WorldWideScience

Sample records for megawatt power range

  1. Testing of ground fault relay response during the energisation of megawatt range electric boilers in thermal power plants

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth; Davidsen, Troels

    2015-01-01

    Large controllable loads may support power systems with an increased penetration of fluctuating renewable energy, by providing a rapid response to a change in the power production. Megawatt range electric boilers are an example of such controllable loads, capable of change rapidly, with the advan......Large controllable loads may support power systems with an increased penetration of fluctuating renewable energy, by providing a rapid response to a change in the power production. Megawatt range electric boilers are an example of such controllable loads, capable of change rapidly......, with the advantage that the warmed water can be reused in a thermal power plant or at regional heating, thus, minimising the overall losses. However, one problem was raised by those purchasing the boilers, mainly the possibility of an unwanted triggering of the protections relays, especially ground fault protection......, during the energisation of a boiler. A special case for concern was the presence of an electric arc between the electrodes of the boiler and the water in the boiler during approximately 2s at the energisation, which can in theory be seen as a ground fault by the relay. The voltage and current transient...

  2. Energy conversion for megawatt space power systems

    International Nuclear Information System (INIS)

    Ewell, R.

    1983-01-01

    Large nuclear space power systems capable of continuously producing over one megawatt of electrical power for a several year period will be needed in the future. This paper presents the results of a study to compare applicable conversion technologies which were deemed to be ready for a time period of 1995 and beyond. A total of six different conversion technologies were studied in detail and compared on the basis of conversion efficiency, radiator area, overall system mass, and feasibility. Three static, modular conversion technologies were considered; these include: AMTEC, thermionic, and thermoelectric conversion. The other three conversion technologies are heat engines which involve dynamic components. The dynamic systems analyzed were Brayton, Rankine, and the free piston Stirling engine. Each of the conversion techniques was also examined for limiting characteristics and an attempt was made to identify common research needs and enabling technologies

  3. Design of megawatt power level heat pipe reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mcclure, Patrick Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reid, Robert Stowers [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at strategic defense locations, theaters of battle, remote communities, and emergency locations. With proper safeguards, a 1 to 10-MWe (megawatt electric) mobile reactor system could provide robust, self-contained, and long-term power in any environment. Heat pipe-cooled fast-spectrum nuclear reactors have been identified as a candidate for these applications. Heat pipe reactors, using alkali metal heat pipes, are perfectly suited for mobile applications because their nature is inherently simpler, smaller, and more reliable than “traditional” reactors. The goal of this project was to develop a scalable conceptual design for a compact reactor and to identify scaling issues for compact heat pipe cooled reactors in general. Toward this goal two detailed concepts were developed, the first concept with more conventional materials and a power of about 2 MWe and a the second concept with less conventional materials and a power level of about 5 MWe. A series of more qualitative advanced designs were developed (with less detail) that show power levels can be pushed to approximately 30 MWe.

  4. Short-Circuit Robustness Assessment in Power Electronic Modules for Megawatt Applications

    DEFF Research Database (Denmark)

    Iannuzzo, Francesco

    2016-01-01

    In this paper, threats and opportunities in testing of megawatt power electronic modules under short circuit are presented and discussed, together with the introduction of some basic principles of non-destructive testing, a key technique to allow post-failure analysis. The non-destructive testing...... silicon carbide – and new concepts for nondestructive testing of ultrafast power modules adopting such a technology....

  5. Design of a sodium-air heat dissipator capable of transmitting powers till a megawatt

    International Nuclear Information System (INIS)

    Castellanos C, G.

    1977-01-01

    This is a theoretical study of the transport phenomenon in which emphasis is put on heat transference. From the chemical and nuclear point of view a revision is made of the sodium behavior as an agent of heat transference and as a fluid. The heat transference is analyzed on wide surfaces and the design of a sodium air heat dissipator capable of transferring powers at the range of a megawatt is presented with a simulation by computer. The results show that the heat transference coefficients don't vary in a great measure in relation with the temperature. This way we can use the caloric temperature for the determination of the sodium properties and the medium temperature for the determination of the air properties. (author)

  6. Multi-Megawatt Gas Turbine Power Systems for Lunar Colonies

    Science.gov (United States)

    Juhasz, Albert J.

    2006-01-01

    A concept for development of second generation 10 MWe prototype lunar power plant utilizing a gas cooled fission reactor supplying heated helium working fluid to two parallel 5 MWe closed cycle gas turbines is presented. Such a power system is expected to supply the energy needs for an initial lunar colony with a crew of up to 50 persons engaged in mining and manufacturing activities. System performance and mass details were generated by an author developed code (BRMAPS). The proposed pilot power plant can be a model for future plants of the same capacity that could be tied to an evolutionary lunar power grid.

  7. Development of neutral injection to the megawatt power level

    International Nuclear Information System (INIS)

    Thompson, E.; Coupland, J.R.; Dirmikis, D.; Hammond, D.P.; Holmes, A.J.T.

    1976-01-01

    The various options for the production of energetic neutral beams at the MW power level based on positive ion extraction are discussed. We also consider in more detail the design of beam extraction and acceleration structures along with that of the neutralizer and necessary cryopumping

  8. Multi-megawatt inverter/converter technology for space power applications

    Science.gov (United States)

    Myers, Ira T.; Baumann, Eric D.; Kraus, Robert; Hammoud, Ahmad N.

    1992-01-01

    Large power conditioning mass reductions will be required to enable megawatt power systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. Phase 1 of a proposed two phase interagency program has been completed to develop an 0.1 kg/kW DC/DC converter technology base for these future space applications. Three contractors, Hughes, General Electric (GE), and Maxwell were Phase 1 contractors in a competitive program to develop a megawatt lightweight DC/DC converter. Researchers at NASA Lewis Research Center and the University of Wisconsin also investigated technology in topology and control. All three contractors, as well as the University of Wisconsin, concluded at the end of the Phase 1 study, which included some critical laboratory work, that 0.1-kg/kW megawatt DC/DC converters can be built. This is an order of magnitude lower specific weight than is presently available. A brief description of each of the concepts used to meet the ambitious goals of this program are presented.

  9. Multi-megawatt wind-power installations call for new, high-performance solutions

    International Nuclear Information System (INIS)

    2004-01-01

    This article discusses the development of increasingly powerful and profitable wind-energy installations for off-shore, on-shore and refurbishment sites. In particular, the rapid development of megawatt-class units is discussed. The latest products of various companies with rotor diameters of up to 120 metres and with power ratings of up to 5 MW are looked at and commented on. The innovations needed for the reduction of weight and the extreme demands placed on gearing systems are discussed. Also, the growing markets for wind energy installations in Europe and the United States are discussed and plans for new off-shore wind parks are looked at

  10. Megawatt class nuclear space power systems (MCNSPS) conceptual design and evaluation report. Volume 3, technologies 2: Power conversion. Final report

    International Nuclear Information System (INIS)

    Wetch, J.R.

    1988-09-01

    The major power conversion concepts considered for the Megawatt Class Nuclear Space Power System (MCNSPS) are discussed. These concepts include: (1) Rankine alkali-metal-vapor turbine alternators; (2) in-core thermionic conversion; (3) Brayton gas turbine alternators; and (4) free piston Stirling engine linear alternators. Considerations important to the coupling of these four conversion alternatives to an appropriate nuclear reactor heat source are examined along with the comparative performance characteristics of the combined systems meeting MCNSPS requirements

  11. A study on electric power management for power producer-suppliers utilizing output of megawatt-solar power plants

    Directory of Open Access Journals (Sweden)

    Hirotaka Takano

    2016-01-01

    Full Text Available The growth in penetration of photovoltaic generation units (PVs has brought new power management ideas, which achieve more profitable operation, to Power Producer-Suppliers (PPSs. The expected profit for the PPSs will improve if they appropriately operate their controllable generators and sell the generated electricity to contracted customers and Power Exchanges together with the output of Megawatt-Solar Power Plants (MSPPs. Moreover, we can expect that the profitable cooperation between the PPSs and the MSPPs decreases difficulties in the supply-demand balancing operation for the main power grids. However, it is necessary that the PPSs treat the uncertainty in output prediction of PVs carefully. This is because there is a risk for them to pay a heavy imbalance penalty. This paper presents a problem framework and its solution to make the optimal power management plan for the PPSs in consideration with the electricity procurement from the MSPPs. The validity of the authors’ proposal is verified through numerical simulations and discussions of their results.

  12. A 2-megawatt load for testing high voltage DC power supplies

    International Nuclear Information System (INIS)

    Horan, D.; Kustom, R.; Ferguson, M.; Primdahl, K.

    1993-01-01

    A high power water-cooled resistive load, capable of dissipating 2 Megawatts at 95 kilovolts is being designed and built. The load utilizes wirewound resistor elements suspended inside insulating tubing contained within a pressure vessel which is supplied a continuous flow of deionized water for coolant. A sub-system of the load is composed of non-inductive resistor elements in an oil tank. Power tests conducted on various resistor types indicate that dissipation levels as high as 22 times the rated dissipation in air can be achieved when the resistors are placed in a turbulent water flow of at least 15 gallons per minute. Using this data, the load was designed using 100 resistor elements in a series arrangement. A single-wall 316 stainless steel pressure vessel with flanged torispherical heads is built to contain the resistor assembly and deionized water. The resistors are suspended within G-11 tubing which span the cylindrical length of the vessel. These tubes are supported by G-10 baffles which also increase convection from the tubes by promoting turbulence within the surrounding water

  13. The EURISOL Multi Megawatt Target Station, a liquid metal target for a High Power spallation source.

    CERN Document Server

    Kharoua, C; Blumenfeld, L; Milenkovich, R; Wagner, W; Thomsen, K; Dementjevs, S; Platacis, E; Kravalis, K; Zik, A

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research in nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2013.In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW liquid metal proton-to-neutron converter, all driven by a high-power particle accelerator. In the aforementioned multi-MW target assembly, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source.This presentation summarises the work carried out for the Multi Megawatt target station of the EURISOL Design Study with particular attention to the coupled neutronic of the liquid converter and the overall performance of the facility, which will sustain fast neutr...

  14. A target development program for beamhole spallation neutron sources in the megawatt range

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.; Atchison, F. [Rutherford Appleton Laboratory, Oxon (United Kingdom)] [and others

    1995-10-01

    Spallation sources as an alternative to fission neutron sources have been operating successfully up to 160 kW of beam power. With the next generation of these facilities aiming at the medium power range between 0.5 and 5 MW, loads on the targets will be high enough to make present experience of little relevance. With the 0.6 MW continuous facility SINQ under construction, and a 5 MW pulsed facility (ESS) under study in Europe, a research and development program is about to be started which aimes at assessing the limits of stationary and moving solid targets and the feasibility and potential benefits of flowing liquid metal targets. Apart from theoretical work and examination of existing irradiated material, including used targets from ISIS, it is intended to take advantage of the SINQ solid rod target design to improve the relevant data base by building the target in such a way that individual rods can be equipped as irradiation capsules.

  15. The creation of high-temperature superconducting cables of megawatt range in Russia

    Science.gov (United States)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  16. Solid-State Thermionic Nuclear Power for Megawatt Propulsion, Planetary Surface and Commercial Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960’s, and of renewed interest due to modern...

  17. Megawatt-peak-power picosecond all-fiber-based laser in MOPA using highly Yb3+-doped LMA phosphate fiber

    Science.gov (United States)

    Shi, Guannan; Fu, Shijie; Sheng, Quan; Li, Jinhui; Fang, Qiang; Liu, Huixian; Chavez-Pirson, Arturo; Peyghambarian, N.; Shi, Wei; Yao, Jianquan

    2018-03-01

    A megawatt-peak-power picosecond all-fiber-based laser in master oscillator power amplifier (MOPA) is experimentally demonstrated. Only 34-cm-long highly Yb3+-doped large mode area (LMA) phosphate fiber was used as the gain fiber in the amplification stage to alleviate nonlinearity and achieve high peak power. Picosecond pulses with single pulse energy of 21.2 μJ and peak power of 0.96 MW were achieved at the repetition rate of 500 kHz. Evident spectral degradation can be observed as the peak power approached 1 MW, and a stimulated Raman scattering (SRS) free peak power of 0.51 MW was obtained in the experiment. Moreover, the output power under different repetition rates was investigated.

  18. Multi-Megawatt Organic Rankine Engine power plant (MORE). Phase 1A: System design of MORE power plant for industrial energy conservation emphasizing the cement industry

    Science.gov (United States)

    Bair, E. K.; Breindel, B.; Collamore, F. N.; Hodgson, J. N.; Olson, G. K.

    1980-01-01

    The Multi-Megawatt Organic Rankine Engine (MORE) program is directed towards the development of a large, organic Rankine power plant for energy conservation from moderate temperature industrial heat streams. Organic Rankine power plants are ideally suited for use with heat sources in the temperature range below 1100 F. Cement manufacture was selected as the prototype industry for the MORE system because of the range of parameters which can be tested in a cement application. This includes process exit temperatures of 650 F to 1110 F for suspension preheater and long dry kilns, severe, dust loading, multi-metawatt power generation potential, and boiler exhaust gas acid dew point variations. The work performed during the Phase 1A System Design contract period is described. The System Design task defines the complete MORE system and its installation to the level necessary to obtain detailed performance maps, equipment specifications, planning of supporting experiments, and credible construction and hardware cost estimates. The MORE power plant design is based upon installation in the Black Mountain Quarry Cement Plant near Victorville, California.

  19. Solid-State Thermionic Nuclear Power for Megawatt Propulsion, Planetary Surface and Commercial Power Project

    Science.gov (United States)

    George, Jeffrey

    2014-01-01

    Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960's, and of renewed interest due to modern advances in nanotechnology, MEMS, materials and manufacturing. Benefits include high conversion efficiency (20%), static operation with no moving parts and potential for high reliability, greatly reduced plant complexity, and the potential for reduced development costs. Thermionic emission, credited to Edison in 1880, forms the basis of vacuum tubes and much of 20th century electronics. Heat can be converted into electricity when electrons emitted from a hot surface are collected across a small gap. For example, two "small" (6 kWe) Thermionic Space Reactors were flown by the USSR in 1987-88 for ocean radar reconnaissance. Higher powered Nuclear-Thermionic power systems driving Electric Propulsion (Q-thruster, VASIMR, etc.) may offer the breakthrough necessary for human Mars missions of Power generation on Earth could benefit from simpler, moe economical nuclear plants, and "topping" of more fuel and emission efficient fossil-fuel plants.

  20. Investigation of heat exchangers for energy conversion systems of megawatt-class space power plants

    Science.gov (United States)

    Ilmov, D. N.; Mamontov, Yu. N.; Skorohodov, A. S.; Smolyarov, V. A.; Filatov, N. I.

    2016-01-01

    The specifics of operation (high temperatures in excess of 1000 K and large pressure drops of several megapascals between "hot" and "cold" coolant paths) of heat exchangers in the closed circuit of a gasturbine power converter operating in accordance with the Brayton cycle with internal heat recovery are analyzed in the context of construction of space propulsion systems. The design of a heat-exchange matrix made from doubly convex stamped plates with a specific surface relief is proposed. This design offers the opportunity to construct heat exchangers with the required parameters (strength, rigidity, weight, and dimensions) for the given operating conditions. The diagram of the working area of a test bench is presented, and the experimental techniques are outlined. The results of experimental studies of heat exchange and flow regimes in the models of heat exchangers with matrices containing 50 and 300 plates for two pairs of coolants (gas-gas and gas-liquid) are detailed. A criterion equation for the Nusselt number in the range of Reynolds numbers from 200 to 20 000 is proposed. The coefficients of hydraulic resistance for each coolant path are determined as functions of the Reynolds number. It is noted that the pressure in the water path in the "gas-liquid" series of experiments remained almost constant. This suggests that no well-developed processes of vaporization occurred within this heat-exchange matrix design even when the temperature drop between gas and water was as large as tens or hundreds of degrees. The obtained results allow one to design flight heat exchangers for various space power plants.

  1. Utility Test Results of a 2-Megawatt, 10-Second Reserve-Power System

    Energy Technology Data Exchange (ETDEWEB)

    BALL,GREG J.; NORRIS,BENJAMIN L.

    1999-10-01

    This report documents the 1996 evaluation by Pacific Gas and Electric Company of an advanced reserve-power system capable of supporting 2 MW of load for 10 seconds. The system, developed under a DOE Cooperative Agreement with AC Battery Corporation of East Troy, Wisconsin, contains battery storage that enables industrial facilities to ''ride through'' momentary outages. The evaluation consisted of tests of system performance using a wide variety of load types and operating conditions. The tests, which included simulated utility outages and voltage sags, demonstrated that the system could provide continuous power during utility outages and other disturbances and that it was compatible with a variety of load types found at industrial customer sites.

  2. Economic Impacts from Indiana's First 1,000 Megawatts of Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.; Keyser, D.; Flores-Espino, F.; Hauser, R.

    2014-08-01

    The magnitude of Indiana's available wind resource indicates that the development of wind power infrastructure has the potential to support millions of dollars of economic activity in the state. The Jobs and Economic Development Impact (JEDI) models, developed by the National Renewable Energy Laboratory, are tools used to estimate some of the economic impacts of energy projects at the state level. JEDI calculates results in the form of jobs, earnings, and economic output in three categories: project development and onsite labor, local revenue and supply chain, and induced impacts. According to this analysis, the first 1,000 MW of wind power development in Indiana (projects built between 2008 and 2011): supported employment totaling more than 4,400 full-time-equivalent jobs in Indiana during the construction periods; supports approximately 260 ongoing Indiana jobs; supported nearly $570 million in economic activity for Indiana during the construction periods; supported and continues to support nearly $40 million in annual Indiana economic activity during the operating periods; generates more than $8 million in annual property taxes; generates nearly $4 million annually in income for Indiana landowners who lease their land for wind energy projects.

  3. OSIRIS reactor radioprotection, radioprotection measurements performed during the power rise and the first 50 megawatt operation; Radioprotection de la pile OSIRIS, mesures de radioprotection effectuees au cours de la montee en puissance et des premiers fonctionnements a 50 megawatts

    Energy Technology Data Exchange (ETDEWEB)

    Fanton, B.; Lebouleux, P

    1967-12-01

    The authors supply the results of the measurements that have been made near the Osiris reactor during the power increase and during the first functioning at 50 megawatts. The measurements relate to the absorbed dose rates in the premises, the water activation and the atmospheric contamination. The influence of the heat layer of water movements and the water rate in the core chimney on the absorbed dose rate at the footbridge level overhanging the pile core has been studied. The modifications to the protection devices that have been proposed after the measurements and the effect of these modifications on the results of the measures are given then. The regeneration process of a water purification chain has been examined from the radiation protection point of view. It has been possible to make some twenty radionuclides obvious in the produced effluents and to determine the volume activity of these effluents for each radionuclide. The whole of results show that in a general way, the irradiation levels are low during the usual reactor functioning. [French] Les auteurs fournissent les resultats des mesures de radioprotection oui ont ete effectuees aupres de la pile Osiris pendant la montee en puissance et au cours des premiers fonctionnements a 50 megawatts. Les mesures portent sur les debits de dose absorbee dans les locaux, l'activation de l'eau et la contamination atmospherique. L'influence de la couche chaude des mouvements d'eau et du debit d'eau dans la cheminee du coeur sur le debit de dose absorbee au niveau de la passerelle surplombant le coeur de la pile, a ete etudiee. Les modifications aux dispositifs de protection, qui ont ete proposees a la suite des mesures, et l'effet de ces modifications sur les resultats des mesures sont indiques ensuite. Le processus de regeneration d'une chaine d'epuration de l'eau a ete examine sous l'angle de la radioprotection. Il a ete possible de mettre en evidence une vingtaine

  4. The Multi MegaWatt target station of EURISOL: High Power deposition on the spallation and the actinides targets (SATIF9)

    CERN Document Server

    Kharoua, C

    This presentation will present some of the greatest challenges in the design of this high power spallation sources with a special attention on the high power densities, entailing large structural stresses, and the heat removal, requiring detailed thermo-hydraulics calculations. Alternatively, a windowless target configuration has been proposed, based on a liquid mercury transverse film design. With this design, higher power densities and fission rates may be achieved, also avoiding the technical issues related to the beam window. In the second part of this presentation a brief summary of the actinide targets will be presented. The thermal simulations as well as the fission rates and isotopes production simulation are important calculation to evaluate the capability of the Multi-Megawatt target station.

  5. Multi-Megawatt-Scale Power-Hardware-in-the-Loop Interface for Testing Ancillary Grid Services by Converter-Coupled Generation

    Energy Technology Data Exchange (ETDEWEB)

    Koralewicz, Przemyslaw J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wallen, Robert B [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-21

    Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to the development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.

  6. Multi-Megawatt-Scale Power-Hardware-in-the-Loop Interface for Testing Ancillary Grid Services by Converter-Coupled Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Koralewicz, Przemyslaw J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wallen, Robert B [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-26

    Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to the development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.

  7. Power Quality Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Ismael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hur, Jerry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thao, Syhoune [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-20

    The U.S. Department of Energy (DOE) acquired and installed a 1.5-megawatt (MW) wind turbine at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory. This turbine (hereafter referred to as the DOE 1.5) is envisioned to become an integral part of the research initiatives for the DOE Wind Program, such as Atmosphere to Electrons (A2e). A2e is a multiyear DOE research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. For more information, visit http://energy.gov/eere/wind/atmosphere-electrons. To validate new and existing high-fidelity simulations, A2e must deploy several experimental measurement campaigns across different scales. Proposed experiments include wind tunnel tests, scaled field tests, and large field measurement campaigns at operating wind plants. Data of interest includes long-term atmospheric data sets, wind plant inflow, intra-wind plant flows (e.g., wakes), and rotor loads measurements. It is expected that new, high-fidelity instrumentation will be required to successfully collect data at the resolutions required to validate the high-fidelity simulations.

  8. Power Performance Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Ismael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hur, Jerry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thao, Syhoune [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Curtis, Amy [Windward Engineering, Santa Barbara, CA (United States)

    2015-08-11

    The U.S. Department of Energy (DOE) acquired and installed a 1.5-megawatt (MW) wind turbine at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL). This turbine (hereafter referred to as the DOE 1.5) is envisioned to become an integral part of the research initiatives for the DOE Wind Program, such as Atmosphere to Electrons (A2e). A2e is a multiyear DOE research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. For more information, visit http://energy.gov/eere/wind/atmosphere-electrons. To validate new and existing high-fidelity simulations, A2e must deploy several experimental measurement campaigns across different scales. Proposed experiments include wind tunnel tests, scaled field tests, and large field measurement campaigns at operating wind plants. Data of interest includes long-term atmospheric data sets, wind plant inflow, intra-wind plant flows (e.g., wakes), and rotor loads measurements. It is expected that new, high-fidelity instrumentation will be required to successfully collect data at the resolutions required to validate the high-fidelity simulations.

  9. Development of a Robust Tri-Carbide Fueled Reactor for Multi-Megawatt Space Power and Propulsion Applications

    International Nuclear Information System (INIS)

    Samim Anghaie; Knight, Travis W.; Plancher, Johann; Gouw, Reza

    2004-01-01

    An innovative reactor core design based on advanced, mixed carbide fuels was analyzed for nuclear space power applications. Solid solution, mixed carbide fuels such as (U,Zr,Nb)c and (U,Zr, Ta)C offer great promise as an advanced high temperature fuel for space power reactors

  10. Performance tests of a power-electronics converter for multi-megawatt wind turbines using a grid emulator

    International Nuclear Information System (INIS)

    Averous, Nurhan Rizqy; Berthold, Anica; Monti, Antonello; De Doncker, Rik W.; Schneider, Alexander; Schwimmbeck, Franz

    2016-01-01

    A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids. (paper)

  11. Performance tests of a power-electronics converter for multi-megawatt wind turbines using a grid emulator

    Science.gov (United States)

    Rizqy Averous, Nurhan; Berthold, Anica; Schneider, Alexander; Schwimmbeck, Franz; Monti, Antonello; De Doncker, Rik W.

    2016-09-01

    A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids.

  12. Megawatt-klystron amplifiers in L-band

    International Nuclear Information System (INIS)

    Schaffer, G.

    1989-01-01

    The purpose of this note is to serve as a short guide for the SSC-Linac Injector Workshop. It contains a general overview of historical development and of modern design of L-band klystron amplifiers in the range of about 1 to 30 Megawatt output (CW or pulse). Absolute power limits, efficiency, modulation characteristics, protection devices and typical application examples are briefly considered. It should be mentioned that this overview is not restricted to specific needs of the SSC-Injector Linac. 14 refs., 12 figs., 2 tabs

  13. Multi-megawatt pin core space reactor

    International Nuclear Information System (INIS)

    Hornung, R.J.; Normand, E.; Stevens, A.; Teare, K.R.

    1989-01-01

    Boeing has assembled an experienced team to perform a concept definition study of a multi-megawatt (MMW) nuclear power system designed to provide burst power for a space based platform. The design uses the hydrogen needed for platform cooling as the working fluid in an open thermodynamic cycle. The hydrogen is heated by a pin-fuel, fast spectrum reactor and generates power through a pair of counter-rotating turbines which drive four wound rotor alternators. This paper gives an overview of the system, concentrating on features of the reactor design and operation

  14. Test facility for the development of 150-keV, multi-megawatt neutral beam systems

    International Nuclear Information System (INIS)

    Haughian, W.; Baker, W.R.; Biagi, L.A.; Hopkins, D.B.

    1975-11-01

    The next generation of CTR experiments, such as the Tokamak Fusion Test Reactor (TFTR), will require neutral-beam injection systems that produce multi-megawatt, 120-keV deuterium-beam pulses of 0.5-second duration. Since present injection systems are operating in the 10- to 40-keV range, an intensive development effort is in progress to meet a 150-keV requirement. The vacuum system and power supplies that make up a test facility to be used in the development of these injectors are described

  15. Carbonate fuel cells: Milliwatts to megawatts

    Science.gov (United States)

    Farooque, M.; Maru, H. C.

    The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on

  16. Design of a megawatt neutral injector

    International Nuclear Information System (INIS)

    Coupland, J.R.; Hammond, D.P.; Holmes, A.J.T.; Pedley, T.R.; Roberts, P.J.; Thompson, E.; Ward, B.J.

    1976-01-01

    High power neutral injection plays an increasingly important role in controlled fusion research as a means of heating a magnetically-confined plasma; there is also considerable interest in various beam-fusion energy amplifier systems in which efficient neutral injection plays an essential role. Next generation neutral injection systems will require energies approximately 60-80 keV (H 0 ) for periods approximately 1 sec with power levels approximately 1 MW in the neutral beam. The main features of the design of a prototype megawatt neutral injection system now under construction at Culham is described. The injector is based on the extraction and acceleration of a beam of positive ions followed by conversion to neutral atoms by charge transfer collisions in a gas cell. Details of the design of the four-electrode multi-slot extraction system will be given along with estimates of the (large) gas flow required for the neutralizer gas cell. This large gas load can be handled conveniently only by means of high speed cryopumps and one of the first aims of the programme is to evaluate the performance of large (1 m 2 ) liquid helium cooled cryo-panels for this application. A brief description of the main high voltage and auxiliary power supplies along with some aspects of the novel high voltage protection system we have proposed are also discussed

  17. Design and Analysis of Megawatt Class Free Electron Laser Weapons

    Science.gov (United States)

    2015-12-01

    scalability to megawatt class lasers. In this thesis, we exploit these characteristics to design, simulate, and analyze both amplifier and oscillator FELs...simulate, and analyze both amplifier and oscillator FELs using the FEL 4- D code developed by the Physics Directed Energy (DE) Group at the Naval...Figure 14. Power and gain evolution for amplifier without tapering ..........................40 Figure 15. NPS 4- D single pass simulation results for

  18. From medium-sized to megawatt turbines...

    Energy Technology Data Exchange (ETDEWEB)

    Dongen, W. van [NedWind bv, Rhenen (Netherlands)

    1996-12-31

    One of the world`s first 500 kW turbines was installed in 1989 in the Netherlands. This forerunner of the current NedWind 500 kW range also represents the earliest predesign of the NedWind megawatt turbine. After the first 500 kW turbines with steel rotor blades and rotor diameter of 34 m, several design modifications followed, e.g. the rotor diameter was increased to 35 m and a tip brake was added. Later polyester blades were introduced and the rotor diameter was increased with 5 in. The drive train was also redesigned. Improvements on the 500 kW turbine concept has resulted in decreased cost, whereas annual energy output has increased to approx. 1.3 million kWh. Wind energy can substantially contribute to electricity supply. Maximum output in kiloWatthours is the target. Further improvement of the existing technology and implementation of flexible components may well prove to be a way to increase energy output, not only in medium or large sized wind turbines. 7 figs.

  19. Performance of the Culham multi-megawatt beam line facility

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, D.P.; Cottrell, G.A.; Coupland, J.R.

    1981-01-01

    The Culham Megawatt Beam Line has been upgraded in order to test injector modules for the JET experiment. The major items provided are: a high voltage modulator tube system, modified auxiliary supplies, new vacuum tanks and cryopumps, a high power beam pump, additional tanks and cryopumps, a high power data acquisition system. Delivery of the first complete JET prototype source and accelerator was scheduled for the end of 1981. The major components, having been tested separately as far as possible, are now installed and are being tested up to the 80kV, 12A level of the existing plasma source.

  20. Performance of the Culham multi-megawatt beam line facility

    International Nuclear Information System (INIS)

    Hammond, D.P.; Cottrell, G.A.; Coupland, J.R.

    1981-01-01

    The Culham Megawatt Beam Line has been upgraded in order to test injector modules for the JET experiment. The major items provided are: a high voltage modulator tube system, modified auxiliary supplies, new vacuum tanks and cryopumps, a high power beam pump, additional tanks and cryopumps, a high power data acquisition system. Delivery of the first complete JET prototype source and accelerator was scheduled for the end of 1981. The major components, having been tested separately as far as possible, are now installed and are being tested up to the 80kV, 12A level of the existing plasma source

  1. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation.

    Science.gov (United States)

    Bertschinger, G; Endres, C P; Lewen, F; Oosterbeek, J W

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  2. Comparison of rigid and swivelling rotor hubs for a MW wind power system, using the example of the WKA Autoflug A 1200; Vergleich von starrer und Pendel-Rotornabe fuer eine Windkraftanlage der Megawatt-Leistungsklasse am Beispiel der WKA Autoflug A 1200

    Energy Technology Data Exchange (ETDEWEB)

    Quell, P. [aerodyn Energiesysteme GmbH, Rendsburg (Germany)

    1996-12-31

    Developments in the MW range are a further illustration of the well-known problem that a linear increase of the rotor surface area will result in an overproportional increase of mass. One classical approach for reducing weight is the installation of a two-blade rotor with a swivelling hub. In the course of the development activities for the 1.2 MW A1200 wind power system of Autoflug Energietechnik GmbH, it was investigated whether a pendulum hub is a technically and economically feasible concept for a plant of this size. For this purpose, two otherwise identical plants were projected and compared, one with a rigid hub and the other with a swivelling hub. Both systems were simulated using the dynamic program GAROS. With the loads thus determined, both concepts are detailed enough to permit a comprehensive cost comparison in consideration of the masses, the resulting cost, performance and reliability. [Deutsch] Der Entwicklungsprozess der Megawatt-Anlagen verdeutlicht den aus frueheren Untersuchungen bekannten Zusammenhang eines ueberproportionalen Massenzuwachses bei linear steigender Rotorflaeche. Ein klassischer Ansatz zur Reduzierung des Anlagengewichtes ist der Einsatz eines Zweiblatt-Rotors in Verbindung mit einer Pendelnabe. Im Rahmen der Entwicklungstaetigkeit fuer die 1,2 MW-Windkraftanlage A 1200 der Fa. Autoflug Energietechnik GmbH wurde untersucht, inwieweit der Einsatz einer Pendelnabe fuer eine Anlage dieser Groessenordnung ein technisch und wirtschaftlich sinnvolles Konzept darstellen kann. Dazu wurden zwei grundsaetzlich gleiche Anlagen mit Zweiblatt-Rotor unter Verwendung einer Pendelnabe und einer starren Nabe konzipiert und gegenuebergestellt. Zur Bewertung des Anlagenverhaltens sowie zur Ermittlung realitaetsnaher Belastungen werden sowohl die Anlagenversion mit Pendelnabe als auch die Version mit starrer Nabe mit dem Dynamikprogramm GAROS simuliert. Basierend auf den ermittelten Lasten werden beide Konzepte so detailliert, dass ein umfassender

  3. A Conceptual Multi-Megawatt System Based on a Tungsten CERMET Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan A. Webb; Brian Gross

    2011-02-01

    Abstract. A conceptual reactor system to support Multi-Megawatt Nuclear Electric Propulsion is investigated within this paper. The reactor system consists of a helium cooled Tungsten-UN fission core, surrounded by a beryllium neutron reflector and 13 B4C control drums coupled to a high temperature Brayton power conversion system. Excess heat is rejected via carbon reinforced heat pipe radiators and the gamma and neutron flux is attenuated via segmented shielding consisting of lithium hydride and tungsten layers. Turbine inlet temperatures ranging from 1300 K to 1500 K are investigated for their effects on specific powers and net electrical outputs ranging from 1 MW to 100 MW. The reactor system is estimated to have a mass, which ranges from 15 Mt at 1 MWe and a turbine inlet temperature of 1500 K to 1200 Mt at 100 MWe and a turbine temperature of 1300 K. The reactor systems specific mass ranges from 32 kg/kWe at a turbine inlet temperature of 1300 K and a power of 1 MWe to 9.5 kg/kW at a turbine temperature of 1500 K and a power of 100 MWe.

  4. Megawatt wind turbines gaining momentum

    International Nuclear Information System (INIS)

    Oehlenschlaeger, K.; Madsen, B.T.

    1996-01-01

    Through the short history of the modern wind turbine, electric utilities have made it amply clear that they have held a preference for large scale wind turbines over smaller ones, which is why wind turbine builders through the years have made numerous attempts develop such machines - machines that would meet the technical, aesthetic and economic demands that a customer would require. Considerable effort was put into developing such wind turbines in the early 1980s. There was the U.S. Department of Energy's MOD 1-5 program, which ranged up to 3.2 MW, Denmark's Nibe A and B, 630 kW turbine and the 2 MW Tjaereborg machine, Sweden's Naesudden, 3 MW, and Germany's Growian, 3 MW. Most of these were dismal failures, though some did show the potential of MW technology. (au)

  5. Development of Megawatt Demand Setter for Plant Operating Flexibility

    International Nuclear Information System (INIS)

    Kim, Se Chang; Hah, Yeong Joon; Song, In Ho; Lee, Myeong Hun; Chang, Do Ik; Choi, Jung In

    1993-05-01

    The Conceptual design of the Megawatt Demand Setter (MDS) is presented for the Korean Standardized Nuclear Power Plant. The MDS is a digital supervisory limitation system. The MDS assures that the plant does not exceed the operating limits by regulating the plant operations through monitoring the operating margins of the critical parameters. MDS is aimed at increasing the operating flexibility which allow the nuclear plant to meet the grid demand in very efficient manner. It responds to the grid demand without penalizing plant availability by limiting the load demand when the operating limits are approached or violated. MDS design concepts were tested using simulation responses of Yonggwang Units 3, 4. The design of the Yonggwang Units 3, 4 would be used as a reference which designs of Korean Standardized Nuclear Power Plants would be based upon. The simulation results illustrate that the MDS can be used to improve operating flexibility. (Author)

  6. 5-Megawatt solar-thermal test facility: environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-01-30

    An Environmental Assessment of the 5 Megawatt Solar Thermal Test Facility (STTF) is presented. The STTF is located at Albuquerque, New Mexico. The facility will have the capability for testing scale models of major subsystems comprising a solar thermal electrical power plant. The STTF capabilities will include testing a solar energy collector subsystem comprised of heliostat arrays, a receiver subsystem which consists of a boiler/superheater in which a working fluid is heated, and a thermal storage subsystem which includes tanks of high heat capacity material which stores thermal energy for subsequent use. The STTF will include a 200-foot receiver tower on which experimental receivers will be mounted. The Environmental Assessment describes the proposed STTF, its anticipated benefits, and the environment affected. It also evaluates the potential environmental impacts associated with STTF construction and operation.

  7. LCA sensitivity analysis of a multi-megawatt wind turbine

    International Nuclear Information System (INIS)

    Martinez, E.; Jimenez, E.; Blanco, J.; Sanz, F.

    2010-01-01

    During recent years renewables have been acquiring gradually a significant importance in the world market (especially in the Spanish energetic market) and in society; this fact makes clear the need to increase and improve knowledge of these power sources. Starting from the results of a Life Cycle Assessment (LCA) of a multi-megawatt wind turbine, this work is aimed to assess the relevance of different choices that have been made during its development. Looking always to cover the largest possible spectrum of options, four scenarios have been analysed, focused on four main phases of lifecycle: maintenance, manufacturing, dismantling, and recycling. These scenarios facilitate to assess the degree of uncertainty of the developed LCA due to choices made, excluding from the assessment the uncertainty due to the inaccuracy and the simplification of the environmental models used or spatial and temporal variability in different parameters. The work has been developed at all times using the of Eco-indicator99 LCA method. (author)

  8. Ultra-low-power short-range radios

    CERN Document Server

    Chandrakasan, Anantha

    2015-01-01

    This book explores the design of ultra-low-power radio-frequency integrated circuits (RFICs), with communication distances ranging from a few centimeters to a few meters. Such radios have unique challenges compared to longer-range, higher-powered systems. As a result, many different applications are covered, ranging from body-area networks to transcutaneous implant communications and Internet-of-Things devices. A mix of introductory and cutting-edge design techniques and architectures which facilitate each of these applications are discussed in detail. Specifically, this book covers:.

  9. Performance of a 2-megawatt high voltage test load

    International Nuclear Information System (INIS)

    Horan, D.; Kustom, R.; Ferguson, M.

    1995-01-01

    A high-power, water-cooled resistive load which simulates the electrical load characteristics of a high-power klystron, capable of 2 megawatts dissipation at 95 kV DC, was built and installed at the Advanced Photon Source for use in load-testing high voltage power supplies. During this testing, the test load has logged approximately 35 hours of operation at power levels in excess of one mezawatt. Slight variations in the resistance of the load during operation indicate that leakage currents in the cooling water may be a significant factor affecting the performance of the load. Sufficient performance data have been collected to indicate that leakage current through the deionized (DI) water coolant shunts roughly 15 percent of the full-load current around the load resistor elements. The leakage current could cause deterioration of internal components of the load. The load pressure vessel was disassembled and inspected internally for any signs of significant wear and distress. Results of this inspection and possible modifications for improved performance will be discussed

  10. Opening up the future in space with nuclear power

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J. Jr.

    1985-01-01

    Man's extraterrestrial development is dependent on abundant power. For example, space-based manufacturing facilities are projected to have a power demand of 300 kWe by the end of this Century, and several megawatts in the early part of next millennium. The development of the lunar resource base will result in power needs ranging from an initial 100 kW(e) to many megawatts. Human visits to Mars could be achieved using a multimegawatt nuclear electric propulsion system or high thrust nuclear rockets. Detailed exploration of the solar system will also be greatly enhanced by the availability of large nuclear electric propulsion systems. All of these activities will require substantial increases in space power - hundreds of kilowatts to many megawatts. The challenge is clear: how to effectively use nuclear energy to support humanity's expansion into space

  11. Full range nuclear power plant steam generator level control system

    International Nuclear Information System (INIS)

    Geets, J.M.

    1988-01-01

    In a method of controlling feedwater level in a steam generator of a pressurized water reactor nuclear power plant, the steam generator having secondary loop feedwater lines. The method is described including the steps of outputting a first signal from a first three-mode controller to control feedwater flow through the secondary loop feedwater lines at reactor power levels below a predetermined percentage, and outputting a second signal from a second three-mode controller to control feedwater flow through the secondary loop feedwater lines at reactor power levels above the predetermined percentage. The improvement in combination therewith comprises: receiving the first and second signals at a transition controller means; generating a first feedwater temperature-dependent function; operating on the first input signal with the first temperature dependent function to produce a third signal; generating a second feedwater temperature-dependent function; operating on the second input signal with the second temperature-dependent function to produce a fourth signal; and adding the third and fourth signals resulting from the operating steps to control the feedwater flow through the secondary loop feedwater lines throughout an entire range of reactor load

  12. Phase 1 Integrated Systems Test and Characterization Report for the 5-Megawatt Dynamometer and Controllable Grid Interface

    Energy Technology Data Exchange (ETDEWEB)

    Wallen, Robert B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lambert, Scott R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dana, Scott [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-13

    This report details the commissioning of the 5-megawatt dynamometer at the National Wind Technology Center at the National Renewable Energy Laboratory. The purpose of these characterization tests were to verify the dynamometer's performance over the widest possible range of operating conditions, gain insight into system-level behavior, and establish confidence in measurement data.

  13. Abnormal condition detector for a local power range monitor

    International Nuclear Information System (INIS)

    Akiyama, Takao.

    1976-01-01

    Object: to permit determination of abnormal condition by a number of local power range monitors (LPRM) to be quickly made through precise estimation of the ratio between the true rate of change in neutron flux and true change in the neutron flux by making use of the fact that the status of the neutron distribution does not widely change with a change in the core flow rate for a short period of time. Structure: While carrying out power control according to the core flow rate, detection values from LPRM which are disposed in a three-dimensional fashion within the reactor core are indicated on an indicator. The average value of rates of change in the indicated values for a group of LPRM under substantially the same fluid dynamic condition as that for each LPRM is determined while measuring time-wise change rate in the indicated value of each of the LPRM. The average value is successively divided by the rate of change in the indicated value for each LPRM and the amplifier gain thereof to obtain the reference value. When the difference between the average value and reference value obtained in this way exceeds a prescribed value, the corresponding LPRM is determined to be defective. (Moriyama, K.)

  14. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  15. An Experiment to Measure Range, Range Straggling, Stopping Power, and Energy Straggling of Alpha Particles in Air

    Science.gov (United States)

    Ouseph, P. J.; Mostovych, Andrew

    1978-01-01

    Experiments to measure range, range straggling, stopping power, and energy straggling of alpha particles are discussed in this article. Commercially available equipment with simple modifications is used for these measurements. (Author/GA)

  16. Ion Stopping Powers and Ranges Whenever You Need Them

    DEFF Research Database (Denmark)

    Bassler, Niels; Christensen, Casper; Tørresø, Jesper Rosholm

    A new app "Electronic Stopping Power" for Android mobile phones and tablets, looks up stopping powers using the ICRU 49 (protons and alphas) and the revised ICRU 73 (lithium and heavier ions) tables. In addition, also MSTAR and an implementation of the Bethe equation expanded to low energies...

  17. Range Performance of Bombers Powered by Turbine-Propeller Power Plants

    Science.gov (United States)

    Cline, Charles W.

    1950-01-01

    Calculations have been made to find range? attainable by bombers of gross weights from l40,000 to 300,000 pounds powered by turbine-propeller power plants. Only conventional configurations were considered and emphasis was placed upon using data for structural and aerodynamic characteristics which are typical of modern military airplanes. An effort was made to limit the various parameters invoked in the airplane configuration to practical values. Therefore, extremely high wing loadings, large amounts of sweepback, and very high aspect ratios have not been considered. Power-plant performance was based upon the performance of a typical turbine-propeller engine equipped with propellers designed to maintain high efficiencies at high-subsonic speeds. Results indicated, in general, that the greatest range, for a given gross weight, is obtained by airplanes of high wing loading, unless the higher cruising speeds associated with the high-wing-loading airplanes require-the use of thinner wing sections. Further results showed the effect of cruising at-high speeds, of operation at very high altitudes, and of carrying large bomb loads.

  18. Pulsed power inductive energy storage in the microsecond range

    International Nuclear Information System (INIS)

    Rix, W.; Miller, A.R.; Thompson, J.; Waisman, E.; Wilkinson, M.; Wilson, A.

    1993-01-01

    During the past five years Maxwell has developed a series of inductive energy storage (IES) pulsed power generators; ACE 1, ACE 2, ACE 3, and ACE 4, to drive electron-beam loads. They are all based on a plasma opening switch (POS) contained in a single vacuum envelope operating at conduction times of around one microsecond. They all employ fast capacitor bank technology to match this conduction time without intermediate power conditioning. Oil or air filled transmission lines transfer capacitor bank energy to a vacuum section where the final pulse compression is accomplished. Development of the ACE series is described, emphasizing capacitor bank and the opening switch technology for delivering high voltage, multimegampere pulses to electron beam loads

  19. Design, construction, and first operational results of a 5 megawatt feedback controlled amplifier system for disruption control on the Columbia University HBT-EP tokamak

    International Nuclear Information System (INIS)

    Reass, W.A.; Alvestad, H.A.; Bartsch, R.R.; Wurden, G.A.; Ivers, T.H.; Nadle, D.L.

    1995-01-01

    This paper presents the electrical design and first operational results of a 5 Megawatt feedback controlled amplifier system designed to drive a 300 uH saddle coil set on the HBT-EP tokamak. It will be used to develop various plasma feedback techniques to control and inhibit the onset of plasma disruptions that are observed in high β plasmas. To provide a well characterized system, a high fidelity, high power closed loop amplifier system has been refurbished from the Los Alamos ZT-P equilibrium feedback system. In its configuration developed for the Columbia HBT-EP tokamak, any desired waveform may be generated within a 1,100 ampere and 16 kV peak to peak dynamic range. An energy storage capacitor bank presently limits the effective full power pulse width to 10 mS. The full power bandwidth driving the saddle coil st is ∼12 kHz, with bandwidth at reduced powers exceeding 30 kHz. The system is designed similar to a grounded cathode, push-pull, transformer coupled, tube type amplifier system. The detailed electrical design of the power amplifier, transformer, and feedback system will be provided in addition to recent HBT-EP operational results

  20. Low Power High Dynamic Range A/D Conversion Channel

    DEFF Research Database (Denmark)

    Marker-Villumsen, Niels; Rombach, Pirmin

    This work concerns the analysis of an adaptive analog-to-digital (A/D) conversion channel for use with a micro electromechanical system (MEMS) microphone for audio applications. The adaptive A/D conversion channel uses an automatic gain control (AGC) for adjusting the analog preamplifier gain...... in the conversion channel in order to avoid distortion for large input signals. In combination with a low resolution A/D converter (ADC) and a digital gain block, the adaptive A/D conversion channel achieves an extended dynamic range beyond that of the ADC. This in turn reduces the current consumption...... of the transient errors, an objective method based on the Perceived Evaluation of Audio Quality (PEAQ) method is investigated and compared with a subjective evaluation. The results of the evaluation provide key knowledge about the transient glitches from both a system and psychoacoustical point-of-view. Based...

  1. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Science.gov (United States)

    2011-04-13

    ... DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural Utilities Service, USDA. ACTION: Notice of Availability of a Draft... financial assistance to Oglethorpe Power Corporation (Oglethorpe) for the construction of a 100 megawatt (MW...

  2. Wide Output Range Power Processing Unit for Electric Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A power supply concept capable of operation over 25:1 and 64:1 impedance ranges at full power has been successfully demonstrated in our Phase I effort at...

