WorldWideScience

Sample records for megator define transcriptionally

  1. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries.

    Science.gov (United States)

    Boeva, Valentina; Louis-Brennetot, Caroline; Peltier, Agathe; Durand, Simon; Pierre-Eugène, Cécile; Raynal, Virginie; Etchevers, Heather C; Thomas, Sophie; Lermine, Alban; Daudigeos-Dubus, Estelle; Geoerger, Birgit; Orth, Martin F; Grünewald, Thomas G P; Diaz, Elise; Ducos, Bertrand; Surdez, Didier; Carcaboso, Angel M; Medvedeva, Irina; Deller, Thomas; Combaret, Valérie; Lapouble, Eve; Pierron, Gaelle; Grossetête-Lalami, Sandrine; Baulande, Sylvain; Schleiermacher, Gudrun; Barillot, Emmanuel; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2017-09-01

    Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.

  2. Distinct cardiac transcriptional profiles defining pregnancy and exercise.

    Directory of Open Access Journals (Sweden)

    Eunhee Chung

    Full Text Available BACKGROUND: Although the hypertrophic responses of the heart to pregnancy and exercise are both considered to be physiological processes, they occur in quite different hormonal and temporal settings. In this study, we have compared the global transcriptional profiles of left ventricular tissues at various time points during the progression of hypertrophy in exercise and pregnancy. METHODOLOGY/PRINCIPAL FINDINGS: The following groups of female mice were analyzed: non-pregnant diestrus cycle sedentary control, mid-pregnant, late-pregnant, and immediate-postpartum, and animals subjected to 7 and 21 days of voluntary wheel running. Hierarchical clustering analysis shows that while mid-pregnancy and both exercise groups share the closest relationship and similar gene ontology categories, late pregnancy and immediate post-partum are quite different with high representation of secreted/extracellular matrix-related genes. Moreover, pathway-oriented ontological analysis shows that metabolism regulated by cytochrome P450 and chemokine pathways are the most significant signaling pathways regulated in late pregnancy and immediate-postpartum, respectively. Finally, increases in expression of components of the proteasome observed in both mid-pregnancy and immediate-postpartum also result in enhanced proteasome activity. Interestingly, the gene expression profiles did not correlate with the degree of cardiac hypertrophy observed in the animal groups, suggesting that distinct pathways are employed to achieve similar amounts of cardiac hypertrophy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that cardiac adaptation to the later stages of pregnancy is quite distinct from both mid-pregnancy and exercise. Furthermore, it is very dynamic since, by 12 hours post-partum, the heart has already initiated regression of cardiac growth, and 50 genes have changed expression significantly in the immediate-postpartum compared to late-pregnancy. Thus, pregnancy

  3. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci

    DEFF Research Database (Denmark)

    Mousavi, Kambiz; Zare, Hossein; Dell'orso, Stefania

    2013-01-01

    )RNA acted to activate the downstream myogenic genes. The deployment of transcriptional machinery to appropriate loci is contingent on chromatin accessibility, a rate-limiting step preceding Pol II assembly. By nuclease sensitivity assay, we found that eRNAs regulate genomic access of the transcriptional...... complex to defined regulatory regions. In conclusion, our data suggest that eRNAs contribute to establishing a cell-type-specific transcriptional circuitry by directing chromatin-remodeling events....

  4. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells.

    Science.gov (United States)

    Wang, Jichang; Xie, Gangcai; Singh, Manvendra; Ghanbarian, Avazeh T; Raskó, Tamás; Szvetnik, Attila; Cai, Huiqiang; Besser, Daniel; Prigione, Alessandro; Fuchs, Nina V; Schumann, Gerald G; Chen, Wei; Lorincz, Matthew C; Ivics, Zoltán; Hurst, Laurence D; Izsvák, Zsuzsanna

    2014-12-18

    Naive embryonic stem cells hold great promise for research and therapeutics as they have broad and robust developmental potential. While such cells are readily derived from mouse blastocysts it has not been possible to isolate human equivalents easily, although human naive-like cells have been artificially generated (rather than extracted) by coercion of human primed embryonic stem cells by modifying culture conditions or through transgenic modification. Here we show that a sub-population within cultures of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) manifests key properties of naive state cells. These naive-like cells can be genetically tagged, and are associated with elevated transcription of HERVH, a primate-specific endogenous retrovirus. HERVH elements provide functional binding sites for a combination of naive pluripotency transcription factors, including LBP9, recently recognized as relevant to naivety in mice. LBP9-HERVH drives hESC-specific alternative and chimaeric transcripts, including pluripotency-modulating long non-coding RNAs. Disruption of LBP9, HERVH and HERVH-derived transcripts compromises self-renewal. These observations define HERVH expression as a hallmark of naive-like hESCs, and establish novel primate-specific transcriptional circuitry regulating pluripotency.

  5. Blood-informative transcripts define nine common axes of peripheral blood gene expression.

    Directory of Open Access Journals (Sweden)

    Marcela Preininger

    Full Text Available We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as "Blood Informative Transcripts" (BITs, generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.

  6. Blood-informative transcripts define nine common axes of peripheral blood gene expression.

    Science.gov (United States)

    Preininger, Marcela; Arafat, Dalia; Kim, Jinhee; Nath, Artika P; Idaghdour, Youssef; Brigham, Kenneth L; Gibson, Greg

    2013-01-01

    We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB) cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as "Blood Informative Transcripts" (BITs), generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.

  7. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    Directory of Open Access Journals (Sweden)

    Christopher A Lavender

    2016-08-01

    Full Text Available Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment.

  8. Novel transcripts discovered by mining genomic DNA from defined regions of bovine chromosome 6

    Directory of Open Access Journals (Sweden)

    Eberlein Annett

    2009-04-01

    Full Text Available Abstract Background Linkage analyses strongly suggest a number of QTL for production, health and conformation traits in the middle part of bovine chromosome 6 (BTA6. The identification of the molecular background underlying the genetic variation at the QTL and subsequent functional studies require a well-annotated gene sequence map of the critical QTL intervals. To complete the sequence map of the defined subchromosomal regions on BTA6 poorly covered with comparative gene information, we focused on targeted isolation of transcribed sequences from bovine bacterial artificial chromosome (BAC clones mapped to the QTL intervals. Results Using the method of exon trapping, 92 unique exon trapping sequences (ETS were discovered in a chromosomal region of poor gene coverage. Sequence identity to the current NCBI sequence assembly for BTA6 was detected for 91% of unique ETS. Comparative sequence similarity search revealed that 11% of the isolated ETS displayed high similarity to genomic sequences located on the syntenic chromosomes of the human and mouse reference genome assemblies. Nearly a third of the ETS identified similar equivalent sequences in genomic sequence scaffolds from the alternative Celera-based sequence assembly of the human genome. Screening gene, EST, and protein databases detected 17% of ETS with identity to known transcribed sequences. Expression analysis of a subset of the ETS showed that most ETS (84% displayed a distinctive expression pattern in a multi-tissue panel of a lactating cow verifying their existence in the bovine transcriptome. Conclusion The results of our study demonstrate that the exon trapping method based on region-specific BAC clones is very useful for targeted screening for novel transcripts located within a defined chromosomal region being deficiently endowed with annotated gene information. The majority of identified ETS represents unknown noncoding sequences in intergenic regions on BTA6 displaying a

  9. Current and emerging approaches to define intestinal epithelium-specific transcriptional networks

    DEFF Research Database (Denmark)

    Olsen, Anders Krüger; Boyd, Mette; Danielsen, Erik Thomas

    2012-01-01

    Upon developmental or environmental cues, the composition of transcription factors in a transcriptional regulatory network is deeply implicated in controlling the signature of the gene expression and thereby specifies the cell or tissue type. Novel methods including ChIP-chip and ChIP-Seq have been...

  10. Current and emerging approaches to define intestinal epithelium-specific transcriptional networks

    DEFF Research Database (Denmark)

    Olsen, Anders Krûger; Boyd, Mette; Danielsen, Erik Thomas

    2012-01-01

    Upon developmental or environmental cues, the composition of transcription factors in a transcriptional regulatory network is deeply implicated in controlling the signature of the gene expression and thereby specifies the cell- or tissue-type. Novel methods including ChIP-chip and ChIP-Seq have...

  11. A transcription factor collective defines the HSN serotonergic neuron regulatory landscape.

    Science.gov (United States)

    Lloret-Fernández, Carla; Maicas, Miren; Mora-Martínez, Carlos; Artacho, Alejandro; Jimeno-Martín, Ángela; Chirivella, Laura; Weinberg, Peter; Flames, Nuria

    2018-03-22

    Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis -regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans . Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years. © 2018, Lloret-Fernández et al.

  12. Regional neural tube closure defined by the Grainy head-like transcription factors.

    Science.gov (United States)

    Rifat, Yeliz; Parekh, Vishwas; Wilanowski, Tomasz; Hislop, Nikki R; Auden, Alana; Ting, Stephen B; Cunningham, John M; Jane, Stephen M

    2010-09-15

    Primary neurulation in mammals has been defined by distinct anatomical closure sites, at the hindbrain/cervical spine (closure 1), forebrain/midbrain boundary (closure 2), and rostral end of the forebrain (closure 3). Zones of neurulation have also been characterized by morphologic differences in neural fold elevation, with non-neural ectoderm-induced formation of paired dorso-lateral hinge points (DLHP) essential for neural tube closure in the cranial and lower spinal cord regions, and notochord-induced bending at the median hinge point (MHP) sufficient for closure in the upper spinal region. Here we identify a unifying molecular basis for these observations based on the function of the non-neural ectoderm-specific Grainy head-like genes in mice. Using a gene-targeting approach we show that deletion of Grhl2 results in failed closure 3, with mutants exhibiting a split-face malformation and exencephaly, associated with failure of neuro-epithelial folding at the DLHP. Loss of Grhl3 alone defines a distinct lower spinal closure defect, also with defective DLHP formation. The two genes contribute equally to closure 2, where only Grhl gene dosage is limiting. Combined deletion of Grhl2 and Grhl3 induces severe rostral and caudal neural tube defects, but DLHP-independent closure 1 proceeds normally in the upper spinal region. These findings provide a molecular basis for non-neural ectoderm mediated formation of the DLHP that is critical for complete neuraxis closure. (c) 2010 Elsevier Inc. All rights reserved.

  13. Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity.

    Directory of Open Access Journals (Sweden)

    Li Jia

    Full Text Available The androgen receptor (AR is a steroid-activated transcription factor that binds at specific DNA locations and plays a key role in the etiology of prostate cancer. While numerous studies have identified a clear connection between AR binding and expression of target genes for a limited number of loci, high-throughput elucidation of these sites allows for a deeper understanding of the complexities of this process.We have mapped 189 AR occupied regions (ARORs and 1,388 histone H3 acetylation (AcH3 loci to a 3% continuous stretch of human genomic DNA using chromatin immunoprecipitation (ChIP microarray analysis. Of 62 highly reproducible ARORs, 32 (52% were also marked by AcH3. While the number of ARORs detected in prostate cancer cells exceeded the number of nearby DHT-responsive genes, the AcH3 mark defined a subclass of ARORs much more highly associated with such genes -- 12% of the genes flanking AcH3+ARORs were DHT-responsive, compared to only 1% of genes flanking AcH3-ARORs. Most ARORs contained enhancer activities as detected in luciferase reporter assays. Analysis of the AROR sequences, followed by site-directed ChIP, identified binding sites for AR transcriptional coregulators FoxA1, CEBPbeta, NFI and GATA2, which had diverse effects on endogenous AR target gene expression levels in siRNA knockout experiments.We suggest that only some ARORs function under the given physiological conditions, utilizing diverse mechanisms. This diversity points to differential regulation of gene expression by the same transcription factor related to the chromatin structure.

  14. Crystal structures of two transcriptional regulators from Bacillus cereus define the conserved structural features of a PadR subfamily.

    Directory of Open Access Journals (Sweden)

    Guntur Fibriansah

    Full Text Available PadR-like transcriptional regulators form a structurally-related family of proteins that control the expression of genes associated with detoxification, virulence and multi-drug resistance in bacteria. Only a few members of this family have been studied by genetic, biochemical and biophysical methods, and their structure/function relationships are still largely undefined. Here, we report the crystal structures of two PadR-like proteins from Bacillus cereus, which we named bcPadR1 and bcPadR2 (products of gene loci BC4206 and BCE3449 in strains ATCC 14579 and ATCC 10987, respectively. BC4206, together with its neighboring gene BC4207, was previously shown to become significantly upregulated in presence of the bacteriocin AS-48. DNA mobility shift assays reveal that bcPadR1 binds to a 250 bp intergenic region containing the putative BC4206-BC4207 promoter sequence, while in-situ expression of bcPadR1 decreases bacteriocin tolerance, together suggesting a role for bcPadR1 as repressor of BC4206-BC4207 transcription. The function of bcPadR2 (48% identical in sequence to bcPadR1 is unknown, but the location of its gene just upstream from genes encoding a putative antibiotic ABC efflux pump, suggests a role in regulating antibiotic resistance. The bcPadR proteins are structurally similar to LmrR, a PadR-like transcription regulator in Lactococcus lactis that controls expression of a multidrug ABC transporter via a mechanism of multidrug binding and induction. Together these proteins define a subfamily of conserved, relatively small PadR proteins characterized by a single C-terminal helix for dimerization. Unlike LmrR, bcPadR1 and bcPadR2 lack a central pore for ligand binding, making it unclear whether the transcriptional regulatory roles of bcPadR1 and bcPadR2 involve direct ligand recognition and induction.

  15. Regulation of RNA polymerase III transcription during transformation of human IMR90 fibroblasts with defined genetic elements.

    Science.gov (United States)

    Durrieu-Gaillard, Stéphanie; Dumay-Odelot, Hélène; Boldina, Galina; Tourasse, Nicolas J; Allard, Delphine; André, Fabrice; Macari, Françoise; Choquet, Armelle; Lagarde, Pauline; Drutel, Guillaume; Leste-Lasserre, Thierry; Petitet, Marion; Lesluyes, Tom; Lartigue-Faustin, Lydia; Dupuy, Jean-William; Chibon, Frédéric; Roeder, Robert G; Joubert, Dominique; Vagner, Stéphan; Teichmann, Martin

    2018-01-01

    RNA polymerase (Pol) III transcribes small untranslated RNAs that are essential for cellular homeostasis and growth. Its activity is regulated by inactivation of tumor suppressor proteins and overexpression of the oncogene c-MYC, but the concerted action of these tumor-promoting factors on Pol III transcription has not yet been assessed. In order to comprehensively analyse the regulation of Pol III transcription during tumorigenesis we employ a model system that relies on the expression of five genetic elements to achieve cellular transformation. Expression of these elements in six distinct transformation intermediate cell lines leads to the inactivation of TP53, RB1, and protein phosphatase 2A, as well as the activation of RAS and the protection of telomeres by TERT, thereby conducting to full tumoral transformation of IMR90 fibroblasts. Transformation is accompanied by moderately enhanced levels of a subset of Pol III-transcribed RNAs (7SK; MRP; H1). In addition, mRNA and/or protein levels of several Pol III subunits and transcription factors are upregulated, including increased protein levels of TFIIIB and TFIIIC subunits, of SNAPC1 and of Pol III subunits. Strikingly, the expression of POLR3G and of SNAPC1 is strongly enhanced during transformation in this cellular transformation model. Collectively, our data indicate that increased expression of several components of the Pol III transcription system accompanied by a 2-fold increase in steady state levels of a subset of Pol III RNAs is sufficient for sustaining tumor formation.

  16. Genomewide analyses define different modes of transcriptional regulation by peroxisome proliferator-activated receptor-β/δ (PPARβ/δ.

    Directory of Open Access Journals (Sweden)

    Till Adhikary

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are nuclear receptors with essential functions in lipid, glucose and energy homeostasis, cell differentiation, inflammation and metabolic disorders, and represent important drug targets. PPARs heterodimerize with retinoid X receptors (RXRs and can form transcriptional activator or repressor complexes at specific DNA elements (PPREs. It is believed that the decision between repression and activation is generally governed by a ligand-mediated switch. We have performed genomewide analyses of agonist-treated and PPARβ/δ-depleted human myofibroblasts to test this hypothesis and to identify global principles of PPARβ/δ-mediated gene regulation. Chromatin immunoprecipitation sequencing (ChIP-Seq of PPARβ/δ, H3K4me3 and RNA polymerase II enrichment sites combined with transcriptional profiling enabled the definition of 112 bona fide PPARβ/δ target genes showing either of three distinct types of transcriptional response: (I ligand-independent repression by PPARβ/δ; (II ligand-induced activation and/or derepression by PPARβ/δ; and (III ligand-independent activation by PPARβ/δ. These data identify PPRE-mediated repression as a major mechanism of transcriptional regulation by PPARβ/δ, but, unexpectedly, also show that only a subset of repressed genes are activated by a ligand-mediated switch. Our results also suggest that the type of transcriptional response by a given target gene is connected to the structure of its associated PPRE(s and the biological function of its encoded protein. These observations have important implications for understanding the regulatory PPAR network and PPARβ/δ ligand-based drugs.

  17. The sub-nucleolar localization of PHF6 defines its role in rDNA transcription and early processing events

    Science.gov (United States)

    Todd, Matthew A M; Huh, Michael S; Picketts, David J

    2016-01-01

    Ribosomal RNA synthesis occurs in the nucleolus and is a tightly regulated process that is targeted in some developmental diseases and hyperactivated in multiple cancers. Subcellular localization and immunoprecipitation coupled mass spectrometry demonstrated that a proportion of plant homeodomain (PHD) finger protein 6 (PHF6) protein is localized within the nucleolus and interacts with proteins involved in ribosomal processing. PHF6 sequence variants cause Börjeson–Forssman–Lehmann syndrome (BFLS, MIM#301900) and are also associated with a female-specific phenotype overlapping with Coffin–Siris syndrome (MIM#135900), T-cell acute lymphoblastic leukemia (MIM#613065), and acute myeloid leukemia (MIM#601626); however, very little is known about its cellular function, including its nucleolar role. HEK 293T cells were treated with RNase A, DNase I, actinomycin D, or 5,6-dichloro-β-D-ribofuranosylbenzimadole, followed by immunocytochemistry to determine PHF6 sub-nucleolar localization. We observed RNA-dependent localization of PHF6 to the sub-nucleolar fibrillar center (FC) and dense fibrillar component (DFC), at whose interface rRNA transcription occurs. Subsequent ChIP-qPCR analysis revealed strong enrichment of PHF6 across the entire rDNA-coding sequence but not along the intergenic spacer (IGS) region. When rRNA levels were quantified in a PHF6 gain-of-function model, we observed an overall decrease in rRNA transcription, accompanied by a modest increase in repressive promoter-associated RNA (pRNA) and a significant increase in the expression levels of the non-coding IGS36RNA and IGS39RNA transcripts. Collectively, our results demonstrate a role for PHF6 in carefully mediating the overall levels of ribosome biogenesis within a cell. PMID:27165002

  18. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses.

    Science.gov (United States)

    Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj

    2014-09-01

    C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.

  19. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors

    International Nuclear Information System (INIS)

    Bodei, L.; Kidd, M.; Modlin, I.M.; Severi, S.; Nicolini, S.; Paganelli, G.; Drozdov, I.; Kwekkeboom, D.J.; Krenning, E.P.; Baum, R.P.

    2016-01-01

    Peptide receptor radionuclide therapy (PRRT) is an effective method for treating neuroendocrine tumors (NETs). It is limited, however, in the prediction of individual tumor response and the precise and early identification of changes in tumor size. Currently, response prediction is based on somatostatin receptor expression and efficacy by morphological imaging and/or chromogranin A (CgA) measurement. The aim of this study was to assess the accuracy of circulating NET transcripts as a measure of PRRT efficacy, and moreover to identify prognostic gene clusters in pretreatment blood that could be interpolated with relevant clinical features in order to define a biological index for the tumor and a predictive quotient for PRRT efficacy. NET patients (n = 54), M: F 37:17, median age 66, bronchial: n = 13, GEP-NET: n = 35, CUP: n = 6 were treated with 177 Lu-based-PRRT (cumulative activity: 6.5-27.8 GBq, median 18.5). At baseline: 47/54 low-grade (G1/G2; bronchial typical/atypical), 31/49 18 FDG positive and 39/54 progressive. Disease status was assessed by RECIST1.1. Transcripts were measured by real-time quantitative reverse transcription PCR (qRT-PCR) and multianalyte algorithmic analysis (NETest); CgA by enzyme-linked immunosorbent assay (ELISA). Gene cluster (GC) derivations: regulatory network, protein:protein interactome analyses. Statistical analyses: chi-square, non-parametric measurements, multiple regression, receiver operating characteristic and Kaplan-Meier survival. The disease control rate was 72 %. Median PFS was not achieved (follow-up: 1-33 months, median: 16). Only grading was associated with response (p < 0.01). At baseline, 94 % of patients were NETest-positive, while CgA was elevated in 59 %. NETest accurately (89 %, χ 2 = 27.4; p = 1.2 x 10 -7 ) correlated with treatment response, while CgA was 24 % accurate. Gene cluster expression (growth-factor signalome and metabolome) had an AUC of 0.74 ± 0.08 (z-statistic = 2.92, p < 0.004) for predicting

  20. Measurement of circulating transcripts and gene cluster analysis predicts and defines therapeutic efficacy of peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Bodei, L. [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); LuGenIum Consortium, Milan, Rotterdam, Bad Berka, London, Italy, Netherlands, Germany (Country Unknown); Kidd, M. [Wren Laboratories, Branford, CT (United States); Modlin, I.M. [LuGenIum Consortium, Milan, Rotterdam, Bad Berka, London, Italy, Netherlands, Germany (Country Unknown); Yale School of Medicine, New Haven, CT (United States); Severi, S.; Nicolini, S.; Paganelli, G. [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Nuclear Medicine and Radiometabolic Units, Meldola (Italy); Drozdov, I. [Bering Limited, London (United Kingdom); Kwekkeboom, D.J.; Krenning, E.P. [LuGenIum Consortium, Milan, Rotterdam, Bad Berka, London, Italy, Netherlands, Germany (Country Unknown); Erasmus Medical Center, Nuclear Medicine Department, Rotterdam (Netherlands); Baum, R.P. [LuGenIum Consortium, Milan, Rotterdam, Bad Berka, London, Italy, Netherlands, Germany (Country Unknown); Zentralklinik Bad Berka, Theranostics Center for Molecular Radiotherapy and Imaging, Bad Berka (Germany)

    2016-05-15

    Peptide receptor radionuclide therapy (PRRT) is an effective method for treating neuroendocrine tumors (NETs). It is limited, however, in the prediction of individual tumor response and the precise and early identification of changes in tumor size. Currently, response prediction is based on somatostatin receptor expression and efficacy by morphological imaging and/or chromogranin A (CgA) measurement. The aim of this study was to assess the accuracy of circulating NET transcripts as a measure of PRRT efficacy, and moreover to identify prognostic gene clusters in pretreatment blood that could be interpolated with relevant clinical features in order to define a biological index for the tumor and a predictive quotient for PRRT efficacy. NET patients (n = 54), M: F 37:17, median age 66, bronchial: n = 13, GEP-NET: n = 35, CUP: n = 6 were treated with {sup 177}Lu-based-PRRT (cumulative activity: 6.5-27.8 GBq, median 18.5). At baseline: 47/54 low-grade (G1/G2; bronchial typical/atypical), 31/49 {sup 18}FDG positive and 39/54 progressive. Disease status was assessed by RECIST1.1. Transcripts were measured by real-time quantitative reverse transcription PCR (qRT-PCR) and multianalyte algorithmic analysis (NETest); CgA by enzyme-linked immunosorbent assay (ELISA). Gene cluster (GC) derivations: regulatory network, protein:protein interactome analyses. Statistical analyses: chi-square, non-parametric measurements, multiple regression, receiver operating characteristic and Kaplan-Meier survival. The disease control rate was 72 %. Median PFS was not achieved (follow-up: 1-33 months, median: 16). Only grading was associated with response (p < 0.01). At baseline, 94 % of patients were NETest-positive, while CgA was elevated in 59 %. NETest accurately (89 %, χ{sup 2} = 27.4; p = 1.2 x 10{sup -7}) correlated with treatment response, while CgA was 24 % accurate. Gene cluster expression (growth-factor signalome and metabolome) had an AUC of 0.74 ± 0.08 (z-statistic = 2.92, p < 0

  1. Gene transcript analysis blood values correlate with {sup 68}Ga-DOTA-somatostatin analog (SSA) PET/CT imaging in neuroendocrine tumors and can define disease status

    Energy Technology Data Exchange (ETDEWEB)

    Bodei, L. [European Institute of Oncology, Division of Nuclear Medicine, Milan (Italy); Kidd, M.; Modlin, I.M.; Drozdov, I. [Wren Laboratories, Branford, CT (United States); Prasad, V. [Charite University Hospital, Department of Nuclear Medicine, Berlin (Germany); Severi, S.; Paganelli, G. [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Nuclear Medicine and Radiometabolic Units, Meldola (Italy); Ambrosini, V. [S. Orsola-Malpighi University Hospital, Nuclear Medicine, Bologna (Italy); Kwekkeboom, D.J.; Krenning, E.P. [Erasmus Medical Center Rotterdam, Nuclear Medicine Department, Rotterdam (Netherlands); Baum, R.P. [Zentralklinik Bad Berka, THERANOSTICS Center for Molecular Radiotherapy and Imaging, Bad Berka (Germany)

    2015-08-15

    Precise determination of neuroendocrine tumor (NET) disease status and response to therapy remains a rate-limiting concern for disease management. This reflects limitations in biomarker specificity and resolution capacity of imaging. In order to evaluate biomarker precision and identify if combinatorial blood molecular markers and imaging could provide added diagnostic value, we assessed the concordance between {sup 68}Ga-somatostatin analog (SSA) positron emission tomography (PET), circulating NET gene transcripts (NETest), chromogranin A (CgA), and Ki-67 in NETs. We utilized two independent patient groups with positive {sup 68}Ga-SSA PET: data set 1 ({sup 68}Ga-SSA PETs undertaken for peptide receptor radionuclide therapy (PRRT), as primary or salvage treatment, n = 27) and data set 2 ({sup 68}Ga-SSA PETs performed in patients referred for initial disease staging or restaging after various therapies, n = 22). We examined the maximum standardized uptake value (SUV{sub max}), circulating gene transcripts, CgA levels, and baseline Ki-67. Regression analyses, generalized linear modeling, and receiver-operating characteristic (ROC) analyses were undertaken to determine the strength of the relationships. SUV{sub max} measured in two centers were mathematically evaluated (regression modeling) and determined to be comparable. Of 49 patients, 47 (96 %) exhibited a positive NETest. Twenty-six (54 %) had elevated CgA (χ{sup 2} = 20.1, p < 2.5 x 10{sup -6}). The majority (78 %) had Ki-67 < 20 %. Gene transcript scores were predictive of imaging with >95 % concordance and significantly correlated with SUV{sub max} (R {sup 2} = 0.31, root-mean-square error = 9.4). The genes MORF4L2 and somatostatin receptors SSTR1, 3, and 5 exhibited the highest correlation with SUV{sub max}. Progressive disease was identified by elevated levels of a quotient of MORF4L2 expression and SUV{sub max} [ROC-derived AUC (R {sup 2} = 0.7, p < 0.05)]. No statistical relationship was identified

  2. Gene transcript analysis blood values correlate with 68Ga-DOTA-somatostatin analog (SSA) PET/CT imaging in neuroendocrine tumors and can define disease status

    International Nuclear Information System (INIS)

    Bodei, L.; Kidd, M.; Modlin, I.M.; Drozdov, I.; Prasad, V.; Severi, S.; Paganelli, G.; Ambrosini, V.; Kwekkeboom, D.J.; Krenning, E.P.; Baum, R.P.

