. intermedia and P. nigrescens may serve as "crucial substances" in subgingival plaque, which may reflect changes in

  8. Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations

    Directory of Open Access Journals (Sweden)

    David Jean-Philippe

    2009-11-01

    Full Text Available Abstract Background Genome scans are becoming an increasingly popular approach to study the genetic basis of adaptation and speciation, but on their own, they are often helpless at identifying the specific gene(s or mutation(s targeted by selection. This shortcoming is hopefully bound to disappear in the near future, thanks to the wealth of new genomic resources that are currently being developed for many species. In this article, we provide a foretaste of this exciting new era by conducting a genome scan in the mosquito Aedes aegypti with the aim to look for candidate genes involved in resistance to Bacillus thuringiensis subsp. israelensis (Bti insecticidal toxins. Results The genome of a Bti-resistant and a Bti-susceptible strains was surveyed using about 500 MITE-based molecular markers, and the loci showing the highest inter-strain genetic differentiation were sequenced and mapped on the Aedes aegypti genome sequence. Several good candidate genes for Bti-resistance were identified in the vicinity of these highly differentiated markers. Two of them, coding for a cadherin and a leucine aminopeptidase, were further examined at the sequence and gene expression levels. In the resistant strain, the cadherin gene displayed patterns of nucleotide polymorphisms consistent with the action of positive selection (e.g. an excess of high compared to intermediate frequency mutations, as well as a significant under-expression compared to the susceptible strain. Conclusion Both sequence and gene expression analyses agree to suggest a role for positive selection in the evolution of this cadherin gene in the resistant strain. However, it is unlikely that resistance to Bti is conferred by this gene alone, and further investigation will be needed to characterize other genes significantly associated with Bti resistance in Ae. aegypti. Beyond these results, this article illustrates how genome scans can build on the body of new genomic information (here, full

  9. Genome-wide assessment of the association of rare and common copy number variations to testicular germ cell cancer

    DEFF Research Database (Denmark)

    Edsgard, Stefan Daniel; Dalgaard, Marlene Danner; Weinhold, Nils

    2013-01-01

    Testicular germ cell cancer (TGCC) is one of the most heritable forms of cancer. Previous genome-wide association studies have focused on single nucleotide polymorphisms, largely ignoring the influence of copy number variants (CNVs). Here we present a genome-wide study of CNV on a cohort of 212...... of rare CNVs related to cell migration (false-discovery rate = 0.021, 1.8% of cases and 1.1% of controls). Dysregulation during migration of primordial germ cells has previously been suspected to be a part of TGCC development and this set of multiple rare variants may thereby have a minor contribution...

  10. Chromosomal Mapping and Candidate Gene Discovery of Chicken Developmental Mutants and Genome-wide Variation Analysis of MHC-congenics

    Science.gov (United States)

    The chicken has been widely used in experimental research given its importance to agriculture and its utility as a model for vertebrate biology and biomedical pursuits for over 100 years. Herein we used recently developed advanced technologies to investigate the genomic characteristics of specialize...

  11. Evolutionary and taxonomic implications of variation in nuclear genome size: lesson from the grass genus Anthoxanthum (Poaceae)

    Czech Academy of Sciences Publication Activity Database

    Chlumová, Z.; Krejčíková, J.; Mandáková, T.; Suda, Jan; Trávníček, Pavel

    2015-01-01

    Roč. 10, č. 7 (2015), no.e0133748,1-17 E-ISSN 1932-6203 Institutional support: RVO:67985939 Keywords : flow cytometry * genome size * polyploidy Subject RIV: EF - Botanics Impact factor: 3.057, year: 2015

  12. Genome sequence variation in the constricta strain dramatically alters the protein interaction and localization map of Potato yellow dwarf virus

    Science.gov (United States)

    The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12,792 nucleotides long and organized into seven open reading frames with the gene order 3’-N-X-P-Y-M-G-L-5’, which encodes the nucleocapsid, phosphoprotein, movement, matrix, glycoprotein and RNA-d...

  13. Whole-Genome Resequencing of Experimental Populations Reveals Polygenic Basis of Egg-Size Variation in Drosophila melanogaster.

    Science.gov (United States)

    Jha, Aashish R; Miles, Cecelia M; Lippert, Nodia R; Brown, Christopher D; White, Kevin P; Kreitman, Martin

    2015-10-01

    Complete genome resequencing of populations holds great promise in deconstructing complex polygenic traits to elucidate molecular and developmental mechanisms of adaptation. Egg size is a classic adaptive trait in insects, birds, and other taxa, but its highly polygenic architecture has prevented high-resolution genetic analysis. We used replicated experimental evolution in Drosophila melanogaster and whole-genome sequencing to identify consistent signatures of polygenic egg-size adaptation. A generalized linear-mixed model revealed reproducible allele frequency differences between replicated experimental populations selected for large and small egg volumes at approximately 4,000 single nucleotide polymorphisms (SNPs). Several hundred distinct genomic regions contain clusters of these SNPs and have lower heterozygosity than the genomic background, consistent with selection acting on polymorphisms in these regions. These SNPs are also enriched among genes expressed in Drosophila ovaries and many of these genes have well-defined functions in Drosophila oogenesis. Additional genes regulating egg development, growth, and cell size show evidence of directional selection as genes regulating these biological processes are enriched for highly differentiated SNPs. Genetic crosses performed with a subset of candidate genes demonstrated that these genes influence egg size, at least in the large genetic background. These findings confirm the highly polygenic architecture of this adaptive trait, and suggest the involvement of many novel candidate genes in regulating egg size. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Continuous Morphological Variation Correlated with Genome Size Indicates Frequent Introgressive Hybridization among Diphasiastrum Species (Lycopodiaceae) in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Hanušová, K.; Ekrt, L.; Vít, Petr; Kolář, Filip; Urfus, Tomáš

    2014-01-01

    Roč. 9, č. 6 (2014), no.-e99552 E-ISSN 1932-6203 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : genome size * merphometrics * Diphasiastrum Subject RIV: EF - Botanics Impact factor: 3.234, year: 2014

  15. The missing indels: an estimate of indel variation in a human genome and analysis of factors that impede detection

    Science.gov (United States)

    Jiang, Yue; Turinsky, Andrei L.; Brudno, Michael

    2015-01-01

    With the development of High-Throughput Sequencing (HTS) thousands of human genomes have now been sequenced. Whenever different studies analyze the same genome they usually agree on the amount of single-nucleotide polymorphisms, but differ dramatically on the number of insertion and deletion variants (indels). Furthermore, there is evidence that indels are often severely under-reported. In this manuscript we derive the total number of indel variants in a human genome by combining data from different sequencing technologies, while assessing the indel detection accuracy. Our estimate of approximately 1 million indels in a Yoruban genome is much higher than the results reported in several recent HTS studies. We identify two key sources of difficulties in indel detection: the insufficient coverage, read length or alignment quality; and the presence of repeats, including short interspersed elements and homopolymers/dimers. We quantify the effect of these factors on indel detection. The quality of sequencing data plays a major role in improving indel detection by HTS methods. However, many indels exist in long homopolymers and repeats, where their detection is severely impeded. The true number of indel events is likely even higher than our current estimates, and new techniques and technologies will be required to detect them. PMID:26130710

  16. Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels

    DEFF Research Database (Denmark)

    Chen, Wei-Min; Erdos, Michael R; Jackson, Anne U

    2008-01-01

    Identifying the genetic variants that regulate fasting glucose concentrations may further our understanding of the pathogenesis of diabetes. We therefore investigated the association of fasting glucose levels with SNPs in 2 genome-wide scans including a total of 5,088 nondiabetic individuals from...

  17. Genomic Variation in IbA10G2 and Other Patient-Derived Cryptosporidium hominis Subtypes.

    Science.gov (United States)

    Sikora, Per; Andersson, Sofia; Winiecka-Krusnell, Jadwiga; Hallström, Björn; Alsmark, Cecilia; Troell, Karin; Beser, Jessica; Arrighi, Romanico B G

    2017-03-01

    In order to improve genotyping and epidemiological analysis of Cryptosporidium spp., genomic data need to be generated directly from a broad range of clinical specimens. Utilizing a robust method that we developed for the purification and generation of amplified target DNA, we present its application for the successful isolation and whole-genome sequencing of 14 different Cryptosporidium hominis patient specimens. Six isolates of subtype IbA10G2 were analyzed together with a single representative each of 8 other subtypes: IaA20R3, IaA23R3, IbA9G3, IbA13G3, IdA14, IeA11G3T3, IfA12G1, and IkA18G1. Parasite burden was measured over a range of more than 2 orders of magnitude for all samples, while the genomes were sequenced to mean depths of between 17× and 490× coverage. Sequence homology-based functional annotation identified several genes of interest, including the gene encoding Cryptosporidium oocyst wall protein 9 (COWP9), which presented a predicted loss-of-function mutation in all the sequence subtypes, except for that seen with IbA10G2, which has a sequence identical to the Cryptosporidium parvum reference Iowa II sequence. Furthermore, phylogenetic analysis showed that all the IbA10G2 genomes form a monophyletic clade in the C. hominis tree as expected and yet display some heterogeneity within the IbA10G2 subtype. The current report validates the aforementioned method for isolating and sequencing Cryptosporidium directly from clinical stool samples. In addition, the analysis demonstrates the potential in mining data generated from sequencing multiple whole genomes of Cryptosporidium from human fecal samples, while alluding to the potential for a higher degree of genotyping within Cryptosporidium epidemiology. Copyright © 2017 American Society for Microbiology.

  18. Whole-genome sequencing of a Plasmodium vivax clinical isolate exhibits geographical characteristics and high genetic variation in China-Myanmar border area.

    Science.gov (United States)

    Chen, Shen-Bo; Wang, Yue; Kassegne, Kokouvi; Xu, Bin; Shen, Hai-Mo; Chen, Jun-Hu

    2017-02-06

    Currently in China, the trend of Plasmodium vivax cases imported from Southeast Asia was increased especially in the China-Myanmar border area. Driven by the increase in P. vivax cases and stronger need for vaccine and drug development, several P. vivax isolates genome sequencing projects are underway. However, little is known about the genetic variability in this area until now. The sequencing of the first P. vivax isolate from China-Myanmar border area (CMB-1) generated 120 million paired-end reads. A percentage of 10.6 of the quality-evaluated reads were aligned onto 99.9% of the reference strain Sal I genome in 62-fold coverage with an average of 4.8 SNPs per kb. We present a 539-SNP marker data set for P. vivax that can identify different parasites from different geographic origins with high sensitivity. We also identified exceptionally high levels of genetic variability in members of multigene families such as RBP, SERA, vir, MSP3 and AP2. The de-novo assembly yielded a database composed of 8,409 contigs with N50 lengths of 6.6 kb and revealed 661 novel predicted genes including 78 vir genes, suggesting a greater functional variation in P. vivax from this area. Our result contributes to a better understanding of P. vivax genetic variation, and provides a fundamental basis for the geographic differentiation of vivax malaria from China-Myanmar border area using a direct sequencing approach without leukocyte depletion. This novel sequencing method can be used as an essential tool for the genomic research of P. vivax in the near future.

  19. Identifying Rare Variation in Cases of Schizophrenia in the Isolated Population of the Faroe Islands using Whole-genome Sequencing

    DEFF Research Database (Denmark)

    Als, Thomas Damm; Lescai, Francesco; Dahl, Hans

    of developing SZ. However, these studies are designed to examining only “the common variant” proportion of the genomic landscape of SZ. Due to increased genetic drift during founding and potential bottlenecks, followed by population expansion, isolated populations may be particularly useful in identifying rare...... disease variants, that may appear at higher frequencies and/or within a more clearly distinct haplotype structure compared to outbred populations. Small isolated populations also typically show reduced phenotypic, genetic and environmental heterogeneity, thus making them advantageous in studies aiming...... to map risk variants involved in complex traits. We aim at utilizing samples of cases and controls of the isolated population of the Faroe Islands to conduct whole-genome-sequence analysis in order to identify rare genetic variants associated with schizophrenia. We will search for rare genetic variants...

  20. Complete plastid genome sequence of Primula sinensis (Primulaceae: structure comparison, sequence variation and evidence for accD transfer to nucleus

    Directory of Open Access Journals (Sweden)

    Tong-Jian Liu

    2016-06-01

    Full Text Available Species-rich genus Primula L. is a typical plant group with which to understand genetic variance between species in different levels of relationships. Chloroplast genome sequences are used to be the information resource for quantifying this difference and reconstructing evolutionary history. In this study, we reported the complete chloroplast genome sequence of Primula sinensis and compared it with other related species. This genome of chloroplast showed a typical circular quadripartite structure with 150,859 bp in sequence length consisting of 37.2% GC base. Two inverted repeated regions (25,535 bp were separated by a large single-copy region (82,064 bp and a small single-copy region (17,725 bp. The genome consists of 112 genes, including 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Among them, seven coding genes, seven tRNA genes and four rRNA genes have two copies due to their locations in the IR regions. The accD and infA genes lacking intact open reading frames (ORF were identified as pseudogenes. SSR and sequence variation analyses were also performed on the plastome of Primula sinensis, comparing with another available plastome of P. poissonii. The four most variable regions, rpl36–rps8, rps16–trnQ, trnH–psbA and ndhC–trnV, were identified. Phylogenetic relationship estimates using three sub-datasets extracted from a matrix of 57 protein-coding gene sequences showed the identical result that was consistent with previous studies. A transcript found from P. sinensis transcriptome showed a high similarity to plastid accD functional region and was identified as a putative plastid transit peptide at the N-terminal region. The result strongly suggested that plastid accD has been functionally transferred to the nucleus in P. sinensis.

  1. A genome wide meta-analysis study for identification of common variation associated with breast cancer prognosis.

    Directory of Open Access Journals (Sweden)

    Sajjad Rafiq

    Full Text Available Genome wide association studies (GWAs of breast cancer mortality have identified few potential associations. The concordance between these studies is unclear. In this study, we used a meta-analysis of two prognostic GWAs and a replication cohort to identify the strongest associations and to evaluate the loci suggested in previous studies. We attempt to identify those SNPs which could impact overall survival irrespective of the age of onset.To facilitate the meta-analysis and to refine the association signals, SNPs were imputed using data from the 1000 genomes project. Cox-proportional hazard models were used to estimate hazard ratios (HR in 536 patients from the POSH cohort (Prospective study of Outcomes in Sporadic versus Hereditary breast cancer and 805 patients from the HEBCS cohort (Helsinki Breast Cancer Study. These hazard ratios were combined using a Mantel-Haenszel fixed effects meta-analysis and a p-value threshold of 5×10(-8 was used to determine significance. Replication was performed in 1523 additional patients from the POSH study.Although no SNPs achieved genome wide significance, three SNPs have significant association in the replication cohort and combined p-values less than 5.6×10(-6. These SNPs are; rs421379 which is 556 kb upstream of ARRDC3 (HR = 1.49, 95% confidence interval (CI = 1.27-1.75, P = 1.1×10(-6, rs12358475 which is between ECHDC3 and PROSER2 (HR = 0.75, CI = 0.67-0.85, P = 1.8×10(-6, and rs1728400 which is between LINC00917 and FOXF1.In a genome wide meta-analysis of two independent cohorts from UK and Finland, we identified potential associations at three distinct loci. Phenotypic heterogeneity and relatively small sample sizes may explain the lack of genome wide significant findings. However, the replication at three SNPs in the validation cohort shows promise for future studies in larger cohorts. We did not find strong evidence for concordance between the few associations highlighted

  2. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population.

    Science.gov (United States)

    Johnston, Susan E; McEwan, John C; Pickering, Natalie K; Kijas, James W; Beraldi, Dario; Pilkington, Jill G; Pemberton, Josephine M; Slate, Jon

    2011-06-01

    Understanding the genetic architecture of phenotypic variation in natural populations is a fundamental goal of evolutionary genetics. Wild Soay sheep (Ovis aries) have an inherited polymorphism for horn morphology in both sexes, controlled by a single autosomal locus, Horns. The majority of males have large normal horns, but a small number have vestigial, deformed horns, known as scurs; females have either normal horns, scurs or no horns (polled). Given that scurred males and polled females have reduced fitness within each sex, it is counterintuitive that the polymorphism persists within the population. Therefore, identifying the genetic basis of horn type will provide a vital foundation for understanding why the different morphs are maintained in the face of natural selection. We conducted a genome-wide association study using ∼36000 single nucleotide polymorphisms (SNPs) and determined the main candidate for Horns as RXFP2, an autosomal gene with a known involvement in determining primary sex characters in humans and mice. Evidence from additional SNPs in and around RXFP2 supports a new model of horn-type inheritance in Soay sheep, and for the first time, sheep with the same horn phenotype but different underlying genotypes can be identified. In addition, RXFP2 was shown to be an additive quantitative trait locus (QTL) for horn size in normal-horned males, accounting for up to 76% of additive genetic variation in this trait. This finding contrasts markedly from genome-wide association studies of quantitative traits in humans and some model species, where it is often observed that mapped loci only explain a modest proportion of the overall genetic variation. © 2011 Blackwell Publishing Ltd.

