WorldWideScience

Sample records for mehrzweck-forschungsreaktor

  1. Demolition of the FRJ-1 research reactor (MERLIN); Abbau des Reaktorblocks des Forschungsreaktors FRJ-1 (MERLIN)

    Energy Technology Data Exchange (ETDEWEB)

    Stahn, B.; Matela, K.; Zehbe, C. [Forschungszentrum Juelich GmbH (Germany); Poeppinghaus, J. [Gesellschaft fuer Nuklearservice, Essen (Germany); Cremer, J. [SNT Siempelkamp Nukleartechnik, Heidelberg (Germany)

    2003-06-01

    FRJ-2 (MERLIN), the swimming pool reactor cooled and moderated by light water, was built at the then Juelich Nuclear Research Establishment (KFA) between 1958 and 1962. In the period between 1964 and 1985, it was used for. The reactor was decommissioned in 1985. Since 1996, most of the demolition work has been carried out under the leadership of a project team. The complete secondary cooling system was removed by late 1998. After the cooling loops and experimental installations had been taken out, the reactor vessel internals were removed in 2000 after the water had been drained from the reactor vessel. After the competent authority had granted a license, demolition of the reactor block, the central part of the research reactor, was begun in October 2001. In a first step, the reactor operating floor and the reactor attachment structures were removed by the GNS/SNT consortium charged with overall planning and execution of the job. This phase gave rise to approx. The reactor block proper is dismantled in a number of steps. A variety of proven cutting techniques are used for this purpose. Demolition of the reactor block is to be completed in the first half of 2003. (orig.) [German] Der mit Leichtwasser gekuehlte und moderierte Schwimmbad-Forschungsreaktor FRJ-2 (MERLIN) wurde von 1958 bis 1962 fuer die damalige Kernforschungsanlage Juelich (KFA) errichtet. Von 1964 bis 1985 wurde er fuer Experimente mit zunaechst 5 MW und spaeter 10 MW thermischer Leistung bei einem maximalen thermischen Neutronenfluss von 1,1.10{sup 14} n/cm{sup 2}s genutzt. Im Jahr 1985 stellte der Reaktor seinen Betrieb ein. Die Brennelemente wurden aus der Anlage entfernt und in die USA und nach Grossbritannien verbracht. Seit 1996 erfolgen die wesentlichen Abbautaetigkeiten unter Leitung eines verantwortlichen Projektteams. Bis Ende 1998 wurde das komplette Sekundaerkuehlsystem entfernt. Dem Abbau der Kuehlkreislaeufe und Experimentiereinrichtungen folgte im Jahr 2000 der Ausbau der

  2. The new German neutron source FRM-II

    International Nuclear Information System (INIS)

    Nuding, M.

    2003-01-01

    The 'Technische Universitaet Muenchen' has built a new high-flux research reactor, the 'Forschungsreaktor Muenchen'-II. This new reactor will replace the 'Forschungsreaktor Muenchen' which has been operated very successfully for about 43 years. The 'Forschungsreaktor Muenchen'-II has been developed with first priority for beam-tube experiments, but it will also provide possibilities for irradiation experiments or isotope production. The reactor was designed to obtain a high and spectrally pure thermal neutron flux is available in a large volume outside of the core, where it is accessible for experimental use. In addition to beam-tubes which will end in the thermal neutron field there will be beam-tubes that will provide - with the help of 'spectrum shifters' -cold; hot and fast neutrons. Even through the thermal power of the 'Forschungsreaktor Muenchen'-II was limited to 20 MW an unperturbed maximum thermal neutron flux of about 8 x 10 14 cm -2 s -1 will be reached. Because of its 'compact-core-concept' the 'Forschungsreaktor Muenchen'-II will have the best flux-to-power-ratio worldwide: The fuel element and its highly enriched U 3 Si 2 -Al-fuel were tested during the licensing procedure of the 'Forschungsreaktor Muenchen'-II. Within the scope of this 'hydraulic test' the stability and the vibration behavior of the fuel plates as well as the long-tem behavior of the fuel element were investigated (Authors)

  3. Irradiation of pressurized water reactor fuel rods in the Forschungsreaktor Juelich 2

    International Nuclear Information System (INIS)

    Gaertner, M.