  3. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  4. 1 megawatt, 100 GHz gyrotron study. Final report, March 21-September 1, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, N.J.; Mallavarpu, R.; Palevsky, A.

    1983-11-21

    This report provides the results of a design study on a gyrotron device employing a new type of hollow gyrobeam formation system and having a capability for delivering megawatt CW power at 100 GHz to an ECRH-heated, magnetically-confined plasma. The conceptual basis for the beam formation system is the tilt-angle gun (TAG) in which a conically-shaped electron beam is formed in a magnetically-shielded region and is then injected into the stray-field region of the main magnetic focusing system. Because fluid coolants can be accessed through the central pole of the TAG-type gun, rf interaction can be contemplated with cavity configurations not practical with the conventional MIG-type gyrobeam formation systems.

  5. Tuning Range and Power Handling Analysis of DTC-based Matching Networks for Reconfigurable High Power RF Circuits

    Directory of Open Access Journals (Sweden)

    S. Chalermwisutkul

    2017-12-01

    Full Text Available This paper presents the analysis of tuning range and power handling of digitally tunable capacitors (DTCs in reconfigurable high power RF circuits. The proposed scheme can be applied to reconfigurable RF system design e.g. smart antenna, Software Defined Radio (SDR and Cognitive Radio (CR systems. The power handling of the DTC can be enhanced by connecting the DTC in series with a fixed capacitor. The combination of a DTC and a fixed capacitors leads to modified tuning range of the total capacitance. Both the power handling and the tuning range are described in this paper by empirical equations in such a way, that a proper combination of DTCs and fixed capacitors can be determined for the design of any reconfigurable RF system. As an example of applications, a frequency band reconfigurable power amplifier was designed and fabricated. The reconfigurable input– and output matching networks utilize DTCs and fixed capacitors as tuning elements.

  6. Advanced power sources for space missions

    Energy Technology Data Exchange (ETDEWEB)

    Gavin, J.G. Jr.; Burkes, T.R.; English, R.E.; Grant, N.J.; Kulcinski, G.L.; Mullin, J.P.; Peddicord, K.L.; Purvis, C.K.; Sarjeant, W.J.; Vandevender, J.P.

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  7. Tuning Range and Power Handling Analysis of DTC-based Matching Networks for Reconfigurable High Power RF Circuits

    OpenAIRE

    S. Chalermwisutkul; V. Jantarachote; B. Shivanna; R. Phudpong; P. Akkaraekthalin

    2017-01-01

    This paper presents the analysis of tuning range and power handling of digitally tunable capacitors (DTCs) in reconfigurable high power RF circuits. The proposed scheme can be applied to reconfigurable RF system design e.g. smart antenna, Software Defined Radio (SDR) and Cognitive Radio (CR) systems. The power handling of the DTC can be enhanced by connecting the DTC in series with a fixed capacitor. The combination of a DTC and a fixed capacitors leads to modified tuning range of the total c...

  8. Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering

    KAUST Repository

    Ouda, Mahmoud H.

    2016-08-29

    A self-biased, cross-coupled, differential rectifier is proposed with enhanced power-conversion efficiency over an extended range of input power. A prototype is designed for UHF 433MHz RF power-harvesting applications and is implemented using 0.18μm CMOS technology. The proposed rectifier architecture is compared to the conventional cross-coupled rectifier. It demonstrates an improvement of more than 40% in the rectifier power conversion efficiency (PCE) and an input power range extension of more than 50% relative to the conventional crosscoupled rectifier. A sensitivity of -15.2dBm (30μW) input power for 1V output voltage and a peak power-conversion efficiency of 65% are achieved for a 50kω load. © 2004-2012 IEEE.

  9. Wide Output Range Power Processing Unit for Electric Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hall thrusters can be operated over a wide range of specific impulse while maintaining high efficiency. However S/C power system constraints on electric propulsion...

  10. Biosonar resolving power : echo-acoustic perception of surface structures in the submillimeter range

    NARCIS (Netherlands)

    Simon, Ralph; Knörnschild, Mirjam; Tschapka, Marco; Schneider, Annkathrin; Passauer, Nadine; Kalko, Elisabeth K V; von Helversen, Otto

    2014-01-01

    The minimum distance for which two points still can be separated from each other defines the resolving power of a visual system. In an echo-acoustic context, the resolving power is usually measured as the smallest perceivable distance of two reflecting surfaces on the range axis and is found to be

  11. Wind power on the march. Sri Lanka intends to develop its wind power potential. One project is in the planning stage, and up to 200 MW may follow in the next few years.; Der Wind kommt. Sri Lankas Energieversorgung will das Windpotenzial der Insel erschliessen. Ein Projekt ist geplant, bis zu 200 Megawatt koennten in den kommenden Jahren folgen

    Energy Technology Data Exchange (ETDEWEB)

    Franken, M.

    2005-08-01

    With high oil prices, political stability and cheap credits: Sri Lanka's power supply industry intends to develop the island's wind power potential. A 30 MW wind park is in the projecting stage, and 100 - 200 MW may follow in the next few years. (orig.)

  12. Harvesting Ambient Vibration Energy over a Wide Frequency Range for Self-Powered Electronics.

    Science.gov (United States)

    Wang, Xiaofeng; Niu, Simiao; Yi, Fang; Yin, Yajiang; Hao, Chenglong; Dai, Keren; Zhang, Yue; You, Zheng; Wang, Zhong Lin

    2017-02-28

    Vibration is one of the most common energy sources in ambient environment. Harvesting vibration energy is a promising route to sustainably drive small electronics. This work introduces an approach to scavenge vibrational energy over a wide frequency range as an exclusive power source for continuous operation of electronics. An elastic multiunit triboelectric nanogenerator (TENG) is rationally designed to efficiently harvest low-frequency vibration energy, which can provide a maximum instantaneous output power density of 102 W·m -3 at as low as 7 Hz and maintain its stable current outputs from 5 to 25 Hz. A self-charging power unit (SCPU) combining the TENG and a 10 mF supercapacitor gives a continuous direct current (DC) power delivery of 1.14 mW at a power management efficiency of 45.6% at 20 Hz. The performance of the SCPU can be further enhanced by a specially designed power management circuit, with a continuous DC power of 2 mW and power management efficiency of 60% at 7 Hz. Electronics such as a thermometer, hygrometer, and speedometer can be sustainably powered solely by the harvested vibration energy from a machine or riding bicycle. This approach has potential applications in self-powered systems for environment monitoring, machine safety, and transportation.

  13. A neutral beam-line installation for testing injector systems in the long pulse, megawatt regime

    International Nuclear Information System (INIS)

    Brookes, C.E.; Coupland, J.R.; Green, T.S.; Hammond, D.P.; Hicks, J.B.; Hoskins, A.J.; Pedley, T.R.; West, W.A.

    1981-01-01

    The existing Megawatt Beam Line assembly is being upgraded primarily in order to test prototype JET injector modules to the full rating of 80 Kv, 60 A for pulse durations up to 5 seconds. Two extra vacuum tanks are being installed, together with additional cryopumps to bring the total pumping speed to 4 x 10 5 l/s, and an inertial beam stop calorimeter capable of absorbing the full beam power is being manufactured. The auxiliary electrical supply system is being re-designed to match the proposed 'bucket' type plasma source; the new 144 Kw arc supply has a quasi constant power characteristic in order to reduce fluctuations in beam intensity, and the filament supply is designed to stabilise the source cathodes in the required emission limited mode. The high voltage supply has 120 Kv open circuit voltage for the full beam current and a commercial series tube system which will provide voltage stabilisation, tracking, and fast protection has been ordered from the Systems, Science and Software Company. The assembly and testing of all major components is planned to be completed by early 1981 in order to meet the expected delivery time of the first JET prototype injector. (author)

  14. Increasing power-law range in avalanche amplitude and energy distributions

    Science.gov (United States)

    Navas-Portella, Víctor; Serra, Isabel; Corral, Álvaro; Vives, Eduard

    2018-02-01

    Power-law-type probability density functions spanning several orders of magnitude are found for different avalanche properties. We propose a methodology to overcome empirical constraints that limit the range of truncated power-law distributions. By considering catalogs of events that cover different observation windows, the maximum likelihood estimation of a global power-law exponent is computed. This methodology is applied to amplitude and energy distributions of acoustic emission avalanches in failure-under-compression experiments of a nanoporous silica glass, finding in some cases global exponents in an unprecedented broad range: 4.5 decades for amplitudes and 9.5 decades for energies. In the latter case, however, strict statistical analysis suggests experimental limitations might alter the power-law behavior.

  15. An Energy-Efficient Link with Adaptive Transmit Power Control for Long Range Networks

    DEFF Research Database (Denmark)

    Blaszczyk, Tomasz; Lynggaard, Per

    2016-01-01

    — A considerable amount of research is carried out to develop a reliable smart sensor system with high energy efficiency for battery operated wireless IoT devices in the agriculture sector. However, only a limited amount of research has covered automatic transmission power adjustment schemes...... and algorithms which are essential for deployment of wireless IoT nodes. This paper presents an adaptive link algorithm for farm applications with emphasis on power adjustment for long range communication networks....

  16. An Energy-Efficient Link with Adaptive Transmit Power Control for Long Range Networks

    DEFF Research Database (Denmark)

    Lynggaard, P.; Blaszczyk, Tomasz

    2016-01-01

    A considerable amount of research is carried out to develop a reliable smart sensor system with high energy efficiency for battery operated wireless IoT devices in the agriculture sector. However, only a limited amount of research has covered automatic transmission power adjustment schemes...... and algorithms which are essential for deployment of wireless IoT nodes. This paper presents an adaptive link algorithm for farm applications with emphasis on power adjustment for long range communication networks....

  17. Wide-Range Adaptive RF-to-DC Power Converter for UHF RFIDs

    KAUST Repository

    Ouda, Mahmoud H.

    2016-07-27

    A wide-range, differential, cross-coupled rectifier is proposed with an extended dynamic range of input RF power that enables wireless powering from varying distances. The proposed architecture mitigates the reverse-leakage problem in conven- tional, cross-coupled rectifiers without degrading sensitivity. A prototype is designed for UHF RFID applications, and is imple- mented using 0.18 μ m CMOS technology. On-chip measurements demonstrate a sensitivity of − 18 dBm for 1 V output over a 100 k Ω load and a peak RF-to-DC power conversion efficiency of 65%. A conventional, fully cross-coupled rectifier is fabricated along- side for comparison and the proposed rectifier shows more than 2 × increase in dynamic range and a 25% boosting in output voltage than the conventional rectifier

  18. Radiometric analysis and simulation of signal power function in a short-range laser radar.

    Science.gov (United States)

    Wang, J; Kostamovaara, J

    1994-06-20

    A key issue in designing laser radar devices for short-range applications is the ability to estimate accurately the power seen by the receiver as a function of the measurement distance. To obtain a reasonable approximation of this power, the irradiance distribution over the sensor as well as the target surface, which is highly dependent on the type of the detector used, must be analyzed in detail. The calculation of signal power function by means of radiometry is discussed. A software package developed for simulating power transfer as a function of various optical parameters is presented. It can be applied to various types of laser sources, including high-power laser diodes (wide-stripe or stacked) and pigtailed laser diodes.

  19. Inventory of power plants in the United States, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Operable capacity at US electric power plants totaled 693,016 megawatts, as of year-end 1991. Coal-fired capacity accounted for 43 percent (299,849 megawatts) of the total US generating capacity, the share it has essentially maintained for the past decade. Gas-fired capacity accounted for 18 percent (125,683 megawatts); nuclear, 14 percent (99,589 megawatts); water, 13 percent (92,031 megawatts); petroleum, 10 percent (72,357 megawatts); other, one percent (3,507 megawatts). The 693,016 megawatts of operable capacity includes 3,627 megawatts of new capacity that came on line during 1991 (Table 2). This new capacity is 42 percent less than capacity in new units reported for 1990. Gas-fired capacity accounted for the greatest share of this new capacity. It represents 38 percent of the new capacity that started operation in 1991. The surge in new gas-fired capacity is the beginning of a trend that is expected to exist over the next 10 years. That is, gas-fired capacity will dominate new capacity additions. Gas-fired capacity additions during the next 10 years will primarily be in simple cycle gas turbines and gas turbines operating as combined cycle units. These planned gas turbine and combined cycle units, whose capacity totals over 21,000 megawatts, are expected to serve peak and intermediate loads of electric utilities

  20. Wide-Range Highly-Efficient Wireless Power Receivers for Implantable Biomedical Sensors

    KAUST Repository

    Ouda, Mahmoud

    2016-11-01

    Wireless power transfer (WPT) is the key enabler for a myriad of applications, from low-power RFIDs, and wireless sensors, to wirelessly charged electric vehicles, and even massive power transmission from space solar cells. One of the major challenges in designing implantable biomedical devices is the size and lifetime of the battery. Thus, replacing the battery with a miniaturized wireless power receiver (WPRx) facilitates designing sustainable biomedical implants in smaller volumes for sentient medical applications. In the first part of this dissertation, we propose a miniaturized, fully integrated, wirelessly powered implantable sensor with on-chip antenna, designed and implemented in a standard 0.18μm CMOS process. As a batteryless device, it can be implanted once inside the body with no need for further invasive surgeries to replace batteries. The proposed single-chip solution is designed for intraocular pressure monitoring (IOPM), and can serve as a sustainable platform for implantable devices or IoT nodes. A custom setup is developed to test the chip in a saline solution with electrical properties similar to those of the aqueous humor of the eye. The proposed chip, in this eye-like setup, is wirelessly charged to 1V from a 5W transmitter 3cm away from the chip. In the second part, we propose a self-biased, differential rectifier with enhanced efficiency over an extended range of input power. A prototype is designed for the medical implant communication service (MICS) band at 433MHz. It demonstrates an efficiency improvement of more than 40% in the rectifier power conversion efficiency (PCE) and a dynamic range extension of more than 50% relative to the conventional cross-coupled rectifier. A sensitivity of -15.2dBm input power for 1V output voltage and a peak PCE of 65% are achieved for a 50k load. In the third part, we propose a wide-range, differential RF-to-DC power converter using an adaptive, self-biasing technique. The proposed architecture doubles

  1. Optimal loading range for the development of peak power output in the hexagonal barbell jump squat.

    Science.gov (United States)

    Turner, Thomas S; Tobin, Daniel P; Delahunt, Eamonn

    2015-06-01

    Recent studies indicate that the utilization of the hexagonal barbell jump squat (HBJS) compared with the traditional barbell jump squat may offer a superior method of developing peak power. The notion that a single optimal load may be prescribed in training programs aiming to develop peak power is subject to debate. The purpose of this study was to identify the optimal load corresponding with peak power output during the HBJS in professional rugby union players. Seventeen professional rugby union players participated in this study. Participants performed 3 unloaded countermovement jumps on a force plate and 3 HBJS at each of the following randomized loads: 10, 20, 30, and 40% of box squat 1 repetition maximum (1RM). Peak power output was the dependent variable of interest. A one-way repeated measures analysis of variance was conducted to compare peak power output across each load. Peak power output was the dependent variable of interest. A significant main effect for load was observed (Wilk's Lambda = 0.11, F(4,13) = 18.07, p < 0.01, partial η2 = 0.88). Results of the Bonferroni-adjusted pairwise comparisons indicated that peak power output in the HBJS is optimized at a load range between 10 and 20% of box squat 1RM. The results of this study indicate that the use of the HBJS with a training load between 10 and 20% of box squat 1RM optimizes peak power output in professional rugby union players.

  2. Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals.

    Science.gov (United States)

    Vallaitis, T; Bonk, R; Guetlein, J; Hillerkuss, D; Li, J; Brenot, R; Lelarge, F; Duan, G H; Freude, W; Leuthold, J

    2010-03-15

    Experimentally we find a 10 dB input power dynamic range advantage for amplification of phase encoded signals with quantum dot SOA as compared to low-confinement bulk SOA. An analysis of amplitude and phase effects shows that this improvement can be attributed to the lower alpha-factor found in QD SOA.

  3. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2017-10-24

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross-coupled rectifier, the proposed design offers 3.2× the dynamic range. It is also highly sensitive and requires −18 dBm of input power to produce a 1 V-output voltage when operating with a 100 kΩ load. Furthermore, the proposed design offers an open circuit sensitivity of −23.4 dBm and a peak power conversion efficiency of 67%.

  4. Torsional Vibration in the National Wind Technology Center’s 2.5-Megawatt Dynamometer

    Energy Technology Data Exchange (ETDEWEB)

    Sethuraman, Latha [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wallen, Robb [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-31

    This report documents the torsional drivetrain dynamics of the NWTC's 2.5-megawatt dynamometer as identified experimentally and as calculated using lumped parameter models using known inertia and stiffness parameters. The report is presented in two parts beginning with the identification of the primary torsional modes followed by the investigation of approaches to damp the torsional vibrations. The key mechanical parameters for the lumped parameter models and justification for the element grouping used in the derivation of the torsional modes are presented. The sensitivities of the torsional modes to different test article properties are discussed. The oscillations observed from the low-speed and generator torque measurements were used to identify the extent of damping inherently achieved through active and passive compensation techniques. A simplified Simulink model of the dynamometer test article integrating the electro-mechanical power conversion and control features was established to emulate the torque behavior that was observed during testing. The torque response in the high-speed, low-speed, and generator shafts were tested and validated against experimental measurements involving step changes in load with the dynamometer operating under speed-regulation mode. The Simulink model serves as a ready reference to identify the torque sensitivities to various system parameters and to explore opportunities to improve torsional damping under different conditions.

  5. Analysis of a 10 megawatt space-based solar-pumped neodymium laser system

    Science.gov (United States)

    Kurweg, U. H.

    1984-01-01

    A ten megawatt solar-pumped continuous liquid laser system for space applications is examined. It is found that a single inflatable mirror of 434 m diameter used in conjunction with a conical secondary concentrator is sufficient to side pump a liquid neodymium lasant in an annular tube of 6 m length and 1 m outer and 0.8 m inner diameter. About one fourth of intercepted radiation converging on the laser tube is absorbed and one fifth of this radiation is effective in populating the upper levels. The liquid lasant is flowed through the annular laser cavity at 1.9 m/s and is cooled via a heat exchanger and a large radiator surface comparable in size to the concentrating mirror. The power density of incident light within the lasant of approximately 68 watt/cu cm required for cw operation is exceeded in the present annular configuration. Total system weight corresponds to 20,500 kg and is thus capable of being transported to near Earth orbit by a single shuttle flight.

  6. High power electromagnetic propulsion research at the NASA Glenn Research Center

    International Nuclear Information System (INIS)

    LaPointe, Michael R.; Sankovic, John M.

    2000-01-01

    Interest in megawatt-class electromagnetic propulsion has been rekindled to support newly proposed high power orbit transfer and deep space mission applications. Electromagnetic thrusters can effectively process megawatts of power to provide a range of specific impulse values to meet diverse in-space propulsion requirements. Potential applications include orbit raising for the proposed multi-megawatt Space Solar Power Satellite and other large commercial and military space platforms, lunar and interplanetary cargo missions in support of the NASA Human Exploration and Development of Space strategic enterprise, robotic deep space exploration missions, and near-term interstellar precursor missions. As NASA's lead center for electric propulsion, the Glenn Research Center is developing a number of high power electromagnetic propulsion technologies to support these future mission applications. Program activities include research on MW-class magnetoplasmadynamic thrusters, high power pulsed inductive thrusters, and innovative electrodeless plasma thruster concepts. Program goals are highlighted, the status of each research area is discussed, and plans are outlined for the continued development of efficient, robust high power electromagnetic thrusters

  7. Low-power wide-locking-range injection-locked frequency divider for OFDM UWB systems

    International Nuclear Information System (INIS)

    Yin Jiangwei; Li Ning; Zheng Renliang; Li Wei; Ren Junyan

    2009-01-01

    This paper describes a divide-by-two injection-locked frequency divider (ILFD) for frequency synthesizers as used in multiband orthogonal frequency division multiplexing (OFDM) ultra-wideband (UWB) systems. By means of dual-injection technique and other conventional tuning techniques, such as DCCA and varactor tuning, the divider demonstrates a wide locking range while consuming much less power. The chip was fabricated in the Jazz 0.18 μm RF CMOS process. The measurement results show that the divider achieves a locking range of 4.85 GHz (6.23 to 11.08 GHz) at an input power of 8 dBm. The core circuit without the test buffer consumes only 3.7 mA from a 1.8 V power supply and has a die area of 0.38 x 0.28 mm 2 . The wide locking range combined with low power consumption makes the ILFD suitable for its application in UWB systems.

  8. Low-power wide-locking-range injection-locked frequency divider for OFDM UWB systems

    Energy Technology Data Exchange (ETDEWEB)

    Yin Jiangwei; Li Ning; Zheng Renliang; Li Wei; Ren Junyan, E-mail: lining@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-05-01

    This paper describes a divide-by-two injection-locked frequency divider (ILFD) for frequency synthesizers as used in multiband orthogonal frequency division multiplexing (OFDM) ultra-wideband (UWB) systems. By means of dual-injection technique and other conventional tuning techniques, such as DCCA and varactor tuning, the divider demonstrates a wide locking range while consuming much less power. The chip was fabricated in the Jazz 0.18 mum RF CMOS process. The measurement results show that the divider achieves a locking range of 4.85 GHz (6.23 to 11.08 GHz) at an input power of 8 dBm. The core circuit without the test buffer consumes only 3.7 mA from a 1.8 V power supply and has a die area of 0.38 x 0.28 mm{sup 2}. The wide locking range combined with low power consumption makes the ILFD suitable for its application in UWB systems.

  9. Range based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-08-01

    Full Text Available ) Here, 2. is the Euclidean norm and υ is the path loss exponent (PLE) assumed to be 2 6υ≤ ≤ , depending on the physical environment conditions [11]. Substitute (3) into (4) to get: Network and Above PMMUP: V-MAC Link Layer MAC # 2 Physical #2... neighbouring nodes. The probability of selecting transmission power that is greater than the probing power level increases with the connectivity range at different path loss exponents (PLE). When the PLE is high it implies bad wireless channel environment...

  10. Influence of scaling range on vibrotactile power function exponents for the tongue and hand.

    Science.gov (United States)

    Fucci, D; Petrosino, L; Harris, D

    1983-10-01

    Intramodal range has been studied by R. Teghtsoonian (1973), who found that for magnitude-estimation procedures an increase in the scaling range will cause a decrease in the exponent of the power function. For magnitude production procedures, an increase in the scaling range will decrease the magnitude of the exponent of the power function (Teghtsoonian, 1973). The purpose of this pilot study was to investigate the influence of scaling range on the psychophysical functions obtained by the method of magnitude production for vibrotaction. Twenty subjects were randomly selected and divided into two groups of 10 subjects each. Subjects' ages ranged from 17 to 23 yr. A detailed description of the vibrotactile equipment can be found elsewhere (1). The psychophysical method of magnitude production was used to establish suprathreshold magnitude functions from the anterior midline section of the tongue dorsum and the thenar eminence of the right hand. Each subject in Group 1 received a random order of six numbers (5, 10, 15, 20, 25, 30) and was asked to adjust the magnitude of the stimulus that he was feeling to the number being presented. Each subject in Group 2 received the same random series of six numbers as Group 1, but other numbers were also randomly interspersed above, between, or below the series of six to present an expanded range of numbers for scaling. For both groups the randomized series of numbers was presented three times at each test site.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. FPC releases preliminary 1976 power production, capacity, fuel consumption data

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Preliminary data show that the nation's electric utilities produced a record 2,036,486,503 megawatt hours of electricity in 1976, 6.2 percent higher than in 1975. The installed generating capacity of the nation's electric utilities also reached a record level of 531,287 megawatts during 1976, up 4.5 percent from 508,251 megawatts in 1975. Steam-electric plants had a total installed capacity of 411,615 megawatts at the end of 1976, including 42,919 megawatts of nuclear-fueled capacity. Hydroelectric stations had a total installed capacity of 67,798 megawatts. Internal combustion plants had a combined capacity of 5,298 megawatts and gas turbine plants, 46,576 megawatts. Power output by fuel-burning plants in 1976 totaled 1,752.8 million megawatt-hours, 8.4 percent greater than in 1975. Hydroelectric plants produced 283.7 million megawatt hours in 1976, compared with 300.0 million in 1975. To produce electric energy in 1976, utilities burned 448.1 million tons of coal; 555.4 million barrels of fuel oil; and 3,078 billion cubic feet of natural gas. In 1975, fuel consumption totals were: coal, 406.0 million tons; oil, 506.1 million barrels; and gas 3,158 billion cubic feet. In 1976, privately-owned utilities generated 1,582.0 million megawatt-hours and publicly-owned utilities generated 454.5 million megawatt-hours. Data on electric utility generating capacity and production by region, state, and type of plant; production of electricity and installed generating capacity by class of ownership; and power production by kind of fuel and related amount of fuel burned are tabulated. Fuel data are also given by region and state.

  12. Method for enhancing the resolving power of ion mobility separations over a limited mobility range

    Science.gov (United States)

    Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D

    2014-09-23

    A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.

  13. Highly excited bound-state resonances of short-range inverse power-law potentials

    Science.gov (United States)

    Hod, Shahar

    2017-11-01

    We study analytically the radial Schrödinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r)=-β _n r^{-n} with n>2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E^{ {max}}_l=E^{ {max}}_l(n,β _n,R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system.

  14. Highly excited bound-state resonances of short-range inverse power-law potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-11-15

    We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)

  15. Biosonar resolving power: Echo-acoustic perception of surface structures in the submillimeter range

    Directory of Open Access Journals (Sweden)

    Ralph eSimon

    2014-02-01

    Full Text Available The minimum distance for which two points still can be separated from each other defines the resolving power of a visual system. In an echo-acoustic context, the resolving power is usually measured as the smallest perceivable distance of two reflecting surfaces on the range axis and is found to be around half a millimetre for bats employing frequency modulated echolocation calls. Only few studies measured such thresholds with physical objects, most often bats were trained on virtual echoes i.e. echoes generated and played back by a computer; moreover, bats were sitting while they received the stimuli. In these studies differences in structure depth between 200 µm and 340 µm were found. However, these low thresholds were never verified for free-flying bats and real physical objects. Here, we show behavioural evidence that the echo-acoustic resolving power for surface structures in fact can be as low as measured for computer generated echoes and even lower, sometimes below 100 µm. We found this exceptional fine discrimination ability only when one of the targets showed spectral interferences in the frequency range of the bats' echolocation call while the other target did not. This result indicates that surface structure is likely to be perceived as a spectral quality rather than being perceived strictly in the time domain. Further, it points out that sonar resolving power directly depends on the highest frequency/shortest wavelength of the signal employed.

  16. A High-Voltage class-D power amplifier with switching frequency regulation for improved high-efficiency output power range

    NARCIS (Netherlands)

    Ma, H.; van der Zee, Ronan A.R.; Nauta, Bram

    2015-01-01

    This paper describes the power dissipation analysis and the design of an efficiency-improved high-voltage class-D power amplifier. The amplifier adaptively regulates its switching frequency for optimal power efficiency across the full output power range. This is based on detecting the switching

  17. High power laser diodes at 14xx nm wavelength range for industrial and medical applications

    Science.gov (United States)

    Telkkälä, Jarkko; Boucart, Julien; Krejci, Martin; Crum, Trevor; Lichtenstein, Norbert

    2014-03-01

    We report on the development of the latest generation of high power laser diodes at 14xx nm wavelength range suitable for industrial applications such as plastics welding and medical applications including acne treatment, skin rejuvenation and surgery. The paper presents the newest chip generation developed at II-VI Laser Enterprise, increasing the output power and the power conversion efficiency while retaining the reliability of the initial design. At an emission wavelength around 1440 nm we applied the improved design to a variety of assemblies exhibiting maximum power values as high as 7 W for broad-area single emitters. For 1 cm wide bars on conductive coolers and for bars on active micro channel coolers we have obtained 50 W and 72 W in continuous wave (cw) operation respectively. The maximum power measured for a 1 cm bar operated with 50 μs pulse width and 0.01% duty cycle was 184 W, demonstrating the potential of the chip design for optimized cooling. Power conversion efficiency values as high as 50% for a single emitter device and over 40% for mounted bars have been demonstrated, reducing the required power budget to operate the devices. Both active and conductive bar assembly configurations show polarization purity greater than 98%. Life testing has been conducted at 95 A, 50% duty cycle and 0.5 Hz hard pulsed operation for bars which were soldered to conductive copper CS mounts using our hard solder technology. The results after 5500 h, or 10 million "on-off" cycles show stable operation.

  18. Stream power framework for predicting geomorphic change: The 2013 Colorado Front Range flood

    Science.gov (United States)

    Yochum, Steven E.; Sholtes, Joel S.; Scott, Julian A.; Bledsoe, Brian P.

    2017-09-01

    The Colorado Front Range flood of September 2013 induced a diverse range of geomorphic changes along numerous stream corridors, providing an opportunity to assess responses to a large flood in a semiarid landscape. We defined six classes of geomorphic change related to peak unit stream power and valley confinement for 531 stream reaches over 226 km, spanning a gradient of channel scales and slope. Geomorphic change was generally driven by erosion of channel margins in confined reaches and by a combination of deposition and erosion in unconfined reaches. The magnitude of geomorphic change typically increased with unit stream power (ω), with greater responses observed in unconfined channels. Cumulative logit modeling indicated that total stream power or unit stream power, unit stream power gradient, and valley confinement are significant predictors of geomorphic response for this flood event. Based on this dataset, thresholds for geomorphic adjustment were defined. For channel slopes 230 W/m2 (16 lb/ft-s; at least 10% of the investigated sites experienced substantial channel widening) and a credible potential for avulsions, braiding, and loss of adjacent road embankments associated with ω > 480 W/m2 (33 lb/ft-s; at least 10% of the investigated sites experienced such geomorphic change). Infrequent to numerous eroded banks were very likely with ω > 700 W/m2 (48 lb/ft-s), with substantial channel widening or major geomorphic change shifting from credible to likely. Importantly, in reaches where there were large reductions in ω as the valley form shifted from confined to relatively unconfined, large amounts of deposition-induced, reach-scale geomorphic change occurred in some locations at relatively low ω. Additionally, alluvial channels with slopes > 3% had greater resistance to geomorphic change, likely caused by armoring by larger bed material and increased flow resistance from enhanced bedforms. Finally, we describe how these results can potentially be used by

  19. Nuclear power plant 5,000 to 10,000 kilowatts

    Energy Technology Data Exchange (ETDEWEB)

    1956-02-01

    The purpose of this proposal is to present a suggested program for the development of an Aqueous Homogeneous Reactor Power Plant for the production of power in the 5000 to 10,000 kilowatt range under the terms of the Atomic Energy Commission's invitation of September 21, 1955. It envisions a research and development program prior to finalizing fabricating commitments of full scale components for the purpose of proving mechanical and hydraulic operating and chemical processing feasibility with the expectation that such preliminary effort will assure the contruction of the reactor at the lowest cost and successful operation at the earliest date. It proposes the construction of a reactor for an eventual net electrical output of ten megawatts but initially in conjunction with a five megawatt turbo-generating unit. This unit would be constructed at the site of the existing Hersey diesel generating plant of the Wolverine Electric Cooperative approximately ten miles north of Big Rapids, Michigan.

  20. Operational Range of Several Interface Algorithms for Different Power Hardware-In-The-Loop Setups

    Directory of Open Access Journals (Sweden)

    Ron Brandl

    2017-11-01

    Full Text Available The importance of Power Hardware-in-the-Loop (PHIL experiments is rising more and more over the last decade in the field of power system and components testing. Due to the bidirectional exchange between virtual and physical systems, a true-to-reality interface is essential; however, linking several dynamic systems, stability issues can challenge the experiments, the components under test, and the individuals performing the experiments. Over the time, several interface algorithms (IA have been developed and analyzed, each having different advantages and disadvantages in view of combining virtual simulations with physical power systems. Finally, IA are very specific to the kind of PHIL experiment. This paper investigates the operational range of several IA for specific PHIL setups by calculations, simulations, and measurements. Therefore, a selection of the mainly used respectively optimized IA is mathematically described. The operational range is verified in a PHIL system testing environment. Furthermore, in order to study the influence of different PHIL setups, according to software and hardware impedance, different tests using linear and switching amplifiers are performed.

  1. Design of Range Adaptive Wireless Power Transfer System Using Non-coaxial Coils

    Science.gov (United States)

    Yang, Dongsheng; Won, Sokhui; Hong, Huan

    2017-05-01

    Wireless Power Transfer (WPT) is a remarkable technology because of its convenience and applicability in harsh environment. Particularly, Magnetic Coupling WPT (MC-WPT) is a proper method to midrange power transfer, but the frequency splitting at over-coupling range, which is related with transfer distance, is challenge of transmission efficiency. In order to overcome this phenomenon, recently the range adaptive WPT is proposed. In this paper, we aim to the type with a set of non-coaxial driving coils, so that this may remove the connection wires from PA (Power Amplifier) to driving coil. And, when the radius of driving coil is changed, on the different gaps between driving and TX coils, coupling coefficient between these is computed in both cases of coaxial and non-coaxial configurations. In addition, the designing steps for 4-coil WPT system using non-coaxial coils are described with the example. Finally, the reliability of this topology has been proved and simulated with PSPICE.

  2. Analog Circuit Design Low Voltage Low Power; Short Range Wireless Front-Ends; Power Management and DC-DC

    CERN Document Server

    Roermund, Arthur; Baschirotto, Andrea

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design.  Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.

  3. High power fast ramping power supplies

    Energy Technology Data Exchange (ETDEWEB)

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  4. Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities

    Science.gov (United States)

    McEwan, Thomas E.

    1998-01-01

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings.

  5. A low-power high dynamic range front-end ASIC for imaging calorimeters

    CERN Document Server

    Bagliesi, M G; Marrocchesi, P S; Meucci, M; Millucci, V; Morsani, F; Paoletti, R; Pilo, F; Scribano, A; Turini, N; Valle, G D

    2002-01-01

    High granularity calorimeters with shower imaging capabilities require dedicated front-end electronics. The ICON 4CH and VA4 PMT chip-set is suitable for very high dynamic range systems with strict noise requirements. The ICON 4CH is a 4 channel input, 12 channel output ASIC designed for use in a multi-anode photomultiplier system with very large dynamic range and low-noise requirements. Each of the four input signals to the ASIC is split equally into three branches by a current conveyor. Each of the three branches is scaled differently: 1:1, 1:8 and 1:80. The signal is read out by a 12 channel low noise/low power high dynamic range charge sensitive preamplifier-shaper circuit (VA4-PMT chip), with simultaneous sample- and-hold, multiplexed analog read-out, calibration facilities. Tests performed in our lab with a PMT are reported in terms of linearity, dynamic range and cross-talk of the system. (5 refs).

  6. Insulation resistance abnormal condition detector for a local power range monitor

    International Nuclear Information System (INIS)

    Akiyama, Takao; Mizuno, Katsuhiro; Kai, Takaaki.

    1976-01-01

    Object: To permit determination of abnormal condition by a number of local power range monitors (LPRM ) to be quickly made through estimation of the leakage current value by precisely estimating the ratio between the true rate of change in neutron flux and true change in the neutron flux by making use of the fact that the status of the neutron distribution does not widely change with a change of the core flow rate for a short period of time. Structure: While carrying out power control according to the core flow rate, detection values from LPRM which are disposed in a three-dimensional fashion within the reactor core are indicated on an indicator. The average value of rates of change in the indicated values for a group of LPRM under substantially the same fluid dynamic condition as that for each LPRM is determined by measuring the ratio before and after the alteration of the power of the indicated value. Further, the estimation of leakage current is determined by using the ratio of the indicated value, average value thereof and amplifier gain of each LPRM. When the estimation leakage current exceeds a prescribed value, the corresponding LPRM is determined to be defective. (Moriyama, K.)

  7. ECRH and ECCD experiments in an extended power range at the W7-AS stellarator

    International Nuclear Information System (INIS)

    Erckmann, V.; Gasparino, U.; Laqua, H.P.; Maassberg, H.; Kasilov, K.S.; Marushchenko, N.; Irkhin, V.; Malygin, S.

    1999-01-01

    An overview on physics studies on Electron Cyclotron Resonance Heating (ECRH) and ECCurrent Drive (ECCD) in an extended parameter range at W7-AS is presented. Experiments were performed with an upgraded ECRH power of up to 1.3 MW at 140 GHz. Electron temperatures of up to 5.7 keV were measured, which can only be explained by the beneficial effect of positive radial electric fields ('electron root'). The experiments confirm, that the electric field is generated by ECRH driven particle losses in the specific stellarator magnetic field. ECCD experiments were performed at high input power (1.3 MW) resulting in EC-driven currents of up to 20 kA. The direction of the EC-driven current was varied in co- and counter-direction with respect to the bootstrap current in discharges with zero net-current. Three current contributions, i.e. the EC-driven current, the bootstrap current and the inductively driven current are calculated independently and modify the internal profile of the rotational transform significantly. A comparison with quasi-linear theory shows significant deviation in the co-current drive case, which may be attributed to strong MHD activity and/or violation of the quasilinear assumptions due to the high power density. (author)

  8. High-power Inchworm actuators for extended-range precision positioning

    Science.gov (United States)

    Powers, Galen; Xu, Qin; Guidarelli, Thomas; Smith, James

    2005-05-01

    A single small actuation system that provides high resolution [step size] of 2 nanometers (nm) over an extended range of 20 mm with consistent forces of 100 Newtons [peak values exceed 180 N] and integral power-off hold is described. Speeds of 60 mm/second can be shown but electronic efficiencies are much higher at 1 to 10 mm/s. Open- and closed-loop control is described. Progress on potential applications in adaptive optics, large optical beam control, and photonic and semiconductor test and measurement are noted. New data is presented showing +/- 5-nm control of 100 Newton loads. Heat generation is estimated to be very small [110 mJ/hr] while actively holding position. Comparison of encoder and capacitance gage stability over time and temperature is discussed because it affects control in the 5-nm regime. This response can be contrasted with previous 2 kHz over 30-micrometer response for vibration or adaptive optics control. Performance of a new Class D switching amplifier that offers higher efficiencies at peak demands is described. The actuator design uses a set of three piezoelectric elements. These constitute 1100 nF of load. High speeds in the 20 to 60 mm/s range [up to 2500 Hz clamp change cycles] significantly affect power needed and design efficiencies. Alternative design options are presented with rationale for present design choices and resultant performance. The basic design allows for choices based on performance needed.

  9. The european market for low and medium power range uninterrupted static power supply; Le marche europeen des alimentations statiques sans interruption de petite et moyenne puissance

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, L.

    1994-12-31

    The structure of uninterrupted static power supply systems is composed of an alternating/direct converter and a direct/alternating converter (or inverter), and a by-pass device. The european market for the power range inferior to 30 kVA is very competitive, with Merlin Gerin the main manufacturer (15 pc market share), inducing decreasing prices, especially in the lower power range (up to 10 kVA), and increased performances. Short and long term prospective are discussed

  10. Reactive power control of DFIG wind turbines for power oscillation damping under a wide range of operating conditions

    OpenAIRE

    Edrah, Mohamed; Lo, Kwok L.; Anaya-Lara, Olimpo

    2016-01-01

    This study analyses the effect of replacing existing synchronous generators (SGs) equipped with power system stabilisers (PSS) by doubly fed induction generator (DFIG) based wind farms on the damping of power system oscillations in a multi-machine power system. A power system stabiliser was designed to enhance the capability of DFIG to damp power systems oscillations. The validity and effectiveness of the proposed controller are demonstrated on the widely used New England 10-machine 39-bus te...

  11. HEPS4Power - Extended-range Hydrometeorological Ensemble Predictions for Improved Hydropower Operations and Revenues

    Science.gov (United States)

    Bogner, Konrad; Monhart, Samuel; Liniger, Mark; Spririg, Christoph; Jordan, Fred; Zappa, Massimiliano

    2015-04-01

    In recent years large progresses have been achieved in the operational prediction of floods and hydrological drought with up to ten days lead time. Both the public and the private sectors are currently using probabilistic runoff forecast in order to monitoring water resources and take actions when critical conditions are to be expected. The use of extended-range predictions with lead times exceeding 10 days is not yet established. The hydropower sector in particular might have large benefits from using hydro meteorological forecasts for the next 15 to 60 days in order to optimize the operations and the revenues from their watersheds, dams, captions, turbines and pumps. The new Swiss Competence Centers in Energy Research (SCCER) targets at boosting research related to energy issues in Switzerland. The objective of HEPS4POWER is to demonstrate that operational extended-range hydro meteorological forecasts have the potential to become very valuable tools for fine tuning the production of energy from hydropower systems. The project team covers a specific system-oriented value chain starting from the collection and forecast of meteorological data (MeteoSwiss), leading to the operational application of state-of-the-art hydrological models (WSL) and terminating with the experience in data presentation and power production forecasts for end-users (e-dric.ch). The first task of the HEPS4POWER will be the downscaling and post-processing of ensemble extended-range meteorological forecasts (EPS). The goal is to provide well-tailored forecasts of probabilistic nature that should be reliable in statistical and localized at catchment or even station level. The hydrology related task will consist in feeding the post-processed meteorological forecasts into a HEPS using a multi-model approach by implementing models with different complexity. Also in the case of the hydrological ensemble predictions, post-processing techniques need to be tested in order to improve the quality of the

  12. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things

    Directory of Open Access Journals (Sweden)

    Aloÿs Augustin

    2016-09-01

    Full Text Available LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s, connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed.

  13. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things.

    Science.gov (United States)

    Augustin, Aloÿs; Yi, Jiazi; Clausen, Thomas; Townsley, William Mark

    2016-09-09

    LoRa is a long-range, low-power, low-bitrate, wireless telecommunications system, promoted as an infrastructure solution for the Internet of Things: end-devices use LoRa across a single wireless hop to communicate to gateway(s), connected to the Internet and which act as transparent bridges and relay messages between these end-devices and a central network server. This paper provides an overview of LoRa and an in-depth analysis of its functional components. The physical and data link layer performance is evaluated by field tests and simulations. Based on the analysis and evaluations, some possible solutions for performance enhancements are proposed.

  14. Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter

    DEFF Research Database (Denmark)

    Yu, Jianjun; Jeppesen, Palle

    2001-01-01

    Gain-saturation-induced self-phase modulation (SPM) leading to pulse distortion in a semiconductor optical amplifier (SOA) is overcome by shifting a tunable optical filter (TOF). A recovered or broadened pulse can be obtained after filtering the amplified pulse in the SOA even if the short pulse...... to a longer wavelength for RZ signals and to a shorter for NRZ signals. 80-Gb/s optical time division multiplexing (OTDM) signal amplification in the SOA is demonstrated for the first time. We also demonstrate that a large IPDR for the 80-Gb/s OTDM signal can be obtained by shifting the TOF....... is only 2-3 ps long. The input power dynamic range (IPDR) can be strongly increased by shifting the TOF and the direction of the shifted transparent wavelength is different for 10 Gb/s return-to-zero (RZ) or nonreturn-to-zero (NRZ) signals. The transparent wavelength of the TOF should be shifted...

  15. Medium-range planning economics of future electrical power generation options

    International Nuclear Information System (INIS)

    Othman, Jamal

    2006-01-01

    In their continuous planning for load growth, electricity utilities search for the most economic generation schemes. But this will be subject to a number of constrains, such as the type of generation schemes,.B(ut this will be subject to a number of constrains, such as the type of fuel available and compliance with national environmental standards. In this paper, medium range planning economics of using alternative fuels options for electrical power generation systems in Jordan is discussed. Imported natural gas, heavy fuel oil, coal and local oil shale are compared. A net present value model was used to compare electricity generation cost for different types of thermal power plants. Sensitivity analysis was performed to determine the influence of the most important variable, such as unit capital and fuel prices, discount and inflation rates. It was found that imported natural gas, as a future primary fuel, to supply new combined cycle and/or upgraded existing gas turbine stations, in Jordan represents the best option during the study period.(Author)

  16. THE EFFECTS OF COLD WHIRLPOOL ON POWER, SPEED, AGILITY, AND RANGE OF MOTION

    Directory of Open Access Journals (Sweden)

    Stephen M. Patterson

    2008-09-01

    Full Text Available The purpose was to determine if cold whirlpool treatment decreases functional performance equally regardless of gender. A secondary aim was to determine if there is a gradual increase in functional performance across time. Twenty-one college-aged subjects volunteered to participate in this study and were required to perform four measures of functional performance including: counter movement vertical jump, T-test, 36.58-meter dash (40-yard, and active range of motion of the ankle. Participants were treated with a 20 minute, 10 degree Celsius cold whirlpool following the pre-test of a given functional performance measure. Participants demonstrated significant decreases in counter movement vertical jump, T-test, and 40-yard dash performance immediately following treatment. Vertical jump performance remained impaired for at least 32 minutes. While both the T-test and 40-yard dash were affected for 7 and 22 minutes post- treatment, respectively. Participants also demonstrated significant decreases in peak power and average power immediately after and for 32 minutes post-treatment. Dorsiflexion was significantly decreased 7 and 12 minutes following treatment. There were no differences for plantar flexion, inversion, or eversion. These data suggest functional performance was affected immediately following and for up to 32 minutes after cold whirlpool treatment. It was also evident that there is a gradual performance increase for each measure of functional performance across time. Therefore, the consequences should be carefully considered before returning athletes to activity following cold whirlpool treatment

  17. Energy Efficiency Oriented Design Method of Power Management Strategy for Range-Extended Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jiuyu Du

    2016-01-01

    Full Text Available The energy efficiency of the range-extended electric bus (REEB developed by Tsinghua University must be improved; currently, the energy management strategy is a charge-deplete-charge-sustain (CDCS strategy, which exhibits low energy efficiency on the demonstration model. To improve the energy efficiency and reduce the operating cost, a rule-based control strategy derived from the dynamic programming (DP strategy is obtained for the Chinese urban bus driving cycle (CUBDC. This rule is extracted by the power-split-ratio (PSR from the simulation results of the dynamic powertrain model using the DP strategy. By establishing the REEB dynamic models in Matlab/Simulink, the control rule can be achieved, and the power characteristic of powertrain, energy efficiency, operating cost, and computing time are analyzed. The simulation results show that the performance of the rule-based strategy presented in this paper is similar to that of the DP strategy. The energy efficiency can be improved greatly compared with that of the CDCS strategy, and the operating cost can also be reduced.

  18. Preliminary design and cost of a 1-megawatt solar-pumped iodide laser space-to-space transmission station

    Science.gov (United States)

    Deyoung, R. J.; Walker, G. H.; Williams, M. D.; Schuster, G. L.; Conway, E. J.