  3. Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans.

    Directory of Open Access Journals (Sweden)

    Maxime Rotival

    2011-12-01

    Full Text Available One major expectation from the transcriptome in humans is to characterize the biological basis of associations identified by genome-wide association studies. So far, few cis expression quantitative trait loci (eQTLs have been reliably related to disease susceptibility. Trans-regulating mechanisms may play a more prominent role in disease susceptibility. We analyzed 12,808 genes detected in at least 5% of circulating monocyte samples from a population-based sample of 1,490 European unrelated subjects. We applied a method of extraction of expression patterns-independent component analysis-to identify sets of co-regulated genes. These patterns were then related to 675,350 SNPs to identify major trans-acting regulators. We detected three genomic regions significantly associated with co-regulated gene modules. Association of these loci with multiple expression traits was replicated in Cardiogenics, an independent study in which expression profiles of monocytes were available in 758 subjects. The locus 12q13 (lead SNP rs11171739, previously identified as a type 1 diabetes locus, was associated with a pattern including two cis eQTLs, RPS26 and SUOX, and 5 trans eQTLs, one of which (MADCAM1 is a potential candidate for mediating T1D susceptibility. The locus 12q24 (lead SNP rs653178, which has demonstrated extensive disease pleiotropy, including type 1 diabetes, hypertension, and celiac disease, was associated to a pattern strongly correlating to blood pressure level. The strongest trans eQTL in this pattern was CRIP1, a known marker of cellular proliferation in cancer. The locus 12q15 (lead SNP rs11177644 was associated with a pattern driven by two cis eQTLs, LYZ and YEATS4, and including 34 trans eQTLs, several of them tumor-related genes. This study shows that a method exploiting the structure of co-expressions among genes can help identify genomic regions involved in trans regulation of sets of genes and can provide clues for understanding the

  4. Genome-Wide Identification of the Mutation Underlying Fleece Variation and Discriminating Ancestral Hairy Species from Modern Woolly Sheep.

    Science.gov (United States)

    Demars, Julie; Cano, Margarita; Drouilhet, Laurence; Plisson-Petit, Florence; Bardou, Philippe; Fabre, Stéphane; Servin, Bertrand; Sarry, Julien; Woloszyn, Florent; Mulsant, Philippe; Foulquier, Didier; Carrière, Fabien; Aletru, Mathias; Rodde, Nathalie; Cauet, Stéphane; Bouchez, Olivier; Pirson, Maarten; Tosser-Klopp, Gwenola; Allain, Daniel

    2017-07-01

    The composition and structure of fleece variation observed in mammals is a consequence of a strong selective pressure for fiber production after domestication. In sheep, fleece variation discriminates ancestral species carrying a long and hairy fleece from modern domestic sheep (Ovis aries) owning a short and woolly fleece. Here, we report that the "woolly" allele results from the insertion of an antisense EIF2S2 retrogene (called asEIF2S2) into the 3' UTR of the IRF2BP2 gene leading to an abnormal IRF2BP2 transcript. We provide evidence that this chimeric IRF2BP2/asEIF2S2 messenger 1) targets the genuine sense EIF2S2 RNA and 2) creates a long endogenous double-stranded RNA which alters the expression of both EIF2S2 and IRF2BP2 mRNA. This represents a unique example of a phenotype arising via a RNA-RNA hybrid, itself generated through a retroposition mechanism. Our results bring new insights on the sheep population history thanks to the identification of the molecular origin of an evolutionary phenotypic variation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair.

    Science.gov (United States)

    Liu, Fan; Chen, Yan; Zhu, Gu; Hysi, Pirro G; Wu, Sijie; Adhikari, Kaustubh; Breslin, Krystal; Pospiech, Ewelina; Hamer, Merel A; Peng, Fuduan; Muralidharan, Charanya; Acuna-Alonzo, Victor; Canizales-Quinteros, Samuel; Bedoya, Gabriel; Gallo, Carla; Poletti, Giovanni; Rothhammer, Francisco; Bortolini, Maria Catira; Gonzalez-Jose, Rolando; Zeng, Changqing; Xu, Shuhua; Jin, Li; Uitterlinden, André G; Ikram, M Arfan; van Duijn, Cornelia M; Nijsten, Tamar; Walsh, Susan; Branicki, Wojciech; Wang, Sijia; Ruiz-Linares, Andrés; Spector, Timothy D; Martin, Nicholas G; Medland, Sarah E; Kayser, Manfred

    2018-02-01

    Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62-0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans. © The Author(s) 2017. Published by Oxford University Press.

  6. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair

    Science.gov (United States)

    Liu, Fan; Chen, Yan; Zhu, Gu; Hysi, Pirro G; Wu, Sijie; Adhikari, Kaustubh; Breslin, Krystal; Pośpiech, Ewelina; Hamer, Merel A; Peng, Fuduan; Muralidharan, Charanya; Acuna-Alonzo, Victor; Canizales-Quinteros, Samuel; Bedoya, Gabriel; Gallo, Carla; Poletti, Giovanni; Rothhammer, Francisco; Bortolini, Maria Catira; Gonzalez-Jose, Rolando; Zeng, Changqing; Xu, Shuhua; Jin, Li; Uitterlinden, André G; Ikram, M Arfan; van Duijn, Cornelia M; Nijsten, Tamar; Walsh, Susan; Branicki, Wojciech; Wang, Sijia; Ruiz-Linares, Andrés; Spector, Timothy D; Martin, Nicholas G; Medland, Sarah E; Kayser, Manfred

    2018-01-01

    Abstract Shape variation of human head hair shows striking variation within and between human populations, while its genetic basis is far from being understood. We performed a series of genome-wide association studies (GWASs) and replication studies in a total of 28 964 subjects from 9 cohorts from multiple geographic origins. A meta-analysis of three European GWASs identified 8 novel loci (1p36.23 ERRFI1/SLC45A1, 1p36.22 PEX14, 1p36.13 PADI3, 2p13.3 TGFA, 11p14.1 LGR4, 12q13.13 HOXC13, 17q21.2 KRTAP, and 20q13.33 PTK6), and confirmed 4 previously known ones (1q21.3 TCHH/TCHHL1/LCE3E, 2q35 WNT10A, 4q21.21 FRAS1, and 10p14 LINC00708/GATA3), all showing genome-wide significant association with hair shape (P < 5e-8). All except one (1p36.22 PEX14) were replicated with nominal significance in at least one of the 6 additional cohorts of European, Native American and East Asian origins. Three additional previously known genes (EDAR, OFCC1, and PRSS53) were confirmed at the nominal significance level. A multivariable regression model revealed that 14 SNPs from different genes significantly and independently contribute to hair shape variation, reaching a cross-validated AUC value of 0.66 (95% CI: 0.62–0.70) and an AUC value of 0.64 in an independent validation cohort, providing an improved accuracy compared with a previous model. Prediction outcomes of 2504 individuals from a multiethnic sample were largely consistent with general knowledge on the global distribution of hair shape variation. Our study thus delivers target genes and DNA variants for future functional studies to further evaluate the molecular basis of hair shape in humans. PMID:29220522

  7. Clinical significance of rare copy number variations in epilepsy: a case-control survey using microarray-based comparative genomic hybridization.

    Science.gov (United States)

    Striano, Pasquale; Coppola, Antonietta; Paravidino, Roberta; Malacarne, Michela; Gimelli, Stefania; Robbiano, Angela; Traverso, Monica; Pezzella, Marianna; Belcastro, Vincenzo; Bianchi, Amedeo; Elia, Maurizio; Falace, Antonio; Gazzerro, Elisabetta; Ferlazzo, Edoardo; Freri, Elena; Galasso, Roberta; Gobbi, Giuseppe; Molinatto, Cristina; Cavani, Simona; Zuffardi, Orsetta; Striano, Salvatore; Ferrero, Giovanni Battista; Silengo, Margherita; Cavaliere, Maria Luigia; Benelli, Matteo; Magi, Alberto; Piccione, Maria; Dagna Bricarelli, Franca; Coviello, Domenico A; Fichera, Marco; Minetti, Carlo; Zara, Federico

    2012-03-01

    To perform an extensive search for genomic rearrangements by microarray-based comparative genomic hybridization in patients with epilepsy. Prospective cohort study. Epilepsy centers in Italy. Two hundred seventy-nine patients with unexplained epilepsy, 265 individuals with nonsyndromic mental retardation but no epilepsy, and 246 healthy control subjects were screened by microarray-based comparative genomic hybridization. Identification of copy number variations (CNVs) and gene enrichment. Rare CNVs occurred in 26 patients (9.3%) and 16 healthy control subjects (6.5%) (P = .26). The CNVs identified in patients were larger (P = .03) and showed higher gene content (P = .02) than those in control subjects. The CNVs larger than 1 megabase (P = .002) and including more than 10 genes (P = .005) occurred more frequently in patients than in control subjects. Nine patients (34.6%) among those harboring rare CNVs showed rearrangements associated with emerging microdeletion or microduplication syndromes. Mental retardation and neuropsychiatric features were associated with rare CNVs (P = .004), whereas epilepsy type was not. The CNV rate in patients with epilepsy and mental retardation or neuropsychiatric features is not different from that observed in patients with mental retardation only. Moreover, significant enrichment of genes involved in ion transport was observed within CNVs identified in patients with epilepsy. Patients with epilepsy show a significantly increased burden of large, rare, gene-rich CNVs, particularly when associated with mental retardation and neuropsychiatric features. The limited overlap between CNVs observed in the epilepsy group and those observed in the group with mental retardation only as well as the involvement of specific (ion channel) genes indicate a specific association between the identified CNVs and epilepsy. Screening for CNVs should be performed for diagnostic purposes preferentially in patients with epilepsy and mental retardation or

  8. Comparative Investigation of the Genomic Regions Involved in Antigenic Variation of the TprK Antigen among Treponemal Species, Subspecies, and Strains

    Science.gov (United States)

    Brandt, Stephanie L.; Puray-Chavez, Maritza; Reid, Tara Brinck; Godornes, Charmie; Molini, Barbara J.; Benzler, Martin; Hartig, Jörg S.; Lukehart, Sheila A.; Centurion-Lara, Arturo

    2012-01-01

    Although the three Treponema pallidum subspecies (T. pallidum subsp. pallidum, T. pallidum subsp. pertenue, and T. pallidum subsp. endemicum), Treponema paraluiscuniculi, and the unclassified Fribourg-Blanc treponeme cause clinically distinct diseases, these pathogens are genetically and antigenically highly related and are able to cause persistent infection. Recent evidence suggests that the putative surface-exposed variable antigen TprK plays an important role in both treponemal immune evasion and persistence. tprK heterogeneity is generated by nonreciprocal gene conversion between the tprK expression site and donor sites. Although each of the above-mentioned species and subspecies has a functional tprK antigenic variation system, it is still unclear why the level of expression and the rate at which tprK diversifies during infection can differ significantly among isolates. To identify genomic differences that might affect the generation and expression of TprK variants among these pathogens, we performed comparative sequence analysis of the donor sites, as well as the tprK expression sites, among eight T. pallidum subsp. pallidum isolates (Nichols Gen, Nichols Sea, Chicago, Sea81-4, Dal-1, Street14, UW104, and UW126), three T. pallidum subsp. pertenue isolates (Gauthier, CDC2, and Samoa D), one T. pallidum subsp. endemicum isolate (Iraq B), the unclassified Fribourg-Blanc isolate, and the Cuniculi A strain of T. paraluiscuniculi. Synteny and sequence conservation, as well as deletions and insertions, were found in the regions harboring the donor sites. These data suggest that the tprK recombination system is harbored within dynamic genomic regions and that genomic differences might be an important key to explain discrepancies in generation and expression of tprK variants among these Treponema isolates. PMID:22661689

  9. Characterization of SNP and Structural Variations in the Mitochondrial Genomes of Tilletia indica and Its Closely Related Species Formed Basis for a Simple Diagnostic Assay.

    Directory of Open Access Journals (Sweden)

    Mui-Keng Tan

    Full Text Available Tilletia indica causes the disease Karnal bunt in wheat. The disease is under international quarantine regulations. Comparative mitochondrial (mt genome analysis of T. indica (KX394364 and DQ993184 and T. walkeri (EF536375 has found 325 to 328 SNPs, 57 to 60 short InDels (from 1 to 13 nt, two InDels (30 and 61 nt and five (>200 nt presence/absence variations (PAVs between the two species. The mt genomes of both species have identical gene order. The numbers of SNPs and InDels between the mt genomes of the two species are approximately nine times of the corresponding numbers between the two T. indica isolates. There are eight SNPs between T. indica and T. walkeri that resulted in amino acid substitutions in the mt genes of cob, nad2 and nad5. In contrast, there is no amino acid substitution in the mt genes of the T. indica isolates from the SNPs found. The five PAVs present in T. indica (DQ993184 are absent in T. walkeri. Four PAVs are more than 1 kb and are not present in every T. indica isolate. Analysis of their presence and absence separates a collection of T. indica isolates into 11 subgroups. Two PAVs have ORFs for the LAGLIDAG endonuclease and two have ORFs for the GIY-YIG endonuclease family, which are representatives of homing endonuclease genes (HEGs. These intron- encoded HEGs confer intron mobility and account for their fluid distribution in T. indica isolates. The small PAV of 221 bp, present in every T. indica isolate and unique to the species, was used as the genetic fingerprint for the successful development of a rapid, highly sensitive and specific loop mediated isothermal amplification (LAMP assay. The simple procedure of the LAMP assay and the easy detection formats will enable the assay to be automated for high throughput diagnosis.

  10. Detection of genetic variation affecting milk coagulation properties in Danish Holstein dairy cattle by analyses of pooled whole-genome sequences from phenotypically extreme samples (pool-seq).

    Science.gov (United States)

    Bertelsen, H P; Gregersen, V R; Poulsen, N; Nielsen, R O; Das, A; Madsen, L B; Buitenhuis, A J; Holm, L-E; Panitz, F; Larsen, L B; Bendixen, C

    2016-04-01

    Rennet-induced milk coagulation is an important trait for cheese production. Recent studies have reported an alarming frequency of cows producing poorly coagulating milk unsuitable for cheese production. Several genetic factors are known to affect milk coagulation, including variation in the major milk proteins; however, recent association studies indicate genetic effects from other genomic regions as well. The aim of this study was to detect genetic variation affecting milk coagulation properties, measured as curd-firming rate (CFR) and milk pH. This was achieved by examining allele frequency differences between pooled whole-genome sequences of phenotypically extreme samples (pool-seq).. Curd-firming rate and raw milk pH were measured for 415 Danish Holstein cows, and each animal was sequenced at low coverage. Pools were created containing whole genome sequence reads from samples with "extreme" values (high or low) for both phenotypic traits. A total of 6,992,186 and 5,295,501 SNP were assessed in relation to CFR and milk pH, respectively. Allele frequency differences were calculated between pools and 32 significantly different SNP were detected, 1 for milk pH and 31 for CFR, of which 19 are located on chromosome 6. A total of 9 significant SNP, which were selected based on the possible function of proximal candidate genes, were genotyped in the entire sample set ( = 415) to test for an association. The most significant SNP was located proximal to , explaining 33% of the phenotypic variance. , coding for κ-casein, is the most studied in relation to milk coagulation due to its position on the surface of the casein micelles and the direct involvement in milk coagulation. Three additional SNP located on chromosome 6 showed significant associations explaining 7, 3.6, and 1.3% of the phenotypic variance of CFR. The significant SNP on chromosome 6 were shown to be in linkage disequilibrium with the SNP peaking proximal to ; however, after accounting for the genotype of

  11. Genetic variation and reproductive timing: African American women from the Population Architecture using Genomics and Epidemiology (PAGE Study.