    2015-01-01

    Precise determination of neuroendocrine tumor (NET) disease status and response to therapy remains a rate-limiting concern for disease management. This reflects limitations in biomarker specificity and resolution capacity of imaging. In order to evaluate biomarker precision and identify if combinatorial blood molecular markers and imaging could provide added diagnostic value, we assessed the concordance between 68 Ga-somatostatin analog (SSA) positron emission tomography (PET), circulating NET gene transcripts (NETest), chromogranin A (CgA), and Ki-67 in NETs. We utilized two independent patient groups with positive 68 Ga-SSA PET: data set 1 ( 68 Ga-SSA PETs undertaken for peptide receptor radionuclide therapy (PRRT), as primary or salvage treatment, n = 27) and data set 2 ( 68 Ga-SSA PETs performed in patients referred for initial disease staging or restaging after various therapies, n = 22). We examined the maximum standardized uptake value (SUV max ), circulating gene transcripts, CgA levels, and baseline Ki-67. Regression analyses, generalized linear modeling, and receiver-operating characteristic (ROC) analyses were undertaken to determine the strength of the relationships. SUV max measured in two centers were mathematically evaluated (regression modeling) and determined to be comparable. Of 49 patients, 47 (96 %) exhibited a positive NETest. Twenty-six (54 %) had elevated CgA (χ 2 = 20.1, p < 2.5 x 10 -6 ). The majority (78 %) had Ki-67 < 20 %. Gene transcript scores were predictive of imaging with >95 % concordance and significantly correlated with SUV max (R 2 = 0.31, root-mean-square error = 9.4). The genes MORF4L2 and somatostatin receptors SSTR1, 3, and 5 exhibited the highest correlation with SUV max . Progressive disease was identified by elevated levels of a quotient of MORF4L2 expression and SUV max [ROC-derived AUC (R 2 = 0.7, p < 0.05)]. No statistical relationship was identified between CgA and Ki-67 and no relationship with imaging parameters

  3. A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating Drosophila wing development.

    Science.gov (United States)

    Schertel, Claus; Albarca, Monica; Rockel-Bauer, Claudia; Kelley, Nicholas W; Bischof, Johannes; Hens, Korneel; van Nimwegen, Erik; Basler, Konrad; Deplancke, Bart

    2015-04-01

    Transcription factors (TFs) are key regulators of cell fate. The estimated 755 genes that encode DNA binding domain-containing proteins comprise ∼ 5% of all Drosophila genes. However, the majority has remained uncharacterized so far due to the lack of proper genetic tools. We generated 594 site-directed transgenic Drosophila lines that contain integrations of individual UAS-TF constructs to facilitate spatiotemporally controlled misexpression in vivo. All transgenes were expressed in the developing wing, and two-thirds induced specific phenotypic defects. In vivo knockdown of the same genes yielded a phenotype for 50%, with both methods indicating a great potential for misexpression to characterize novel functions in wing growth, patterning, and development. Thus, our UAS-TF library provides an important addition to the genetic toolbox of Drosophila research, enabling the identification of several novel wing development-related TFs. In parallel, we established the chromatin landscape of wing imaginal discs by ChIP-seq analyses of five chromatin marks and RNA Pol II. Subsequent clustering revealed six distinct chromatin states, with two clusters showing enrichment for both active and repressive marks. TFs that carry such "bivalent" chromatin are highly enriched for causing misexpression phenotypes in the wing, and analysis of existing expression data shows that these TFs tend to be differentially expressed across the wing disc. Thus, bivalently marked chromatin can be used as a marker for spatially regulated TFs that are functionally relevant in a developing tissue. © 2015 Schertel et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Comprehensive Evaluation of Toxoplasma gondii VEG and Neospora caninum LIV Genomes with Tachyzoite Stage Transcriptome and Proteome Defines Novel Transcript Features

    KAUST Repository

    Ramaprasad, Abhinay

    2015-04-13

    Toxoplasma gondii is an important protozoan parasite that infects all warm-blooded animals and causes opportunistic infections in immuno-compromised humans. Its closest relative, Neospora caninum, is an important veterinary pathogen that causes spontaneous abortion in livestock. Comparative genomics of these two closely related coccidians has been of particular interest to identify genes that contribute to varied host cell specificity and disease. Here, we describe a manual evaluation of these genomes based on strand-specific RNA sequencing and shotgun proteomics from the invasive tachyzoite stages of these two parasites. We have corrected predicted structures of over one third of the previously annotated gene models and have annotated untranslated regions (UTRs) in over half of the predicted protein-coding genes. We observe distinctly long UTRs in both the organisms, almost four times longer than other model eukaryotes. We have also identified a putative set of cis-natural antisense transcripts (cis-NATs) and long intergenic non-coding RNAs (lincRNAs). We have significantly improved the annotation quality in these genomes that would serve as a manually curated dataset for Toxoplasma and Neospora research communities.

  5. Defining the plasticity of transcription factor binding sites by Deconstructing DNA consensus sequences: the PhoP-binding sites among gamma/enterobacteria.

    Directory of Open Access Journals (Sweden)

    Oscar Harari

    2010-07-01

    Full Text Available Transcriptional regulators recognize specific DNA sequences. Because these sequences are embedded in the background of genomic DNA, it is hard to identify the key cis-regulatory elements that determine disparate patterns of gene expression. The detection of the intra- and inter-species differences among these sequences is crucial for understanding the molecular basis of both differential gene expression and evolution. Here, we address this problem by investigating the target promoters controlled by the DNA-binding PhoP protein, which governs virulence and Mg(2+ homeostasis in several bacterial species. PhoP is particularly interesting; it is highly conserved in different gamma/enterobacteria, regulating not only ancestral genes but also governing the expression of dozens of horizontally acquired genes that differ from species to species. Our approach consists of decomposing the DNA binding site sequences for a given regulator into families of motifs (i.e., termed submotifs using a machine learning method inspired by the "Divide & Conquer" strategy. By partitioning a motif into sub-patterns, computational advantages for classification were produced, resulting in the discovery of new members of a regulon, and alleviating the problem of distinguishing functional sites in chromatin immunoprecipitation and DNA microarray genome-wide analysis. Moreover, we found that certain partitions were useful in revealing biological properties of binding site sequences, including modular gains and losses of PhoP binding sites through evolutionary turnover events, as well as conservation in distant species. The high conservation of PhoP submotifs within gamma/enterobacteria, as well as the regulatory protein that recognizes them, suggests that the major cause of divergence between related species is not due to the binding sites, as was previously suggested for other regulators. Instead, the divergence may be attributed to the fast evolution of orthologous target

  6. Define Project

    DEFF Research Database (Denmark)

    Munk-Madsen, Andreas

    2005-01-01

    "Project" is a key concept in IS management. The word is frequently used in textbooks and standards. Yet we seldom find a precise definition of the concept. This paper discusses how to define the concept of a project. The proposed definition covers both heavily formalized projects and informally...... organized, agile projects. Based on the proposed definition popular existing definitions are discussed....

  7. "Dermatitis" defined.

    Science.gov (United States)

    Smith, Suzanne M; Nedorost, Susan T

    2010-01-01

    The term "dermatitis" can be defined narrowly or broadly, clinically or histologically. A common and costly condition, dermatitis is underresourced compared to other chronic skin conditions. The lack of a collectively understood definition of dermatitis and its subcategories could be the primary barrier. To investigate how dermatologists define the term "dermatitis" and determine if a consensus on the definition of this term and other related terms exists. A seven-question survey of dermatologists nationwide was conducted. Of respondents (n  =  122), half consider dermatitis to be any inflammation of the skin. Nearly half (47.5%) use the term interchangeably with "eczema." Virtually all (> 96%) endorse the subcategory "atopic" under the terms "dermatitis" and "eczema," but the subcategories "contact," "drug hypersensitivity," and "occupational" are more highly endorsed under the term "dermatitis" than under the term "eczema." Over half (55.7%) personally consider "dermatitis" to have a broad meaning, and even more (62.3%) believe that dermatologists as a whole define the term broadly. There is a lack of consensus among experts in defining dermatitis, eczema, and their related subcategories.

  8. Defining chaos.

    Science.gov (United States)

    Hunt, Brian R; Ott, Edward

    2015-09-01

    In this paper, we propose, discuss, and illustrate a computationally feasible definition of chaos which can be applied very generally to situations that are commonly encountered, including attractors, repellers, and non-periodically forced systems. This definition is based on an entropy-like quantity, which we call "expansion entropy," and we define chaos as occurring when this quantity is positive. We relate and compare expansion entropy to the well-known concept of topological entropy to which it is equivalent under appropriate conditions. We also present example illustrations, discuss computational implementations, and point out issues arising from attempts at giving definitions of chaos that are not entropy-based.

  9. Defining Cyberbullying.

    Science.gov (United States)

    Englander, Elizabeth; Donnerstein, Edward; Kowalski, Robin; Lin, Carolyn A; Parti, Katalin

    2017-11-01

    Is cyberbullying essentially the same as bullying, or is it a qualitatively different activity? The lack of a consensual, nuanced definition has limited the field's ability to examine these issues. Evidence suggests that being a perpetrator of one is related to being a perpetrator of the other; furthermore, strong relationships can also be noted between being a victim of either type of attack. It also seems that both types of social cruelty have a psychological impact, although the effects of being cyberbullied may be worse than those of being bullied in a traditional sense (evidence here is by no means definitive). A complicating factor is that the 3 characteristics that define bullying (intent, repetition, and power imbalance) do not always translate well into digital behaviors. Qualities specific to digital environments often render cyberbullying and bullying different in circumstances, motivations, and outcomes. To make significant progress in addressing cyberbullying, certain key research questions need to be addressed. These are as follows: How can we define, distinguish between, and understand the nature of cyberbullying and other forms of digital conflict and cruelty, including online harassment and sexual harassment? Once we have a functional taxonomy of the different types of digital cruelty, what are the short- and long-term effects of exposure to or participation in these social behaviors? What are the idiosyncratic characteristics of digital communication that users can be taught? Finally, how can we apply this information to develop and evaluate effective prevention programs? Copyright © 2017 by the American Academy of Pediatrics.

  10. Molecular signatures define alopecia areata subtypes and transcriptional biomarkers

    Directory of Open Access Journals (Sweden)

    Ali Jabbari

    2016-05-01

    Full Text Available Alopecia areata (AA is an autoimmune disease typified by nonscarring hair loss with a variable clinical course. In this study, we conducted whole genome gene expression analysis of 96 human scalp skin biopsy specimens from AA or normal control subjects. Based on gene expression profiling, samples formed distinct clusters based on the presence or absence of disease as well as disease phenotype (patchy disease compared with alopecia totalis or universalis. Differential gene expression analysis allowed us to robustly demonstrate graded immune activity in samples of increasing phenotypic severity and generate a quantitative gene expression scoring system that classified samples based on interferon and cytotoxic T lymphocyte immune signatures critical for disease pathogenesis.

  11. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein coding...... regions, the map of transcripts is very complex due to small transcripts from the flanking ends of the transcription unit, the use of multiple start and stop sites for the main transcript, production of multiple functional RNA molecules from the same primary transcript, and RNA molecules made...... by independent transcription from within the unit. In genomic regions separating those that encode proteins or highly abundant RNA molecules with known function, transcripts are generally of low abundance and short-lived. In most of these cases, it is unclear to what extent a function is related to transcription...

  12. Defining Quantum Control Flow

    OpenAIRE

    Ying, Mingsheng; Yu, Nengkun; Feng, Yuan

    2012-01-01

    A remarkable difference between quantum and classical programs is that the control flow of the former can be either classical or quantum. One of the key issues in the theory of quantum programming languages is defining and understanding quantum control flow. A functional language with quantum control flow was defined by Altenkirch and Grattage [\\textit{Proc. LICS'05}, pp. 249-258]. This paper extends their work, and we introduce a general quantum control structure by defining three new quantu...

  13. Can play be defined?

    DEFF Research Database (Denmark)

    Eichberg, Henning

    2015-01-01

    Can play be defined? There is reason to raise critical questions about the established academic demand that at phenomenon – also in humanist studies – should first of all be defined, i.e. de-lineated and by neat lines limited to a “little box” that can be handled. The following chapter develops....... Human beings can very well understand play – or whatever phenomenon in human life – without defining it....

  14. Defining Overweight and Obesity

    Science.gov (United States)

    ... Micronutrient Malnutrition State and Local Programs Defining Adult Overweight and Obesity Recommend on Facebook Tweet Share Compartir ... weight for a given height is described as overweight or obese. Body Mass Index, or BMI, is ...

  15. Drinking Levels Defined

    Science.gov (United States)

    ... of Alcohol Consumption Alcohol's Effects on the Body Alcohol Use Disorder Fetal Alcohol Exposure Support & Treatment Alcohol Policy Special ... Definition of Drinking at Low Risk for Developing Alcohol Use Disorder (AUD): For women, low-risk drinking is defined ...

  16. Defining Documentary Film

    DEFF Research Database (Denmark)

    Juel, Henrik

    2006-01-01

    A discussion of various attemts at defining documentary film regarding form, content, truth, stile, genre or reception - and a propoposal of a positive list of essential, but non-exclusive characteristica of documentary film......A discussion of various attemts at defining documentary film regarding form, content, truth, stile, genre or reception - and a propoposal of a positive list of essential, but non-exclusive characteristica of documentary film...

  17. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control.

    Science.gov (United States)

    Celton, Jean-Marc; Gaillard, Sylvain; Bruneau, Maryline; Pelletier, Sandra; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Navarro, Lionel; Laurens, François; Renou, Jean-Pierre

    2014-07-01

    Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  18. Definably compact groups definable in real closed fields. I

    OpenAIRE

    Barriga, Eliana

    2017-01-01

    We study definably compact definably connected groups definable in a sufficiently saturated real closed field $R$. We introduce the notion of group-generic point for $\\bigvee$-definable groups and show the existence of group-generic points for definably compact groups definable in a sufficiently saturated o-minimal expansion of a real closed field. We use this notion along with some properties of generic sets to prove that for every definably compact definably connected group $G$ definable in...

  19. Defining Game Mechanics

    DEFF Research Database (Denmark)

    Sicart (Vila), Miguel Angel

    2008-01-01

    This article defins game mechanics in relation to rules and challenges. Game mechanics are methods invoked by agents for interacting with the game world. I apply this definition to a comparative analysis of the games Rez, Every Extend Extra and Shadow of the Colossus that will show the relevance...... of a formal definition of game mechanics. Udgivelsesdato: Dec 2008...

  20. Modal Logics and Definability

    OpenAIRE

    Kuusisto, Antti

    2013-01-01

    In recent years, research into the mathematical foundations of modal logic has become increasingly popular. One of the main reasons for this is the fact that modal logic seems to adapt well to the requirements of a wide range of different fields of application. This paper is a summary of some of the author’s contributions to the understanding of modal definability theory.

  1. Software Defined Cyberinfrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Ian; Blaiszik, Ben; Chard, Kyle; Chard, Ryan

    2017-07-17

    Within and across thousands of science labs, researchers and students struggle to manage data produced in experiments, simulations, and analyses. Largely manual research data lifecycle management processes mean that much time is wasted, research results are often irreproducible, and data sharing and reuse remain rare. In response, we propose a new approach to data lifecycle management in which researchers are empowered to define the actions to be performed at individual storage systems when data are created or modified: actions such as analysis, transformation, copying, and publication. We term this approach software-defined cyberinfrastructure because users can implement powerful data management policies by deploying rules to local storage systems, much as software-defined networking allows users to configure networks by deploying rules to switches.We argue that this approach can enable a new class of responsive distributed storage infrastructure that will accelerate research innovation by allowing any researcher to associate data workflows with data sources, whether local or remote, for such purposes as data ingest, characterization, indexing, and sharing. We report on early experiments with this approach in the context of experimental science, in which a simple if-trigger-then-action (IFTA) notation is used to define rules.

  2. Defining Abnormally Low Tenders

    DEFF Research Database (Denmark)

    Ølykke, Grith Skovgaard; Nyström, Johan

    2017-01-01

    The concept of an abnormally low tender is not defined in EU public procurement law. This article takes an interdisciplinary law and economics approach to examine a dataset consisting of Swedish and Danish judgments and verdicts concerning the concept of an abnormally low tender. The purpose...

  3. Software Defined Coded Networking

    DEFF Research Database (Denmark)

    Di Paola, Carla; Roetter, Daniel Enrique Lucani; Palazzo, Sergio

    2017-01-01

    the quality of each link and even across neighbouring links and using simulations to show that an additional reduction of packet transmission in the order of 40% is possible. Second, to advocate for the use of network coding (NC) jointly with software defined networking (SDN) providing an implementation...

  4. Defining depth of anesthesia.

    Science.gov (United States)

    Shafer, S L; Stanski, D R

    2008-01-01

    In this chapter, drawn largely from the synthesis of material that we first presented in the sixth edition of Miller's Anesthesia, Chap 31 (Stanski and Shafer 2005; used by permission of the publisher), we have defined anesthetic depth as the probability of non-response to stimulation, calibrated against the strength of the stimulus, the difficulty of suppressing the response, and the drug-induced probability of non-responsiveness at defined effect site concentrations. This definition requires measurement of multiple different stimuli and responses at well-defined drug concentrations. There is no one stimulus and response measurement that will capture depth of anesthesia in a clinically or scientifically meaningful manner. The "clinical art" of anesthesia requires calibration of these observations of stimuli and responses (verbal responses, movement, tachycardia) against the dose and concentration of anesthetic drugs used to reduce the probability of response, constantly adjusting the administered dose to achieve the desired anesthetic depth. In our definition of "depth of anesthesia" we define the need for two components to create the anesthetic state: hypnosis created with drugs such as propofol or the inhalational anesthetics and analgesia created with the opioids or nitrous oxide. We demonstrate the scientific evidence that profound degrees of hypnosis in the absence of analgesia will not prevent the hemodynamic responses to profoundly noxious stimuli. Also, profound degrees of analgesia do not guarantee unconsciousness. However, the combination of hypnosis and analgesia suppresses hemodynamic response to noxious stimuli and guarantees unconsciousness.

  5. Defining and classifying syncope

    NARCIS (Netherlands)

    Thijs, Roland D.; Wieling, Wouter; Kaufmann, Horacio; van Dijk, Gert

    2004-01-01

    There is no widely adopted definition or classification of syncope and related disorders. This lack of uniformity harms patient care, research, and medical education. In this article, syncope is defined as a form of transient loss of consciousness (TLOC) due to cerebral hypoperfusion. Differences

  6. Transcriptional regulation by competing transcription factor modules.

    Directory of Open Access Journals (Sweden)

    Rutger Hermsen

    2006-12-01

    Full Text Available Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input-output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits.

  7. Defining Legal Moralism

    DEFF Research Database (Denmark)

    Thaysen, Jens Damgaard

    2015-01-01

    This paper discusses how legal moralism should be defined. It is argued that legal moralism should be defined as the position that “For any X, it is always a pro tanto reason for justifiably imposing legal regulation on X that X is morally wrong (where “morally wrong” is not conceptually equivalent...... to “harmful”)”. Furthermore, a distinction between six types of legal moralism is made. The six types are grouped according to whether they are concerned with the enforcement of positive or critical morality, and whether they are concerned with criminalising, legally restricting, or refraining from legally...... protecting morally wrong behaviour. This is interesting because not all types of legal moralism are equally vulnerable to the different critiques of legal moralism that have been put forth. Indeed, I show that some interesting types of legal moralism have not been criticised at all....

  8. Defining local food

    DEFF Research Database (Denmark)

    Eriksen, Safania Normann

    2013-01-01

    Despite evolving local food research, there is no consistent definition of “local food.” Various understandings are utilized, which have resulted in a diverse landscape of meaning. The main purpose of this paper is to examine how researchers within the local food systems literature define local...... food, and how these definitions can be used as a starting point to identify a new taxonomy of local food based on three domains of proximity....

  9. WRKY transcription factors

    Science.gov (United States)

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  10. Defined contribution health benefits.

    Science.gov (United States)

    Fronstin, P

    2001-03-01

    This Issue Brief discusses the emerging issue of "defined contribution" (DC) health benefits. The term "defined contribution" is used to describe a wide variety of approaches to the provision of health benefits, all of which have in common a shift in the responsibility for payment and selection of health care services from employers to employees. DC health benefits often are mentioned in the context of enabling employers to control their outlay for health benefits by avoiding increases in health care costs. DC health benefits may also shift responsibility for choosing a health plan and the associated risks of choosing a plan from employers to employees. There are three primary reasons why some employers currently are considering some sort of DC approach. First, they are once again looking for ways to keep their health care cost increases in line with overall inflation. Second, some employers are concerned that the public "backlash" against managed care will result in new legislation, regulations, and litigation that will further increase their health care costs if they do not distance themselves from health care decisions. Third, employers have modified not only most employee benefit plans, but labor market practices in general, by giving workers more choice, control, and flexibility. DC-type health benefits have existed as cafeteria plans since the 1980s. A cafeteria plan gives each employee the opportunity to determine the allocation of his or her total compensation (within employer-defined limits) among various employee benefits (primarily retirement or health). Most types of DC health benefits currently being discussed could be provided within the existing employment-based health insurance system, with or without the use of cafeteria plans. They could also allow employees to purchase health insurance directly from insurers, or they could drive new technologies and new forms of risk pooling through which health care services are provided and financed. DC health

  11. On Defining Mass

    Science.gov (United States)

    Hecht, Eugene

    2011-01-01

    Though central to any pedagogical development of physics, the concept of mass is still not well understood. Properly defining mass has proven to be far more daunting than contemporary textbooks would have us believe. And yet today the origin of mass is one of the most aggressively pursued areas of research in all of physics. Much of the excitement surrounding the Large Hadron Collider at CERN is associated with discovering the mechanism responsible for the masses of the elementary particles. This paper will first briefly examine the leading definitions, pointing out their shortcomings. Then, utilizing relativity theory, it will propose—for consideration by the community of physicists—a conceptual definition of mass predicated on the more fundamental concept of energy, more fundamental in that everything that has mass has energy, yet not everything that has energy has mass.

  12. Implementing Software Defined Radio

    CERN Document Server

    Grayver, Eugene

    2013-01-01

    Software Defined Radio makes wireless communications easier, more efficient, and more reliable. This book bridges the gap between academic research and practical implementation. When beginning a project, practicing engineers, technical managers, and graduate students can save countless hours by considering the concepts presented in these pages. The author covers the myriad options and trade-offs available when selecting an appropriate hardware architecture. As demonstrated here, the choice between hardware- and software-centric architecture can mean the difference between meeting an aggressive schedule and bogging down in endless design iterations. Because of the author’s experience overseeing dozens of failed and successful developments, he is able to present many real-life examples. Some of the key concepts covered are: Choosing the right architecture for the market – laboratory, military, or commercial Hardware platforms – FPGAs, GPPs, specialized and hybrid devices Standardization efforts to ens...

  13. Defining cyber warfare

    Directory of Open Access Journals (Sweden)

    Dragan D. Mladenović

    2012-04-01

    Full Text Available Cyber conflicts represent a new kind of warfare that is technologically developing very rapidly. Such development results in more frequent and more intensive cyber attacks undertaken by states against adversary targets, with a wide range of diverse operations, from information operations to physical destruction of targets. Nevertheless, cyber warfare is waged through the application of the same means, techniques and methods as those used in cyber criminal, terrorism and intelligence activities. Moreover, it has a very specific nature that enables states to covertly initiate attacks against their adversaries. The starting point in defining doctrines, procedures and standards in the area of cyber warfare is determining its true nature. In this paper, a contribution to this effort was made through the analysis of the existing state doctrines and international practice in the area of cyber warfare towards the determination of its nationally acceptable definition.

  14. Defining the mobilome.

    Science.gov (United States)

    Siefert, Janet L

    2009-01-01

    This chapter defines the agents that provide for the movement of genetic material which fuels the adaptive potential of life on our planet. The chapter has been structured to be broadly comprehensive, arbitrarily categorizing the mobilome into four classes: (1) transposons, (2) plasmids, (3) bacteriophage, and (4) self-splicing molecular parasites.Our increasing understanding of the mobilome is as dynamic as the mobilome itself. With continuing discovery, it is clear that nature has not confined these genomic agents of change to neat categories, but rather the classification categories overlap and intertwine. Massive sequencing efforts and their published analyses are continuing to refine our understanding of the extent of the mobilome. This chapter provides a framework to describe our current understanding of the mobilome and a foundation on which appreciation of its impact on genome evolution can be understood.

  15. Software Defined Networking

    DEFF Research Database (Denmark)

    Caba, Cosmin Marius

    Network Service Providers (NSP) often choose to overprovision their networks instead of deploying proper Quality of Services (QoS) mechanisms that allow for traffic differentiation and predictable quality. This tendency of overprovisioning is not sustainable for the simple reason that network...... resources are limited. Hence, to counteract this trend, current QoS mechanisms must become simpler to deploy and operate, in order to motivate NSPs to employ QoS techniques instead of overprovisioning. Software Defined Networking (SDN) represents a paradigm shift in the way telecommunication and data...... generic perspective (e.g. service provisioning speed, resources availability). As a result, new mechanisms for providing QoS are proposed, solutions for SDN-specific QoS challenges are designed and tested, and new network management concepts are prototyped, all aiming to improve QoS for network services...