    1978-10-01

    Test fuel rods have been irradiated in FRJ-2 to study the interaction between fuel and cladding as well as hydride orientation stability in the prehydrided cladding. The fuel rods achieved burn-ups of 3.500 to 10.000 MWd/tU at surface temperatures of 333 0 C and power levels up to 620 W/cm. (orig.) [de

  4. Development of antireflection coatings with a sup 6 LiF/ sup 6 sup 2 Ni multilayer converter for ultracold neutron detectors

    CERN Document Server

    Maier-Komor, P; Bergmaier, A; Dollinger, G; Paul, S; Schott, W

    2002-01-01

    High efficiency detectors for ultracold neutrons (UCN) are needed at the new high flux neutron source, Forschungsreaktor Muenchen II. In the development described, silicon PIN diodes were chosen to detect the alpha-particles or the tritons created in the reaction sup 6 Li(n,alpha)t. The high reflectance of UCN on sup 6 Li with its positive optical potential must be compensated by a material with negative optical potential. The isotope sup 6 sup 2 Ni was chosen for this. To avoid problems due to chemical reactions of Li with humidity, the compound sup 6 LiF was chosen. One hundred and fifty double layers of sup 6 LiF/ sup 6 sup 2 Ni had to be deposited by physical vapor deposition on silicon PIN diodes which had already been coated with 88 nm approx 77 mu g/cm sup 2 of sup 5 sup 8 Ni for reflection of the UCN. The theoretical optimal thickness of the sup 6 sup 2 Ni layers is 3 nm, and that of sup 6 LiF is 6 nm. Since expensive isotopes were involved, a small source-to-substrate distance had to be used, but wit...

  5. An ultracold neutron (UCN) detector with Ti/ sup 6 LiF multi-layer converter and sup 5 sup 8 Ni reflector

    CERN Document Server

    Maier-Komor, P; Bergmaier, A; Dollinger, G; Paul, S; Petzoldt, G; Schott, W

    2002-01-01

    High efficient detectors for ultracold neutrons (UCN) must be developed for the new high flux neutron source Forschungsreaktor Muenchen II (FRM II). On silicon PIN diodes 76 mu g/cm sup 2 sup 5 sup 8 Ni was deposited as a UCN reflector. On this 100 double layers of sup n sup a sup t Ti (4.7 mu g/cm sup 2) and sup 6 LiF (1.8 mu g/cm sup 2) were deposited to function as a UCN converter. On top of this, 33 double layers of sup n sup a sup t Ti (3.4 mu g/cm sup 2) and sup 6 LiF (0.92 mu g/cm sup 2) were condensed in addition to provide sensitivity to very low-energy UCN. Finally, 6.0 mu g/cm sup 2 sup n sup a sup t V was deposited to protect the multi-layers. Vanadium has nearly zero optical potential for UCN and thus should not hinder their transmission. Since no expensive isotopes were involved, a source to substrate distance of 24 cm could be chosen, leading to excellent uniformity. The setup designed for deposition under ultrahigh vacuum conditions and the evaporation procedures are described.

  6. Radiography and tomography using fission neutrons at FRM-II

    International Nuclear Information System (INIS)

    Buecherl, T.; Lierse von Gostomski, Ch.

    2004-01-01

    Fission neutrons offer complementary information in radiography and tomography compared to the well established techniques using X-rays, gamma-rays, thermal or cold neutrons. They penetrate thick layers of high density materials with only little attenuation, while for light, specially for hydrogen containing materials, their attenuation is high. In the past, fast neutrons for NDT (non-destructive testing) were only available at accelerator driven systems. These high energy neutrons have to be moderated to achieve acceptable detection efficiencies thus drastically reducing the available neutron intensities and either resulting in a high beam divergence or in additional losses in neutron intensities due to beam collimation. The recently installed neutron computerized tomography and radiography system NECTAR at the Forschungsreaktor Muenchen-II (FRM-II) overcomes these disadvantages by using fission neutrons of about 1.7 MeV mean energy created in two converter plates set-up of highly enriched uranium. The beam quality, i.e. the neutron divergence can be adapted to the object to be measured by using different collimators, resulting in L/D-values up to 300. The available neutron beam intensity at the measuring position is up to 1.7E+08 cm -2 s -1 for a maximum beam area of 40 cm x 40 cm. For conventional imaging a two-dimensional detector system based on a CCD-camera is used, other more specialised systems are available. (author)