    Directory of Open Access Journals (Sweden)

    Kylee L Spencer

    Full Text Available Age at menarche (AM and age at natural menopause (ANM define the boundaries of the reproductive lifespan in women. Their timing is associated with various diseases, including cancer and cardiovascular disease. Genome-wide association studies have identified several genetic variants associated with either AM or ANM in populations of largely European or Asian descent women. The extent to which these associations generalize to diverse populations remains unknown. Therefore, we sought to replicate previously reported AM and ANM findings and to identify novel AM and ANM variants using the Metabochip (n = 161,098 SNPs in 4,159 and 1,860 African American women, respectively, in the Women's Health Initiative (WHI and Atherosclerosis Risk in Communities (ARIC studies, as part of the Population Architecture using Genomics and Epidemiology (PAGE Study. We replicated or generalized one previously identified variant for AM, rs1361108/CENPW, and two variants for ANM, rs897798/BRSK1 and rs769450/APOE, to our African American cohort. Overall, generalization of the majority of previously-identified variants for AM and ANM, including LIN28B and MCM8, was not observed in this African American sample. We identified three novel loci associated with ANM that reached significance after multiple testing correction (LDLR rs189596789, p = 5×10⁻⁰⁸; KCNQ1 rs79972789, p = 1.9×10⁻⁰⁷; COL4A3BP rs181686584, p = 2.9×10⁻⁰⁷. Our most significant AM association was upstream of RSF1, a gene implicated in ovarian and breast cancers (rs11604207, p = 1.6×10⁻⁰⁶. While most associations were identified in either AM or ANM, we did identify genes suggestively associated with both: PHACTR1 and ARHGAP42. The lack of generalization coupled with the potentially novel associations identified here emphasize the need for additional genetic discovery efforts for AM and ANM in diverse populations.

  12. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Anders H Olsson

    2014-11-01

    Full Text Available Genetic and epigenetic mechanisms may interact and together affect biological processes and disease development. However, most previous studies have investigated genetic and epigenetic mechanisms independently, and studies examining their interactions throughout the human genome are lacking. To identify genetic loci that interact with the epigenome, we performed the first genome-wide DNA methylation quantitative trait locus (mQTL analysis in human pancreatic islets. We related 574,553 single nucleotide polymorphisms (SNPs with genome-wide DNA methylation data of 468,787 CpG sites targeting 99% of RefSeq genes in islets from 89 donors. We identified 67,438 SNP-CpG pairs in cis, corresponding to 36,783 SNPs (6.4% of tested SNPs and 11,735 CpG sites (2.5% of tested CpGs, and 2,562 significant SNP-CpG pairs in trans, corresponding to 1,465 SNPs (0.3% of tested SNPs and 383 CpG sites (0.08% of tested CpGs, showing significant associations after correction for multiple testing. These include reported diabetes loci, e.g. ADCY5, KCNJ11, HLA-DQA1, INS, PDX1 and GRB10. CpGs of significant cis-mQTLs were overrepresented in the gene body and outside of CpG islands. Follow-up analyses further identified mQTLs associated with gene expression and insulin secretion in human islets. Causal inference test (CIT identified SNP-CpG pairs where DNA methylation in human islets is the potential mediator of the genetic association with gene expression or insulin secretion. Functional analyses further demonstrated that identified candidate genes (GPX7, GSTT1 and SNX19 directly affect key biological processes such as proliferation and apoptosis in pancreatic β-cells. Finally, we found direct correlations between DNA methylation of 22,773 (4.9% CpGs with mRNA expression of 4,876 genes, where 90% of the correlations were negative when CpGs were located in the region surrounding transcription start site. Our study demonstrates for the first time how genome-wide genetic and

  13. Comparative phenomics and targeted use of genomics reveals variation in carbon and nitrogen assimilation among different Brettanomyces bruxellensis strains.

    Science.gov (United States)

    Crauwels, S; Van Assche, A; de Jonge, R; Borneman, A R; Verreth, C; Troels, P; De Samblanx, G; Marchal, K; Van de Peer, Y; Willems, K A; Verstrepen, K J; Curtin, C D; Lievens, B

    2015-11-01

    Recent studies have suggested a correlation between genotype groups of Brettanomyces bruxellensis and their source of isolation. To further explore this relationship, the objective of this study was to assess metabolic differences in carbon and nitrogen assimilation between different B. bruxellensis strains from three beverages, including beer, wine, and soft drink, using Biolog Phenotype Microarrays. While some similarities of physiology were noted, many traits were variable among strains. Interestingly, some phenotypes were found that could be linked to strain origin, especially for the assimilation of particular α- and β-glycosides as well as α- and β-substituted monosaccharides. Based upon gene presence or absence, an α-glucosidase and β-glucosidase were found explaining the observed phenotypes. Further, using a PCR screen on a large number of isolates, we have been able to specifically link a genomic deletion to the beer strains, suggesting that this region may have a fitness cost for B. bruxellensis in certain fermentation systems such as brewing. More specifically, none of the beer strains were found to contain a β-glucosidase, which may have direct impacts on the ability for these strains to compete with other microbes or on flavor production.

  14. Variations in genome-wide gene expression in identical twins – a study of primary osteoblast-like culture from female twins discordant for osteoporosis

    Directory of Open Access Journals (Sweden)

    Beresford Jon N

    2004-06-01

    Full Text Available Abstract Background Monozygotic twin pairs who are genetically identical would be potentially useful in gene expression study for specific traits as cases and controls, because there would be much less gene expression variation within pairs compared to two unrelated individuals. However the twin pair has to be discordant for the particular trait or phenotype excluding those resulting from known confounders. Such discordant monozygotic twin pairs are rare and very few studies have explored the potential usefulness of this approach. Results We studied genome-wide gene expression in primary osteoblast-like culture from marrow aspirates obtained from three pairs of monozygotic twins. We used the latest Affymetrix microchip contains probe sets for more than 20,000 genes. Two pairs were discordant for bone mineral density at the hip by more than one standard deviation, and the third pair was unrelated concordant and used as control. Only 1.5% on average of genes showed variation in expression within pairs as compared to 5% between pairs or over 15% from the literature. Importantly we identified several groups of genes showing variations within the discordant pairs and not within the concordant pair such as chondroitin beta 1,4 N-acetylgalactosaminyltransferase, inhibin beta A, interleukin 1 beta and colony stimulating factor 1 macrophage. These genes are known to have potential roles in bone physiology relating to bone density, osteoporosis and osteoarthritis. Conclusion Using the example of osteoblast-like cells in our monozygotic discordant twins for osteoporosis, we identified genes showing differential expression. Although without further experiment, we cannot confirm or conclude these are genes definitely related to bone physiology, we believe we have shown the potential and cost-effectiveness of further gene expression studies in discordant monozygotic twin pairs. A replication study for confirmation is essential.

  15. Replication of genome wide association studies of alcohol dependence: support for association with variation in ADH1C.

    Directory of Open Access Journals (Sweden)

    Joanna M Biernacka

    Full Text Available Genome-wide association studies (GWAS have revealed many single nucleotide polymorphisms (SNPs associated with complex traits. Although these studies frequently fail to identify statistically significant associations, the top association signals from GWAS may be enriched for true associations. We therefore investigated the association of alcohol dependence with 43 SNPs selected from association signals in the first two published GWAS of alcoholism. Our analysis of 808 alcohol-dependent cases and 1,248 controls provided evidence of association of alcohol dependence with SNP rs1614972 in the ADH1C gene (unadjusted p = 0.0017. Because the GWAS study that originally reported association of alcohol dependence with this SNP [1] included only men, we also performed analyses in sex-specific strata. The results suggest that this SNP has a similar effect in both sexes (men: OR (95%CI = 0.80 (0.66, 0.95; women: OR (95%CI = 0.83 (0.66, 1.03. We also observed marginal evidence of association of the rs1614972 minor allele with lower alcohol consumption in the non-alcoholic controls (p = 0.081, and independently in the alcohol-dependent cases (p = 0.046. Despite a number of potential differences between the samples investigated by the prior GWAS and the current study, data presented here provide additional support for the association of SNP rs1614972 in ADH1C with alcohol dependence and extend this finding by demonstrating association with consumption levels in both non-alcoholic and alcohol-dependent populations. Further studies should investigate the association of other polymorphisms in this gene with alcohol dependence and related alcohol-use phenotypes.

  16. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression

    Directory of Open Access Journals (Sweden)

    Vining Kelly J

    2012-01-01

    Full Text Available Abstract Background DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. Results We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem in the reference tree species black cottonwood (Populus trichocarpa. Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq, we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation" had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. Conclusions We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation.

  17. Genetic variation in the mitochondrial genome of the giant grouper Epinephelus lanceolatus (Bloch, 1790 and its application for the identification of broodstock

    Directory of Open Access Journals (Sweden)

    Seng S. Cheng

    2015-11-01

    Full Text Available Mitochondrial DNA (mtDNA markers are ideal for the validation of maternal inheritance and the identification of brood-stock in aquaculture breeding programs. The complete mitochondrial genomes of 11 species of grouper are currently available at the GenBank. This study was directed towards the characterization of mtDNA loci which can be applied for identification of interspecific F1 hybrids developed from Epinephelus fuscoguttatus and Epinephelus lanceolatus in aquaculture breeding programs. DNA was extracted from the fin clip of one specimen of E. lanceolatus which the source of sperm for the artificial spawning of the interspecific F1 hybrid E. fuscoguttatus × E. lanceolatus. Specific primers were designed to amplify the DNA after comparative analysis of the mtDNA genomes available at the GenBank. The primers were applied to test for cross-amplification in F1 hybrids as well as in the maternal parent E. fuscoguttatus (Forsskål, 1775 and the genetically related species Epinephelus coioides and Epinephelus corallicola (Valenciennes, 1828. DNA sequence analysis revealed that the Malaysian variety of E. lanceolatus exhibited variation at 11 of the 13 ORFs when compared to the variety from Taiwan. A distinct segmented duplication was observed in the D-loop region which was determined to be unique to the E. lanceolatus specimen obtained from Sabah, Malaysia. Cross amplification of mtDNA loci in the groupers E. fuscoguttatus, E. coioides, E. corallicola and the F1 hybrid of E. fuscoguttatus × E. lanceolatus revealed distinct profiles for each of the species with a clear indication that mtDNA were inherited from the maternal parent of the F1 hybrid.. mtDNA loci can be applied by fish breeders to determine interspecific hybridization events.

  18. Detection of genomic variations in BRCA1 and BRCA2 genes by long-range PCR and next-generation sequencing.

    Science.gov (United States)

    Hernan, Imma; Borràs, Emma; de Sousa Dias, Miguel; Gamundi, María José; Mañé, Begoña; Llort, Gemma; Agúndez, José A G; Blanca, Miguel; Carballo, Miguel

    2012-01-01

    Advances in sequencing technologies, such as next-generation sequencing (NGS), represent an opportunity to perform genetic testing in a clinical scenario. In this study, we developed and tested a method for the detection of mutations in the large BRCA1 and BRCA2 tumor suppressor genes, using long-range PCR (LR-PCR) and NGS, in samples from individuals with a personal and/or family history of breast and/or ovarian cancer. Eleven LR-PCR fragments, between 3000 and 15,300 bp, containing all coding exons and flanking splice junctions of BRCA1 and BRCA2, were obtained from DNA samples of five individuals carrying mutations in either BRCA1 or BRCA2. Libraries for NGS were prepared using an enzymatic (Nextera technology) method. We analyzed five individual samples in parallel by NGS and obtained complete coverage of all LR-PCR fragments, with an average coding sequence depth for each nucleotide of >30 reads, running from ×7 (in exon 22 of BRCA1) to >×150. We detected and confirmed 100% of the mutations that predispose to the risk of cancer, together with other genomic variations in BRCA1 and BRCA2. Our approach demonstrates that genomic LR-PCR, together with NGS, using the GS Junior 454 System platform, is an effective method for patient sample analysis of BRCA1 and BRCA2 genes. In addition, this method could be performed in regular molecular genetics laboratories. Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. Genome wide meta-analysis highlights the role of genetic variation in RARRES2 in the regulation of circulating serum chemerin.

    Directory of Open Access Journals (Sweden)

    Anke Tönjes

    2014-12-01

    Full Text Available Chemerin is an adipokine proposed to link obesity and chronic inflammation of adipose tissue. Genetic factors determining chemerin release from adipose tissue are yet unknown. We conducted a meta-analysis of genome-wide association studies (GWAS for serum chemerin in three independent cohorts from Europe: Sorbs and KORA from Germany and PPP-Botnia from Finland (total N = 2,791. In addition, we measured mRNA expression of genes within the associated loci in peripheral mononuclear cells by micro-arrays, and within adipose tissue by quantitative RT-PCR and performed mRNA expression quantitative trait and expression-chemerin association studies to functionally substantiate our loci. Heritability estimate of circulating chemerin levels was 16.2% in the Sorbs cohort. Thirty single nucleotide polymorphisms (SNPs at chromosome 7 within the retinoic acid receptor responder 2 (RARRES2/Leucine Rich Repeat Containing (LRRC61 locus reached genome-wide significance (p<5.0×10-8 in the meta-analysis (the strongest evidence for association at rs7806429 with p = 7.8×10-14, beta = -0.067, explained variance 2.0%. All other SNPs within the cluster were in linkage disequilibrium with rs7806429 (minimum r2 = 0.43 in the Sorbs cohort. The results of the subgroup analyses of males and females were consistent with the results found in the total cohort. No significant SNP-sex interaction was observed. rs7806429 was associated with mRNA expression of RARRES2 in visceral adipose tissue in women (p<0.05 after adjusting for age and body mass index. In conclusion, the present meta-GWAS combined with mRNA expression studies highlights the role of genetic variation in the RARRES2 locus in the regulation of circulating chemerin concentrations.

  20. Inter- and intra-species variation in genome-wide gene expression of Drosophila in response to parasitoid wasp attack.

    Science.gov (United States)

    Salazar-Jaramillo, Laura; Jalvingh, Kirsten M; de Haan, Ammerins; Kraaijeveld, Ken; Buermans, Henk; Wertheim, Bregje

    2017-04-27

    Parasitoid resistance in Drosophila varies considerably, among and within species. An immune response, lamellocyte-mediated encapsulation, evolved in a subclade of Drosophila and was subsequently lost in at least one species within this subclade. While the mechanisms of resistance are fairly well documented in D. melanogaster, much less is known for closely related species. Here, we studied the inter- and intra-species variation in gene expression after parasitoid attack in Drosophila. We used RNA-seq after parasitization of four closely related Drosophila species of the melanogaster subgroup and replicated lines of D. melanogaster experimentally selected for increased resistance to gain insights into short- and long-term evolutionary changes. We found a core set of genes that are consistently up-regulated after parasitoid attack in the species and lines tested, regardless of their level of resistance. Another set of genes showed no up-regulation or expression in D. sechellia, the species unable to raise an immune response against parasitoids. This set consists largely of genes that are lineage-restricted to the melanogaster subgroup. Artificially selected lines did not show significant differences in gene expression with respect to non-selected lines in their responses to parasitoid attack, but several genes showed differential exon usage. We showed substantial similarities, but also notable differences, in the transcriptional responses to parasitoid attack among four closely related Drosophila species. In contrast, within D. melanogaster, the responses were remarkably similar. We confirmed that in the short-term, selection does not act on a pre-activation of the immune response. Instead it may target alternative mechanisms such as differential exon usage. In the long-term, we found support for the hypothesis that the ability to immunologically resist parasitoid attack is contingent on new genes that are restricted to the melanogaster subgroup.

  1. Genome-wide analysis of copy number variations reveals that aging processes influence body fat distribution in Korea Associated Resource (KARE) cohorts.

    Science.gov (United States)

    Lee, Bo-Young; Shin, Dong Hyun; Cho, Seoae; Seo, Kang-Seok; Kim, Heebal

    2012-11-01

    Many anthropometric measures, including body mass index (BMI), waist-to-hip ratio (WHR), and subcutaneous fat thickness, are used as indicators of nutritional status, fertility and predictors of future health outcomes. While BMI is currently the best available estimate of body adiposity, WHR and skinfold thickness at various sites (biceps, triceps, suprailiac, and subscapular) are used as indices of body fat distribution. Copy number variation (CNV) is an attractive emerging approach to the study of associations with various diseases. In this study, we investigated the dosage effect of genes in the CNV genome widely associated with fat distribution phenotypes in large cohorts. We used the Affymetrix genome-wide human SNP Array 5.0 data of 8,842 healthy unrelated adults in KARE cohorts and identified CNVs associated with BMI and fat distribution-related traits including WHR and subcutaneous skinfold thickness at suprailiac (SUP) and subscapular (SUB) sites. CNV segmentation of each chromosome was performed using Golden Helix SVS 7.0, and single regression analysis was used to identify CNVs associated with each phenotype. We found one CNV for BMI, 287 for WHR, 2,157 for SUP, and 2,102 for SUB at the 5% significance level after Holm-Bonferroni correction. Genes included in the CNV were used for the analysis of functional annotations using the Database for Annotation, Visualization and Integrated Discovery (DAVID v6.7b) tool. Functional gene classification analysis identified five significant gene clusters (metallothionein, ATP-binding proteins, ribosomal proteins, kinesin family members, and zinc finger proteins) for SUP, three (keratin-associated proteins, zinc finger proteins, keratins) for SUB, and one (protamines) for WHR. BMI was excluded from this analysis because the entire structure of no gene was identified in the CNV. Based on the analysis of genes enriched in the clusters, the fat distribution traits of KARE cohorts were related to the fat redistribution

  2. Exploring hepsin functional genetic variation association with disease specific protein expression in bipolar disorder: Applications of a proteomic informed genomic approach.