  16. Defining the Anthropocene

    Science.gov (United States)

    Lewis, Simon; Maslin, Mark

    2016-04-01

    Time is divided by geologists according to marked shifts in Earth's state. Recent global environmental changes suggest that Earth may have entered a new human-dominated geological epoch, the Anthropocene. Should the Anthropocene - the idea that human activity is a force acting upon the Earth system in ways that mean that Earth will be altered for millions of years - be defined as a geological time-unit at the level of an Epoch? Here we appraise the data to assess such claims, first in terms of changes to the Earth system, with particular focus on very long-lived impacts, as Epochs typically last millions of years. Can Earth really be said to be in transition from one state to another? Secondly, we then consider the formal criteria used to define geological time-units and move forward through time examining whether currently available evidence passes typical geological time-unit evidence thresholds. We suggest two time periods likely fit the criteria (1) the aftermath of the interlinking of the Old and New Worlds, which moved species across continents and ocean basins worldwide, a geologically unprecedented and permanent change, which is also the globally synchronous coolest part of the Little Ice Age (in Earth system terms), and the beginning of global trade and a new socio-economic "world system" (in historical terms), marked as a golden spike by a temporary drop in atmospheric CO2, centred on 1610 CE; and (2) the aftermath of the Second World War, when many global environmental changes accelerated and novel long-lived materials were increasingly manufactured, known as the Great Acceleration (in Earth system terms) and the beginning of the Cold War (in historical terms), marked as a golden spike by the peak in radionuclide fallout in 1964. We finish by noting that the Anthropocene debate is politically loaded, thus transparency in the presentation of evidence is essential if a formal definition of the Anthropocene is to avoid becoming a debate about bias. The

  17. Teleology and Defining Sex.

    Science.gov (United States)

    Gamble, Nathan K; Pruski, Michal

    2018-07-01

    Disorders of sexual differentiation lead to what is often referred to as an intersex state. This state has medical, as well as some legal, recognition. Nevertheless, the question remains whether intersex persons occupy a state in between maleness and femaleness or whether they are truly men or women. To answer this question, another important conundrum needs to be first solved: what defines sex? The answer seems rather simple to most people, yet when morphology does not coincide with haplotypes, and genetics might not correlate with physiology the issue becomes more complex. This paper tackles both issues by establishing where the essence of sex is located and by superimposing that framework onto the issue of the intersex. This is achieved through giving due consideration to the biology of sexual development, as well as through the use of a teleological framework of the meaning of sex. Using a range of examples, the paper establishes that sex cannot be pinpointed to one biological variable but is rather determined by how the totality of one's biology is oriented towards biological reproduction. A brief consideration is also given to the way this situation could be comprehended from a Christian understanding of sex and suffering.

  18. Linking Core Promoter Classes to Circadian Transcription.

    Directory of Open Access Journals (Sweden)

    Pål O Westermark

    2016-08-01

    Full Text Available Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs, is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription.

  19. Defining an emerging disease.

    Science.gov (United States)

    Moutou, F; Pastoret, P-P

    2015-04-01

    Defining an emerging disease is not straightforward, as there are several different types of disease emergence. For example, there can be a 'real' emergence of a brand new disease, such as the emergence of bovine spongiform encephalopathy in the 1980s, or a geographic emergence in an area not previously affected, such as the emergence of bluetongue in northern Europe in 2006. In addition, disease can emerge in species formerly not considered affected, e.g. the emergence of bovine tuberculosis in wildlife species since 2000 in France. There can also be an unexpected increase of disease incidence in a known area and a known species, or there may simply be an increase in our knowledge or awareness of a particular disease. What all these emerging diseases have in common is that human activity frequently has a role to play in their emergence. For example, bovine spongiform encephalopathy very probably emerged as a result of changes in the manufacturing of meat-and-bone meal, bluetongue was able to spread to cooler climes as a result of uncontrolled trade in animals, and a relaxation of screening and surveillance for bovine tuberculosis enabled the disease to re-emerge in areas that had been able to drastically reduce the number of cases. Globalisation and population growth will continue to affect the epidemiology of diseases in years to come and ecosystems will continue to evolve. Furthermore, new technologies such as metagenomics and high-throughput sequencing are identifying new microorganisms all the time. Change is the one constant, and diseases will continue to emerge, and we must consider the causes and different types of emergence as we deal with these diseases in the future.

  20. Definably compact groups definable in real closed fields.II

    OpenAIRE

    Barriga, Eliana

    2017-01-01

    We continue the analysis of definably compact groups definable in a real closed field $\\mathcal{R}$. In [3], we proved that for every definably compact definably connected semialgebraic group $G$ over $\\mathcal{R}$ there are a connected $R$-algebraic group $H$, a definable injective map $\\phi$ from a generic definable neighborhood of the identity of $G$ into the group $H\\left(R\\right)$ of $R$-points of $H$ such that $\\phi$ acts as a group homomorphism inside its domain. The above result and o...

  1. Women's Leadership Development: A Study of Defining Moments

    Science.gov (United States)

    Dahlvig, Jolyn E.; Longman, Karen A.

    2010-01-01

    This article reports the findings of a grounded theory study of "defining moments" that were described as pivotal in the personal and professional journeys of women who had been identified as emerging leaders within Christian higher education. Analysis of transcripts from interviews with 16 participants in a Women's Leadership Development…

  2. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written......ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  3. Basal transcription machinery

    Indian Academy of Sciences (India)

    2007-03-29

    Mar 29, 2007 ... The holoenzyme of prokaryotic RNA polymerase consists of the core enzyme, made of two , , ' and subunits, which lacks promoter selectivity and a sigma () subunit which enables the core enzyme to initiate transcription in a promoter dependent fashion. A stress sigma factor s, in prokaryotes ...

  4. Machine Dictation and Transcription.

    Science.gov (United States)

    Harvey, Evelyn; And Others

    This instructional package contains both an instructor's manual and a student's manual for a course in machine dictation and transcription. The instructor's manual contains an overview with tips on teaching the course, letters for dictation, and a key to the letters. The student's manual contains an overview of the course and of the skills needed…

  5. Transcriptional Regulation in Haematopoiesis:

    DEFF Research Database (Denmark)

    Lauridsen, Felicia K B

    with the capacity to both self-renew and differentiate. This thesis is built upon two studies, which investigate two different aspects of the haematopoietic system; heterogeneity within the HSC compartment (presented in manuscript I), and the interplay between transcription factors controlling granulocyte/ monocyte...

  6. DNA Topoisomerases in Transcription

    DEFF Research Database (Denmark)

    Rødgaard, Morten Terpager

    2015-01-01

    This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most of the ex......This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most...... topoisomerase-DNA cleavage complex. The second study is an investigation of how topoisomerases influence gene regulation by keeping the genome in an optimal topological state....

  7. Deciphering Transcriptional Regulation

    DEFF Research Database (Denmark)

    Valen, Eivind

    The myriad of cells in the human body are all made from the same blueprint: the human genome. At the heart of this diversity lies the concept of gene regulation, the process in which it is decided which genes are used where and when. Genes do not function as on/off buttons, but more like a volume...... mostly near the start of the gene known as the promoter. This region contains patterns scattered in the DNA that the TFs can recognize and bind to. Such binding can prompt the assembly of the pre-initiation complex which ultimately leads to transcription of the gene. In order to achieve the regulation...... on what characterizes a hippocampus promoter. Pairing CAGE with TF binding site prediction we identi¿ed a likely key regulator of hippocampus. Finally, we developed a method for CAGE exploration. While the DeepCAGE library characterized a full 1.4 million transcription initiation events it did not capture...

  8. Transcriptional networks controlling adipocyte differentiation

    DEFF Research Database (Denmark)

    Siersbæk, R; Mandrup, Susanne

    2011-01-01

    " of the transcription factor networks operating at specific time points during adipogenesis. Using such global "snapshots," we have demonstrated that dramatic remodeling of the chromatin template occurs within the first few hours following adipogenic stimulation and that many of the early transcription factors bind...... in a cooperative fashion to transcription factor hotspots. Such hotspots are likely to represent key chromatin nodes, where many adipogenic signaling pathways converge to drive the adipogenic transcriptional reprogramming....

  9. Defining asthma in genetic studies

    NARCIS (Netherlands)

    Koppelman, GH; Postma, DS; Meijer, G.

    1999-01-01

    Genetic studies have been hampered by the lack of a gold standard to diagnose asthma. The complex nature of asthma makes it more difficult to identify asthma genes. Therefore, approaches to define phenotypes, which have been successful in other genetically complex diseases, may be applied to define

  10. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  11. Polyphenol Compound as a Transcription Factor Inhibitor.

    Science.gov (United States)

    Park, Seyeon

    2015-10-30

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)).

  12. A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts.

    Science.gov (United States)

    Fox, Hannah L; Dembowski, Jill A; DeLuca, Neal A

    2017-06-13

    elongation factors to viral genomes and that in the absence of ICP22 viral transcription is globally reduced late in productive infection, due to an elongation defect. This insight defines a fundamental role of ICP22 in HSV-1 infection and elucidates the involvement of cellular factors in HSV-1 transcription. Copyright © 2017 Fox et al.

  13. Theoretical approaches to elections defining

    OpenAIRE

    Natalya V. Lebedeva

    2011-01-01

    Theoretical approaches to elections defining develop the nature, essence and content of elections, help to determine their place and a role as one of the major national law institutions in democratic system.

  14. Theoretical approaches to elections defining

    Directory of Open Access Journals (Sweden)

    Natalya V. Lebedeva

    2011-01-01

    Full Text Available Theoretical approaches to elections defining develop the nature, essence and content of elections, help to determine their place and a role as one of the major national law institutions in democratic system.

  15. Defining Modules, Modularity and Modularization

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth; Pedersen, Per Erik Elgård

    The paper describes the evolution of the concept of modularity in a historical perspective. The main reasons for modularity are: create variety, utilize similarities, and reduce complexity. The paper defines the terms: Module, modularity, and modularization.......The paper describes the evolution of the concept of modularity in a historical perspective. The main reasons for modularity are: create variety, utilize similarities, and reduce complexity. The paper defines the terms: Module, modularity, and modularization....

  16. Transcript structure and domain display: a customizable transcript visualization tool.

    Science.gov (United States)

    Watanabe, Kenneth A; Ma, Kaiwang; Homayouni, Arielle; Rushton, Paul J; Shen, Qingxi J

    2016-07-01

    Transcript Structure and Domain Display (TSDD) is a publicly available, web-based program that provides publication quality images of transcript structures and domains. TSDD is capable of producing transcript structures from GFF/GFF3 and BED files. Alternatively, the GFF files of several model organisms have been pre-loaded so that users only needs to enter the locus IDs of the transcripts to be displayed. Visualization of transcripts provides many benefits to researchers, ranging from evolutionary analysis of DNA-binding domains to predictive function modeling. TSDD is freely available for non-commercial users at http://shenlab.sols.unlv.edu/shenlab/software/TSD/transcript_display.html : jeffery.shen@unlv.nevada.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Defining Plagiarism: A Literature Review

    Directory of Open Access Journals (Sweden)

    Akbar Akbar

    2018-02-01

    Full Text Available Plagiarism has repeatedly occurred in Indonesia, resulting in focusing on such academic misbehavior as a “central issue” in Indonesian higher education. One of the issues of addressing plagiarism in higher education is that there is a confusion of defining plagiarism. It seems that Indonesian academics had different perception when defining plagiarism. This article aims at exploring the issue of plagiarism by helping define plagiarism to address confusion among Indonesian academics. This article applies literature review by firs finding relevant articles after identifying databases for literature searching. After the collection of required articles for review, the articles were synthesized before presenting the findings. This study has explored the definition of plagiarism in the context of higher education. This research found that plagiarism is defined in the relation of criminal acts. The huge numbers of discursive features used position plagiaristic acts as an illegal deed. This study also found that cultural backgrounds and exposure to plagiarism were influential in defining plagiarism.

  18. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...

  19. Transcriptional Silencing of Retroviral Vectors

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M.; Pedersen, F.S.

    1996-01-01

    . Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral...... transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the t......RNA primer for reverse transcription may have a major influence on transcriptional silencing. Alterations of these elements of the vector backbone as well as the use of internal promoter elements from housekeeping genes may contribute to reduce transcriptional silencing. The use of cell culture and animal...

  20. DNA topology and transcription

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions. PMID:24755522

  1. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...... regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables....... It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms...

  2. Transcriptional landscape of glomerular parietal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sina A Gharib

    Full Text Available Very little is known about the function of glomerular parietal epithelial cells (PECs. In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire.

  3. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers.

    Science.gov (United States)

    Bloom, Chloe I; Graham, Christine M; Berry, Matthew P R; Rozakeas, Fotini; Redford, Paul S; Wang, Yuanyuan; Xu, Zhaohui; Wilkinson, Katalin A; Wilkinson, Robert J; Kendrick, Yvonne; Devouassoux, Gilles; Ferry, Tristan; Miyara, Makoto; Bouvry, Diane; Valeyre, Dominique; Dominique, Valeyre; Gorochov, Guy; Blankenship, Derek; Saadatian, Mitra; Vanhems, Phillip; Beynon, Huw; Vancheeswaran, Rama; Wickremasinghe, Melissa; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Ho, Ling-Pei; Lipman, Marc; O'Garra, Anne

    2013-01-01

    New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment.

  4. Modular Software-Defined Radio

    Directory of Open Access Journals (Sweden)

    Rhiemeier Arnd-Ragnar

    2005-01-01

    Full Text Available In view of the technical and commercial boundary conditions for software-defined radio (SDR, it is suggestive to reconsider the concept anew from an unconventional point of view. The organizational principles of signal processing (rather than the signal processing algorithms themselves are the main focus of this work on modular software-defined radio. Modularity and flexibility are just two key characteristics of the SDR environment which extend smoothly into the modeling of hardware and software. In particular, the proposed model of signal processing software includes irregular, connected, directed, acyclic graphs with random node weights and random edges. Several approaches for mapping such software to a given hardware are discussed. Taking into account previous findings as well as new results from system simulations presented here, the paper finally concludes with the utility of pipelining as a general design guideline for modular software-defined radio.

  5. Defining and Selecting Independent Directors

    Directory of Open Access Journals (Sweden)

    Eric Pichet

    2017-10-01

    Full Text Available Drawing from the Enlightened Shareholder Theory that the author first developed in 2011, this theoretical paper with practical and normative ambitions achieves a better definition of independent director, while improving the understanding of the roles he fulfils on boards of directors. The first part defines constructs like firms, Governance system and Corporate governance, offering a clear distinction between the latter two concepts before explaining the four main missions of a board. The second part defines the ideal independent director by outlining the objective qualities that are necessary and adding those subjective aspects that have turned this into a veritable profession. The third part defines the ideal process for selecting independent directors, based on nominating committees that should themselves be independent. It also includes ways of assessing directors who are currently in function, as well as modalities for renewing their mandates. The paper’s conclusion presents the Paradox of the Independent Director.

  6. Defining and Classifying Interest Groups

    DEFF Research Database (Denmark)

    Baroni, Laura; Carroll, Brendan; Chalmers, Adam

    2014-01-01

    The interest group concept is defined in many different ways in the existing literature and a range of different classification schemes are employed. This complicates comparisons between different studies and their findings. One of the important tasks faced by interest group scholars engaged...... in large-N studies is therefore to define the concept of an interest group and to determine which classification scheme to use for different group types. After reviewing the existing literature, this article sets out to compare different approaches to defining and classifying interest groups with a sample...... in the organizational attributes of specific interest group types. As expected, our comparison of coding schemes reveals a closer link between group attributes and group type in narrower classification schemes based on group organizational characteristics than those based on a behavioral definition of lobbying....

  7. ON DEFINING S-SPACES

    Directory of Open Access Journals (Sweden)

    Francesco Strati

    2013-05-01

    Full Text Available The present work is intended to be an introduction to the Superposition Theory of David Carfì. In particular I shall depict the meaning of his brand new theory, on the one hand in an informal fashion and on the other hand by giving a formal approach of the algebraic structure of the theory: the S-linear algebra. This kind of structure underpins the notion of S-spaces (or Carfì-spaces by defining both its properties and its nature. Thus I shall define the S-triple as the fundamental principle upon which the S-linear algebra is built up.

  8. Dynamic usage of transcription start sites within core promoters

    DEFF Research Database (Denmark)

    Kawaji, Hideya; Frith, Martin C; Katayama, Shintaro

    2006-01-01

    BACKGROUND: Mammalian promoters do not initiate transcription at single, well defined base pairs, but rather at multiple, alternative start sites spread across a region. We previously characterized the static structures of transcription start site usage within promoters at the base pair level......, based on large-scale sequencing of transcript 5' ends. RESULTS: In the present study we begin to explore the internal dynamics of mammalian promoters, and demonstrate that start site selection within many mouse core promoters varies among tissues. We also show that this dynamic usage of start sites...... is associated with CpG islands, broad and multimodal promoter structures, and imprinting. CONCLUSION: Our results reveal a new level of biologic complexity within promoters--fine-scale regulation of transcription starting events at the base pair level. These events are likely to be related to epigenetic...

  9. Defining and Differentiating the Makerspace

    Science.gov (United States)

    Dousay, Tonia A.

    2017-01-01

    Many resources now punctuate the maker movement landscape. However, some schools and communities still struggle to understand this burgeoning movement. How do we define these spaces and differentiate them from previous labs and shops? Through a multidimensional framework, stakeholders should consider how the structure, access, staffing, and tools…

  10. Indico CONFERENCE: Define the Programme

    CERN Multimedia

    CERN. Geneva; Ferreira, Pedro

    2017-01-01

    In this tutorial you are going to learn how to define the programme of a conference in Indico. The program of your conference is divided in different “tracks”. Tracks represent the subject matter of the conference, such as “Online Computing”, “Offline Computing”, and so on.

  11. Prevalence of transcription promoters within archaeal operons and coding sequences.

    Science.gov (United States)

    Koide, Tie; Reiss, David J; Bare, J Christopher; Pang, Wyming Lee; Facciotti, Marc T; Schmid, Amy K; Pan, Min; Marzolf, Bruz; Van, Phu T; Lo, Fang-Yin; Pratap, Abhishek; Deutsch, Eric W; Peterson, Amelia; Martin, Dan; Baliga, Nitin S

    2009-01-01

    Despite the knowledge of complex prokaryotic-transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well-defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome-wide characterization of transcript structures of approximately 64% of all genes, including putative non-coding RNAs in Halobacterium salinarum NRC-1. Our integrative analysis of transcriptome dynamics and protein-DNA interaction data sets showed widespread environment-dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3' ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes-events usually considered spurious or non-functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements.

  12. Evolution of transcriptional enhancers and animal diversity

    Science.gov (United States)

    Rubinstein, Marcelo; de Souza, Flávio S. J.

    2013-01-01

    Deciphering the genetic bases that drive animal diversity is one of the major challenges of modern biology. Although four decades ago it was proposed that animal evolution was mainly driven by changes in cis-regulatory DNA elements controlling gene expression rather than in protein-coding sequences, only now are powerful bioinformatics and experimental approaches available to accelerate studies into how the evolution of transcriptional enhancers contributes to novel forms and functions. In the introduction to this Theme Issue, we start by defining the general properties of transcriptional enhancers, such as modularity and the coexistence of tight sequence conservation with transcription factor-binding site shuffling as different mechanisms that maintain the enhancer grammar over evolutionary time. We discuss past and current methods used to identify cell-type-specific enhancers and provide examples of how enhancers originate de novo, change and are lost in particular lineages. We then focus in the central part of this Theme Issue on analysing examples of how the molecular evolution of enhancers may change form and function. Throughout this introduction, we present the main findings of the articles, reviews and perspectives contributed to this Theme Issue that together illustrate some of the great advances and current frontiers in the field. PMID:24218630

  13. Defining the bacteroides ribosomal binding site.

    Science.gov (United States)

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  14. Transcriptional Activation Domains of the Candida albicans Gcn4p and Gal4p Homologs▿ †

    OpenAIRE

    Martchenko, Mikhail; Levitin, Anastasia; Whiteway, Malcolm

    2006-01-01

    Many putative transcription factors in the pathogenic fungus Candida albicans contain sequence similarity to well-defined transcriptional regulators in the budding yeast Saccharomyces cerevisiae, but this sequence similarity is often limited to the DNA binding domains of the molecules. The Gcn4p and Gal4p proteins of Saccharomyces cerevisiae are highly studied and well-understood eukaryotic transcription factors of the basic leucine zipper (Gcn4p) and C6 zinc cluster (Gal4p) families; C. albi...

  15. AIDS defining disease: Disseminated cryptococcosis

    Directory of Open Access Journals (Sweden)

    Roshan Anupama

    2006-01-01

    Full Text Available Disseminated cryptococcosis is one of the acquired immune deficiency syndrome defining criteria and the most common cause of life threatening meningitis. Disseminated lesions in the skin manifest as papules or nodules that mimic molluscum contagiosum (MC. We report here a human immunodeficiency virus positive patient who presented with MC like lesions. Disseminated cryptococcosis was confirmed by India ink preparation and histopathology. The condition of the patient improved with amphotercin B.

  16. How do people define moderation?

    Science.gov (United States)

    vanDellen, Michelle R; Isherwood, Jennifer C; Delose, Julie E

    2016-06-01

    Eating in moderation is considered to be sound and practical advice for weight maintenance or prevention of weight gain. However, the concept of moderation is ambiguous, and the effect of moderation messages on consumption has yet to be empirically examined. The present manuscript examines how people define moderate consumption. We expected that people would define moderate consumption in ways that justified their current or desired consumption rather than view moderation as an objective standard. In Studies 1 and 2, moderate consumption was perceived to involve greater quantities of an unhealthy food (chocolate chip cookies, gummy candies) than perceptions of how much one should consume. In Study 3, participants generally perceived themselves to eat in moderation and defined moderate consumption as greater than their personal consumption. Furthermore, definitions of moderate consumption were related to personal consumption behaviors. Results suggest that the endorsement of moderation messages allows for a wide range of interpretations of moderate consumption. Thus, we conclude that moderation messages are unlikely to be effective messages for helping people maintain or lose weight. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A SAGE based approach to human glomerular endothelium : defining the transcriptome, finding a novel molecule and highlighting endothelial diversity

    NARCIS (Netherlands)

    Sengoelge, Guerkan; Winnicki, Wolfgang; Kupczok, Anne; von Haeseler, Arndt; Schuster, Michael; Pfaller, Walter; Jennings, Paul; Weltermann, Ansgar; Blake, Sophia; Sunder-Plassmann, Gere

    2014-01-01

    BACKGROUND: Large scale transcript analysis of human glomerular microvascular endothelial cells (HGMEC) has never been accomplished. We designed this study to define the transcriptome of HGMEC and facilitate a better characterization of these endothelial cells with unique features. Serial analysis

  18. Network Coded Software Defined Networking

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Roetter, Daniel Enrique Lucani

    2015-01-01

    Software Defined Networking (SDN) and Network Coding (NC) are two key concepts in networking that have garnered a large attention in recent years. On the one hand, SDN's potential to virtualize services in the Internet allows a large flexibility not only for routing data, but also to manage....... This paper advocates for the use of SDN to bring about future Internet and 5G network services by incorporating network coding (NC) functionalities. The inherent flexibility of both SDN and NC provides a fertile ground to envision more efficient, robust, and secure networking designs, that may also...

  19. Network Coded Software Defined Networking

    DEFF Research Database (Denmark)

    Hansen, Jonas; Roetter, Daniel Enrique Lucani; Krigslund, Jeppe

    2015-01-01

    Software defined networking has garnered large attention due to its potential to virtualize services in the Internet, introducing flexibility in the buffering, scheduling, processing, and routing of data in network routers. SDN breaks the deadlock that has kept Internet network protocols stagnant...... for decades, while applications and physical links have evolved. This article advocates for the use of SDN to bring about 5G network services by incorporating network coding (NC) functionalities. The latter constitutes a major leap forward compared to the state-of-the- art store and forward Internet paradigm...

  20. (Re)Defining Salesperson Motivation

    DEFF Research Database (Denmark)

    Khusainova, Rushana; de Jong, Ad; Lee, Nick

    2018-01-01

    The construct of motivation is one of the central themes in selling and sales management research. Yet, to-date no review article exists that surveys the construct (both from an extrinsic and intrinsic motivation context), critically evaluates its current status, examines various key challenges...... apparent from the extant research, and suggests new research opportunities based on a thorough review of past work. The authors explore how motivation is defined, major theories underpinning motivation, how motivation has historically been measured, and key methodologies used over time. In addition......, attention is given to principal drivers and outcomes of salesperson motivation. A summarizing appendix of key articles in salesperson motivation is provided....

  1. Defining Usability of PN Services

    DEFF Research Database (Denmark)

    Nicolajsen, Hanne Westh; Ahola, Titta; Fleury, Alexandre

    In this deliverable usability and user experience are defined in relation to MAGNET Beyond technologies, and it is described how the main MAGNET Beyond concepts can be evaluated through the involvement of users. The concepts include the new "Activity based communication approach" for interacting...... with the MAGNET Beyond system, as well as the core concepts: Personal Network, Personal Network-Federation, Service Discovery, User Profile Management, Personal Network Management, Privacy and Security and Context Awareness. The overall plans for the final usability evaluation are documented based on the present...

  2. Expressiveness and definability in circumscription

    Directory of Open Access Journals (Sweden)

    Francicleber Martins Ferreira

    2011-06-01

    Full Text Available We investigate expressiveness and definability issues with respect to minimal models, particularly in the scope of Circumscription. First, we give a proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then we show that, if the class of P; Z-minimal models of a first-order sentence is Δ-elementary, then it is elementary. That is, whenever the circumscription of a first-order sentence is equivalent to a first-order theory, then it is equivalent to a finitely axiomatizable one. This means that classes of models of circumscribed theories are either elementary or not Δ-elementary. Finally, using the previous result, we prove that, whenever a relation Pi is defined in the class of P; Z-minimal models of a first-order sentence Φ and whenever such class of P; Z-minimal models is Δ-elementary, then there is an explicit definition ψ for Pi such that the class of P; Z-minimal models of Φ is the class of models of Φ ∧ ψ. In order words, the circumscription of P in Φ with Z varied can be replaced by Φ plus this explicit definition ψ for Pi.

  3. Defining Quality in Undergraduate Education

    Directory of Open Access Journals (Sweden)

    Alison W. Bowers

    2018-01-01

    Full Text Available Objectives: This research brief explores the literature addressing quality in undergraduate education to identify what previous research has said about quality and to offer future directions for research on quality in undergraduate education. Method: We conducted a scoping review to provide a broad overview of existing research. Using targeted search terms in academic databases, we identified and reviewed relevant academic literature to develop emergent themes and implications for future research. Results: The exploratory review of the literature revealed a range of thoughtful discussions and empirical studies attempting to define quality in undergraduate education. Many publications highlighted the importance of including different stakeholder perspectives and presented some of the varying perceptions of quality among different stakeholders. Conclusions: While a number of researchers have explored and written about how to define quality in undergraduate education, there is not a general consensus regarding a definition of quality in undergraduate education. Past research offers a range of insights, models, and data to inform future research. Implication for Theory and/or Practice: We provide four recommendations for future research to contribute to a high quality undergraduate educational experience. We suggest more comprehensive systematic reviews of the literature as a next step.