  7. Radiography and tomography using fission neutrons at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T.; Lierse von Gostomski, Ch. [Inst. fuer Radiochemie, TU-Muenchen, Garching (Germany)

    2004-07-01

    Fission neutrons offer complementary information in radiography and tomography compared to the well established techniques using X-rays, gamma-rays, thermal or cold neutrons. They penetrate thick layers of high density materials with only little attenuation, while for light, specially for hydrogen containing materials, their attenuation is high. In the past, fast neutrons for NDT (non-destructive testing) were only available at accelerator driven systems. These high energy neutrons have to be moderated to achieve acceptable detection efficiencies thus drastically reducing the available neutron intensities and either resulting in a high beam divergence or in additional losses in neutron intensities due to beam collimation. The recently installed neutron computerized tomography and radiography system NECTAR at the Forschungsreaktor Muenchen-II (FRM-II) overcomes these disadvantages by using fission neutrons of about 1.7 MeV mean energy created in two converter plates set-up of highly enriched uranium. The beam quality, i.e. the neutron divergence can be adapted to the object to be measured by using different collimators, resulting in L/D-values up to 300. The available neutron beam intensity at the measuring position is up to 1.7E+08 cm{sup -2} s{sup -1} for a maximum beam area of 40 cm x 40 cm. For conventional imaging a two-dimensional detector system based on a CCD-camera is used, other more specialised systems are available. (author)

  8. Dismantling of the reactor block of the FRJ-1 research reactor (MERLIN); Abbau des Reaktorblocks des Forschungsreaktors FRJ-1 (MERLIN)

    Energy Technology Data Exchange (ETDEWEB)

    Stahn, B.; Matela, K.; Zehbe, C. [Forschungszentrum Juelich GmbH (Germany); Poeppinghaus, J. [Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Cremer, J. [Siempelkamp Nukleartechnik GmbH, Heidelberg (Germany)

    2003-07-01

    By the end of 1998 the complete secondary cooling system and the major part of the primary cooling system were dismantled. Furthermore, the experimental devices, including a rabbit system conceived as an in-core irradiation device, were disassembled and disposed of. In total, approx. 65 t of contaminated and/or activated material as well as approx. 70 t of clearance-measured material were disposed of within the framework of these activities. The dismantling of the coolant loops and experimental devices was followed in 2000 by the removal of the reactor tank internals and the subsequent draining of the reactor tank water. The reactor tank internals were essentially the core support plate, the core box, the flow channel and the neutron flux bridges (s. Fig. 2, detailed reactor core). All components consisted of aluminium, the connecting elements such as bolts and nuts, however, of stainless steel. Due to the high activation of the core internals, disassembly had to be remotely controlled under water. All removal work was carried out from a tank intermediate floor (s. Fig. 2). These activities, which served for preparing the dismantling of the reactor block, were completed in summer 2001. The waste parts arising were transferred to the Service Department for Decontamination of the Research Centre. This included approx. 2.5 t of waste parts with a total activity of approx. 8 x 10{sup 11} Bq. (orig.)

  9. Expert's statement on the research reactor Munich II (FRM-II); Gutachterliche Stellungnahme zum Forschungsreaktor Muenchen II (FRM-II)

    Energy Technology Data Exchange (ETDEWEB)

    Liebert, Wolfgang; Friess, Friederike; Gufler, Klaus; Arnold, Nikolaus [Univ. fuer Bodenkultur (BOKU), Wien (Austria). Inst. fuer Sicherheits- und Risikowissenschaften (ISR)

    2017-12-15

    The Expert's statement on the research reactor FRM-II covers the following issues: The situation in Germany with respect to HEU (highly enriched uranium) fuel elements, the proliferation problems related to HEU fuel and the generated high-level radioactive wastes, possible safety hazards of an interim storage of HEU containing wastes, for instance in the interim storage facility Ahaus, possible safety hazards of final disposal of HEU containing radioactive wastes, possibilities to avoid the use of HEU fuel in order to prevent further production of these wastes, requirement of processing spent HEU containing fuel elements for final disposal.