    1987-01-01

    A preliminary conceptual design of a space-based solar pumped iodide laser emitting 1 megawatt of laser power for space-to-space power transmission is described. A near parabolic solar collector focuses sunlight onto the t-C4F9I (perfluoro-t butyl iodide) lasant within a transverse flow optical cavity. Using waste heat, a thermal system was designed to supply compressor and auxiliary power. System components were designed with weight and cost estimates assigned. Although cost is very approximate, the cost comparison of individual system components leads to valuable insights for future research. In particular, it was found that laser efficiency was not a dominant cost or weight factor, the dominant factor being the laser cavity and laser transmission optics. The manufacturing cost was approx. two thirds of the total cost with transportation to orbit the remainder. The flowing nonrenewable lasant comprised 20% of the total life cycle cost of the system and thus was not a major cost factor. The station mass was 92,000 kg without lasant, requiring approx. four shuttle flights to low Earth orbit where an orbital transfer vehicle will transport it to the final altitude of 6378 km.

  19. Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature

  20. A low power, large dynamic range, CMOS amplifier and analog memory for capacitive sensors

    CERN Document Server

    Aspell, P; Bloch, P; Bourotte, J; Grabit, R; Jarron, Pierre; Reynaud, S; Van Hove, A; Zamiatin, N I

    1996-01-01

    This paper has been written to announce the design of a CMOS charge to voltage amplifier and it¹s integration within an analog memory. Together they provide the necessary front end electronics for the CMS electromagnetic calorimeter (ECAL) preshower detector systeAspell,Pm in the LHC experiment foreseen at the CERN particle physics laboratory. The design and measurements of the amplifier realised in a 1.5mm bulk CMOS process as a 16 channel prototype chip are presented. Results show the mean gain and peaking time of = 1.74mV/mip, = 18ns with channel to channel variations; s(peak_voltage) = 8% and s(peak_time) = 6.5%. The dynamic range is shown to be linear over 400mips with an integral non linearity (INL)=0.05mV as expressed in terms of sigma from the mean gain over the 400mip range. The measured noise of the amplifier was ENC=1800+41e/pF with a power consumption of 2.4mW/channel. The amplifier can support extreme levels of leakage current. The gain remains constant for up to 200mA of leakage current. The ...

  1. The effects of cold whirlpool on power, speed, agility, and range of motion.

    Science.gov (United States)

    Patterson, Stephen M; Udermann, Brian E; Doberstein, Scott T; Reineke, David M

    2008-01-01

    The purpose was to determine if cold whirlpool treatment decreases functional performance equally regardless of gender. A secondary aim was to determine if there is a gradual increase in functional performance across time. Twenty-one college-aged subjects volunteered to participate in this study and were required to perform four measures of functional performance including: counter movement vertical jump, T-test, 36.58-meter dash (40-yard), and active range of motion of the ankle. Participants were treated with a 20 minute, 10 degree Celsius cold whirlpool following the pre-test of a given functional performance measure. Participants demonstrated significant decreases in counter movement vertical jump, T-test, and 40-yard dash performance immediately following treatment. Vertical jump performance remained impaired for at least 32 minutes. While both the T-test and 40-yard dash were affected for 7 and 22 minutes post- treatment, respectively. Participants also demonstrated significant decreases in peak power and average power immediately after and for 32 minutes post-treatment. Dorsiflexion was significantly decreased 7 and 12 minutes following treatment. There were no differences for plantar flexion, inversion, or eversion. These data suggest functional performance was affected immediately following and for up to 32 minutes after cold whirlpool treatment. It was also evident that there is a gradual performance increase for each measure of functional performance across time. Therefore, the consequences should be carefully considered before returning athletes to activity following cold whirlpool treatment. Key pointsCryotherapy is a common and highly effective modality in treating acute and chronic athletic injuries.The results indicated that cold whirlpool does have an immediate and subsequent effect on functional performance.Understanding how cold whirlpool adversely affects functional performance allows clinicians to continue using this modality before vigorous

  2. Design of an eight-megawatt series regulator

    International Nuclear Information System (INIS)

    DeVore, K.R.

    1977-01-01

    An 8-MW, 100 percent duty cycle, hard tube series regulator used to control the accelerating voltage of a neutral beam source is described. The series tube is a developmental switch/regulator tube capable of holding off 200 kV passing 85 A, and dissipating 2 MW of anode power. The regulator has high-speed interrupt capability to minimize the power delivered to the load in the event of a load fault. Its design is such that it can be used to regulate both positive and negative accelerating voltages. All reference/control signals between the modulator and the control station use optical links to minimize noise interference and ground loop problems. In all cases of optical coupling, the loss of light is the worst-case condition, i.e., loss of light turns off the regulator. The fast interrupt is accomplished by rapid removal of the screen grid voltage from the series tube, and then driving the control grid into cutoff. After the control grid is in cutoff the screen is allowed to recover, and the regulator is then ready to switch back on. The regulator tube driver is a straightforward dc-coupled amplifier with a cathode follower output; dc isolation between various sections of the modulator is accomplished by using optical coupling. The use of optics allows the use of solid-state devices in an extremely hostile environment containing both electromagnetic and nuclear radiation

  3. Range and stopping power tables for 2.5-12MeV/nucleon heavy ions in solids

    International Nuclear Information System (INIS)

    Hubert, F.; Fleury, A.; Bimbot, R.; Gardes, D.

    1978-12-01

    A semi-empirical procedure to compute heavy ion stopping powers is presented. The calculations use recent stopping power values for alpha particles and a new parameterization for the effective charge taking into account the effect to the stopping medium. Stopping powers and ranges are tabulated for moving ions of atomic number 2<=Z<=45 in the energy region 2.5<=E/A<=12 MeV/nucleon for 18 solid materials

  4. Image simulation and a model of noise power spectra across a range of mammographic beam qualities

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Alistair, E-mail: alistairmackenzie@nhs.net; Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Diaz, Oliver [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom and Computer Vision and Robotics Research Institute, University of Girona, Girona 17071 (Spain)

    2014-12-15

    Purpose: The aim of this work is to create a model to predict the noise power spectra (NPS) for a range of mammographic radiographic factors. The noise model was necessary to degrade images acquired on one system to match the image quality of different systems for a range of beam qualities. Methods: Five detectors and x-ray systems [Hologic Selenia (ASEh), Carestream computed radiography CR900 (CRc), GE Essential (CSI), Carestream NIP (NIPc), and Siemens Inspiration (ASEs)] were characterized for this study. The signal transfer property was measured as the pixel value against absorbed energy per unit area (E) at a reference beam quality of 28 kV, Mo/Mo or 29 kV, W/Rh with 45 mm polymethyl methacrylate (PMMA) at the tube head. The contributions of the three noise sources (electronic, quantum, and structure) to the NPS were calculated by fitting a quadratic at each spatial frequency of the NPS against E. A quantum noise correction factor which was dependent on beam quality was quantified using a set of images acquired over a range of radiographic factors with different thicknesses of PMMA. The noise model was tested for images acquired at 26 kV, Mo/Mo with 20 mm PMMA and 34 kV, Mo/Rh with 70 mm PMMA for three detectors (ASEh, CRc, and CSI) over a range of exposures. The NPS were modeled with and without the noise correction factor and compared with the measured NPS. A previous method for adapting an image to appear as if acquired on a different system was modified to allow the reference beam quality to be different from the beam quality of the image. The method was validated by adapting the ASEh flat field images with two thicknesses of PMMA (20 and 70 mm) to appear with the imaging characteristics of the CSI and CRc systems. Results: The quantum noise correction factor rises with higher beam qualities, except for CR systems at high spatial frequencies, where a flat response was found against mean photon energy. This is due to the dominance of secondary quantum noise

  5. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer.

    Science.gov (United States)

    Park, SangWook; Kim, Minhyuk

    2016-01-01

    In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines.

  6. Numerical Exposure Assessment Method for Low Frequency Range and Application to Wireless Power Transfer.

    Directory of Open Access Journals (Sweden)

    SangWook Park

    Full Text Available In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP and the IEEE standard guidelines.

  7. MHD Electrical Power Generation in Result of Hydrogen/Oxygen Combustion

    National Research Council Canada - National Science Library

    Bityurin, V. A; Bocharov, A. N; Krasilnikov, A. V; Mikhailov, A. V

    2003-01-01

    .... To increase the electron concentration a seed injector system is used. The goal of this study is the physical demonstration of the MMD electrical power generation under conditions simulating those for on-board multi-megawatt power generating system...

  8. International comparison for RF power in the frequency range up to 18 GHz

    CSIR Research Space (South Africa)

    De Vreede, JPM

    2001-04-01

    Full Text Available . The ratio between the responses of the power readings on both arms is obtained as the measurement value. The standard is a coaxial calorimeter and is traceable to the NPL primary facility (a 14 mm dry twin calorimeter). ? Above 8 GHz: a multistate...-load calorimeter) and a monitoring sensor. The ratio between the responses of the power readings on both arms is obtained as measurement value. In this way, a rela- tion is obtained between the power reading of a monitoring sensor in one arm and the output power...

  9. Terminological dictionary of electrical power industry in range of generation, transmission and distribution of electric energy

    International Nuclear Information System (INIS)

    Biernacki, T.; Cegla, S.; Ciszewski, W.

    1990-08-01

    The dictionary contains about 5000 terms about conventional and nuclear power plants, energy sources, transmission lines, automation, power systems, environment protection, statistics etc. Each term is given with definition and its equivalents in English, French, German and Russian. Indexes of Polish, English, French, German and Russian terms are provided at the back of dictionary. (A.S.)

  10. Operational Performance of the Two-Channel 10 Megawatt Feedback Amplifier System for MHD Control on the Columbia University HBT-EP Tokamak

    International Nuclear Information System (INIS)

    Reass, W.A.; Wurden, G.A.

    1997-01-01

    The operational characteristics and performance of the two channel 10 Megawatt MHD feedback control system as installed by Los Alamos National Laboratory on the Columbia University HBT-EP tokamak are described. In the present configuration, driving independent 300 microH saddle coil sets, each channel can deliver 1100 Amperes and 16 kV peak to peak. Full power bandwidth is about 12 kHz, with capabilities at reduced power to 30 kHz. The present system topology is designed to suppress magnetohydrodynamic activity with m=2, n=1 symmetry. Application of either static (single phase) or rotating (twin phased) magnetic perturbations shows the ability to spin up or slow down the plasma, and also prevent (or cause) so-called ''mode-locking''. Open loop and active feedback experiments using a digital signal processor (DSP) have been performed on the HBT-EP tokamak and initial results show the ability to manipulate the plasma MHD mode frequency

  11. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.

    Science.gov (United States)

    Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond

    2017-10-01

    In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.

  12. ESTAR, PSTAR, ASTAR. A PC package for calculating stopping powers and ranges of electrons, protons and helium ions. Version 2

    International Nuclear Information System (INIS)

    Berger, M.J.

    1993-01-01

    A PC package is documented for calculating stopping powers and ranges of electrons, protons and helium ions in matter for energies from 1 keV up to 10 GeV. Stopping powers and ranges for electrons can be calculated for any element, compound or mixture. Stopping powers and ranges of protons and helium ions can be calculated for 74 materials (26 elements and 48 compounds and mixtures). The files are stored on two HD diskettes in compressed form. Both executable files for IBM PC and Fortran-77 source files are provided. All three programs require 5.2 Mb of disk space. This set of two diskettes with detailed documentation is available upon request, cost free, from the IAEA Nuclear Data Section. (author). 25 refs, 4 tabs

  13. High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The main purpose of this NASA SBIR Phase II proposal is development of a novel type of high resolving power diffraction gratings based on volume Bragg gratings...

  14. Heterojunction Bipolar Transistor Power Amplifiers for Long-Range X-band Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR Phase I project, Vega Wave Systems, Inc. will develop and demonstrate a novel InGaP-GaAs heterojunction bipolar transistor power amplifier for...

  15. High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this NASA SBIR Phase I proposal is to develop a novel type of high resolving power diffraction gratings based on volume Bragg gratings technology. The...

  16. Flight experience of solar mesosphere explorer's power system over high temperatures ranges

    Science.gov (United States)

    Faber, Jack; Hurley, Daniel

    1987-01-01

    The performance of the power system on the Solar Mesosphere Explorer (SME) satellite for the life of the mission and the techniques used to ensure power system health are summarized. Early in the mission high cell imbalances in one of the batteries resulted in a loading scheme which attempted to minimize the cell imbalances without causing an undervoltage condition. A short term model of the power system allowed planners to predict depth of discharge using the latest available data. Due to expected orbital shifts the solar arrays experience extended periods of no eclipse. This has required special conditioning schemes to keep the batteries healthy when the eclipses return. Analysis of the SME data indicates long term health of the SME power system as long as the conditioning scheme is continued.

  17. Use of a range scaling method to determine alanine/water stopping power ratios

    International Nuclear Information System (INIS)

    McEwen, M.R.; Sephton, J.P.; Sharpe, P.H.G.; Shipley, D.R.

    2003-01-01

    A phantom composed of alanine dosimeter material has been constructed and depth-dose measurements made in a 10 MeV electron beam. The results have demonstrated the feasibility of using relative depth-dose measurements to determine stopping power ratios in materials of dosimetric interest. Experimental stopping power ratios for alanine dosimeter material and water agreed with the data of ICRU Report 37 within the uncertainty of the experiment (±1.2% at a 95% confidence level)

  18. Safety and reliability in nuclear power plants operation using total range simulators for operators training

    International Nuclear Information System (INIS)

    Gleason, E.; Espinosa, G.; Rodriguez, S.

    1993-01-01

    This paper presents a methodology developed for the management of the configuration simulator, unit 1 of Laguna Verde's nucleoelectric power station. This methodology has the purchase to conclude the simulator modernization and to have interaction with the power station's administration. The validation and the application of this methodology is also presented as well as the up-to-date results. (B.C.A.). 12 refs, 01 fig

  19. The Multi MegaWatt target station of EURISOL facility and its performance (SATIF9)

    CERN Document Server

    Kharoua, C

    This presentation summarises the work carried out for the Multi Megawatt target station of the EURISOL Design Study with a special attention to the coupled neutronics of the liquid converter and fission target (MAFF/PIAFE design like) and the overall performance of the facility, which will sustain fast neutron fluxes of the order of 1014 n/cm2/s. The production of radionuclides in the actinide targets as well as in the liquid metal are also evaluated, showing that the targeted 1015 fissions/s can be achieved.

  20. BEGA Starter/Alternator—Vector Control Implementation and Performance for Wide Speed Range at Unity Power Factor Operation

    DEFF Research Database (Denmark)

    Boldea, Ion; Coroban-Schramel, Vasile; Andreescu, Gheorghe-Daniel

    2010-01-01

    The Biaxial Excitation Generator for Automobiles (BEGA) is proposed as a solution for integrated starter/alternator systems used in hybrid electric vehicles. This paper demonstrates through experiments and simulations that BEGA has a very large constant power speed range. A vector control structure...

  1. BEGA Starter/Alternator - Vector Control Implementation and Performance for Wide Speed Range at Unity Power Factor Operation

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Boldea, Ion; Coroban-Schramel, Vasile

    2008-01-01

    Biaxial Excitation Generator for Automobile (BEGA) is proposed as a solution for integrated starter/alternator systems used in hybrid electric vehicles (HEVs). This paper demonstrates through experiments and simulations that BEGA has a very large constant power speed range (CPSR), theoretically...

  2. Mega-Watt Class High Voltage, Variable Frequency, Propulsor Power Unit, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Balcones Technologies, LLC (BT) proposes to adapt technologies developed by and resident in BT and The University of Texas at Austin Center for Electromechanics...

  3. A Megawatt Power Module for Ship Service - Supplement. Volume 1: Program Technical Report

    Science.gov (United States)

    2007-06-01

    demonstrator and leveraged the existing bearing systems, squeeze film dampers , lubrication, and sealing components—all of which are time consuming aspects...29  Flywheel Bearing Loads due to Ship Motion.........................................................32  Flywheel...85  ii Flywheel Magnetic Bearing Control System MTBF........................................88  Flywheel Motor

  4. Low-Voltage, Low-Power, and Wide-Tuning-Range Ring-VCO for Frequency ΔΣ Modulator

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    A low-voltage, low-power, and wide-tuning-range VCO which converts an analog input voltage to phase information for a frequency ΔΣ modulator is proposed in this paper. The VCO is based on a differential ring oscillator, which is improved with modified symmetric load and a positive feedback...... in the differential delay cells, a new bias circuit and a full-swing amplifier. The proposed VCO operating with two stages at a power supply voltage of 0.6 V can achieve wide tuning-range and low power consumption of 176.892 uW. The new VCO has a good linearity reducing harmonic distortion for frequency ΔΣ modulator...

  5. Expert system for operational personnel support during power unit operation control in regulation range

    International Nuclear Information System (INIS)

    Yanitskij, V.A.

    1992-01-01

    The problems met when developing the systems for NPP operator support in the process of power unit operation are considered. The expert system for NPP personnel intelligent support combining the properties belonging to the artificial intelligence systems including selection of the analysis method taking into account the concrete technological situation and capability of application of algothmic calculations of the equipment characteristics using the information accumulated during the system development, erection and operation is described

  6. Low-power short-range transceivers for sensor network applications (Keynote Address)

    Science.gov (United States)

    Lopez-Villegas, J. M.

    2005-06-01

    Emerging technologies like ZigBee or Ultra Wide Band (UWB) Radio, based on the new standards of the IEEE 802.15 family, will, in a near future, compete with and/or complement Bluetooth technology in the development of Wireless Personal Area Networks (WPAN"s), capable to satisfy the increasing demand of high bit rate data transfer links as well as low power and small size constrains. Nowadays coexistence and interconnectivity of Wireless Local Area Networks (WLAN"s), WPAN"s and mobile phones is just the first step towards the implementation of the so called Ambient Intelligence. The main characteristics of this new paradigm are: ubiquity, transparency, and intelligence. In this context, sensor networks are the first front of the communication chain. Thus, most of the wireless data transfers will take place at very short distances and most of the information flow will be performed at very low rates. To implement the RF transceiver devices constituting sensor networks in an Ambient Intelligence environment, several challenges still need to be solved, among them: packaging (SoP vs. SoC approaches), powering (low power, batteryless systems, energy scavenging) and system architecture (new simplified direct conversion approaches). All these matters will be considered in this work.

  7. An Efficiency-Optimized Isolated Bidirectional DC-DC Converter with Extended Power Range for Energy Storage Systems in Microgrids

    Directory of Open Access Journals (Sweden)

    Xiaolong Shi

    2012-12-01

    Full Text Available This paper proposes a novel extended-single-phase shift (ESPS control strategy of isolated bidirectional full-bridge DC-DC converters (IBDCs which are a promising alternative as a power electronic interface in microgrids with an additional function of galvanic isolation. Based on the mathematical models of ESPS control under steady-state conditions, detailed theoretical and experimental analyses of IBDC under ESPS control are presented. Compared with conventional single-phase-shift (CSPS control, ESPS control can greatly improve the efficiency of IBDCs in microgrids through decreasing current stress and backflow power considerably over a wide input and output voltage range under light and medium loads. In addition, ESPS control only needs to adjust one single phase-shift angel to control transmission power, thus it retains implementation simplicity in comparison with dual-phase-shift (DPS control for microgrid applications. Furthermore, an efficiency-optimized modulation scheme based on ESPS and CSPS control is developed in the whole power range of IBDC for power distribution in microgrids. A 10 kW IBDC prototype is constructed and the experimental results validate the effectiveness of the proposed control strategy, showing that the proposed strategy can enhance the overall efficiency up to 30%.

  8. FLIP: Federation support for Long range low power Internet of things Protocols

    OpenAIRE

    Delbruel, Stéphane; Small, Nicolas; Hughes, Danny

    2017-01-01

    There is growing interest in the Internet of Things (IoT) and especially Low-Power Wide Area Networks (LPWAN), which are rapidly being rolled-out globally. Within the LPWAN market, LoRaWAN is considered a leading solution which has achieved significant success. Despite the rapid uptake of LoRaWAN, scalability concerns arising from interference and contention are also growing. While the current LoRaWAN protocol includes basic techniques to deal with these problems, recent research has shown th...

  9. The Effects of Cold Whirlpool on Power, Speed, Agility, and Range of Motion

    OpenAIRE

    Patterson, Stephen M.; Udermann, Brian E.; Doberstein, Scott T.; Reineke, David M.

    2008-01-01

    The purpose was to determine if cold whirlpool treatment decreases functional performance equally regardless of gender. A secondary aim was to determine if there is a gradual increase in functional performance across time. Twenty-one college-aged subjects volunteered to participate in this study and were required to perform four measures of functional performance including: counter movement vertical jump, T-test, 36.58-meter dash (40-yard), and active range of motion of the ankle. Participant...

  10. Internal combustion engine system having a power turbine with a broad efficiency range

    Science.gov (United States)

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  11. Determining the bounds of skilful forecast range for probabilistic prediction of system-wide wind power generation

    Directory of Open Access Journals (Sweden)

    Dirk Cannon

    2017-06-01

    Full Text Available State-of-the-art wind power forecasts beyond a few hours ahead rely on global numerical weather prediction models to forecast the future large-scale atmospheric state. Often they provide initial and boundary conditions for nested high resolution simulations. In this paper, both upper and lower bounds on forecast range are identified within which global ensemble forecasts provide skilful information for system-wide wind power applications. An upper bound on forecast range is associated with the limit of predictability, beyond which forecasts have no more skill than predictions based on climatological statistics. A lower bound is defined at the lead time beyond which the resolved uncertainty associated with estimating the future large-scale atmospheric state is larger than the unresolved uncertainty associated with estimating the system-wide wind power response to a given large-scale state.The bounds of skilful ensemble forecast range are quantified for three leading global forecast systems. The power system of Great Britain (GB is used as an example because independent verifying data is available from National Grid. The upper bound defined by forecasts of GB-total wind power generation at a specific point in time is found to be 6–8 days. The lower bound is found to be 1.4–2.4 days. Both bounds depend on the global forecast system and vary seasonally. In addition, forecasts of the probability of an extreme power ramp event were found to possess a shorter limit of predictability (4.5–5.5 days. The upper bound on this forecast range can only be extended by improving the global forecast system (outside the control of most users or by changing the metric used in the probability forecast. Improved downscaling and microscale modelling of the wind farm response may act to decrease the lower bound. The potential gain from such improvements have diminishing returns beyond the short-range (out to around 2 days.

  12. Design Issues for Low Power Integrated Thermal Flow Sensors with Ultra-Wide Dynamic Range and Low Insertion Loss

    Directory of Open Access Journals (Sweden)

    Paolo Bruschi

    2012-04-01

    Full Text Available Flow sensors are the key elements in most systems for monitoring and controlling fluid flows. With the introduction of MEMS thermal flow sensors, unprecedented performances, such as ultra wide measurement ranges, low power consumptions and extreme miniaturization, have been achieved, although several critical issues have still to be solved. In this work, a systematic approach to the design of integrated thermal flow sensors, with specification of resolution, dynamic range, power consumption and pressure insertion loss is proposed. All the critical components of the sensors, namely thermal microstructure, package and read-out interface are examined, showing their impact on the sensor performance and indicating effective optimization strategies. The proposed design procedures are supported by experiments performed using a recently developed test chip,including several different sensing structures and a flexible electronic interface.

  13. Technical and economic feasibility of development innovative technological solutions for expansion the adjustment range of high-power CCP

    Science.gov (United States)

    Arakelyan, E. K.; Andryushin, A. V.; Burtsev, S. Y.; Andryushin, K. A.

    2017-11-01

    The analysis of technical and parametric constraints on the adjustment range of highpower CCP and recommended technological solutions in the technical literature for their elimination. Established that in the conditions of toughening the requirements for economy, reliability and maneuverability on the part of the system operator with the participation of CCP in control the frequency and power in the power system, existing methods do not ensure the fulfillment of these requirements. The current situation in the energy sector — the lack of highly manoeuvrable power equipment leads to the need participate in control of power consumption diagrams for all types of power plants, including CCP, although initially they were intended primarily for basic loads. Large-scale research conducted at the department of Automated control systems of technological processes, showed the possibility of a significant expansion of the adjustment range of CCP when it operating in the condensing mode and in the heating mode. The report presents the main results of these research for example the CCP-450 and CCP-450T. Various technological solutions are considered: when CCP in the condensation mode — the use of bypass steam distribution schemes, the transfer of a part of the steam turbine into a low-steam mode; when CCP operation in the heating mode — bypass steam distribution and the transfer CCP to gas turbine unit — power heating plants mode with the transfer the steam turbine to the motor mode. Data on the evaluation of the technical and economic feasibility of the proposed innovative technological solutions are presented in comparison with the methods used to solve this problem, which are used in practice, such as passing through the failures of the electric load graphs by transferring the CCP to the mode of operation with incomplete equipment. When comparing, both the economics, and the maneuverability and reliability of the equipment are considered.

  14. Performance of a single nutating disk engine in the 2 to 500 kW power range

    International Nuclear Information System (INIS)

    Korakianitis, T.; Boruta, M.; Jerovsek, J.; Meitner, P.L.

    2009-01-01

    A new type of internal combustion engine with distinct advantages over conventional piston-engines and gas turbines in small power ranges is presented. The engine has analogies with piston engine operation, but like gas turbines it has dedicated spaces and devices for compression, burning and expansion. The engine operates on a modified limited-pressure thermodynamic cycle. The core of the engine is a nutating non-rotating disk, with the center of its hub mounted in the middle of a Z-shaped shaft. The two ends of the shaft rotate, while the disk nutates. The motion of the disk circumference prescribes a portion of a sphere. In the single-disk configuration a portion of the surface area of the disk is used for intake and compression, a portion is used to seal against a center casing, and the remaining portion is used for expansion and exhaust. The compressed air is admitted to an external accumulator, and then into an external combustion chamber before it is admitted to the power side of the disk. The external combustion chamber enables the engine to operate on a variable compression ratio cycle. Variations in cycle temperature ratio and compression ratio during normal operation enable the engine to effectively become a variable-cycle engine, allowing significant flexibility for optimizing efficiency or power output. The thermal efficiency is similar to that of medium sized diesel engines. For the same engine volume and weight this engine produces approximately twice the power of a two-stroke engine and four times the power of a four-stroke engine. The computed sea-level engine performance at design and off-design conditions in the 2 to 500 kW power range is presented.

  15. 76 FR 23583 - Application of the Energy Planning and Management Program Power Marketing Initiative to the...

    Science.gov (United States)

    2011-04-27

    ...), will apply the Energy Planning and Management Program (Program) Power Marketing Initiative (PMI), as... Program's PMI to the BCP; (2) to market 2,044 megawatts (MW) of contingent capacity [[Page 23584

  16. Expanding Beam Laser Amplifier as a Basic Architecture for Scaling High Power Lasers

    National Research Council Canada - National Science Library

    Jacob, Jonah

    1989-01-01

    In this report, the expanding beam laser (EBL) amplifier concept is presented as a method for efficient scaling of lasers to the multi-megawatt average power levels required for strategic applications...

  17. Northern Power NW 1500 Direct-Drive Generator: April 12, 2001 - September 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Bywaters, G.; Mattila, P.; Costin, D.; Stowell, J.; John, V.; Hoskins, S.; Lynch, J.; Cole, T.; Cate, A.; Badger, C.; Freeman, B.

    2007-10-01

    This report describes work conducted under a subcontract between NREL and Northern Power Systems to identify, design, and test a megawatt-scale wind turbine drivetrain with the lowest overall life-cycle cost.

  18. Wide Input Range Power Converters Using a Variable Turns Ratio Transformer

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    of diagonal secondary windings, in order to make the transformer turns ratio adjustable by controlling the phase between the two current excitations subjected to the two primary windings. Full-bridge boost dc-dc converter is employed with the proposed transformer to demonstrate the feasibility of the variable......A new integrated transformer with variable turns ratio is proposed to enable dc-dc converters operating over a wide input voltage range. The integrated transformer employs a new geometry of magnetic core with “four legs”, two primary windings with orthogonal arrangement, and “8” shape connection...... turns ratio. 1-kW experimental prototype targeting to the PV standalone system has been built to well demonstrate a wide input voltage operation with high efficiencies....

  19. Deformable trailing edge flaps for modern megawatt wind turbine controllers using strain gauge sensors

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Henriksen, Lars Christian; Gaunaa, Mac

    2010-01-01

    . By enabling the trailing edge to move independently and quickly along the spanwise position of the blade, local small flutuations in the aerodynamic forces can be alleviated by deformation of the airfoil flap. Strain gauges are used as input for the flap controller, and the effect of placing strain gauges......The present work contains a deformable trailing edge flap controller integrated in a numerically simulated modern, variablespeed, pitch-regulated megawatt (MW)-size wind turbine. The aeroservoelastic multi-body code HAWC2 acts as a component in the control loop design. At the core of the proposed...... edge flaps on a wind turbine blade rather than a conclusive control design with traditional issues like stability and robustness fully investigated. Recent works have shown that the fatigue load reduction by use of trailing edge flaps may be greater than for traditional pitch control methods...

  20. High-power Bessel beams with orbital angular momentum in the terahertz range

    Science.gov (United States)

    Choporova, Yu. Yu.; Knyazev, B. A.; Kulipanov, G. N.; Pavelyev, V. S.; Scheglov, M. A.; Vinokurov, N. A.; Volodkin, B. O.; Zhabin, V. N.

    2017-08-01

    In this paper, we have performed experimental, analytical, and numerical studies of beams with topological charges of ±1 and ±2 formed by silicon binary phase axicons (BPAs) with spiral zone structures. The axicons were illuminated with the Novosibirsk free electron laser radiation (a continuous stream of 100-ps pulses at f =5.6 MHz). The cw power of the beams produced reached 30 W and can by doubled via antireflection coating of the axicons. The intensity distribution in the beam cross sections was in good agreement with the Bessel functions and was kept constant within a distance of about L /r ≈190 and 100, where the first ring radii of the beams r were 0.9 and 1.5 mm for the Bessel beams of the first and second orders, respectively. Although the characteristics of the beams (Bessel cross section, "diffraction-free" propagation, self-recovery after passing obstacles, and randomly inhomogeneous media) corresponded to the properties of ideal Bessel beams, their spatial Fourier spectrum (the image in the focal plane of the lens) was, instead of an ideal ring, intertwined segments of arcs with phases shifted by π , the number of which was equal to the double value of the topological charge. This feature can be used, for example, in a demultiplexing unit of a free vortex-wave communication system or for identification of beam topological charge. We also revisited Young's double-slit diffraction and rotation of beams obstructed by a half-plane, previously applied to Laguerre-Gaussian beam characterization, in the case of the Bessel beams. The Young diffraction pattern demonstrated in this case a complicated intensity-phase distribution. It was shown that the Bessel beams formed by BPAs have two important advantages, which can be used in applications, in comparison with other methods of generation, e.g., a combination of an axicon lens with a spiral phase plate. Although the phase jumps of the axicons are designed for a determined wavelength (141 μ m in our case

  1. Incident particle range dependence of radiation damage in a power bipolar junction transistor

    Science.gov (United States)

    Liu, Chao-Ming; Li, Xing-Ji; Geng, Hong-Bin; Rui, Er-Ming; Guo, Li-Xin; Yang, Jian-Qun

    2012-10-01

    The characteristic degradations in silicon NPN bipolar junction transistors (BJTs) of type 3DD155 are examined under the irradiations of 25-MeV carbon (C), 40-MeV silicon (Si), and 40-MeV chlorine (Cl) ions respectively. Different electrical parameters are measured in-situ during the exposure of heavy ions. The experimental data shows that the changes in the reciprocal of the gain variation (Δ(1/β)) of 3DD155 transistors irradiated respectively by 25-MeV C, 40-MeV Si, and 40-MeV Cl ions each present a nonlinear behaviour at a low fluence and a linear response at a high fluence. The Δ(1/β) of 3DD155 BJT irradiated by 25-MeV C ions is greatest at a given fluence, a little smaller when the device is irradiated by 40-MeV Si ions, and smallest in the case of the 40-MeV Cl ions irradiation. The measured and calculated results clearly show that the range of heavy ions in the base region of BJT affects the level of radiation damage.

  2. Millimeter-wave, megawatt gyrotron development for ECR [electron cyclotron resonance] heating applications

    International Nuclear Information System (INIS)

    Jory, H.; Felch, K.; Hess, C.; Huey, H.; Jongewaard, E.; Neilson, J.; Pendleton, R.; Tsirulnikov, M.

    1990-01-01

    To address the electron cyclotron heating requirements of planned fusion experiments such as the International Thermonuclear Experimental Reactor (ITER) and the Compact Ignition Tokamak (CIT), Varian is developing gyrotrons at frequencies ranging from 100--300 GHz with output power capabilities up to 1 MW CW. Experimental gyrotrons have been built at frequencies between 100--140 GHz, and a study program has addressed the critical elements of designing 280--300 GHz gyrotrons capable of generating CW power levels up to 1 MW. Initial test vehicles at 140 GHz have utilized TE 15,2,1 interaction cavities, and have been designed to generate short-pulse (up to 20 ms) power levels of 1 MW and up to 400 kW CW. Recently, short-pulse power levels of 1040 kW at 38% efficiency have been obtained and average powers of 200 kW have been achieved. Long-pulse operation has been extended to pulse durations of 0.5 seconds at power levels of 400 kW. Gyrotron oscillators capable of generating output powers of 500 kW CW at a frequency of 110 GHz have recently been designed and a prototype is currently being tested. Design work for a 1 MW CW gyrotron at 110 GHz, is in progress. The 1 MW CW tube will employ an output coupling approach where the microwave output is separated from the microwave output. 15 refs., 10 figs., 3 tabs

  3. High-power integrated stimulator output stages with floating discharge over a wide voltage range for nerve stimulation.

    Science.gov (United States)

    Langlois, P J; Demosthenous, A; Pachnis, I; Donaldson, N

    2010-02-01

    Two integrated nerve stimulator circuits are described. Both generate passively charge-balanced biphasic stimulating pulses of 1 to 16 mA with 10-¿s to 1-ms widths from 6- to 24-V supplies for implanted book electrodes. In both circuits, the electrodes are floating during the passive discharge anywhere within the range of the power rails, which may be up to 24 V. The first circuit is used for stimulation only. It uses a floating depletion transistor to enable continuous discharge of the electrodes, except when stimulating, without using power. The second circuit also allows neural signals to be recorded from the same tripole. It uses a modified floating complementary metal-oxide semiconductor (CMOS) discharge switch capable of operating over a range beyond the gate-to-source voltage limits of its transistors. It remains off for long periods using no power while recording. A 0.6-¿m silicon-on-insulator CMOS technology has been used. The measured performance of the circuits has been verified using multiple tripoles in saline.

  4. Resolution of issues with renewable energy penetration in a long-range power system demand-supply planning

    International Nuclear Information System (INIS)

    Ogimoto, Kazuhiko; Ikeda, Yuichi; Kataoka, Kazuto; Ikegami, Takashi; Nonaka, Shunsuke; Azuma, Hitoshi

    2012-01-01

    Under the anticipated high penetration of variable renewable energy generation such as photovoltaic, the issue of supply demand balance should be evaluated and fixed. Technologies such as demand activation, and energy storage are expected to solve the issue. Under the situation, a long-range power system supply demand analysis should have the capability for the evaluation in its analysis steps of demand preparation, maintenance scheduling, and economic dispatch analysis. This paper presents results of a parametric analysis of the reduction of PV and Wind generation curtailment reduction by deployment of batteries. Based on a set of scenarios of the prospects of Japan's 10 power system demand-supply condition in 2030, the demand-supply balance capability are analyzed assuming PV and wind generation variation, demand activation and dispatchable batteries. (author)

  5. Loss Distribution and Thermal Behaviour of the Y-source Converter for a Wide Power and Voltage Range

    DEFF Research Database (Denmark)

    Gadalla, Brwene Salah Abdelkarim; Schaltz, Erik; Siwakoti, Yam Prasad

    2017-01-01

    The Y-source converter is one of the recent proposed impedance source converters. It has some advantages as having a high voltage gain between the input and output voltage sides using very small duty cycle ratios. For many applications, the input voltage needs to be boosted to higher output voltage...... and power range is presented. The influence of the heat losses generated in the converter is also considered for different analysis. A simulation model is developed and verified experimentally rated at 300 W....

  6. Power Electronic Drives, Controls, and Electric Generators for Large Wind Turbines - An Overview

    DEFF Research Database (Denmark)

    Ma, Ke; Tutelea, L.; Boldea, Ion

    2015-01-01

    of power electronics, ranging from devices to circuit topologies, and similar matters for electric generators, together with results of optimal design studies are included. It is shown that the individual power rating of wind turbines has increased over the years, and technologies required to reach......Wind represents a major and growing source of renewable energy for the electric power systems. This article provides an overview of state-of-the-art technologies and anticipated developments in the area of power electronic drives, controls, and electric generators for large multi-megawatt wind...... turbine systems. The principal components employed in a turbine for energy conversion from wind to electricity are described, and the main solutions that are commercially available are briefly reviewed. The specific issues of complex mission profiles, power codes, and reliability are discussed. Topics...

  7. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    Science.gov (United States)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  8. Energy from the desert very large scale PV power : state of the art and into the future

    CERN Document Server

    Komoto, Keiichi; Cunow, Edwin; Megherbi, Karim; Faiman, David; van der Vleuten, Peter

    2013-01-01

    The fourth volume in the established Energy from the Desert series examines and evaluates the potential and feasibility of Very Large Scale Photovoltaic Power Generation (VLS-PV) systems, which have capacities ranging from several megawatts to gigawatts, and to develop practical project proposals toward implementing the VLS-PV systems in the future. It comprehensively analyses all major issues involved in such large scale applications, based on the latest scientific and technological developments by means of close international co-operation with experts from different countries. From t

  9. A Novel Realization of Low-Power and Low-Distortion Multiplier Circuit with Improved Dynamic Range

    Directory of Open Access Journals (Sweden)

    Ali Naderi Saatlo

    2017-01-01

    Full Text Available A novel topology of four-quadrant analog multiplier circuit is presented in this paper. The voltage mode technique is employed to design the circuit in CMOS technology. The dynamic input and output ranges of the circuit are improved owing to the fact that the circuit works in the saturation region not in weak inversion. Also the proposed multiplier is suitable for low voltage operation and its power consumption is relatively low. In order to verify the performance of the proposed circuit, performance of the circuit affected by second order effects including transistor mismatch and mobility reduction is analyzed in detail. It will be shown that any conceivable mismatch in the transistor parameters leads to second harmonic distortion. Additionally, the effect of mobility reduction in the third harmonic distortion will be computed. In order to simulate the circuit, Cadence and HSPICE software are used with TSMC level 49 (BSIM3v3 parameters for 0.18 μm CMOS technology, where under supply voltage of 1.5 V, total power consumption is 44 µW, the corresponding average nonlinearity remains as low as 1 %, and the input range of the circuit is ± 400 mV.

  10. Megawatt-Scale Power Hardware-in-the-Loop Simulation Testing of a Power Conversion Module for Naval Applications

    Science.gov (United States)

    2015-06-21

    employed. For the phase-locked loops of the interface, the decoupled double synchronous reference frame (DDSRF) PLL was employed, using the double second...paper describes efforts to establish PHIL test capabilities for AC/DC converters to be employed for future advanced sensor and weapons systems...represent the characteristics of a DC/DC converter supplying a sensitive DC load. The AC load modules were intended to represent an aggregate mix of

  11. Wind speed and wind power short and medium range predictions for complex terrain using artificial neural networks and ensemble calibration

    Science.gov (United States)

    Schicker, Irene; Papazek, Petrina; Kann, Alexander; Wang, Yong

    2017-04-01

    Reliable predictions of wind speed and wind power are vital for balancing the electricity network. Within the last two decades the amount of energy stemming from renewable sources increased substantially relying heavily on the prevailing synoptic conditions. Especially for regions with complex terrain and forested surfaces providing reliable predictions is a challenging task. Forecasts in the nowcasting as well as in the (two) day-ahead range are thus essential for the network balancing. Predictions of wind speed and wind power from the nowcasting to the +72-hour forecast range using NWP models in regions with complex terrain need a suitable horizontal, vertical and temporal resolution (e.g. 10 - 15 minute forecasts for the Nowcasting range) requiring high performance computing. To be able to provide sub-hourly to hourly forecasts different approaches such as model output statistics (MOS) or artificial neural networks (ANN) - including feed forward recurrent neural networks, fuzzy logic, particle swarm optimizations - are needed as computational costs are too high. To represent the forecast uncertainties additional probabilistic ensemble predictions are required increasing the computational needs. Ensemble prediction systems account for errors and uncertainties in the initial and boundary conditions, parameterizations, numeric, etc. Due to the underestimation of model and sampling errors ensemble predictions tend to be underdispersive and biased. They lack, too, sharpness and reliability. These shortcomings can be accounted for using statistical post-processing methods such as the non-homogeneous Gaussian regression (NGR) to calibrate an ensemble. These calibrated ensembles provide forecasts in the medium range for any arbitrary location where observations are available. In this study an ANN is used to provide forecasts for the nowcasting and medium-range with sub-hourly to hourly predictions for different Austrian sites, including high alpine sites as well as low

  12. Packaging and transportation of derived enriched uranium for the ''megatons to megawatts'' USA/Russia agreement

    International Nuclear Information System (INIS)

    Darrough, E.; Ewing, L.; Ravenscroft, N.

    1998-01-01

    In January 1998 the United States Enrichment Corporation (USEC) and Techsnabexport Co., Ltd (TENEX) of Russia celebrated the fourth anniversary of the signing of the 20-year contract between these two executive agents. USEC and TENEX are responsible for implementing the Government to-Government agreement between the United States and the Russian Federation for the purchase of uranium derived from dismantled nuclear weapons from the former Soviet Union. This program, entitled 'Megatons to Megawatts', is the first time nuclear warheads have been turned into fuel as well as the first time a commercial contract has been used to implement such a program. As of the fourth anniversary, the equivalent of almost 1,200 nuclear warheads had been converted to fuel. USEC is responsible for making all of the arrangements to transport the Russian LEU derived from HEU--hence the term, derived enriched uranium (DEU)--from St Petersburg. Russia to the USEC plant near portsmouth, Ohio. Edlow International Company is working with USEC to implement the shipping campaign and is responsible for coordination of the port delivery within Russia, as well. The organization responsible for these shipments within Russia is IZOTOP. While the program has been a major new responsibility for USEC, the early years of the program prepared all parties for the future challenges such as increased numbers of shipments, additional originating sites in Russia and witnessing requirements in Russia. (authors)

  13. A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Gary

    2014-04-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

  14. A wide dynamic range multi-channel preamplifier/shaper ASIC family for universal low power applications

    CERN Document Server

    Baturitsky, M A; Tchekhovski, V A; Zamiatin, N I

    2003-01-01

    A universal ASIC family for intermediate energy physics detectors has been designed using a bipolar/JFET technology. The family consists of two 8-channel charge-sensitive preamplifiers (CSP) ZENIT-A2, ZENIT-A3 and a shaper ZENIT-B. The values of switched gain of both CSPs are 80 and 240 mV/pC for ZENIT-A2 and 500 and 1000 mV/pC for ZENIT-A3 with channel-to-channel non-identity not more than +-5%. The CSPs can operate with input capacitance up to 300 pF for low gain and 150 pF for high gain mode. The input signal dynamic range of the shaper is matched to the outputs of both CSPs. The shaper has fast and slow outputs. The CSPs have a power consumption of 13 mW/channel; the shaper of 44 mW/channel.

  15. A wide dynamic range multi-channel preamplifier/shaper ASIC family for universal low power applications

    Energy Technology Data Exchange (ETDEWEB)

    Baturitsky, M.A. E-mail: batur@inp.minsk.by; Dvornikov, O.V.; Tchekhovski, V.A.; Zamiatin, N.I

    2003-01-01

    A universal ASIC family for intermediate energy physics detectors has been designed using a bipolar/JFET technology. The family consists of two 8-channel charge-sensitive preamplifiers (CSP) ZENIT-A2, ZENIT-A3 and a shaper ZENIT-B. The values of switched gain of both CSPs are 80 and 240 mV/pC for ZENIT-A2 and 500 and 1000 mV/pC for ZENIT-A3 with channel-to-channel non-identity not more than {+-}5%. The CSPs can operate with input capacitance up to 300 pF for low gain and 150 pF for high gain mode. The input signal dynamic range of the shaper is matched to the outputs of both CSPs. The shaper has fast and slow outputs. The CSPs have a power consumption of 13 mW/channel; the shaper of 44 mW/channel.

  16. Initial Design of the 60 Megawatt Rotating Magnetic Field (RMF) Oscillator System for the University of Washington ''TCS'' Field Reversed Configuration Experiment

    International Nuclear Information System (INIS)

    Reass, W.A.; Miera, D.A.; Wurden, G.A.

    1997-01-01

    This paper presents the initial electrical and mechanical design of two phase-locked 30 Megawatt RMS, 150 kHz oscillator systems used for current drive and plasma sustainment of the ''Translation, Confinement, and Sustainment'' (TCS) field reversed configuration (FRC) plasma. By the application of orthogonally-placed saddle coils on the surface of the glass vacuum vessel, the phase-controlled rotating magnetic field perturbation will induce an electric field in the plasma which should counter the intrinsic ohmic decay of the plasma, and maintain the FRC. Each system utilizes a bank of 6 parallel magnetically beamed ML8618 triodes. These devices are rated at 250 Amperes cathode current and a 45 kV plate voltage. An advantage of the magnetically beamed triode is their extreme efficiency, requiring only 2.5 kW of filament and a few amps and a few kV of grid drive. Each 3.5 uH saddle coil is configured with an adjustable tank circuit (for tuning). Assuming no losses and a nominal 18 kV plate voltage, the tubes can circulate about 30 kV and 9 kA (pk to pk) in the saddle coil antenna, a circulating power of over 33 megawatts RMS. On each cycle the tubes can kick in up to 1500 Amperes, providing a robust phase control. DC high-voltage from the tubes is isolated from the saddle coil antennas and tank circuits by a 1:1 coaxial air-core balun transformer. To control the ML8618's phase and amplitude, fast 150 Ampere ''totem-pole'' grid drivers, an ''on'' hot-deck and an ''off'' hot-deck are utilized. The hot-decks use up to 6 each 3CPX1500A7 slotted radial beam triodes. By adjusting the conduction angle, amplitude may be regulated, with inter-pulse timing, phase angle can be controlled. A central feedback timing chassis monitors each systems' saddle coil antenna and appropriately derives each systems timing signals. Fiber-optic cables are used to isolate between the control room timing chassis and the remote power oscillator system. Complete system design detail will be

  17. Distributed Low-Complexity Controller for Wind Power Plant in Derated Operation

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Madjidian, Daria; Spudic, Vedrana

    2013-01-01

    We consider a wind power plant of megawatt wind turbines operating in derated mode. When operating in this mode, the wind power plant controller is free to distribute power set-points to the individual turbines, as long as the total power demand is met. In this work, we design a controller...... for the controller design, a linear wind turbine model is constructed and verified in an operational wind power plant of megawatt turbines. Due to limitations of the wind power plant available for tests, it is not possible to implement the developed controller; instead the final distributed controller is evaluated...