  4. On cycles in the transcription network of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Berman Piotr

    2008-01-01

    Full Text Available Abstract Background We investigate the cycles in the transcription network of Saccharomyces cerevisiae. Unlike a similar network of Escherichia coli, it contains many cycles. We characterize properties of these cycles and their place in the regulatory mechanism of the cell. Results Almost all cycles in the transcription network of Saccharomyces cerevisiae are contained in a single strongly connected component, which we call LSCC (L for "largest", except for a single cycle of two transcription factors. The fact that LSCC includes almost all cycles is well explained by the properties of a random graph with the same in- and out-degrees of the nodes. Among different physiological conditions, cell cycle has the most significant relationship with LSCC, as the set of 64 transcription interactions that are active in all phases of the cell cycle has overlap of 27 with the interactions of LSCC (of which there are 49. Conversely, if we remove the interactions that are active in all phases of the cell cycle (25% of interactions to transcription factors, the LSCC would have only three nodes and 5 edges, many fewer than expected. This subgraph of the transcription network consists mostly of interactions that are active only in the stress response subnetwork. We also characterize the role of LSCC in the topology of the network. We show that LSCC can be used to define a natural hierarchy in the network and that in every physiological subnetwork LSCC plays a pivotal role. Conclusion Apart from those well-defined conditions, the transcription network of Saccharomyces cerevisiae is devoid of cycles. It was observed that two conditions that were studied and that have no cycles of their own are exogenous: diauxic shift and DNA repair, while cell cycle and sporulation are endogenous. We claim that in a certain sense (slow recovery stress response is endogenous as well.

  5. Emerging Functions of Transcription Factors in Malaria Parasite

    Directory of Open Access Journals (Sweden)

    Renu Tuteja

    2011-01-01

    Full Text Available Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.

  6. RNA-guided transcriptional regulation

    Science.gov (United States)

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  7. Transcriptional control of megakaryocyte development.

    Science.gov (United States)

    Goldfarb, A N

    2007-10-15

    Megakaryocytes are highly specialized cells that arise from a bipotent megakaryocytic-erythroid progenitor (MEP). This developmental leap requires coordinated activation of megakaryocyte-specific genes, radical changes in cell cycle properties, and active prevention of erythroid differentiation. These programs result from upregulation of megakaryocyte-selective transcription factors, downregulation of erythroid-selective transcription factors and ongoing mediation of common erythro-megakaryocytic transcription factors. Unlike most developmental programs, no single lineage-unique family of master regulators exerts executive control over the megakaryocytic plan. Rather, an assemblage of non-unique factors and signals converge to determine lineage and differentiation. In human megakaryopoiesis, hereditary disorders of platelet production have confirmed contributions from three distinct transcription factor families. Murine models have extended this repertoire to include multiple additional factors. At a mechanistic level, the means by which these non-unique factors collaborate in the establishment of a perfectly unique cell type remains a central question.

  8. Defining the "normal" postejaculate urinalysis.

    Science.gov (United States)

    Mehta, Akanksha; Jarow, Jonathan P; Maples, Pat; Sigman, Mark

    2012-01-01

    Although sperm have been shown to be present in the postejaculate urinalysis (PEU) of both fertile and infertile men, the number of sperm present in the PEU of the general population has never been well defined. The objective of this study was to describe the semen and PEU findings in both the general and infertile population, in order to develop a better appreciation for "normal." Infertile men (n = 77) and control subjects (n = 71) were prospectively recruited. Exclusion criteria included azoospermia and medications known to affect ejaculation. All men underwent a history, physical examination, semen analysis, and PEU. The urine was split into 2 containers: PEU1, the initial voided urine, and PEU2, the remaining voided urine. Parametric statistical methods were applied for data analysis to compare sperm concentrations in each sample of semen and urine between the 2 groups of men. Controls had higher average semen volume (3.3 ± 1.6 vs 2.0 ± 1.4 mL, P sperm concentrations (112 million vs 56.2 million, P = .011), compared with infertile men. The presence of sperm in urine was common in both groups, but more prevalent among infertile men (98.7% vs 88.7%, P = .012), in whom it comprised a greater proportion of the total sperm count (46% vs 24%, P = .022). The majority of sperm present in PEU were seen in PEU1 of both controls (69%) and infertile men (88%). An association was noted between severe oligospermia (sperm counts in PEU (sperm in the urine compared with control, there is a large degree of overlap between the 2 populations, making it difficult to identify a specific threshold to define a positive test. Interpretation of a PEU should be directed by whether the number of sperm in the urine could affect subsequent management.

  9. Miniature EVA Software Defined Radio

    Science.gov (United States)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  10. National Capital Planning Commission Meeting Transcripts

    Data.gov (United States)

    National Capital Planning Commission — Transcripts of the monthly (with the exception of August) National Capital Planning Commission meeting transcripts are provided for research to confirm actions taken...

  11. The benefits of defining "snacks".

    Science.gov (United States)

    Hess, Julie M; Slavin, Joanne L

    2018-04-18

    Whether eating a "snack" is considered a beneficial or detrimental behavior is largely based on how "snack" is defined. The term "snack food" tends to connote energy-dense, nutrient-poor foods high in nutrients to limit (sugar, sodium, and/or saturated fat) like cakes, cookies, chips and other salty snacks, and sugar-sweetened beverages. Eating a "snack food" is often conflated with eating a "snack," however, leading to an overall perception of snacks as a dietary negative. Yet the term "snack" can also refer simply to an eating occasion outside of breakfast, lunch, or dinner. With this definition, the evidence to support health benefits or detriments to eating a "snack" remains unclear, in part because relatively few well-designed studies that specifically focus on the impact of eating frequency on health have been conducted. Despite these inconsistencies and research gaps, in much of the nutrition literature, "snacking" is still referred to as detrimental to health. As discussed in this review, however, there are multiple factors that influence the health impacts of snacking, including the definition of "snack" itself, the motivation to snack, body mass index of snack eaters, and the food selected as a snack. Without a definition of "snack" and a body of research using methodologically rigorous protocols, determining the health impact of eating a "snack" will continue to elude the nutrition research community and prevent the development of evidence-based policies about snacking that support public health. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Rickettsia conorii transcriptional response within inoculation eschar.

    Directory of Open Access Journals (Sweden)

    Patricia Renesto

    Full Text Available BACKGROUND: Rickettsia conorii, the causative agent of the Mediterranean spotted fever, is transmitted to humans by the bite of infected ticks Rhipicephalus sanguineus. The skin thus constitutes an important barrier for the entry and propagation of R. conorii. Given this, analysis of the survival strategies used by the bacterium within infected skin is critical for our understanding of rickettsiosis. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the first genome-wide analysis of R. conorii gene expression from infected human skin biopsies. Our data showed that R. conorii exhibited a striking transcript signature that is remarkably conserved across patients, regardless of genotype. The expression profiles obtained using custom Agilent microarrays were validated by quantitative RT-PCR. Within eschars, the amount of detected R. conorii transcripts was of 55%, this value being of 74% for bacteria grown in Vero cells. In such infected host tissues, approximately 15% (n = 211 of the total predicted R. conorii ORFs appeared differentially expressed compared to bacteria grown in standard laboratory conditions. These genes are mostly down-regulated and encode proteins essential for bacterial replication. Some of the strategies displayed by rickettsiae to overcome the host defense barriers, thus avoiding killing, were also pointed out. The observed up-regulation of rickettsial genes associated with DNA repair is likely to correspond to a DNA-damaging agent enriched environment generated by the host cells to eradicate the pathogens. Survival of R. conorii within eschars also involves adaptation to osmotic stress, changes in cell surface proteins and up-regulation of some virulence factors. Interestingly, in contrast to down-regulated transcripts, we noticed that up-regulated ones rather exhibit a small nucleotide size, most of them being exclusive for the spotted fever group rickettsiae. CONCLUSION/SIGNIFICANCE: Because eschar is a site for rickettsial

  13. Defining safety goals. 2. Basic Consideration on Defining Safety Goals

    International Nuclear Information System (INIS)

    Hakata, T.

    2001-01-01

    cancer and severe hereditary effects are 10 x 10 -2 /Sv and 1.3 x10 -2 /Sv, respectively. The basic safety goals can be expressed by the complementary accumulative distribution function (CCDF) of dose versus frequencies of events: Pc(C > Cp) 5 (Cp/Co) -α . The aversion factor a is here expressed by the following arbitrary equation, which gives a polynomial curve of the order of m on a logarithmic plane: α = a+b(log(Cp/Co)) m , where: Pc = CCDF frequency for Cp (/yr), Cp = dose (mSv), Co = Cp for Pc =1, a, b, m = constants. Figure 1 shows a typical tolerable risk profile (risk limit curve), which is drawn so that all the points obtained in the previous discussions are above the curve (Co=1, a=1, b=0.0772, and m = 2). Safety criteria by ANS (Ref. 2) and SHE (Ref. 3) are shown in Fig. 1 for comparison. An aversion of a factor of 2 is resulted between 1 mSv and 1 Sv. No ALARA is included, which must be considered in defining specific safety goals. The frequency of a single class of events must be lower than the CCDF profile, and a curve lower by a factor of 10 is drawn in Fig. 1. The doses referenced in the current Japanese safety guidelines and site criteria are shown in Fig. 1. The referenced doses seem reasonable, considering the conservatism in the analysis of design-basis accidents. Specific safety goals for each sort of facility can be defined based on the basic safety goals, reflecting the characteristics of the facilities and considering ALARA. The indexes of engineering terms, such as CMF and LERF, are preferable for nuclear power plants, although interpretation from dose to the engineering terms is needed. Other indexes may be used (such as frequency of criticality accidents, etc.) for facilities except for power plants. The applicability of safety goals will thus be improved. Figure 2 shows the relative risk factors (1, 1%, and 0.1%) versus the severity of radiation effects. This might indicate the adequacy of the risk factors. The absolute risk limits, which

  14. Defining Tobacco Regulatory Science Competencies.

    Science.gov (United States)

    Wipfli, Heather L; Berman, Micah; Hanson, Kacey; Kelder, Steven; Solis, Amy; Villanti, Andrea C; Ribeiro, Carla M P; Meissner, Helen I; Anderson, Roger

    2017-02-01

    In 2013, the National Institutes of Health and the Food and Drug Administration funded a network of 14 Tobacco Centers of Regulatory Science (TCORS) with a mission that included research and training. A cross-TCORS Panel was established to define tobacco regulatory science (TRS) competencies to help harmonize and guide their emerging educational programs. The purpose of this paper is to describe the Panel's work to develop core TRS domains and competencies. The Panel developed the list of domains and competencies using a semistructured Delphi method divided into four phases occurring between November 2013 and August 2015. The final proposed list included a total of 51 competencies across six core domains and 28 competencies across five specialized domains. There is a need for continued discussion to establish the utility of the proposed set of competencies for emerging TRS curricula and to identify the best strategies for incorporating these competencies into TRS training programs. Given the field's broad multidisciplinary nature, further experience is needed to refine the core domains that should be covered in TRS training programs versus knowledge obtained in more specialized programs. Regulatory science to inform the regulation of tobacco products is an emerging field. The paper provides an initial list of core and specialized domains and competencies to be used in developing curricula for new and emerging training programs aimed at preparing a new cohort of scientists to conduct critical TRS research. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Dissection of combinatorial control by the Met4 transcriptional complex.

    Science.gov (United States)

    Lee, Traci A; Jorgensen, Paul; Bognar, Andrew L; Peyraud, Caroline; Thomas, Dominique; Tyers, Mike

    2010-02-01

    Met4 is the transcriptional activator of the sulfur metabolic network in Saccharomyces cerevisiae. Lacking DNA-binding ability, Met4 must interact with proteins called Met4 cofactors to target promoters for transcription. Two types of DNA-binding cofactors (Cbf1 and Met31/Met32) recruit Met4 to promoters and one cofactor (Met28) stabilizes the DNA-bound Met4 complexes. To dissect this combinatorial system, we systematically deleted each category of cofactor(s) and analyzed Met4-activated transcription on a genome-wide scale. We defined a core regulon for Met4, consisting of 45 target genes. Deletion of both Met31 and Met32 eliminated activation of the core regulon, whereas loss of Met28 or Cbf1 interfered with only a subset of targets that map to distinct sectors of the sulfur metabolic network. These transcriptional dependencies roughly correlated with the presence of Cbf1 promoter motifs. Quantitative analysis of in vivo promoter binding properties indicated varying levels of cooperativity and interdependency exists between members of this combinatorial system. Cbf1 was the only cofactor to remain fully bound to target promoters under all conditions, whereas other factors exhibited different degrees of regulated binding in a promoter-specific fashion. Taken together, Met4 cofactors use a variety of mechanisms to allow differential transcription of target genes in response to various cues.

  16. Longitudinal evaluation of leukocyte transcripts in killer whales (Orcinus Orca)

    Science.gov (United States)

    Sitt, Tatjana; Bowen, Lizabeth; Lee, Chia-Shan; Blanchard, Myra; McBain, James; Dold, Christopher; Stott, Jeffrey L.

    2016-01-01

    Early identification of illness and/or presence of environmental and/or social stressors in free-ranging and domestic cetaceans is a priority for marine mammal health care professionals. Incorporation of leukocyte gene transcript analysis into the diagnostic tool kit has the potential to augment classical diagnostics based upon ease of sample storage and shipment, inducible nature and well-defined roles of transcription and associated downstream actions. Development of biomarkers that could serve to identify “insults” and potentially differentiate disease etiology would be of great diagnostic value. To this end, a modest number of peripheral blood leukocyte gene transcripts were selected for application to a domestic killer whale population with a focus on broad representation of inducible immunologically relevant genes. Normalized leukocyte transcript values, longitudinally acquired from 232 blood samples derived from 26 clinically healthy whales, were not visibly influenced temporally nor by sex or the specific Park in which they resided. Stability in leukocyte transcript number during periods of health enhances their potential use in diagnostics through identification of outliers. Transcript levels of two cytokine genes, IL-4 and IL-17, were highly variable within the group as compared to the other transcripts. IL-4 transcripts were typically absent. Analysis of transcript levels on the other genes of interest, on an individual animal basis, identified more outliers than were visible when analyzed in the context of the entire population. The majority of outliers (9 samples) were low, though elevated transcripts were identified for IL-17 from 2 animals and one each for Cox-2 and IL-10. The low number of outliers was not unexpected as sample selection was intentionally directed towards animals that were clinically healthy at the time of collection. Outliers may reflect animals experiencing subclinical disease that is transient and self-limiting. The

  17. Transcriptional regulation of hepatic lipogenesis.

    Science.gov (United States)

    Wang, Yuhui; Viscarra, Jose; Kim, Sun-Joong; Sul, Hei Sook

    2015-11-01

    Fatty acid and fat synthesis in the liver is a highly regulated metabolic pathway that is important for very low-density lipoprotein (VLDL) production and thus energy distribution to other tissues. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcriptional level. Transcription factors, such as upstream stimulatory factors (USFs), sterol regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP) have crucial roles in this process. Recently, insights have been gained into the signalling pathways that regulate these transcription factors. After feeding, high blood glucose and insulin levels activate lipogenic genes through several pathways, including the DNA-dependent protein kinase (DNA-PK), atypical protein kinase C (aPKC) and AKT-mTOR pathways. These pathways control the post-translational modifications of transcription factors and co-regulators, such as phosphorylation, acetylation or ubiquitylation, that affect their function, stability and/or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance.

  18. Structural insights into transcription complexes

    NARCIS (Netherlands)

    Berger, I.; Blanco, A.G.; Boelens, R.; Cavarelli, J.; Coll, M.; Folkers, G.E.; Nie, Y.; Pogenberg, V.; Schultz, P.; Wilmanns, M.; Moras, D.; Poterszman, A.

    2011-01-01

    Control of transcription allows the regulation of cell activity in response to external stimuli and research in the field has greatly benefited from efforts in structural biology. In this review, based on specific examples from the European SPINE2-COMPLEXES initiative, we illustrate the impact of

  19. Transcription factor-based biosensor

    Science.gov (United States)

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  20. An Alternative Transcript of the FOG-2 Gene Encodes a FOG-2 Isoform lacking the FOG Repression Motif

    OpenAIRE

    Dale, Rodney M.; Remo, Benjamin F.; Svensson, Eric C.

    2007-01-01

    The FOG family of transcriptional co-factors is composed of two members in mammals: FOG-1 and FOG-2. Both have been shown to bind to GATA factors and function as transcriptional co-repressors in specific cell and promoter contexts. We have previously defined a novel repression domain localized to the N-terminus of each FOG family member, the FOG Repression Motif, which is necessary for FOG-mediated transcriptional repression. In this report, we describe the identification and characterization...

  1. Identification and Classification of New Transcripts in Dorper and Small-Tailed Han Sheep Skeletal Muscle Transcriptomes.

    Directory of Open Access Journals (Sweden)

    Tianle Chao

    Full Text Available High-throughput mRNA sequencing enables the discovery of new transcripts and additional parts of incompletely annotated transcripts. Compared with the human and cow genomes, the reference annotation level of the sheep genome is still low. An investigation of new transcripts in sheep skeletal muscle will improve our understanding of muscle development. Therefore, applying high-throughput sequencing, two cDNA libraries from the biceps brachii of small-tailed Han sheep and Dorper sheep were constructed, and whole-transcriptome analysis was performed to determine the unknown transcript catalogue of this tissue. In this study, 40,129 transcripts were finally mapped to the sheep genome. Among them, 3,467 transcripts were determined to be unannotated in the current reference sheep genome and were defined as new transcripts. Based on protein-coding capacity prediction and comparative analysis of sequence similarity, 246 transcripts were classified as portions of unannotated genes or incompletely annotated genes. Another 1,520 transcripts were predicted with high confidence to be long non-coding RNAs. Our analysis also revealed 334 new transcripts that displayed specific expression in ruminants and uncovered a number of new transcripts without intergenus homology but with specific expression in sheep skeletal muscle. The results confirmed a complex transcript pattern of coding and non-coding RNA in sheep skeletal muscle. This study provided important information concerning the sheep genome and transcriptome annotation, which could provide a basis for further study.

  2. YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction

    DEFF Research Database (Denmark)

    Gabriele, Michele; Vulto-van Silfhout, Anneke T; Germain, Pierre-Luc

    2017-01-01

    that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin...... on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators....

  3. Indico CONFERENCE: Define the Call for Abstracts

    CERN Multimedia

    CERN. Geneva; Ferreira, Pedro

    2017-01-01

    In this tutorial, you will learn how to define and open a call for abstracts. When defining a call for abstracts, you will be able to define settings related to the type of questions asked during a review of an abstract, select the users who will review the abstracts, decide when to open the call for abstracts, and more.

  4. On defining semantics of extended attribute grammars

    DEFF Research Database (Denmark)

    Madsen, Ole Lehrmann

    1980-01-01

    Knuth has introduced attribute grammars (AGs) as a tool to define the semanitcs of context-free languages. The use of AGs in connection with programming language definitions has mostly been to define the context-sensitive syntax of the language and to define a translation in code for a hypothetic...

  5. Languages for Software-Defined Networks

    Science.gov (United States)

    2013-02-01

    switches, firewalls, and middleboxes) with closed and proprietary configuration inter- faces. Software - Defined Networks ( SDN ) are poised to change...how- ever, have seen growing interest in software - defined networks ( SDNs ), in which a logically-centralized controller manages the packet-processing...switches, firewalls, and middleboxes) with closed and proprietary configuration interfaces. Software - Defined Networks ( SDN ) are poised to change this

  6. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis.

    Science.gov (United States)

    Muhar, Matthias; Ebert, Anja; Neumann, Tobias; Umkehrer, Christian; Jude, Julian; Wieshofer, Corinna; Rescheneder, Philipp; Lipp, Jesse J; Herzog, Veronika A; Reichholf, Brian; Cisneros, David A; Hoffmann, Thomas; Schlapansky, Moritz F; Bhat, Pooja; von Haeseler, Arndt; Köcher, Thomas; Obenauf, Anna C; Popow, Johannes; Ameres, Stefan L; Zuber, Johannes

    2018-05-18

    Defining direct targets of transcription factors and regulatory pathways is key to understanding their roles in physiology and disease. We combined SLAM-seq [thiol(SH)-linked alkylation for the metabolic sequencing of RNA], a method for direct quantification of newly synthesized messenger RNAs (mRNAs), with pharmacological and chemical-genetic perturbation in order to define regulatory functions of two transcriptional hubs in cancer, BRD4 and MYC, and to interrogate direct responses to BET bromodomain inhibitors (BETis). We found that BRD4 acts as general coactivator of RNA polymerase II-dependent transcription, which is broadly repressed upon high-dose BETi treatment. At doses triggering selective effects in leukemia, BETis deregulate a small set of hypersensitive targets including MYC. In contrast to BRD4, MYC primarily acts as a selective transcriptional activator controlling metabolic processes such as ribosome biogenesis and de novo purine synthesis. Our study establishes a simple and scalable strategy to identify direct transcriptional targets of any gene or pathway. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Alternative staffing services. Contract transcription.

    Science.gov (United States)

    Tessier, C

    1992-03-01

    Contract medical transcription services can be of great assistance in meeting the demands for transcription, without jeopardizing patient, physician, or institutional confidentiality. You simply must require the contract service to provide at least the same degree of protection and preservation of confidentiality that you should require inhouse. To achieve this you must make these requirements explicit, comprehensive, comprehensible, believable, and enforceable. Discuss the requirements with prospective contractors. Review them at least annually with existing contractors and when contracts are due for renewal. Be sure to specify the consequence of breaching confidentiality, and if there are breaches, enforce the terms of the contract. Consult your institution's legal counsel both in developing the contract and in enforcing its provisions. Take into consideration your department's and institution's policies, AHIMA's statement on confidentiality, as well as local, state, and federal laws. Above all, never lose sight of the patient. Ultimately, it is not patient information that you are obligated to protect. It is the patient.

  8. The post-transcriptional operon

    DEFF Research Database (Denmark)

    Tenenbaum, Scott A.; Christiansen, Jan; Nielsen, Henrik

    2011-01-01

    model (PTO) is used to describe data from an assortment of methods (e.g. RIP-Chip, CLIP-Chip, miRNA profiling, ribosome profiling) that globally address the functionality of mRNA. Several examples of post-transcriptional operons have been documented in the literature and demonstrate the usefulness...... of the model in identifying new participants in cellular pathways as well as in deepening our understanding of cellular responses....

  9. Defining Peer-to-Peer Accountability From the Nurse's Perspective.

    Science.gov (United States)

    Lockett, Jacqueline Jansen; Barkley, Leslie; Stichler, Jaynelle; Palomo, Jeanne; Kik, Bozena; Walker, Christopher; Donnelly, Janet; Willon, Judy; Sanborn, Julie; O'Byrne, Noeleen

    2015-11-01

    The aim of this study was to define and create a conceptual model for peer-to-peer accountability (P to PA). Many organizations cite the importance of peer accountability (PA) as essential in ensuring patient safety. Professionalism in nursing requires self-regulation of practice and PA. Although discussed in the literature, P to PA is not conceptually defined. A grounded theory study design with constant comparative data collection and analysis was used to explore nurses' definitions of P to PA and their perceptions of motivators and barriers to engaging in P to PA. Transcripts of digital recordings of all interviews were analyzed using line-by-line coding until identified themes emerged. P to PA was defined as the act of speaking up when one observes a peer not practicing to acceptable standards. A conceptual model illustrates the antecedents, attributes, and consequences of P to PA. P to PA is the professional responsibility of every nurse and healthcare provider and is essential for safe patient care. The conceptual definition facilitates actualization of P to PA in practice.

  10. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, C.N.; Worton, R.G. [Univ. of Toronto and the Hospital for Sick Children, Ontario (Canada)

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  11. Mutual interdependence of splicing and transcription elongation.

    Science.gov (United States)

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  12. Defining functional DNA elements in the human genome

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  13. Interplay between DNA supercoiling and transcription elongation.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  14. RNA-Seq for enrichment and analysis of IRF5 transcript expression in SLE.

    Directory of Open Access Journals (Sweden)

    Rivka C Stone

    Full Text Available Polymorphisms in the interferon regulatory factor 5 (IRF5 gene have been consistently replicated and shown to confer risk for or protection from the development of systemic lupus erythematosus (SLE. IRF5 expression is significantly upregulated in SLE patients and upregulation associates with IRF5-SLE risk haplotypes. IRF5 alternative splicing has also been shown to be elevated in SLE patients. Given that human IRF5 exists as multiple alternatively spliced transcripts with distinct function(s, it is important to determine whether the IRF5 transcript profile expressed in healthy donor immune cells is different from that expressed in SLE patients. Moreover, it is not currently known whether an IRF5-SLE risk haplotype defines the profile of IRF5 transcripts expressed. Using standard molecular cloning techniques, we identified and isolated 14 new differentially spliced IRF5 transcript variants from purified monocytes of healthy donors and SLE patients to generate an IRF5 variant transcriptome. Next-generation sequencing was then used to perform in-depth and quantitative analysis of full-length IRF5 transcript expression in primary immune cells of SLE patients and healthy donors by next-generation sequencing. Evidence for additional alternatively spliced transcripts was obtained from de novo junction discovery. Data from these studies support the overall complexity of IRF5 alternative splicing in SLE. Results from next-generation sequencing correlated with cloning and gave similar abundance rankings in SLE patients thus supporting the use of this new technology for in-depth single gene transcript profiling. Results from this study provide the first proof that 1 SLE patients express an IRF5 transcript signature that is distinct from healthy donors, 2 an IRF5-SLE risk haplotype defines the top four most abundant IRF5 transcripts expressed in SLE patients, and 3 an IRF5 transcript signature enables clustering of SLE patients with the H2 risk haplotype.

  15. Transcription factor interplay in T helper cell differentiation

    Science.gov (United States)

    Evans, Catherine M.

    2013-01-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity. PMID:23878131

  16. Computing algebraic transfer entropy and coupling directions via transcripts

    Science.gov (United States)

    Amigó, José M.; Monetti, Roberto; Graff, Beata; Graff, Grzegorz

    2016-11-01

    Most random processes studied in nonlinear time series analysis take values on sets endowed with a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate with each pair of group elements a third element, called their transcript, which is defined as the product of the second element in the pair times the first one. The transfer entropy of two such processes is called algebraic transfer entropy. It measures the information transferred between two coupled processes whose values belong to a group. In this paper, we show that, subject to one constraint, the algebraic transfer entropy matches the (in general, conditional) mutual information of certain transcripts with one variable less. This property has interesting practical applications, especially to the analysis of short time series. We also derive weak conditions for the 3-dimensional algebraic transfer entropy to yield the same coupling direction as the corresponding mutual information of transcripts. A related issue concerns the use of mutual information of transcripts to determine coupling directions in cases where the conditions just mentioned are not fulfilled. We checked the latter possibility in the lowest dimensional case with numerical simulations and cardiovascular data, and obtained positive results.

  17. Transcription factor interplay in T helper cell differentiation.

    Science.gov (United States)

    Evans, Catherine M; Jenner, Richard G

    2013-11-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity.

  18. Directing traffic on DNA-How transcription factors relieve or induce transcriptional interference.

    Science.gov (United States)

    Hao, Nan; Palmer, Adam C; Dodd, Ian B; Shearwin, Keith E

    2017-03-15

    Transcriptional interference (TI) is increasingly recognized as a widespread mechanism of gene control, particularly given the pervasive nature of transcription, both sense and antisense, across all kingdoms of life. Here, we discuss how transcription factor binding kinetics strongly influence the ability of a transcription factor to relieve or induce TI.