    Science.gov (United States)

    Nassan, Malik; Jia, Yun-Fang; Jenkins, Greg; Colby, Colin; Feeder, Scott; Choi, Doo-Sup; Veldic, Marin; McElroy, Susan L; Bond, David J; Weinshilboum, Richard; Biernacka, Joanna M; Frye, Mark A

    2017-12-01

    In a prior discovery study, increased levels of serum Growth Differentiation Factor 15 (GDF15), Hepsin (HPN), and Matrix Metalloproteinase-7 (MMP7) were observed in bipolar depressed patients vs controls. This exploratory post-hoc analysis applied a proteomic-informed genomic research strategy to study the potential functional role of these proteins in bipolar disorder (BP). Utilizing the Genotype-Tissue Expression (GTEx) database to identify cis-acting blood expression quantitative trait loci (cis-eQTLs), five eQTL variants from the HPN gene were analyzed for association with BP cases using genotype data of cases from the discovery study (n = 58) versus healthy controls (n = 777). After adjusting for relevant covariates, we analyzed the relationship between these 5 cis-eQTLs and HPN serum level in the BP cases. All 5 cis-eQTL minor alleles were significantly more frequent in BP cases vs controls [(rs62122114, OR = 1.6, p = 0.02), (rs67003112, OR = 1.6, p = 0.02), (rs4997929, OR = 1.7, p = 0.01), (rs12610663, OR = 1.7, p = 0.01), (rs62122148, OR = 1.7, P = 0.01)]. The minor allele (A) in rs62122114 was significantly associated with increased serum HPN level in BP cases (Beta = 0.12, P = 0.049). However, this same minor allele was associated with reduced gene expression in GTEx controls. These exploratory analyses suggest that genetic variation in/near the gene encoding for hepsin protein may influence risk of bipolar disorder. This genetic variation, at least for the rs62122114-A allele, may have functional impact (i.e. differential expression) as evidenced by serum HPN protein expression. Although limited by small sample size, this study highlights the merits of proteomic informed functional genomic studies as a tool to investigate with greater precision the genetic risk of bipolar disorder and secondary relationships to protein expression recognizing, and encouraging in subsequent studies, high likelihood of epigenetic modification of

  3. Characterization of genomic variations in SNPs of PE_PGRS genes reveals deletions and insertions in extensively drug resistant (XDR) M. tuberculosis strains from Pakistan

    KAUST Repository

    Kanji, Akbar

    2015-03-01

    Background: Mycobacterium tuberculosis (MTB) PE_PGRS genes belong to the PE multi-gene family. Although the function of the members of the PE_PGRS multi-gene family is not yet known, it is hypothesized that the PE_PGRS genes may be associated with genetic variability. Material and methods: Whole genome sequencing analysis was performed on (n= 37) extensively drug resistant (XDR) MTB strains from Pakistan which included Central Asian (n= 23), East African Indian (n= 2), X3 (n= 1), T group (n= 3) and Orphan (n= 8) MTB strains. Results: By analyzing 42 PE_PGRS genes, 111 SNPs were identified, of which 13 were non-synonymous SNPs (nsSNPs). The nsSNPs identified in the PE_PGRS genes were as follows: 6, 9, 10 and 55 present in each of the CAS, EAI, Orphan, T1 and X3 XDR MTB strains studied. Deletions in PE_PGRS genes: 19, 21 and 23 were observed in 7 (35.0%) CAS1 and 3 (37.5%) in Orphan XDR MTB strains, while deletions in the PE_PGRS genes: 49 and 50 were observed in 36 (95.0%) CAS1 and all CAS, CAS2 and Orphan XDR MTB strains. An insertion in PE_PGRS6 gene was observed in all CAS, EAI3 and Orphan, while insertions in the PE_PGRS genes 19 and 33 were observed in 19 (95%) CAS1 and all CAS, CAS2, EAI3 and Orphan XDR MTB strains. Conclusion: Genetic diversity in PE_PGRS genes contributes to antigenic variability and may result in increased immunogenicity of strains. This is the first study identifying variations in nsSNPs, Insertions and Deletions in the PE_PGRS genes of XDR-TB strains from Pakistan. It highlights common genetic variations which may contribute to persistence.

  4. Characterization of genomic variations in SNPs of PE_PGRS genes reveals deletions and insertions in extensively drug resistant (XDR) M. tuberculosis strains from Pakistan

    KAUST Repository

    Kanji, Akbar

    2015-01-21

    Background Mycobacterium tuberculosis (MTB) PE_PGRS genes belong to the PE multigene family. Although the function of PE_PGRS genes is unknown, it is hypothesized that the PE_PGRS genes may be associated with antigenic variability in MTB. Material and methods Whole genome sequencing analysis was performed on (n = 37) extensively drug-resistant (XDR) MTB strains from Pakistan, which included Lineage 1 (East African Indian, n = 2); Other lineage 1 (n = 3); Lineage 3 (Central Asian, n = 24); Other lineage 3 (n = 4); Lineage 4 (X3, n = 1) and T group (n = 3) MTB strains. Results There were 107 SNPs identified from the analysis of 42 PE_PGRS genes; of these, 13 were non-synonymous SNPs (nsSNPs). The nsSNPs identified in PE_PGRS genes – 6, 9 and 10 – were common in all EAI, CAS, Other lineages (1 and 3), T1 and X3. Deletions (DELs) in PE_PGRS genes – 3 and 19 – were observed in 17 (80.9%) CAS1 and 6 (85.7%) in Other lineages (1 and 3) XDR MTB strains, while DELs in the PE_PGRS49 were observed in all CAS1, CAS, CAS2 and Other lineages (1 and 3) XDR MTB strains. All CAS, EAI and Other lineages (1 and 3) strains showed insertions (INS) in PE_PGRS6 gene, while INS in the PE_PGRS genes 19 and 33 were observed in 20 (95.2%) CAS1, all CAS, CAS2, EAI and Other lineages (1 and 3) XDR MTB strains. Conclusion Genetic diversity in PE_PGRS genes contributes to antigenic variability and may result in increased immunogenicity of strains. This is the first study identifying variations in nsSNPs and INDELs in the PE_PGRS genes of XDR-TB strains from Pakistan. It highlights common genetic variations which may contribute to persistence.

  5. Population genomic analysis suggests strong influence of river network on spatial distribution of genetic variation in invasive saltcedar across the southwestern United States

    Science.gov (United States)

    Lee, Soo-Rang; Jo, Yeong-Seok; Park, Chan-Ho; Friedman, Jonathan M.; Olson, Matthew S.

    2018-01-01

    Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.

  6. Genome-Wide Sequence Variation Identification and Floral-Associated Trait Comparisons Based on the Re-sequencing of the 'Nagafu No. 2' and 'Qinguan' Varieties of Apple (Malus domestica Borkh.).

    Science.gov (United States)

    Xing, Libo; Zhang, Dong; Song, Xiaomin; Weng, Kai; Shen, Yawen; Li, Youmei; Zhao, Caiping; Ma, Juanjuan; An, Na; Han, Mingyu

    2016-01-01

    Apple (Malus domestica Borkh.) is a commercially important fruit worldwide. Detailed information on genomic DNA polymorphisms, which are important for understanding phenotypic traits, is lacking for the apple. We re-sequenced two elite apple varieties, 'Nagafu No. 2' and 'Qinguan,' which have different characteristics. We identified many genomic variations, including 2,771,129 single nucleotide polymorphisms (SNPs), 82,663 structural variations (SVs), and 1,572,803 insertion/deletions (INDELs) in 'Nagafu No. 2' and 2,262,888 SNPs, 63,764 SVs, and 1,294,060 INDELs in 'Qinguan.' The 'SNP,' 'INDEL,' and 'SV' distributions were non-random, with variation-rich or -poor regions throughout the genomes. In 'Nagafu No. 2' and 'Qinguan' there were 171,520 and 147,090 non-synonymous SNPs spanning 23,111 and 21,400 genes, respectively; 3,963 and 3,196 SVs in 3,431 and 2,815 genes, respectively; and 1,834 and 1,451 INDELs in 1,681 and 1,345 genes, respectively. Genetic linkage maps of 190 flowering genes associated with multiple flowering pathways in 'Nagafu No. 2,' 'Qinguan,' and 'Golden Delicious,' identified complex regulatory mechanisms involved in floral induction, flower bud formation, and flowering characteristics, which might reflect the genetic variation of the flowering genes. Expression profiling of key flowering genes in buds and leaves suggested that the photoperiod and autonomous flowering pathways are major contributors to the different floral-associated traits between 'Nagafu No. 2' and 'Qinguan.' The genome variation data provided a foundation for the further exploration of apple diversity and gene-phenotype relationships, and for future research on molecular breeding to improve apple and related species.

  7. Genome-Wide Copy Number Variation Analysis in Extended Families and Unrelated Individuals Characterized for Musical Aptitude and Creativity in Music

    Science.gov (United States)

    Oikkonen, Jaana; Buck, Gemma; Blancher, Christine; Raijas, Pirre; Karma, Kai; Lähdesmäki, Harri; Järvelä, Irma

    2013-01-01

    Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire. Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music

  8. A statistical framework for genome-wide discovery of biomarker splice variations with GeneChip Human Exon 1.0 ST Arrays.

    Science.gov (United States)

    Yoshida, Ryo; Numata, Kazuyuki; Imoto, Seiya; Nagasaki, Masao; Doi, Atsushi; Ueno, Kazuko; Miyano, Satoru

    2006-01-01

    Alternative splicing is an important regulatory mechanism that generates multiple mRNA transcripts which are transcribed into functionally diverse proteins. According to the current studies, aberrant transcripts due to splicing mutations are known to cause for 15% of genetic diseases. Therefore understanding regulatory mechanism of alternative splicing is essential for identifying potential biomarkers for several types of human diseases. Most recently, advent of GeneChip Human Exon 1.0 ST Array enables us to measure genome-wide expression profiles of over one million exons. With this new microarray platform, analysis of functional gene expressions could be extended to detect not only differentially expressed genes, but also a set of specific-splicing events that are differentially observed between one or more experimental conditions, e.g. tumor or normal control cells. In this study, we address the statistical problems to identify differentially observed splicing variations from exon expression profiles. The proposed method is organized according to the following process: (1) Data preprocessing for removing systematic biases from the probe intensities. (2) Whole transcript analysis with the analysis of variance (ANOVA) to identify a set of loci that cause the alternative splicing-related to a certain disease. We test the proposed statistical approach on exon expression profiles of colorectal carcinoma. The applicability is verified and discussed in relation to the existing biological knowledge. This paper intends to highlight the potential role of statistical analysis of all exon microarray data. Our work is an important first step toward development of more advanced statistical technology. Supplementary information and materials are available from http://bonsai.ims.u-tokyo.ac.jp/~yoshidar/IBSB2006_ExonArray.htm.

  9. Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music.

    Science.gov (United States)

    Ukkola-Vuoti, Liisa; Kanduri, Chakravarthi; Oikkonen, Jaana; Buck, Gemma; Blancher, Christine; Raijas, Pirre; Karma, Kai; Lähdesmäki, Harri; Järvelä, Irma

    2013-01-01

    Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire.Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music perception

  10. Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music.

    Directory of Open Access Journals (Sweden)

    Liisa Ukkola-Vuoti

    Full Text Available Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores: auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music was surveyed using a web-based questionnaire.Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9 was found co-segregating with low music test scores (COMB in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for

  11. Limited influence of germline genetic variation on all-cause mortality in women with early onset breast cancer: evidence from gene-based tests, single-marker regression, and whole-genome prediction.

    Science.gov (United States)

    Scannell Bryan, Molly; Argos, Maria; Andrulis, Irene L; Hopper, John L; Chang-Claude, Jenny; Malone, Kathleen; John, Esther M; Gammon, Marilie D; Daly, Mary; Terry, Mary Beth; Buys, Saundra S; Huo, Dezheng; Olopade, Olofunmilayo; Genkinger, Jeanine M; Jasmine, Farzana; Kibriya, Muhammad G; Chen, Lin; Ahsan, Habibul

    2017-08-01

    Women diagnosed with breast cancer have heterogeneous survival outcomes that cannot be fully explained by known prognostic factors, and germline variation is a plausible but unconfirmed risk factor. We used three approaches to test the hypothesis that germline variation drives some differences in survival: mortality loci identification, tumor aggressiveness loci identification, and whole-genome prediction. The 2954 study participants were women diagnosed with breast cancer before age 50, with a median follow-up of 15 years who were genotyped on an exome array. We first searched for loci in gene regions that were associated with all-cause mortality. We next searched for loci in gene regions associated with five histopathological characteristics related to tumor aggressiveness. Last, we also predicted 10-year all-cause mortality on a subset of 1903 participants (3,245,343 variants after imputation) using whole-genome prediction methods. No risk loci for mortality or tumor aggressiveness were identified. This null result persisted when restricting to women with estrogen receptor-positive tumors, when examining suggestive loci in an independent study, and when restricting to previously published risk loci. Additionally, the whole-genome prediction model also found no evidence to support an association. Despite multiple complementary approaches, our study found no evidence that mortality in women with early onset breast cancer is influenced by germline variation.

  12. Utilizing linkage disequilibrium information from Indian Genome ...

    Indian Academy of Sciences (India)

    Utilizing linkage disequilibrium information from Indian Genome. Variation Database for mapping mutations: SCA12 case study. SAMIRA BAHL1, IKHLAK AHMED2, THE INDIAN GENOME VARIATION CONSORTIUM3 and MITALI MUKERJI1. 1Functional Genomics Unit, Institute of Genomics and Integrative Biology (CSIR), ...

  13. Ensembl variation resources

    Directory of Open Access Journals (Sweden)

    Marin-Garcia Pablo

    2010-05-01

    Full Text Available Abstract Background The maturing field of genomics is rapidly increasing the number of sequenced genomes and producing more information from those previously sequenced. Much of this additional information is variation data derived from sampling multiple individuals of a given species with the goal of discovering new variants and characterising the population frequencies of the variants that are already known. These data have immense value for many studies, including those designed to understand evolution and connect genotype to phenotype. Maximising the utility of the data requires that it be stored in an accessible manner that facilitates the integration of variation data with other genome resources such as gene annotation and comparative genomics. Description The Ensembl project provides comprehensive and integrated variation resources for a wide variety of chordate genomes. This paper provides a detailed description of the sources of data and the methods for creating the Ensembl variation databases. It also explores the utility of the information by explaining the range of query options available, from using interactive web displays, to online data mining tools and connecting directly to the data servers programmatically. It gives a good overview of the variation resources and future plans for expanding the variation data within Ensembl. Conclusions Variation data is an important key to understanding the functional and phenotypic differences between individuals. The development of new sequencing and genotyping technologies is greatly increasing the amount of variation data known for almost all genomes. The Ensembl variation resources are integrated into the Ensembl genome browser and provide a comprehensive way to access this data in the context of a widely used genome bioinformatics system. All Ensembl data is freely available at http://www.ensembl.org and from the public MySQL database server at ensembldb.ensembl.org.

  14. Genetic contributors to variation in alcohol consumption vary by race/ethnicity in a large multi-ethnic genome-wide association study.

    Science.gov (United States)

    Jorgenson, E; Thai, K K; Hoffmann, T J; Sakoda, L C; Kvale, M N; Banda, Y; Schaefer, C; Risch, N; Mertens, J; Weisner, C; Choquet, H

    2017-09-01

    Alcohol consumption is a complex trait determined by both genetic and environmental factors, and is correlated with the risk of alcohol use disorders. Although a small number of genetic loci have been reported to be associated with variation in alcohol consumption, genetic factors are estimated to explain about half of the variance in alcohol consumption, suggesting that additional loci remain to be discovered. We conducted a genome-wide association study (GWAS) of alcohol consumption in the large Genetic Epidemiology Research in Adult Health and Aging (GERA) cohort, in four race/ethnicity groups: non-Hispanic whites, Hispanic/Latinos, East Asians and African Americans. We examined two statistically independent phenotypes reflecting subjects' alcohol consumption during the past year, based on self-reported information: any alcohol intake (drinker/non-drinker status) and the regular quantity of drinks consumed per week (drinks/week) among drinkers. We assessed these two alcohol consumption phenotypes in each race/ethnicity group, and in a combined trans-ethnic meta-analysis comprising a total of 86 627 individuals. We observed the strongest association between the previously reported single nucleotide polymorphism (SNP) rs671 in ALDH2 and alcohol drinker status (odd ratio (OR)=0.40, P=2.28 × 10 -72 ) in East Asians, and also an effect on drinks/week (beta=-0.17, P=5.42 × 10 -4 ) in the same group. We also observed a genome-wide significant association in non-Hispanic whites between the previously reported SNP rs1229984 in ADH1B and both alcohol consumption phenotypes (OR=0.79, P=2.47 × 10 -20 for drinker status and beta=-0.19, P=1.91 × 10 -35 for drinks/week), which replicated in Hispanic/Latinos (OR=0.72, P=4.35 × 10 -7 and beta=-0.21, P=2.58 × 10 -6 , respectively). Although prior studies reported effects of ADH1B and ALDH2 on lifetime measures, such as risk of alcohol dependence, our study adds further evidence of the effect of the same genes on a cross

  15. Rice Genomics: Gene discovery

    Indian Academy of Sciences (India)

    There is a need for discovering candidate genes( a lot of them all over the genome indeed ) and the unlimited allelic variation that can productively take over rice metabolism when cellular water content falls below threshold levels.