  18. Ultra-low-power and ultra-low-cost short-range wireless receivers in nanoscale CMOS

    CERN Document Server

    Lin, Zhicheng; Martins, Rui Paulo

    2016-01-01

    This book provides readers with a description of state-of-the-art techniques to be used for ultra-low-power (ULP) and ultra-low-cost (ULC), short-range wireless receivers. Readers will learn what is required to deploy these receivers in short-range wireless sensor networks, which are proliferating widely to serve the internet of things (IoT) for “smart cities.” The authors address key challenges involved with the technology and the typical tradeoffs between ULP and ULC. Three design examples with advanced circuit techniques are described in order to address these trade-offs, which specially focus on cost minimization. These three techniques enable respectively, cascading of radio frequency (RF) and baseband (BB) circuits under an ultra-low-voltage (ULV) supply, cascoding of RF and BB circuits in current domain for current reuse, and a novel function-reuse receiver architecture, suitable for ULV and multi-band ULP applications such as the sub-GHz ZigBee. ·         Summarizes the state-of-the-art i...

  19. Comprehensive analysis of proton range uncertainties related to stopping-power-ratio estimation using dual-energy CT imaging

    Science.gov (United States)

    Li, B.; Lee, H. C.; Duan, X.; Shen, C.; Zhou, L.; Jia, X.; Yang, M.

    2017-09-01

    The dual-energy CT-based (DECT) approach holds promise in reducing the overall uncertainty in proton stopping-power-ratio (SPR) estimation as compared to the conventional stoichiometric calibration approach. The objective of this study was to analyze the factors contributing to uncertainty in SPR estimation using the DECT-based approach and to derive a comprehensive estimate of the range uncertainty associated with SPR estimation in treatment planning. Two state-of-the-art DECT-based methods were selected and implemented on a Siemens SOMATOM Force DECT scanner. The uncertainties were first divided into five independent categories. The uncertainty associated with each category was estimated for lung, soft and bone tissues separately. A single composite uncertainty estimate was eventually determined for three tumor sites (lung, prostate and head-and-neck) by weighting the relative proportion of each tissue group for that specific site. The uncertainties associated with the two selected DECT methods were found to be similar, therefore the following results applied to both methods. The overall uncertainty (1σ) in SPR estimation with the DECT-based approach was estimated to be 3.8%, 1.2% and 2.0% for lung, soft and bone tissues, respectively. The dominant factor contributing to uncertainty in the DECT approach was the imaging uncertainties, followed by the DECT modeling uncertainties. Our study showed that the DECT approach can reduce the overall range uncertainty to approximately 2.2% (2σ) in clinical scenarios, in contrast to the previously reported 1%.

  20. Megawatt Scale Hardware-in-the-Loop Testing of a High Speed Generator

    Science.gov (United States)

    2012-02-01

    designed for 1.2 MW continuous and 2.5 MW intermittent power. The generator is a two-stage machine composed of a brushless DC exciter and main...used to rectify the voltage at the terminals of the machine, and a 2.5 MW bi-directional DC converter is used as a dynamic load for the generator...been used to conduct a number of PHIL tests ranging from a 5 MW prototype high temperature superconducting propulsion motor (Woodruff et al., 2005

  1. The Mars Hopper: a radioisotope powered, impulse driven, long-range, long-lived mobile platform for exploration of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Steven D. Howe; Robert C. O' Brien; William Taitano; Doug Crawford; Nathan Jerred; Spencer Cooley; John Crapeau; Steve Hansen; Andrew Klein; James Werner

    2011-02-01

    Planetary exploration mission requirements are becoming more demanding. Due to the increasing cost, the missions that provide mobile platforms that can acquire data at multiple locations are becoming more attractive. Wheeled vehicles such as the MER rovers have proven extremely capable but have very limited range and cannot traverse rugged terrain. Flying vehicles such as balloons and airplanes have been proposed but are problematic due to the very thin atmospheric pressure and the strong, dusty winds present on Mars. The Center for Space Nuclear Research has designed an instrumented platform that can acquire detailed data at hundreds of locations during its lifetime - a Mars Hopper. The Mars Hopper concept utilizes energy from radioisotopic decay in a manner different from any existing radioisotopic power sources—as a thermal capacitor. By accumulating the heat from radioisotopic decay for long periods, the power of the source can be dramatically increased for short periods. The platform will be able to "hop" from one location to the next every 5-7 days with a separation of 5-10 km per hop. Preliminary designs show a platform that weighs around 52 kgs unfueled which is the condition at deployment. Consequently, several platforms may be deployed on a single launch from Earth. With sufficient lifetime, the entire surface of Mars can be mapped in detail by a couple dozen platforms. In addition, Hoppers can collect samples from all over the planet, including gorges, mountains and crevasses, and deliver them to a central location for eventual pick-up by a Mars Sample Return mission. The status of the Mars Hopper development project at the CSNR is discussed.

  2. Efficacy of the Yumeiho therapy massage on Repositioning error, Range of motion trunk Flexation and functional power in women volleyball players with Hyper lordosis

    Directory of Open Access Journals (Sweden)

    Yousef yarahmadi

    2018-03-01

    Conclusion: results showed that the effect of Yumeiho therapy massage on repositioning error, Flexation range of motion trunk and functional power had a significant. It therapists recommended to include Yumeiho therapy massage in order to enhance these variables.

  3. Concentrating solar thermal power.

    Science.gov (United States)

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  4. Energy, Power and Thermal Research Overview

    Science.gov (United States)

    2010-09-01

    Watt power generation • Magnetic materials • Thermoelectric power generation • Mega-Watt power generation ‒ Superconducting and conventional...FeCo) • Multilayered structures for thermoelectric power generation ‒ Oxide materials ‒ Promote phonon scattering to inhibit thermal flow and increase...and space force. 4 AFRL’s Core Areas of Expertise Space Vehicles Materials Directed Energy Munitions Propulsion Human Effectiveness Information

  5. A Low-Power Wide Dynamic-Range Current Readout Circuit for Ion-Sensitive FET Sensors.

    Science.gov (United States)

    Son, Hyunwoo; Cho, Hwasuk; Koo, Jahyun; Ji, Youngwoo; Kim, Byungsub; Park, Hong-June; Sim, Jae-Yoon

    2017-06-01

    This paper presents an amplifier-less and digital-intensive current-to-digital converter for ion-sensitive FET sensors. Capacitance on the input node is utilized as a residue accumulator, and a clocked comparator is followed for quantization. Without any continuous-time feedback circuit, the converter performs a first-order noise shaping of the quantization error. In order to minimize static power consumption, the proposed circuit employs a single-ended current-steering digital-to-analog converter which flows only the same current as the input. By adopting a switching noise averaging algorithm, our dynamic element matching not only mitigates mismatch of current sources in the current-steering DAC, but also makes the effect of dynamic switching noise become an input-independent constant. The implemented circuit in 0.35 μm CMOS converts the current input with a range of 2.8 μ A to 15 b digital output in about 4 ms, showing a DNL of +0.24/-0.25 LSB and an INL of + 1.98/-1.98 LSB while consuming 16.8 μW.

  6. Gas Turbine Energy Conversion Systems for Nuclear Power Plants Applicable to LiFTR Liquid Fluoride Thorium Reactor Technology

    Science.gov (United States)

    Juhasz, Albert J.

    2014-01-01

    This panel plans to cover thermal energy and electric power production issues facing our nation and the world over the next decades, with relevant technologies ranging from near term to mid-and far term.Although the main focus will be on ground based plants to provide baseload electric power, energy conversion systems (ECS) for space are also included, with solar- or nuclear energy sources for output power levels ranging tens of Watts to kilo-Watts for unmanned spacecraft, and eventual mega-Watts for lunar outposts and planetary surface colonies. Implications of these technologies on future terrestrial energy systems, combined with advanced fracking, are touched upon.Thorium based reactors, and nuclear fusion along with suitable gas turbine energy conversion systems (ECS) will also be considered by the panelists. The characteristics of the above mentioned ECS will be described, both in terms of their overall energy utilization effectiveness and also with regard to climactic effects due to exhaust emissions.

  7. A low-power tool for measuring acceleration, pressure, and temperature (APT) with wide dynamic range and bandwidth

    Science.gov (United States)

    Heesemann, Martin; Davis, Earl E.; Paros, Jerome; Johnson, Greg; Meldrum, Robert; Scherwath, Martin; Mihaly, Steven

    2017-04-01

    We present a new tool that facilitates the study of inter-related geodetic, geodynamic, seismic, and oceanographic phenomena. It incorporates a temperature compensated tri-axial accelerometer developed by Quartz Seismic Sensors, Inc., a pressure sensor built by Paroscientific Inc., and a low-power, high-precision frequency counter developed by Bennest Enterprises Ltd. and built by RBR, Ltd. The sensors are housed in a 7 cm o.d. titanium pressure case designed for use to full ocean depths (withstands more than 20 km of water pressure). Sampling intervals are programmable from 0.08 s to 1 hr; standard memory can store up to 130 million samples; total power consumption is roughly 115 mW when operating continuously and proportionately lower when operating intermittently (e.g., 2 mW average at 1 sample per min). Serial and USB communications protocols allow a variety of autonomous and cable-connection options. Measurement precision of the order of 10-8 of full scale (e.g., pressure equivalent to 4000 m water depth, acceleration = +/- 3 g) allows observations of pressure and acceleration variations of 0.4 Pa and 0.3 μm s-2. Long-term variations in vertical acceleration are sensitive to displacement through the gravity gradient down to a level of roughly 2 cm, and variations in horizontal acceleration are sensitive to tilt down to a level of 0.03 μrad. With the large dynamic ranges, high sensitivities and broad bandwidth (6 Hz to DC), ground motion associated with microseisms, strong and weak seismic ground motion, tidal loading, and slow and rapid geodynamic deformation - all normally studied using disparate instruments - can be observed with a single tool. Installation in the marine environment is accomplished by pushing the tool roughly 1 m vertically below the seafloor with a submersible or remotely operated vehicle, with no profile remaining above the seafloor to cause current-induced noise. The weight of the tool is designed to match the sediment it displaces to

  8. Mercury purification in the megawatt liquid metal spallation target of EURISOL-DS

    CERN Document Server

    Neuhausen, Joerg; Eller, Martin; Schumann, Dorothea; Eichler, Bernd; Horn, Susanne

    High power spallation targets are going to be used extensively in future research and technical facilities such as spallation neutron sources, neutrino factories, radioactive beam facilities or accelerator driven systems for the transmutation of long-lived nuclear waste. Within EURISOL-DS, a 4 MW liquid metal spallation target is designed to provide neutrons for a fission target, where neutron rich radionuclides will be produced. For the spallation target, mercury is planned to be used as target material. A large amount of radionuclides ranging from atomic number Z=1 to 81 will be produced in the liquid metal during long term irradiation. It is planned to remove those radionuclides by chemical or physicochemical methods to reduce its radioactivity. For the development of a purification procedure, knowledge about the chemical state of the different elements present in the mixture is required. We present a general concept of applicable separation techniques in a target system and show some results of experiment...

  9. Refractory metal alloys and composites for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.

  10. 5uW-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm

    NARCIS (Netherlands)

    Qiu, Y.; Van Liempd, C.; Op het Veld, J.H.G.; Blanken, P.G.; Van Hoof, C.

    2010-01-01

    A fully autonomous inductive boost converter for indoor photovoltaic harvesting with maximum power point tracking circuit is implemented in a commercial 0.25um CMOS process. The converter can handle input power from 5uW up to 10mW and charge a battery or a super-capacitor up to 5V. Its control

  11. Space nuclear power and man's extraterrestrial civilization

    International Nuclear Information System (INIS)

    Angelo, J.J.; Buden, D.

    1983-01-01

    This paper examines leading space nuclear power technology candidates. Particular emphasis is given the heat-pipe reactor technology currently under development at the Los Alamos National Laboratory. This program is aimed at developing a 10-100 kWe, 7-year lifetime space nuclear power plant. As the demand for space-based power reaches megawatt levels, other nuclear reactor designs including: solid core, fluidized bed, and gaseous core, are considered

  12. 75 FR 21653 - Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Delaware-Request...

    Science.gov (United States)

    2010-04-26

    ... Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore Delaware--Request for Interest (RFI... proposal. In June 2008, Bluewater Wind Delaware LLC announced that it signed a 25-year power purchase agreement with Delmarva Power to sell up to 200 megawatts (MW) of power to the utility from an offshore wind...

  13. Power Electronics and Controls for Large Wind Turbines and Wind Farms

    DEFF Research Database (Denmark)

    Ma, Ke; Shipurkar, Udai; Ionel, Dan M.

    2017-01-01

    Wind power represents a major and growing source of renewable energy for electric power systems. This chapter provides an overview of state-of-the-art technologies and anticipated developments in the area of power electronic drives, controls, and electric generators for large multi-megawatt (MW) ...

  14. Safety analysis and lay-out aspects of shieldings against particle radiation at the example of spallation facilities in the megawatt range; Sicherheitstechnische Analyse und Auslegungsaspekte von Abschirmungen gegen Teilchenstrahlung am Beispiel von Spallationsanlagen im Megawatt Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Hanslik, R.

    2006-08-15

    This paper discusses the shielding of particle radiation from high current accelerators, spallation neutron sources and so called ADS-facilities (Accelerator Driven Systems). ADS-facilities are expected to gain importance in the future for transmutation of long-lived isotopes from fission reactors as well as for energy production. In this paper physical properties of the radiation as well as safety relevant requirements and corresponding shielding concepts are discussed. New concepts for the layout and design of such shielding are presented. Focal point of this work will be the fundamental difference between conventional fission reactor shielding and the safety relevant issues of shielding from high-energy radiation. Key point of this paper is the safety assessment of shielding issues of high current accelerators, spallation targets and ADS-blanket systems as well as neutron scattering instruments at spallation neutron sources. Safety relevant shielding requirements are presented and discussed. For the layout and design of the shielding for spallation sources computer base calculations methods are used. A discussion and comparison of the most important methods like semi-empirical, deterministic and stochastic codes are presented. Another key point within the presented paper is the discussion of shielding materials and their shielding efficiency concerning different types of radiation. The use of recycling material, as a cost efficient solution, is discussed. Based on the conducted analysis, flowcharts for a systematic layout and design of adequate shielding for targets and accelerators have been developed and are discussed in this paper. By use of these flowcharts layout and engineering design of future ADS-facilities can be performed. (orig.)

  15. Wind power today

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  16. Strong doping of the n-optical confinement layer for increasing output power of high- power pulsed laser diodes in the eye safe wavelength range

    Science.gov (United States)

    Ryvkin, Boris S.; Avrutin, Eugene A.; Kostamovaara, Juha T.

    2017-12-01

    An analytical model for internal optical losses at high power in a 1.5 μm laser diode with strong n-doping in the n-side of the optical confinement layer is created. The model includes intervalence band absorption by holes supplied by both current flow and two-photon absorption (TPA), as well as the direct TPA effect. The resulting losses are compared with those in an identical structure with a weakly doped waveguide, and shown to be substantially lower, resulting in a significant improvement in the output power and efficiency in the structure with a strongly doped waveguide.

  17. Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor

    Science.gov (United States)

    Peytavit, E.; Lepilliet, S.; Hindle, F.; Coinon, C.; Akalin, T.; Ducournau, G.; Mouret, G.; Lampin, J.-F.

    2011-11-01

    It is shown from accurate on-wafer measurement that continuous wave output powers of 1.2 mW at 50 GHz and 0.35 mW at 305 GHz can be generated by photomixing in a low temperature grown GaAs photoconductor using a metallic mirror Fabry-Pérot cavity. The output power is improved by a factor of about 100 as compared to the previous works on GaAs photomixers. A satisfactory agreement between the theory and the experiment is obtained in considering both the contribution of the holes and the electrons to the total photocurrent.

  18. Note: Ultra-high frequency ultra-low dc power consumption HEMT amplifier for quantum measurements in millikelvin temperature range.

    Science.gov (United States)

    Korolev, A M; Shnyrkov, V I; Shulga, V M

    2011-01-01

    We have presented theory and experimentally demonstrated an efficient method for drastically reducing the power consumption of the rf/microwave amplifiers based on HEMT in unsaturated dc regime. Conceptual one-stage 10 dB-gain amplifier showed submicrowatt level of the power consumption (0.95 μW at frequency of 0.5 GHz) when cooled down to 300 mK. Proposed technique has a great potential to design the readout amplifiers for ultra-deep-cooled cryoelectronic quantum devices.

  19. Application of Boost Converter to Increase the Speed Range of Dual-stator Winding Induction Generator in Wind Power Systems

    DEFF Research Database (Denmark)

    Kavousi, Ayoub; Fathi, S. Hamid; Milimonfared, Jafar

    2018-01-01

    In this paper, a topology using a Dual-stator Winding Induction Generator (DWIG) and a boost converter is proposed for the variable speed wind power application. At low rotor speeds, the generator saturation limits the voltage of the DWIG. Using a boost converter, higher DC voltage can be produce...

  20. Application of Boost Converter to Increase the Speed Range of Dual-stator Winding Induction Generator in Wind Power Systems

    DEFF Research Database (Denmark)

    Kavousi, Ayoub; Fathi, S. Hamid; Milimonfared, Jafar

    2018-01-01

    while the DWIG operates at Maximum Power Point Tracking (MPPT) even at low speed and low voltage conditions. Semiconductor Excitation Controller (SEC) of the DWIG utilizes Control-Winding Voltage Oriented Control (CWVOC) method to adjust the voltage, considering V/f characteristics. For the proposed...

  1. Extending the Constant Power Speed Range of the Brushless DC Motor through Dual Mode Inverter Control -- Part I: Theory and Simulation

    International Nuclear Information System (INIS)

    Lawler, J.S.

    2001-01-01

    An inverter topology and control scheme has been developed that can drive low-inductance, surface-mounted permanent magnet motors over the wide constant power speed range required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC)[1]. The DMIC can drive either the Permanent Magnet Synchronous Machine (PMSM) with sinusoidal back emf, or the brushless dc machine (BDCM) with trapezoidal emf in the motoring and regenerative braking modes. In this paper we concentrate on the BDCM under high-speed motoring conditions. Simulation results show that if all motor and inverter loss mechanisms are neglected, the constant power speed range of the DMIC is infinite. The simulation results are supported by closed form expressions for peak and rms motor current and average power derived from analytical solution to the differential equations governing the DMIC/BDCM drive for the lossless case. The analytical solution shows that the range of motor inductance that can be accommodated by the DMIC is more than an order of magnitude such that the DMIC is compatible with both low- and high-inductance BDCMs. Finally, method is given for integrating the classical hysteresis band current control, used for motor control below base speed, with the phase advance of DMIC that is applied above base speed. The power versus speed performance of the DMIC is then simulated across the entire speed range

  2. Improvement of input power dynamic range for 20 Gbit/s optical WDM switch nodes using an integrated Michelson wavelength converter

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Hansen, Peter Bukhave; Jørgensen, Carsten

    1997-01-01

    be improved compared to switch blocks without IWCs. This is especially important at high bit rates where the cascadability of the SOA gates decreases. Here, more than 15 dB improvement of the input power dynamic range is achieved at 20 Gbit/s using a high-speed Michelson interferometer wavelength converter...

  3. The Geography of Green Power

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Heeter, Jenny S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Volpi, Christina M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-25

    Green power refers to the voluntary purchase of renewable electricity by retail electricity customers. Green power is unlike compliance-based renewable energy procurement imposed by law or regulation. In 2016, over six million customers procured about 95 million megawatt-hours (MWh) of green power in the United States, which represents about 28% of all U.S. renewable energy sales, excluding large hydropower. In this fact sheet, we use available data to illustrate the geography of green power demand (in terms of number of customers) and supply (in terms of MWh of generation) by state.

  4. A wide range ultra-low power Phase-Locked Loop with automatic frequency setting in 130 nm CMOS technology for data serialisation

    International Nuclear Information System (INIS)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moroń, J.; Świentek, K.

    2015-01-01

    The design and measurements results of a wide frequency range ultra-low power Phase-Locked Loop (PLL) for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in a 130 nm CMOS technology. To allow the implementation of different data serialisation schemes multiple division factors (6, 8, 10, 16) were implemented in the PLL feedback loop. The main PLL block—VCO works in 16 frequency ranges/modes, switched either manually or automatically. A dedicated automatic frequency mode switching circuit was developed to allow simple frequency tuning. Although the PLL was designed and simulated for a frequency range of 30 MHz–3 GHz, due to the SLVS interface limits, the measurements were done only up to 1.3 GHz. The full PLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption (0.7 mW at 1 GHz)

  5. A wide range ultra-low power Phase-Locked Loop with automatic frequency setting in 130 nm CMOS technology for data serialisation

    Science.gov (United States)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moroń, J.; Świentek, K.

    2015-12-01

    The design and measurements results of a wide frequency range ultra-low power Phase-Locked Loop (PLL) for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in a 130 nm CMOS technology. To allow the implementation of different data serialisation schemes multiple division factors (6, 8, 10, 16) were implemented in the PLL feedback loop. The main PLL block—VCO works in 16 frequency ranges/modes, switched either manually or automatically. A dedicated automatic frequency mode switching circuit was developed to allow simple frequency tuning. Although the PLL was designed and simulated for a frequency range of 30 MHz-3 GHz, due to the SLVS interface limits, the measurements were done only up to 1.3 GHz. The full PLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption (0.7 mW at 1 GHz).

  6. Marine pastures: a by-product of large (100 megawatt or larger) floating ocean-thermal power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, S.; Roels, O.A.

    1976-08-31

    The potential biological productivity of an open-sea mariculture system utilizing the deep-sea water discharged from an ocean-thermal energy conversion (OTEC) plant was investigated. In a series of land-based studies, surface water was used to inoculate deep water and the primary production of the resultant blooms was investigated. Each cubic meter of deep water can produce approximately 2.34 g of phytoplankton protein, and that an OTEC plant discharging deep water at a rate of 4.5 x 10/sup 4/ m/sup 3/ min/sup -1/ could produce 5.3 x 10/sup 7/ kg of phytoplankton protein per 350-day year. A series of land-based shellfish studies indicated that, when fed at a constant rate of 1.83 x 10/sup -3/ g of protein per second per 70-140 g of whole wet weight, the clam, Tapes japonica, could convert the phytoplankton protein-nitrogen into shellfish meat protein-nitrogen with an efficiency of about 33 per cent. Total potential wet meat weight production from an OTEC plant pumping 4.5 x 10/sup 4/ m/sup 3/ min/sup -1/ is approximately 4.14 x 10/sup 8/ kg for a 350-day year. Various factors affecting the feasibility of open-sea mariculture are discussed. It is recommended that future work concentrate on a technical and economic analysis. (WDM)

  7. A Megawatt Power Module for Ship Service - Supplement. Volume 2: MatLab Simulink Simulation User’s Manual

    Science.gov (United States)

    2009-01-01

    generator is affected by the input for the frequency of the triangular waveform carrier signal in the dialog box of Figure 23. The reference voltage...Hz Frequency of carrier triangular waveform generating PWM pulses (4000) Phase, Degrees Electrical phase angle of output ac bus voltages (0...21
 Figure 26. circuit diagram of one of the output filters of the quad dc-ac converter ........21
 Figure 27. Structure of PWM

  8. From Wasted Land to Megawatts: How to Convert Brownfi elds Into Solar Power Plants (the Case of the Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Klusáček, Petr; Havlíček, M.; Dvořák, Petr; Kunc, Josef; Martinát, Stanislav; Petr, T.

    2014-01-01

    Roč. 62, č. 3 (2014), s. 517-528 ISSN 1211-8516 R&D Projects: GA TA ČR(CZ) TD020259 Institutional support: RVO:68145535 Keywords : brownfields * solar energy * regeneration Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://dx.doi.org/10.11118/actaun201462030517

  9. The Jefferson Lab High Power Light Source

    International Nuclear Information System (INIS)

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments

  10. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  11. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  12. Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data

    Energy Technology Data Exchange (ETDEWEB)

    Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cochran, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weekley, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stoltenberg, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parsons, B. [Evergreen Renewable Consulting, CO (United States); Batra, P. [Central Electricity Authority, New Delhi (India); Mehta, B. [Gujarat Energy Transmission Corporation Ltd., Vadodara (India); Patel, D. [Gujarat Energy Transmission Corporation Ltd., Vadodara (India)

    2014-03-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  13. Power system for production, construction, life support and operations in space

    International Nuclear Information System (INIS)

    Sovie, R.J.

    1988-01-01

    As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, Earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed

  14. Acoustic Noise Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roadman, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States); Huskey, Arlinda [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-01

    A series of tests were conducted to characterize the baseline properties and performance of the U.S. Department of Energy (DOE) 1.5-megawatt wind turbine (DOE 1.5) to enable research model development and quantify the effects of future turbine research modifications. The DOE 1.5 is built on the platform of GE's 1.5-MW SLE commercial wind turbine model. It was installed in a nonstandard configuration at the NWTC with the objective of supporting DOE Wind Program research initiatives such as A2e. Therefore, the test results may not represent the performance capabilities of other GE 1.5-MW SLE turbines. The acoustic noise test documented in this report is one of a series of tests carried out to establish a performance baseline for the DOE 1.5 in the NWTC inflow environment.

  15. Interim report on the performance of 400-megawatt and larger nuclear and coal-fired generating units: performance through 1976

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    This report is an update of DOE/ERA-0007, Interim Report on the Performance of 400 Megawatt and Larger Nuclear and Coal-Fired Generating Units - Performance Through 1975. The most recent EEI data for nuclear units and for coal units less than 600 MW(e) and having at least one full year of commercial operation are included in this analysis. The analyses cover the following: coal and nuclear units, 400-MW nameplate and larger; historical data through 1976; four industry-recognized performance indices (capacity factor, availability factor, equivalent availability, and forced outage rate); four types of geographical analysis (national, individual, individual utilities, and individual utilities by states); and rankings of states and utilities by performance indices. (MCW)

  16. Study on Abrasive Wear of Brake Pad in the Large-megawatt Wind Turbine Brake Based on Deform Software

    Science.gov (United States)

    Zhang, Shengfang; Hao, Qiang; Sha, Zhihua; Yin, Jian; Ma, Fujian; Liu, Yu

    2017-12-01

    For the friction and wear issues of brake pads in the large-megawatt wind turbine brake during braking, this paper established the micro finite element model of abrasive wear by using Deform-2D software. Based on abrasive wear theory and considered the variation of the velocity and load in the micro friction and wear process, the Archard wear calculation model is developed. The influence rules of relative sliding velocity and friction coefficient in the brake pad and disc is analysed. The simulation results showed that as the relative sliding velocity increases, the wear will be more serious, while the larger friction coefficient lowered the contact pressure which released the wear of the brake pad.

  17. 2004 Power marketing program draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-04-01

    The Western Area Power Administration (Western), created in 1977 under the Department of Energy (DOE) Organization Act, markets and transmits electric power throughout 15 western states. Western's Sierra Nevada Customer Service Region (Sierra Nevada Region) markets approximately 1,480 megawatts (MW) of power from the Central Valley Project (CVP) and other sources, and markets available nonfirm energy from the Washoe Project. The Sierra Nevada Region's marketing area is shown in Figure 1. 1. Western's mission is to sell and deliver electricity that is in excess of Project Use (power required for project operations), which for the Sierra Nevada Region is generated from CVP and Washoe Project powerplants. Western's power marketing responsibility includes managing the Federal transmission system. The hydroelectric generation facilities of the CVP are operated by the Bureau of Reclamation (Reclamation). Reclamation manages and releases water in accordance with the various acts authorizing specific projects and with other laws and enabling legislation. Western's capacity and energy sales must be in conformance with the laws that govern its sale of electrical power. Hydropower operations at each facility must comply with minimum and maximum flows and other constraints set by Reclamation, the U.S. Fish and Wildlife Service (the Service), or other regulatory agencies, acting in accordance with law or policy. This EIS describes the environmental consequences of the range of reasonable marketing alternatives that meet the needs and purposes of the proposed marketing plan

  18. Megawatt-class free-electron laser concept for shipboard self-defense

    Science.gov (United States)

    Todd, Alan M. M.; Colson, William B.; Neil, George R.

    1997-05-01

    An efficient MW-class free electron laser (FEL) directed energy weapon (DEW) system holds promise for satisfying shipboard self-defense (SSD) requirements on future generations of Navy vessels because of the potential for high- power operation and the accessibility to all IR wavelengths. In order to meet shipboard packaging and prime power constraints, the power efficiency and high real-estate gradient achievable in a FEL driven by a superconducting rf accelerator is attractive. Configuration options and the key development issues for such a system are described.

  19. Megawatt-class free electron laser concept for shipboard self-defense

    International Nuclear Information System (INIS)

    Todd, Alan M.M.; Colson, William B.; Neil, George

    1997-01-01

    An efficient MW-class free electron laser (FEL) directed energy weapon (DEW) system holds promise for satisfying shipboard self-defense (SSD) requirements on future generations of Navy vessels because of the potential for high-power operation and the accessibility to all IR wavelengths. In order to meet shipboard packaging and prime power constraints, the power efficiency and high real-estate gradient achievable in an FEL driven by a superconducting RF accelerator is attractive. Configuration options and the key development issues for such a system are described

  20. Design and performance of a 2-megawatt high voltage dc test load

    International Nuclear Information System (INIS)

    Horan, D.; Kustom, R.; Ferguson, M.

    1994-01-01

    A high-power water-cooled resistive load which simulates the electrical load characteristics of a high-power klystron, capable of a 2 MW dissipation at 95 kV DC, is designed and installed. The load utilizes wirewound resistor elements suspended inside G-11 insulated tubing contained within a single-wall 316 stainless steel pressure vessel with flanged elliptical heads. The vessel supplies a continuous flow of deionized water. Baffles fabricated from G-10 sheets support the tubing and promote water turbulence to maximize heat removal. A companion oil tank houses resistive filament and mod-anode power supply test loads, plus an electrical interlock system which provides protection from inadequate water flow, excessive oil temperature, and arcing in either the pressure vessel or oil tank. A secondary safety system consists of both hydrostatic and steam pressure relief valves on the pressure vessel. Power supply tests indicate the load simulates the electrical load characteristics of a high-power klystron to a degree sufficient to accurately performance-test the rf high voltage power supplies used at the Advanced Photon Source

  1. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  2. A Low-Power Single-Bit Continuous-Time ΔΣ Converter with 92.5 dB Dynamic Range for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Vishal Saxena

    2012-07-01

    Full Text Available A third-order single-bit CT-ΔΣ modulator for generic biomedical applications is implemented in a 0.15 µm FDSOI CMOS process. The overall power efficiency is attained by employing a single-bit ΔΣ and a subthreshold FDSOI process. The loop-filter coefficients are determined using a systematic design centering approach by accounting for the integrator non-idealities. The single-bit CT-ΔΣ modulator consumes 110 µW power from a 1.5 V power supply when clocked at 6.144 MHz. The simulation results for the modulator exhibit a dynamic range of 94.4 dB and peak SNDR of 92.4 dB for 6 kHz signal bandwidth. The figure of merit (FoM for the third-order, single-bit CT-ΔΣ modulator is 0.271 pJ/level.

  3. Test of hybrid power system for electrical vehicles using a lithium-ion battery pack and a reformed methanol fuel cell range extender

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Sahlin, Simon Lennart

    2014-01-01

    This work presents the proof-of-concept of an electric traction power system with a high temperature polymer electrolyte membrane fuel cell range extender, usable for automotive class electrical vehicles. The hybrid system concept examined, consists of a power system where the primary power...... is delivered by a lithium ion battery pack. In order to increase the run time of the application connected to this battery pack, a high temperature PEM (HTPEM) fuel cell stack acts as an on-board charger able to charge a vehicle during operation as a series hybrid. Because of the high tolerance to carbon...... monoxide, the HTPEM fuel cell system can efficiently use a liquid methanol/water mixture of 60%/40% by volume, as fuel instead of compressed hydrogen, enabling potentially a higher volumetric energy density. In order to test the performance of such a system, the experimental validation conducted uses...

  4. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power.

    Science.gov (United States)

    Waters, Benjamin H; Smith, Joshua R; Bonde, Pramod

    2014-01-01

    Technological innovation of a smaller, single moving part has an advantage over earlier large pulsatile ventricular assist devices (VADs) prone to mechanical failure. Drivelines limit the potential for extended patient survival durations with newer pumps and act as source for infection, increased morbidity, rehospitalizations, and reduced quality of life. The Free-range Resonant Electrical Energy Delivery (FREE-D) wireless power system uses magnetically coupled resonators to efficiently transfer power. We demonstrate the efficiency over distance of this system. The experimental setup consists of an radiofrequency amplifier and control board which drives the transmit resonator coil, and a receiver unit consisting of a resonant coil attached to a radiofrequency rectifier and power management module. The power management module supplies power to the axial pump, which was set at 9,600 rpm. To achieve a seamless wireless delivery in any room size, we introduced a third relay coil. This relay coil can be installed throughout a room, whereas a single relay coil could be built into a jacket worn by the patient, which would always be within range of the receive coil implanted in the patient's body. The power was delivered over a meter distance without interruptions or fluctuations with coil, rectifier, and regulator efficiency more than 80% and overall system efficiency of 61%. The axial pump worked well throughout the 8 hours of continuous operation. Having same setup on the opposite side can double the distance. A tether-free operation of a VAD can be achieved by FREE-D system in room-size distances. It has the potential to make the VAD therapy more acceptable from the patient perspective.

  5. The tunneling theory of the electronic stopping power of the planar channeling of ions in the range of some ten kilo-electronvolts

    International Nuclear Information System (INIS)

    Haymann, P.

    1976-01-01

    A theory of the electronic stopping power in planar channeling recently presented in the case of the high energy range of the ion is now applied in the low energy case. Due to the different possible approximations in this case, it is shown that the localised density of charge induced on the walls of the channel during the passage of the ion is constant in width and the localised density function must oscillate with Z 1 and Z 2 . (Auth.)

  6. A MEMS Interface IC With Low-Power and Wide-Range Frequency-to-Voltage Converter for Biomedical Applications.

    Science.gov (United States)

    Arefin, Md Shamsul; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2016-04-01

    This paper presents an interface circuit for capacitive and inductive MEMS biosensors using an oscillator and a charge pump based frequency-to-voltage converter. Frequency modulation using a differential crossed coupled oscillator is adopted to sense capacitive and inductive changes. The frequency-to-voltage converter is designed with a negative feedback system and external controlling parameters to adjust the sensitivity, dynamic range, and nominal point for the measurement. The sensitivity of the frequency-to-voltage converter is from 13.28 to 35.96 mV/MHz depending on external voltage and charging current. The sensitivity ranges of the capacitive and inductive interface circuit are 17.08 to 54.4 mV/pF and 32.11 to 82.88 mV/mH, respectively. A capacitive MEMS based pH sensor is also connected with the interface circuit to measure the high acidic gastric acid throughout the digestive tract. The sensitivity for pH from 1 to 3 is 191.4 mV/pH with 550 μV(pp) noise. The readout circuit is designed and fabricated using the UMC 0.18 μm CMOS technology. It occupies an area of 0.18 mm (2) and consumes 11.8 mW.

  7. A megawatt solid-state modulator for high repetition rate pulse generation.

    Science.gov (United States)

    Wang, Y; Pribyl, P; Gekelman, W

    2016-02-01

    A novel solid-state modulator capable of generating rapid consecutive power pulses is constructed to facilitate experiments on plasma interaction with high power microwave pulses. The modulator is designed to output a 100 kHz tone burst, which consists of up to 10 pulses, each with 1 μs duration and 1 MW peak power. The pulses are formed by discharging a total of 480 μF capacitors through 24 synchronized MOSFETs and 6 step-up transformers. The highly modular design, as a replacement of an old single-pulse version used in earlier experiments which employs a pulse forming network, brings great flexibility and wide potential to its application. A systematic cost-effectiveness analysis is also presented.

  8. Concept, design approaches suited to space nuclear power systems in the range of 20 kWE

    International Nuclear Information System (INIS)

    Tilliette, Z.P.; Carre, F.; Proust, E.

    1989-01-01

    Given the variety of possible missions and flight dates, it seems advisable to widen the basis for future technical choices within the French preliminary studies of 20-kWe space nuclear power systems. In addition to the fast spectrum, liquid metal-cooled reactor presently considered as a reference, shorter development term system, gas- and Na(K)-cooled thermal spectrum reactors are being investigated. The need for adequate ZrH moderator temperature conditions can be satisfied through a Brayton cycle conversion subsystem featuring two separate, high temperature-heat pipes and low temperature-pumped loop radiators. The penalty in efficiency and in radiator area, resulting from the wanted lower reactor inlet temperature, can be limited, particularly in the case of the higher temperature, gas-cooled reactor system. A multiple, pivoting tubes, low temperature radiator concept is proposed; it avoids an extension of the related structural support frame beyond the conversion subsystem region in flight configuration. Arrangements peculiar to small reactors and two-turbo-generator diagrams for reliability reasons are presented. Provisional, not yet optimized, thermal management mass estimates are evaluated

  9. Prospects for high power Linac Coherent Light Source (LCLS) development in the 1000 angstrom - 1 angstrom wavelength range

    International Nuclear Information System (INIS)

    Tatchyn, R.; Bane, K.; Boyce, R.

    1994-03-01

    Electron bunch requirements for single-pass saturation of a Free-Electron Laser (FEL) operating at full transverse coherence in the Self-Amplified Spontaneous Emission (SASE) mode include: (1) a high peak current, (2) a sufficiently low relative energy spread, and (3) a transverse emittance var-epsilon[r-m] satisfying the condition var-epsilon ≤ λA/4π, where λ[m] is the output wavelength of the FEL. In the insertion device that induces the coherent amplification, the prepared electron bunch must be kept on a trajectory sufficiently collinear with the amplified photons without significant dilution of its transverse density. In this paper we discuss a Linac Coherent Light Source (LCLS) based on a high energy accelerator such as, e.g., the 3km S-band structure at the Stanford Linear Accelerator Center (SLAC), followed by a long high-precision undulator with superimposed quadrupole (FODO) focusing, to fulfill the given requirements for SASE operation in the 1000 Angstrom--1 Angstrom range. The electron source for the linac, an RF gun with a laser-excited photocathode featuring a normalized emittance in the 1--3 mm-mrad range, a longitudinal bunch duration of the order of 3 ps, and approximately 10 -9 C/bunch, is a primary determinant of the required low transverse and longitudinal emittances. Acceleration of the injected bunch to energies in the 5--25 GeV range is used to reduce the relative longitudinal energy spread in the bunch, as well as to reduce the transverse emittance to values consistent with the cited wavelength regime. Two longitudinal compression stages are employed to increase the peak bunch current to the 2--5 kA levels required for sufficiently rapid saturation. The output radiation is delivered, via a grazing-incidence mirror bank, to optical instrumentation and a multi-user beam line system. Technological requirements for LCLS operation at 40 Angstrom, 4.5 Angstrom, and 1.5 Angstrom are examined

  10. Overview of biomass and waste fuel resources for power production

    International Nuclear Information System (INIS)

    Easterly, J.L.; Burnham, M.

    1993-01-01

    This paper provides an overview of issues and opportunities associated with the use of biomass for electric power generation. Important physical characteristics of biomass and waste fuels are summarized, including comparisons with conventional fossil fuels, primarily coal. The paper also provides an overview of the current use of biomass and waste fuels for electric power generation. Biomass and waste fuels are currently used for approximately 9,800 megawatts (MW) of electric generating capacity, including about 6,100 MW of capacity fueled by wood/wood waste and about 2,200 MW of capacity fueled with municipal solid waste. Perspectives on the future availability of biomass fuels (including energy crops) are addressed, as well as projected levels of market penetration for biomass power. By the year 2010, there is a potential for 22,000 MW, to as much as 70,000 MW of biomass-powered electric generating capacity in the U.S. Given the range of benefits offered by biomass, including reduced sulfur emissions, reduced greenhouse gas emissions, job creation, rural revitalization impacts, and new incentives under the Energy Policy Act of 1992, the potential use of biomass for power production could significantly expand in the future

  11. Application range affected by software failures in safety relevant instrumentation and control systems of nuclear power plants

    International Nuclear Information System (INIS)

    Jopen, Manuela; Mbonjo, Herve; Sommer, Dagmar; Ulrich, Birte

    2017-03-01

    This report presents results that have been developed within a BMUB-funded research project (Promotion Code 3614R01304). The overall objective of this project was to broaden the knowledge base of GRS regarding software failures and their impact in software-based instrumentation and control (I and C) systems. To this end, relevant definitions and terms in standards and publications (DIN, IEEE standards, IAEA standards, NUREG publications) as well as in the German safety requirements for nuclear power plants were analyzed first. In particular, it was found that the term ''software fault'' is defined differently and partly contradictory in the considered literature sources. For this reason, a definition of software fault was developed on the basis of the software life cycle of software-based I and C systems within the framework of this project, which takes into account the various aspects relevant to software faults and their related effects. It turns out that software failures result from latent faults in a software-based control system, which can lead to a non-compliant behavior of a software-based I and C system. Hereby a distinction should be made between programming faults and specification faults. In a further step, operational experience with software failures in software-based I and C systems in nuclear facilities and in nonnuclear sector was investigated. The identified events were analyzed with regard to their cause and impacts and the analysis results were summarized. Based on the developed definition of software failure and on the COMPSIS-classification scheme for events related to software based I and C systems, the COCS-classification scheme was developed to classify events from operating experience with software failures, in which the events are classified according to the criteria ''cause'', ''affected system'', ''impact'' and ''CCF potential''. This

  12. Design Study of a Compact Megawatt Class FEL Amplifier Based on the VISA Undulator

    CERN Document Server

    Watanabe, T; Murphy, J B; Pinayev, I P; Rose, J; Shaftan, T V; Skaritka, J; Tanabé, T; Tsang, Thomas; Wang, X J; Yu, L H

    2005-01-01

    The design of a Short Rayleigh Length (SRL) FEL amplifier based on the strong focusing VISA undulator [1] is presented in this study. The SRL FEL amplifier will be operating in the IR (0.8 - 1 μm), and consists of a two-meter VISA undulator with a peak seed laser power of about 1 kW. The FEL power and transverse mode evolution along the undulator were investigated using the three-dimensional numerical code GENESIS1.3. The evolution of the FEL output from the undulator exit to the first downstream optics is also studied. The possibility of using the proposed amplifier for a two-stage cascaded HGHG FEL [2] at the BNL SDL is also explored. The design parameters and the numerical results will be presented.

  13. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power...... and floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity...

  14. Electron stopping power and mean free path in organic compounds over the energy range of 20-10,000 eV

    Energy Technology Data Exchange (ETDEWEB)

    Tan Zhenyu E-mail: tzy@sdu.edu.cn; Xia Yueyuan; Zhao Mingwen; Liu Xiangdong; Li Feng; Huang Boda; Ji Yanju

    2004-07-01

    An empirical method to obtain optical energy loss functions is presented for a large number of organic compounds, for which optical data are not available, on the basis of structure feature analysis of the existed optical energy loss functions for certain organic compounds. The optical energy loss functions obtained by using this method are in good agreement with the experimental data. Based on the Penn's statistical model, a set of systematic expressions have been given for the calculation of the stopping powers and mean free paths of electrons penetrating into the organic compounds in the energy range of E{<=}10 keV. Detailed comparison of the calculated data with other theoretical results is presented. The stopping powers and mean free paths for a group of important polymers, without available optical data, have been calculated. In the calculations, three different cases have been considered, i.e. exchange correction not being considered, Ashley exchange correction being involved, and Born-Ochkur exchange correction being included. The results indicate that for these compounds the calculated stopping powers agree well with those obtained by using Bethe-Bloch theory at high-energy limit E=10 keV, as expected for a stopping power theory that should be converged to Bethe-Bloch theory at high energies.

  15. The multi megawatt target station integration of the MAFF/PIAFE fission target design

    CERN Document Server

    Kharoua, C; Herrera-Martinez, A; Lettry, J; Ashrafi-Nik, M; Groeschel, F; Samec, K; Zanini, L; Alyakriskiy, O; Barbui, M; Tecchio, Luigi; Freibergs, J; Gross, M; Nebel, F; Thirolf, P; Negoita, F; Serbina, L; Romanets, Y; Vaz, P; Lindroos, M; Kadi, Y

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010.In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW liquid metal proton-to-neutron converter, all driven by a high-power particle accelerator. In the aforementioned multi-MW target assembly, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source.This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the liquid converter and fission target (MAFF/PIAFE design like) and the overall performance of the facility, which will sust...

  16. Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness

    International Nuclear Information System (INIS)

    Du, Jiuyu; Chen, Jingfu; Song, Ziyou; Gao, Mingming; Ouyang, Minggao

    2017-01-01

    Energy management strategy and battery capacity are the primary factors for the energy efficiency of range-extended electric buses (REEBs). To improve the energy efficiency of REEBs developed by Tsinghua University, an optimal design method of global optimization-based strategy is investigated. It is real-time and adaptive to variable traction battery capacities of series REEBs. For simulation, the physical model of REEB and key components are established. The optimal strategy is first extracted by the power split ratio (PSR) from REEB simulation result with dynamic program (DP) algorithm. The power distribution map is obtained by series simulations for variable battery capacity options. The control law for developing optimal strategy are achieved by cluster regression for power distribution data. To verify the effect of the proposed energy management strategy, characteristics of powertrain, energy efficiency, operating cost, and computing time are ultimately analyzed. Simulation results show that the energy efficiency of the global optimization-based strategy presented in this paper is similar to that of the DP strategy. Therefore, the overall energy efficiency can be significantly improved compared with that of the CDCS strategy, and operating costs can be substantially reduced. The feasibility of candidate control strategies is thereby assessed via the employment of variable parameters. - Highlights: • Analysis method of powertrain energy efficiency and power distribution is proposed. • The power distribution rules of strategy with variable battery capacities are achieved. • The parametric method of proposed PSR-RB strategy is presented. • The energy efficiency of powertrain is analysis by flow analysis method. • The energy management strategy is global optimization-based and real-time.

  17. Offshore wind power in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H. [VTT Energy, Espoo (Finland)

    1998-12-31

    The objectives of the project were to estimate the technical offshore wind power potential of the Gulf of Bothnia, with cost assessments, to study icing conditions and ice loads, and to design a foundation suitable for the environmental conditions. The technical offshore potential from Vaasa to Tornio is huge, more than 40 TWh/a, although the cost of offshore wind power is still higher than on land. Wind turbines have not previously been designed for the icing conditions found in Gulf of Bothnia and the recommendations for load cases and siting of megawatt-class turbines are an important result of the project. (orig.)

  18. Development and design of a semi-floater substructure for multi-megawatt wind turbines at 50+ m water depths

    DEFF Research Database (Denmark)

    NJOMO WANDJI, Wilfried; Natarajan, Anand; Dimitrov, Nikolay Krasimirov

    2016-01-01

    A semi-floater concept as a substructure for multi-megawatt wind turbines is developed herein for installation at 50þ m water depths. The semi-floater concept is a hybrid between a fixed monopile type support structure and a floating spar buoy. The configuration of the substructure is composed of...... turbine components, and to exhibit low platform displacement at the mean sea level. Finally, the overall performance of the structure related to energy production is similar to that of a reference wind turbine situated on land....... of a floating system, a mooring system, and an articulated joint. A case study is carried out under specific design conditions and constraints. The detailed designs of the mooring system and of the articulated joint are iteratively carried out using a hydro-servo-elastic analysis tool for structure response......, HAWC2, coupled with dedicated in-house software packages for structural design analysis, and Abaqus. A reliability analysis and fatigue load calculations are made to ensure a desired life expectancy of the structure. The semi-floater concept is shown to maintain acceptable fatigue load levels for all...