  19. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    Plants have developed astonishing networks regulating their metabolism to adapt to their environment. The complexity of these networks is illustrated by the expansion of families of regulators such as transcription factors in the plant kingdom. Transcription factors specifically impact...... transcriptional networks by integrating exogenous and endogenous stimuli and regulating gene expression accordingly. Regulation of transcription factors and their activation is thus highly important to modulate the transcriptional programs and increase fitness of the plant in a given environment. Plant metabolism....... The biosynthetic machinery of GLS is governed by interplay of six MYB and three bHLH transcription factors. MYB28, MYB29 and MYB76 regulate methionine-derived GLS, and MYB51, MYB34 and MYB122 regulate tryptophan-derived GLS. The three bHLH transcription factors MYC2, MYC3 and MYC4 physically interact with all six...

  20. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    OpenAIRE

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription ...

  1. Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood.

    Science.gov (United States)

    Roach, Melissa; Arrivault, Stéphanie; Mahboubi, Amir; Krohn, Nicole; Sulpice, Ronan; Stitt, Mark; Niittylä, Totte

    2017-06-15

    The contribution of transcriptional and post-transcriptional regulation to modifying carbon allocation to developing wood of trees is not well defined. To clarify the role of transcriptional regulation, the enzyme activity patterns of eight central primary metabolism enzymes across phloem, cambium, and developing wood of aspen (Populus tremula L.) were compared with transcript levels obtained by RNA sequencing of sequential stem sections from the same trees. Enzymes were selected on the basis of their importance in sugar metabolism and in linking primary metabolism to lignin biosynthesis. Existing enzyme assays were adapted to allow measurements from ~1 mm3 sections of dissected stem tissue. These experiments provided high spatial resolution of enzyme activity changes across different stages of wood development, and identified the gene transcripts probably responsible for these changes. In most cases, there was a clear positive relationship between transcripts and enzyme activity. During secondary cell wall formation, the increases in transcript levels and enzyme activities also matched with increased levels of glucose, fructose, hexose phosphates, and UDP-glucose, emphasizing an important role for transcriptional regulation in carbon allocation to developing aspen wood. These observations corroborate the efforts to increase carbon allocation to wood by engineering gene regulatory networks. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion

    Directory of Open Access Journals (Sweden)

    Sandra Capellera-Garcia

    2016-06-01

    Full Text Available Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of well characterized genes. However, the minimal set of factors necessary for instructing red blood cell (RBC development remains undefined. We employed a screen for transcription factors allowing direct lineage reprograming from fibroblasts to induced erythroid progenitors/precursors (iEPs. We show that Gata1, Tal1, Lmo2, and c-Myc (GTLM can rapidly convert murine and human fibroblasts directly to iEPs. The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern. Our results demonstrate that direct lineage conversion is a suitable platform for defining and studying the core factors inducing the different waves of erythroid development.

  3. 22 CFR 92.36 - Authentication defined.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Authentication defined. 92.36 Section 92.36... Notarial Acts § 92.36 Authentication defined. An authentication is a certification of the genuineness of... recognized in another jurisdiction. Documents which may require authentication include legal instruments...

  4. A definability theorem for first order logic

    NARCIS (Netherlands)

    Butz, C.; Moerdijk, I.

    1997-01-01

    In this paper we will present a definability theorem for first order logic This theorem is very easy to state and its proof only uses elementary tools To explain the theorem let us first observe that if M is a model of a theory T in a language L then clearly any definable subset S M ie a subset S

  5. Dilution Confusion: Conventions for Defining a Dilution

    Science.gov (United States)

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…

  6. Defining Hardwood Veneer Log Quality Attributes

    Science.gov (United States)

    Jan Wiedenbeck; Michael Wiemann; Delton Alderman; John Baumgras; William Luppold

    2004-01-01

    This publication provides a broad spectrum of information on the hardwood veneer industry in North America. Veneer manufacturers and their customers impose guidelines in specifying wood quality attributes that are very discriminating but poorly defined (e.g., exceptional color, texture, and/or figure characteristics). To better understand and begin to define the most...

  7. Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Colin R Lickwar

    2017-08-01

    Full Text Available The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development

  8. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Promoter proximal polyadenylation sites reduce transcription activity

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site......, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites...... on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ∼500...

  10. Transcription and recombination: when RNA meets DNA.

    Science.gov (United States)

    Aguilera, Andrés; Gaillard, Hélène

    2014-08-01

    A particularly relevant phenomenon in cell physiology and proliferation is the fact that spontaneous mitotic recombination is strongly enhanced by transcription. The most accepted view is that transcription increases the occurrence of double-strand breaks and/or single-stranded DNA gaps that are repaired by recombination. Most breaks would arise as a consequence of the impact that transcription has on replication fork progression, provoking its stalling and/or breakage. Here, we discuss the mechanisms responsible for the cross talk between transcription and recombination, with emphasis on (1) the transcription-replication conflicts as the main source of recombinogenic DNA breaks, and (2) the formation of cotranscriptional R-loops as a major cause of such breaks. The new emerging questions and perspectives are discussed on the basis of the interference between transcription and replication, as well as the way RNA influences genome dynamics. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Specificity and robustness in transcription control networks.

    Science.gov (United States)

    Sengupta, Anirvan M; Djordjevic, Marko; Shraiman, Boris I

    2002-02-19

    Recognition by transcription factors of the regulatory DNA elements upstream of genes is the fundamental step in controlling gene expression. How does the necessity to provide stability with respect to mutation constrain the organization of transcription control networks? We examine the mutation load of a transcription factor interacting with a set of n regulatory response elements as a function of the factor/DNA binding specificity and conclude on theoretical grounds that the optimal specificity decreases with n. The predicted correlation between variability of binding sites (for a given transcription factor) and their number is supported by the genomic data for Escherichia coli. The analysis of E. coli genomic data was carried out using an algorithm suggested by the biophysical model of transcription factor/DNA binding. Complete results of the search for candidate transcription factor binding sites are available at http://www.physics.rockefeller.edu/~boris/public/search_ecoli.

  12. Bilayer graphene quantum dot defined by topgates

    Energy Technology Data Exchange (ETDEWEB)

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  13. Determining physical constraints in transcriptional initiationcomplexes using DNA sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shultzaberger, Ryan K.; Chiang, Derek Y.; Moses, Alan M.; Eisen,Michael B.

    2007-07-01

    Eukaryotic gene expression is often under the control ofcooperatively acting transcription factors whose binding is limited bystructural constraints. By determining these structural constraints, wecan understand the "rules" that define functional cooperativity.Conversely, by understanding the rules of binding, we can inferstructural characteristics. We have developed an information theory basedmethod for approximating the physical limitations of cooperativeinteractions by comparing sequence analysis to microarray expressiondata. When applied to the coordinated binding of the sulfur amino acidregulatory protein Met4 by Cbf1 and Met31, we were able to create acombinatorial model that can correctly identify Met4 regulatedgenes.

  14. Signatures of DNA target selectivity by ETS transcription factors.

    Science.gov (United States)

    Poon, Gregory M K; Kim, Hye Mi

    2017-05-27

    The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.

  15. Metabolic profiles to define the genome: can we hear the phenotypes?

    OpenAIRE

    Griffin, Julian L

    2004-01-01

    There is an increased reliance on genetically modified organisms as a functional genomic tool to elucidate the role of genes and their protein products. Despite this, many models do not express the expected phenotype thought to be associated with the gene or protein. There is thus an increased need to further define the phenotype resultant from a genetic modification to understand how the transcriptional or proteomic network may conspire to alter the expected phenotype. This is best typified ...

  16. Transcriptional networks and chromatin remodeling controlling adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2012-01-01

    Adipocyte differentiation is tightly controlled by a transcriptional cascade, which directs the extensive reprogramming of gene expression required to convert fibroblast-like precursor cells into mature lipid-laden adipocytes. Recent global analyses of transcription factor binding and chromatin...... remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications....... Such transcription factor hotspots are likely to represent key signaling nodes which integrate multiple adipogenic signals at specific chromatin sites, thereby facilitating coordinated action on gene expression....

  17. Application-Defined Decentralized Access Control

    Science.gov (United States)

    Xu, Yuanzhong; Dunn, Alan M.; Hofmann, Owen S.; Lee, Michael Z.; Mehdi, Syed Akbar; Witchel, Emmett

    2014-01-01

    DCAC is a practical OS-level access control system that supports application-defined principals. It allows normal users to perform administrative operations within their privilege, enabling isolation and privilege separation for applications. It does not require centralized policy specification or management, giving applications freedom to manage their principals while the policies are still enforced by the OS. DCAC uses hierarchically-named attributes as a generic framework for user-defined policies such as groups defined by normal users. For both local and networked file systems, its execution time overhead is between 0%–9% on file system microbenchmarks, and under 1% on applications. This paper shows the design and implementation of DCAC, as well as several real-world use cases, including sandboxing applications, enforcing server applications’ security policies, supporting NFS, and authenticating user-defined sub-principals in SSH, all with minimal code changes. PMID:25426493

  18. Software Defined Multiband EVA Radio, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this research is to propose a reliable, lightweight, programmable, multi-band, multi-mode, miniaturized frequency-agile EVA software defined radio...

  19. Reconfigurable, Cognitive Software Defined Radio, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — IAI is actively developing Software Defined Radio platforms that can adaptively switch between different modes of operation by modifying both transmit waveforms and...

  20. Software Defined Multiband EVA Radio, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of Phase 2 is to build a reliable, lightweight, programmable, multi-mode, miniaturized EVA Software Defined Radio (SDR) that supports data telemetry,...

  1. Reconfigurable, Cognitive Software Defined Radio, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation Inc, (IAI) is currently developing a software defined radio (SDR) platform that can adaptively switch between different modes of operation for...

  2. Optimum Criteria for Developing Defined Structures

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2008-01-01

    Full Text Available Basic aspects concerning distributed applications are presented: definition, particularities and importance. For distributed applications linear, arborescent, graph structures are defined with different versions and aggregation methods. Distributed applications have associated structures which through their characteristics influence the costs of the stages in the development cycle and the exploitation costs transferred to each user. The complexity of the defined structures is analyzed. The minimum and maximum criteria are enumerated for optimizing distributed application structures.

  3. Deficient motion-defined and texture-defined figure-ground segregation in amblyopic children.

    Science.gov (United States)

    Wang, Jane; Ho, Cindy S; Giaschi, Deborah E

    2007-01-01

    Motion-defined form deficits in the fellow eye and the amblyopic eye of children with amblyopia implicate possible direction-selective motion processing or static figure-ground segregation deficits. Deficient motion-defined form perception in the fellow eye of amblyopic children may not be fully accounted for by a general motion processing deficit. This study investigates the contribution of figure-ground segregation deficits to the motion-defined form perception deficits in amblyopia. Performances of 6 amblyopic children (5 anisometropic, 1 anisostrabismic) and 32 control children with normal vision were assessed on motion-defined form, texture-defined form, and global motion tasks. Performance on motion-defined and texture-defined form tasks was significantly worse in amblyopic children than in control children. Performance on global motion tasks was not significantly different between the 2 groups. Faulty figure-ground segregation mechanisms are likely responsible for the observed motion-defined form perception deficits in amblyopia.

  4. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles.

    Science.gov (United States)

    Cramer, Grant R; Ergül, Ali; Grimplet, Jerome; Tillett, Richard L; Tattersall, Elizabeth A R; Bohlman, Marlene C; Vincent, Delphine; Sonderegger, Justin; Evans, Jason; Osborne, Craig; Quilici, David; Schlauch, Karen A; Schooley, David A; Cushman, John C

    2007-04-01

    Grapes are grown in semiarid environments, where drought and salinity are common problems. Microarray transcript profiling, quantitative reverse transcription-PCR, and metabolite profiling were used to define genes and metabolic pathways in Vitis vinifera cv. Cabernet Sauvignon with shared and divergent responses to a gradually applied and long-term (16 days) water-deficit stress and equivalent salinity stress. In this first-of-a-kind study, distinct differences between water deficit and salinity were revealed. Water deficit caused more rapid and greater inhibition of shoot growth than did salinity at equivalent stem water potentials. One of the earliest responses to water deficit was an increase in the transcript abundance of RuBisCo activase (day 4), but this increase occurred much later in salt-stressed plants (day 12). As water deficit progressed, a greater number of affected transcripts were involved in metabolism, transport, and the biogenesis of cellular components than did salinity. Salinity affected a higher percentage of transcripts involved in transcription, protein synthesis, and protein fate than did water deficit. Metabolite profiling revealed that there were higher concentrations of glucose, malate, and proline in water-deficit-treated plants as compared to salinized plants. The metabolite differences were linked to differences in transcript abundance of many genes involved in energy metabolism and nitrogen assimilation, particularly photosynthesis, gluconeogenesis, and photorespiration. Water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.

  5. Mapping the transcription termination region of the mouse immunoglobulin kappa gene

    International Nuclear Information System (INIS)

    Xu, M.; Garrard, W.T.

    1986-01-01

    To define the transcription termination region of the mouse immunoglobulin kappa gene, they have subcloned single copy DNA sequences corresponding to both the template and the non-template strands of this locus. In vitro nuclear transcription with isolated MPC-11 nuclei was performed and the resulting 32 P-labeled RNA was hybridized to slot-blotted, single-stranded M13 probes covering regions within and flanking the kappa gene. The hybridization pattern for the template-strand reveals that transcription terminates within the region between 1.1 to 2.3 kb downstream from the poly(A) site. Ten different short sequences (8-13 bp) reside within 460 bp of this region that exhibit homology with sequences found in the termination regions of mouse β-globin and chicken ovalbumin genes. Transcription of the non-template strand occurs on either side of this termination region. They note that no transcription is detectable on the non-template strand downstream of the enhancer, indicating that if RNA polymerase II enters at this site, it does not initiate transcription during transit to the promoter region. They conclude that transcription of the kappa gene passes the poly(A) addition site and terminates within 2.3 Kb downstream

  6. Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana.

    NARCIS (Netherlands)

    Smet, De I.; Lau, S.; Ehrismann, J.S.; Axiotis, I.; Kolb, M.; Kientz, M.; Weijers, D.; Jürgens, G.

    2013-01-01

    In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF)

  7. Translational Capacity of a Cell Is Determined during Transcription Elongation via the Ccr4-Not Complex

    Directory of Open Access Journals (Sweden)

    Ishaan Gupta

    2016-05-01

    Full Text Available The current understanding of gene expression considers transcription and translation to be independent processes. Challenging this notion, we found that translation efficiency is determined during transcription elongation through the imprinting of mRNAs with Not1, the central scaffold of the Ccr4-Not complex. We determined that another subunit of the complex, Not5, defines Not1 binding to specific mRNAs, particularly those produced from ribosomal protein genes. This imprinting mechanism specifically regulates ribosomal protein gene expression, which in turn determines the translational capacity of cells. We validate our model by SILAC and polysome profiling experiments. As a proof of concept, we demonstrate that enhanced translation compensates for transcriptional elongation stress. Taken together, our data indicate that in addition to defining mRNA stability, components of the Ccr4-Not imprinting complex regulate RNA translatability, thus ensuring global gene expression homeostasis.

  8. Computational design and application of endogenous promoters for transcriptionally targeted gene therapy for rheumatoid arthritis.

    NARCIS (Netherlands)

    Geurts, J.; Joosten, L.A.B.; Takahashi, N.; Arntz, O.J.; Gluck, A.; Bennink, M.B.; Berg, W.B. van den; Loo, F.A.J. van de

    2009-01-01

    The promoter regions of genes that are differentially regulated in the synovial membrane during the course of rheumatoid arthritis (RA) represent attractive candidates for application in transcriptionally targeted gene therapy. In this study, we applied an unbiased computational approach to define

  9. IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis

    DEFF Research Database (Denmark)

    Luda, Katarzyna M.; Joeris, Thorsten; Persson, Emma K.

    2016-01-01

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 transcription-factor-dependent DCs had reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence...... dependent DCs in the maintenance of intestinal T cell homeostasis....

  10. Selective constraints in experimentally defined primate regulatory regions.

    Directory of Open Access Journals (Sweden)

    Daniel J Gaffney

    2008-08-01

    Full Text Available Changes in gene regulation may be important in evolution. However, the evolutionary properties of regulatory mutations are currently poorly understood. This is partly the result of an incomplete annotation of functional regulatory DNA in many species. For example, transcription factor binding sites (TFBSs, a major component of eukaryotic regulatory architecture, are typically short, degenerate, and therefore difficult to differentiate from randomly occurring, nonfunctional sequences. Furthermore, although sites such as TFBSs can be computationally predicted using evolutionary conservation as a criterion, estimates of the true level of selective constraint (defined as the fraction of strongly deleterious mutations occurring at a locus in regulatory regions will, by definition, be upwardly biased in datasets that are a priori evolutionarily conserved. Here we investigate the fitness effects of regulatory mutations using two complementary datasets of human TFBSs that are likely to be relatively free of ascertainment bias with respect to evolutionary conservation but, importantly, are supported by experimental data. The first is a collection of almost >2,100 human TFBSs drawn from the literature in the TRANSFAC database, and the second is derived from several recent high-throughput chromatin immunoprecipitation coupled with genomic microarray (ChIP-chip analyses. We also define a set of putative cis-regulatory modules (pCRMs by spatially clustering multiple TFBSs that regulate the same gene. We find that a relatively high proportion ( approximately 37% of mutations at TFBSs are strongly deleterious, similar to that at a 2-fold degenerate protein-coding site. However, constraint is significantly reduced in human and chimpanzee pCRMS and ChIP-chip sequences, relative to macaques. We estimate that the fraction of regulatory mutations that have been driven to fixation by positive selection in humans is not significantly different from zero. We also find

  11. Overlapping transcription structure of human cytomegalovirus

    Indian Academy of Sciences (India)

    Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR. At least three ...

  12. Overlapping transcription structure of human cytomegalovirus ...

    Indian Academy of Sciences (India)

    2013-01-21

    Jan 21, 2013 ... Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR.

  13. Transcription of Byzantine Chant - Problems, Possibilities, Formats

    DEFF Research Database (Denmark)

    Troelsgård, Christian

    2007-01-01

    Discusses the problems and possibilities for transsription of Byzantine chant on the basis of medieval musical manuscripts. A relatively 'neutral' style of transcription is suggested for musicological purposes.......Discusses the problems and possibilities for transsription of Byzantine chant on the basis of medieval musical manuscripts. A relatively 'neutral' style of transcription is suggested for musicological purposes....

  14. Regulation of transcription in hyperthermophilic archaea

    NARCIS (Netherlands)

    Brinkman, A.B.

    2002-01-01

    The aim of the research presented here was to insight in the mechanisms by which transcription in hyperthermophilic archaea is regulated. To accomplish this, we have aimed (I) to identify transcriptional regulatory proteins from hyperthermophilic archaea, (II) to characterize these

  15. 45 CFR 99.27 - Official transcript.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Official transcript. 99.27 Section 99.27 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROCEDURE FOR HEARINGS FOR THE CHILD CARE AND DEVELOPMENT FUND Hearing Procedures § 99.27 Official transcript. The Department will...

  16. RNA polymerase II collision interrupts convergent transcription

    DEFF Research Database (Denmark)

    Hobson, David J; Wei, Wu; Steinmetz, Lars M

    2012-01-01

    Antisense noncoding transcripts, genes-within-genes, and convergent gene pairs are prevalent among eukaryotes. The existence of such transcription units raises the question of what happens when RNA polymerase II (RNAPII) molecules collide head-to-head. Here we use a combination of biochemical...

  17. Transcription regulation by the Mediator complex.

    Science.gov (United States)

    Soutourina, Julie

    2018-04-01

    Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.

  18. Transcriptional Profiling of Egg Allergy and Relationship to Disease Phenotype.

    Directory of Open Access Journals (Sweden)

    Roman Kosoy

    Full Text Available Egg allergy is one of the most common food allergies of childhood. There is a lack of information on the immunologic basis of egg allergy beyond the role of IgE.To use transcriptional profiling as a novel approach to uncover immunologic processes associated with different phenotypes of egg allergy.Peripheral blood mononuclear cells (PBMCs were obtained from egg-allergic children who were defined as reactive (BER or tolerant (BET to baked egg, and from food allergic controls (AC who were egg non-allergic. PBMCs were stimulated with egg white protein. Gene transcription was measured by microarray after 24 h, and cytokine secretion by multiplex assay after 5 days.The transcriptional response of PBMCs to egg protein differed between BER and BET versus AC subjects. Compared to the AC group, the BER group displayed increased expression of genes associated with allergic inflammation as well as corresponding increased secretion of IL-5, IL-9 and TNF-α. A similar pattern was observed for the BET group. Further similarities in gene expression patterns between BER and BET groups, as well as some important differences, were revealed using a novel Immune Annotation resource developed for this project. This approach identified several novel processes not previously associated with egg allergy, including positive associations with TLR4-stimulated myeloid cells and activated NK cells, and negative associations with an induced Treg signature. Further pathway analysis of differentially expressed genes comparing BER to BET subjects showed significant enrichment of IFN-α and IFN-γ response genes, as well as genes associated with virally-infected DCs.Transcriptional profiling identified several novel pathways and processes that differed when comparing the response to egg allergen in BET, BER, and AC groups. We conclude that this approach is a useful hypothesis-generating mechanism to identify novel immune processes associated with allergy and tolerance to forms

  19. An empirical strategy to detect bacterial transcript structure from directional RNA-seq transcriptome data.

    Science.gov (United States)

    Wang, Yejun; MacKenzie, Keith D; White, Aaron P

    2015-05-07

    As sequencing costs are being lowered continuously, RNA-seq has gradually been adopted as the first choice for comparative transcriptome studies with bacteria. Unlike microarrays, RNA-seq can directly detect cDNA derived from mRNA transcripts at a single nucleotide resolution. Not only does this allow researchers to determine the absolute expression level of genes, but it also conveys information about transcript structure. Few automatic software tools have yet been established to investigate large-scale RNA-seq data for bacterial transcript structure analysis. In this study, 54 directional RNA-seq libraries from Salmonella serovar Typhimurium (S. Typhimurium) 14028s were examined for potential relationships between read mapping patterns and transcript structure. We developed an empirical method, combined with statistical tests, to automatically detect key transcript features, including transcriptional start sites (TSSs), transcriptional termination sites (TTSs) and operon organization. Using our method, we obtained 2,764 TSSs and 1,467 TTSs for 1331 and 844 different genes, respectively. Identification of TSSs facilitated further discrimination of 215 putative sigma 38 regulons and 863 potential sigma 70 regulons. Combining the TSSs and TTSs with intergenic distance and co-expression information, we comprehensively annotated the operon organization in S. Typhimurium 14028s. Our results show that directional RNA-seq can be used to detect transcriptional borders at an acceptable resolution of ±10-20 nucleotides. Technical limitations of the RNA-seq procedure may prevent single nucleotide resolution. The automatic transcript border detection methods, statistical models and operon organization pipeline that we have described could be widely applied to RNA-seq studies in other bacteria. Furthermore, the TSSs, TTSs, operons, promoters and unstranslated regions that we have defined for S. Typhimurium 14028s may constitute valuable resources that can be used for

  20. MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples.

    Science.gov (United States)

    Behr, Jonas; Kahles, André; Zhong, Yi; Sreedharan, Vipin T; Drewe, Philipp; Rätsch, Gunnar

    2013-10-15

    High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license.

  1. Induction of pluripotency by defined factors

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Keisuke, E-mail: okita@cira.kyoto-u.ac.jp [Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507 (Japan); Yamanaka, Shinya [Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507 (Japan); Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507 (Japan); Yamanaka iPS Cell Special Project, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan); Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158 (United States)

    2010-10-01

    Somatic cells can be reprogrammed into pluripotent stem cells by introducing a combination of several transcription factors. The induced pluripotent stem (iPS) cells from a patient's somatic cells could be useful source of cells for drug discovery and cell transplantation therapies. However, most human iPS cells are made by viral vectors, such as retrovirus and lentivirus, which integrate the reprogramming factors into host genomes and may increase the risk of tumor formation. Studies of the mechanisms underlying the reprogramming and establishment of non-integration methods contribute evidence to resolve the safety concerns associated with iPS cells. On the other hand, patient-specific iPS cells have already been established and used for recapitulating disease pathology.

  2. Induction of pluripotency by defined factors

    International Nuclear Information System (INIS)

    Okita, Keisuke; Yamanaka, Shinya

    2010-01-01

    Somatic cells can be reprogrammed into pluripotent stem cells by introducing a combination of several transcription factors. The induced pluripotent stem (iPS) cells from a patient's somatic cells could be useful source of cells for drug discovery and cell transplantation therapies. However, most human iPS cells are made by viral vectors, such as retrovirus and lentivirus, which integrate the reprogramming factors into host genomes and may increase the risk of tumor formation. Studies of the mechanisms underlying the reprogramming and establishment of non-integration methods contribute evidence to resolve the safety concerns associated with iPS cells. On the other hand, patient-specific iPS cells have already been established and used for recapitulating disease pathology.

  3. Hanford defined waste model limitations and improvements

    International Nuclear Information System (INIS)

    HARMSEN, R.W.

    1999-01-01

    Recommendation 93-5 Implementation Plan, Milestone 5,6.3.1.i requires issuance of this report which addresses ''updates to the tank contents model''. This report summarizes the review of the Hanford Defined Waste, Revision 4, model limitations and provides conclusions and recommendations for potential updates to the model

  4. Parallel Education and Defining the Fourth Sector.

    Science.gov (United States)

    Chessell, Diana

    1996-01-01

    Parallel to the primary, secondary, postsecondary, and adult/community education sectors is education not associated with formal programs--learning in arts and cultural sites. The emergence of cultural and educational tourism is an opportunity for adult/community education to define itself by extending lifelong learning opportunities into parallel…

  5. Bruxism defined and graded: an international consensus

    NARCIS (Netherlands)

    Lobbezoo, F.; Ahlberg, J.; Glaros, A.G.; Kato, T.; Koyano, K.; Lavigne, G.J.; de Leeuw, R.; Manfredini, D.; Svensson, P.; Winocur, E.

    2013-01-01

    To date, there is no consensus about the definition and diagnostic grading of bruxism. A written consensus discussion was held among an international group of bruxism experts as to formulate a definition of bruxism and to suggest a grading system for its operationalisation. The expert group defined

  6. 7 CFR 28.950 - Terms defined.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing..., TESTING, AND STANDARDS Cotton Fiber and Processing Tests Definitions § 28.950 Terms defined. As used... Agricultural Marketing Service of the U.S. Department of Agriculture. (c) Administrator. The Administrator of...

  7. 47 CFR 54.401 - Lifeline defined.

    Science.gov (United States)

    2010-10-01

    ... SERVICE Universal Service Support for Low-Income Consumers § 54.401 Lifeline defined. (a) As used in this subpart, Lifeline means a retail local service offering: (1) That is available only to qualifying low-income consumers; (2) For which qualifying low-income consumers pay reduced charges as a result of...