  16. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat.

    Science.gov (United States)

    Ovenden, Ben; Milgate, Andrew; Wade, Len J; Rebetzke, Greg J; Holland, James B

    2018-04-16

    Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional breeding improvement in many crop species. This study evaluated the potential of genomic selection to predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat under field conditions. A panel of 358 varieties and breeding lines constrained for maturity was evaluated under rainfed and irrigated treatments across two locations and two years. Whole-genome marker profiles and factor analytic mixed models were used to generate genomic estimated breeding values (GEBVs) for specific environments and environment groups. Additive genetic variance was smaller than residual genetic variance for WSCC, such that genotypic values were dominated by residual genetic effects rather than additive breeding values. As a result, GEBVs were not accurate predictors of genotypic values of the extant lines, but GEBVs should be reliable selection criteria to choose parents for intermating to produce new populations. The accuracy of GEBVs for untested lines was sufficient to increase predicted genetic gain from genomic selection per unit time compared to phenotypic selection if the breeding cycle is reduced by half by the use of GEBVs in off-season generations. Further, genomic prediction accuracy depended on having phenotypic data from environments with strong correlations with target production environments to build prediction models. By combining high-density marker genotypes, stress-managed field evaluations, and mixed models that model simultaneously covariances among genotypes and covariances of complex trait performance between pairs of environments, we were able to train models with good accuracy to facilitate genetic gain from genomic selection. Copyright © 2018, G3: Genes, Genomes, Genetics.

  17. Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: the Long Life Family Study

    DEFF Research Database (Denmark)

    Lee, J. H.; Cheng, R.; Honig, L. S.

    2014-01-01

    Leukocyte telomere length is believed to measure cellular aging in humans, and short leukocyte telomere length is associated with increased risks of late onset diseases, including cardiovascular disease, dementia, etc. Many studies have shown that leukocyte telomere length is a heritable trait......, and several candidate genes have been identified, including TERT, TERC, OBFC1, and CTC1. Unlike most studies that have focused on genetic causes of chronic diseases such as heart disease and diabetes in relation to leukocyte telomere length, the present study examined the genome to identify variants that may...... contribute to variation in leukocyte telomere length among families with exceptional longevity. From the genome wide association analysis in 4,289 LLFS participants, we identified a novel intergenic SNP rs7680468 located near PAPSS1 and DKK2 on 4q25 (p = 4.7E-8). From our linkage analysis, we identified two...

  18. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    Science.gov (United States)

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears.

  19. CRISPR-CAS9 D10A nickase target-specific fluorescent labeling of double strand DNA for whole genome mapping and structural variation analysis.

    Science.gov (United States)

    McCaffrey, Jennifer; Sibert, Justin; Zhang, Bin; Zhang, Yonggang; Hu, Wenhui; Riethman, Harold; Xiao, Ming

    2016-01-29

    We have developed a new, sequence-specific DNA labeling strategy that will dramatically improve DNA mapping in complex and structurally variant genomic regions, as well as facilitate high-throughput automated whole-genome mapping. The method uses the Cas9 D10A protein, which contains a nuclease disabling mutation in one of the two nuclease domains of Cas9, to create a guide RNA-directed DNA nick in the context of an in vitro-assembled CRISPR-CAS9-DNA complex. Fluorescent nucleotides are then incorporated adjacent to the nicking site with a DNA polymerase to label the guide RNA-determined target sequences. This labeling strategy is very powerful in targeting repetitive sequences as well as in barcoding genomic regions and structural variants not amenable to current labeling methods that rely on uneven distributions of restriction site motifs in the DNA. Importantly, it renders the labeled double-stranded DNA available in long intact stretches for high-throughput analysis in nanochannel arrays as well as for lower throughput targeted analysis of labeled DNA regions using alternative methods for stretching and imaging the labeled long DNA molecules. Thus, this method will dramatically improve both automated high-throughput genome-wide mapping as well as targeted analyses of complex regions containing repetitive and structurally variant DNA. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Genetic variation in the non-coding genome : Involvement of micro-RNAs and long non-coding RNAs in disease

    NARCIS (Netherlands)

    Hrdlickova, Barbara; de Almeida, Rodrigo Coutinho; Borek, Zuzanna; Withoff, Sebo

    2014-01-01

    It has been found that the majority of disease-associated genetic variants identified by genome-wide association studies are located outside of protein-coding regions, where they seem to affect regions that control transcription (promoters, enhancers) and non-coding RNAs that also can influence gene

  1. Genome-wide association reveals that common genetic variation in the kallikrein-kinin system is associated with serum L-arginine levels

    NARCIS (Netherlands)

    Zhang, Weihua; Jerneren, Fredrik; Lehne, Benjamin C.; Chen, Ming-Huei; Luben, Robert N.; Johnston, Carole; Elshorbagy, Amany; Eppinga, Ruben N.; Scott, William R.; Adeyeye, Elizabeth; Scott, James; Boeger, Rainer H.; Khaw, Kay-Tee; van der Harst, Pim; Wareham, Nicholas J.; Vasan, Ramachandran S.; Chambers, John C.; Refsum, Helga; Kooner, Jaspal S.

    2016-01-01

    L-arginine is the essential precursor of nitric oxide, and is involved in multiple key physiological processes, including vascular and immune function. The genetic regulation of blood L-arginine levels is largely unknown. We performed a genome-wide association study (GWAS) to identify genetic

  2. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...... on transcriptional evidence. Analysis of repetitive sequences suggests that they are underrepresented in the reference assembly, reflecting an enrichment of gene-rich regions in the current assembly. Characterization of Lotus natural variation by resequencing of L. japonicus accessions and diploid Lotus species...... is currently ongoing, facilitated by the MG20 reference sequence...

  3. Evolutionary genomics of Entamoeba

    Science.gov (United States)

    Weedall, Gareth D.; Hall, Neil

    2011-01-01

    Entamoeba histolytica is a human pathogen that causes amoebic dysentery and leads to significant morbidity and mortality worldwide. Understanding the genome and evolution of the parasite will help explain how, when and why it causes disease. Here we review current knowledge about the evolutionary genomics of Entamoeba: how differences between the genomes of different species may help explain different phenotypes, and how variation among E. histolytica parasites reveals patterns of population structure. The imminent expansion of the amount genome data will greatly improve our knowledge of the genus and of pathogenic species within it. PMID:21288488

  4. RecJ, ExoI and RecG are required for genome maintenance but not for generation of genetic diversity by repeat-mediated phase variation in Haemophilus influenzae

    International Nuclear Information System (INIS)

    Kumar, Gaurav A.; Woodhall, Mark R.; Hood, Derek W.; Moxon, E. Richard; Bayliss, Christopher D.

    2008-01-01

    High levels of genetic diversity are generated in Haemophilus influenzae populations through DNA repeat-mediated phase variation and recombination with DNA fragments acquired by uptake from the external milieu. Conversely, multiple pathways for maintenance of the genome sequence are encoded in H. influenzae genomes. In Escherichia coli, mutations in single-stranded-DNA exonucleases destabilise tandem DNA repeats whilst inactivation of recG can stabilise repeat tracts. These enzymes also have varying effects on recombination. Deletion mutations were constructed in H. influenzae genes encoding homologs of ExoI, RecJ and RecG whilst ExoVII was refractory to mutation. Inactivation of RecJ and RecG, but not ExoI, increased sensitivity to irradiation with ultraviolet light. An increase in spontaneous mutation rate was not observed in single mutants but only when both RecJ and ExoI were mutated. None of the single- or double-mutations increased or decreased the rates of slippage in tetranucleotide repeat tracts. Furthermore, the exonuclease mutants did not exhibit significant defects in horizontal gene transfer. We conclude that RecJ, ExoI and RecG are required for maintenance of the H. influenzae genome but none of these enzymes influence the generation of genetic diversity through mutations in the tetranucleotide repeat tracts of this species

  5. RecJ, ExoI and RecG are required for genome maintenance but not for generation of genetic diversity by repeat-mediated phase variation in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Gaurav A.; Woodhall, Mark R.; Hood, Derek W.; Moxon, E. Richard [Molecular Infectious Diseases Group, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS (United Kingdom); Bayliss, Christopher D. [Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)], E-mail: cdb12@le.ac.uk

    2008-04-02

    High levels of genetic diversity are generated in Haemophilus influenzae populations through DNA repeat-mediated phase variation and recombination with DNA fragments acquired by uptake from the external milieu. Conversely, multiple pathways for maintenance of the genome sequence are encoded in H. influenzae genomes. In Escherichia coli, mutations in single-stranded-DNA exonucleases destabilise tandem DNA repeats whilst inactivation of recG can stabilise repeat tracts. These enzymes also have varying effects on recombination. Deletion mutations were constructed in H. influenzae genes encoding homologs of ExoI, RecJ and RecG whilst ExoVII was refractory to mutation. Inactivation of RecJ and RecG, but not ExoI, increased sensitivity to irradiation with ultraviolet light. An increase in spontaneous mutation rate was not observed in single mutants but only when both RecJ and ExoI were mutated. None of the single- or double-mutations increased or decreased the rates of slippage in tetranucleotide repeat tracts. Furthermore, the exonuclease mutants did not exhibit significant defects in horizontal gene transfer. We conclude that RecJ, ExoI and RecG are required for maintenance of the H. influenzae genome but none of these enzymes influence the generation of genetic diversity through mutations in the tetranucleotide repeat tracts of this species.

  6. Genomic Testing

    Science.gov (United States)

    ... Events and Multimedia Implementation Genetics 101 Family Health History Genomics and Diseases Genetic Counseling Genomic Testing Epidemiology Pathogen Genomics Resources Genomic Testing Recommend on Facebook Tweet Share Compartir Fact Sheet: Identifying Opportunities to ...

  7. Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells

    OpenAIRE

    Kang, Xiangjin; Yu, Qian; Huang, Yuling; Song, Bing; Chen, Yaoyong; Gao, Xingcheng; He, Wenyin; Sun, Xiaofang; Fan, Yong

    2015-01-01

    Human-induced pluripotent stem cells (iPSCs) are derived from differentiated somatic cells using defined factors and provide a renewable source of autologous cells for cell therapy. Many reprogramming methods have been employed to generate human iPSCs, including the use of integrating vectors and non-integrating vectors. Maintenance of the genomic integrity of iPSCs is highly desirable if the cells are to be used in clinical applications. Here, using the Affymetrix Cytoscan HD array, we inves...

  8. Genome-wide array-CGH analysis reveals YRF1 gene copy number variation that modulates genetic stability in distillery yeasts.

    Science.gov (United States)

    Deregowska, Anna; Skoneczny, Marek; Adamczyk, Jagoda; Kwiatkowska, Aleksandra; Rawska, Ewa; Skoneczna, Adrianna; Lewinska, Anna; Wnuk, Maciej

    2015-10-13

    Industrial yeasts, economically important microorganisms, are widely used in diverse biotechnological processes including brewing, winemaking and distilling. In contrast to a well-established genome of brewer's and wine yeast strains, the comprehensive evaluation of genomic features of distillery strains is lacking. In the present study, twenty two distillery yeast strains were subjected to electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH). The strains analyzed were assigned to the Saccharomyces sensu stricto complex and grouped into four species categories: S. bayanus, S. paradoxus, S. cerevisiae and S. kudriavzevii. The genomic diversity was mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX were the most frequently observed. Statistically significant differences in the gene copy number were documented in six functional gene categories: 1) telomere maintenance via recombination, DNA helicase activity or DNA binding, 2) maltose metabolism process, glucose transmembrane transporter activity; 3) asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4) siderophore transport, 5) response to copper ion, cadmium ion binding and 6) L-iditol 2- dehydrogenase activity. The losses of YRF1 genes (Y' element ATP-dependent helicase) were accompanied by decreased level of Y' sequences and an increase in DNA double and single strand breaks, and oxidative DNA damage in the S. paradoxus group compared to the S. bayanus group. We postulate that naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the S. bayanus group of distillery yeast strains.

  9. Extensive variation in chromosome number and genome size in sexual and parthenogenetic species of the jumping-bristletail genus Machilis (Archaeognatha)

    Czech Academy of Sciences Publication Activity Database

    Gassner, M.; Dejaco, T.; Schönswetter, P.; Marec, František; Arthofer, W.; Schlick-Steiner, B. C.; Steiner, F. M.

    2014-01-01

    Roč. 4, č. 21 (2014), s. 4093-4105 ISSN 2045-7758 R&D Projects: GA ČR(CZ) GA14-22765S Grant - others:University of Innsbruck(AT) 40.3/22306/27.01.2014 Institutional support: RVO:60077344 Keywords : asexuality * chromosomal speciation * genome downsizing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.320, year: 2014

  10. Global Characterization of Genetic Variation by Using High-Throughput Technologies

    DEFF Research Database (Denmark)

    Zhan, Bujie

    into genetic variation in bovine and swine genomes and relevant methodologies; valuable resources such as novel genome sequences of pathogens, genome annotations and genetic variations were produced for research communities regard to animal health and welfare in animal breeding industriy...

  11. Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana

    Science.gov (United States)

    Understanding the mechanism of cadmium (Cd) accumulation in plants is important to help reduce its potential toxicity to both plants and humans through dietary and environmental exposure. Here, we report a study to uncover the genetic basis underlying natural variation in Cd accumulation in a world-...

  12. Genetic contributions to variation in general cognitive function: A meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949)

    NARCIS (Netherlands)

    G. Davies (Gail); N.J. Armstrong (Nicola J.); J.C. Bis (Joshua); J. Bressler (Jan); V. Chouraki (Vincent); S. Giddaluru (Sudheer); E. Hofer; C.A. Ibrahim-Verbaas (Carla); M. Kirin (Mirna); J. Lahti; S.J. van der Lee (Sven); S. Le Hellard (Stephanie); T. Liu; R.E. Marioni (Riccardo); C. Oldmeadow (Christopher); D. Postmus (Douwe); G.D. Smith; J.A. Smith (Jennifer A); A. Thalamuthu (Anbupalam); R. Thomson (Russell); V. Vitart (Veronique); J. Wang; L. Yu; L. Zgaga (Lina); W. Zhao (Wei); R. Boxall (Ruth); S.E. Harris (Sarah); W.D. Hill (W. David); D.C. Liewald (David C.); M. Luciano (Michelle); H.H.H. Adams (Hieab); D. Ames (David); N. Amin (Najaf); P. Amouyel (Philippe); A.A. Assareh; R. Au; J.T. Becker (James); A. Beiser; C. Berr (Claudine); L. Bertram (Lars); E.A. Boerwinkle (Eric); B.M. Buckley (Brendan M.); H. Campbell (Harry); J. Corley; P.L. De Jager; C. Dufouil (Carole); J.G. Eriksson (Johan G.); T. Espeseth (Thomas); J.D. Faul; I. Ford; G. Scotland (Generation); R.F. Gottesman (Rebecca); M.D. Griswold (Michael); V. Gudnason (Vilmundur); T.B. Harris; G. Heiss (Gerardo); A. Hofman (Albert); E.G. Holliday (Elizabeth); J.E. Huffman (Jennifer); S.L.R. Kardia (Sharon); N.A. Kochan (Nicole A.); D.S. Knopman (David); J.B. Kwok; J.-C. Lambert; T. Lee; G. Li; S.-C. Li; M. Loitfelder (Marisa); O.L. Lopez (Oscar); A.J. Lundervold; A. Lundqvist; R. Mather; S.S. Mirza (Saira); L. Nyberg; B.A. Oostra (Ben); A. Palotie (Aarno); G. Papenberg; A. Pattie (Alison); K. Petrovic (Katja); O. Polasek (Ozren); B.M. Psaty (Bruce); P. Redmond (Paul); S. Reppermund; J.I. Rotter; R. Schmidt (Reinhold); M. Schuur (Maaike); P.W. Schofield; R.J. Scott; V.M. Steen (Vidar); D.J. Stott (David J.); J.C. van Swieten (John); K.D. Taylor (Kent); J. Trollor; S. Trompet (Stella); A.G. Uitterlinden (André); G. Weinstein; E. Widen (Elisabeth); B.G. Windham (B Gwen); J.W. Jukema (Jan Wouter); A. Wright (Alan); M.J. Wright (Margaret); Q. Yang (Qiong Fang); H. Amieva (Hélène); J. Attia (John); D.A. Bennett (David); H. Brodaty (Henry); A.J. de Craen (Anton); C. Hayward; M.A. Ikram (Arfan); U. Lindenberger; L.-G. Nilsson; D.J. Porteous (David J.); K. Räikkönen (Katri); I. Reinvang (Ivar); I. Rudan (Igor); P.S. Sachdev (Perminder); R. Schmidt; P. Schofield (Peter); V. Srikanth; J.M. Starr (John); S.T. Turner (Stephen); D.R. Weir (David R.); J.F. Wilson (James F); C.M. van Duijn (Cornelia); L.J. Launer (Lenore); A.L. Fitzpatrick (Annette); S. Seshadri (Sudha); T.H. Mosley (Thomas H.); I.J. Deary (Ian J.)