  19. A simple analysis method for measuring in real-time power spectral densities and coherence functions in a large frequency range

    International Nuclear Information System (INIS)

    Vaeth, W.

    1976-01-01

    This paper describes a real-time method which allows the measurement of auto and cross power spectral densities in a large frequency range with almost constant relative frequency resolution. Based on a normal digital frequency analysis the resolution at low frequencies can be increased to any extend without additional electronic equipment. The long time signals needed for the low frequencies are won from the high frequency data by a digital low pass filter. Due to this decimation of the time series only moderate storage region is needed allowing the use of a small digital computer for on-line application. The method is suitable to monitor the spectra in a wide frequency range without time delay. (orig.) [de

  20. Critical human-factors issues in nuclear-power regulation and a recommended comprehensive human-factors long-range plan. Executive summary

    International Nuclear Information System (INIS)

    Hopkins, C.O.; Snyder, H.L.; Price, H.E.; Hornick, R.J.; Mackie, R.R.; Smillie, R.J.; Sugarman, R.C.

    1982-08-01

    This comprehensive long-range human factors plan for nuclear reactor regulation was developed by a Study Group of the Human Factors Society, Inc. This Study Group was selected by the Executive Council of the Society to provide a balanced, experienced human factors perspective to the applications of human factors scientific and engineering knowledge to nuclear power generation. The report is presented in three volumes. Volume 1 contains an Executive Summary of the 18-month effort and its conclusions. Volume 2 summarizes all known nuclear-related human factors activities, evaluates these activities wherever adequate information is available, and describes the recommended long-range (10-year) plan for human factors in regulation. Volume 3 elaborates upon each of the human factors issues and areas of recommended human factors involvement contained in the plan, and discusses the logic that led to the recommendations

  1. Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications

    Directory of Open Access Journals (Sweden)

    Bilal I. Abdulrazzaq

    2016-09-01

    Full Text Available A Delay-Locked Loop (DLL with a modified charge pump circuit is proposed for generating high-resolution linear delay steps with sub-picosecond jitter performance and adjustable delay range. The small-signal model of the modified charge pump circuit is analyzed to bring forth the relationship between the DLL’s internal control voltage and output time delay. Circuit post-layout simulation shows that a 0.97 ps delay step within a 69 ps delay range with 0.26 ps Root-Mean Square (RMS jitter performance is achievable using a standard 0.13 µm Complementary Metal-Oxide Semiconductor (CMOS process. The post-layout simulation results show that the power consumption of the proposed DLL architecture’s circuit is 0.1 mW when the DLL is operated at 2 GHz.

  2. Fuel procurement for first generation fusion power plants

    International Nuclear Information System (INIS)

    Gore, B.F.; Hendrickson, P.L.

    1976-09-01

    The provision of deuterium, tritium, lithium and beryllium fuel materials for fusion power plants is examined in this document. Possible fusion reactions are discussed for use in first generation power plants. Requirements for fuel materials are considered. A range of expected annual consumption is given for each of the materials for a 1000 megawatts electric (MWe) fusion power plant. Inventory requirements are also given. Requirements for an assumed fusion power plant electrical generating capacity of 10 6 MWe (roughly twice present U.S. generating capacity) are also given. The supply industries are then examined for deuterium, lithium, and beryllium. Methods are discussed for producing the only tritium expected to be purchased by a commercial fusion industry--an initial inventory for the first plant. Present production levels and methods are described for deuterium, lithium and beryllium. The environmental impact associated with production of these materials is then discussed. The toxicity of beryllium is described, and methods are indicated to keep worker exposure to beryllium as low as achievable

  3. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    Energy Technology Data Exchange (ETDEWEB)

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  4. Grid Filter Design for a Multi-Megawatt Medium-Voltage Voltage Source Inverter

    DEFF Research Database (Denmark)

    Rockhill, A.A.; Liserre, Marco; Teodorescu, Remus

    2011-01-01

    constraints. To achieve this goal, new concepts such as virtual harmonic content and virtual filter losses are introduced. Moreover, a new passive damping technique that provides the necessary damping with low losses and very little degradation of the high-frequency attenuation is proposed.......This paper describes the design procedure and performance of an LCL grid filter for a medium-voltage neutral point clamped (NPC) converter to be adopted for a multimegawatt wind turbine. The unique filter design challenges in this application are driven by a combination of the medium voltage...... converter, a limited allowable switching frequency, component physical size and weight concerns, and the stringent limits for allowable injected current harmonics. Traditional design procedures of grid filters for lower power and higher switching frequency converters are not valid for a multi...

  5. A three-stage, megawatt level, phase-coherent harmonic- multiplying inverted gyro-twystron

    Science.gov (United States)

    Zhao, Jingjun

    A new type of gyrotron amplifier, the Phase-coherent Harmonic-multiplying Inverted Gyro-twystron (phigtron) is studied theoretically and experimentally. In the two- stage version (version 1), the phigtron is composed of an input waveguide and an output cavity separated by a drift section. A theory is developed which demonstrates the axial mode-locking and the parametric instabilities of radiation when a beam of gyrating electrons can resonate simultaneously with several axial modes. Theoretical predictions are compared with the two-stage harmonic- multiplying, inverted gyrotwystron experiment. In this experiment, an open waveguide operating at frequencies close to cut-off is used as a resonator. In the resonator, modes with the same transverse structure but different axial structures can be excited. The width of the resonance curves of these modes broadens as the number of axial variations grows. This leads to overlapping of the curves. As a result, phase locking of such modes may occur. Such phase-locked operation in a set of modes with overlapping resonance curves can significantly enlarge the bandwidth of gyrodevices. Furthermore, the technique may be broadly applicable to other devices which employ output cavities. In a three-stage version (version II), the phigtron is composed of an input waveguide, a bunching cavity, and an output cavity separated by drift sections. The experimental results show that the three-stage phigtron has the potential of becoming a high average, high peak power millimeter wave amplifier with good efficiency, high gain, compact driver and medium bandwidth for radar and other advanced applications. At optimized operating statuses, a efficiency of 35%, a gain of 30dB, a peak power of 720kW, and a phase stability of 0.0267°/Volt are achieved, which is state-of-the-art for gyrotron amplifier. The generalized theory of the inverted gyrotwystron, is modified and applied to its simulation. Its results predict a highly efficient (38

  6. Multibrid technology - a significant step to multi-megawatt wind turbines

    Science.gov (United States)

    Siegfriedsen, S.; Böhmeke, G.

    1998-12-01

    To fulfil the significant economic potential for offshore wind energy, it is essential that the largest possible installations must be allowed to come into use. Infrastructure investments for foundations and energy transport are only slightly dependent on the size of the installation, so these costs become proportionally smaller as the installed power output increases. This article puts forward a technologically novel type of development for a drive train design, specifically introduced for a 5 MW installation. The concept is especially suited for offshore application and the components are designed for this purpose. The usual way of modifying onshore plants partially and using them in the sea has been left with the present proposals. The design comprises a single-stage planetary gear, into which the rotor bearing is integrated, and a generator rotating at slow speed. Both components are assembled into a compact unit and are characterized by low wear and complete enclosure. New solutions are also proposed for the cooling of the machinery and the yaw system, offering particular advantages in offshore application. The advantages of the new technology are brought out from system comparisons with both a conventional plant configuration with a multi-stage gear and a high-speed generator, and also a combination with a direct drive generator in the 1·5 MW class. A particular design solution, worked through for a 5 MW installation, is presented and described in detail. At 31 kg kW-1, the specific tower head mass achieves a value that has not previously been realized in this power output class. As a result of the advantages that are brought together by this technology, both investment and operating costs are lowered, particularly for offshore applications. Implementation of this technology can thus provide a further stimulus for progress in wind energy utilization. Copyright

  7. A research on the environmental impact on nearby waters range at low-level radioactive waste water drain from the Dayawan nuclear power station

    International Nuclear Information System (INIS)

    Zhang Chunling; Xu Zitu; Xiao Zhang.

    1987-01-01

    The possible influence of the low-level radioactive waste water drain from the Dayawan nuclear power station upon nearby waters range is discussed. The contents of the article contains the numerical simulation on tidal currents and pollutant diffusion, the calculation of concentration distribution of radioactive contaminants in the water area and of polluted field, and the criterion on radioactive contaminant influence on nearby residents and aquatic biologicals. The result shows that when the Dayawan nuclear power station is on normal operation and after the low-level radioactive waste water has been drained off into the sea, the radioactive concentration is even lower than the natural background radiation just out-side the area of about 4 km 2 round the water outlet. As a result, it won't cause any danger to the water environment. Due to the fact that the concentration of the low-level radioactive waste water from the nuclear power station fully accords with the national standard GB4792-84 and the sea water quality sandard GBH2, 3-82. It is no harm to either residents and aquatic biologicals or ecological balance

  8. Study of the long-range effects of radioactive effluents from nuclear power plants in the Rhine river using 58Co and 60Co as tracers

    International Nuclear Information System (INIS)

    Mundschenk, H.

    1992-01-01

    58 Co and 60 Co were used to trace the long-range effects of nuclear power plants in the aquatic environment of the Rhine river basin. 60 Co, preferentially originating from Swiss installations, could be detected in suspended matter along the river over several hundreds of kilometres, even to the Lower Rhine. This nuclide was transferred to the bottom layer by sedimentation along the whole stretch, especially in high-sedimentation zones, which must be considered to be the so-called 'critical impact areas' for estimation of the radiological effects of the nuclear power plants in the aquatic environment. 58 Co, mainly discharged by French and Swiss installations, could be measured in suspended matter. In sediment samples, however, this nuclide could not, or only occasionally, be detected because transfer to the sediment layer proceeded at a rather low rate relative to the decay rate of 58 Co. From these findings, it follows that impact control of these nuclear power plants should not be restricted to their immediate aquatic environments but should be extended to the whole river. Estimation of the resulting radiation exposure, based on the measured concentrations of 60 Co and 58 Co in sediment assuming standard conditions, showed that the dose rates generated by the most sensitive pathway, and indeed by other nuclides and different pathways, were far below the dose limit defined in German legal regulations and therefore were negligible. (author)

  9. REopt Screenings Catalyze Development of Hundreds of Megawatts of Renewable Energy for Federal Agencies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-04-26

    The Federal Energy Management Program (FEMP) offers renewable energy project assistance to federal agencies, which often begins with a desktop screening to develop a prioritized portfolio of project opportunities. FEMP uses the National Renewable Energy Laboratory's REopt energy planning platform to screen potential renewable energy opportunities at a single site or across a range of sites. REopt helps organizations prioritize the most economi­cally and technically viable projects for further study and identifies the size and mix of technologies that meet the orga­nization's goals at minimum cost, along with the optimal operating strategies.

  10. REopt Screenings Catalyze Development of Hundreds of Megawatts of Renewable Energy for Federal Agencies

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-24

    The U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) offers project assistance to federal agencies, which often begins with a desktop screening to develop a prioritized portfolio of renewable energy project opportunities. FEMP uses the National Renewable Energy Laboratory's (NREL) REopt energy planning platform to quickly and efficiently screen potential renewable energy opportunities at a single site or across a range of sites. REopt helps organizations prioritize the most economically and technically viable projects for further study, and identifies the size and mix of technologies that meet the organization's goals at minimum cost, along with the optimal operating strategies.

  11. Characterization of a Power Electronic Grid Simulator for Wind Turbine Generator Compliance Testing

    DEFF Research Database (Denmark)

    Glasdam, Jakob Bærholm; Gevorgian, V.; Wallen, R.

    2014-01-01

    This paper presents the commissioning results and testing capabilities of a multi-megawatt power electronic grid simulator situated in National Renewable Energy Laboratory’s (NREL’s) new testing facility. The commissioning is done using a commercial type 4 multi-megawatt sized wind turbine...... generator (WTG) installed in NREL’s new 5 MW dynamometer and a kilowatt sized type 1 WTG connected to the existing 2.5 MW dynamometer at NREL. The paper demonstrates the outstanding testing capability of the grid simulator and its application in the grid code compliance evaluation of WTGs including balanced...

  12. High-power corrugates waveguide components for mm-wave fusion heating systems

    International Nuclear Information System (INIS)

    Olstad, R.A.; Doane, J.L.; Moeller, C.P.; O'Neill, R.C.; Di Martino, M.

    1996-10-01

    Considerable progress has been made over the last year in the U.S., Japan, Russia, and Europe in developing high power long pulse gyrotrons for fusion plasma heating and current drive. These advanced gyrotrons typically operate at a frequency in the range 82 GHz to 170 GHz at nearly megawatt power levels for pulse lengths up to 5 s. To take advantage of these new microwave sources for fusion research, new and improved transmission line components are needed to reliably transmit microwave power to plasmas with minimal losses. Over the last year, General Atomics and collaborating companies (Spinner GmbH in Europe and Toshiba Corporation in Japan) have developed a wide variety of new components which meet the demanding power, pulse length, frequency, and vacuum requirements for effective utilization of the new generation of gyrotrons. These components include low-loss straight corrugated waveguides, miter bends, miter bend polarizers, power monitors, waveguide bellows, de breaks, waveguide switches, dummy loads, and distributed windows. These components have been developed with several different waveguide diameters (32, 64, and 89 mm) and frequency ranges (82 GHz to 170 GHz). This paper describes the design requirements of selected components and their calculated and measured performance characteristics

  13. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    Energy Technology Data Exchange (ETDEWEB)

    Tamborini, D., E-mail: davide.tamborini@polimi.it; Portaluppi, D.; Villa, F.; Tosi, A. [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Tisa, S. [Micro Photon Devices, via Stradivari 4, 39100 Bolzano (Italy)

    2014-11-15

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  14. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    International Nuclear Information System (INIS)

    Tamborini, D.; Portaluppi, D.; Villa, F.; Tosi, A.; Tisa, S.

    2014-01-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link

  15. Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

    2005-10-01

    The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs require wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.

  16. Overview of the ATR power supplies

    International Nuclear Information System (INIS)

    Bruno, D.; Soukas, A.; Toldo, F.; Lambiase, R.F.

    1997-01-01

    The AGS to RHIC transfer line (ATR) transports a variety of beams from the Alternating Gradient Synchrotron (AGS) which gets its input from the Booster Synchrotron. In turn, the Booster receives input beams from either a Tandem Van de Graaff (heavy ions) or a Linac (protons). The AGS extracts beam bunches, up to a rate of 30 Hertz, to the ATR which feeds the Relativistic Heavy Ion Collider (RHIC) starting with the sextant test in January of 1997. The ATR is made up of the upgraded U line and the new W, X, and Y lines. A test in 1995 transported beam to the end of the W line. During normal operation, a pulsed switching magnet at the end of the W line will bend the beam into the X line or the Y line so that the two storage rings in RHIC are filled with counter rotating beams. The ATR line is comprised of 80 power supplies (PS's), 17 of which are upgraded AGS PS's. The remaining 63 PS's were newly purchased. These PS's range from bipolar 600 watt linear type trim magnet PS's to 1 Megawatt, thyristor, dipole PS's. Results of the commissioning runs will be presented, as well as descriptions of regulation, filtering, and analog and digital controls

  17. Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing and Stream Power in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2010-01-01

    Earlier onset of springtime weather including earlier snowmelt has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for streamflow management. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud- gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from six streams in the WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed using MODIS snow-cover maps within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period. MODIS-derived snow cover (percent of basin covered) measured on 30 April explains over 89% of the variance in discharge for maximum monthly streamflow in the decade of the 2000s using Spearman rank correlation analysis. We also investigated stream power for Bull Lake Creek Above Bull Lake from 1970 to 2009; a statistically-significant end toward reduced stream power was found (significant at the 90% confidence level). Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period. The

  18. Variations of ankle-foot orthosis-constrained movements increase ankle range of movement while maintaining power output of recumbent cycling.

    Science.gov (United States)

    Hamdan, Puteri N F; Hamzaid, Nur Azah; Usman, Juliana; Islam, Md Anamul; Kean, Victor S P; Wahab, Ahmad K Abdul; Hasnan, Nazirah; Davis, Glen M

    2017-09-15

    Previous research investigated recumbent cycle power output (PO) from the perspective of knee and hip joint biomechanics. However, ankle-foot biomechanics and, in particular, the effect of ankle-foot orthosis (AFO)-constrained movements on cycle PO has not been widely explored. Therefore, the purpose of this study was to determine whether AFOs of a fixed position (FP) and in dorsi-plantarflexion (DPF)-, dorsiflexion (DF)- and plantarflexion (PF)-constrained movements might influence PO during voluntary recumbent cycling exercises. Twenty-five healthy individuals participated in this study. All underwent 1-min cycling at a fixed cadence for each of the AFOs. The peak and average PO of each condition were analyzed. The peak and average PO were 27.2±12.0 W (range 6-60) and 17.2±9.0 W (range 2-36), respectively, during voluntary cycling. There were no significant differences in the peak PO generated by the AFOs (p=0.083). There were also no significant differences in the average PO generated using different AFOs (p=0.063). There were no significant differences in the changes of the hip and knee joint angles with different AFOs (p=0.974 and p=1.00, respectively). However, there was a significant difference in the changes of the ankle joint angle (pcycling in healthy individuals. This finding might serve as a reference for future rehabilitative cycling protocols.

  19. Wind Powering America

    International Nuclear Information System (INIS)

    Flowers, L.; Dougherty, P. J.

    2001-01-01

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately$60 billion investment and$1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced

  20. Wind Powering America

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L. (NREL); Dougherty, P. J. (DOE)

    2001-07-07

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately $60 billion investment and $1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced.

  1. Megawatts with safety

    International Nuclear Information System (INIS)

    Carpenter, E.W.; Dent, K.H.

    1983-01-01

    The comprehensive programme of research and development which backs the AGR stations being built and operated in the UK is described. The programme, operated by the UKAEA, the National Nuclear Corporation, British Nuclear Fuels Limited, the Central Electricity Generating Board and the Scottish Electricity Board, provides comprehensive technical support to the new stations being commissioned and endeavours to reduce costs by maximising plant performance and life without prejudice to the good safety characteristics of the AGR system. The programme is examined under the headings; fuel, core and coolant chemistry, circuit activity, shielding and nuclear heating, performance, corrosion and structural integrity, component development, irradiated fuel storage and transport. (U.K.)

  2. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  3. Design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range. Volume 1. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1980-09-15

    This project was Phase I of a multiphased program for the design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range. Phase I comprised the conceptual design and associated cost estimates of a stationary Stirling engine capable of being fueled by a variety of heat sources, with emphasis on coal firing, followed by the preparation of a plan for implementing the design, fabrication and testing of a demonstration engine by 1985. The development and evaluation of conceptual designs have been separated into two broad categories: the A designs which represent the present state-of-the-art and which are demonstrable by 1985 with minimum technical risk; and the B designs which involve advanced technology and therefore would require significant research and development prior to demonstration and commercialization, but which may ultimately offer advantages in terms of lower cost, better performance, or higher reliability. The majority of the effort in Phase I was devoted to the A designs.

  4. TEC and ultralloys for high-power space systems

    International Nuclear Information System (INIS)

    Morris, J.F.; Jacobson, D.L.

    1985-01-01

    Increasing space-nuclear-reactor (SNR) power requirements force system weights -- and temperatures -- upward. For such growth thermionic energy conversion (TEC) excels in SNR service between tenths of a megawatt and about ten megawatts. But TEC yields much current at low voltage. And as total outputs soar, radiators at 400K for conventional power conditioning (PC) balloon compared with those at 1000K and higher for TEC itself. To reduce PC problems TEC requires contiguous high-temperature inversion or internal electromagnetic-wave generation. Both are possible, potentially practical and probably exploitable through research. However attaining suitable efficiencies with these different operating modes and higher rejection temperatures demands new electrode and additive technologies as well as decreased cesium pressures and increased TEC temperatures. Furthermore such thermal growth necessitates alloys that approach ultimate metal capabilities for space applications

  5. 76 FR 17413 - Kahawai Power 4, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Science.gov (United States)

    2011-03-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Kahawai Power 4, LLC; Notice of Preliminary Permit Application Accepted for... single 1.5- megawatt turbine generator with a maximum hydraulic capacity of 50 cubic-feet-per-second, and...

  6. Pellet bed reactor for multi-modal space power

    International Nuclear Information System (INIS)

    Buden, D.; Williams, K.; Mast, P.; Mims, J.

    1987-01-01

    A review of forthcoming space power needs for both civil and military missions indicates that power requirements will be in the tens of megawatts. The electrical power requirements are envisioned to be twofold: long-duration lower power levels will be needed for station keeping, communications, and/or surveillance; short-duration higher power levels will be required for pulsed power devices. These power characteristics led to the proposal of a multi-modal space power reactor using a pellet bed design. Characteristics desired for such a multimegawatt reactor power source are standby, alert, and pulsed power modes; high-thermal output heat source (approximately 1000 MWt peak power); long lifetime station keeping power (10 to 30 years); high temperature output (1500 K to 1800 K); rapid-burst power transition; high reliability (above 95 percent); and stringent safety standards compliance. The proposed pellet bed reactor is designed to satisfy these characteristics

  7. A proposal to pulse the Bevatron/Bevalac main guide field magnet with SCR power supplies

    International Nuclear Information System (INIS)

    Frias, B.; Alonso, J.; Dwinell, R.; Lothrop, F.

    1989-01-01

    The Bevatron/Bevalac Main Guide Field Power Supply was originally designed to provide a 15,250 Volt DC. at sign 8400 Ampere peak magnet pulse. Protons were accelerated to 6.2 Gev. The 128 Megawatt (MW) pulse required two large motor-generator (MG) sets with 67 ton flywheels to store 680 Megajoules of energy. Ignitron rectifiers are used to rectify the generator outputs. Acceleration of heavy ions results in an operating schedule with a broad range of peak fields. The maximum field of 12.5 kilogauss requires a peak pulse of 80 MW. Acceleration of ions to 1.0 kilogauss requires an 8 MW peak pulse. One MG set can provide pulses below 45 MW. Peak pulses of less than 15 MW are now a large block of the operating schedule. A proposal has been made to replace the existing MG system with eight SCR power supplies for low field operation. The SCR supplies will be powered directly from the Lawrence Berkeley Laboratory's 12.3 KV. power distribution system. This paper describes the many advantages of the plan. 4 refs., 3 figs., 3 tabs

  8. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  9. Fractional Order Fuzzy Control of Nuclear Reactor Power with Thermal-Hydraulic Effects in the Presence of Random Network Induced Delay and Sensor Noise having Long Range Dependence

    OpenAIRE

    Das, Saptarshi; Pan, Indranil; Das, Shantanu

    2013-01-01

    Nonlinear state space modeling of a nuclear reactor has been done for the purpose of controlling its global power in load following mode. The nonlinear state space model has been linearized at different percentage of reactor powers and a novel fractional order (FO) fuzzy proportional integral derivative (PID) controller is designed using real coded Genetic Algorithm (GA) to control the reactor power level at various operating conditions. The effectiveness of using the fuzzy FOPID controller o...

  10. High-Efficiency, High-Power Ka-Band Elliptic-Beam Traveling-Wave-Tube Amplifier for Long-Range Space RF Telecommunications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space telecommunications require amplifiers that are efficient, high-power, wideband, small, lightweight, and highly reliable. Currently, helix traveling wave tube...

  11. A short history of wind power - from its early beginnings to today's installations and its business environment

    International Nuclear Information System (INIS)

    2005-01-01

    This article takes a look at how wind power has developed from its beginnings centuries ago with windmills over early installations in Denmark around 1900 through to the modern wind-parks providing many thousands of megawatts of wind power generated by 100-metre-high units with installed power ratings of up to 5 megawatts. The history of wind power is looked at from the simple windmill to the modern, industrially manufactured mass product. The expected growth of the wind-power market in the twenty-first century is discussed, as are the legal regulations governing their construction and use. Figures are also given on production capacities and installed power in various countries

  12. S-band 300 W pulsed solid state microwave amplifier development for driving high power klystrons for electron accelerators

    International Nuclear Information System (INIS)

    Mohania, Praveen; Shrivastava, Purushottam; Hannurkar, P.R.

    2005-01-01

    S-Band Microwave electron accelerators like microtrons and linear accelerators need pulsed microwaves from few megawatts to tens of megawatts to accelerator the electrons to desired energy and intensity. Klystron tube based driver amplifiers were used to drive the high power klystrons, which need microwave power from few tens of watts to 1 kW depending on tube output power and gain. A endeavour was initiated at Centre for Advanced Technology to develop state of art solid state S-band microwave amplifiers indigenously to drive the klystron tubes. A modular design approach was used and individual modules up to 160 W power levels were developed and tested. Finally combining 160 W modules will give up to 300 W output power. Several more modules can be combined to achieve even high power levels. Present paper describes the developmental efforts of 300 W S-band solid-state amplifiers and related microwave technologies. (author)

  13. State-of-the-art of high power gyro-devices and free electron masers. Update 2007

    International Nuclear Information System (INIS)

    Thumm, M.

    2008-03-01

    Gyrotron oscillators (gyromonotrons) are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. The maximum pulse length of commercially available 140 GHz, megawatt-class gyrotrons employing synthetic diamond output windows is 30 minutes (CPI and European FZK-CRPP-CEA-TED collaboration). The world record parameters of the European 140 GHz gyrotron are: 0.92 MW output power at 30 min. pulse duration, 97.5% Gaussian mode purity and 44% efficiency, employing a single-stage depressed collector for energy recovery. A maximum output power of 1.2 MW in 4.1 s pulses was generated with the JAEA-TOSHIBA 110 GHz gyrotron. The Japan 170 GHz ITER gyrotron holds the energy world record of 2.16 GJ (0.6 MW, 60 min.) and the efficiency record of 55% at 1 MW, 800 s for tubes with an output power of more than 0.5 MW. The Russian 170 GHz ITER gyrotron achieved 0.64 MW with a pulse duration of almost 300 s. Russian gyrotrons for plasma diagnostics or spectroscopy applications deliver P out = 40 kW with τ = 40 μs at frequencies up to 650 GHz (η ≥ 4%) and P out = 1.5 kW at 1 THz (η 2.2%). Gyrotron oscillators have also been successfully used in materials processing. Such technological applications require gyrotrons with the following parameters: f ≥ 24 GHz, P out = 4-50 kW, CW, η ≥ 30%. This paper gives an update of the experimental achievements related to the development of high power gyrotron oscillators for long pulse or CW operation and pulsed gyrotrons for plasma diagnostics. In addition, this work gives a short overview of the present development status of coaxial-cavity multi-megawatt gyrotrons, gyrotrons for technological and spectroscopy applications, relativistic gyrotrons, quasi-optical gyrotrons, fast- and slow-wave cyclotron autoresonance masers (CARMs

  14. State-of-the-art of high power gyro-devices and free electron masers. Update 2006

    International Nuclear Information System (INIS)

    Thumm, M.

    2007-02-01

    Gyrotron oscillators (gyromonotrons) are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. The maximum pulse length of commercially available 140 GHz, megawatt-class gyrotrons employing synthetic diamond output windows is 30 minutes (CPI and European FZK-CRPP-CEA-TED collaboration). The world record parameters of the European 140 GHz gyrotron are: 0.92 MW output power at 30 min. pulse duration, 97.5% Gaussian mode purity and 43% efficiency, employing a single-stage depressed collector for energy recovery. A maximum output power of 1.2 MW in 4.1 s pulses was generated with the JAEA-TOSHIBA 110 GHz gyrotron. The Japan 170 GHz ITER gyrotron holds the energy world record of 2.16 GJ (0.6 MW, 60 min.) for tubes with an output power of more than 0.5 MW. The Russian 170 GHz ITER gyrotron achieved 0.5 MW with a pulse duration of 300 s. Diagnostic gyrotrons deliver P out = 40 kW with τ = 40 μs at frequencies up to 650 GHz (η ≥ 4%). Gyrotron oscillators have also been successfully used in materials processing. Such technological applications require gyrotrons with the following parameters: f ≥ 24 GHz, P out = 4-50 kW, CW, η ≥ 30%. This paper gives an update of the experimental achievements related to the development of high power gyrotron oscillators for long pulse or CW operation and pulsed gyrotrons for plasma diagnostics. In addition, this work gives a short overview of the present development status of coaxial-cavity multi-megawatt gyrotrons, gyrotrons for technological and spectroscopy applications, relativistic gyrotrons, quasi-optical gyrotrons, fast- and slow-wave cyclotron autoresonance masers (CARMs), gyroklystrons, gyro-TWT amplifiers, gyrotwystron amplifiers, gyro-BWO's, gyropeniotrons, magnicons, gyroharmonic converters, free electron

  15. A Software Toolkit to Accelerate Emission Predictions for Turboelectric/Hybrid Electric Aircraft Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Electric propulsion represents an attractive path for reducing overall emissions. For larger commercial aircrafts operating in the mega-watt range, power...

  16. Design and fabrication of micro-hotplates made on a polyimide foil: electrothermal simulation and characterization to achieve power consumption in the low mW range

    International Nuclear Information System (INIS)

    Courbat, J; Canonica, M; Briand, D; De Rooij, N F; Teyssieux, D

    2011-01-01

    The design of ultra-low power micro-hotplates on a polyimide (PI) substrate supported by thermal simulations and characterization is presented. By establishing a method for the thermal simulation of very small scale heating elements, the goal of this study was to decrease the power consumption of PI micro-hotplates to a few milliwatts to make them suitable for very low power applications. To this end, the mean heat transfer coefficients in air of the devices were extracted by finite element analysis combined with very precise thermographic measurements. A simulation model was implemented for these hotplates to investigate both the influence of their downscaling and the bulk micromachining of the polyimide substrate to lower their power consumptions. Simulations were in very good agreement with the experimental results. The main parameters influencing significantly the power consumption at such dimensions were identified and guidelines were defined allowing the design of very small (15 × 15 µm) and ultra-low power heating elements (6 mW at 300 °C). These very low power heating structures enable the realization of flexible sensors, such as gas, flow or wind sensors, for applications in autonomous wireless sensors networks or RFID applications and make them compatible with large-scale production on foil such as roll-to-roll or printing processes.

  17. Non-Power Purchase Agreement (PPA) Options for Financing Solar Deployment at Universities

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-01

    Financing solar using power purchase agreements (PPAs) has facilitated solar deployment of more than 100 megawatts (MW) at universities--as compared to 50 MW facilitated by financing models not using PPAs. This brochure, which overviews existing financing models and funding mechanisms available for solar procurement, focuses on non-PPA financing models. For more information on solar deployment at universities using PPAs, refer to Using Power Purchase Agreements for Solar Deployment at Universities.

  18. State-of-the-art of high power gyro-devices and free electron masers. Update 2015

    International Nuclear Information System (INIS)

    Thumm, Manfred

    2016-01-01

    applications. In addition, this work gives a short overview of the present development status of frequency step-tunable gyrotrons, coaxial-cavity multi-megawatt gyrotrons, gyrotrons for technological and spectroscopy applications, relativistic gyrotrons, large orbit gyrotrons (LOGs), quasi-optical gyrotrons, fast-and slow-wave cyclotron autoresonance masers (CARMs), gyroklystrons, gyro-TWT amplifiers, gyrotwystron amplifiers, gyro-BWOs, gyroharmonic converters, gyropeniotrons, magnicons, free electron masers (FEMs) and of vacuum windows for such high-power mm-wave sources. The highest average powers produced by gyroklystrons and FEMs are 10 kW (94 GHz) and 36 W (15 GHz), respectively. The IR FEL at the Thomas Jefferson National Accelerator Facility in the USA obtained a record average power of 14.2 kW at a wavelength of 1.6 μm. The THz FEL (NOVEL) at the Budker Institute of Nuclear Physics in Russia achieved a maximum average power of 0.5 kW in the wavelength range 50-240 μm (6.00-1.25 THz).

  19. State-of-the-art of high power gyro-devices and free electron masers. Update 2015

    Energy Technology Data Exchange (ETDEWEB)

    Thumm, Manfred [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Hochleistungsimpuls- und Mikrowellentechnik, Programm Fusion

    2016-07-01

    many other applications. In addition, this work gives a short overview of the present development status of frequency step-tunable gyrotrons, coaxial-cavity multi-megawatt gyrotrons, gyrotrons for technological and spectroscopy applications, relativistic gyrotrons, large orbit gyrotrons (LOGs), quasi-optical gyrotrons, fast-and slow-wave cyclotron autoresonance masers (CARMs), gyroklystrons, gyro-TWT amplifiers, gyrotwystron amplifiers, gyro-BWOs, gyroharmonic converters, gyropeniotrons, magnicons, free electron masers (FEMs) and of vacuum windows for such high-power mm-wave sources. The highest average powers produced by gyroklystrons and FEMs are 10 kW (94 GHz) and 36 W (15 GHz), respectively. The IR FEL at the Thomas Jefferson National Accelerator Facility in the USA obtained a record average power of 14.2 kW at a wavelength of 1.6 μm. The THz FEL (NOVEL) at the Budker Institute of Nuclear Physics in Russia achieved a maximum average power of 0.5 kW in the wavelength range 50-240 μm (6.00-1.25 THz).

  20. A Universal High Efficiency Modular Discharge Over a Wide Input/Output Voltage Range for Hall Thruster Power Processing Unit, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes a novel, universal, modular, 2.5kW discharge converter for Hall Effect thruster (HET) Power Processing Unit (PPU). The unique advantages of the...

  1. CSDA range, stopping power and mean penetration depth energy relationships in some hydrocarbons and biologic materials for 10 eV to 100 MeV with the modified Rohrlich-Carlson model

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, Hasan [Ondokuz Mayis University, Department of Physics, Faculty of Sciences and Arts, Samsun (Turkey); Bentabet, Abdelouahab [Bordj Bou Arreridj University, LCVRN, SNVSTU Faculty, El Anasser (Algeria)

    2017-05-15

    In this study, for some hydrocarbons and biological compounds, stopping power formula are presented, being valid for low and intermediate electron energies. In addition, calculation of the continuous slowing down approximation range (CSDA range) from the stopping power is also made. Calculation of the CSDA range for some hydrocarbons: C{sub 2}H{sub 6} (ethane), C{sub 4}H{sub 10} (butane), C{sub 6}H{sub 14} (hexane) C{sub 8}H{sub 18} (octane), C{sub 5}H{sub 5}N{sub 5} (adenine) and C{sub 5}H{sub 5}N{sub 5}O (guanine) have been introduced for incident electrons in the energy range 30 eV to 1 MeV. The range of electrons has been calculated within the continuous slowing down approximation (CSDA) using modified Rohrlich and Carlson formula of stopping power. Besides, we have calculated the mean penetration depths using a spherical geometric model developed by Bentabet (Vacuum 86:1855-1859, 35). The results have been compared with the other theoretical results, Monte Carlo code such as PENELOPE predictions and semi-empirical results. The calculated results of CSDA ranges for electrons in the energy range from 20 eV to 100 MeV are found to be in good agreement to within 10% with available date. (orig.)

  2. CSDA range, stopping power and mean penetration depth energy relationships in some hydrocarbons and biologic materials for 10 eV to 100 MeV with the modified Rohrlich-Carlson model

    Science.gov (United States)

    Gümüş, Hasan; Bentabet, Abdelouahab

    2017-05-01

    In this study, for some hydrocarbons and biological compounds, stopping power formula are presented, being valid for low and intermediate electron energies. In addition, calculation of the continuous slowing down approximation range (CSDA range) from the stopping power is also made. Calculation of the CSDA range for some hydrocarbons: C2H6 (ethane), C4H10 (butane), C6H14 (hexane) C8H18 (octane), C5H5N5 (adenine) and C5H5N5O (guanine) have been introduced for incident electrons in the energy range 30 eV to 1 MeV. The range of electrons has been calculated within the continuous slowing down approximation (CSDA) using modified Rohrlich and Carlson formula of stopping power. Besides, we have calculated the mean penetration depths using a spherical geometric model developed by Bentabet (Vacuum 86:1855-1859, 35). The results have been compared with the other theoretical results, Monte Carlo code such as PENELOPE predictions and semi-empirical results. The calculated results of CSDA ranges for electrons in the energy range from 20 eV to 100 MeV are found to be in good agreement to within 10% with available date.

  3. Compact Probe for Power Detection from the Narrow Side of the Waveguide

    International Nuclear Information System (INIS)

    Kung, C.C.; Bernabei, S.; Gumbas, J.; Greenough, N.; Fredd, E.; Wilson, J.R.; Hosea, J.

    2004-01-01

    Phased array antennas with high directivity have a variety of applications. One of their applications is in RF heating for magnetically confined plasma fusion research. Among these RF heating schemes, waveguide arrays with careful phase control on each waveguide can act as a phased array antenna to deliver megawatts of power for heating fusion plasmas in the lower-hybrid range of frequencies (1 GHz-10 GHz). In order to achieve compactness, it is common to stack reduced height waveguide together to form the waveguide array. As long as the delivered power does not cause arcing in the waveguide, the waveguide height can be quite small. Due to this confined space in a stack of reduced height waveguides, power detection of the incident and reflected wave in the reduced height waveguide is extremely difficult. A new compact probe, which employs current loops, to monitor the incident and reflected wave from the narrow side of the reduced height waveguide has been developed. Its theory and performance will be reported in this paper

  4. Compact Probe for Power Detection from the Narrow Side of the Waveguide

    Energy Technology Data Exchange (ETDEWEB)

    C.C. Kung; S. Bernabei; J. Gumbas; N. Greenough; E. Fredd; J.R. Wilson; J. Hosea

    2004-05-07

    Phased array antennas with high directivity have a variety of applications. One of their applications is in RF heating for magnetically confined plasma fusion research. Among these RF heating schemes, waveguide arrays with careful phase control on each waveguide can act as a phased array antenna to deliver megawatts of power for heating fusion plasmas in the lower-hybrid range of frequencies (1 GHz-10 GHz). In order to achieve compactness, it is common to stack reduced height waveguide together to form the waveguide array. As long as the delivered power does not cause arcing in the waveguide, the waveguide height can be quite small. Due to this confined space in a stack of reduced height waveguides, power detection of the incident and reflected wave in the reduced height waveguide is extremely difficult. A new compact probe, which employs current loops, to monitor the incident and reflected wave from the narrow side of the reduced height waveguide has been developed. Its theory and performance will be reported in this paper.

  5. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Rajive Ganguli

    2012-01-01

    Full Text Available The impact of particle size distribution (PSD of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal, emissions (SO2, NOx, CO, and carbon content of ash (fly ash and bottom ash. The study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. The PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. There was negligible correlation between PSD and the followings factors: efficiency, SO2, NOx, and CO. Additionally, two tests where stack mercury (Hg data was collected, did not demonstrate any real difference in Hg emissions with PSD. The results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal. These plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency and thereby, increasing their marketability.

  6. 10 cm range two-resonator electron accelerator with a bridge circuit of power supply and deep control of energy and beam current

    International Nuclear Information System (INIS)

    Bulykin, V.M.; Vikulov, V.F.; L'vov, E.I.; Milovanov, O.S.; Monakhov, V.A.; Samaryanov, Yu.A.; Smirnov, I.A.; Filatov, A.N.; Shilov, V.K.; Shkol'nikov, Eh.Ya.

    1979-01-01

    Description and nominal parameters of a resonator accelerator of vaciable energy from tens keV to 1 MeV and pulse current from units to hundreds of milliamperes for using in semiconductor defectoscopy and simulation of electrostatic shields under earth conditions are presented. An accelerating system consists of two 10 cm-wave length resonators supplied with HF power through three-decibel directional coupler. A serial autogenerator-1.3 MW pulse power magnetron is a power supply. A vacuum system contains two small zeolite pumps and the HOPD-100 electrocharge pump. An electron gun with the Trenyeva geometry producing 40 keV electron beam and 7A pulse current serves an injector. Control panel is used for distance accelerator control [ru

  7. Design of a high power, resonant converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    This paper presents a design procedure and loss estimation for a high power, medium voltage series resonant converter (entitled SRC#), intended for application in megawatt medium-voltage DC wind turbines. The converter is operated with a novel method of operation, entitled pulse removal technique...... below 1.5% from zero to nominal power, due to soft-switching characteristics. An experimental setup, rated for 10 kW and 5 kV output was assembled to extract losses and validate the semiconductor loss model.......This paper presents a design procedure and loss estimation for a high power, medium voltage series resonant converter (entitled SRC#), intended for application in megawatt medium-voltage DC wind turbines. The converter is operated with a novel method of operation, entitled pulse removal technique...

  8. Broadband terahertz-power extracting by using electron cyclotron maser.

    Science.gov (United States)

    Pan, Shi; Du, Chao-Hai; Qi, Xiang-Bo; Liu, Pu-Kun

    2017-08-04

    Terahertz applications urgently require high performance and room temperature terahertz sources. The gyrotron based on the principle of electron cyclotron maser is able to generate watt-to-megawatt level terahertz radiation, and becomes an exceptional role in the frontiers of energy, security and biomedicine. However, in normal conditions, a terahertz gyrotron could generate terahertz radiation with high efficiency on a single frequency or with low efficiency in a relatively narrow tuning band. Here a frequency tuning scheme for the terahertz gyrotron utilizing sequentially switching among several whispering-gallery modes is proposed to reach high performance with broadband, coherence and high power simultaneously. Such mode-switching gyrotron has the potential of generating broadband radiation with 100-GHz-level bandwidth. Even wider bandwidth is limited by the frequency-dependent effective electrical length of the cavity. Preliminary investigation applies a pre-bunched circuit to the single-mode wide-band tuning. Then, more broadband sweeping is produced by mode switching in great-range magnetic tuning. The effect of mode competition, as well as critical engineering techniques on frequency tuning is discussed to confirm the feasibility for the case close to reality. This multi-mode-switching scheme could make gyrotron a promising device towards bridging the so-called terahertz gap.

  9. A Comprehensive Design Approach of Power Electronic-Based Distributed Generation Units Focused on Power-Quality Improvement

    DEFF Research Database (Denmark)

    Esparza, Miguel; Segundo, Juan; Nunez, Ciro

    2017-01-01

    The undesirable harmonic distortion produced by distributed generation units (DGUs) based on power-electronic inverters presents operating and power-quality challenges in electric systems. The level of distortion depends on the internal elements of the DGUs as well as on the characteristics...... of the grid, loads, and controls, among others. This paper presents a comprehensive method, focused on power-quality indexes and efficiency for the design of microgrids with multiple DGUs interconnected to the ac grid through three-phase multi-Megawatt medium-voltage pulsewidth...

  10. Controversial power station

    International Nuclear Information System (INIS)

    Marcan, P.

    2008-01-01

    When information on plans to build a power station in Trebisov first appeared reactions differed. A 40-billion investment in a town with more than 20% unemployment seemed attractive. But some people did not like the idea of having a power plant located in the town. Around one year after the investment was officially announced TREND returned to Trebisov. In the meantime the investor has managed to overcome one of the biggest obstacles on its way to building a new power plant. The ministry responsible gave the environmental study a positive rating. But objectors are still not sure that everything is fine. They claim that the study misinterprets data and that the ministry did not show expertise when evaluating it. 'Is it possible that a coal power plant located in a town would have twice as many positive effects on peoples' health than negative ones? Why don't we build them everywhere?'asked the chairman of the civic society, Trebisov nahlas, Gejza Gore. The developer of the project, Ceskoslovenska energeticka spolocnost (CES), Kosice is fighting back and claims that their counterpart lacks professional arguments. In the meantime it is preparing for area management proceedings. Trebisov is also involved in the discussion and claims that the town planning scheme does not include such a project. The Ministry of Construction has a different opinion. In the opinion of the Ministry the town planning scheme allows a 885-megawatt power plant to be built only a few hundred meters away from housing estates. (author)

  11. High-power converters and AC drives

    CERN Document Server

    Wu, Bin

    2017-01-01

    This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods.

  12. Power-law spectra found in plant signal of the Borssele NPP. An analysis using wavelet. Application of wavelet for wide-frequency range investigation and investigation (spectrum) for the secondary system signals

    International Nuclear Information System (INIS)

    Suzudo, T.; Verhoef, J.P.; Tuerkcan, E.

    1996-09-01

    Power-law spectra were found in the temperature signals of the secondary loop in the Borssele Nuclear Power Plant, a PWR in the Netherlands. The coolant temperature before the steam generator inlet was found to fluctuate such that its power spectrum density S, follows S∝f -α , where α is ∝4/3. Analyses using PSD suggested that the value of α is roughly constant over years. Detailed analyses were conducted using wavelet, with the discovery that the power-law appears constantly only at around 0.1 Hz, and the estimated α was found between 1.26 and 1.36. The feedwater pressure signal and feedwater flow rate signal in the same frequency range were white noise and Borwnian motion respectively, and the indication of α=4/3 was not found from them. (orig.)

  13. Electric field of the power terrestrial sources observed by microsatellite Chibis-M in the Earth's ionosphere in frequency range 1-60 Hz

    Science.gov (United States)

    Dudkin, Fedir; Korepanov, Valery; Dudkin, Denis; Pilipenko, Vyacheslav; Pronenko, Vira; Klimov, Stanislav

    2015-07-01

    The power line emission (PLE) 50/60 Hz and the Schumann resonance (SR) harmonics were detected by the use of a compact electrical field sensor of length 0.42 m during microsatellite Chibis-M mission in years 2012-2014. The initial orbit of Chibis-M has altitude 500 km and inclination 52°. We present the space distribution of PLE and its connections with the possible overhead power lines. PLE has been recorded both in the shade and sunlit parts of the orbits as opposed to SR which have been recorded only in the nightside of the Earth. The cases of an extra long distance of PLE propagation in the Earth's ionosphere and increased value of SR Q factor have been also observed. These results should stimulate the ionosphere model refinement for ultralow frequency and extremely low frequency electromagnetic wave propagation as well as a study on new possibility of the ionosphere diagnostics.

  14. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Analysis of loss distribution of Conventional Boost, Z-source and Y-source Converters for wide power and voltage range

    DEFF Research Database (Denmark)

    Gadalla, Brwene Salah Abdelkarim; Schaltz, Erik; Siwakoti, Yam Prasad

    2017-01-01

    impedance source converters with their unique advantages as having a high voltage gain in a small range of duty cycle ratio. However, the thermal behaviour of the semiconductor devices and passive elements in the impedance source converter is an important issue from a reliability point of view and it has...

  16. Potential load reductions on megawatt turbines exposed to wakes using individual-pitch wake compensator and trailing-edge flaps

    DEFF Research Database (Denmark)

    Markou, Helen; Andersen, Peter Bjørn; Larsen, Gunner Chr.