  8. How Should Energy Be Defined throughout Schooling?

    Science.gov (United States)

    Bächtold, Manuel

    2018-01-01

    The question of how to teach energy has been renewed by recent studies focusing on the learning and teaching progressions for this concept. In this context, one question has been, for the most part, overlooked: how should energy be defined throughout schooling? This paper addresses this question in three steps. We first identify and discuss two…

  9. Big data and software defined networks

    CERN Document Server

    Taheri, Javid

    2018-01-01

    Big Data Analytics and Software Defined Networking (SDN) are helping to drive the management of data usage of the extraordinary increase of computer processing power provided by Cloud Data Centres (CDCs). This new book investigates areas where Big-Data and SDN can help each other in delivering more efficient services.

  10. Delta Semantics Defined By Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kyng, Morten; Madsen, Ole Lehrmann

    and the possibility of using predicates to specify state changes. In this paper a formal semantics for Delta is defined and analysed using Petri nets. Petri nets was chosen because the ideas behind Petri nets and Delta concide on several points. A number of proposals for changes in Delta, which resulted from...

  11. Towards a Southern African English Defining Vocabulary

    African Journals Online (AJOL)

    user

    of parameters, such as avoiding synonyms and antonyms, to determine which words are necessary to write definitions in a concise and simple way. It has been found that existing defining vocabularies lack certain words that would make definitions more accessible to southern African learners, and therefore there is a need ...

  12. Spaces defined by the Paley function

    Energy Technology Data Exchange (ETDEWEB)

    Astashkin, S V [Samara State University, Samara (Russian Federation); Semenov, E M [Voronezh State University, Faculty of Mathematics, Voronezh (Russian Federation)

    2013-07-31

    The paper is concerned with Haar and Rademacher series in symmetric spaces, and also with the properties of spaces defined by the Paley function. In particular, the symmetric hull of the space of functions with uniformly bounded Paley function is found. Bibliography: 27 titles.

  13. Pointwise extensions of GSOS-defined operations

    NARCIS (Netherlands)

    Hansen, H.H.; Klin, B.

    2011-01-01

    Final coalgebras capture system behaviours such as streams, infinite trees and processes. Algebraic operations on a final coalgebra can be defined by distributive laws (of a syntax functor S over a behaviour functor F). Such distributive laws correspond to abstract specification formats. One such

  14. Pointwise Extensions of GSOS-Defined Operations

    NARCIS (Netherlands)

    H.H. Hansen (Helle); B. Klin

    2011-01-01

    textabstractFinal coalgebras capture system behaviours such as streams, infinite trees and processes. Algebraic operations on a final coalgebra can be defined by distributive laws (of a syntax functor $\\FSig$ over a behaviour functor $F$). Such distributive laws correspond to abstract specification

  15. Defining Virtual Reality: Dimensions Determining Telepresence.

    Science.gov (United States)

    Steuer, Jonathan

    1992-01-01

    Defines virtual reality as a particular type of experience (in terms of "presence" and "telepresence") rather than as a collection of hardware. Maintains that media technologies can be classified and studied in terms of vividness and interactivity, two attributes on which virtual reality ranks very high. (SR)

  16. A self-defining hierarchical data system

    Science.gov (United States)

    Bailey, J.

    1992-01-01

    The Self-Defining Data System (SDS) is a system which allows the creation of self-defining hierarchical data structures in a form which allows the data to be moved between different machine architectures. Because the structures are self-defining they can be used for communication between independent modules in a distributed system. Unlike disk-based hierarchical data systems such as Starlink's HDS, SDS works entirely in memory and is very fast. Data structures are created and manipulated as internal dynamic structures in memory managed by SDS itself. A structure may then be exported into a caller supplied memory buffer in a defined external format. This structure can be written as a file or sent as a message to another machine. It remains static in structure until it is reimported into SDS. SDS is written in portable C and has been run on a number of different machine architectures. Structures are portable between machines with SDS looking after conversion of byte order, floating point format, and alignment. A Fortran callable version is also available for some machines.

  17. Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage

    Directory of Open Access Journals (Sweden)

    Ben W. Dulken

    2017-01-01

    Full Text Available Neural stem cells (NSCs in the adult mammalian brain serve as a reservoir for the generation of new neurons, oligodendrocytes, and astrocytes. Here, we use single-cell RNA sequencing to characterize adult NSC populations and examine the molecular identities and heterogeneity of in vivo NSC populations. We find that cells in the NSC lineage exist on a continuum through the processes of activation and differentiation. Interestingly, rare intermediate states with distinct molecular profiles can be identified and experimentally validated, and our analysis identifies putative surface markers and key intracellular regulators for these subpopulations of NSCs. Finally, using the power of single-cell profiling, we conduct a meta-analysis to compare in vivo NSCs and in vitro cultures, distinct fluorescence-activated cell sorting strategies, and different neurogenic niches. These data provide a resource for the field and contribute to an integrative understanding of the adult NSC lineage.

  18. Colon cancer associated transcripts in human cancers.

    Science.gov (United States)

    Chen, Yincong; Xie, Haibiao; Gao, Qunjun; Zhan, Hengji; Xiao, Huizhong; Zou, Yifan; Zhang, Fuyou; Liu, Yuchen; Li, Jianfa

    2017-10-01

    Long non-coding RNAs serve as important regulators in complicated cellular activities, including cell differentiation, proliferation and death. Dysregulation of long non-coding RNAs occurs in the formation and progression of cancers. The family of colon cancer associated transcripts, long non-coding RNAs colon cancer associated transcript-1 and colon cancer associated transcript-2 are known as oncogenes involved in various cancers. Colon cancer associated transcript-1 is a novel lncRNA located in 8q24.2, and colon cancer associated transcript-2 maps to the 8q24.21 region encompassing rs6983267. Colon cancer associated transcripts have close associations with clinical characteristics, such as lymph node metastasis, high TNM stage and short overall survival. Knockdown of them can reverse the malignant phenotypes of cancer cells, including proliferation, migration, invasion and apoptosis. Moreover, they can increase the expression level of c-MYC and oncogenic microRNAs via activating a series of complex mechanisms. In brief, the family of colon cancer associated transcripts may serve as potential biomarkers or therapeutic targets for human cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Transcriptional mapping of rabies virus in vivo

    International Nuclear Information System (INIS)

    Flamand, A.; Delagneau, J.F.

    1978-01-01

    Synthesis of the proteins of rabies virus was studied in hamster cell infected with uv-irradiated virus. The uv target size of genes L, N, M 1 , and M 2 was measured during primary transcription. Except for N, the target size of the remaining genes was considerably larger than that of their physical sizes. The data fit the hypothesis that four genes occupy a single transcriptional unit and that transcription of rabies virus proceeds in the order N, M 1 , M 2 , and L

  20. CHD chromatin remodelers and the transcription cycle

    Science.gov (United States)

    Murawska, Magdalena

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by “opening” or “closing” chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but also are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts. PMID:22223048

  1. NAC transcription factors: structurally distinct, functionally diverse

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi A; Leggio, Leila Lo

    2005-01-01

    level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has......NAC proteins constitute one of the largest families of plant-specific transcription factors, and the family is present in a wide range of land plants. Here, we summarize the biological and molecular functions of the NAC family, paying particular attention to the intricate regulation of NAC protein...

  2. The transcription factor Mlc promotes Vibrio cholerae biofilm formation through repression of phosphotransferase system components.

    Science.gov (United States)

    Pickering, Bradley S; Lopilato, Jane E; Smith, Daniel R; Watnick, Paula I

    2014-07-01

    The phosphoenol phosphotransferase system (PTS) is a multicomponent signal transduction cascade that regulates diverse aspects of bacterial cellular physiology in response to the availability of high-energy sugars in the environment. Many PTS components are repressed at the transcriptional level when the substrates they transport are not available. In Escherichia coli, the transcription factor Mlc (for makes large colonies) represses transcription of the genes encoding enzyme I (EI), histidine protein (HPr), and the glucose-specific enzyme IIBC (EIIBC(Glc)) in defined media that lack PTS substrates. When glucose is present, the unphosphorylated form of EIIBC(Glc) sequesters Mlc to the cell membrane, preventing its interaction with DNA. Very little is known about Vibrio cholerae Mlc. We found that V. cholerae Mlc activates biofilm formation in LB broth but not in defined medium supplemented with either pyruvate or glucose. Therefore, we questioned whether V. cholerae Mlc functions differently than E. coli Mlc. Here we have shown that, like E. coli Mlc, V. cholerae Mlc represses transcription of PTS components in both defined medium and LB broth and that E. coli Mlc is able to rescue the biofilm defect of a V. cholerae Δmlc mutant. Furthermore, we provide evidence that Mlc indirectly activates transcription of the vps genes by repressing expression of EI. Because activation of the vps genes by Mlc occurs under only a subset of the conditions in which repression of PTS components is observed, we conclude that additional inputs present in LB broth are required for activation of vps gene transcription by Mlc. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Rushton, Paul J

    2014-02-01

    Drought is one of the major challenges affecting crop productivity and yield. However, water stress responses are notoriously multigenic and quantitative with strong environmental effects on phenotypes. It is also clear that water stress often does not occur alone under field conditions but rather in conjunction with other abiotic stresses such as high temperature and high light intensities. A multidisciplinary approach with successful integration of a whole range of -omics technologies will not only define the system, but also provide new gene targets for both transgenic approaches and marker-assisted selection. Transcription factors are major players in water stress signaling and some constitute major hubs in the signaling webs. The main transcription factors in this network include MYB, bHLH, bZIP, ERF, NAC, and WRKY transcription factors. The role of WRKY transcription factors in abiotic stress signaling networks is just becoming apparent and systems biology approaches are starting to define their places in the signaling network. Using systems biology approaches, there are now many transcriptomic analyses and promoter analyses that concern WRKY transcription factors. In addition, reports on nuclear proteomics have identified WRKY proteins that are up-regulated at the protein level by water stress. Interactomics has started to identify different classes of WRKY-interacting proteins. What are often lacking are connections between metabolomics, WRKY transcription factors, promoters, biosynthetic pathways, fluxes and downstream responses. As more levels of the system are characterized, a more detailed understanding of the roles of WRKY transcription factors in drought responses in crops will be obtained.

  4. Defining Tiger Parenting in Chinese Americans.

    Science.gov (United States)

    Kim, Su Yeong

    2013-09-01

    "Tiger" parenting, as described by Amy Chua [2011], has instigated scholarly discourse on this phenomenon and its possible effects on families. Our eight-year longitudinal study, published in the Asian American Journal of Psychology [Kim, Wang, Orozco-Lapray, Shen, & Murtuza, 2013b], demonstrates that tiger parenting is not a common parenting profile in a sample of 444 Chinese American families. Tiger parenting also does not relate to superior academic performance in children. In fact, the best developmental outcomes were found among children of supportive parents. We examine the complexities around defining tiger parenting by reviewing classical literature on parenting styles and scholarship on Asian American parenting, along with Amy Chua's own description of her parenting method, to develop, define, and categorize variability in parenting in a sample of Chinese American families. We also provide evidence that supportive parenting is important for the optimal development of Chinese American adolescents.

  5. Defining enthesitis in spondyloarthritis by ultrasound

    DEFF Research Database (Denmark)

    Terslev, Lene; Naredo, E; Iagnocco, A

    2014-01-01

    Objective: To standardize ultrasound (US) in enthesitis. Methods: An Initial Delphi exercise was undertaken to define US detected enthesitis and its core components. These definitions were subsequently tested on static images taken from Spondyloarthritis (SpA) patients in order to evaluate...... elementary component. On static images the intra-observer reliability showed a high degree of variability for the detection of elementary lesions with kappa coefficients ranging from 0.14 - 1. The inter-observer kappa value was variable with the lowest kappa for enthesophytes (0.24) and the best for Doppler...... activity at the enthesis (0.63). Conclusion: This is the first consensus based definition of US enthesitis and its elementary components and the first step performed to ensure a higher degree of homogeneity and comparability of results between studies and in daily clinical work. Defining Enthesitis...

  6. Control of System with Defined Risk Level

    Directory of Open Access Journals (Sweden)

    Pavol Tomasov

    2002-01-01

    Full Text Available In the following paper the basic requirements for system control with defined risk level is presented. The paper should be an introduction to describe of theoretical apparatus, which was created during some years of research work in the Department of information and safety systems in this area. It a modification or creation of new parts of Information theory, System theory, and Control theory means. This parts are necessary for the analysis and synthesis tasks in the systems where dominant attribute of control is defined risk level. The basic problem is the creation of protect mechanism again the threats from inside and from controlled system environs. For each risk reduction mechanism is needed some redundancy which should be into control algorithm to put by exactly determined way.

  7. FINANCIAL ACCOUNTING QUALITY AND ITS DEFINING CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Andra M. ACHIM

    2014-11-01

    Full Text Available The importance ofhigh-quality financial statements is highlighted by the main standard-setting institutions activating in the field of accounting and reporting. These have issued Conceptual Frameworks which state and describe the qualitative characteristics of accounting information. In this qualitative study, the research methodology consists of reviewing the literature related to the definition of accounting quality and striving for understanding how it can be explained. The main objective of the study is to identify the characteristics information should possess in order to be of high quality. These characteristics also contribute to the way of defining financial accounting quality. The main conclusions that arise from this research are represented by the facts that indeed financial accounting quality cannot be uniquely defined and that financial information is of good quality when it enhances the characteristics incorporated in the conceptual frameworks issued by both International Accounting Standards Board and Financial Accounting Standards Board.

  8. Exploring self-defining memories in schizophrenia.

    Science.gov (United States)

    Raffard, Stéphane; D'Argembeau, Arnaud; Lardi, Claudia; Bayard, Sophie; Boulenger, Jean-Philippe; Van Der Linden, Martial

    2009-01-01

    Previous studies have shown that patients with schizophrenia are impaired in recalling specific events from their personal past. However, the relationship between autobiographical memory impairments and disturbance of the sense of identity in schizophrenia has not been investigated in detail. In this study the authors investigated schizophrenic patients' ability to recall self-defining memories; that is, memories that play an important role in building and maintaining the self-concept. Results showed that patients recalled as many specific self-defining memories as healthy participants. However, patients with schizophrenia exhibited an abnormal reminiscence bump and reported different types of thematic content (i.e., they recalled less memories about past achievements and more memories regarding hospitalisation and stigmatisation of illness). Furthermore, the findings suggest that impairments in extracting meaning from personal memories could represent a core disturbance of autobiographical memory in patients with schizophrenia.

  9. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P; Khan, Sohail R; Futcher, Bruce; Leatherwood, Janet K

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  10. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  11. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  12. Improving network management with Software Defined Networking

    International Nuclear Information System (INIS)

    Dzhunev, Pavel

    2013-01-01

    Software-defined networking (SDN) is developed as an alternative to closed networks in centers for data processing by providing a means to separate the control layer data layer switches, and routers. SDN introduces new possibilities for network management and configuration methods. In this article, we identify problems with the current state-of-the-art network configuration and management mechanisms and introduce mechanisms to improve various aspects of network management

  13. Stateless multicast switching in software defined networks

    OpenAIRE

    Reed, Martin J.; Al-Naday, Mays; Thomos, Nikolaos; Trossen, Dirk; Petropoulos, George; Spirou, Spiros

    2016-01-01

    Multicast data delivery can significantly reduce traffic in operators' networks, but has been limited in deployment due to concerns such as the scalability of state management. This paper shows how multicast can be implemented in contemporary software defined networking (SDN) switches, with less state than existing unicast switching strategies, by utilising a Bloom Filter (BF) based switching technique. Furthermore, the proposed mechanism uses only proactive rule insertion, and thus, is not l...

  14. Defining and Distinguishing Traditional and Religious Terrorism

    OpenAIRE

    Gregg, Heather S.

    2014-01-01

    The article of record may be found at: http://dx.doi.org/10.1080/23296151.2016.1239978 thus offering few if any policy options for counterterrorism measures. This assumption about religious terrorism stems from two challenges in the literature: disproportionate attention to apocalyptic terrorism, and a lack of distinction between religious terrorism and its secular counterpart. This article, therefore, aims to do four things: define and differentiate religiously motivated terrorism from tr...

  15. Defining Trust Using Expected Utility Theory

    OpenAIRE

    Arai, Kazuhiro

    2009-01-01

    Trust has been discussed in many social sciences including economics, psychology, and sociology. However, there is no widely accepted definition of trust. Inparticular, there is no definition that can be used for economic analysis. This paper regards trust as expectation and defines it using expected utility theory together with concepts such as betrayal premium. In doing so, it rejects the widely accepted black-and-white view that (un) trustworthy people are always (un)trustworthy. This pape...

  16. On Undefined and Meaningless in Lambda Definability

    OpenAIRE

    de Vries, Fer-Jan

    2016-01-01

    We distinguish between undefined terms as used in lambda definability of partial recursive functions and meaningless terms as used in infinite lambda calculus for the infinitary terms models that generalise the Bohm model. While there are uncountable many known sets of meaningless terms, there are four known sets of undefined terms. Two of these four are sets of meaningless terms. In this paper we first present set of sufficient conditions for a set of lambda terms to se...

  17. New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III.

    Science.gov (United States)

    Lama, Lodoe; Seidl, Christine I; Ryan, Kevin

    2014-01-01

    Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3' end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells.

  18. An Annotation Agnostic Algorithm for Detecting Nascent RNA Transcripts in GRO-Seq.

    Science.gov (United States)

    Azofeifa, Joseph G; Allen, Mary A; Lladser, Manuel E; Dowell, Robin D

    2017-01-01

    We present a fast and simple algorithm to detect nascent RNA transcription in global nuclear run-on sequencing (GRO-seq). GRO-seq is a relatively new protocol that captures nascent transcripts from actively engaged polymerase, providing a direct read-out on bona fide transcription. Most traditional assays, such as RNA-seq, measure steady state RNA levels which are affected by transcription, post-transcriptional processing, and RNA stability. GRO-seq data, however, presents unique analysis challenges that are only beginning to be addressed. Here, we describe a new algorithm, Fast Read Stitcher (FStitch), that takes advantage of two popular machine-learning techniques, hidden Markov models and logistic regression, to classify which regions of the genome are transcribed. Given a small user-defined training set, our algorithm is accurate, robust to varying read depth, annotation agnostic, and fast. Analysis of GRO-seq data without a priori need for annotation uncovers surprising new insights into several aspects of the transcription process.

  19. In silico and wet lab approaches to study transcriptional regulation

    NARCIS (Netherlands)

    Hestand, Matthew Scott

    2010-01-01

    Gene expression is a complicated process with multiple types of regulation, including binding of proteins termed transcription factors. This thesis looks at transcription factors and transcription factor binding site discovery through computational predictions and wet lab work to better elucidate

  20. How Should Energy Be Defined Throughout Schooling?

    Science.gov (United States)

    Bächtold, Manuel

    2017-02-01

    The question of how to teach energy has been renewed by recent studies focusing on the learning and teaching progressions for this concept. In this context, one question has been, for the most part, overlooked: how should energy be defined throughout schooling? This paper addresses this question in three steps. We first identify and discuss two main approaches in physics concerning the definition of energy, one claiming there is no satisfactory definition and taking conservation as a fundamental property, and the other based on Rankine's definition of energy as the capacity of a system to produce changes. We then present a study concerning how energy is actually defined throughout schooling in the case of France by analyzing national programs, physics textbooks, and the answers of teachers to a questionnaire. This study brings to light a consistency problem in the way energy is defined across school years: in primary school, an adapted version of Rankine's definition is introduced and conservation is ignored; in high school, conservation is introduced and Rankine's definition is ignored. Finally, we address this consistency problem by discussing possible teaching progressions. We argue in favor of the use of Rankine's definition throughout schooling: at primary school, it is a possible substitute to students' erroneous conceptions; at secondary school, it might help students become aware of the unifying role of energy and thereby overcome the compartmentalization problem.

  1. Defining functional distances over Gene Ontology

    Directory of Open Access Journals (Sweden)

    del Pozo Angela

    2008-01-01

    Full Text Available Abstract Background A fundamental problem when trying to define the functional relationships between proteins is the difficulty in quantifying functional similarities, even when well-structured ontologies exist regarding the activity of proteins (i.e. 'gene ontology' -GO-. However, functional metrics can overcome the problems in the comparing and evaluating functional assignments and predictions. As a reference of proximity, previous approaches to compare GO terms considered linkage in terms of ontology weighted by a probability distribution that balances the non-uniform 'richness' of different parts of the Direct Acyclic Graph. Here, we have followed a different approach to quantify functional similarities between GO terms. Results We propose a new method to derive 'functional distances' between GO terms that is based on the simultaneous occurrence of terms in the same set of Interpro entries, instead of relying on the structure of the GO. The coincidence of GO terms reveals natural biological links between the GO functions and defines a distance model Df which fulfils the properties of a Metric Space. The distances obtained in this way can be represented as a hierarchical 'Functional Tree'. Conclusion The method proposed provides a new definition of distance that enables the similarity between GO terms to be quantified. Additionally, the 'Functional Tree' defines groups with biological meaning enhancing its utility for protein function comparison and prediction. Finally, this approach could be for function-based protein searches in databases, and for analysing the gene clusters produced by DNA array experiments.

  2. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  3. Battles and hijacks: Noncoding transcription in plants

    KAUST Repository

    Ariel, Federico; Romero-Barrios, Natali; Jé gu, Teddy; Benhamed, Moussa; Crespi, Martin

    2015-01-01

    splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates

  4. Salmonella Typhimurium transcription profiles in space flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Salmonella transcription profiles were obtained from samples flown on space shuttle mission STS-115 and compared to profiles from Salmonella grown under identical...

  5. Transcript for Understanding Medical Words: A Tutorial

    Science.gov (United States)

    ... medlineplus.gov/medicalwordstranscript.html Transcript for Understanding Medical Words: A Tutorial To use the sharing features on ... get to what those mean in a minute. Word Roots Word Roots. Let's begin with body parts. ...

  6. A unified architecture of transcriptional regulatory elements

    DEFF Research Database (Denmark)

    Andersson, Robin; Sandelin, Albin Gustav; Danko, Charles G.

    2015-01-01

    Gene expression is precisely controlled in time and space through the integration of signals that act at gene promoters and gene-distal enhancers. Classically, promoters and enhancers are considered separate classes of regulatory elements, often distinguished by histone modifications. However...... and enhancers are considered a single class of functional element, with a unified architecture for transcription initiation. The context of interacting regulatory elements and the surrounding sequences determine local transcriptional output as well as the enhancer and promoter activities of individual elements....

  7. Transcriptional Waves in the Yeast Cell Cycle

    OpenAIRE

    Oliva, Anna; Rosebrock, Adam; Ferrezuelo, Francisco; Pyne, Saumyadipta; Chen, Haiying; Skiena, Steve; Futcher, Bruce; Leatherwood, Janet

    2005-01-01

    Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillat...

  8. Rapid Induction of Cerebral Organoids From Human Induced Pluripotent Stem Cells Using a Chemically Defined Hydrogel and Defined Cell Culture Medium.

    Science.gov (United States)

    Lindborg, Beth A; Brekke, John H; Vegoe, Amanda L; Ulrich, Connor B; Haider, Kerri T; Subramaniam, Sandhya; Venhuizen, Scott L; Eide, Cindy R; Orchard, Paul J; Chen, Weili; Wang, Qi; Pelaez, Francisco; Scott, Carolyn M; Kokkoli, Efrosini; Keirstead, Susan A; Dutton, James R; Tolar, Jakub; O'Brien, Timothy D

    2016-07-01

    Tissue organoids are a promising technology that may accelerate development of the societal and NIH mandate for precision medicine. Here we describe a robust and simple method for generating cerebral organoids (cOrgs) from human pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. By using no additional neural induction components, cOrgs appeared on the hydrogel surface within 10-14 days, and under static culture conditions, they attained sizes up to 3 mm in greatest dimension by day 28. Histologically, the organoids showed neural rosette and neural tube-like structures and evidence of early corticogenesis. Immunostaining and quantitative reverse-transcription polymerase chain reaction demonstrated protein and gene expression representative of forebrain, midbrain, and hindbrain development. Physiologic studies showed responses to glutamate and depolarization in many cells, consistent with neural behavior. The method of cerebral organoid generation described here facilitates access to this technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. Tissue organoids are a promising technology with many potential applications, such as pharmaceutical screens and development of in vitro disease models, particularly for human polygenic conditions where animal models are insufficient. This work describes a robust and simple method for generating cerebral organoids from human induced pluripotent stem cells by using a chemically defined hydrogel material and chemically defined culture medium. This method, by virtue of its simplicity and use of defined materials, greatly facilitates access to cerebral organoid technology, enables scalable applications, and provides a potential pathway to translational applications where defined components are desirable. ©AlphaMed Press.

  9. TAF(II)250: a transcription toolbox.

    Science.gov (United States)

    Wassarman, D A; Sauer, F

    2001-08-01

    Activation of RNA-polymerase-II-dependent transcription involves conversion of signals provided by gene-specific activator proteins into the synthesis of messenger RNA. This conversion requires dynamic structural changes in chromatin and assembly of general transcription factors (GTFs) and RNA polymerase II at core promoter sequence elements surrounding the transcription start site of genes. One hallmark of transcriptional activation is the interaction of DNA-bound activators with coactivators such as the TATA-box binding protein (TBP)-associated factors (TAF(II)s) within the GTF TFIID. TAF(II)250 possesses a variety of activities that are likely to contribute to the initial steps of RNA polymerase II transcription. TAF(II)250 is a scaffold for assembly of other TAF(II)s and TBP into TFIID, TAF(II)250 binds activators to recruit TFIID to particular promoters, TAF(II)250 regulates binding of TBP to DNA, TAF(II)250 binds core promoter initiator elements, TAF(II)250 binds acetylated lysine residues in core histones, and TAF(II)250 possesses protein kinase, ubiquitin-activating/conjugating and acetylase activities that modify histones and GTFs. We speculate that these activities achieve two goals--(1) they aid in positioning and stabilizing TFIID at particular promoters, and (2) they alter chromatin structure at the promoter to allow assembly of GTFs--and we propose a model for how TAF(II)250 converts activation signals into active transcription.