    2015-01-01

    textabstractGeneral cognitive function is substantially heritable across the human life course from adolescence to old age. We investigated the genetic contribution to variation in this important, health- and well-being-related trait in middle-aged and older adults. We conducted a meta-analysis of

  13. The Mediterranean Sea as a barrier to gene flow: evidence from variation in and around the F7 and F12 genomic regions.

    Science.gov (United States)

    Athanasiadis, Georgios; González-Pérez, Emili; Esteban, Esther; Dugoujon, Jean-Michel; Stoneking, Mark; Moral, Pedro

    2010-03-27

    The Mediterranean has a long history of interactions among different peoples. In this study, we investigate the genetic relationships among thirteen population samples from the broader Mediterranean region together with three other groups from the Ivory Coast and Bolivia with a particular focus on the genetic structure between North Africa and South Europe. Analyses were carried out on a diverse set of neutral and functional polymorphisms located in and around the coagulation factor VII and XII genomic regions (F7 and F12). Principal component analysis revealed a significant clustering of the Mediterranean samples into North African and South European groups consistent with the results from the hierarchical AMOVA, which showed a low but significant differentiation between groups from the two shores. For the same range of geographic distances, populations from each side of the Mediterranean were found to differ genetically more than populations within the same side. To further investigate this differentiation, we carried out haplotype analyses, which provided partial evidence that sub-Saharan gene flow was higher towards North Africa than South Europe. As there is no consensus between the two genomic regions regarding gene flow through the Sahara, it is hard to reach a solid conclusion about its role in the differentiation between the two Mediterranean shores and more data are necessary to reach a definite conclusion. However our data suggest that the Mediterranean Sea was at least partially a barrier to gene flow between the two shores.

  14. Annotating individual human genomes.

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A; Topol, Eric J; Schork, Nicholas J

    2011-10-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. ANNOTATING INDIVIDUAL HUMAN GENOMES*

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A.; Topol, Eric J.; Schork, Nicholas J.

    2014-01-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely to amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. PMID:21839162

  16. Comparative Genomics of Enterococci: Variation in Enterococcus faecalis, Clade Structure in E. faecium, and Defining Characteristics of E. gallinarum and E. casseliflavus

    Science.gov (United States)

    Palmer, Kelli L.; Godfrey, Paul; Griggs, Allison; Kos, Veronica N.; Zucker, Jeremy; Desjardins, Christopher; Cerqueira, Gustavo; Gevers, Dirk; Walker, Suzanne; Wortman, Jennifer; Feldgarden, Michael; Haas, Brian; Birren, Bruce; Gilmore, Michael S.

    2012-01-01

    ABSTRACT The enterococci are Gram-positive lactic acid bacteria that inhabit the gastrointestinal tracts of diverse hosts. However, Enterococcus faecium and E. faecalis have emerged as leading causes of multidrug-resistant hospital-acquired infections. The mechanism by which a well-adapted commensal evolved into a hospital pathogen is poorly understood. In this study, we examined high-quality draft genome data for evidence of key events in the evolution of the leading causes of enterococcal infections, including E. faecalis, E. faecium, E. casseliflavus, and E. gallinarum. We characterized two clades within what is currently classified as E. faecium and identified traits characteristic of each, including variation in operons for cell wall carbohydrate and putative capsule biosynthesis. We examined the extent of recombination between the two E. faecium clades and identified two strains with mosaic genomes. We determined the underlying genetics for the defining characteristics of the motile enterococci E. casseliflavus and E. gallinarum. Further, we identified species-specific traits that could be used to advance the detection of medically relevant enterococci and their identification to the species level. PMID:22354958

  17. Genome-Wide Uniparental Disomy and Copy Number Variations in Renal Cell Carcinomas Associated with Birt-Hogg-Dubé Syndrome.

    Science.gov (United States)

    Iribe, Yasuhiro; Yao, Masahiro; Tanaka, Reiko; Kuroda, Naoto; Nagashima, Yoji; Nakatani, Yukio; Furuya, Mitsuko

    2016-02-01

    Birt-Hogg-Dubé syndrome is an inherited disorder caused by germline mutations of the folliculin gene (FLCN). The affected patients are prone to developing renal cell carcinomas (RCCs). Most mutant FLCN-associated RCCs (mFLCN-RCCs) are histologically chromophobe RCCs and hybrid oncocytic/chromophobe tumors. It is incompletely understood whether mFLCN-RCCs have different chromosomal abnormalities compared with their sporadic histological counterparts. Herein, we describe somatic mutations of FLCN and DNA-copy number abnormalities using a high-density, whole-genome, single-nucleotide polymorphism array. The histological types included chromophobe RCC (n = 12), hybrid oncocytic/chromophobe tumor (n = 5), and clear-cell RCC (n = 2). Of 19 tumors, 8 had pathological somatic mutations of FLCN. Among 11 mFLCN-RCCs investigated by single-nucleotide polymorphism array, 8 showed balanced genomic profiles, 2 had gains in chromosome 3q, and 1 had gains in chromosomes 1q and 7. All had copious numbers of loss of heterozygosity in a wide range of chromosomes. The common loss-of-heterozygosity regions were chromosomes 3p24, 8q11, 16q11, Xp22-21, Xp11, Xq11, Xq13, and Xq23. Most of the loss of heterozygosity was because of uniparental disomy. Common uniparental disomy patterns in chromophobe RCCs and hybrid oncocytic/chromophobe tumors indicated that these types were relatively similar in cytogenetic events. Two clear-cell RCCs also shared several uniparental disomy regions with chromophobe RCCs and hybrid oncocytic/chromophobe tumors. mFLCN-RCCs may have common therapeutic targets among different histological types. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Traditional medicine and genomics

    Directory of Open Access Journals (Sweden)

    Kalpana Joshi

    2010-01-01

    Full Text Available ′Omics′ developments in the form of genomics, proteomics and metabolomics have increased the impetus of traditional medicine research. Studies exploring the genomic, proteomic and metabolomic basis of human constitutional types based on Ayurveda and other systems of oriental medicine are becoming popular. Such studies remain important to developing better understanding of human variations and individual differences. Countries like India, Korea, China and Japan are investing in research on evidence-based traditional medicines and scientific validation of fundamental principles. This review provides an account of studies addressing relationships between traditional medicine and genomics.

  19. Traditional medicine and genomics.

    Science.gov (United States)

    Joshi, Kalpana; Ghodke, Yogita; Shintre, Pooja

    2010-01-01

    'Omics' developments in the form of genomics, proteomics and metabolomics have increased the impetus of traditional medicine research. Studies exploring the genomic, proteomic and metabolomic basis of human constitutional types based on Ayurveda and other systems of oriental medicine are becoming popular. Such studies remain important to developing better understanding of human variations and individual differences. Countries like India, Korea, China and Japan are investing in research on evidence-based traditional medicines and scientific validation of fundamental principles. This review provides an account of studies addressing relationships between traditional medicine and genomics.

  20. Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals

    Directory of Open Access Journals (Sweden)

    Marc eVandeputte

    2014-12-01

    Full Text Available Since the middle of the 1990s, parentage assignment using microsatellite markers has been introduced as a tool in aquaculture breeding. It now allows close to 100% assignment success, and offered new ways to develop aquaculture breeding using mixed family designs in industry conditions. Its main achievements are the knowledge and control of family representation and inbreeding, especially in mass spawning species, above all the capacity to estimate reliable genetic parameters in any species and rearing system with no prior investment in structures, and the development of new breeding programs in many species. Parentage assignment should not be seen as a way to replace physical tagging, but as a new way to conceive breeding programs, which have to be optimized with its specific constraints, one of the most important being to well define the number of individuals to genotype to limit costs, maximize genetic gain while minimizing inbreeding. The recent possible shift to (for the moment more costly SNP markers should benefit from future developments in genomics and MAS selection to combine parentage assignment and indirect prediction of breeding values.

  1. Common genetic variation near the phospholamban gene is associated with cardiac repolarisation: meta-analysis of three genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Ilja M Nolte

    2009-07-01

    Full Text Available To identify loci affecting the electrocardiographic QT interval, a measure of cardiac repolarisation associated with risk of ventricular arrhythmias and sudden cardiac death, we conducted a meta-analysis of three genome-wide association studies (GWAS including 3,558 subjects from the TwinsUK and BRIGHT cohorts in the UK and the DCCT/EDIC cohort from North America. Five loci were significantly associated with QT interval at P<1x10(-6. To validate these findings we performed an in silico comparison with data from two QT consortia: QTSCD (n = 15,842 and QTGEN (n = 13,685. Analysis confirmed the association between common variants near NOS1AP (P = 1.4x10(-83 and the phospholamban (PLN gene (P = 1.9x10(-29. The most associated SNP near NOS1AP (rs12143842 explains 0.82% variance; the SNP near PLN (rs11153730 explains 0.74% variance of QT interval duration. We found no evidence for interaction between these two SNPs (P = 0.99. PLN is a key regulator of cardiac diastolic function and is involved in regulating intracellular calcium cycling, it has only recently been identified as a susceptibility locus for QT interval. These data offer further mechanistic insights into genetic influence on the QT interval which may predispose to life threatening arrhythmias and sudden cardiac death.

  2. Nutritional genomics: an approach to the genome-environment interaction

    OpenAIRE

    Xacur-Garcia, F.; Castillo-Quan, J. I.; Hernandez-Escalante, V. M.; Laviada-Molina, H.

    2008-01-01

    Nutritional genomics forms part of the genomic sciences and addresses the interaction between genes and the human diet, its influence on metabolism and subsequent susceptibility to develop common diseases. It encompasses both nutrigenomics, which explores the effects of nutrients on the genome, proteome and metabolome; and nutrigenetics, that explores the effects of genetic variations on the diet/disease interaction. A number of mechanisms drive the gene/diet interaction: elements in the diet...

  3. Comparative Genomics in Homo sapiens.

    Science.gov (United States)

    Oti, Martin; Sammeth, Michael

    2018-01-01

    Genomes can be compared at different levels of divergence, either between species or within species. Within species genomes can be compared between different subpopulations, such as human subpopulations from different continents. Investigating the genomic differences between different human subpopulations is important when studying complex diseases that are affected by many genetic variants, as the variants involved can differ between populations. The 1000 Genomes Project collected genome-scale variation data for 2504 human individuals from 26 different populations, enabling a systematic comparison of variation between human subpopulations. In this chapter, we present step-by-step a basic protocol for the identification of population-specific variants employing the 1000 Genomes data. These variants are subsequently further investigated for those that affect the proteome or RNA splice sites, to investigate potentially biologically relevant differences between the populations.

  4. Genomic selection in plant breeding.

    Science.gov (United States)

    Newell, Mark A; Jannink, Jean-Luc

    2014-01-01

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor and major marker effects. Thus, the GEBV may capture more of the genetic variation for the particular trait under selection.

  5. A global reference for human genetic variation

    DEFF Research Database (Denmark)

    Auton, Adam; Abecasis, Goncalo R.; M. Altshuler, David

    2015-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals ...

  6. Comparative Genomics of Cryptosporidium

    Directory of Open Access Journals (Sweden)

    Aurélien J. Mazurie

    2013-01-01

    Full Text Available Until recently, the apicomplexan parasites, Cryptosporidium hominis and C. parvum, were considered the same species. However, the two parasites, now considered distinct species, exhibit significant differences in host range, infectivity, and pathogenicity, and their sequenced genomes exhibit only 95–97% identity. The availability of the complete genome sequences of these organisms provides the potential to identify the genetic variations that are responsible for the phenotypic differences between the two parasites. We compared the genome organization and structure, gene composition, the metabolic and other pathways, and the local sequence identity between the genes of these two Cryptosporidium species. Our observations show that the phenotypic differences between C. hominis and C. parvum are not due to gross genome rearrangements, structural alterations, gene deletions or insertions, metabolic capabilities, or other obvious genomic alterations. Rather, the results indicate that these genomes exhibit a remarkable structural and compositional conservation and suggest that the phenotypic differences observed are due to subtle variations in the sequences of proteins that act at the interface between the parasite and its host.

  7. Genome wide association and linkage analyses identified three loci -- 4q25, 17q23.2 and 10q11.21 -- associated with variation in leukocyte telomere length: The Long Life Family Study

    Directory of Open Access Journals (Sweden)

    Joseph H Lee

    2014-01-01

    Full Text Available Leukocyte telomere length is believed to measure cellular aging in humans, and short leukocyte telomere length is associated with increased risks of late onset diseases, including cardiovascular disease, dementia, etc. Many studies have shown that leukocyte telomere length is a heritable trait, and several candidate genes have been identified, including TERT, TERC, OBFC1, and CTC1. Unlike most studies that have focused on genetic causes of chronic diseases such as heart disease and diabetes in relation to leukocyte telomere length, the present study examined the genome to identify variants that may contribute to variation in leukocyte telomere length among families with exceptional longevity. From the genome wide association analysis in 4,289 LLFS participants, we identified a novel intergenic SNP rs7680468 located near PAPSS1 and DKK2 on 4q25 (p=4.7E-8. From our linkage analysis, we identified two additional loci with HLOD scores exceeding three, including 4.77 for 17q23.2 and 4.36 for 10q11.21. These two loci harbor a number of novel candidate genes with SNPs, and our gene-wise association analysis identified multiple genes, including DCAF7, POLG2, CEP95, and SMURF2 at 17q23.2; and RASGEF1A, HNRNPF, ANF487, CSTF2T, and PRKG1 at 10q11.21. Among these genes, multiple SNPs were associated with leukocyte telomere length, but the strongest association was observed with one contiguous haplotype in CEP95 and SMURF2. We also show that three previously reported genes – TERC, MYNN, and OBFC1 – were significantly associated with leukocyte telomere length at pempirical smaller than 0.05.

  8. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute's genomic medicine portfolio.

    Science.gov (United States)

    Manolio, Teri A

    2016-10-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of "Genomic Medicine Meetings," under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. Published by Elsevier Ireland Ltd.

  9. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines when...

  10. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  11. RadGenomics project

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu

    2002-01-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  12. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  13. Genomics of Preterm Birth

    Science.gov (United States)

    Swaggart, Kayleigh A.; Pavlicev, Mihaela; Muglia, Louis J.

    2015-01-01

    The molecular mechanisms controlling human birth timing at term, or resulting in preterm birth, have been the focus of considerable investigation, but limited insights have been gained over the past 50 years. In part, these processes have remained elusive because of divergence in reproductive strategies and physiology shown by model organisms, making extrapolation to humans uncertain. Here, we summarize the evolution of progesterone signaling and variation in pregnancy maintenance and termination. We use this comparative physiology to support the hypothesis that selective pressure on genomic loci involved in the timing of parturition have shaped human birth timing, and that these loci can be identified with comparative genomic strategies. Previous limitations imposed by divergence of mechanisms provide an important new opportunity to elucidate fundamental pathways of parturition control through increasing availability of sequenced genomes and associated reproductive physiology characteristics across diverse organisms. PMID:25646385

  14. Conservation genetics in transition to conservation genomics

    DEFF Research Database (Denmark)

    Ouborg, N. Joop; Pertoldi, Cino; Loeschcke, Volker

    2010-01-01

    in conservation biology. This has allowed assessment of the impact of genetic drift on genetic variation, of the level of inbreeding within populations, and of the amount of gene flow between or within populations. Recent developments in genomic techniques, including next generation sequencing, whole genome scans...... and gene-expression pattern analysis, have made it possible to step up from a limited number of neutral markers to genome-wide estimates of functional genetic variation. Here, we focus on how the transition of conservation genetics to conservation genomics leads to insights into the dynamics of selectively...