    2011-01-01

    Wind turbines located in wind farms experience inflow wind conditions that are substantially modified compared with the ambient wind field that applies for stand-alone wind turbines because of upstream emitted wakes. This has implications not only for the power production of a wind farm, but also...... that typically focus on either load or power prediction. As a consequence, the wake affected inflow field generated by the DWM formulation opens for control strategies for the individual turbine. Two different control approaches for load reduction on the individual turbines are implemented in the multi-body aero-servo-elastic...... tool HAWC2, developed at Risø-DTU in Denmark, and their potential load reduction capabilities compared: (1) full-blade ‘individual-pitch controllers’ acting as wake compensators and (2) controllers using trailing-edge flaps. Information on the wake inflow conditions, induced by upstream turbines...

  17. Development of control system for multi-converter High voltage Power supply using programmable SoC

    Science.gov (United States)

    Dave, Rasesh; Dharangutti, Jagruti; Singh, N. P.; Thakar, Aruna; Dhola, Hitesh; Gajjar, Sandip; Parmar, Darshan; Zaveri, Tanish; Baruah, Ujjwal

    2017-04-01

    Multi-converter based High Voltage Power Supplies (HVPSs) find application in multi-megawatt accelerators, RF systems. Control system for HVPS must be a combination of superior parallel processing, real time performance, fast computation and versatile connectivity. The hardware platform is expected to be robust, easily scalable for future developments with minimal overheads. This paper describes development of control system on Zynq All Programmable SoC (System on Chip) for HVPS. Typical HVPS control mechanism involves communication, generation of precise control signals/pulses for few hundred numbers of chopper and closed loop control in microsecond range for regulated output. Such kind of requirements can be met with Zynq All Programmable SoC, which is a combination of Dual core ARM Cortex A-9 Processing System (PS) and Xilinx 7 series FPGA based Programmable Logic (PL). Deterministic functions of power supply control system such as generation of control signals with precise inter-channel delay of nanosecond range and communication with individual chopper at 100kbps can be implemented on PL. PS should implement corrective tasks based on field feedback received from individual chopper, user interface and OS management that allows to take full advantage of system capabilities. PS and PL are connected with on-chip AXI-4 interface with low latency and higher bandwidth through 9 AXI ports. Typically PS boots first, this ensures secure booting and prevents external environment from tampering PL.

  18. Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America using the Switch Electric Power Sector Planning Model: California's Carbon Challenge Phase II, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey

    2014-01-01

    This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was

  19. Static and dynamic high power, space nuclear electric generating systems

    International Nuclear Information System (INIS)

    Wetch, J.R.; Begg, L.L.; Koester, J.K.

    1985-01-01

    Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed. 10 references

  20. Thermoeconomic Modeling and Parametric Study of Hybrid Solid Oxide Fuel Cell â Gas Turbine â Steam Turbine Power Plants Ranging from 1.5 MWe to 10 MWe

    OpenAIRE

    Arsalis, Alexandros

    2007-01-01

    Detailed thermodynamic, kinetic, geometric, and cost models are developed, implemented, and validated for the synthesis/design and operational analysis of hybrid solid oxide fuel cell (SOFC) â gas turbine (GT) â steam turbine (ST) systems ranging in size from 1.5 MWe to 10 MWe. The fuel cell model used in this thesis is based on a tubular Siemens-Westinghouse-type SOFC, which is integrated with a gas turbine and a heat recovery steam generator (HRSG) integrated in turn with a steam turbi...

  1. The acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials.

    Science.gov (United States)

    Rdzanek, Wojciech P

    2016-06-01

    This study deals with the classical problem of sound radiation of an excited clamped circular plate embedded into a flat rigid baffle. The system of the two coupled differential equations is solved, one for the excited and damped vibrations of the plate and the other one-the Helmholtz equation. An approach using the expansion into radial polynomials leads to results for the modal impedance coefficients useful for a comprehensive numerical analysis of sound radiation. The results obtained are accurate and efficient in a wide low frequency range and can easily be adopted for a simply supported circular plate. The fluid loading is included providing accurate results in resonance.

  2. Indoor noise annoyance due to 3-5 megawatt wind turbines-An exposure-response relationship.

    Science.gov (United States)

    Hongisto, Valtteri; Oliva, David; Keränen, Jukka

    2017-10-01

    The existing exposure-response relationships describing the association between wind turbine sound level and noise annoyance concern turbine sizes of 0.15-3.0 MW. The main purpose of this study was to determine a relationship concerning turbines with nominal power of 3-5 MW. A cross-sectional survey was conducted around three wind power areas in Finland. The survey involved all households within a 2 km distance from the nearest turbine. Altogether, 429 households out of 753 participated. The households were exposed to wind turbine noise having sound levels within 26.7-44.2 dB L Aeq . Standard prediction methods were applied to determine the sound level, L Aeq , in each participant's yard. The measured sound level agreed well with the predicted sound level. The exposure-response relationship was derived between L Aeq outdoors and the indoor noise annoyance. The relationship was in rather good agreement with two previous studies involving much smaller turbines (0.15-1.5 MW) under 40 dB L Aeq . The Community Tolerance Level (CTL), CTL 20  = 50 dB, was 3 dB lower than for two previous studies. Above 40 dB, a small number of participants prevented a reliable comparison to previous studies.

  3. Assessment of excitation mechanisms and structural flexibility influence in excitation propagation in multi-megawatt wind turbine gearboxes: Experiments and flexible multibody model optimization

    Science.gov (United States)

    Helsen, Jan; Marrant, Ben; Vanhollebeke, Frederik; De Coninck, Filip; Berckmans, Dries; Vandepitte, Dirk; Desmet, Wim

    2013-10-01

    Reliable gearbox design calculations require sufficient insight in gearbox dynamics, which is determined by the interaction between the different excitation mechanisms and the gearbox modal behavior. Both external gearbox excitation originating from the wind turbine drive train and internal gearbox excitation are important. Moreover with regard to the modal behavior the different gearbox structural components: planet carrier, shafts and housing are of influence. The main objective of this article is the experimental investigation of the interaction between the different excitation mechanisms and the gearbox modal behavior. The insights gathered are used to prove the need for accurate gear mesh representation and structural flexibility within the corresponding flexible multibody gearbox simulation model. Experiments are conducted on a dynamic 13.2 MW test facility on which two multi-megawatt wind turbine gearboxes are placed back to back and subjected to a speed run-up. Measurement sensors consist of bearing displacement sensors, torque sensors, encoders and accelerometers distributed over the gearbox. Excitation order amplitudes on different locations in the gearbox are determined by means of a Time Varying Discrete Fourier Transform (TVDFT) order tracking on the measured sensor signals. Moreover the propagation of this excitation throughout the gearbox is assessed. Relating the orders to the corresponding excitation source allows the definition of order influence regions within the gearbox. The interaction between the gear mesh order excitation and structural flexibility is shown.

  4. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Holst, Kent (Iowa Stored Energy Plant Agency, Traer, IA); Huff, Georgianne; Schulte, Robert H. (Schulte Associates LLC, Northfield, MN); Critelli, Nicholas (Critelli Law Office PC, Des Moines, IA)

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  5. SA powers forward

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    This year's South Australian Power and Gas Conference, held in April, brought together the regulators, generators, distributors and retailers from the electricity and gas industries to discuss the challenges that face energy producers and consumers. Like the rest of the nation, South Australia is deeply involved in a major phase of change in its energy markets. The onset of deregulation, privatisation, a new regulatory regime and the approaching full contestability of electricity and gas consumers in a national market is providing exciting times for all concerned. Simultaneously investments in new infrastructure are providing extra capacity and load. There are plans brewing for the expansion of the Moomba to Adelaide pipeline, the 250MW gas fired Pelican Point power station is about to come online, South Australia's electricity interconnection with the eastern States is being enhanced and a large scale magnesium plant has been approved for development at Port Pirie. All of this was discussed against a background of dramatic summer peak power shortages that almost crippled Adelaide in December 1999, and Premier John Olsen's recent Greenhouse Gas Direction Statement. The Statement notes that South Australia's emissions per megawatt/hour are already below the national average because a large portion of its generation runs on natural gas. However South Australians still contribute more than 30 million tonnes of carbon dioxide into the atmosphere each year - about 20 tonnes for every person in the State and 7.4% of Australia's total greenhouse gas emissions

  6. Application range affected by software failures in safety relevant instrumentation and control systems of nuclear power plants; Auswirkungsbereiche von Softwarefehlern in sicherheitstechnisch wichtigen Einrichtungen von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Jopen, Manuela; Mbonjo, Herve; Sommer, Dagmar; Ulrich, Birte

    2017-03-15

    This report presents results that have been developed within a BMUB-funded research project (Promotion Code 3614R01304). The overall objective of this project was to broaden the knowledge base of GRS regarding software failures and their impact in software-based instrumentation and control (I and C) systems. To this end, relevant definitions and terms in standards and publications (DIN, IEEE standards, IAEA standards, NUREG publications) as well as in the German safety requirements for nuclear power plants were analyzed first. In particular, it was found that the term ''software fault'' is defined differently and partly contradictory in the considered literature sources. For this reason, a definition of software fault was developed on the basis of the software life cycle of software-based I and C systems within the framework of this project, which takes into account the various aspects relevant to software faults and their related effects. It turns out that software failures result from latent faults in a software-based control system, which can lead to a non-compliant behavior of a software-based I and C system. Hereby a distinction should be made between programming faults and specification faults. In a further step, operational experience with software failures in software-based I and C systems in nuclear facilities and in nonnuclear sector was investigated. The identified events were analyzed with regard to their cause and impacts and the analysis results were summarized. Based on the developed definition of software failure and on the COMPSIS-classification scheme for events related to software based I and C systems, the COCS-classification scheme was developed to classify events from operating experience with software failures, in which the events are classified according to the criteria ''cause'', ''affected system'', ''impact'' and ''CCF potential''. This

  7. Ikea and the sun. The furniture giant operates photovoltaic power plants already for years; Ikea und die Sonne. Der Moebelgigant betreibt schon seit Jahren Photovoltaikanlagen. Nun will er sie auch verkaufen

    Energy Technology Data Exchange (ETDEWEB)

    Siemer, Jochen

    2013-01-15

    The Swedish furniture giant IKEA operates large photovoltaic power plants in many countries. In Germany alone, photovoltaic power plants with a performance of nearly 5 megawatts are installed. Now, Ikea stores also want to offer photovoltaic power systems for the final customer in Great Britain. This announcement caused a commotion at the end of the last year. It is speculated eagerly whether this is the beginning of a mighty competition for the solar installers in Europe.

  8. Telemetry-Based Ranging

    Science.gov (United States)

    Hamkins, Jon; Vilnrotter, Victor A.; Andrews, Kenneth S.; Shambayati, Shervin

    2011-01-01

    A telemetry-based ranging scheme was developed in which the downlink ranging signal is eliminated, and the range is computed directly from the downlink telemetry signal. This is the first Deep Space Network (DSN) ranging technology that does not require the spacecraft to transmit a separate ranging signal. By contrast, the evolutionary ranging techniques used over the years by NASA missions, including sequential ranging (transmission of a sequence of sinusoids) and PN-ranging (transmission of a pseudo-noise sequence) whether regenerative (spacecraft acquires, then regenerates and retransmits a noise-free ranging signal) or transparent (spacecraft feeds the noisy demodulated uplink ranging signal into the downlink phase modulator) relied on spacecraft power and bandwidth to transmit an explicit ranging signal. The state of the art in ranging is described in an emerging CCSDS (Consultative Committee for Space Data Systems) standard, in which a pseudo-noise (PN) sequence is transmitted from the ground to the spacecraft, acquired onboard, and the PN sequence is coherently retransmitted back to the ground, where a delay measurement is made between the uplink and downlink signals. In this work, the telemetry signal is aligned with the uplink PN code epoch. The ground station computes the delay between the uplink signal transmission and the received downlink telemetry. Such a computation is feasible because symbol synchronizability is already an integral part of the telemetry design. Under existing technology, the telemetry signal cannot be used for ranging because its arrival-time information is not coherent with any Earth reference signal. By introducing this coherence, and performing joint telemetry detection and arrival-time estimation on the ground, a high-rate telemetry signal can provide all the precision necessary for spacecraft ranging.

  9. The BPX electrical power system

    International Nuclear Information System (INIS)

    Huttar, D.; Bronnev, G.; Fromm, N.

    1992-01-01

    This paper reports on the Burning Plasma Experiment (BPX) which when operating at a toroidal field of 8.1 tesla and a plasma current of 10.6 megamps, requires peak power of 1235 megawatts and total pulse energy of over 21 gigajoules. These requirements are twice and over four times the corresponding figures for the Tokamak Fusion Test Reactor (TFTR), respectively. The design of the BPX power system has evolved, along with the tokamak, over a period of several years and has included studies of several alternative approaches. The reapplication of the existing TFTR power and energy facilities has been basic to all approaches. Among the new sources of pulse power and energy that have been considered are: direct utility grid pulsing, new flywheel units, and lead-acid storage batteries. The toroidal field power requirements are the greatest of the BPX subsystems and, fortunately, are sufficiently free of dynamics to allow the consideration of all approaches. Additional design challenges were presented by the multiplicity of plasma control scenarios incorporated in the BPX physics planning and the power response demanded of the plasma position control system

  10. Characterization of a Power Electronic Grid Simulator for Wind Turbine Generator Compliance Testing

    DEFF Research Database (Denmark)

    Glasdam, Jakob Bærholm; Gevorgian, V.; Wallen, R.

    2014-01-01

    This paper presents the commissioning results and testing capabilities of a multi-megawatt power electronic grid simulator situated in National Renewable Energy Laboratory’s (NREL’s) new testing facility. The commissioning is done using a commercial type 4 multi-megawatt sized wind turbine...... generator (WTG) installed in NREL’s new 5 MW dynamometer and a kilowatt sized type 1 WTG connected to the existing 2.5 MW dynamometer at NREL. The paper demonstrates the outstanding testing capability of the grid simulator and its application in the grid code compliance evaluation of WTGs including balanced...... and unbalanced voltage low and high fault ride-through. Furthermore, the paper provides insight into the performance of commercial WTGs during both normal and abnormal operating conditions....

  11. Critical human-factors issues in nuclear-power regulation and a recommended comprehensive human-factors long-range plan. Critical discussion of human factors areas of concern

    International Nuclear Information System (INIS)

    Hopkins, C.O.; Snyder, H.L.; Price, H.E.; Hornick, R.J.; Mackie, R.R.; Smillie, R.J.; Sugarman, R.C.

    1982-08-01

    This comprehensive long-range human factors plan for nuclear reactor regulation was developed by a Study Group of the Human Factors Society, Inc. This Study Group was selected by the Executive Council of the Society to provide a balanced, experienced human factors perspective to the applications of human factors scientific and engineering knowledge to nuclear power generation. The report is presented in three volumes. Volume 1 contains an Executive Summary of the 18-month effort and its conclusions. Volume 2 summarizes all known nuclear-related human factors activities, evaluates these activities wherever adequate information is available, and describes the recommended long-range (10-year) plan for human factors in regulation. Volume 3 elaborates upon each of the human factors issues and areas of recommended human factors involvement contained in the plan, and discusses the logic that led to the recommendations

  12. Combined cycle power plant with indirect dry cooling tower forecasting using artificial neural network

    Directory of Open Access Journals (Sweden)

    Asad Dehghani Samani

    2017-07-01

    Full Text Available Application of Artificial Neural Network (ANN in modeling of combined cycle power plant (CCPP with dry cooling tower (Heller tower has been investigated in this paper. Prediction of power plant output (megawatt under different working conditions was made using multi-layer feed-forward ANN and training was performed with operational data using back-propagation. Two ANN network was constructed for the steam turbine (ST and the main cooling system(MCS. Results indicate that the ANN model is effective in predicting the power plant output with good accuracy.

  13. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  14. Resource contingency program - Oregon. Final environmental impact statement, Hermiston power project

    International Nuclear Information System (INIS)

    1995-09-01

    The Bonneville Power Administration (BPA) has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. In 1990, to cover the outer range of potential load growth with new resources, BPA embarked upon the Resource Contingency Program (RCP). Instead of buying or building generating plants now, BPA has purchased options to acquire power later, if and when it is needed. The decision to acquire any of these option energy projects to fulfill statutory supply obligations will be influenced by Federal system load growth, the outcome of BPA's Business Plan, required operational changes in Columbia-Snake River Hydroelectric facilities, and the loss of major generating resources. In September 1993, three option development agreements were signed with three proposed natural gas-fired, combined cycle combustion turbine CT projects near Chehalis and Satsop, Washington, and near Hermiston, Oregon. Together these three projects could supply BPA with 1,090 average megawatts (aMW) of power. Under these agreements, sponsors are obtaining permits and conducting project design work, and BPA is completing this EIS process. In September 1993, BPA published a Notice of Intent to prepare an environmental impact statement (EIS) on these three proposed gas-fired combustion turbine projects and held public scoping meetings in October 1993 at each site. In February 1994, BPA released an Implementation Plan on the proposed scope of the EIS. A draft EIS on the three proposed projects was published in February 1995. The impacts of the Chehalis and Satsop projects located in Washington State will be covered in one EIS document, while the impacts of the Hermiston project located in Oregon are covered in this final EIS document. It is BPA's intent to continue to base the analysis of impacts on the assumption that all three projects may be constructed at some point in the future

  15. Resource Contingency Program - Oregon : Final Environmental Impact Statement, Hermiston Power Project.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-09-01

    The Bonneville Power Administration (BPA) has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. In 1990, to cover the outer range of potential load growth with new resources, BPA embarked upon the Resource Contingency Program (RCP). Instead of buying or building generating plants now, BPA has purchased options to acquire power later, if and when it is needed. The decision to acquire any of these option energy projects to fulfill statutory supply obligations will be influenced by Federal system load growth, the outcome of BPA`s Business Plan, required operational changes in Columbia-Snake River Hydroelectric facilities, and the loss of major generating resources. In September 1993, three option development agreements were signed with three proposed natural gas-fired, combined cycle combustion turbine CT projects near Chehalis and Satsop, Washington, and near Hermiston, Oregon. Together these three projects could supply BPA with 1,090 average megawatts (aMW) of power. Under these agreements, sponsors are obtaining permits and conducting project design work, and BPA is completing this EIS process. In September 1993, BPA published a Notice of Intent to prepare an environmental impact statement (EIS) on these three proposed gas-fired combustion turbine projects and held public scoping meetings in October 1993 at each site. In February 1994, BPA released an Implementation Plan on the proposed scope of the EIS. A draft EIS on the three proposed projects was published in February 1995. The impacts of the Chehalis and Satsop projects located in Washington State will be covered in one EIS document, while the impacts of the Hermiston project located in Oregon are covered in this final EIS document. It is BPA`s intent to continue to base the analysis of impacts on the assumption that all three projects may be constructed at some point in the future.

  16. The role of nuclear power in the world

    International Nuclear Information System (INIS)

    Goodman, E.I.

    1977-01-01

    The role of nuclear energy in the world is discussed from the near term and long term. For the period through the mid 1980s sufficient nuclear capacity is considered critical to forestall serious shortages of oil and possible high prices leading to economic stagnation. Over the next 30-35 years it is estimated that world nuclear power will reach a capacity of approx. 3 million megawatts electrical when world electrical capacity will be about 8 million megawatts. With this nuclear capacity and if a annual growth rate of 5% is achieved for coal, oil and gas would remain at their present rate of consumption and would be increasingly reserved for specialized uses where substitution is not feasible. Caution is stressed, however, especially in using long term forecasts except for overall guidance and even in short term projections frequent up-dating and revision is recommended. The factors which have inhibited nuclear power growth are discussed including: 1) rapidly rising capital costs and financing problems, 2) rising and uncertain fuel cycle costs, 3) uncertainties in licensing and public acceptance. Despite the foregoing, nuclear power still retains an economic edge over fossil-fired units in substantial portions of the world. Assuming satisfactory solution of its major problems it is estimated that about 27-40% of the electrical capacity of developing countries will be nuclear by the year 2000. This nuclear capacity will comprise approx. 20% of the world's total nuclear power capacity around the turn of the century. (orig.) [de

  17. Power curve measurement with a nacelle mounted lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Friis Pedersen, Troels; Courtney, Michael

    2014-01-01

    Nacelle-based lidars are an attractive alternative to conventional mast base reference wind instrumentation where the erection of a mast is expensive, for example offshore. In this paper, the use of this new technology for the specific application of wind turbine power performance measurement...... is tested. A pulsed lidar prototype, measuring horizontally, was installed on the nacelle of a multi-megawatt wind turbine. A met mast with a top-mounted cup anemometer standing at two rotor diameters in front of the turbine was used as a reference. After a data-filtering step, the comparison of the 10 min...

  18. Using Power Purchase Agreements for Solar Deployment at Universities

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, Jenny; O' Shaughnessy, Eric

    2016-02-24

    More than 60 universities have used solar power purchase agreements (PPAs) to deploy more than 100 megawatts of solar PV on campuses around the country. This webinar is intended for university financial planners and other stakeholders who are assessing the financial aspects of deploying solar. The speakers will provide an overview of how universities are using PPAs and key PPA components. In addition, they will discuss the process of using PPAs, why PPAs make sense for campus solar deployment, and the benefits and challenges for universities. Tools and other resources will be shared to help universities interested in using PPAs for campus solar deployment.

  19. Very high power THz radiation at Jefferson Lab

    International Nuclear Information System (INIS)

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

    2002-01-01

    We report the production of high power (20 watts average, ∼;1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source with one based on ultrafast laser techniques, and in fact the radiation has qualities closely analogous to that produced by such sources, namely that it is spatially coherent, and comprises short duration pulses with transform-limited spectral content. In contrast to conventional THz radiation, however, the intensity is many orders of magnitude greater due to the relativistic enhancement

  20. Wind power: Areva acquires a 51% stake in Multibrid

    International Nuclear Information System (INIS)

    2007-01-01

    AREVA announced the acquisition of a 51% stake in Multibrid, a designer and manufacturer of multi-megawatt off-shore wind turbines based in Germany. With this acquisition, AREVA has entered into a joint venture with Prokon Nord, a German off-shore wind turbine and biomass plant developer and current owner of Multibrid. This transaction values Multibrid at euro 150 million. AREVA plans to rapidly further develop Multibrid's activities by giving the company access to its industrial resources, financial base and international commercial network. In return, Multibrid will provide AREVA with its leading-edge technology which, developed for 5 MW turbines, can achieve a very high output while reducing operating costs thanks to a simplified maintenance system. With this stake in Multibrid, AREVA aims to increase its presence on the offshore wind market that meets land settlement requirements and that should grow significantly in the years to come (from 300 MW in Europe today to an expected 1400 MW by 2011). As an exclusive supplier of Prokon Nord, Multibrid will participate in projects such as Borkum West (30 MW), the first offshore project in Germany, Borkum West 2 (400 MW), and Cote d'Albatre (105 MW), the first offshore wind farm project in France. The stake in Multibrid strengthens AREVA's strategic positioning on the CO 2 -free energy market, thanks to complementary solutions ranging from nuclear technologies to renewables. A number of recent achievements illustrate this strategy: - bio-energy (crucial energy supply in numerous rural areas): delivery of turnkey biomass power plants; ongoing construction of 10 plants in India, Thailand and Brazil; future development plans in fast-growing regions, such as Latin America; - wind power: Multibrid adds to the Group's stake in REpower and to its partnership with Suzlon for which AREVA is the number one supplier of transmission and distribution solutions for wind power; - hydrogen and fuel cells: design and manufacture of

  1. Assessment of the Impacts of Green Mountain Power Corporation's Wind Power Facility on Breeding and Migrating Birds in Searsburg, Vermont: July 1996--July 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kerlinger, P.

    2002-03-01

    A 6-megawatt, 11 turbine wind power development was constructed by Green Mountain Power Corporation in Searsburg, southern Vermont, in 1996. To determine whether birds were impacted, a series of modified BA (Before, After) studies was conducted before construction (1993-1996), during (1996), and after (1997) construction on the project site. The studies were designed to monitor changes in breeding bird community (species composition and abundance) on the site, examine the behavior and numbers of songbirds migrating at night over the site and hawks migrating over the site in daylight, and search for carcasses of birds that might have collided with the turbines.

  2. Normative Power

    DEFF Research Database (Denmark)

    The social sciences have many different understandings of ‘normative power', but in European Union (EU) studies normative power has three particular meanings. The first meaning of normative power is its emphasis on normative theory, that is, how we judge and justify truth claims in social science....... The second meaning of normative power is as a form of power that is ideational rather than material or physical. The third meaning of normative power is as a characterisation of an ideal type of international actor. Empirical studies of normative forms of power have analysed both the causal and constitutive...... effects of EU relations with the world in areas ranging from inter-regional relations, through traditional diplomacy, to environmental politics. Research areas of particular interest include the study of the interplay between physical, material and normative forms of power, as well as the constitutive...

  3. Licensing process of the digital application: Nuclear measurement analysis and control power range neutron monitor (NUMAC-PRNM) system for their implementation in the Laguna Verde NPP unit 2

    International Nuclear Information System (INIS)

    Ledesma-Carrion, R.; Hernandez-Cortes, A.

    1998-01-01

    This paper describe the licensing process performed by the Mexican Regulatory Commission (CNSNS) for the NUclear Measurement Analysis and Control-Power Range Neutron Monitor (NUMAC-PRNM) system, which sends trip signals to the Reactor Protection System (RPS), and has been implemented in the Laguna Verde Nuclear Power Plant Unit (LVNPP-U2) before its first fuel loading. The review and approval process was performed with the advise role of the United States of America Nuclear Regulatory Commission (USNRC): the regulatory frame applied includes the Code of Federal Regulation, some Regulatory Guides and some Industrial Standards. The evaluation covered topics related with the software, hardware and firmware specifications, design, tests, training, maintenance and operational experience. After the revision of these topics, the NUMAC-PRNM was approved through the CNSNS Safety Evaluation Report (SER) and then installed in the LVNPP-U2. This paper include a description of the regulatory requirements to this digital application, the safety concerns involved, the compliance to these requirements by the utility and the results of the CNSNS evaluation, mentioning the experience acquired during the process and the method used to perform the evaluation. Additionally, the interface between the designer-vendor, the utility and the regulatory body during the licensing process is commented. Finally, the conclusion is presented, taking into account the operational experience of the NUMAC applications implemented in the LVNPP. It also gives the future regulatory tasks related to the assessment of digital performance equipment and upgrades. (author)

  4. Nuclear power: key to man's extraterrestrial civilization

    Energy Technology Data Exchange (ETDEWEB)

    Angelo, J.A. Jr.; Buden, D.

    1982-01-01

    The start of the Third Millennium will be highlighted by the establishment of man's extraterrestrial civilization with three technical cornerstones leading to the off-planet expansion of the human resource base. These are (1) the availability of compact energy sources for power and propulsion, (2) the creation of permanent manned habitats in space, and (3) the ability to process materials anywhere in the Solar System. In the 1990s and beyond, nuclear reactors could represent the prime source of both space power and propulsion. The manned and unmanned space missions of tomorrow will demand first kilowatt and then megawatt levels of power. Various nuclear power plant technologies will be discussed, with emphasis on derivatives from the nuclear rocket technology.

  5. Advancements of ultra-high peak power laser diode arrays

    Science.gov (United States)

    Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.

    2018-02-01

    Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.

  6. Environmental and industrial applications of pulsed power systems

    Energy Technology Data Exchange (ETDEWEB)

    Neau, E.L.

    1993-10-01

    The technology base formed by the development of high peak power simulators, laser drivers, free electron lasers (FEL`s), and Inertial Confinement Fusion (ICF) drivers from the early 60`s through the late 80`s is being extended to high average power short-pulse machines with the capabilities of performing new roles in environmental cleanup applications and in supporting new types of industrial manufacturing processes. Some of these processes will require very high average beam power levels of hundreds of kilowatts to perhaps megawatts. In this paper we briefly discuss new technology capabilities and then concentrate on specific application areas that may benefit from the high specific energies and high average powers attainable with short-pulse machines.

  7. Environmental and industrial applications of pulsed power systems

    International Nuclear Information System (INIS)

    Neau, E.L.

    1993-01-01

    The technology base formed by the development of high peak power simulators, laser drivers, free electron lasers (FEL's), and Inertial Confinement Fusion (ICF) drivers from the early 60's through the late 80's is being extended to high average power short-pulse machines with the capabilities of performing new roles in environmental cleanup applications and in supporting new types of industrial manufacturing processes. Some of these processes will require very high average beam power levels of hundreds of kilowatts to perhaps megawatts. In this paper we briefly discuss new technology capabilities and then concentrate on specific application areas that may benefit from the high specific energies and high average powers attainable with short-pulse machines

  8. Fuel from the Sky: Solar Power's Potential for Western Energy Supply

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, A.

    2002-07-01

    A reliable and affordable supply of electricity is essential to protect public health and safety and to sustain a vigorous economy in the West. Renewable energy in the form of wind or solar provides one of the means of meeting the demand for power while minimizing adverse impacts on the environment, increasing fuel diversity, and hedging against fuel price volatility. Concentrating solar power (CSP) is the most efficient and cost-effective way to generate electricity from the sun. Hundreds of megawatts of CSP solar-generating capacity could be brought on-line within a few years and make a meaningful contribution to the energy needs of the West.

  9. Electric Power Monthly, June 1988

    International Nuclear Information System (INIS)

    1988-06-01

    The data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The Energy Information Administration (EIA) collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The Electric Power Monthly contains information from three data sources: the Form EIA-759, 'Monthly Power Plant Report'; the Federal Energy Regulatory Commission (FERC) Form 423, 'Monthly Report of Cost and Quality of Fuels for Electric Plants ; and the Form EIA-826, M onthly Electric Sales and Revenue Report with State Distributions'. The Form EIA-759 collects data from all operators of electric utility generating plants (except those having plants solely on standby), approximately 800 of the more than 3,200 electric utilities in the United States. To reduce the reporting burden for utilities, the FERC Form 423 and Form EIA-826 data are based on samples, which cover less than 100 percent of all central station generating utilities. The FERC Form 423 collects data from steam-electric power generating plants with a combined installed nameplate capacity of 50 megawatts or larger (approximately 230 electric utilities). The 50-megawatt threshold was established by FERC. The Form EIA-826 collects sales and revenue data in the residential, commercial, industrial, and other sectors of the economy. Other sales data collected include public street and highway lighting, other sales to public authorities, sales to railroads and railways, and interdepartmental sales. Respondents to the Form EIA-826 were statistically chosen and include approximately 225 privately and publicly owned electric utilities from a universe of more than 3,200 utilities. The sample selection for the Form EIA-826 is evaluated annually. Currently, the Form EIA-826 data account for approximately 83 percent

  10. Space power facility readiness for Space Station power system testing

    Science.gov (United States)

    Smith, Roger L.

    1995-02-01

    This document provides information which shows that the NASA Lewis Research Center's Space Power Facility (SPF) will be ready to execute the Space Station electric power system thermal vacuum chamber testing. The SPF is located at LeRC West (formerly the Plum Brook Station), Sandusky, Ohio. The SPF is the largest space environmental chamber in the world, having an inside horizontal diameter of 100 ft. and an inside height at the top of the hemisphere of 122 ft. The vacuum system can achieve a pressure lower than 1 x 10(exp -5) Torr. The cryoshroud, cooled by gaseous nitrogen, can reach a temperature of -250 F, and is 80 ft. long x 40 ft. wide x 22 ft. high. There is access to the chamber through two 50 ft. x 50 ft. doors. Each door opens into an assembly area about 150 ft. long x 70 ft. wide x 80 ft. high. Other available facilities are offices, shop area, data acquisition system with 930 pairs of hard lines, 7 megawatts of power to chamber, 245K gal. liquid nitrogen storage, cooling tower, natural gas, service air, and cranes up to 25 tons.

  11. Measuring flow and pressure of lithium coolant under developmental testing of a high-temperature cooling system of a space nuclear power plant

    Science.gov (United States)

    Sobolev, V. Ya.; Sinyavsky, V. V.

    2014-12-01

    Sub-megawatt space NPP use lithium as a coolant and niobium alloy as a structural material. In order to refine the lithium-niobium technology of the material and design engineering, lithium-niobium loops were worked out in RSC Energia, and they were tested at a working temperature of lithium equal to 1070-1300 K. In order to measure the lithium flow and pressure, special gauges were developed, which made possible the calibration and checkout of the loops without their dismantling. The paper describes the architecture of the electromagnetic flowmeter and the electromagnetic vibrating-wire pressure transducer (gauge) for lithium coolant in the nuclear power plant cooling systems. The operating principles of these meters are presented. Flowmeters have been developed for channel diameters ranging from 10 to 100 mm, which are capable of measuring lithium flows in the range of 0.1 to 30 L/s with the error of 3% for design calibration and 1% for volume graduation. The temperature error of the pressure transducers does not exceed 0.4% per 100 K; the nonlinearity and hysteresis of the calibration curve do not exceed 0.3 and 0.4%, respectively. The transducer applications are illustrated by the examples of results obtained from tests on the NPP module mockup and heat pipes of a radiation cooler.

  12. Flicker Mitigation by Active Power Control of Variable-Speed Wind Turbines With Full-Scale Back-to-Back Power Converters

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Zhaoan

    2009-01-01

    /EMTDC. Flicker emission of this system is investigated. Reactive power compensation is mostly adopted for flicker mitigation. However, the flicker mitigation technique shows its limits, when the grid impedance angle is low in some distribution networks. A new method of flicker mitigation by controlling active...... power is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the dc-link voltage of the full-scale converter. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation controller......Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation.This paper presents a simulation model of a megawatt-level variablespeed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of PSCAD...

  13. Design and development of Stirling Engines for stationary power generation applications in the 500 to 3000 hp range. Subtask 1A report: state-of-the-art conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    The first portion of the Conceptual Design Study of Stirling Engines for Stationary Power Application in the 500 to 3000 hp range which was aimed at state-of-the-art stationary Stirling engines for a 1985 hardware demonstration is summarized. The main goals of this effort were to obtain reliable cost data for a stationary Stirling engine capable of meeting future needs for total energy/cogeneration sysems and to establish a pragmatic and conservative base design for a first generation hardware. Starting with an extensive screening effort, 4 engine types, i.e., V-type crank engine, radial engine, swashplate engine, and rhombic drive engine, and 3 heat transport systems, i.e., heat pipe, pressurized gas heat transport loop, and direct gas fired system, were selected. After a preliminary layout cycle, the rhombic drive engine was eliminated due to intolerable maintenance difficulties on the push rod seals. V, radial and swashplate engines were taken through a detailed design/layout cycle, to establish all important design features and reliable engine weights. After comparing engine layouts and analyzing qualitative and quantitative evaluation criteria, the V-crank engine was chosen as the candidate for a 1985 hardware demonstration.

  14. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Al [PSE& G; Stuby, Rick [Petra Solar

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  15. Design considerations for high current regulated DC power supplies with reference to 600 kW variable DC power supply

    International Nuclear Information System (INIS)

    Ushakumari; Garud, A.N.; Nadkarni, S.S.

    1980-01-01

    High current regulated dc power supplies find increasing applications in industry and research. The power rating of these supplies vary from few killowatts to megawatts. The general requirements of these supplies for various applications and the techniques used to achieve the desired performance are presented. The design and selection of various circuit blocks namely the rectifier transformer, multiphase rectifier arrangement, SCR paralleling and current sensing techniques, are discussed in detail for a 600 killowatt current controlled supply developed in the Bhabha Atomic Research Centre, Bombay, and used for the thermal studies of reactor components. The power supply incorporates paralleled phase controlled thyristors with a closed loop feedback circuitary to achieve a current stability of 0.1% and smooth output variation from 10 to 100%. (auth.)

  16. Advances in high-power rf amplifiers

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1979-01-01

    Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems

  17. Socioeconomic effects of power marketing alternatives for the Central Valley and Washoe Projects: 2005 regional econmic impact analysis using IMPLAN

    International Nuclear Information System (INIS)

    Anderson, D.M.; Godoy-Kain, P.; Gu, A.Y.; Ulibarri, C.A.

    1996-11-01

    The Western Area Power Administration (Western) was founded by the Department of Energy Organization Act of 1977 to market and transmit federal hydroelectric power in 15 western states outside the Pacific Northwest, which is served by the Bonneville Power Administration. Western is divided into four independent Customer Service Regions including the Sierra Nevada Region (Sierra Nevada), the focus of this report. The Central Valley Project (CVP) and the Washoe Project provide the primary power resources marketed by Sierra Nevada. Sierra Nevada also purchases and markets power generated by the Bonneville Power Administration, Pacific Gas and Electric (PG ampersand E), and various power pools. Sierra Nevada currently markets approximately 1,480 megawatts of power to 77 customers in northern and central California. These customers include investor-owned utilities, public utilities, government agencies, military bases, and irrigation districts. Methods and conclusions from an economic analysis are summarized concerning distributional effects of alternative actions that Sierra Nevada could take with it's new marketing plan

  18. High dynamic range ultrasound imaging.

    Science.gov (United States)

    Degirmenci, Alperen; Perrin, Douglas P; Howe, Robert D

    2018-03-16

    High dynamic range (HDR) imaging is a popular computational photography technique that has found its way into every modern smartphone and camera. In HDR imaging, images acquired at different exposures are combined to increase the luminance range of the final image, thereby extending the limited dynamic range of the camera. Ultrasound imaging suffers from limited dynamic range as well; at higher power levels, the hyperechogenic tissue is overexposed, whereas at lower power levels, hypoechogenic tissue details are not visible. In this work, we apply HDR techniques to ultrasound imaging, where we combine ultrasound images acquired at different power levels to improve the level of detail visible in the final image. Ultrasound images of ex vivo and in vivo tissue are acquired at different acoustic power levels and then combined to generate HDR ultrasound (HDR-US) images. The performance of five tone mapping operators is quantitatively evaluated using a similarity metric to determine the most suitable mapping for HDR-US imaging. The ex vivo and in vivo results demonstrated that HDR-US imaging enables visualizing both hyper- and hypoechogenic tissue at once in a single image. The Durand tone mapping operator preserved the most amount of detail across the dynamic range. Our results strongly suggest that HDR-US imaging can improve the utility of ultrasound in image-based diagnosis and procedure guidance.

  19. Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario

    Directory of Open Access Journals (Sweden)

    M. Ali Asgarian

    2018-04-01

    Full Text Available Electron Bernstein waves (EBW consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.

  20. Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario

    Science.gov (United States)

    Ali Asgarian, M.; Abbasi, M.

    2018-04-01

    Electron Bernstein waves (EBW) consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes) through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.

  1. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapter 1, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  2. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapters 2--13, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  3. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  4. Preliminary reactor physics calculations for Exxon LWR fuel testing in the power burst facility

    International Nuclear Information System (INIS)

    Olson, W.O.; Nigg, D.W.

    1981-05-01

    The PFB reactor is being considered as an irradiation facility to test LWR fuel rods for Exxon Nuclear Company. Requested test conditions are 18 kW/ft axial peak steady state power in 2.5% initial enrichment, 20,000 MWd/Tu exposed rods. Multigroup transport theory calculations (S/sub n/ and Monte Carlo) showed that this was unattainable in the standard PBF test loop. Thus, a flux multiplier was developed in the form of a Zr-2-clad 0.15-inch thick cylindrical shell of 35% enriched, 88% T.D. UO 2 replacing the flow divider, surrounding the rod within the in-pile tube in PFB. With this flux multiplier installed and assuming an average water density of 0.86 g/cm 3 within the test loop, a Figure of Merit (FOM) for a single-rod test assembly of 0.86 kW/ft-MW +- 5% (at 95% confidence level) was calculated. This FOM is the axial peak linear test rod power per megawatt of reactor power. A reactor power of about 21 megawatts will therefore be required to supply the requested linear test rod axial peak heating rate of 18 kW/ft

  5. Discernment of two opposing reports on the hydrological effects of a hydrothermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M.

    1986-06-01

    Two evaluations to determine the hydrological effects of a 50-megawatt hydrothermal power plant in the Jemez Mountains give dramatically different results. One shows little effect; the other, a large one. The treatments agree on some thermal-zone water supplies to the Jemez River but not on the expected changes in these flows. The primary areas of disagreement appear to be the total volume of water in the reservoir and the movement of this water to the point of withdrawal. The author (a nonhydrologist) has compared these reports but leaves final judgment of the accuracy of either evaluation for some erudite hydrologists, as some experimental data and model development are needed.

  6. Design concepts of a storage ring for a high power XUV free electron laser

    International Nuclear Information System (INIS)

    Cornacchia, M.; Bisognano, J.; Chattopadhyay, S.

    1985-08-01

    The study of a storage ring capable of sustaining an electron beam of the quality required for a High Gain Free Electron Laser in the vacuum ultraviolet and x-ray region is reported. A method is described for the optimization of the design of the storage ring, where several competing and often conflicting requirements come into play. An example design is presented of a ring that satisfies the required conditions of beam quality and is able to produce coherent radiation at 400 A with tens of megawatts of peak power

  7. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn

    The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise...... the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear...... condition, therefore on the season and the site. It was then proposed to use an equivalent wind speed accounting for the whole speed profile in front of the turbine. The method was first tested with aerodynamic simulations of a multi-megawatt wind turbine which demonstrated the decrease of the scatter...

  8. Power electronics for low power arcjets

    Science.gov (United States)

    Hamley, John A.; Hill, Gerald M.

    1991-01-01

    In anticipation of the needs of future light-weight low-power spacecraft, arcjet power electronics in the 100- to 400-W operating range were developed. Power topologies similar to those in the higher 2-kW and 5- to 30-kW power range were implemented, including a four-transistor bridge-switching circuit, current-mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs, allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter.

  9. Heterogeneous Boundary Layers through the Diurnal Cycle: Evaluation of the WRF Wind Farm Parameterization using Scanning Lidar Observations and Wind Turbine Power Measurements during a Range of Stability Conditions

    Science.gov (United States)

    Lundquist, J. K.

    2015-12-01

    As wind energy deployment increases, questions arise regarding impacts on local climates and how these impacts evolve with the diurnal cycle of the boundary layer. Satellite observations suggest nocturnal increases of surface temperatures, and measurements of turbine wakes document stronger and more persistent reductions of wind speed and increases in turbulence downwind of turbines during stable conditions. Validations of mesoscale parameterizations of these effects have been constrained to idealized conditions defined by neutrally-stratified conditions and/or limited wind directions and wind speeds, or by comparison to idealized large-eddy simulations. Synthesis of conventional meteorological measurements and unconventional measurements can offer unique insights for validating models over a large heterogeneous domain. The CWEX-13 field experiment provides an extensive dataset for such validation at spatial scales on the order of 10 km in a range of atmospheric stability and wind conditions. CWEX-13 took place within a 300 MW wind farm in central Iowa during summer 2013 and featured strong diurnal cycles. The wind turbines are sited irregularly, creating a heterogenous "canopy". Three profiling lidars, numerous surface flux stations, and a scanning lidar sampled wakes from multiple turbines. Further, the wind farm owner/operator has provided access to turbine power production and wind speed measurement data for model validation, providing ~ 200 measurements of proxies that integrate the wind profile over the rotor disk, from 40 m to 120 m above the surface. Building on previous work that identified optimal physics options, grid configurations, and boundary condition data sets by comparison to lidar wind profile measurements, we execute simulations with the WRF Wind Farm Parameterization for a ten-day period featuring moderate winds and strong diurnal cycles. We evaluate simulations with different modeling choices (e.g., vertical resolution, approaches to

  10. Impact of power uprate on environmental qualification of equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Raheja, R.D.; Mohiuddin, A.; Alsammarae, A.

    1996-01-01

    Many nuclear power facilities are finding it economically beneficial to increase reactor output, from operating plants, by resorting to power uprates. A power uprate implies that a utility can increase the reactor output, or the megawatts generated, by increasing steam pressure without adding or changing any plant systems. This is perhaps one of the least expensive options for increasing the generating capacity of a power plant. However, a nuclear plant requires a comprehensive review of the plant systems, structures and components to assure their capability to withstand the resulting increased normal and accident plant conditions. A power uprate will typically result in a plant operating at higher than the originally designed environmental conditions. Safety related equipment in nuclear plants is presently qualified to the UFSAR Chapter 15 accident events and the resulting temperatures, pressures, radiation levels etc. These values will increase when the reactor is producing a higher MWe output. Components that are sensitive to the environment must be re-evaluated and assessed to determine their acceptability and operability under the revised environmental conditions. Most safety-related mechanical and electrical equipment will require an assessment from an environmental qualification standpoint. Utilities must perform this task in a systematic, auditable and cost effective manner to optimize their resources and minimize plant costs associated with modifications, replacements or equipment testing. This paper discusses various approaches and provides recommendations to achieve equipment qualification while satisfying the plant's objective of a power uprate

  11. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimball, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kilowatt tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated.A second portion of this DOE project involves sizing and costing a 15 megawatt tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation's 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one megawatt per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine's Western Passage. All would be connected to a high-pressure (20 megapascals, 2900 pounds per square inch) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, water-miscible fluid. Hydraulic adaptations to ORPC's cross-flow turbines are also discussed.For 15 megawatt of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  12. The Ranging and Nanosatellite Guidance Experiment (RANGE)

    OpenAIRE

    Gunter, Brian C.; Davis, Byron; Lightsey, Glenn; Braun, Robert D.

    2016-01-01

    The Ranging And Nanosatellite Guidance Experiment (RANGE) cubesat mission was recently selected for a flight opportunity as part of the Skybox University Cubesat Partnership, with a tentative launch date scheduled for 2016. The RANGE mission involves two 1.5U cubesats flying in a leader-follower formation with the goal of improving the relative and absolute positioning capabilities of nanosatellites. The satellites' absolute positions will be tracked using GPS receivers synchronized with mini...

  13. Exploratory study of the major factors influencing craft productivity in nuclear power plant construction. Volume I

    International Nuclear Information System (INIS)

    Sebastian, S.J.; Borcherding, J.D.

    1979-05-01

    The data for this study were collected at six nuclear power plant construction sites spread throughout the United States. The geographical distribution included two projects from the Midwest and one site from each the Deep South, North Central, Southwest, and Northeast regions of the nation. The range for stage of completion varied from between approximately four and seventy-seven percent. Two of the projects were utilizing boiling water reactors (BWR) while the balance of the sites made use of the pressurized water reactor (PWR) systems. All of the installations had generating capacities approximately equal to 1200 megawatts per unit. The primary objective of the study was to provide a comprehensive investigation of the most influential factors adversely affecting craft productivity by means of a sampling comprised of five hundred seventy-six union and open shop carpenters, electricians, and pipefitters. The overall average amount of time lost due to delays obtaining materials and tools, overcrowded working conditions, interferences between crews, postponements relating to quality control inspections, and waiting for and/or receiving instructions was estimated by the tradesmen to be 24.12 manhours per individual on a weekly basis. Thus, a minimum of 60.3% of each tradesman's time is lost due to one of the aforementioned predicaments. Conversely, this figure accounts for a maximum possible level of direct work activity equal to 39.7% and is not inclusive of any personal breaks or late starts/early quits. The combined mean duration that was speculated for rework activities at all six sites totaled 5.77 manhours per craftsman per week. The summation of these two estimates yields a value of 29.89 manhours showing that only slightly more than twenty-five percent of each worker's time is allocated to productive endeavors for activities being engaged in for the first time

  14. State-of-the-art of high power gyro-devices and free electron masers. Update 2005

    International Nuclear Information System (INIS)

    Thumm, M.