  10. A biophysical model for transcription factories

    International Nuclear Information System (INIS)

    Canals-Hamann, Ana Z; Neves, Ricardo Pires das; Reittie, Joyce E; Iñiguez, Carlos; Soneji, Shamit; Enver, Tariq; Buckle, Veronica J; Iborra, Francisco J

    2013-01-01

    Transcription factories are nuclear domains where gene transcription takes place although the molecular basis for their formation and maintenance are unknown. In this study, we explored how the properties of chromatin as a polymer may contribute to the structure of transcription factories. We found that transcriptional active chromatin contains modifications like histone H4 acetylated at Lysine 16 (H4K16ac). Single fibre analysis showed that this modification spans the entire body of the gene. Furthermore, H4K16ac genes cluster in regions up to 500 Kb alternating active and inactive chromatin. The introduction of H4K16ac in chromatin induces stiffness in the chromatin fibre. The result of this change in flexibility is that chromatin could behave like a multi-block copolymer with repetitions of stiff-flexible (active-inactive chromatin) components. Copolymers with such structure self-organize through spontaneous phase separation into microdomains. Consistent with such model H4K16ac chromatin form foci that associates with nascent transcripts. We propose that transcription factories are the result of the spontaneous concentration of H4K16ac chromatin that are in proximity, mainly in cis

  11. Intrinsic terminators in Mycoplasma hyopneumoniae transcription.

    Science.gov (United States)

    Fritsch, Tiago Ebert; Siqueira, Franciele Maboni; Schrank, Irene Silveira

    2015-04-08

    Mycoplasma hyopneumoniae, an important pathogen of swine, exhibits a low guanine and cytosine (GC) content genome. M. hyopneumoniae genome is organised in long transcriptional units and promoter sequences have been mapped upstream of all transcription units. These analysis provided insights into the gene organisation and transcription initiation at the genome scale. However, the presence of transcriptional terminator sequences in the M. hyopneumoniae genome is poorly understood. In silico analyses demonstrated the presence of putative terminators in 82% of the 33 monocistronic units (mCs) and in 74% of the 116 polycistronic units (pCs) considering different classes of terminators. The functional activity of 23 intrinsic terminators was confirmed by RT-PCR and qPCR. Analysis of all terminators found by three software algorithms, combined with experimental results, allowed us to propose a pattern of RNA hairpin formation during the termination process and to predict the location of terminators in the M. hyopneumoniae genome sequence. The stem-loop structures of intrinsic terminators of mycoplasma diverge from the pattern of terminators found in other bacteria due the low content of guanine and cytosine. In M. hyopneumoniae, transcription can end after a transcriptional unit and before its terminator sequence and can also continue past the terminator sequence with RNA polymerases gradually releasing the RNA.

  12. Multiple RNAs from the mouse carboxypeptidase M locus: functional RNAs or transcription noise?

    Directory of Open Access Journals (Sweden)

    Castilho Beatriz A

    2009-02-01

    Full Text Available Abstract Background A major effort of the scientific community has been to obtain complete pictures of the genomes of many organisms. This has been accomplished mainly by annotation of structural and functional elements in the genome sequence, a process that has been centred in the gene concept and, as a consequence, biased toward protein coding sequences. Recently, the explosion of transcriptome data generated and the discovery of many functional non-protein coding RNAs have painted a more detailed and complex scenario for the genome. Here we analyzed the mouse carboxypeptidase M locus in this broader perspective in order to define the mouse CPM gene structure and evaluate the existence of other transcripts from the same genomic region. Results Bioinformatic analysis of nucleotide sequences that map to the mouse CPM locus suggests that, in addition to the mouse CPM mRNA, it expresses at least 33 different transcripts, many of which seem to be non-coding RNAs. We randomly chose to evaluate experimentally four of these extra transcripts. They are expressed in a tissue specific manner, indicating that they are not artefacts or transcriptional noise. Furthermore, one of these four extra transcripts shows expression patterns that differed considerably from the other ones and from the mouse CPM gene, suggesting that there may be more than one transcriptional unit in this locus. In addition, we have confirmed the mouse CPM gene RefSeq sequence by rapid amplification of cDNA ends (RACE and directional cloning. Conclusion This study supports the recent view that the majority of the genome is transcribed and that many of the resulting transcripts seem to be non-coding RNAs from introns of genes or from independent transcriptional units. Although some of the information on the transcriptome of many organisms may actually be artefacts or transcriptional noise, we argue that it can be experimentally evaluated and used to find and define biological

  13. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  14. Defining Multiple Chronic Conditions for Quality Measurement.

    Science.gov (United States)

    Drye, Elizabeth E; Altaf, Faseeha K; Lipska, Kasia J; Spatz, Erica S; Montague, Julia A; Bao, Haikun; Parzynski, Craig S; Ross, Joseph S; Bernheim, Susannah M; Krumholz, Harlan M; Lin, Zhenqiu

    2018-02-01

    Patients with multiple chronic conditions (MCCs) are a critical but undefined group for quality measurement. We present a generally applicable systematic approach to defining an MCC cohort of Medicare fee-for-service beneficiaries that we developed for a national quality measure, risk-standardized rates of unplanned admissions for Accountable Care Organizations. To define the MCC cohort we: (1) identified potential chronic conditions; (2) set criteria for cohort conditions based on MCC framework and measure concept; (3) applied the criteria informed by empirical analysis, experts, and the public; (4) described "broader" and "narrower" cohorts; and (5) selected final cohort with stakeholder input. Subjects were patients with chronic conditions. Participants included 21.8 million Medicare fee-for-service beneficiaries in 2012 aged 65 years and above with ≥1 of 27 Medicare Chronic Condition Warehouse condition(s). In total, 10 chronic conditions were identified based on our criteria; 8 of these 10 were associated with notably increased admission risk when co-occurring. A broader cohort (2+ of the 8 conditions) included 4.9 million beneficiaries (23% of total cohort) with an admission rate of 70 per 100 person-years. It captured 53% of total admissions. The narrower cohort (3+ conditions) had 2.2 million beneficiaries (10%) with 100 admissions per 100 person-years and captured 32% of admissions. Most stakeholders viewed the broader cohort as best aligned with the measure concept. By systematically narrowing chronic conditions to those most relevant to the outcome and incorporating stakeholder input, we defined an MCC admission measure cohort supported by stakeholders. This approach can be used as a model for other MCC outcome measures.

  15. How do pediatric anesthesiologists define intraoperative hypotension?

    Science.gov (United States)

    Nafiu, Olubukola O; Voepel-Lewis, Terri; Morris, Michelle; Chimbira, Wilson T; Malviya, Shobha; Reynolds, Paul I; Tremper, Kevin K

    2009-11-01

    Although blood pressure (BP) monitoring is a recommended standard of care by the ASA, and pediatric anesthesiologists routinely monitor the BP of their patients and when appropriate treat deviations from 'normal', there is no robust definition of hypotension in any of the pediatric anesthesia texts or journals. Consequently, what constitutes hypotension in pediatric anesthesia is currently unknown. We designed a questionnaire-based survey of pediatric anesthesiologists to determine the BP ranges and thresholds used to define intraoperative hypotension (IOH). Members of the Society of Pediatric Anesthesia (SPA) and the Association of Paediatric Anaesthetists (APA) of Great Britain and Ireland were contacted through e-mail to participate in this survey. We asked a few demographic questions and five questions about specific definitions of hypotension for different age groups of patients undergoing inguinal herniorraphy, a common pediatric surgical procedure. The overall response rate was 56% (483/860), of which 76% were SPA members. Majority of the respondents (72%) work in academic institutions, while 8.9% work in institutions with fewer than 1000 annual pediatric surgical caseload. About 76% of respondents indicated that a 20-30% reduction in baseline systolic blood pressure (SBP) indicates significant hypotension in children under anesthesia. Most responders (86.7%) indicated that they use mean arterial pressure or SBP (72%) to define IOH. The mean SBP values for hypotension quoted by SPA members was about 5-7% lower across all pediatric age groups compared to values quoted by APA members (P = 0.001 for all age groups). There is great variability in the BP parameters used and the threshold used for defining and treating IOH among pediatric anesthesiologists. The majority of respondents considered a 20-30% reduction from baseline in SBP as indicative of significant hypotension. Lack of a consensus definition for a common clinical condition like IOH could have

  16. Recent behavioral history modifies coupling between cell activity and Arc gene transcription in hippocampal CA1 neurons.

    Science.gov (United States)

    Guzowski, John F; Miyashita, Teiko; Chawla, Monica K; Sanderson, Jennifer; Maes, Levi I; Houston, Frank P; Lipa, Peter; McNaughton, Bruce L; Worley, Paul F; Barnes, Carol A

    2006-01-24

    The ability of neurons to alter their transcriptional programs in response to synaptic input is of fundamental importance to the neuroplastic mechanisms underlying learning and memory. Because of technical limitations of conventional gene detection methods, the current view of activity-dependent neural transcription derives from experiments in which neurons are assumed quiescent until a signaling stimulus is given. The present study was designed to move beyond this static model by examining how earlier episodes of neural activity influence transcription of the immediate-early gene Arc. Using a sensitive FISH method that detects primary transcript at genomic alleles, the proportion of hippocampal CA1 neurons that activate transcription of Arc RNA was constant at approximately 40% in response to both a single novel exploration session and daily sessions repeated over 9 days. This proportion is similar to the percentage of active neurons defined electrophysiologically. However, this close correspondence was disrupted in rats exposed briefly, but repeatedly, to the same environment within a single day. Arc transcription in CA1 neurons declined dramatically after as few as four 5-min sessions, despite stable electrophysiological activity during all sessions. Additional experiments indicate that the decrement in Arc transcription occurred at the cellular, rather than synaptic level, and was not simply linked to habituation to novelty. Thus, the neural genomic response is governed by recent, but not remote, cell firing history in the behaving animal. This state-dependence of neuronal transcriptional coupling provides a mechanism of metaplasticity and may regulate capacity for synaptic modification in neural networks.

  17. Defining recovery in adult bulimia nervosa.

    Science.gov (United States)

    Yu, Jessica; Agras, W Stewart; Bryson, Susan

    2013-01-01

    To examine how different definitions of recovery lead to varying rates of recovery, maintenance of recovery, and relapse in bulimia nervosa (BN), end-of-treatment (EOT) and follow-up data were obtained from 96 adults with BN. Combining behavioral, physical, and psychological criteria led to recovery rates between 15.5% and 34.4% at EOT, though relapse was approximately 50%. Combining these criteria and requiring abstinence from binge eating and purging when defining recovery may lead to lower recovery rates than those found in previous studies; however, a strength of this definition is that individuals who meet this criteria have no remaining disordered behaviors or symptoms.

  18. Defining Marriage: Classification, Interpretation, and Definitional Disputes

    Directory of Open Access Journals (Sweden)

    Fabrizio Macagno

    2016-09-01

    Full Text Available The classification of a state of affairs under a legal category can be considered as a kind of con- densed decision that can be made explicit, analyzed, and assessed us- ing argumentation schemes. In this paper, the controversial conflict of opinions concerning the nature of “marriage” in Obergefell v. Hodges is analyzed pointing out the dialecti- cal strategies used for addressing the interpretive doubts. The dispute about the same-sex couples’ right to marry hides a much deeper disa- greement not only about what mar- riage is, but more importantly about the dialectical rules for defining it.

  19. Software defined networks a comprehensive approach

    CERN Document Server

    Goransson, Paul

    2014-01-01

    Software Defined Networks discusses the historical networking environment that gave rise to SDN, as well as the latest advances in SDN technology. The book gives you the state of the art knowledge needed for successful deployment of an SDN, including: How to explain to the non-technical business decision makers in your organization the potential benefits, as well as the risks, in shifting parts of a network to the SDN modelHow to make intelligent decisions about when to integrate SDN technologies in a networkHow to decide if your organization should be developing its own SDN applications or

  20. Software Defined Radio: Basic Principles and Applications

    Directory of Open Access Journals (Sweden)

    José Raúl Machado-Fernández

    2014-12-01

    Full Text Available The author makes a review of the SDR (Software Defined Radio technology, including hardware schemes and application fields. A low performance device is presented and several tests are executed with it using free software. With the acquired experience, SDR employment opportunities are identified for low-cost solutions that can solve significant problems. In addition, a list of the most important frameworks related to the technology developed in the last years is offered, recommending the use of three of them.

  1. Defining the Strategy of Nuclear Activity

    International Nuclear Information System (INIS)

    Racana, R.

    2006-01-01

    This article presents nuclear activity as defined within the field of the nuclear industry, which is studied from its capacity to generate electric power to its application in industry and medicine as well as a source for weapons of mass destruction. These fields of analysis introduce some problems that the nuclear activity itself must know how to confront employing action strategies aimed at becoming an activity to be kept in mind when making use of the benefits that its peaceful use contributes to human life. (Author)

  2. Animal bioavailability of defined xenobiotic lignin metabolites

    International Nuclear Information System (INIS)

    Sandermann, H. Jr.; Arjmand, M.; Gennity, I.; Winkler, R.; Struble, C.B.; Aschbacher, P.W.

    1990-01-01

    Lignin has been recognized as a major component of bound pesticide residues in plants and is thought to be undigestible in animals. Two defined ring-U- 14 C-labeled chloroaniline/lignin metabolites have now been fed to rats, where a release of ∼66% of the bound xenobiotic occurred in the form of simple chloroaniline derivatives. The observed high degree of bioavailability indicates that bound pesticidal residues may possess ecotoxicological significance. In parallel studies, the white-rot fungus Phanerochaete chrysosporium was more efficient, and a soil system was much less efficient, in the degradation of the [ring-U- 14 C]chloroaniline/lignin metabolites

  3. DEFINING THE CHEMICAL SPACE OF PUBLIC GENOMIC ...

    Science.gov (United States)

    The current project aims to chemically index the genomics content of public genomic databases to make these data accessible in relation to other publicly available, chemically-indexed toxicological information. By defining the chemical space of public genomic data, it is possible to identify classes of chemicals on which to develop methodologies for the integration of chemogenomic data into predictive toxicology. The chemical space of public genomic data will be presented as well as the methodologies and tools developed to identify this chemical space.

  4. Healthcare Engineering Defined: A White Paper.

    Science.gov (United States)

    Chyu, Ming-Chien; Austin, Tony; Calisir, Fethi; Chanjaplammootil, Samuel; Davis, Mark J; Favela, Jesus; Gan, Heng; Gefen, Amit; Haddas, Ram; Hahn-Goldberg, Shoshana; Hornero, Roberto; Huang, Yu-Li; Jensen, Øystein; Jiang, Zhongwei; Katsanis, J S; Lee, Jeong-A; Lewis, Gladius; Lovell, Nigel H; Luebbers, Heinz-Theo; Morales, George G; Matis, Timothy; Matthews, Judith T; Mazur, Lukasz; Ng, Eddie Yin-Kwee; Oommen, K J; Ormand, Kevin; Rohde, Tarald; Sánchez-Morillo, Daniel; Sanz-Calcedo, Justo García; Sawan, Mohamad; Shen, Chwan-Li; Shieh, Jiann-Shing; Su, Chao-Ton; Sun, Lilly; Sun, Mingui; Sun, Yi; Tewolde, Senay N; Williams, Eric A; Yan, Chongjun; Zhang, Jiajie; Zhang, Yuan-Ting

    2015-01-01

    Engineering has been playing an important role in serving and advancing healthcare. The term "Healthcare Engineering" has been used by professional societies, universities, scientific authors, and the healthcare industry for decades. However, the definition of "Healthcare Engineering" remains ambiguous. The purpose of this position paper is to present a definition of Healthcare Engineering as an academic discipline, an area of research, a field of specialty, and a profession. Healthcare Engineering is defined in terms of what it is, who performs it, where it is performed, and how it is performed, including its purpose, scope, topics, synergy, education/training, contributions, and prospects.

  5. Software defined networking applications in distributed datacenters

    CERN Document Server

    Qi, Heng

    2016-01-01

    This SpringerBrief provides essential insights on the SDN application designing and deployment in distributed datacenters. In this book, three key problems are discussed: SDN application designing, SDN deployment and SDN management. This book demonstrates how to design the SDN-based request allocation application in distributed datacenters. It also presents solutions for SDN controller placement to deploy SDN in distributed datacenters. Finally, an SDN management system is proposed to guarantee the performance of datacenter networks which are covered and controlled by many heterogeneous controllers. Researchers and practitioners alike will find this book a valuable resource for further study on Software Defined Networking. .

  6. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...

  7. Healthcare Engineering Defined: A White Paper

    Directory of Open Access Journals (Sweden)

    Ming-Chien Chyu

    2015-01-01

    Full Text Available Engineering has been playing an important role in serving and advancing healthcare. The term “Healthcare Engineering” has been used by professional societies, universities, scientific authors, and the healthcare industry for decades. However, the definition of “Healthcare Engineering” remains ambiguous. The purpose of this position paper is to present a definition of Healthcare Engineering as an academic discipline, an area of research, a field of specialty, and a profession. Healthcare Engineering is defined in terms of what it is, who performs it, where it is performed, and how it is performed, including its purpose, scope, topics, synergy, education/training, contributions, and prospects.

  8. Software-defined reconfigurable microwave photonics processor.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José

    2015-06-01

    We propose, for the first time to our knowledge, a software-defined reconfigurable microwave photonics signal processor architecture that can be integrated on a chip and is capable of performing all the main functionalities by suitable programming of its control signals. The basic configuration is presented and a thorough end-to-end design model derived that accounts for the performance of the overall processor taking into consideration the impact and interdependencies of both its photonic and RF parts. We demonstrate the model versatility by applying it to several relevant application examples.

  9. Fingerprinting Software Defined Networks and Controllers

    Science.gov (United States)

    2015-03-01

    rps requests per second RTT Round-Trip Time SDN Software Defined Networking SOM Self-Organizing Map STP Spanning Tree Protocol TRW-CB Threshold Random...Protocol ( STP ) updates), in which case the frame will be “punted” from the forwarding lookup process and processed by the route processor [9]. The act of...environment 20 to accomplish the needs of B4. In addition to Google, the SDN market is expected to grow beyond $35 billion by April 2018 [31]. The rate

  10. Dynamic analysis of stochastic transcription cycles.

    Directory of Open Access Journals (Sweden)

    Claire V Harper

    2011-04-01

    Full Text Available In individual mammalian cells the expression of some genes such as prolactin is highly variable over time and has been suggested to occur in stochastic pulses. To investigate the origins of this behavior and to understand its functional relevance, we quantitatively analyzed this variability using new mathematical tools that allowed us to reconstruct dynamic transcription rates of different reporter genes controlled by identical promoters in the same living cell. Quantitative microscopic analysis of two reporter genes, firefly luciferase and destabilized EGFP, was used to analyze the dynamics of prolactin promoter-directed gene expression in living individual clonal and primary pituitary cells over periods of up to 25 h. We quantified the time-dependence and cyclicity of the transcription pulses and estimated the length and variation of active and inactive transcription phases. We showed an average cycle period of approximately 11 h and demonstrated that while the measured time distribution of active phases agreed with commonly accepted models of transcription, the inactive phases were differently distributed and showed strong memory, with a refractory period of transcriptional inactivation close to 3 h. Cycles in transcription occurred at two distinct prolactin-promoter controlled reporter genes in the same individual clonal or primary cells. However, the timing of the cycles was independent and out-of-phase. For the first time, we have analyzed transcription dynamics from two equivalent loci in real-time in single cells. In unstimulated conditions, cells showed independent transcription dynamics at each locus. A key result from these analyses was the evidence for a minimum refractory period in the inactive-phase of transcription. The response to acute signals and the result of manipulation of histone acetylation was consistent with the hypothesis that this refractory period corresponded to a phase of chromatin remodeling which significantly

  11. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites

    KAUST Repository

    Kulakovskiy, Ivan V.; Belostotsky, A. A.; Kasianov, Artem S.; Esipova, Natalia G.; Medvedeva, Yulia; Eliseeva, Irina A.; Makeev, Vsevolod J.

    2011-01-01

    Motivation: Modern experimental methods provide substantial information on protein-DNA recognition. Studying arrangements of transcription factor binding sites (TFBSs) of interacting transcription factors (TFs) advances understanding

  12. Cell-Type-Specific Gene Programs of the Normal Human Nephron Define Kidney Cancer Subtypes.

    Science.gov (United States)

    Lindgren, David; Eriksson, Pontus; Krawczyk, Krzysztof; Nilsson, Helén; Hansson, Jennifer; Veerla, Srinivas; Sjölund, Jonas; Höglund, Mattias; Johansson, Martin E; Axelson, Håkan

    2017-08-08

    Comprehensive transcriptome studies of cancers often rely on corresponding normal tissue samples to serve as a transcriptional reference. In this study, we performed in-depth analyses of normal kidney tissue transcriptomes from the TCGA and demonstrate that the histological variability in cellularity, inherent in the kidney architecture, lead to considerable transcriptional differences between samples. This should be considered when comparing expression profiles of normal and cancerous kidney tissues. We exploited these differences to define renal-cell-specific gene signatures and used these as a framework to analyze renal cell carcinoma (RCC) ontogeny. Chromophobe RCCs express FOXI1-driven genes that define collecting duct intercalated cells, whereas HNF-regulated genes, specific for proximal tubule cells, are an integral part of clear cell and papillary RCC transcriptomes. These networks may be used as a framework for understanding the interplay between genomic changes in RCC subtypes and the lineage-defining regulatory machinery of their non-neoplastic counterparts. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Defining clogging potential for permeable concrete.

    Science.gov (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2018-08-15

    Permeable concrete is used to reduce urban flooding as it allows water to flow through normally impermeable infrastructure. It is prone to clogging by particulate matter and predicting the long-term performance of permeable concrete is challenging as there is currently no reliable means of characterising clogging potential. This paper reports on the performance of a range of laboratory-prepared and commercial permeable concretes, close packed glass spheres and aggregate particles of varying size, exposed to different clogging methods to understand this phenomena. New methods were developed to study clogging and define clogging potential. The tests involved applying flowing water containing sand and/or clay in cycles, and measuring the change in permeability. Substantial permeability reductions were observed in all samples, particularly when exposed to sand and clay simultaneously. Three methods were used to define clogging potential based on measuring the initial permeability decay, half-life cycle and number of cycles to full clogging. We show for the first time strong linear correlations between these parameters for a wide range of samples, indicating their use for service-life prediction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Defining an Open Source Strategy for NASA

    Science.gov (United States)

    Mattmann, C. A.; Crichton, D. J.; Lindsay, F.; Berrick, S. W.; Marshall, J. J.; Downs, R. R.

    2011-12-01

    Over the course of the past year, we have worked to help frame a strategy for NASA and open source software. This includes defining information processes to understand open source licensing, attribution, commerciality, redistribution, communities, architectures, and interactions within the agency. Specifically we held a training session at the NASA Earth Science Data Systems Working Group meeting in Open Source software as it relates to the NASA Earth Science data systems enterprise, including EOSDIS, the Distributed Active Archive Centers (DAACs), ACCESS proposals, and the MEASURES communities, and efforts to understand how open source software can be both consumed and produced within that ecosystem. In addition, we presented at the 1st NASA Open Source Summit (OSS) and helped to define an agency-level strategy, a set of recommendations and paths forward for how to identify healthy open source communities, how to deal with issues such as contributions originating from other agencies, and how to search out talent with the right skills to develop software for NASA in the modern age. This talk will review our current recommendations for open source at NASA, and will cover the set of thirteen recommendations output from the NASA Open Source Summit and discuss some of their implications for the agency.

  15. How Do You Define an Internship?

    Science.gov (United States)

    Wilson, C. E.; Keane, C.

    2017-12-01

    According to the American Geosciences Institute's Geoscience Student Exit Survey, internship participation rates over the past four years have been low, particularly among bachelor's and doctoral graduates. In 2016, 65% of bachelor's graduates, 44% of master's graduates, and 57% of doctoral graduates did not participate in an internship while working on their degree. When asked if they submitted applications for internship opportunities, 42% of bachelor's graduates, 23% of master's graduates, and 46% of doctoral graduates claimed to not submit any applications. These statistics have raised concern at AGI because internships provide experiences that help develop critical professional skills and industry connections that can lead to jobs after graduation. However, when internships are discussed among various representatives in geoscience industries, there are disagreements in how an internship experience is defined. For example, opinions differ on whether REUs or other research experiences count as an internship. Clear definitions of internship opportunities may help academic faculty and advisors direct students towards these opportunities and help develop a collection of resources for finding future internships. This presentation will present some of the recent statistics on internship participation among geoscience graduates and present a series of questions to ascertain defining features of internships among AGU attendees and where help is needed to increase participation in internships among current geoscience students.

  16. Defining Medical Capabilities for Exploration Missions

    Science.gov (United States)

    Hailey, M.; Antonsen, E.; Blue, R.; Reyes, D.; Mulcahy, R.; Kerstman, E.; Bayuse, T.

    2018-01-01

    Exploration-class missions to the moon, Mars and beyond will require a significant change in medical capability from today's low earth orbit centric paradigm. Significant increases in autonomy will be required due to differences in duration, distance and orbital mechanics. Aerospace medicine and systems engineering teams are working together within ExMC to meet these challenges. Identifying exploration medical system needs requires accounting for planned and unplanned medical care as defined in the concept of operations. In 2017, the ExMC Clinicians group identified medical capabilities to feed into the Systems Engineering process, including: determining what and how to address planned and preventive medical care; defining an Accepted Medical Condition List (AMCL) of conditions that may occur and a subset of those that can be treated effectively within the exploration environment; and listing the medical capabilities needed to treat those conditions in the AMCL. This presentation will discuss the team's approach to addressing these issues, as well as how the outputs of the clinical process impact the systems engineering effort.

  17. Distributed controller clustering in software defined networks.

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelaziz

    Full Text Available Software Defined Networking (SDN is an emerging promising paradigm for network management because of its centralized network intelligence. However, the centralized control architecture of the software-defined networks (SDNs brings novel challenges of reliability, scalability, fault tolerance and interoperability. In this paper, we proposed a novel clustered distributed controller architecture in the real setting of SDNs. The distributed cluster implementation comprises of multiple popular SDN controllers. The proposed mechanism is evaluated using a real world network topology running on top of an emulated SDN environment. The result shows that the proposed distributed controller clustering mechanism is able to significantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22% to 4.15%, compared to distributed controller without clustering running on HP Virtual Application Network (VAN SDN and Open Network Operating System (ONOS controllers respectively. Moreover, proposed method also shows reasonable CPU utilization results. Furthermore, the proposed mechanism makes possible to handle unexpected load fluctuations while maintaining a continuous network operation, even when there is a controller failure. The paper is a potential contribution stepping towards addressing the issues of reliability, scalability, fault tolerance, and inter-operability.

  18. Distributed controller clustering in software defined networks.

    Science.gov (United States)

    Abdelaziz, Ahmed; Fong, Ang Tan; Gani, Abdullah; Garba, Usman; Khan, Suleman; Akhunzada, Adnan; Talebian, Hamid; Choo, Kim-Kwang Raymond

    2017-01-01

    Software Defined Networking (SDN) is an emerging promising paradigm for network management because of its centralized network intelligence. However, the centralized control architecture of the software-defined networks (SDNs) brings novel challenges of reliability, scalability, fault tolerance and interoperability. In this paper, we proposed a novel clustered distributed controller architecture in the real setting of SDNs. The distributed cluster implementation comprises of multiple popular SDN controllers. The proposed mechanism is evaluated using a real world network topology running on top of an emulated SDN environment. The result shows that the proposed distributed controller clustering mechanism is able to significantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22% to 4.15%, compared to distributed controller without clustering running on HP Virtual Application Network (VAN) SDN and Open Network Operating System (ONOS) controllers respectively. Moreover, proposed method also shows reasonable CPU utilization results. Furthermore, the proposed mechanism makes possible to handle unexpected load fluctuations while maintaining a continuous network operation, even when there is a controller failure. The paper is a potential contribution stepping towards addressing the issues of reliability, scalability, fault tolerance, and inter-operability.