  15. Genome graphs and the evolution of genome inference

    Science.gov (United States)

    Paten, Benedict; Novak, Adam M.; Eizenga, Jordan M.; Garrison, Erik

    2017-01-01

    The human reference genome is part of the foundation of modern human biology and a monumental scientific achievement. However, because it excludes a great deal of common human variation, it introduces a pervasive reference bias into the field of human genomics. To reduce this bias, it makes sense to draw on representative collections of human genomes, brought together into reference cohorts. There are a number of techniques to represent and organize data gleaned from these cohorts, many using ideas implicitly or explicitly borrowed from graph-based models. Here, we survey various projects underway to build and apply these graph-based structures—which we collectively refer to as genome graphs—and discuss the improvements in read mapping, variant calling, and haplotype determination that genome graphs are expected to produce. PMID:28360232

  16. Organizational heterogeneity of vertebrate genomes.

    Directory of Open Access Journals (Sweden)

    Svetlana Frenkel

    Full Text Available Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  17. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime

    2015-11-18

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a textbased browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  18. Prospects for Genomic Research in Forestry

    Directory of Open Access Journals (Sweden)

    K. V. Krutovsky

    2014-08-01

    Full Text Available Conifers are keystone species of boreal forests. Their whole genome sequencing, assembly and annotation will allow us to understand the evolution of the complex ancient giant conifer genomes that are 4 times larger in larch and 7–9 times larger in pines than the human genome. Genomic studies will allow also to obtain important whole genome sequence data and develop highly polymorphic and informative genetic markers, such as microsatellites and single nucleotide polymorphisms (SNPs that can be efficiently used in timber origin identification, for genetic variation monitoring, to study local and climate change adaptation and in tree improvement and conservation programs.

  19. Comparative Genomics

    Indian Academy of Sciences (India)

    An important hallmark of biological research is the aspect of 'comparisons'. As the complete genome sequences of numerous organisms have become available, the emphasis in biology has shifted to comparisons at the genome level. Indeed, the last few years have witnessed an exponential rise in the number of ...

  20. Comparative Genomics

    Indian Academy of Sciences (India)

    structions of the tree of life, drug discovery programs, func- tion predictions of hypothetical proteins and genes, regula- tory motifs and other non-coding DNA motifs, and genome ... expertise in assembling sequences. Beginning with the complete genome sequence of the bacterial pathogen Haemophilus influenzae that was ...

  1. Genomic Signals of Reoriented ORFs

    Directory of Open Access Journals (Sweden)

    Paul Dan Cristea

    2004-01-01

    Full Text Available Complex representation of nucleotides is used to convert DNA sequences into complex digital genomic signals. The analysis of the cumulated phase and unwrapped phase of DNA genomic signals reveals large-scale features of eukaryote and prokaryote chromosomes that result from statistical regularities of base and base-pair distributions along DNA strands. By reorienting the chromosome coding regions, a “hidden” linear variation of the cumulated phase has been revealed, along with the conspicuous almost linear variation of the unwrapped phase. A model of chromosome longitudinal structure is inferred on these bases.

  2. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin.

    Science.gov (United States)

    Castellarin, Simone D; Di Gaspero, Gabriele; Marconi, Raffaella; Nonis, Alberto; Peterlunger, Enrico; Paillard, Sophie; Adam-Blondon, Anne-Francoise; Testolin, Raffaele

    2006-01-24

    Structural genes of the phenyl-propanoid pathway which encode flavonoid 3'- and 3',5'-hydroxylases (F3'H and F3'5'H) have long been invoked to explain the biosynthesis of cyanidin- and delphinidin-based anthocyanin pigments in the so-called red cultivars of grapevine. The relative proportion of the two types of anthocyanins is largely under genetic control and determines the colour variation among red/purple/blue berry grape varieties and their corresponding wines. Gene fragments of VvF3'H and VvF3'5'H, that were isolated from Vitis vinifera 'Cabernet Sauvignon' using degenerate primers designed on plant homologous genes, translated into 313 and 239 amino acid protein fragments, respectively, with up to 76% and 82% identity to plant CYP75 cytochrome P450 monooxygenases. Putative function was assigned on the basis of sequence homology, expression profiling and its correlation with metabolite accumulation at ten different ripening stages. At the onset of colour transition, transcriptional induction of VvF3'H and VvF3'5'H was temporally coordinated with the beginning of anthocyanin biosynthesis, the expression being 2-fold and 50-fold higher, respectively, in red berries versus green berries. The peak of VvF3'5'H expression was observed two weeks later concomitantly with the increase of the ratio of delphinidin-/cyanidin-derivatives. The analysis of structural genomics revealed that two copies of VvF3'H are physically linked on linkage group no. 17 and several copies of VvF3'5'H are tightly clustered and embedded into a segmental duplication on linkage group no. 6, unveiling a high complexity when compared to other plant flavonoid hydroxylase genes known so far, mostly in ornamentals. We have shown that genes encoding flavonoid 3'- and 3',5'-hydroxylases are expressed in any tissues of the grape plant that accumulate flavonoids and, particularly, in skin of ripening red berries that synthesise mostly anthocyanins. The correlation between transcript profiles and the

  3. Colour variation in red grapevines (Vitis vinifera L.: genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin

    Directory of Open Access Journals (Sweden)

    Paillard Sophie

    2006-01-01

    Full Text Available Abstract Background Structural genes of the phenyl-propanoid pathway which encode flavonoid 3'- and 3',5'-hydroxylases (F3'H and F3'5'H have long been invoked to explain the biosynthesis of cyanidin- and delphinidin-based anthocyanin pigments in the so-called red cultivars of grapevine. The relative proportion of the two types of anthocyanins is largely under genetic control and determines the colour variation among red/purple/blue berry grape varieties and their corresponding wines. Results Gene fragments of VvF3'H and VvF3'5'H, that were isolated from Vitis vinifera 'Cabernet Sauvignon' using degenerate primers designed on plant homologous genes, translated into 313 and 239 amino acid protein fragments, respectively, with up to 76% and 82% identity to plant CYP75 cytochrome P450 monooxygenases. Putative function was assigned on the basis of sequence homology, expression profiling and its correlation with metabolite accumulation at ten different ripening stages. At the onset of colour transition, transcriptional induction of VvF3'H and VvF3'5'H was temporally coordinated with the beginning of anthocyanin biosynthesis, the expression being 2-fold and 50-fold higher, respectively, in red berries versus green berries. The peak of VvF3'5'H expression was observed two weeks later concomitantly with the increase of the ratio of delphinidin-/cyanidin-derivatives. The analysis of structural genomics revealed that two copies of VvF3'H are physically linked on linkage group no. 17 and several copies of VvF3'5'H are tightly clustered and embedded into a segmental duplication on linkage group no. 6, unveiling a high complexity when compared to other plant flavonoid hydroxylase genes known so far, mostly in ornamentals. Conclusion We have shown that genes encoding flavonoid 3'- and 3',5'-hydroxylases are expressed in any tissues of the grape plant that accumulate flavonoids and, particularly, in skin of ripening red berries that synthesise mostly

  4. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    Science.gov (United States)

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  5. Cardiovascular genomics.

    Science.gov (United States)

    Wung, Shu-Fen; Hickey, Kathleen T; Taylor, Jacquelyn Y; Gallek, Matthew J

    2013-03-01

    This article provides an update on cardiovascular genomics using three clinically relevant exemplars, including myocardial infarction (MI) and coronary artery disease (CAD), stroke, and sudden cardiac death (SCD). ORGANIZATIONAL CONSTRUCT: Recent advances in cardiovascular genomic research, testing, and clinical implications are presented. Genomic nurse experts reviewed and summarized recent salient literature to provide updates on three selected cardiovascular genomic conditions. Research is ongoing to discover comprehensive genetic markers contributing to many common forms of cardiovascular disease (CVD), including MI and stroke. However, genomic technologies are increasingly being used clinically, particularly in patients with long QT syndrome (LQTS) or hypertrophic cardiomyopathy (HCM) who are at risk for SCD. Currently, there are no clinically recommended genetic tests for many common forms of CVD even though direct-to-consumer genetic tests are being marketed to healthcare providers and the general public. On the other hand, genetic testing for patients with certain single gene conditions, including channelopathies (e.g., LQTS) and cardiomyopathies (e.g., HCM), is recommended clinically. Nurses play a pivotal role in cardiogenetics and are actively engaged in direct clinical care of patients and families with a wide variety of heritable conditions. It is important for nurses to understand current development of cardiovascular genomics and be prepared to translate the new genomic knowledge into practice. © 2013 Sigma Theta Tau International.

  6. Population Genomics of Paramecium Species.

    Science.gov (United States)

    Johri, Parul; Krenek, Sascha; Marinov, Georgi K; Doak, Thomas G; Berendonk, Thomas U; Lynch, Michael

    2017-05-01

    Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. An Exploration into Fern Genome Space.

    Science.gov (United States)

    Wolf, Paul G; Sessa, Emily B; Marchant, Daniel Blaine; Li, Fay-Wei; Rothfels, Carl J; Sigel, Erin M; Gitzendanner, Matthew A; Visger, Clayton J; Banks, Jo Ann; Soltis, Douglas E; Soltis, Pamela S; Pryer, Kathleen M; Der, Joshua P

    2015-08-26

    Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Genome Size Dynamics and Evolution in Monocots

    Directory of Open Access Journals (Sweden)

    Ilia J. Leitch

    2010-01-01

    Full Text Available Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small (1C=1.9 pg, there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.

  9. Evolutionary significance of epigenetic variation

    NARCIS (Netherlands)

    Richards, C.L.; Verhoeven, K.J.F.; Bossdorf, O.; Wendel, J.F.; Greilhuber, J.; Dolezel, J.; Leitch, I.J.

    2012-01-01

    Several chapters in this volume demonstrate how epigenetic work at the molecular level over the last few decades has revolutionized our understanding of genome function and developmental biology. However, epigenetic processes not only further our understanding of variation and regulation at the

  10. Population Genomics of Human Adaptation

    OpenAIRE

    Lachance, Joseph; Tishkoff, Sarah A.

    2013-01-01

    Recent advances in genotyping technologies have facilitated genome-wide scans for natural selection. Identification of targets of natural selection will shed light on processes of human adaptation and evolution and could be important for identifying variation that influences both normal human phenotypic variation as well as disease susceptibility. Here we focus on studies of natural selection in modern humans who originated ~200,000 years go in Africa and migrated across the globe ~50,000 – 1...

  11. Genome-scale neurogenetics: methodology and meaning.

    Science.gov (United States)

    McCarroll, Steven A; Feng, Guoping; Hyman, Steven E

    2014-06-01

    Genetic analysis is currently offering glimpses into molecular mechanisms underlying such neuropsychiatric disorders as schizophrenia, bipolar disorder and autism. After years of frustration, success in identifying disease-associated DNA sequence variation has followed from new genomic technologies, new genome data resources, and global collaborations that could achieve the scale necessary to find the genes underlying highly polygenic disorders. Here we describe early results from genome-scale studies of large numbers of subjects and the emerging significance of these results for neurobiology.

  12. Feast and famine in plant genomes.

    Science.gov (United States)

    Jonathan F. Wendel; Richard C. Cronn; J. Spencer Jonhston; H. James. Price

    2002-01-01

    Plant genomes vary over several orders of magnitude in size, even among closely related species, yet the origin, genesis and significance of this variation are not clear. Because DNA content varies over a sevenfold range among diploid species in the cotton genus (Gossypium) and its allies, this group offers opportunities for exploring patterns and mechanisms of genome...

  13. Genomic Imprinting

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Genomic Imprinting - Some Interesting Implications for the Evolution of Social Behaviour. Raghavendra Gadagkar. General Article Volume 5 Issue 9 September 2000 pp 58-68 ...

  14. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute’s genomic medicine portfolio

    Science.gov (United States)

    Manolio, Teri A.

    2016-01-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual’s genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of “Genomic Medicine Meetings,” under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and diffficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI’s genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. PMID:27612677

  15. Comparative Genome Analysis Reveals Divergent Genome Size Evolution in a Carnivorous Plant Genus

    Directory of Open Access Journals (Sweden)

    Giang T. H. Vu

    2015-11-01

    Full Text Available The C-value paradox remains incompletely resolved after >40 yr and is exemplified by 2,350-fold variation in genome sizes of flowering plants. The carnivorous Lentibulariaceae genus , displaying a 25-fold range of genome sizes, is a promising subject to study mechanisms and consequences of evolutionary genome size variation. Applying genomic, phylogenetic, and cytogenetic approaches, we uncovered bidirectional genome size evolution within the genus . The Steyerm. genome (86 Mbp has probably shrunk by retroelement silencing and deletion-biased double-strand break (DSB repair, from an ancestral size of 400 to 800 Mbp to become one of the smallest among flowering plants. The Stapf genome has expanded by whole-genome duplication (WGD and retrotransposition to 1550 Mbp. became allotetraploid after the split from the clade ∼29 Ma. A. St.-Hil. (179 Mbp, a close relative of , proved to be a recent (autotetraploid. Our analyses suggest a common ancestor of the genus a with an intermediate 1C value (400–800 Mbp and subsequent rapid genome size evolution in opposite directions. Many abundant repeats of the larger genome are absent in the smaller, casting doubt on their functionality for the organism, while recurrent WGD seems to safeguard against the loss of essential elements in the face of genome shrinkage. We cannot identify any consistent differences in habitat or life strategy that correlate with genome size changes, raising the possibility that these changes may be selectively neutral.

  16. Creation and genomic analysis of irradiation hybrids in Populus

    Science.gov (United States)

    Matthew S. Zinkgraf; K. Haiby; M.C. Lieberman; L. Comai; I.M. Henry; Andrew Groover

    2016-01-01

    Establishing efficient functional genomic systems for creating and characterizing genetic variation in forest trees is challenging. Here we describe protocols for creating novel gene-dosage variation in Populus through gamma-irradiation of pollen, followed by genomic analysis to identify chromosomal regions that have been deleted or inserted in...

  17. [Nutrition genomics].

    Science.gov (United States)

    Sedová, L; Seda, O

    2004-01-01

    The importance of nutrition for human health and its influence on the onset and course of many diseases are nowadays considered as proven. Only the recent development of molecular biology and biochemical methods allows the elucidation of the molecular mechanisms of diet constituent actions and their subsequent effect on homeostatic mechanisms in health and disease states. The availability of the draft human genome sequence as well as the genome sequences of model organisms, combined with the functional and integrative genomics approaches of systems biology, bring about the possibility to identify alleles and haplotypes responsible for specific reaction to the dietary challenge in susceptible individuals. Such complex interactions are studied within the newly conceived field, the nutrition genomics (nutrigenomics). Using the tools of highly parallel analyses of transcriptome, proteome and metabolome, the nutrition genomics pursues its ultimate goal, i.e. the individualized diet, respecting not only quantitative and qualitative nutritional needs and the actual health status, but also the genetic predispositions of an individual. This approach should lead to prevention of the onset of such diseases as obesity, hypertension or type 2 diabetes, or enhance the efficiency of their therapy.