    2006-02-01

    Gyrotron oscillators (gyromonotrons) are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. The maximum pulse length of commercially available 140 GHz, megawatt-class gyrotrons employing synthetic diamond output windows is 30 minutes (CPI and European FZK-CRPP-CEA-TED collaboration). The world record parameters of the European 140 GHz gyrotron are: 0.92 MW output power at 30 min. pulse duration, 97.5% Gaussian mode purity and 43% efficiency, employing a single-stage depressed collector for energy recovery. This results in an energy content of 1.66 GJ. A maximum output power of 1.2 MW in 4.1 s pulses was generated with the JAERI-TOSHIBA 110 GHz gyrotron. The Russian and the Japan 170 GHz ITER gyrotrons achieved 0.5 MW with pulse durations of 80 s and 500 s, respectively. Diagnostic gyrotrons deliver P out =40 kW with τ=40 μs at frequencies up to 650 GHz (η=4%). Gyrotron oscillators have also been successfully used in materials processing. Such technological applications require gyrotrons with the following parameters: f≥24 GHz, P out =4-50 kW, CW, η≥30%. This paper gives an update of the experimental achievements related to the development of high power gyrotron oscillators for long pulse or CW operation and pulsed gyrotrons for plasma diagnostics. In addition, this work gives a short overview of the present development status of coaxial-cavity gyrotrons, gyrotrons for technological applications, relativistic gyrotrons, quasi-optical gyrotrons, fast- and slow-wave cyclotron autoresonance masers (CARMs), gyroklystrons, gyro-TWT amplifiers, gyrotwystron amplifiers, gyro-BWO's, gyropeniotrons, magnicons, gyroharmonic converters, free electron masers (FEMs) and of vacuum windows for such high-power mm-wave sources. The highest CW powers produced by

  15. TidGen Power System Commercialization Project

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Christopher R. [President & CEO; McEntee, Jarlath [VP Engineering & CTO

    2013-12-30

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric

  16. Power theories for improved power quality

    CERN Document Server

    Pasko, Marian

    2012-01-01

    Power quality describes a set of parameters of electric power and the load’s ability to function properly under specific conditions. It is estimated that problems relating to power quality costs the European industry hundreds of billions of Euros annually. In contrast, financing for the prevention of these problems amount to fragments of these costs. Power Theories for Improved Power Quality addresses this imbalance by presenting and assessing a range of methods and problems related to improving the quality of electric power supply. Focusing particularly on active compensators and the DSP based control algorithms, Power Theories for Improved Power Quality introduces the fundamental problems of electrical power. This introduction is followed by chapters which discuss: •‘Power theories’ including their historical development and application to practical problems, •operational principles of active compensator’s DSP control based algorithms using examples and results from laboratory research, and •t...

  17. Comprehensive report to Congress, Clean Coal Technology program: Pinon Pine IGCC Power Project

    International Nuclear Information System (INIS)

    1992-06-01

    The objective of the proposed project is to demonstrate an advanced IGCC system based upon the air-blown, fluidized-bed KRW gasifier with in-bed desulfurization using limestone sorbent and an external fixed- bed zinc ferrite sulfur removal system. Sierra Pacific Power Company (SPPC) requested financial assistance from DOE for the design, construction, and operation of a nominal 800 ton-per-day (86-Megawatt gross), air blown integrated gasification combined-cycle (IGCC) demonstration plant. The project, named the Pinon Pine IGCC Power Project, is to be located at SPPC's Tracy Station, a power generation facility located on a rural 400-acre plot about 17 miles east of Reno. The demonstration plant will produce electrical power for the utility grid. The project, including the demonstration phase, will last 96 months at a total cost of $269,993,100. DOE's share of the project cost will be 50 percent, or $134,996,550

  18. Start up and commercial operation of Laguna Verde nuclear power plant. Unit 1

    International Nuclear Information System (INIS)

    Torres Ramirez, J.F.

    1991-01-01

    Prior to start up of Laguna Verde nuclear power plant preoperational tests and start tests were performed and they are described in its more eminent aspects. In relation to commercial operation of nuclear station a series of indicator were set to which allow the measurement of performance in unit 1, in areas of plant efficiency and personal safety. Antecedents. Laguna Verde station is located in Alto Lucero municipality in Veracruz state, 70 kilometers north-northeast from port of Veracruz and a 290 kilometers east-northeast from Mexico city. The station consist of two units manufactured by General Electric, with a nuclear system of vapor supply also called boiling water (BWR/5), and with a system turbine-generator manufactured by Mitsubishi. Each unit has a nominal power of 1931 MWt and a level design power of 675 Mwe and a net power of 654 Electric Megawatts

  19. Final-Report No. 2: Independent Confirmatory Survey Summary And Results For The Enrico Fermi Atomic Power Plant, Unit 1, Newport, Michigan (Docket No. 50 16; RFTA 10-004) DCN 2018-SR-02-0

    International Nuclear Information System (INIS)

    Bailey, Erika

    2011-01-01

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963.

  20. FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004)

    Energy Technology Data Exchange (ETDEWEB)

    Erika Bailey

    2011-07-07

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963.

  1. GRA model development at Bruce Power

    International Nuclear Information System (INIS)

    Parmar, R.; Ngo, K.; Cruchley, I.

    2011-01-01

    In 2007, Bruce Power undertook a project, in partnership with AMEC NSS Limited, to develop a Generation Risk Assessment (GRA) model for its Bruce B Nuclear Generating Station. The model is intended to be used as a decision-making tool in support of plant operations. Bruce Power has recognized the strategic importance of GRA in the plant decision-making process and is currently implementing a pilot GRA application. The objective of this paper is to present the scope of the GRA model development project, methodology employed, and the results and path forward for the model implementation at Bruce Power. The required work was split into three phases. Phase 1 involved development of GRA models for the twelve systems most important to electricity production. Ten systems were added to the model during each of the next two phases. The GRA model development process consists of developing system Failure Modes and Effects Analyses (FMEA) to identify the components critical to the plant reliability and determine their impact on electricity production. The FMEAs were then used to develop the logic for system fault tree (FT) GRA models. The models were solved and post-processed to provide model outputs to the plant staff in a user-friendly format. The outputs consisted of the ranking of components based on their production impact expressed in terms of lost megawatt hours (LMWH). Another key model output was the estimation of the predicted Forced Loss Rate (FLR). (author)

  2. Southpoint power plant final environmental impact statement

    International Nuclear Information System (INIS)

    1999-01-01

    This document is the Final Environmental Impact Statement (FEIS) for a proposed lease of acreage on the Fort Mojave Indian Reservation in Mohave County, Arizona for development of a natural gas fired 500 megawatt combined cycle power plant. The Bureau of Indian Affairs (BIA) serves as the federal lead agency and the Fort Mojave Indian Tribe (FMIT) and the Western Area Power Administration (WAPA) are cooperating agencies for the EIS process. The purpose of this document is to provide information to the public and to interested public agencies regarding the environmental consequences of the approval of a long-term lease for the construction and operation of the proposed Southpoint power plant. The FEIS, prepared by Hallock/Gross, Inc. under the direction of the BIA and in cooperation with the FMIT and WAPA, addresses the comparative analysis of alternatives and evaluates the environmental consequences of such alternatives on various resources and addresses public comments. A number of technical reports were used in the preparation of the Draft EIS and FEIS and are available for review as Appendices to this document under separate cover that can be reviewed at the BIA offices which are listed

  3. Air quality analysis for the Western Area Power Administration's 2004 Power Marketing Plan Environmental Impact Statement

    International Nuclear Information System (INIS)

    Glantz, C.S.; Dagle, J.E.; Bilyard, G.R.

    1997-01-01

    The Western Area Power Administration (Western) markets and transmits electric power throughout 15 western states. Western's Sierra Nevada Customer Service Region (Sierra Nevada Region) markets approximately 1,480 megawatts (MW) of firm power (plus 100 MW of seasonal peaking capacity) from the Central Valley Project (CVP) and other resources. Western's mission is to sell and deliver electricity generated from these resources. Western's capacity and energy sales must be in conformance with the laws that govern its sale of electrical power. Further, Western's hydropower operations at each facility must comply with minimum and maximum flows and other constraints set by other regulatory agencies. The Sierra Nevada Region proposes to develop a marketing plan that defines the products and services it would offer beyond the year 2004 and the eligibility and allocation criteria for its electric power resources. Because determining levels of long-term firm power resources to be marketed and subsequently entering into contracts for the delivery of related products and services could be a major Federal action with potentially significant impacts to the human environment, the 2004 Power Marketing Plan Environmental Impact Statement (2004 EIS) is being prepared. Decisions made by the Sierra Nevada Region on how and when to supply power to its customers would influence the operation of power plants within the Western Systems Coordinating Council (WSCC). If the resources affected are thermal resources, this could in turn affect the amount, timing, and location of pollutant emissions to the air at locations throughout the western United States. This report has been produced in conjunction with the 2004 EIS to provide a more detailed discussion of the air quality implications of the 2004 power marketing plan

  4. Design, construction, and electrical test results of dual phase controlled multi-megawatt oscillators for ''oscillating field current drive'' on ZT40M

    International Nuclear Information System (INIS)

    Reass, W.A.; Gribble, R.F.; Hammer, C.F.

    1985-01-01

    This paper provides the design and construction details and the electrical test results of 1 kHz, 10 MW and 20 MW phase controlled class D or E driven oscillators. To test the concept of oscillating field current drive, the 10 MW oscillator is directly coupled to the toroidal field (TF) circuits; the 20 MW oscillator to the poloidal field (PF) circuits. By maintaining the proper phase angle between PF and TF oscillators, theory shows that for reversed field pinch plasmas, discharges can be sustained without expenditure of mean magnetizing (or drive) flux. Each oscillator consists of an L-C tank circuit driven by 20 parallel ML8618 magnetically beamed triodes. Each circuit can provide up to 45 MVAR of tank circulating power when driven at its maximum rating. For the 10 MW and 20 MW load power requirements, 450 kJ, 22 kV B + capacitor banks will provide for over a 10 mS oscillating envelope. To control phase and amplitude, the grid drive waveform timing and conduction angle of the output tubes are changed. Each driver circuit consists of a fiber optic controlled hot deck with 2 ML8618s in a cathode follower configuration

  5. Network-independent electrification ranging from the Solar Home System via Alps Association Houses up to electric power supply of a whole village; Netzferne Elektrifizierung vom Solar Home System ueber Alpenvereinshaeuser bis hin zur Dorfstromversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G.; Holz, F.; Sauer, D.U. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg (Germany)

    2005-07-01

    According to assessment of the European Union approximately two billion people live worldwide without having a connection to a public electric power grid, half of them even live in areas without any access to electricity at all. In the medium term, high investment costs along with a simultaneously low electric power demand (smaller than 1 KWh/day) will impede grid connection of these isolated, scattered populated areas for economic reasons. Photovoltaic plants are one of the most interesting technical options for the solution of this energy supply task. However, a lot painful experience gained in pilot projects, has shown, that various frame conditions must be taken into consideration for planning these plants. Apart from technical aspects, cultural, social, economic and financial aspects must be taken into account. While the pure electric power supply is improved, other central areas of living like food and water supply, the health system, education system and infrastructure measures must be improved as well in order to achieve lasting improvement of the living standard of the people living away from grid supply. (orig.)

  6. Operating and Loading Conditions of a Three-Level Neutral-Point-Clamped Wind Power Converter Under Various Grid Faults

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    In order to fulfill the growing demands from the grid side, full-scale power converters are becoming popular in the wind turbine system. The low-voltage ride-through (LVRT) requirements may not only cause control problems but also result in overstressed components for the power converter. However...... are analytically solved and simulated. It has been found that the operating and loading conditions of the converter under LVRT strongly depend on the types/severity values of grid voltage dips and also the chosen control algorithms. The thermal distribution among the three phases of the converter may be quite......, the thermal loading of the wind power converter under various grid faults is still not yet clarified, particularly at megawatt power level. In this paper, the impacts by three types of grid faults to a three-level neutral-point-clamped (3L-NPC) wind power converter in terms of operating and loading conditions...

  7. Development of High Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Linear Colliders

    International Nuclear Information System (INIS)

    Tantawi, Sami

    2000-01-01

    We describe development of semiconductor X-band high-power RF switches. The target applications are high-power RF pulse compression systems for future linear colliders. We describe the design methodology of the architecture of the whole switch systems. We present the scaling law that governs the relation between power handling capability and number of elements. We designed and built several active waveguide windows for the active element. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of a few megawatts at X-band

  8. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    Science.gov (United States)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2017-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  9. THUNDERBALL -- A power-beaming architecture for missile defense

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.P.; Ponikvar, D.R. [W.J. Schafer Associates, Inc., Arlington, VA (United States)

    1994-12-31

    W.J. Schafer Associates has proposed an architecture for a laser system capable of not only beaming power from a ground site to space, but also capable of intercepting theater missiles during their boost phase for defense of ground troops in regional conflicts. The system comprises a ship-based multi-megawatt laser and beam control system, a relay mirror package mounted on a high altitude, long endurance, unmanned lighter-than-air vehicle, and a sensor package, mounted on the balloon, which directs the laser beam to the target and can also provide an early commitment of ground based kinetic energy interceptors. A system concept is presented, as well as an assessment of system effectiveness.

  10. Prototype of an electric 'integral-ecomotor' for the power range up to 1 kW; Funktionsmuster eines Integral-Sparmotors im Leistungsbereich kleiner 1 kW

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M.

    2006-11-15

    Numerous electric motors of our daily use, with power ratings of about 1 kW operate at rather low efficiencies. Their share in the overall electric consumption is considerable. The aim of the research project consisted in the development of an efficient electric motor with incorporated electronic control ('integral-ecomotor'), which may serve as a substitute for usual variable speed squirrel cage three-phase motor. It was shown that the cost of these new motors of 1 kW power output, built with normalised casings, remain similar to those of squirrel cage three phase motors with inverters. Since 2004, the cost of raw materials as copper or aluminium increased considerably, whereas the cost of Neodymium-Iron-Boron magnets remained rather stable. These facts advocate for energy saving motors making use of permanent magnets, requiring much less copper or aluminium than squirrel cage three phase motors. With integral ecomotors, higher efficiencies are achieved at lower masses as compared to usual squirrel cage three-phase motors. In 2004, a first prototype of this ecomotor using permanent magnets, was built. The advantages of improved performances at lower weight were confirmed. During 2005 and 2006, the technology was then improved and matured in a joint research project with 3 industrial partners. (author)

  11. Neuroscience imaging enabled by new highly tunable and high peak power femtosecond lasers

    Science.gov (United States)

    Hakulinen, T.; Klein, J.

    2017-02-01

    Neuroscience applications benefit from recent developments in industrial femtosecond laser technology. New laser sources provide several megawatts of peak power at wavelength of 1040 nm, which enables simultaneous optogenetics photoactivation of tens or even hundreds of neurons using red shifted opsins. Another recent imaging trend is to move towards longer wavelengths, which would enable access to deeper layers of tissue due to lower scattering and lower absorption in the tissue. Femtosecond lasers pumping a non-collinear optical parametric amplifier (NOPA) enable the access to longer wavelengths with high peak powers. High peak powers of >10 MW at 1300 nm and 1700 nm allow effective 3-photon excitation of green and red shifted calcium indicators respectively and access to deeper, sub-cortex layers of the brain. Early results include in vivo detection of spontaneous activity in hippocampus within an intact mouse brain, where neurons express GCaMP6 activated in a 3-photon process at 1320 nm.

  12. Application of waste heat powered absorption refrigeration system to the LNG recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Kalinowski, Paul; Hwang, Yunho; Radermacher, Reinhard [Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States); Al Hashimi, Saleh; Rodgers, Peter [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2009-06-15

    The recovery process of the liquefied natural gas requires low temperature cooling, which is typically provided by the vapor compression refrigeration systems. The usage of an absorption refrigeration system powered by waste heat from the electric power generating gas turbine could provide the necessary cooling at reduced overall energy consumption. In this study, a potential replacement of propane chillers with absorption refrigeration systems was theoretically analyzed. From the analysis, it was found that recovering waste heat from a 9 megawatts (MW) electricity generation process could provide 5.2 MW waste heat produced additional cooling to the LNG plant and save 1.9 MW of electricity consumption. Application of the integrated cooling, heating, and power is an excellent energy saving option for the oil and gas industry. (author)

  13. High-power density miniscale power generation and energy harvesting systems

    International Nuclear Information System (INIS)

    Lyshevski, Sergey Edward

    2011-01-01

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro (∼100 μW) to medium (∼100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems.

  14. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Rao, T.S.

    2010-01-01

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  15. Stationary power fuel cell commercialization status worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  16. Performance of the FV3-powered Next Generation Global Prediction System for Harvey and Irma, and a vision for a "beyond weather timescale" prediction system for long-range hurricane track and intensity predictions

    Science.gov (United States)

    Lin, S. J.; Bender, M.; Harris, L.; Hazelton, A.

    2017-12-01

    The performance of a GFDL developed FV3-based Next Generation Global Prediction System (NGGPS) for Harvey and Irma will be reported. We will report on aspects of track and intensity errors (vs operational models), heavy precipitation (Harvey), rapid intensification, and simulated structure (in comparison with ground based radar), and point to a need of a future long-range (from day-5 up to 30 days) physically based ensemble hurricane prediction system for providing useful information to the forecasters, beyond the usual weather timescale.

  17. Advanced thermal-energy-storage concept-definition study for solar Brayton power plants. Final technical report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The detailed results are presented of a technical and economic assessment of phase change and thermochemical energy storage systems in a solar power plant employing a high temperature Brayton cycle thermal engine with helium as the heat transport fluid. The assessment included an examination of the storage system operation, efficiency, power plant interaction, design, materials, safety, maintenance, environmental impact, system life, and economics. These considerations are implemented in the conceptual design of three baseline storage systems and their components for use in a solar power plant module of 50 megawatt electrical power output. Rationale is provided to support the configuration, operation and material choices. A preliminary assessment of the technology development and experimental test program requirements are also included. The report is contained in four separate volumes. This volume is the technical report.

  18. Conceptual design analysis of an MHD power conversion system for droplet-vapor core reactors. Final report

    International Nuclear Information System (INIS)

    Anghaie, S.; Saraph, G.

    1995-01-01

    A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses

  19. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...... signal in response to the oscillation indicating signal, by processing the oscillation damping control signal in a signal processing chain. The signal processing chain includes a filter configured for passing only signals within a predetermined frequency range....

  20. Electric power systems

    CERN Document Server

    Weedy, B M; Jenkins, N; Ekanayake, J B; Strbac, G

    2012-01-01

    The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now e

  1. Dryden Aeronautical Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — Recently redesignated to honor Dr. Hugh L. Dryden, NASA's Dryden Aeronautical Test Range (DATR) supports aerospace flight research and technology integration, space...

  2. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: structure growth rate measurement from the anisotropic quasar power spectrum in the redshift range 0.8 < z < 2.2

    Science.gov (United States)

    Gil-Marín, Héctor; Guy, Julien; Zarrouk, Pauline; Burtin, Etienne; Chuang, Chia-Hsun; Percival, Will J.; Ross, Ashley J.; Ruggeri, Rossana; Tojerio, Rita; Zhao, Gong-Bo; Wang, Yuting; Bautista, Julian; Hou, Jiamin; Sánchez, Ariel G.; Pâris, Isabelle; Baumgarten, Falk; Brownstein, Joel R.; Dawson, Kyle S.; Eftekharzadeh, Sarah; González-Pérez, Violeta; Habib, Salman; Heitmann, Katrin; Myers, Adam D.; Rossi, Graziano; Schneider, Donald P.; Seo, Hee-Jong; Tinker, Jeremy L.; Zhao, Cheng

    2018-02-01

    We analyse the clustering of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample (DR14Q). We measure the redshift space distortions using the power spectrum monopole, quadrupole and hexadecapole inferred from 148,659 quasars between redshifts 0.8 and 2.2 covering a total sky footprint of 2112.9 deg2. We constrain the logarithmic growth of structure times the amplitude of dark matter density fluctuations, fσ8, and the Alcock-Paczynski dilation scales which allow constraints to be placed on the angular diameter distance DA(z) and the Hubble H(z) parameter. At the effective redshift of zeff = 1.52, fσ8(zeff) = 0.420 ± 0.076, H(z_eff)=[162± 12] (r_s^fid/r_s) {km s}^{-1}Mpc^{-1}, and D_A(z_eff)=[1.85± 0.11]× 10^3 (r_s/r_s^fid) Mpc, where rs is the comoving sound horizon at the baryon drag epoch and the superscript `fid' stands for its fiducial value. The errors take into account the full error budget, including systematics and statistical contributions. These results are in full agreement with the current Λ-Cold Dark Matter (ΛCDM) cosmological model inferred from Planck measurements. Finally, we compare our measurements with other eBOSS companion papers and find excellent agreement, demonstrating the consistency and complementarity of the different methods used for analysing the data.

  3. Profiling the regional wind power fluctuation in China

    International Nuclear Information System (INIS)

    Yu Dayang; Liang Jun; Han Xueshan; Zhao Jianguo

    2011-01-01

    As China starts to build 6 10-GW wind zones in 5 provinces by 2020, accommodating the wind electricity generated from these large wind zones will be a great challenge for the regional grids. Inadequate wind observing data hinders profiling the wind power fluctuations at the regional grid level. This paper proposed a method to assess the seasonal and diurnal wind power patterns based on the wind speed data from the NASA GEOS-5 DAS system, which provides data to the study of climate processes including the long-term estimates of meteorological quantities. The wind power fluctuations for the 6 largest wind zones in China are presented with both the capacity factor and the megawatt wind power output. The measured hourly wind output in a regional grid is compared to the calculating result to test the analyzing model. To investigate the offsetting effect of dispersed wind farms over large regions, the regional correlations of hourly wind power fluctuations are calculated. The result illustrates the different offsetting effects of minute and hourly fluctuations.

  4. Power marketers: Who are they, and what do they do?

    Energy Technology Data Exchange (ETDEWEB)

    Sioshansi, F.P. [Convector Consulting NA Inc., Menlo Park, CA (United States); Altman, A. [EPRI, Palo Alto, CA (United States)

    1998-12-01

    Although activity quintupled to 1.2 billion megawatt-hours in 1997, many electric industry participants still have only a vague idea of what the identity and role of power marketers are. Like the independent power producers before them, however, they should no longer be regarded merely as marginal side players. This article attempts to explain what power marketing is, who power marketers are, what they do, why they do it, and what is behind their explosive growth in the past few years. This article also explains what types of products and services they offer, why these products and services are in demand, and what are the fundamental drivers for this demand. Understanding the last item is particularly significant; namely, the rapid restructuring of the wholesale--soon to be followed by the retail--electricity markets in the United States. An equally important impetus for the industry`s growth is the passage of the highly significant Energy Policy Act in 1992 and, more recently, the promulgation of Orders 888 and 889 of the Federal Energy Regulatory Commission (FERC) in 1996. In the absence of those, there would be no power marketing industry as it is known today.

  5. On Range of Skill

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2008-01-01

    size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...

  6. Home range and travels

    Science.gov (United States)

    Stickel, L.F.; King, John A.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  7. Solar Thermal Small Power Systems Study. Inventory of US industrial small electric power generating systems. [Less than 10 MW

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This inventory of small industrial electric generating systems was assembled by The Aerospace Corporation to provide a data base for analyses being conducted to estimate the potential for displacement of these fossil-fueled systems by solar thermal electric systems no larger than 10 MW in rated capacity. The approximately 2100 megawatts generating capacity of systems in this category constitutes a potential market for small solar thermal and other solar electric power systems. The sources of data for this inventory were the (former) Federal Power Commission (FPC) Form 4 Industrial Ledger and Form 12-C Ledger for 1976. Table 1 alphabetically lists generating systems located at industrial plants and at Federal government installations in each of the 50 states. These systems are differentiated by type of power plant: steam turbine, diesel generator, or gas turbine. Each listing is designated as a power system rather than a power unit because the FPC Ledgers do not provide a means of determining whether more than one unit is associated with each industrial installation. Hence, the user should consider each listing to be a system capacity rating wherein the system may consist of one or more generating units with less than 10 MW/sub e/ combined rating. (WHK)

  8. Soliton microcomb range measurement

    Science.gov (United States)

    Suh, Myoung-Gyun; Vahala, Kerry J.

    2018-02-01

    Light detection and ranging systems are used in many engineering and environmental sensing applications. Their relatively large size and cost, however, tend to be prohibitive for general use in autonomous vehicles and drones. Suh and Vahala and Trocha et al. show that optical frequency combs generated by microresonator devices can be used for precision ranging and the tracking of fast-moving objects. The compact size of the microresonators could broaden the scope for widespread applications, providing a platform for miniaturized laser ranging systems suitable for photonic integration.

  9. Status and Trends in the U.S. Voluntary Green Power Market (2013 Data)

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, J.; Belyeu, K.; Kuskova-Burns, K.

    2014-11-01

    Voluntary green power markets are those in which consumers and institutions voluntarily purchase renewable energy to match their electricity needs. This report surveys utilities, competitive suppliers, renewable energy certificate (REC) marketers, and, for the first time, the community choice aggregation market. This report finds that the voluntary market totaled 62 million megawatt-hours in 2013. Approximately 5.4 million customers are purchasing green power. This report presents data and analysis on voluntary market sales and customer participation, products and premiums, green pricing marketing, and administrative expenses. The report also details trends in REC tracking systems, REC pricing in voluntary and compliance markets, community and crowd-funded solar, and interest in renewable energy by the information and communication technologies sector.

  10. MHD retrofit of steam power plants. Feasibility study. Summary and conclusions, Part I

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    The US Department of Energy Division of Magnetohydrodynamics (DOE/MHD) initiated this study to evaluate the feasibility of a retrofit option to reduce the time and cost of commercializing MHD. The MHD retrofit option will integrate a nominal 260 megawatt thermal (MWt) MHD topping cycle into an existing or scheduled private utility steam plant; this facility will test both the MHD system and the combined operation of the MHD/steam plant. The 260 MWt input level was determined to be the size which could most effectively demonstrate and verify the engineering design and operational characteristics of a coal-fired, open-cycle, MHD power plant. Details are presented. A goal of the MHD program is to have operational by the year 2003 a commercial size, fully integrated MHD plant. This would be accomplished by demonstrating commercial scale, baseload performance of a fully integrated, MHD/steam power plant. (WHK)

  11. Antenna Pattern Range (APR)

    Data.gov (United States)

    Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...

  12. Atlantic Test Range (ATR)

    Data.gov (United States)

    Federal Laboratory Consortium — ATR controls fully-instrumented and integrated test ranges that provide full-service support for cradle-to-grave testing. Airspace and surface target areas are used...

  13. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  14. Power Supply PP-6373 ()/U.

    Science.gov (United States)

    This final report covers the performance and general design of the PP-6373( )/U Power Supply . Numerical data and accompanying graphs delineate...terminal characteristics of the power supply . The design of the power supply is considered at both system and circuit levels. The PP-6373( )/U Power Supply provides...single phase, or 120/208 volt--3 phase. The power supply may also operate from dc power sources ranging from 80-360 Vdc. Output current capability is 0

  15. Manpower equals megawatts - alternative employment option

    International Nuclear Information System (INIS)

    McKeone, J.P.

    1993-01-01

    Virtually all nuclear utilities are undergoing serious destaffing in order to reach the lowest possible operating and maintenance costs. This effort is driven by public utility commission (PUC) demands for least-cost generation. Organizational streamlining requires versatile new approaches to project staffing, outsourcing of noncore activities, and responsible care for displaced employees

  16. Short Rayleigh Range Free Electron Laser Amplifiers

    CERN Document Server

    Yu, L H; Murphy, J B; Rose, J; Shaftan, T V; Wang, X J; Watanabe, T

    2005-01-01

    An important requirement for a high average power laser system is a manageable power density on the first optical element. One possibility to achieve this is a single pass amplifier which generates a short Rayleigh range (SRL) light beam. We present design parameters and calculated performances for several SRL configurations. These include a simulation of the optically guided (pinched) MW class FEL [1], the scalloped beam FEL amplifier [2] and high gain TOK amplifiers we propose to explore at our SDL facility.

  17. Range Selection and Median

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Larsen, Kasper Green

    2011-01-01

    and several natural special cases thereof. The rst special case is known as range median, which arises when k is xed to b(j 􀀀 i + 1)=2c. The second case, denoted prex selection, arises when i is xed to 0. Finally, we also consider the bounded rank prex selection problem and the xed rank range......Range selection is the problem of preprocessing an input array A of n unique integers, such that given a query (i; j; k), one can report the k'th smallest integer in the subarray A[i];A[i+1]; : : : ;A[j]. In this paper we consider static data structures in the word-RAM for range selection...... selection problem. In the former, data structures must support prex selection queries under the assumption that k for some value n given at construction time, while in the latter, data structures must support range selection queries where k is xed beforehand for all queries. We prove cell probe lower bounds...

  18. CERI says lower power rates still in the future

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The impact that consumers will encounter with the convergence of Alberta's natural gas and electric utility industry were discussed. It will take a few years of infrastructure improvements before lower rates and improved efficiencies will be realized. Electricity prices in Alberta are expected to increase until the next generating capacity is connected to the provincial power grid. In addition, consumer prices are increasing because of the province's reliance on imports from British Columbia to meet peak demand. In August 2000 the province held a controversial auction of its generating capacity. The auction raised little more than $1 billion to the balancing pool, well short of the $4 billion target. Two major power facilities, the Genesee and Sheerness, failed to attract any bids at all. Despite this, the government accepted the results of the auction and will move forward with its retail restructuring program which calls for the competitive power market to be in place on January 1, 2001. The five major bidders who acquired the right to market about 4,249 megawatts of generating capacity from eight generating units in Alberta are EPCOR Utilities Inc., ENMAX Energy Corp., Enron Canada Power Corp., TransCanada PipeLines Ltd., and Engage Energy. The Alberta government is in the process of finalizing details of how the raised funds will be used to offset the impact of electricity rates

  19. Overview of High Power Vacuum Dry RF Load Designs

    Energy Technology Data Exchange (ETDEWEB)

    Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  20. Range gated strip proximity sensor

    Science.gov (United States)

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  1. Modeling and Economic Analysis of Power Grid Operations in a Water Constrained System

    Science.gov (United States)

    Zhou, Z.; Xia, Y.; Veselka, T.; Yan, E.; Betrie, G.; Qiu, F.

    2016-12-01

    The power sector is the largest water user in the United States. Depending on the cooling technology employed at a facility, steam-electric power stations withdrawal and consume large amounts of water for each megawatt hour of electricity generated. The amounts are dependent on many factors, including ambient air and water temperatures, cooling technology, etc. Water demands from most economic sectors are typically highest during summertime. For most systems, this coincides with peak electricity demand and consequently a high demand for thermal power plant cooling water. Supplies however are sometimes limited due to seasonal precipitation fluctuations including sporadic droughts that lead to water scarcity. When this occurs there is an impact on both unit commitments and the real-time dispatch. In this work, we model the cooling efficiency of several different types of thermal power generation technologies as a function of power output level and daily temperature profiles. Unit specific relationships are then integrated in a power grid operational model that minimizes total grid production cost while reliably meeting hourly loads. Grid operation is subject to power plant physical constraints, transmission limitations, water availability and environmental constraints such as power plant water exit temperature limits. The model is applied to a standard IEEE-118 bus system under various water availability scenarios. Results show that water availability has a significant impact on power grid economics.

  2. New high power 200 MHz RF system for the LANSCE drift tube linac

    International Nuclear Information System (INIS)

    Lyles, J.; Friedrichs, C.; Lynch, M.

    1998-01-01

    The Los Alamos Neutron Science Center (LANSCE) linac provides an 800 MeV direct H + proton beam, and injects H - to the upgraded proton storage ring for charge accumulation for the Short Pulse Spallation Source. Accelerating these interlaced beams requires high average power from the 201.25 MHz drift tube linac (DTL) RF system. Three power amplifiers have operated at up to three Megawatts with 12% duty factor. The total number of electron power tubes in the RF amplifiers and their modulators has been reduced from fifty-two to twenty-four. The plant continues to utilize the original design of a tetrode driving a super power triode. Further increases in the linac duty factor are limited, in part, by the maximum dissipation ratings of the triodes. A description of the system modifications proposed to overcome these limitations includes new power amplifiers using low-level RF modulation for tank field control. The first high power Diacrode reg-sign is being delivered and a new amplifier cavity is being designed. With only eight power tubes, the new system will deliver both peak power and high duty factor, with lower mains power and cooling requirements. The remaining components needed for the new RF system will be discussed

  3. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2011-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. – We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. – We show how to solve substring range reporting with optimal query time and little...... space. Combined with our reductions this leads to significantly improved time-space trade-offs for the above problems. In particular, for each problem we obtain the first solutions with optimal time query and O(n logO(1) n) space, where n is the length of the indexed string. Our bounds for substring...

  4. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2014-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. We show how to solve substring range reporting with optimal query time and little...... space. Combined with our reductions this leads to significantly improved time-space trade-offs for the above problems. In particular, for each problem we obtain the first solutions with optimal time query and O(nlog O(1) n) space, where n is the length of the indexed string. We show that our techniques...

  5. Measurement of the vector analysing power of the reaction 19F(p vector,α0)16O in the energy range Esub(p) = 0.45 MeV to 0.85 MeV and studies of the level scheme of the 20Ne nucleus

    International Nuclear Information System (INIS)

    Traudt, O.

    1979-01-01

    The experimental study of the reaction 19 F(p,α 0 ) 16 0 was extended by a determination of the analysing power for the reaction in the energy range 454 keV 0 until 160 0 . By averaging of the proton spin angular distributions of the unpolarized cross section were also obtained. The angular distributions of these two observables were fitted by legendre polynomials. The results is a nonneglectable contribution of direct reactions and a new determination of a part of energylevels in 20 Ne. (orig./HSI) [de

  6. Range-clustering queries

    DEFF Research Database (Denmark)

    Abrahamsen, Mikkel; de Berg, Mark; Buchin, Kevin

    2017-01-01

    an optimal k-clustering for S P ∩ Q. We obtain the following results. • We present a general method to compute a (1 + ϵ)-approximation to a range-clustering query, where ϵ > 0 is a parameter that can be specified as part of the query. Our method applies to a large class of clustering problems, including k...

  7. Agriculture, forestry, range resources

    Science.gov (United States)

    Macdonald, R. B.

    1974-01-01

    The necessary elements to perform global inventories of agriculture, forestry, and range resources are being brought together through the use of satellites, sensors, computers, mathematics, and phenomenology. Results of ERTS-1 applications in these areas, as well as soil mapping, are described.

  8. Space-Based Range

    Science.gov (United States)

    2008-01-01

    Space-Based Range (SBR), previously known as Space-Based Telemetry and Range Safety (STARS), is a multicenter NASA proof-of-concept project to determine if space-based communications using NASA's Tracking and Data Relay Satellite System (TDRSS) can support the Range Safety functions of acquiring tracking data and generating flight termination signals, while also providing broadband Range User data such as voice, video, and vehicle/payload data. There was a successful test of the Range Safety system at Wallops Flight Facility (WFF) on December 20, 2005, on a two-stage Terrier-Orion spin-stabilized sounding rocket. SBR transmitted GPS tracking data and maintained links with two TDRSS satellites simultaneously during the 10-min flight. The payload section deployed a parachute, landed in the Atlantic Ocean about 90 miles downrange from the launch site, and was successfully recovered. During the Terrier-Orion tests flights, more than 99 percent of all forward commands and more than 95 percent of all return frames were successfully received and processed. The time latency necessary for a command to travel from WFF over landlines to White Sands Complex and then to the vehicle via TDRSS, be processed onboard, and then be sent back to WFF was between 1.0 s and 1.1 s. The forward-link margins for TDRS-10 (TDRS East [TDE]) were 11 dB to 12 dB plus or minus 2 dB, and for TDRS-4 (TDRS Spare [TDS]) were 9 dB to 10 dB plus or minus 1.5 dB. The return-link margins for both TDE and TDS were 6 dB to 8 dB plus or minus 3 dB. There were 11 flights on an F-15B at Dryden Flight Research Center (DFRC) between November 2006 and February 2007. The Range User system tested a 184-element TDRSS Ku-band (15 GHz) phased-array antenna with data rates of 5 Mbps and 10 Mbps. This data was a combination of black-and-white cockpit video, Range Safety tracking and transceiver data, and aircraft and antenna controller data streams. IP data formatting was used.

  9. Decentralised power generation using solid biomass - Know-how on combined heat and power generation for investors; Dezentrale Stromerzeugung mit Feststoffbiomasse

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M.; Gaegauf, Ch.; Sattler, M.

    2007-01-15

    This comprehensive report made by the Centre of Appropriate Technology and Social Ecology in Langenbruck, Switzerland presents a summary of know-how for investors on combined heat and power generation using solid biomass in installations with an electrical rating of up to one megawatt. Topics covered include a review of the reasons for using biomass to generate electricity - with the results of an analysis of potential in Switzerland and the European Union - and of economic assessment methods for the choice of technology and manufacturers. A SWOT (strengths, weaknesses, opportunities and threats) analysis of technologies is presented and existing biomass-fired installations in Switzerland are listed. A comparison with centrally-refined combustibles is presented and examples of cost and profitability calculations are given. Finally technological background information is presented, including information on 'forgotten' technologies.

  10. Variable Input Power Supply.

    Science.gov (United States)

    An electronic power supply using pulse width modulated (PWM) voltage regulation provides a regulated output for a wide range of input voltages. Thus...switch to change the level of voltage regulation and the turns ratio of the primary winding of the power supply output transformer, thereby obtaining increased tolerance to input voltage change. (Author)

  11. Range Flight Safety Requirements

    Science.gov (United States)

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  12. Microwave Power Beaming Infrastructure for Manned Lightcraft Operations: Part 2

    International Nuclear Information System (INIS)

    Myrabo, Leik N.

    2008-01-01

    In the past ∼7 years, microwave gyrotron technology has rapidly evolved to a critical threshold wherein ultra-energetic space launch missions based on beamed energy propulsion (BEP) now appear eminently feasible. Over the next 20 years, hundred megawatt-class microwave power-beaming stations could be prototyped on high deserts and 3- to 4 km mountain peaks before migrating into low Earth orbit, along with their passive microwave relay satellites. Described herein is a 20 GW rechargeable nuclear power satellite and microwave power-beaming infrastructure designed for manned space launch operations in the year 2025. The technological readiness of 2500 GJ superconducting magnetic energy storage 'batteries', 433-m ultralight space structures, 100 MW liquid droplet radiators, 1-6+ MW gyrotron sources, and mega-scale arrays (e.g., 3000 phase-locked units) is addressed. Microwave BEP is 'breakthrough' technology with the very real potential to radically reduce space access costs by factors of 100 to 1000 in the forseeable future

  13. Vacuum Window Design for High-Power Lasers

    CERN Document Server

    Shaftan, T V

    2005-01-01

    One of the problems in the high-power lasers design is in outcoupling of a powerful laser beam out of a vacuum volume into atmosphere. Usually the laser device is located inside a vacuum tank. The laser radiation is transported to the outside world through the transparent vacuum window. While considered transparent, some of the light passing through the glass is absorbed and converted to heat. For most applications, these properties are academic curiosities; however, in multi-kilowatt lasers, the heat becomes significant and can lead to a failure. The absorbed power can result in thermal stress, reduction of light transmission and, consequently, window damage. Modern optical technology has developed different types of glass (Silica, BK7, diamond, etc.) that have high thermal conductivity and damage threshold. However, for kilo- and megawatt lasers the issue still remains open. In this paper we present a solution that may relieve the heat load on the output window. We discuss advantages and issues of this part...

  14. Prospects and problems of nuclear power in the Philippines

    International Nuclear Information System (INIS)

    Ibe, L.D.; Aleta, C.R.

    1977-01-01

    The Philippine nuclear power program began in 1958 with the passage of Republic Act 2067, which created the Philippine Atomic Energy Commission. A series of small steps since that time were taken culminating in the latest big step - the signing in February 1976 of the contract for the first 600 MW(e) Pressurized Water Reactor with Westinghouse. The paper describes the series of steps beginning with the acquisition of a one (1) Megawatt thermal research reactor, which serves as training facility for personnel and the nucleus for development of atomic energy research and development in the country, through the feasibility studies, and finally, the entering of the contract. The problems facing the country's nuclear power program are also discussed, financing the availability of supply and fuel reprocessing service, radioactive waste management, public information, and development of local capability, to name a few. In connection with the uranium supply, the nation is embarking on an extensive exploration survey for uranium. In the case of fuel reprocessing, the concept of regional fuel reprocessing centers is being looked at. Efforts on the radwaste management program is presently concentrated on identifying suitable sites from among the country's more than 7,100 islands. The problems mentioned and many others pose a challenge to the country's ability and resources in order that the big step taken will ultimately lead to a forward progress in its nuclear power development

  15. Wind power development in Spain, the model of Navarra

    Energy Technology Data Exchange (ETDEWEB)

    Miguel Ichaso, A. de [Energia Hidroelectrica de Navarra S.A. (EHN), Pamplona (Spain)

    2000-08-01

    Wind power implementation in Spain has undergone spectacular growth in recent years. From 834 Megawatts installed at the end of 1998, the figure of 1,500 MW was reached at the end of 1999 and forecasts expect well over 2,500 MW by the end of the year 2000. A favourable legislative framework and tariff structure have brought about this rate of development, which is mainly based on the implementation of large wind farms on high altitude sites in Spain. The region of Navarra (northern Spain) has played a special role in this development, and EHN, a company born in this region, has carried out major projects that have given it 30% of the Spanish wind power sector. The challenges for the sector in Spain over the next few years are: (1) Make its development compatible with the supply guarantees required by the national electricity supply operator, (2) ensure that the implementation of wind farms is done with respect for the environment, (3) harmonise the wind power development of the different Autonomous Communities of Spain, and (4) reduce the investment costs in order to obtain enough profitability with falling energy prices in the coming years. (orig.)

  16. Pragmatic power

    CERN Document Server

    Eccles, William

    2008-01-01

    Pragmatic Power is focused on just three aspects of the AC electrical power system that supplies and moves the vast majority of electrical energy nearly everywhere in the world: three-phase power systems, transformers, and induction motors. The reader needs to have had an introduction to electrical circuits and AC power, although the text begins with a review of the basics of AC power. Balanced three-phase systems are studied by developing their single-phase equivalents. The study includes a look at how the cost of ""power"" is affected by reactive power and power factor. Transformers are cons

  17. Draft Environmental Impact Statement: BPA/Puget Power Northwest Washington Transmission Project

    International Nuclear Information System (INIS)

    1993-11-01

    Bonneville Power Administration (BPS) and Puget Sound Power ampersand Light (Puget Power) propose to upgrade the existing high-voltage transmission system in the Whatcom and Skagit County area between the towns of Custer and Sedro Woolley, including within the city of Bellingham starting in 1995. The upgrades of the interconnected 230,000 volt (230-kV) and 115-kV systems are needed to increase the reliability of the local transmission system and to increase the import capacity on a nearby US-Canada 500-kV intertie by about 850 megawatts (MW). The increase in north-south transfer capability would be shared by BPA and Puget Power (about 425 MW each). Other actions would include replacement of an existing BPA 230-kV single-circuit, wood-pole H-frame transmission line with a lattice-steel double-circuit line; an existing Puget Power 115-kV single wood-pole transmission line rebuild, two short 115-kV Puget Power lines added at BPA's Bellingham Substation; and improvements made at existing BPA and Puget Power substations

  18. SaskPower climate change action plan 1997/98 progress report

    International Nuclear Information System (INIS)

    1998-10-01

    In 1998, SaskPower signed their first large-scale cogeneration energy contract. Over the next 25 years, SaskPower will buy 210 megawatts of power from the Meridian Cogeneration Project offsetting carbon dioxide emissions by 280,000 tonnes per year and providing a source of clean, safe and reliable power. Their Condie/QE transmission line began operation in Oct. 1997, improving the efficiency of power flow and reducing carbon dioxide emissions by 96,000 tonnes per year. Their improved generating facilities are decreasing the quantity of greenhouse being produced per unit of thermal energy. Efficiency upgrades reduced over 480,000 tonnes of carbon dioxide in 1997. Successful energy audits and partnerships with government agencies and communities are keeping them on track to meet their client initiatives target. SaskPower will invest in its first-ever international offset project this year, recovering greenhouse gases from a Connecticut landfill. Their Shand greenhouse, which draws excess heat from the Shand Power Station, produced over 1.6 million seedlings for conservation projects across the province since 1991

  19. A computer-aided diagnostic and troubleshooting system for fuel cell power plants

    International Nuclear Information System (INIS)

    Unkle, C.R.

    1990-10-01

    This Interactive Computer-Aided Troubleshooting System (ICATS) was designed as a troubleshooting aid for the Tokyo Electric Power Company (TEPCO) 11-megawatt dc Module (DCM). ICATS represents an integration of the System Testability and Maintenance Program (STAMP reg-sign) and the Portable Interactive Troubleshooter (POINTER trademark) software packages developed by ARINC Research Corporation. ICATS was designed to aid in the fault isolation of shutdown conditions that may occur in the DCM during on-load operations and start-up, and hold conditions that may occur during start-up. ICATS may also be used to help fault-isolate a return-to-standby condition occurring from on-load operation of the DCM. This report describes the development of ICATS and the ICATS functional design. The unique features of STAMP and POINTER, which allow for diagnostic aids to be designed for systems not yet built and operating, are also described. 10 refs., 21 figs., 6 tabs

  20. Infrared monitoring of power-plant effluents and heat sinks to optimize plant efficiency

    Science.gov (United States)

    Wurzbach, Richard N.; Seith, David A.

    2000-03-01

    Infrared imaging of the discharge canal and intake pond of the Peach Bottom Atomic Power Station was initiated to confirm a plant staff suspicion that high water intake temperatures were being influenced by recirculation of discharge flow. To minimize the angle of incidence to the water surface, the inspection was made from the top of the cooling towers. Although there was no evidence of recirculation from the plant discharge to the intake pond, two unexpected inputs of thermal energy were discovered during the inspection. A faulty sluice gate and a damaged cross-around pipe could be seen to be dumping thermal energy into the intake pond. The result was increased temperatures at the intake which threatened plant operation, decreased plant efficiency, and resulted in fewer megawatts available to sell to customers during the critical summer months.

  1. Beginning Power BI with Excel 2013 self-service business intelligence using Power Pivot, Power View, Power Query, and Power Map

    CERN Document Server

    Clark, Dan

    2014-01-01

    Understanding your company's data has never been easier than with Microsoft's new Power BI package for Excel 2013. Consisting of four powerful tools-Power Pivot, Power View, Power Query and Power Maps-Power BI makes self-service business intelligence a reality for a wide range of users, bridging the traditional gap between Excel users, business analysts and IT experts and making it easier for everyone to work together to build the data models that can give you game-changing insights into your business. Beginning Power BI with Excel 2013 guides you step by step through the process of analyzin

  2. Neutron range spectrometer

    Science.gov (United States)

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  3. Power corrupts

    International Nuclear Information System (INIS)

    Bacon, H.; Valentine, J.