  10. Demolition to Green-Field conditions of the FRJ-1 (MERLIN) research reactor. Successes and hurdles in the demolition of a research reactor of the megawatt class; Der Rueckbau des Forschungsreaktors FRJ-1 (MERLIN) bis zur 'Gruenen Wiese'. Erfolge und Huerden beim Rueckbau eines Forschungsreaktors der Megawatt-Klasse

    Energy Technology Data Exchange (ETDEWEB)

    Stahn, Burkhard; Printz, Rudolf; Matela, Karel; Zehbe, Carsten; Stauch, Bernhard; Zander, Iven [Forschungszentrum Juelich GmbH, Juelich (Germany)

    2010-02-15

    The Juelich-1 Research Reactor (FRJ-1), also referred to as MERLIN (Medium Energy Research Light Water Moderated Industrial Nuclear Reactor), was a light-water moderated and cooled swimming pool reactor of British design. The cornerstone in the erection of the reactor building was laid on June 11, 1958. Reactor operation was started on February 23, 1962. The plant was last run at a thermal power of 10 MW and shut down for good in 1985 after 23 years of operation. After the fuel elements had been removed and most of the experimental installations dismantled, some first steps towards demolition were taken in 1995. Demolition on a large scale began in 1996. September 8, 2008 was a special day: On the area of the former reactor hall, an oak tree was planted as a symbol of the 'green field' and of the original oak wood which had to make way for the construction of reactors in Juelich. An oak tree now stands in the place of the reactor unit. Was that all? It was not, for there were ancillary systems, operations, utility and hygiene buildings which had to be pulled down. Decontamination and clearance measurements were completed. The application for clearance was prepared and completed. Conventional demolition was started in 2009. After completion of that step, the last chapter about demolition of the FRJ-1 research reactor has been written, and the book can be closed. (orig.)

  11. The Rossendorf research reactor. Operating and dismantling from a point of view of the emission control; Der Rossendorfer Forschungsreaktor. Betrieb und Rueckbau aus Sicht der Emissionsueberwachung

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, B.; Beutmann, A.; Kaden, M.; Scheibke, J. [VKTA, Dresden (Germany); Boessert, W.; Jansen, K.; Walter, M.

    2016-07-01

    The Rossendorf research reactor went in operation in 1957 as GDR's first nuclear reactor and Germanys second after FRM Garching. It was a heterogeneously structured, light-water moderated and cooled tank-reactor of the Soviet type WWR-S. During his time of operation, he served both the research and the production of radioisotopes. The history of exhaust air emission monitoring and its results are presented. With view to the decommissioning time selected results are discussed. The estimated discharges are compared by the actually recognized.

  12. The FRJ-1 (MERLIN) research reactor: its main activity inventory has been removed by successful demolition of the reactor block; Forschungsreaktor FRJ-1 (MERLIN) - Das Hauptaktivitaetsinventar ist durch erfolgreichen Rueckbau des Reaktorblocks entfernt

    Energy Technology Data Exchange (ETDEWEB)

    Stahn, B.; Printz, R.; Matela, K.; Zehbe, C. [Forschungszentrum Juelich GmbH, Juelich (Germany); Poeppinghaus, J. [Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Cremer, J. [Siempelkamp Nukleartechnik GmbH, Heidelberg (Germany)

    2004-02-01

    The FRJ-1 (MERLIN) research reactor was decommissioned in 1985 after twenty-three years of operation. Demolition of the plant was begun in 1996. The article contains a survey of the demolition steps carried out so far within the framework of three partial permits. The main activity is the demolition of the reactor core structures as a precondition for subsequent measures to ensure clearance measurements of the building. The core structures are demolished which were exposed to high neutron fluxes during reactor operation and now show the highest activity and dose rate levels, except for the core internals. For demolition and disassembly of the metal structures in this part of the plant, the tools specially designed and made include a remotely operated sawing system and a pipe cutting system for internal segmentation of the beam lines. The universal demolition tool for use also above and beyond the concrete structures has been found to be a remotely controlled electrohydraulic demolition shovel. Spreading contamination in the course of the demolition work was avoided. One major reason for this success was the fact that no major airborne contamination existed at any time as a consequence of the quality of the material demolished and also of the consistent use of technical tools. While the reactor block was being demolished, an application for clearance measurement of the reactor hall and subsequent release from the scope of the Atomic Energy Act was filed as early as in mid-2003. The fourth partial permit covering these activities is expected to be issued in the spring of 2004. (orig.)