  18. The genome of Eucalyptus grandis

    Energy Technology Data Exchange (ETDEWEB)

    Myburg, Alexander A.; Grattapaglia, Dario; Tuskan, Gerald A.; Hellsten, Uffe; Hayes, Richard D.; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope; Bauer, Diane; Goodstein, David M.; Dubchak, Inna; Poliakov, Alexandre; Mizrachi, Eshchar; Kullan, Anand R. K.; Hussey, Steven G.; Pinard, Desre; van der Merwe, Karen; Singh, Pooja; van Jaarsveld, Ida; Silva-Junior, Orzenil B.; Togawa, Roberto C.; Pappas, Marilia R.; Faria, Danielle A.; Sansaloni, Carolina P.; Petroli, Cesar D.; Yang, Xiaohan; Ranjan, Priya; Tschaplinski, Timothy J.; Ye, Chu-Yu; Li, Ting; Sterck, Lieven; Vanneste, Kevin; Murat, Florent; Soler, Marçal; Clemente, Hélène San; Saidi, Naijib; Cassan-Wang, Hua; Dunand, Christophe; Hefer, Charles A.; Bornberg-Bauer, Erich; Kersting, Anna R.; Vining, Kelly; Amarasinghe, Vindhya; Ranik, Martin; Naithani, Sushma; Elser, Justin; Boyd, Alexander E.; Liston, Aaron; Spatafora, Joseph W.; Dharmwardhana, Palitha; Raja, Rajani; Sullivan, Christopher; Romanel, Elisson; Alves-Ferreira, Marcio; Külheim, Carsten; Foley, William; Carocha, Victor; Paiva, Jorge; Kudrna, David; Brommonschenkel, Sergio H.; Pasquali, Giancarlo; Byrne, Margaret; Rigault, Philippe; Tibbits, Josquin; Spokevicius, Antanas; Jones, Rebecca C.; Steane, Dorothy A.; Vaillancourt, René E.; Potts, Brad M.; Joubert, Fourie; Barry, Kerrie; Pappas, Georgios J.; Strauss, Steven H.; Jaiswal, Pankaj; Grima-Pettenati, Jacqueline; Salse, Jérôme; Van de Peer, Yves; Rokhsar, Daniel S.; Schmutz, Jeremy

    2014-06-11

    Eucalypts are the world s most widely planted hardwood trees. Their broad adaptability, rich species diversity, fast growth and superior multipurpose wood, have made them a global renewable resource of fiber and energy that mitigates human pressures on natural forests. We sequenced and assembled >94% of the 640 Mbp genome of Eucalyptus grandis into its 11 chromosomes. A set of 36,376 protein coding genes were predicted revealing that 34% occur in tandem duplications, the largest proportion found thus far in any plant genome. Eucalypts also show the highest diversity of genes for plant specialized metabolism that act as chemical defence against biotic agents and provide unique pharmaceutical oils. Resequencing of a set of inbred tree genomes revealed regions of strongly conserved heterozygosity, likely hotspots of inbreeding depression. The resequenced genome of the sister species E. globulus underscored the high inter-specific genome colinearity despite substantial genome size variation in the genus. The genome of E. grandis is the first reference for the early diverging Rosid order Myrtales and is placed here basal to the Eurosids. This resource expands knowledge on the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.

  19. Genomic rearrangements and diseases

    OpenAIRE

    Loviglio, M. N.

    2016-01-01

    Copy number variations (CNVs) are major contributors of genomic imbalances disorders. On the short arm of chromosome 16, CNVs of the distal 220 kb BP2-BP3 region show mirror effect on BMI and head size, and association with autism and schizophrenia, as previously reported for the proximal 600 kb BP4-BP5 deletion and duplication. These two CNVs-prone regions at 16p11.2 are also reciprocally engaged in complex chromatin looping, successfully confirmed by 4C-seq, FISH, Hi-C and concomitant...

  20. Marine genomics

    DEFF Research Database (Denmark)

    Oliveira Ribeiro, Ângela Maria; Foote, Andrew David; Kupczok, Anne

    2017-01-01

    evolutionary biology of non-model organisms to species of commercial relevance for fishing, aquaculture and biomedicine. Instead of providing an exhaustive list of available genomic data, we rather set to present contextualized examples that best represent the current status of the field of marine genomics.......Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag......-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from...

  1. Listeria Genomics

    Science.gov (United States)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  2. Cephalopod genomics

    DEFF Research Database (Denmark)

    Albertin, Caroline B.; Bonnaud, Laure; Brown, C. Titus

    2012-01-01

    The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, ``Paths to Cephalopod Genomics-Strategies, Choices, Organization,'' held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austri...... in this white paper......., Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers...

  3. Genetic variation in bovine milk fat composition

    OpenAIRE

    Stoop, W.M.

    2009-01-01

    In her thesis, Stoop shows that there is considerable genetic variation in milk fat composition, which opens opportunities to improve milk fat composition by selective breeding. Short and medium chain fatty acids had high heritabilities, whereas variation due to herd (mainly feed effects) was moderate. Long chain fatty acids had moderate heritabilities, whereas variation due to herd was high. Several genomic regions (QTL) with effect on short and medium chain, long chain, or both types of fat...

  4. AGAPE (Automated Genome Analysis PipelinE for pan-genome analysis of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Giltae Song

    Full Text Available The characterization and public release of genome sequences from thousands of organisms is expanding the scope for genetic variation studies. However, understanding the phenotypic consequences of genetic variation remains a challenge in eukaryotes due to the complexity of the genotype-phenotype map. One approach to this is the intensive study of model systems for which diverse sources of information can be accumulated and integrated. Saccharomyces cerevisiae is an extensively studied model organism, with well-known protein functions and thoroughly curated phenotype data. To develop and expand the available resources linking genomic variation with function in yeast, we aim to model the pan-genome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-sequenced the genomes of 25 strains that are commonly used in the yeast research community using advanced sequencing technology at high quality. We also developed a pipeline for automated pan-genome analysis, which integrates the steps of assembly, annotation, and variation calling. To assign strain-specific functional annotations, we identified genes that were not present in the reference genome. We classified these according to their presence or absence across strains and characterized each group of genes with known functional and phenotypic features. The functional roles of novel genes not found in the reference genome and associated with strains or groups of strains appear to be consistent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes are released, our analysis can be used to collate genome data and relate it to lineage-specific patterns of genome evolution. Our new tool set will enhance our understanding of genomic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and molecular biology community.

  5. The South Asian genome.

    Directory of Open Access Journals (Sweden)

    John C Chambers

    Full Text Available The genetic sequence variation of people from the Indian subcontinent who comprise one-quarter of the world's population, is not well described. We carried out whole genome sequencing of 168 South Asians, along with whole-exome sequencing of 147 South Asians to provide deeper characterisation of coding regions. We identify 12,962,155 autosomal sequence variants, including 2,946,861 new SNPs and 312,738 novel indels. This catalogue of SNPs and indels amongst South Asians provides the first comprehensive map of genetic variation in this major human population, and reveals evidence for selective pressures on genes involved in skin biology, metabolism, infection and immunity. Our results will accelerate the search for the genetic variants underlying susceptibility to disorders such as type-2 diabetes and cardiovascular disease which are highly prevalent amongst South Asians.

  6. Whole genome comparison of donor and cloned dogs

    OpenAIRE

    Kim, Hak-Min; Cho, Yun Sung; Kim, Hyunmin; Jho, Sungwoong; Son, Bongjun; Choi, Joung Yoon; Kim, Sangsoo; Lee, Byeong Chun; Bhak, Jong; Jang, Goo

    2013-01-01

    Cloning is a process that produces genetically identical organisms. However, the genomic degree of genetic resemblance in clones needs to be determined. In this report, the genomes of a cloned dog and its donor were compared. Compared with a human monozygotic twin, the genome of the cloned dog showed little difference from the genome of the nuclear donor dog in terms of single nucleotide variations, chromosomal instability, and telomere lengths. These findings suggest that cloning by somatic ...

  7. Genomic disorders on chromosome 22.

    Science.gov (United States)

    Yu, Shihui; Graf, William D; Shprintzen, Robert J

    2012-12-01

    Chromosome 22, the first human chromosome to be completely sequenced, is prone to genomic alterations. Copy-number variants (CNVs) are common because of an enrichment of low-copy repeat sequences that precipitate a high frequency of nonallelic homologous misalignments and unequal recombination during meiosis. Among these is one of the most common multiple anomaly syndromes in humans and the most common microdeletion syndrome, velocardiofacial syndrome (VCFS), also known as 22q11.2 deletion syndrome and DiGeorge syndrome. This review will focus on the recent literature dealing with both the molecular and clinical aspects of chromosome 22 genomic variations. Although the literature covering this area is expansive, the majority is descriptive or analytical of the problems presented by these genomic disorders, and there is little evidence of translational research including treatment outcomes. With the increased use of microarray analysis in both research and clinical practice, variations in CNVs are becoming elucidated. Genomic analysis continues to characterize genes and gene effect. Research on the COMT gene continues to yield interesting findings, including a possible sex-mediated effect because of its regulatory role with estrogen. There is a small amount of treatment outcome data relevant to neuropsychiatric disorders in VCFS, but based on small samples and short-term follow-up. Although hundreds of studies in the past year have focused on genomic disorders of chromosome 22, little progress has been made in the implementation of translational research, even for more common disorders including VCFS.

  8. The functional impact of structural variation in humans

    OpenAIRE

    Hurles, Matthew E.; Dermitzakis, Emmanouil T.; Tyler-Smith, Chris

    2008-01-01

    Structural variation includes many different types of chromosomal rearrangement and encompasses millions of bases in every human genome. Over the past three years the extent and complexity of structural variation has become better appreciated. Diverse approaches have been adopted to explore the functional impact of this class of variation. As disparate indications of the important biological consequences of genome dynamism are accumulating rapidly, we review the evidence that structural varia...

  9. The genome of the mesopolyploid crop species Brassica rapa

    DEFF Research Database (Denmark)

    Wang, Xiaowu; Wang, Hanzhong; Wang, Jun

    2011-01-01

    We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating....... Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement...... of Brassica oil and vegetable crops....

  10. Whole genome comparison of donor and cloned dogs.

    Science.gov (United States)

    Kim, Hak-Min; Cho, Yun Sung; Kim, Hyunmin; Jho, Sungwoong; Son, Bongjun; Choi, Joung Yoon; Kim, Sangsoo; Lee, Byeong Chun; Bhak, Jong; Jang, Goo

    2013-10-21

    Cloning is a process that produces genetically identical organisms. However, the genomic degree of genetic resemblance in clones needs to be determined. In this report, the genomes of a cloned dog and its donor were compared. Compared with a human monozygotic twin, the genome of the cloned dog showed little difference from the genome of the nuclear donor dog in terms of single nucleotide variations, chromosomal instability, and telomere lengths. These findings suggest that cloning by somatic cell nuclear transfer produced an almost identical genome. The whole genome sequence data of donor and cloned dogs can provide a resource for further investigations on epigenetic contributions in phenotypic differences.

  11. Genome Imprinting

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Genome Imprinting - The Silencing of ... General Article Volume 5 Issue 9 September 2000 pp 49-57 ... M T Tanuja1. Drosophila Stock Centre, Department of Studies in Zoology, University of Mysore Manasagangotri Mysore 570 006, India.

  12. Genome Imprinting

    Indian Academy of Sciences (India)

    ring pathological condition cystic fibrosis is due to inheritance of both copies of chromosome 7 from the mother. Similarly,. Prader-Willi syndrome in humans is due to the inheritance of both copies of chromosome 15 from the mother. Human Triploids. The triploid (Le. 3 copies of the haploid genome are present instead of the ...

  13. genome editing

    Indian Academy of Sciences (India)

    2016-02-11

    Feb 11, 2016 ... What history tells us. XL. The success story of the expression 'genome editing'. MICHEL MORANGE. Centre Cavaillès, République des Savoirs: Lettres, Sciences, Philosophie USR 3608, Ecole. Normale Supérieure, 29 Rue d'Ulm, 75230, Paris Cedex 05, France. (Fax, 33-144-323941; Email, ...

  14. Ancient genomics

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Allentoft, Morten Erik; Avila Arcos, Maria del Carmen

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequen...

  15. Comparative Genomics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 8. Comparative Genomics - A Powerful New Tool in Biology. Anand K Bachhawat. General Article Volume 11 Issue 8 August 2006 pp 22-40. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. AFLP variation in 25 Avena species.

    Science.gov (United States)

    Fu, Yong-Bi; Williams, David J

    2008-08-01

    Current molecular characterization of ex situ plant germplasm has placed more emphasis on cultivated gene pools and less on exotic gene pools representing wild relative species. This study attempted to characterize a selected set of germplasm accessions representing various Avena species with the hope to establish a reference set of exotic oat germplasm for oat breeding and research. The amplified fragment length polymorphism (AFLP) technique was applied to screen 163 accessions of 25 Avena species with diverse geographic origins. For each accession, 413 AFLP polymorphic bands detected by five AFLP primer pairs were scored. The frequencies of polymorphic bands ranged from 0.006 to 0.994 and averaged 0.468. Analysis of molecular variance revealed 59.5% of the total AFLP variation resided among 25 oat species, 45.9% among six assessed sections of the genus, 36.1% among three existing ploidy levels, and 50.8% among eight defined genome types. All the species were clustered together according to their ploidy levels. The C genome diploids appeared to be the most distinct, followed by the Ac genome diploid A. canariensis. The Ac genome seemed to be the oldest in all the A genomes, followed by the As, Al and Ad genomes. The AC genome tetraploids were more related to the ACD genome hexaploids than the AB genome tetraploids. Analysis of AFLP similarity suggested that the AC genome tetraploid A. maroccana was likely derived from the Cp genome diploid A. eriantha and the As genome diploid A. wiestii, and might be the progenitor of the ACD genome hexaploids. These AFLP patterns are significant for our understanding of the evolutionary pathways of Avena species and genomes, for establishing reference sets of exotic oat germplasm, and for exploring new exotic sources of genes for oat improvement.

  17. The Global Cancer Genomics Consortium: interfacing genomics and cancer medicine.

    Science.gov (United States)

    2012-08-01

    The Global Cancer Genomics Consortium (GCGC) is an international collaborative platform that amalgamates cancer biologists, cutting-edge genomics, and high-throughput expertise with medical oncologists and surgical oncologists; they address the most important translational questions that are central to cancer research and treatment. The annual GCGC symposium was held at the Advanced Centre for Treatment Research and Education in Cancer, Mumbai, India, from November 9 to 11, 2011. The symposium showcased international next-generation sequencing efforts that explore cancer-specific transcriptomic changes, single-nucleotide polymorphism, and copy number variations in various types of cancers, as well as the structural genomics approach to develop new therapeutic targets and chemical probes. From the spectrum of studies presented at the symposium, it is evident that the translation of emerging cancer genomics knowledge into clinical applications can only be achieved through the integration of multidisciplinary expertise. In summary, the GCGC symposium provided practical knowledge on structural and cancer genomics approaches, as well as an exclusive platform for focused cancer genomics endeavors. ©2012 AACR.

  18. Reference free phasing and representation of complex variation

    DEFF Research Database (Denmark)

    Jensen, Jacob Malte

    2017-01-01

    High throughput sequencing has revolutionized our ability to interrogate genomes and entire human genomes are sequenced daily across the world. Mapping of short reads to a reference genome has enhanced our ability to detect genetic variation and is currently the most widely used technology...... to detect and call variation in humans. However, it has become evident that mapping of short reads to a single reference genome is subject to ascertainment bias (reference bias). This bias is especially pronounced in complex regions of the genome and particularly hampers detection of structural variation...... method to phase the MHC region without relying on a reference genome. Here, we present 100 de novo assembled and fully resolved MHC haplotypes from the Danish population. We use the haplotypes to call a large set of variants including a significant amount of structural variants. We use this call set...

  19. Diversity within the genus Elymus (Poaceae: Triticeae) II: analyses of variation within 5S nrDNA restrict membership in the genus to species with StH genomes.

    Science.gov (United States)

    Baum, Bernard R; Edwards, Tara; Johnson, Douglas A

    2016-02-01

    The genus Elymus is a repository for a large number of species that have been difficult to classify by traditional techniques due to their remarkable levels of polymorphism. Following the genome analyses of Yen and Yang (Genus Elymus 5:58-362, 2013), we used sequences of the nr5SDNA to investigate diversity within those 24 species having St and H haplomes (Baum et al. Mol Genet Genomics 290:329-42, 2015) and for which the genome status was known. The present work extends this analysis to include eight species for which there was no information on genomic status. Our results show that these eight have nr5SDNA sequences that can be assigned to unit classes of orthologous sequences found in St and H haplomes, suggesting that the presence of St and H haplomes is characteristic of the genus. We then carried out a set of canonical discriminant analyses based on 247 DNA new sequences from these 8 species plus the 1054 sequences previously identified from 24 Elymus species. Sequences were analyzed to answer the following questions: Do the species integrate or are they different? Are the tetraploids different from the higher-ploid species? Are the species united within sections, or the same within regions? How do the species fare when divided according to sections? The main results of the canonical discriminant analyses are that the species are united within the tetraploids and within the hexaploids, within each region and within each section. In addition, a series of classificatory discriminant analyses showed that the identification tests are different, although not sufficiently useful for the discrimination of all the species. We also demonstrate the power of our approach by showing that the voucher for Elymus mobilis is not Elymus at all, but Leymus.

  20. Complete Genome Sequence and Comparative Genomics of a Novel Myxobacterium Myxococcus hansupus.

    Directory of Open Access Journals (Sweden)

    Gaurav Sharma

    Full Text Available Myxobacteria, a group of Gram-negative aerobes, belong to the class δ-proteobacteria and order Myxococcales. Unlike anaerobic δ-proteobacteria, they exhibit several unusual physiogenomic properties like gliding motility, desiccation-resistant myxospores and large genomes with high coding density. Here we report a 9.5 Mbp complete genome of Myxococcus hansupus that encodes 7,753 proteins. Phylogenomic and genome-genome distance based analysis suggest that Myxococcus hansupus is a novel member of the genus Myxococcus. Comparative genome analysis with other members of the genus Myxococcus was performed to explore their genome diversit