    1981-01-01

    The subject is covered in chapters, entitled: radiation (hazards associated with nuclear power production); wastes (radioactive wastes); accidents (actual and postulated, resulting in the release of radiation); the FBR and the plutonium cycle; costs (economics of nuclear power); spent fuel transport; civil liberties; doing without nuclear power (UK power demand; low energy strategy; energy policy; government policies; alternative energy sources). (U.K.)

  4. Active Power Controls from Wind Power: Bridging the Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Ela, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fleming, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Y. C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Singh, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muljadi, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scholbrook, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aho, J. [Univ. of Colorado, Boulder, CO (United States); Buckspan, A. [Univ. of Colorado, Boulder, CO (United States); Pao, L. [Univ. of Colorado, Boulder, CO (United States); Singhvi, V. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Tuohy, A. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Pourbeik, P. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Brooks, D. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Bhatt, N. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  5. Integration of Small Solar Tower Systems Into Distributed Power Islands

    International Nuclear Information System (INIS)

    Romero, M.; Marcos, M. J.; Tellez, F. M.; Blanco, M.; Fernandez, V.; Baonza, F.; Berger, S.

    1999-01-01

    One of the short-term priorities for renewable energies in Europe is their integration for local power supply into communities and energy islands (blocks of buildings, new neighborhoods in residential areas, shopping centers, hospitals, recreational areas, eco-parks, small rural areas or isolated ones such as islands or mountain communities). Following this strategy, the integration of small tower fields into so-called MIUS (Modular Integrated Utility Systems) is proposed. This application strongly influences field concepts leading to modular multi-tower systems able to more closely track demand, meet reliability requirements with fewer megawatts of installed power and spread construction costs over time after output has begun. In addition, integration into single-cycle high-efficiency gas turbines plus waste-heat applications clearly increments the solar share. The chief questions are whether solar towers can be redesigned for such distributed markets and the keys to their feasibility. This paper includes the design and performance analysis of a 1.36-MW plant and integration in the MIUS system, as well as the expected cost of electricity and a sensitivity analysis of the small tower plant's performance with design parameters like heliostats configuration and tower height. A practical application is analyzed for a shopping center with 85% power demand during day-time by using a hybrid solar tower and a gas turbine producing electricity and waste heat for hot water and heating and cooling of spaces. The operation mode proposed is covering night demand with power from the grid and solar-gas power island mode during 14 hours daytime with a maximum power production of 1.36 MW. (Author) 26 refs

  6. NS begins tidal power test with 1 turbine

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The Bay of Fundy holds huge potential as a source of clean renewable tidal energy. This article announced the successful installation of a turbine that will test the potential of tidal power in the Bay of Fundy. Rather than requiring any dams or head ponds, new tidal power technologies include offshore floating tidal turbines and turbines that are anchored to the ocean floor to take advantage of natural tidal flows. In September 2009, Nova Scotia Power unveiled the 1 MW Open-Centre tidal turbine that was manufactured in Ireland by OpenHydro. The 10-metre turbine will be deployed in the Minas Passage as part of the Fundy Ocean Research Centre for Energy (FORCE) tidal test site. The turbine will rest directly on the ocean floor using a subsea gravity base made in Dartmouth by Cherubini Metal Works. It has several design features that minimize the impact on marine life. A large open centre provides a safe passage for marine life and the turbine's clean hydrodynamic lines ensure that fish will not become entangled. The use of oils, greases and other lubricants has also been avoided. The unit produces only very low levels of mechanical noise. A detailed turbine and environmental monitoring program will begin upon completion of the installation. Nova Scotia Power's involvement with the tidal energy test facility is supported by Sustainable Development Technology Canada. Nova Scotia Hydro owns and operates 1 of only 3 tidal power plants in the world, and the only one in the western hemisphere. The Annapolis Tidal Power plant, which came online in 1984, has a capacity of 20 MW and a daily output of about 80 to 100 megawatt hours.

  7. Integration of Small Solar tower Systems into Distributed Power Islands

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M.; Marcos, M. J.; Tellez, F. M.; Blanco, M.; Fernandez, V.; Baonza, F.; Berger, S. [Ciemat, Madrid (Spain)

    2000-07-01

    One of the short-term priorities for renewable energies in Europe is their integration for local power supply into communities and energy islands (blocks of buildings, new neighborhoods in residential areas, shopping centers, hospitals, recreational areas, eco-paks, small rural areas or isolated ones such as islands or mountain communities). Following this strategy, the integration of small tower fields into so-called MIUS (Modular Integrated Utility Systems) is proposed. This application strongly influences field concepts leadings to modular multi-tower systems able to more closely track demand, meet reliability requirements with fewer megawatts of installed power and spread construction costs over time after output has begum. In addition, integration into single-cycle high-efficiency gas turbines plus waste-heat applications clearly increments the solar share. The chief questions are whether solar towers can be redesigned for such distributed markets and the keys to their feasibility. This paper includes the design and performance analysis of a 1.36-MW plant and integration in the MIUS system, as well as the expected cost of electricity and a sensitivity analysis of the small tower plant's performance with design parameters like heliostat configuration and tower height. A practical application is analyzed for a shopping center with 85% power demand during day-time by using a hybrid solar tower and a gas turbine producing electricity and waste heat for hot water and heating and cooling of spaces. The operation mode proposed is covering night demand with power from the grid and solar-gas power island mode during 14 hours daytime with a maximum power production of 1.36 MW. (Author) 26 refs.

  8. Power Supply PP-6418( )/U.

    Science.gov (United States)

    The power supply , designated POWER SUPPLY PP-6418( )/U, furnishes 0-100 amperes DC over an output voltage range of 24 to 32V DC from a nominal 120...output at end of charge. (Modified constant potential charging mode with variable current limiting.) The high reliability power supply design

  9. On power and empowerment.

    Science.gov (United States)

    Pratto, Felicia

    2016-03-01

    This study presents a conceptual analysis of social power. The most common theories of power are social-relational, an approach instantiated in a range of contemporary experiments that give participants the chance to control other people's outcomes. The relational approach is also reflected in various analyses of international relations. In comparing and contrasting relational theories of power, I identify logical inconsistencies and shortcomings in their ability to address empowerment and reductions in inequality. In turn, I propose a new ecological conceptualization of empowerment as the state of being able to achieve one's goals and of power as stemming from a combination of the capacity of the party and the affordances of the environment. I explain how this new conceptualization can describe the main kinds of power social relations, avoid logical contradictions, and moreover, distinguish power from agency and from control. This new conceptualization of power as the possibility of meeting goals, coupled with recognizing survival as the fundamental goal of all living things, implies an absolute and not relative or relational standard for power, namely well-being. It also allows us to conceive of power in ways that help address the many social concerns that have motivated research on power. © 2015 The British Psychological Society.

  10. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  11. Handbook of power systems engineering with power electronics applications

    CERN Document Server

    Hase, Yoshihide

    2012-01-01

    Formerly known as Handbook of Power System Engineering, this second edition provides rigorous revisions to the original treatment of systems analysis together with a substantial new four-chapter section on power electronics applications. Encompassing a whole range of equipment, phenomena, and analytical approaches, this handbook offers a complete overview of power systems and their power electronics applications, and presents a thorough examination of the fundamental principles, combining theories and technologies that are usually treated in separate specialised fields, in a single u

  12. Personal power systems

    Energy Technology Data Exchange (ETDEWEB)

    Dunn-Rankin, Derek; Leal, Elisangela Martins; Walther, David C. [Mechanical and Aerospace Engineering Department, University of California, Irvine, CA 92697 (United States)

    2005-07-01

    The lack of compact, efficient, human compatible, lightweight power sources impedes the realization of machine-enhanced human endeavor. Electronic and communication devices, as well as mobile robotic devices, need new power sources that will allow them to operate autonomously for periods of hours. In this work, a personal power system implies an application of interest to an individual person. The human-compatible gravimetric energy density spans the range from 500 to 5000Wh/kg, with gravimetric power density requirements from 10 to 1000W/kg. These requirements are the primary goals for the systems presented here. The review examines the interesting and promising concepts in electrochemical, thermochemical, and biochemical approaches to small-scale power, as well as their technological and physical challenges and limitations. Often it is the limitations that dominate, so that while the technology to create personal autonomy for communications, information processing and mobility has accelerated, similar breakthroughs for the systems powering these devices have not yet occurred. Fuel cells, model airplane engines, and hummingbird metabolism, are three promising examples, respectively, of electrochemical, thermochemical, and biochemical power production strategies that are close to achieving personal power systems' power demands. Fuel cells show great promise as an energy source when relatively low power density is demanded, but they cannot yet deliver high peak powers nor respond quickly to variable loads. Current small-scale engines, while achieving extraordinary power densities, are too inefficient to achieve the energy density needed for long-duration autonomous operation. Metabolic processes of flying insects and hummingbirds are remarkable biological energy converters, but duplicating, accelerating, and harnessing such power for mobility applications is virtually unexplored. These challenges are significant, and they provide a fertile environment for

  13. Socioeconomic effects of power marketing alternatives for the Central Valley and Washoe Projects: 2005 regional econmic impact analysis using IMPLAN

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.M.; Godoy-Kain, P.; Gu, A.Y.; Ulibarri, C.A.

    1996-11-01

    The Western Area Power Administration (Western) was founded by the Department of Energy Organization Act of 1977 to market and transmit federal hydroelectric power in 15 western states outside the Pacific Northwest, which is served by the Bonneville Power Administration. Western is divided into four independent Customer Service Regions including the Sierra Nevada Region (Sierra Nevada), the focus of this report. The Central Valley Project (CVP) and the Washoe Project provide the primary power resources marketed by Sierra Nevada. Sierra Nevada also purchases and markets power generated by the Bonneville Power Administration, Pacific Gas and Electric (PG&E), and various power pools. Sierra Nevada currently markets approximately 1,480 megawatts of power to 77 customers in northern and central California. These customers include investor-owned utilities, public utilities, government agencies, military bases, and irrigation districts. Methods and conclusions from an economic analysis are summarized concerning distributional effects of alternative actions that Sierra Nevada could take with it`s new marketing plan.

  14. Fusion power

    International Nuclear Information System (INIS)

    Hancox, R.

    1981-01-01

    The principles of fusion power, and its advantages and disadvantages, are outlined. Present research programmes and future plans directed towards the development of a fusion power reactor, are summarized. (U.K.)

  15. Power Electronics

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....

  16. Power Electronics

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    The global electrical energy consumption is still rising and there is an urgent demand to increase the power capacity. It is expected that the power capacity has to be doubled within 20 years. The production, distribution and use of energy should be as efficient as possible and incentives to save...... energy at the end-user should also be set up. Deregulation of energy has in the past lowered the investment in larger power plants, which means the need for new electrical power sources will be high in the near future. Two major technologies will play important roles to solve the future problems. One...... is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...

  17. Power Talk

    DEFF Research Database (Denmark)

    Angjelichinoski, Marko; Stefanovic, Cedomir; Popovski, Petar

    2016-01-01

    A standard way to realize communication in microgrid control is to use an external communication network, such as modems for wireless or power-line communication, whose implementation may be inefficient in terms of deployment cost, complexity, and system stability. In this chapter we present...... a communication solution, denoted as power talk, which is solely based on the use of the existing microgrid power equipment (i.e., power electronics and buses). The pivotal idea is to modulate information in the power-related parameters of the microgrid buses by use of the flexibility of power electronic...... interfaces. The focus of the chapter is on the design of power talk solutions for DC microgrids with droop control. Specifically, the chapter presents the power talk implementation through modification of the droop parameters of the primary control loop, and investigates the design of modulation schemes...

  18. Radio Frequency Ranging for Swarm Relative Localization

    Science.gov (United States)

    2017-10-01

    positioning, such as collision avoidance, formation flying, and patterned weapon delivery. Although there are many technologies that can be employed for...applications exist for relative positioning such as collision avoidance,3 formation flying,4 and patterned weapon delivery.5 In addition, relative...will be referred to as A1. A1 is designated to begin the ranging operations. After setup completes, the loop function continually executes until power

  19. OMV--Short Range Vehicle Concept

    Science.gov (United States)

    1986-01-01

    In this 1986 artist's concept, the Orbital Maneuvering Vehicle (OMV), is shown without its main propulsion module. Essentially two propulsion vehicles in one, the OMV could be powered by a main propulsion module , or, in its short range vehicle configuration shown here, use its own hydrazine and cold gas thrusters. As envisioned by Marshall Space Flight Center plarners, the OMV would be a remotely-controlled free-flying space tug which would place, rendezvous, dock, and retrieve orbital payloads.

  20. Power Factor Controller

    Science.gov (United States)

    1997-01-01

    Frank Nola invented the Power Factor Controller (PFC) at Marshall Space Flight Center more than a decade ago. Nola came up with a way to curb power wastage in AC induction motors. The PFC matches voltage with the motor's actual need by continuously sensing shifts between voltage and current. When it senses a light load it cuts the voltage to the minimum needed. Potential energy savings range from 8 to 65 percent.

  1. Power Electronics

    Indian Academy of Sciences (India)

    December 2007. They cover a wide spectrum of areas from power supplies to power system applications. The first four papers are related to power converter topologies. Lakshminarasamma &. Ramanarayanan describe the modelling and design of a family of soft transition converters, while Bhardwaj et al discuss reduction ...

  2. CSTI High Capacity Power

    International Nuclear Information System (INIS)

    Winter, J.M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed

  3. U.S. Forward Operating Base Applications of Nuclear Power

    International Nuclear Information System (INIS)

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  4. Active high-power RF pulse compression using optically switched resonant delay lines

    International Nuclear Information System (INIS)

    Tantawi, S.G.; Ruth, R.D.; Vlieks, A.E.

    1996-11-01

    The authors present the design and a proof of principle experimental results of an optically controlled high power rf pulse compression system. The design should, in principle, handle few hundreds of Megawatts of power at X-band. The system is based on the switched resonant delay line theory. It employs resonant delay lines as a means of storing rf energy. The coupling to the lines is optimized for maximum energy storage during the charging phase. To discharge the lines, a high power microwave switch increases the coupling to the lines just before the start of the output pulse. The high power microwave switch, required for this system, is realized using optical excitation of an electron-hole plasma layer on the surface of a pure silicon wafer. The switch is designed to operate in the TE 01 mode in a circular waveguide to avoid the edge effects present at the interface between the silicon wafer and the supporting waveguide; thus, enhancing its power handling capability

  5. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter

  6. Google Power Search

    CERN Document Server

    Spencer, Stephan

    2011-01-01

    Behind Google's deceptively simple interface is immense power for both market and competitive research-if you know how to use it well. Sure, basic searches are easy, but complex searches require specialized skills. This concise book takes you through the full range of Google's powerful search-refinement features, so you can quickly find the specific information you need. Learn techniques ranging from simple Boolean logic to URL parameters and other advanced tools, and see how they're applied to real-world market research examples. Incorporate advanced search operators such as filetype:, intit

  7. Perception range prediction for IR pilot sight

    Science.gov (United States)

    Weiss, A. Robert; Großmann, Peter; Repasi, Endre; Ritt, Gunnar; Wittenstein, Wolfgang

    2008-04-01

    The increasing use of IR pilot sight in helicopters calls for a reliable prediction of perception ranges for a variety of objects, especially those needed for orientation and those posing as a potential hazard, like power poles, masts, isolated trees etc. Since the visibility of objects in the IR depends mainly on the temperature differences between those objects and a given background and only marginally on illumination, range prediction techniques used for the visual range or light-amplified vision are only of very limited use. While range predictions based on the Johnson criterion do offer some insight into expected ranges, the inherently nominal nature of distance estimates thus obtained hampers their use for an actual field-deployable pre-flight consulting procedure. In order to overcome those limitations, long-term simultaneous measurements of relevant objects and background temperatures and weather data were carried out and used for temperature prediction from prevalent weather conditions. Together with a perception model derived from extensive observer experiments based on synthetic images of the UH Tiger Pilot Sight Unit we developed a perception range prediction package which is currently evaluated by the weather service of the Bundeswehr. We will present results from the observer experiments together with the derived perception models. These are then compared to actual perception ranges as obtained from flight experiments.

  8. Nuclear power worldwide: Status and outlook. A report from the IAEA

    International Nuclear Information System (INIS)

    2007-01-01

    Full text: Nuclear power's prominence as a major energy source will continue over the next several decades, according to new projections made by the International Atomic Energy Agency (IAEA), which has just published a new report, Energy, Electricity and Nuclear Power for the period up to 2030. The IAEA makes two annual projections concerning the growth of nuclear power, a low and a high. The low projection assumes that all nuclear capacity that is currently under construction or firmly in the development pipeline gets completed and attached to the grid, but no other capacity is added. In this low projection, there would be growth in capacity from 370 GW(e) at the end of 2006 to 447 GW(e) in 2030. (A gigawatt = 1000 megawatts = 1 billion watts). In the IAEA's high projection - which adds in additional reasonable and promising projects and plans - global nuclear capacity is estimated to rise to 679 GW(e) in 2030. That would be an average growth rate of about 2.5%/yr. 'Our job is not so much to predict the future but to prepare for it,' explains the IAEA's Alan McDonald, Nuclear Energy Analyst. 'To that end we update each year a high and low projection to establish the range of uncertainty we ought to be prepared for.' Nuclear power's share of worldwide electricity production rose from less than 1 percent in 1960 to 16 percent in 1986, and that percentage has held essentially constant in the 21 years since 1986. Nuclear electricity generation has grown steadily at the same pace as overall global electricity generation. At the close of 2006, nuclear provided about 15 percent of total electricity worldwide. The IAEA's other key findings as of the end of 2006 are elaborated below. There were 435 operating nuclear reactors around the world, and 29 more were under construction. The US had the most with 103 operating units. France was next with 59. Japan followed with 55, plus one more under construction, and Russia had 31 operating, and seven more under construction. Of

  9. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  10. Stockholm Power Tech. Power systems

    International Nuclear Information System (INIS)

    1995-01-01

    The proceedings from this symposium is presented in six volumes: Invited speakers' sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  11. Stockholm Power Tech. Power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The proceedings from this symposium is presented in six volumes: Invited speakers` sessions; Power systems; Power electronics; High-voltage technology; Electrical machines and drives; and Information and control systems. This report covers the power systems volume. Separate abstracts have been prepared for 141 of the 145 papers in this volume

  12. Understanding the environmental implications of energy transitions. A case study for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Arvesen, Anders

    2013-03-01

    A fundamental change in the ways in which we provide energy to run our economies, an energy transition, is needed to mitigate climate change. Wind power is an important part of future global energy supply in most energy scenarios. This thesis aims to contribute to a better understanding of the environmental implications of energy transitions, primarily by examining the case of wind power. This involves new investigations of both potential negative impacts of wind power and the positive role of the technology in emission reduction, as well as a critical review of past research. Three papers on wind power are presented: a comprehensive literature review of life cycle assessments (LCA) of wind power, a scenario-based LCA of large-scale adoption of wind power, and an LCA of an offshore wind farm. A hybrid LCA methodology is employed in the scenario-based LCA and LCA of an offshore wind farm. Another paper is presented which is not concerned with wind power in particular, but takes the form of an evaluation of limitations of climate change mitigation literature. It helps to achieve the aim stated above by bringing together knowledge of indirect effects of mitigation measures, and by elucidating how these effects may influence the viability of proposed mitigation strategies. The literature review aims to take stock of insights from past research, with a particular view to identifying remaining challenges. A survey of results indicates 0.063 ({+-}0.061) and 0.055 ({+-}0.037) kWh energy used and 20 ({+-}14) and 16 ({+-}10) Co2 emitted per kWh electricity for onshore and offshore cases. Evidence suggests strong positive effects of scale in the lower end of the turbine size spectrum, but is inconclusive for the megawatt range. LCAs tend to assume higher capacity factors than current real-world averages. Limitations of existing research are discussed; this includes poorly understood toxicity and resource depletion impacts, cut-off errors and seemingly inconsistent modelling

  13. Super-ranging. A new ranging strategy in European badgers.

    Directory of Open Access Journals (Sweden)

    Aoibheann Gaughran

    Full Text Available We monitored the ranging of a wild European badger (Meles meles population over 7 years using GPS tracking collars. Badger range sizes varied seasonally and reached their maximum in June, July and August. We analysed the summer ranging behaviour, using 83 home range estimates from 48 individuals over 6974 collar-nights. We found that while most adult badgers (males and females remained within their own traditional social group boundaries, several male badgers (on average 22% regularly ranged beyond these traditional boundaries. These adult males frequently ranged throughout two (or more social group's traditional territories and had extremely large home ranges. We therefore refer to them as super-rangers. While ranging across traditional boundaries has been recorded over short periods of time for extraterritorial mating and foraging forays, or for pre-dispersal exploration, the animals in this study maintained their super-ranges from 2 to 36 months. This study represents the first time such long-term extra-territorial ranging has been described for European badgers. Holding a super-range may confer an advantage in access to breeding females, but could also affect local interaction networks. In Ireland & the UK, badgers act as a wildlife reservoir for bovine tuberculosis (TB. Super-ranging may facilitate the spread of disease by increasing both direct interactions between conspecifics, particularly across social groups, and indirect interactions with cattle in their shared environment. Understanding super-ranging behaviour may both improve our understanding of tuberculosis epidemiology and inform future control strategies.

  14. Rock glaciers, Zailiysiky Range, Kungei Ranges, Tienshan, Kazakhstan, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Zailiyskiy Alatau is the northernmost parallel latitudinal ranges of the Northern Tien Shan. The highest point of this range is the Talgar peak (4973 m a.s.l.)....

  15. Remote Excavation of Heavily Contaminated UXO Sites. The Range Master

    National Research Council Canada - National Science Library

    Crandall, Alan L

    2007-01-01

    USA Environmental, Inc., and Timberline Environmental Services, Inc., developed the Range Master, a remote controlled scraper with an integrated power screen, to excavate and sift the top 12 inches of heavily contaminated UXO sites...

  16. Power Converters and Power Quality

    CERN Document Server

    Kahle, K

    2015-01-01

    This paper discusses the subject of power quality for power converters. The first part gives an overview of most of the common disturbances and power quality issues in electrical networks for particle accelerators, and explains their consequences for accelerator operation. The propagation of asymmetrical network disturbances into a network is analysed. Quantitative parameters for network disturbances in a typical network are presented, and immunity levels for users’ electrical equipment are proposed. The second part of this paper discusses the technologies and strategies used in particle accelerator networks for power quality improvement . Particular focus is given to networks supplying loads with cycling active and reactive power

  17. Approaching Repetitive Short Circuit Tests on MW-Scale Power Modules by means of an Automatic Testing Setup

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Wang, Huai; Iannuzzo, Francesco

    2016-01-01

    been integrated with an advanced software tool and a semiconductor device analyzer to perform stress monitoring on the considered device under test (DUT). A case-study is included in the paper concerning a 1.7 kV/ 1 kA IGBT module, which has been tested safely up to 30,000 repetitions......An automatic testing system to perform repetitive short-circuit tests on megawatt-scale IGBT power modules is pre-sented and described in this paper, pointing out the advantages and features of such testing approach. The developed system is based on a non-destructive short-circuit tester, which has...... with no significant damage. The developed system has been demonstrated to be very helpful in performing a large number of repetition tests as required by modern testing protocols for robustness and reliability assess-ment. The software algorithm and a demonstration video are available for download....

  18. A research program in determination of heavy metals in sediments and benthic species in relation to nuclear power plant operation

    Science.gov (United States)

    Phelps, H. L.

    1984-01-01

    Heavy metals in the estuarine environment can be toxic to fish and shellfish early life history stages and concentrations build up to levels of concern in marketable shellfish. The present survey was begun just before startup in 1974 of the 1900 megawatt Calvert Cliffs Nuclear Power Plant on the Chesapeake Bay in order to assess and understand factors relating to heavy metal accumulation in estuarine biota. Oysters were collected in large numbers at test and reference sites in June 1974 to 77 and individually analyzed for copper and zinc. Oyster copper and zinc concentrations were correlated with salinity read at time of collection. The relationship of oyster age to metal concentration was examined with two sets of oysters of known age and genetic origin (laboratory spawned). Copper sorption by typical mid Bay sediments, and field studies on cadmium concentrations in sediments were examined.

  19. Power-constrained supercomputing

    Science.gov (United States)

    Bailey, Peter E.

    . Adaptive power balancing efficiently predicts where critical paths are likely to occur and distributes power to those paths. Greater power, in turn, allows increased thread concurrency levels, CPU frequency/voltage, or both. We describe these techniques in detail and show that, compared to the state-of-the-art technique of using statically predetermined, per-node power caps, Conductor leads to a best-case performance improvement of up to 30%, and an average improvement of 19.1%. At the node level, an accurate power/performance model will aid in selecting the right configuration from a large set of available configurations. We present a novel approach to generate such a model offline using kernel clustering and multivariate linear regression. Our model requires only two iterations to select a configuration, which provides a significant advantage over exhaustive search-based strategies. We apply our model to predict power and performance for different applications using arbitrary configurations, and show that our model, when used with hardware frequency-limiting in a runtime system, selects configurations with significantly higher performance at a given power limit than those chosen by frequency-limiting alone. When applied to a set of 36 computational kernels from a range of applications, our model accurately predicts power and performance; our runtime system based on the model maintains 91% of optimal performance while meeting power constraints 88% of the time. When the runtime system violates a power constraint, it exceeds the constraint by only 6% in the average case, while simultaneously achieving 54% more performance than an oracle. Through the combination of the above contributions, we hope to provide guidance and inspiration to research practitioners working on runtime systems for power-constrained environments. We also hope this dissertation will draw attention to the need for software and runtime-controlled power management under power constraints at various levels

  20. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  1. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  2. Summary of space nuclear reactor power systems, 1983--1992

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  3. Summary of space nuclear reactor power systems, 1983--1992

    International Nuclear Information System (INIS)

    Buden, D.

    1993-01-01

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power

  4. Star power

    International Nuclear Information System (INIS)

    Kennedy, Tom

    2003-01-01

    Discusses the fight over the diminishing supply of fossil fuels and how there could be an unlimited, clean and politically free source of power just over the horizon. Fusion was discovered as a much better, inexhaustable supply of power, it only takes a few atoms to fuse for fusion to take off. Fusion once started will continue until all the fuel is exhausted. It is expected, that with the current rate of progess, in fifty years time scientists will achieve practical fusion power

  5. Ranges of protons in biological targets

    Science.gov (United States)

    Pavlovič, Márius; Hammerle, Andreas

    2017-08-01

    The paper introduces a simple fitting function for quick assessment of proton ranges in biological targets and human tissues. The function has been found by fitting an extensive data set of Monte Carlo proton ranges obtained with the aid of the SRIM-2013 code. The data has been collected for 28 different targets at 8 energies in the interval from 60 MeV to 220 MeV. The paper shows that at a given kinetic proton-beam energy, the Monte Carlo ranges can be satisfactorily fitted by a power function that depends solely on the target density. This is a great advantage for targets, for which the exact chemical composition is not known, or the mean ionizing potential is not reliably known. The satisfactory fit is meant as the fit that stays within the natural range straggling of the Monte Carlo ranges. In the second step, the energy-scaling yielding a universal fitting formula for proton ranges as a function of proton-beam energy and target density is introduced and discussed.

  6. Modular Power Electronic Converters in the Power Range 1 to 10 kW

    DEFF Research Database (Denmark)

    Klimczak, Pawel

    Thanks to CO2 emission reduction policies and increasing prices of fossil fuels a significant growth in field of sustainable energy sources (SES) is being observed during last decade. A government support and take-off projects in Europe and US shall ensure an increasing trend in future too. Some...... with present state-of-the-art isolated converters. A modular converter concept and its influence on a fuel cell converter overall efficiency were investigated too. Based on simulation and measurement results it was demonstrated that the parallel modular converter used in a fuel cell application achieves a high...

  7. Low power arcjet performance

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.

    1990-01-01

    An experimental investigation was performed to evaluate arc jet operation at low power. A standard, 1 kW, constricted arc jet was run using nozzles with three different constrictor diameters. Each nozzle was run over a range of current and mass flow rates to explore stability and performance in the low power engine. A standard pulse-width modulated power processor was modified to accommodate the high operating voltages required under certain conditions. Stable, reliable operation at power levels below 0.5 kW was obtained at efficiencies between 30 and 40 percent. The operating range was found to be somewhat dependent on constrictor geometry at low mass flow rates. Quasi-periodic voltage fluctuations were observed at the low power end of the operating envelope, The nozzle insert geometry was found to have little effect on the performance of the device. The observed performance levels show that specific impulse levels above 350 seconds can be obtained at the 0.5 kW power level.

  8. Enhanced productivity of the 'Over the Top Method' of Nuclear Power Plant Construction

    International Nuclear Information System (INIS)

    Pepindonat, Bryan F.

    2002-01-01

    The first nuclear facilities were crude by most standards since the science was new and existing technology almost non-existent. The construction of these facilities, though technically challenging, presented few difficulties for the construction companies. The equipment was up to the task and the construction techniques were standard. In fact, most of the plants were prototypes and smaller versions of what was envisioned later for the production of nuclear power. In the fifties, nuclear science was still thought of in terms of destructive nuclear devices although progress was made with respect to nuclear electrical generating plants. Real progress was made in the late fifties and early sixties. Initial nuclear power plants consisted of small units with capacities of 200 to 300 megawatts. These used steam drums and reactors to produce steam for the generators. Component weights were not significant and construction costs were not considered excessive for the new technology. As the requirements for nuclear power plants became more defined. The need for more power to be produced from a given plant in order to amortize construction costs became apparent. That also increased the size of the components required and the methods and cost of the installation of those components. Reactor weights grew from 200 tons to 600 tons. Steam drums gave way to steam generators Multi loop systems were designed increasing the number of steam generators from 1 to 2 and then to 4. Pressurizers were added. The requirements for cranes inside of containment also grew to accommodate the NSSS components.

  9. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique

  10. Power electronics

    Indian Academy of Sciences (India)

    Kishore Chatterjee

    Power electronics plays an important role in the processing, conditioning and utilization of electric power. From ubiquitous ... An induction motor drive based on a modular multilevel converter (MMC) is presented ... dynamic voltage restorer and the control of an induction motor drive having an active front end converter.

  11. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  12. Power electronics

    Indian Academy of Sciences (India)

    Kishore Chatterjee

    reference material for power electronics engineers, students and academicians. We thank the editors of Sadhana for inviting us to guest-edit this special issue on power electronics. July 2017. KISHORE CHATTERJEE. Department of Electrical Engineering,. Indian Institute of Technology,. Bombay, Powai, Mumbai 400076, ...

  13. Power Electronics

    Indian Academy of Sciences (India)

    Such real time models are extremely important, as they can be included in real time simulation of sys- tems to evolve control schemes for the converters as well as to study the effect on the power system. In view of the control possibilities offered by the use of power converters and the newly emerging applications, there has ...

  14. Offshore Wind Power

    DEFF Research Database (Denmark)

    Negra, Nicola Barberis

    The aim of the project is to investigate the influence of wind farms on the reliability of power systems. This task is particularly important for large offshore wind farms, because failure of a large wind farm might have significant influence on the balance of the power system, and because offshore...... Carlo simulation is used for these calculations: this method, in spite of an extended computation time, has shown flexibility in performing reliability studies, especially in case of wind generation, and a broad range of results which can be evaluated. The modelling is then extended to the entire power...... system considering conventional power plants, distributed generation based on wind energy and CHP technology as well as the load and transmission facilities. In particular, the different models are used to represent two well-known test systems, the RBTS and the IEEE-RTS, and to calculate...

  15. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  16. Pulsed power

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The key element of our pulsed power program is concentration of power in time and space by suppression of breakdown in dielectrics and in vacuum. Magnetically insulated vacuum transmission lines and magnetic suppression of insulator flashover have continued as the main reserch directions. Vacuum insulated line studies at Physics International have been expanded and a test bed at Sandia, called MITE (Magnetically Insulated Transmission Experiment), is under development. The choice for the baseline EBFA design will depend on the outcome of these studies and should be made in July 1977. The slow and intermediate speed pulsed power approaches to EBFA will be based on Proto I and Proto II results and several of the projected EBFA subsystems are presently being tested in Proto II. A further stage of power concentration, within the vacuum diode itself, would considerably ease the burden on dielectrics; methods of power multiplication involving magnetically imploded plasmas are being considered and tests have begun using the Ripple III apparatus

  17. Power generation

    International Nuclear Information System (INIS)

    Nunez, Anibal D.

    2001-01-01

    In the second half of twentieth century, nuclear power became an industrial reality. Now the operating 433 power plants, the 37 plants under construction, near 9000 years/reactor with only one serious accident with emission of radioactive material to the environment (Chernobyl) show the maturity of this technology. Today nuclear power contribute a 17% to the global generation and an increase of 75 % of the demand of electricity is estimated for 2020 while this demand is expected to triplicate by 2050. How this requirement can be satisfied? All the indicators seems to demonstrate that nuclear power will be the solution because of the shortage of other sources, the increase of the prices of the non renewable fuels and the scarce contribution of the renewable ones. In addition, the climatic changes produced by the greenhouse effect make even more attractive nuclear power. The situation of Argentina is analyzed and compared with other countries. The convenience of an increase of nuclear power contribution to the total national generation seems clear and the conclusion of the construction of the Atucha II nuclear power plant is recommended

  18. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  19. Power Talk

    DEFF Research Database (Denmark)

    Liu, Hongpeng; Yang, Yongheng; Loh, Poh Chiang

    2016-01-01

    In this paper, a novel communication strategy called Power Talk is introduced to realize the power line communication among the Voltage Source Converters (VSC) of DC MicroGrids (MGs). Each VSC transmits information by changing the control parameters, and receives information by observing the local...... output power. By using common coding schemes, which transform the DC MGs in some familiar communication channels, some important communication challenges can be addressed, such as random load variations and VSCs switching, as it do not need a separate communication channel. For this purpose, two multiple...

  20. Power Talk

    DEFF Research Database (Denmark)

    Stefanovic, Cedomir; Popovski, Petar; Angjelichinoski, Marko

    2015-01-01

    We introduce a novel communication strategy for DC Micro Grids (MGs), termed power talk, in which the devices communicate by modulating the power levels in the DC bus. The information is transmitted by varying the parameters that the MG units use to control the level of the common bus voltage......, while it is received by processing the bus measurements that units perform. This implies that the communication does not require a dedicated modem, but instead it is piggybacked on top of the power electronics. The communication is challenged by the random fluctuations of the voltage level due...

  1. Cascade Mountain Range in Oregon

    Science.gov (United States)

    Sherrod, David R.

    2016-01-01

    The Cascade mountain system extends from northern California to central British Columbia. In Oregon, it comprises the Cascade Range, which is 260 miles long and, at greatest breadth, 90 miles wide (fig. 1). Oregon’s Cascade Range covers roughly 17,000 square miles, or about 17 percent of the state, an area larger than each of the smallest nine of the fifty United States. The range is bounded on the east by U.S. Highways 97 and 197. On the west it reaches nearly to Interstate 5, forming the eastern margin of the Willamette Valley and, farther south, abutting the Coast Ranges

  2. Osprey Range - CWHR [ds601

    Data.gov (United States)

    California Natural Resource Agency — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  3. Analysis and design of a series resonant converter with wide operating range and minimized transformer ratings

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2017-01-01

    This paper is introducing a new method of operation for a series resonant converter, with intended application in megawatt high voltage DC wind turbines. Compared to a frequency-controlled series resonant converter operated in sub-resonant mode, the new method (entitled pulse removal technique...

  4. Realistic Specific Power Expectations for Advanced Radioisotope Power Systems

    Science.gov (United States)

    Mason, Lee S.

    2006-01-01

    Radioisotope Power Systems (RPS) are being considered for a wide range of future NASA space science and exploration missions. Generally, RPS offer the advantages of high reliability, long life, and predictable power production regardless of operating environment. Previous RPS, in the form of Radioisotope Thermoelectric Generators (RTG), have been used successfully on many NASA missions including Apollo, Viking, Voyager, and Galileo. NASA is currently evaluating design options for the next generation of RPS. Of particular interest is the use of advanced, higher efficiency power conversion to replace the previous thermoelectric devices. Higher efficiency reduces the quantity of radioisotope fuel and potentially improves the RPS specific power (watts per kilogram). Power conversion options include Segmented Thermoelectric (STE), Stirling, Brayton, and Thermophotovoltaic (TPV). This paper offers an analysis of the advanced 100 watt-class RPS options and provides credible projections for specific power. Based on the analysis presented, RPS specific power values greater than 10 W/kg appear unlikely.

  5. Nuclear power

    OpenAIRE

    2005-01-01

    David Waller and Alan McDonald ask whether a nuclear renaissance can be predicted; Judith M. Greenwald discusses keeping the nuclear power option open; Paul Mobbs considers the availability of uranium and the future of nuclear energy.

  6. Power Preservation

    DEFF Research Database (Denmark)

    Galster, Kjeld

    Power Preservation (Abstract) In the 17th century, just as today, coalitions needed ‘lead nations’. This was assumed to be a power with great military and economic potentials, and Denmark endeavoured to act as such a leader in the Thirty Years War from 1626 to 28. The results were not encouraging...... in the military field and they were disastrous as far as fiscal matters were concerned. Sweden took over the leadership of the protestant side and she took over Denmark’s place amongst the great powers of the Baltic Region. From that time onwards, Danish influence and options on the international stage gradually...... declined. Thus, Denmark of the 17th century is not to be counted amongst the great powers, but since Christian V’s accession to the throne in 1670 Denmark-Norway has developed into one of Europe’s most highly militarised states. Apart from a permanently combat ready navy, the country maintains a standing...

  7. SDR Input Power Estimation Algorithms

    Science.gov (United States)

    Nappier, Jennifer M.; Briones, Janette C.

    2013-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.

  8. Power Supply

    Science.gov (United States)

    1991-01-01

    Maxwell Laboratories capacitor charging power supply is the first commercial spinoff from the NASA CCDS program - a consortia of industries and government establishments to accelerate development of ground and space based commercial applications of NASA technology. The power supply transforms and conditions large voltages to charge capacitors used in x-ray sources, medical accelerators, etc. It is lighter, more reliable, more compact and efficient. Originally developed for space lasers, its commercial potential was soon recognized.

  9. Introduction to electrical power and power electronics

    CERN Document Server

    Patel, Mukund R

    2012-01-01

    Power Generation, Distribution, and Utilization AC Power Fundamentals Common Aspects of Power Equipments AC Generator AC and DC Motors Transformer Power Cable Power Distribution Fault Current Analysis System ProtectionEconomic Use of PowerElectrochemical BatteryPower Electronics and Motor Drives Power Electronics Devices DC-DC Converters AC-DC-AC Converters Variable-Frequency Drives Quality of Power Power Converter CoolingAppendixIndex

  10. SP-100/Brayton power system concepts

    International Nuclear Information System (INIS)

    Owen, D.F.

    1989-01-01

    Use of closed Brayton cycle (CBC) power conversion technology has been investigated for use with SP-100 reactors for space power systems. The CBC power conversion technology is being developed by Rockwell International under the Dynamic Isotype Power System (DIPS) and Space Station Freedom solar dynamic power system programs to provide highly efficient power conversion with radioisotype and solar collector heat sources. Characteristics including mass, radiator area, thermal power, and operating temperatures for systems utilizing SP-100 reactor and CBC power conversion technology were determined for systems in the 10-to 100-kWe power range. Possible SP-100 reactor/CBC power system configurations are presented. Advantages of CBC power conversion technology with regard to reactor thermal power, operating temperature, and development status are discussed

  11. High Power Vanadate lasers

    CSIR Research Space (South Africa)

    Strauss, HJ

    2006-07-01

    Full Text Available ) Poor thermal contact between crystal and mount barb2right stronger thermal lenses and thermal stress barb2right bad beams and / or crystal damage. 2) Nd:GdVO4 spectrally very close to Nd:YVO4. Much uncertainty about the thermal properties barb2... properties during lasing can be made at two important wavelengths. 3) Pi-polarisation barb2rightWeakest thermal lens barb2right Ideal for high output power levels Future Work • Determine the thermal lens focal lengths over a wider range of pump powers...

  12. Precise Range Determination Using Laser Ranging Data of LAGEOS

    Directory of Open Access Journals (Sweden)

    Kwang-Ryul Kim

    1993-12-01

    Full Text Available Satellite laser ranging observation of LAGEOS ¥± has been performed using the SLR System at Sheshan Laser Ranging Station, Shanghai Observatory. And we obtained 1,838 observational points The observed range data is corrected by means of system delay correction using ground target observation, atmospheric refraction delay correction, offset correction, general relativistic correction and tide correction including solid tide, polar tide and ocean tide. As a result, the determined range delay mean value is 19.12m and the mean internal accuracy by means of polynomial fitting and least square method is ¡¾7cm. Corrected observational points are 1,340 and noise ratio to total observational points is 27.1%

  13. Foraging optimally for home ranges

    Science.gov (United States)

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  14. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  15. The Challenge Posed by Geomagnetic Activity to Electric Power Reliability: Evidence From England and Wales

    Science.gov (United States)

    Forbes, Kevin F.; St. Cyr, O. C.

    2017-10-01

    This paper addresses whether geomagnetic activity challenged the reliability of the electric power system during part of the declining phase of solar cycle 23. Operations by National Grid in England and Wales are examined over the period of 11 March 2003 through 31 March 2005. This paper examines the relationship between measures of geomagnetic activity and a metric of challenged electric power reliability known as the net imbalance volume (NIV). Measured in megawatt hours, NIV represents the sum of all energy deployments initiated by the system operator to balance the electric power system. The relationship between geomagnetic activity and NIV is assessed using a multivariate econometric model. The model was estimated using half-hour settlement data over the period of 11 March 2003 through 31 December 2004. The results indicate that geomagnetic activity had a demonstrable effect on NIV over the sample period. Based on the parameter estimates, out-of-sample predictions of NIV were generated for each half hour over the period of 1 January to 31 March 2005. Consistent with the existence of a causal relationship between geomagnetic activity and the electricity market imbalance, the root-mean-square error of the out-of-sample predictions of NIV is smaller; that is, the predictions are more accurate, when the statistically significant estimated effects of geomagnetic activity are included as drivers in the predictions.

  16. Dissipation range turbulent cascades in plasmas

    International Nuclear Information System (INIS)

    Terry, P. W.; Almagri, A. F.; Forest, C. B.; Nornberg, M. D.; Rahbarnia, K.; Sarff, J. S.; Fiksel, G.; Hatch, D. R.; Jenko, F.; Prager, S. C.; Ren, Y.

    2012-01-01

    Dissipation range cascades in plasma turbulence are described and spectra are formulated from the scaled attenuation in wavenumber space of the spectral energy transfer rate. This yields spectra characterized by the product of a power law and exponential fall-off, applicable to all scales. Spectral indices of the power law and exponential fall-off depend on the scaling of the dissipation, the strength of the nonlinearity, and nonlocal effects when dissipation rates of multiple fluctuation fields are different. The theory is used to derive spectra for MHD turbulence with magnetic Prandtl number greater than unity, extending previous work. The theory is also applied to generic plasma turbulence by considering the spectrum from damping with arbitrary wavenumber scaling. The latter is relevant to ion temperature gradient turbulence modeled by gyrokinetics. The spectrum in this case has an exponential component that becomes weaker at small scale, giving a power law asymptotically. Results from the theory are compared to three very different types of turbulence. These include the magnetic plasma turbulence of the Madison Symmetric Torus, the MHD turbulence of liquid metal in the Madison Dynamo Experiment, and gyrokinetic simulation of ion temperature gradient turbulence.

  17. Health Risk Assessment of Nitrogen Dioxide and Sulfur Dioxide Exposure from a New Developing Coal Power Plant in Thailand

    Directory of Open Access Journals (Sweden)

    Tin Thongthammachart

    2017-07-01

    Full Text Available Krabi coal-fired power plant is the new power plant development project of the Electricity Generating Authority of Thailand (EGAT. This 800 megawatts power plant is in developing process. The pollutants from coal-fired burning emissions were estimated and included in an environmental impact assessment report. This study aims to apply air quality modeling to predict nitrogen dioxide (NO2 and sulfur dioxide (SO2 concentration which could have health impact to local people. The health risk assessment was studied following U.S. EPA regulatory method. The hazard maps were created by ArcGIS program. The results indicated the influence of the northeast and southwest monsoons and season variation to the pollutants dispersion. The daily average and annual average concentrations of NO2 and SO2 were lower than the NAAQS standard. The hazard quotient (HQ of SO2 and NO2 both short-term and long-term exposure were less than 1. However, there were some possibly potential risk areas indicating in GIS based map. The distribution of pollutions and high HI values were near this power plant site. Although the power plant does not construct yet but the environment health risk assessment was evaluated to compare with future fully developed coal fire plant.

  18. Pumped Storage Hydro Power Plant Cierny Vah

    International Nuclear Information System (INIS)

    Regula, E.

    1998-01-01

    diameter of a runner 2 600 mm. The pumps are single-inlet, two-stage. In 1985 the originally installed capacity 6 x 111.6 MW was increased in absorption capacity of the turbine to 6 x 122.4 MW after verification and tests by a supplier of technology. A Kaplan turbine TG7 set with installed capacity 0.768 MW and absorption capacity from 4.5 to 8 m 3 s 1 is installed for performing the natural flows of Cierny Vah in a building of the hydro power plant. Available power of the PSP is the most important contribution because if in thermal power stations a turbo-set must be kept in emergency, about 1000 tonnes of power engineering coal is annually burnt in it for each 1 megawatt installed. Thus, the Cierny Vah PSP saves 735 engineering coal annually

  19. Powering the Future

    Science.gov (United States)

    2002-01-01

    Stirling Technology Company (STC) developed the RG-350 convertor using components from separate Goddard Space Center and U.S. Army Natick SBIR contracts. Based on the RG-350, STC commercialized a product line of Stirling cycle generator sets, known as RemoteGen(TM), with power levels ranging from 10We to 3kWe. Under SBIR agreements with Glenn Research Center, the company refined and extended the capabilities of the RemoteGen convertors. They can provide power in remote locations by efficiently producing electricity from multiple-fuel sources, such as propane, alcohol, gasoline, diesel, coal, solar energy, or wood pellets. Utilizing any fuel source that can create heat, RemoteGen enables the choice of the most appropriate fuel source available. The engines operate without friction, wear, or maintenance. These abilities pave the way for self-powered appliances, such as refrigerators and furnaces. Numerous applications for RemoteGen include quiet, pollution-free generators for RVs and yachts, power for cell phone towers remote from the grid, and off-grid residential power variously using propane, ethanol, and solid biomass fuels. One utility and the National Renewable Energy Laboratory are evaluating a solar dish concentrator version with excellent potential for powering remote irrigation pumps.

  20. GPS test range mission planning

    Science.gov (United States)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.