  19. Predictive modelling of gene expression from transcriptional regulatory elements.

    Science.gov (United States)

    Budden, David M; Hurley, Daniel G; Crampin, Edmund J

    2015-07-01

    Predictive modelling of gene expression provides a powerful framework for exploring the regulatory logic underpinning transcriptional regulation. Recent studies have demonstrated the utility of such models in identifying dysregulation of gene and miRNA expression associated with abnormal patterns of transcription factor (TF) binding or nucleosomal histone modifications (HMs). Despite the growing popularity of such approaches, a comparative review of the various modelling algorithms and feature extraction methods is lacking. We define and compare three methods of quantifying pairwise gene-TF/HM interactions and discuss their suitability for integrating the heterogeneous chromatin immunoprecipitation (ChIP)-seq binding patterns exhibited by TFs and HMs. We then construct log-linear and ϵ-support vector regression models from various mouse embryonic stem cell (mESC) and human lymphoblastoid (GM12878) data sets, considering both ChIP-seq- and position weight matrix- (PWM)-derived in silico TF-binding. The two algorithms are evaluated both in terms of their modelling prediction accuracy and ability to identify the established regulatory roles of individual TFs and HMs. Our results demonstrate that TF-binding and HMs are highly predictive of gene expression as measured by mRNA transcript abundance, irrespective of algorithm or cell type selection and considering both ChIP-seq and PWM-derived TF-binding. As we encourage other researchers to explore and develop these results, our framework is implemented using open-source software and made available as a preconfigured bootable virtual environment. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A pilot study of transcription unit analysis in rice using oligonucleotide tiling-path microarray

    DEFF Research Database (Denmark)

    Stolc, Viktor; Li, Lei; Wang, Xiangfeng

    2005-01-01

    As the international efforts to sequence the rice genome are completed, an immediate challenge and opportunity is to comprehensively and accurately define all transcription units in the rice genome. Here we describe a strategy of using high-density oligonucleotide tiling-path microarrays to map...... transcription of the japonica rice genome. In a pilot experiment to test this approach, one array representing the reverse strand of the last 11.2 Mb sequence of chromosome 10 was analyzed in detail based on a mathematical model developed in this study. Analysis of the array data detected 77% of the reference...... gene models in a mixture of four RNA populations. Moreover, significant transcriptional activities were found in many of the previously annotated intergenic regions. These preliminary results demonstrate the utility of genome tiling microarrays in evaluating annotated rice gene models...

  2. Development of Transcriptional Fusions to Assess Leptospira interrogans Promoter Activity

    Science.gov (United States)

    Cerqueira, Gustavo M.; Souza, Natalie M.; Araújo, Eduardo R.; Barros, Aline T.; Morais, Zenaide M.; Vasconcellos, Sílvio A.; Nascimento, Ana L. T. O.

    2011-01-01

    Background Leptospirosis is a zoonotic infectious disease that affects both humans and animals. The existing genetic tools for Leptospira spp. have improved our understanding of the biology of this spirochete as well as the interaction of pathogenic leptospires with the mammalian host. However, new tools are necessary to provide novel and useful information to the field. Methodology and Principal Findings A series of promoter-probe vectors carrying a reporter gene encoding green fluorescent protein (GFP) were constructed for use in L. biflexa. They were tested by constructing transcriptional fusions between the lipL41, Leptospiral Immunoglobulin-like A (ligA) and Sphingomielynase 2 (sph2) promoters from L. interrogans and the reporter gene. ligA and sph2 promoters were the most active, in comparison to the lipL41 promoter and the non-induced controls. The results obtained are in agreement with LigA expression from the L. interrogans Fiocruz L1-130 strain. Conclusions The novel vectors facilitated the in vitro evaluation of L. interrogans promoter activity under defined growth conditions which simulate the mammalian host environment. The fluorescence and rt-PCR data obtained closely reflected transcriptional regulation of the promoters, thus demonstrating the suitability of these vectors for assessing promoter activity in L. biflexa. PMID:21445252

  3. Development of transcriptional fusions to assess Leptospira interrogans promoter activity.

    Directory of Open Access Journals (Sweden)

    Gustavo M Cerqueira

    Full Text Available BACKGROUND: Leptospirosis is a zoonotic infectious disease that affects both humans and animals. The existing genetic tools for Leptospira spp. have improved our understanding of the biology of this spirochete as well as the interaction of pathogenic leptospires with the mammalian host. However, new tools are necessary to provide novel and useful information to the field. METHODOLOGY AND PRINCIPAL FINDINGS: A series of promoter-probe vectors carrying a reporter gene encoding green fluorescent protein (GFP were constructed for use in L. biflexa. They were tested by constructing transcriptional fusions between the lipL41, Leptospiral Immunoglobulin-like A (ligA and Sphingomyelinase 2 (sph2 promoters from L. interrogans and the reporter gene. ligA and sph2 promoters were the most active, in comparison to the lipL41 promoter and the non-induced controls. The results obtained are in agreement with LigA expression from the L. interrogans Fiocruz L1-130 strain. CONCLUSIONS: The novel vectors facilitated the in vitro evaluation of L. interrogans promoter activity under defined growth conditions which simulate the mammalian host environment. The fluorescence and rt-PCR data obtained closely reflected transcriptional regulation of the promoters, thus demonstrating the suitability of these vectors for assessing promoter activity in L. biflexa.

  4. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation.

    Science.gov (United States)

    Engel, Krysta L; Mackiewicz, Mark; Hardigan, Andrew A; Myers, Richard M; Savic, Daniel

    2016-09-01

    Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Mycoplasma hyopneumoniae Transcription Unit Organization: Genome Survey and Prediction

    Science.gov (United States)

    Siqueira, Franciele Maboni; Schrank, Augusto; Schrank, Irene Silveira

    2011-01-01

    Mycoplasma hyopneumoniae is associated with swine respiratory diseases. Although gene organization and regulation are well known in many prokaryotic organisms, knowledge on mycoplasma is limited. This study performed a comparative analysis of three strains of M. hyopneumoniae (7448, J and 232), with a focus on genome organization and gene comparison for open read frame (ORF) cluster (OC) identification. An in silico analysis of gene organization demonstrated 117 OCs and 34 single ORFs in M. hyopneumoniae 7448 and J, while 116 OCs and 36 single ORFs were identified in M. hyopneumoniae 232. Genomic comparison revealed high synteny and conservation of gene order between the OCs defined for 7448 and J strains as well as for 7448 and 232 strains. Twenty-one OCs were chosen and experimentally confirmed by reverse transcription–PCR from M. hyopneumoniae 7448 genome, validating our prediction. A subset of the ORFs within an OC could be independently transcribed due to the presence of internal promoters. Our results suggest that transcription occurs in ‘run-on’ from an upstream promoter in M. hyopneumoniae, thus forming large ORF clusters (from 2 to 29 ORFs in the same orientation) and indicating a complex transcriptional organization. PMID:22086999

  6. Manuscript Transcription by Crowdsourcing: Transcribe Bentham

    Directory of Open Access Journals (Sweden)

    Martin Moyle

    2011-02-01

    Full Text Available Transcribe Bentham is testing the feasibility of outsourcing the work of manuscript transcription to members of the public. UCL Library Services holds 60,000 folios of manuscripts of the philosopher and jurist Jeremy Bentham (1748–1832. Transcribe Bentham will digitise 12,500 Bentham folios, and, through a wiki-based interface, allow volunteer transcribers to take temporary ownership of manuscript images and to create TEI-encoded transcription text for final approval by UCL experts. Approved transcripts will be stored and preserved, with the manuscript images, in UCL’s public Digital Collections repository. The project makes innovative use of traditional library material. It will stimulate public engagement with UCL’s scholarly archive collections and the challenges of palaeography and manuscript transcription; it will raise the profile of the work and thought of Jeremy Bentham; and it will create new digital resources for future use by professional researchers. Towards the end of the project, the transcription tool will be made available to other projects and services. This paper is based on a presentation given by the lead author at LIBER’s 39th Annual General Conference in Aarhus, Denmark, 2010.

  7. Structural Basis of Mitochondrial Transcription Initiation.

    Science.gov (United States)

    Hillen, Hauke S; Morozov, Yaroslav I; Sarfallah, Azadeh; Temiakov, Dmitry; Cramer, Patrick

    2017-11-16

    Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Reconfigurable, Cognitive Software-Defined Radio

    Science.gov (United States)

    Bhat, Arvind

    2015-01-01

    Software-defined radio (SDR) technology allows radios to be reconfigured to perform different communication functions without using multiple radios to accomplish each task. Intelligent Automation, Inc., has developed SDR platforms that switch adaptively between different operation modes. The innovation works by modifying both transmit waveforms and receiver signal processing tasks. In Phase I of the project, the company developed SDR cognitive capabilities, including adaptive modulation and coding (AMC), automatic modulation recognition (AMR), and spectrum sensing. In Phase II, these capabilities were integrated into SDR platforms. The reconfigurable transceiver design employs high-speed field-programmable gate arrays, enabling multimode operation and scalable architecture. Designs are based on commercial off-the-shelf (COTS) components and are modular in nature, making it easier to upgrade individual components rather than redesigning the entire SDR platform as technology advances.

  9. Nurse leader resilience: career defining moments.

    Science.gov (United States)

    Cline, Susan

    2015-01-01

    Resilience is an essential component of effective nursing leadership. It is defined as the ability to survive and thrive in the face of adversity. Resilience can be developed and internalized as a measure to improve retention and reduce burnout. Nurse leaders at all levels should develop these competencies to survive and thrive in an increasingly complex health care environment. Building positive relationships, maintaining positivity, developing emotional insight, creating work-life balance, and reflecting on successes and challenges are effective strategies for resilience building. Nurse leaders have a professional obligation to develop resilience in themselves, the teams they supervise, and the organization as a whole. Additional benefits include reduced turnover, reduced cost, and improved quality outcomes through organizational mindfulness.

  10. Defining and testing a granular continuum element

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris H.; Kamrin, Ken; Bazant, Martin Z.

    2007-12-03

    Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.

  11. Defining and Distinguishing Secular and Religious Terrorism

    Directory of Open Access Journals (Sweden)

    Heather S. Gregg

    2014-04-01

    Full Text Available Religious terrorism is typically characterised as acts of unrestrained, irrational and indiscriminant violence, thus offering few if any policy options for counterterrorism measures. This assumption about religious terrorism stems from two challenges in the literature: disproportionate attention to apocalyptic terrorism, and a lack of distinction between religious terrorism and its secular counterpart. This article, therefore, aims to do four things: define and differentiate religiously motivated terrorism from traditional terrorism; investigate three goals of religious terrorism (fomenting the apocalypse, creating a religious government, and establishing a religiously pure state; consider the role of leadership and target selection of religious terrorists; and, finally, suggest a range of counterterrorism strategies based on these observations.

  12. "Defining Computer 'Speed': An Unsolved Challenge"

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Abstract: The reason we use computers is their speed, and the reason we use parallel computers is that they're faster than single-processor computers. Yet, after 70 years of electronic digital computing, we still do not have a solid definition of what computer 'speed' means, or even what it means to be 'faster'. Unlike measures in physics, where the definition of speed is rigorous and unequivocal, in computing there is no definition of speed that is universally accepted. As a result, computer customers have made purchases misguided by dubious information, computer designers have optimized their designs for the wrong goals, and computer programmers have chosen methods that optimize the wrong things. This talk describes why some of the obvious and historical ways of defining 'speed' haven't served us well, and the things we've learned in the struggle to find a definition that works. Biography: Dr. John Gustafson is a Director ...

  13. Using archetypes for defining CDA templates.

    Science.gov (United States)

    Moner, David; Moreno, Alberto; Maldonado, José A; Robles, Montserrat; Parra, Carlos

    2012-01-01

    While HL7 CDA is a widely adopted standard for the documentation of clinical information, the archetype approach proposed by CEN/ISO 13606 and openEHR is gaining recognition as a means of describing domain models and medical knowledge. This paper describes our efforts in combining both standards. Using archetypes as an alternative for defining CDA templates permit new possibilities all based on the formal nature of archetypes and their ability to merge into the same artifact medical knowledge and technical requirements for semantic interoperability of electronic health records. We describe the process followed for the normalization of existing legacy data in a hospital environment, from the importation of the HL7 CDA model into an archetype editor, the definition of CDA archetypes and the application of those archetypes to obtain normalized CDA data instances.

  14. Defining the critical hurdles in cancer immunotherapy

    DEFF Research Database (Denmark)

    Fox, Bernard A; Schendel, Dolores J; Butterfield, Lisa H

    2011-01-01

    of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical...... immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation...... companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed...

  15. Just caring: defining a basic benefit package.

    Science.gov (United States)

    Fleck, Leonard M

    2011-12-01

    What should be the content of a package of health care services that we would want to guarantee to all Americans? This question cannot be answered adequately apart from also addressing the issue of fair health care rationing. Consequently, as I argue in this essay, appeal to the language of "basic," "essential," "adequate," "minimally decent," or "medically necessary" for purposes of answering our question is unhelpful. All these notions are too vague to be useful. Cost matters. Effectiveness matters. The clinical circumstances of a patient matters. But what we must ultimately determine is what we mutually agree are the just claims to needed health care of each American in a relatively complex range of clinical circumstances. Answering this question will require a public moral conversation, a fair process of rational democratic deliberation aimed at defining both just claims to needed health care and just limits.

  16. Bruxism defined and graded: an international consensus.

    Science.gov (United States)

    Lobbezoo, F; Ahlberg, J; Glaros, A G; Kato, T; Koyano, K; Lavigne, G J; de Leeuw, R; Manfredini, D; Svensson, P; Winocur, E

    2013-01-01

    To date, there is no consensus about the definition and diagnostic grading of bruxism. A written consensus discussion was held among an international group of bruxism experts as to formulate a definition of bruxism and to suggest a grading system for its operationalisation. The expert group defined bruxism as a repetitive jaw-muscle activity characterised by clenching or grinding of the teeth and/or by bracing or thrusting of the mandible. Bruxism has two distinct circadian manifestations: it can occur during sleep (indicated as sleep bruxism) or during wakefulness (indicated as awake bruxism). For the operationalisation of this definition, the expert group proposes a diagnostic grading system of 'possible', 'probable' and 'definite' sleep or awake bruxism. The proposed definition and grading system are suggested for clinical and research purposes in all relevant dental and medical domains. © 2012 Blackwell Publishing Ltd.

  17. Defining and Supporting Narrative-driven Recommendation

    DEFF Research Database (Denmark)

    Bogers, Toine; Koolen, Marijn

    2017-01-01

    Research into recommendation algorithms has made great strides in recent years. However, these algorithms are typically applied in relatively straightforward scenarios: given information about a user's past preferences, what will they like in the future? Recommendation is often more complex......: evaluating recommended items never takes place in a vacuum, and it is often a single step in the user's more complex background task. In this paper, we define a specific type of recommendation scenario called narrative-driven recommendation, where the recommendation process is driven by both a log...... of the user's past transactions as well as a narrative description of their current interest(s). Through an analysis of a set of real-world recommendation narratives from the LibraryThing forums, we demonstrate the uniqueness and richness of this scenario and highlight common patterns and properties...

  18. Defining Service and Education in Pediatrics.

    Science.gov (United States)

    Boyer, Debra; Gagne, Josh; Kesselheim, Jennifer C

    2017-11-01

    Program directors (PDs) and trainees are often queried regarding the balance of service and education during pediatric residency training. We aimed to use qualitative methods to learn how pediatric residents and PDs define service and education and to identify activities that exemplify these concepts. Focus groups of pediatric residents and PDs were performed and the data qualitatively analyzed. Thematic analysis revealed 4 themes from focus group data: (1) misalignment of the perceived definition of service; (2) agreement about the definition of education; (3) overlapping perceptions of the value of service to training; and (4) additional suggestions for improved integration of education and service. Pediatric residents hold positive definitions of service and believe that service adds value to their education. Importantly, the discovery of heterogeneous definitions of service between pediatric residents and PDs warrants further investigation and may have ramifications for Accreditation Council for Graduate Medical Education and those responsible for residency curricula.

  19. Quantum computing. Defining and detecting quantum speedup.

    Science.gov (United States)

    Rønnow, Troels F; Wang, Zhihui; Job, Joshua; Boixo, Sergio; Isakov, Sergei V; Wecker, David; Martinis, John M; Lidar, Daniel A; Troyer, Matthias

    2014-07-25

    The development of small-scale quantum devices raises the question of how to fairly assess and detect quantum speedup. Here, we show how to define and measure quantum speedup and how to avoid pitfalls that might mask or fake such a speedup. We illustrate our discussion with data from tests run on a D-Wave Two device with up to 503 qubits. By using random spin glass instances as a benchmark, we found no evidence of quantum speedup when the entire data set is considered and obtained inconclusive results when comparing subsets of instances on an instance-by-instance basis. Our results do not rule out the possibility of speedup for other classes of problems and illustrate the subtle nature of the quantum speedup question. Copyright © 2014, American Association for the Advancement of Science.

  20. Software Defined Networking Demands on Software Technologies

    DEFF Research Database (Denmark)

    Galinac Grbac, T.; Caba, Cosmin Marius; Soler, José

    2015-01-01

    Software Defined Networking (SDN) is a networking approach based on a centralized control plane architecture with standardised interfaces between control and data planes. SDN enables fast configuration and reconfiguration of the network to enhance resource utilization and service performances....... This new approach enables a more dynamic and flexible network, which may adapt to user needs and application requirements. To this end, systemized solutions must be implemented in network software, aiming to provide secure network services that meet the required service performance levels. In this paper......, we review this new approach to networking from an architectural point of view, and identify and discuss some critical quality issues that require new developments in software technologies. These issues we discuss along with use case scenarios. Here in this paper we aim to identify challenges...

  1. Computing platforms for software-defined radio

    CERN Document Server

    Nurmi, Jari; Isoaho, Jouni; Garzia, Fabio

    2017-01-01

    This book addresses Software-Defined Radio (SDR) baseband processing from the computer architecture point of view, providing a detailed exploration of different computing platforms by classifying different approaches, highlighting the common features related to SDR requirements and by showing pros and cons of the proposed solutions. Coverage includes architectures exploiting parallelism by extending single-processor environment (such as VLIW, SIMD, TTA approaches), multi-core platforms distributing the computation to either a homogeneous array or a set of specialized heterogeneous processors, and architectures exploiting fine-grained, coarse-grained, or hybrid reconfigurability. Describes a computer engineering approach to SDR baseband processing hardware; Discusses implementation of numerous compute-intensive signal processing algorithms on single and multicore platforms; Enables deep understanding of optimization techniques related to power and energy consumption of multicore platforms using several basic a...

  2. Environmentally acceptable thread compounds: Requirements defined

    International Nuclear Information System (INIS)

    Stringfellow, W.D.; Hendriks, R.V.; Jacobs, N.L.

    1993-01-01

    New environmental regulations on thread compounds are now being enforced in several areas with strong maritime tradition and a sensitive environment. These areas include Indonesia, Alaska and portions of Norway. The industry generally recognizes the environmental concerns but, with wider enforcement of regulations imminent, has not been able to define clearly the requirements for environmental compliance. This paper, written in collaboration with The Netherlands State Supervision of Mines, is based on the National Policy on Thread Compounds of The Netherlands. This national policy is representative of policies being followed by other North Sea governments. Similar policies might well be adopted by other governments worldwide. These policies will affect the operator, drilling contractor, and supplier. This paper provides a specific and detailed definition of thread compound requirements by addressing four relevant categories. The categories of interest are regulatory approval, environmental, health, and performance

  3. Defining nodes in complex brain networks

    Directory of Open Access Journals (Sweden)

    Matthew Lawrence Stanley

    2013-11-01

    Full Text Available Network science holds great promise for expanding our understanding of the human brain in health, disease, development, and aging. Network analyses are quickly becoming the method of choice for analyzing functional MRI data. However, many technical issues have yet to be confronted in order to optimize results. One particular issue that remains controversial in functional brain network analyses is the definition of a network node. In functional brain networks a node represents some predefined collection of brain tissue, and an edge measures the functional connectivity between pairs of nodes. The characteristics of a node, chosen by the researcher, vary considerably in the literature. This manuscript reviews the current state of the art based on published manuscripts and highlights the strengths and weaknesses of three main methods for defining nodes. Voxel-wise networks are constructed by assigning a node to each, equally sized brain area (voxel. The fMRI time-series recorded from each voxel is then used to create the functional network. Anatomical methods utilize atlases to define the nodes based on brain structure. The fMRI time-series from all voxels within the anatomical area are averaged and subsequently used to generate the network. Functional activation methods rely on data from traditional fMRI activation studies, often from databases, to identify network nodes. Such methods identify the peaks or centers of mass from activation maps to determine the location of the nodes. Small (~10-20 millimeter diameter spheres located at the coordinates of the activation foci are then applied to the data being used in the network analysis. The fMRI time-series from all voxels in the sphere are then averaged, and the resultant time series is used to generate the network. We attempt to clarify the discussion and move the study of complex brain networks forward. While the correct method to be used remains an open, possibly unsolvable question that

  4. Exposing the Myths, Defining the Future

    International Nuclear Information System (INIS)

    Slavov, S.

    2013-01-01

    With this official statement, the WEC calls for policymakers and industry leaders to ''get real'' as the World Energy Council as a global energy body exposes the myths by informing the energy debate and defines a path to a more sustainable energy future. The World Energy Council urged stakeholders to take urgent and incisive actions, to develop and transform the global energy system. Failure to do so could put aspirations on the triple challenge of WEC Energy Trilemma defined by affordability, accessibility and environmental sustainability at serious risk. Through its multi-year in-depth global studies and issue-mapping the WEC has found that challenges that energy sector is facing today are much more crucial than previously envisaged. The WEC's analysis has exposed a number of myths which influence our understanding of important aspects of the global energy landscape. If not challenged, these misconceptions will lead us down a path of complacency and missed opportunities. Much has, and still is, being done to secure energy future, but the WEC' s studies reveal that current pathways fall short of delivering on global aspirations of energy access, energy security and environmental improvements. If we are to derive the full economic and social benefits from energy resources, then we must take incisive and urgent action to modify our steps to energy solutions. The usual business approaches are not effective, the business as usual is not longer a solution. The focus has moved from large universal solutions to an appreciation of regional and national contexts and sharply differentiated consumer expectations.(author)

  5. Radiotherapy for brain metastases: defining palliative response

    International Nuclear Information System (INIS)

    Bezjak, Andrea; Adam, Janice; Panzarella, Tony; Levin, Wilfred; Barton, Rachael; Kirkbride, Peter; McLean, Michael; Mason, Warren; Wong, Chong Shun; Laperriere, Normand

    2001-01-01

    Background and purpose: Most patients with brain metastases are treated with palliative whole brain radiotherapy (WBRT). There is no established definition of palliative response. The aim of this study was to develop and test clinically useful criteria for response following palliative WBRT. Materials and methods: A prospective study was conducted of patients with symptomatic brain metastases treated with WBRT (20 Gy/5 fractions) and standardised steroid tapering. Assessments included observer rating of neurological symptoms, patient-completed symptom checklist and performance status (PS). Response criteria were operationally defined based on a combination of neurological symptoms, PS and steroid dose. Results: Seventy-five patients were accrued. At 1 month, presenting neurological symptoms were improved in 14 patients, stable in 17, and worse in 21; 23 patients were not assessed, mainly due to death or frailty. Using response criteria defined a priori, 15% (95% CI 7-23%) of patients were classified as having a response to RT, 25% no response, and 29% progression; 27% were deceased at or soon after 1 month. A revised set of criteria was tested, with less emphasis on complete tapering of steroids: they increased the proportion of patients responding to 39% (95% CI 27-50%) but didn't change the large proportion who did not benefit (44%). Conclusions: Clinical response to RT of patients with brain metastases is multifactorial, comprising symptoms, PS and other factors. Assessment of degree of palliation depend on the exact definition used. More research is needed in this important area, to help validate criteria for assessing palliation after WBRT

  6. Defining Future Directions for Endometriosis Research

    Science.gov (United States)

    D’Hooghe, Thomas M.; Fazleabas, Asgerally; Giudice, Linda C.; Montgomery, Grant W.; Petraglia, Felice; Taylor, Robert N.

    2013-01-01

    Endometriosis, defined as estrogen-dependent lesions containing endometrial glands and stroma outside the uterus, is a chronic and often painful gynecological condition that affects 6% to 10% of reproductive age women. Endometriosis has estimated annual costs of US $12 419 per woman (approximately €9579), comprising one-third of the direct health care costs with two-thirds attributed to loss of productivity. Decreased quality of life is the most important predictor of direct health care and total costs. It has been estimated that there is a mean delay of 6.7 years between onset of symptoms and a surgical diagnosis of endometriosis, and each affected woman loses on average 10.8 hours of work weekly, mainly owing to reduced effectiveness while working. To encourage and facilitate research into this debilitating disease, a consensus workshop to define future directions for endometriosis research was held as part of the 11th World Congress on Endometriosis in September 2011 in Montpellier, France. The objective of this workshop was to review and update the endometriosis research priorities consensus statement developed following the 10th World Congress on Endometriosis in 2008.1 A total of 56 recommendations for research have been developed, grouped under 6 subheadings: (1) diagnosis, (2) classification and prognosis, (3) clinical trials, treatment, and outcomes, (4) epidemiology, (5) pathophysiology, and (6) research policy. By producing this consensus international research priorities statement, it is the hope of the workshop participants that researchers will be encouraged to develop new interdisciplinary research proposals that will attract increased funding support for work on endometriosis. PMID:23427182

  7. The transcript release factor PTRF augments ribosomal gene transcription by facilitating reinitiation of RNA polymerase I

    Czech Academy of Sciences Publication Activity Database

    Jansa, Petr; Burek, C.; Sander, E. E.; Grummt, I.

    2001-01-01

    Roč. 29, č. 2 (2001), s. 423-429 ISSN 0305-1048 Institutional research plan: CEZ:AV0Z5052915 Keywords : rDNA transcription * PTRF * transcription reinitiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.373, year: 2001

  8. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription.

    Science.gov (United States)

    Gerasimova, N S; Pestov, N A; Kulaeva, O I; Clark, D J; Studitsky, V M

    2016-05-26

    RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure.

  9. The Intertwined Roles of DNA Damage and Transcription

    OpenAIRE

    Di Palo, Giacomo

    2016-01-01

    DNA damage and transcription are two interconnected events. Transcription can induce damage and scheduled DNA damage can be required for transcription. Here, we analyzed genome-wide distribution of 8oxodG-marked oxidative DNA damage obtained by OxiDIP-Seq, and we found a correlation with transcription of protein coding genes.

  10. Battles and hijacks: Noncoding transcription in plants

    KAUST Repository

    Ariel, Federico

    2015-06-01

    Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription. © 2015 Elsevier Ltd.

  11. Phonemic Transcriptions in British and American Dictionaries

    Directory of Open Access Journals (Sweden)

    Rastislav Šuštaršič

    2005-06-01

    Full Text Available In view of recent criticisms concerning vowel symbols in some British English dictionaries (in particular by J. Windsor Lewis in JIPA (Windsor Lewis, 2003, with regard to the Oxford Dictionary of Pronunciation (Upton, 2001, this article extends the discussion on English phonemic transcriptions by including those that typically occur in standard American dictionaries, and by comparing the most common conventions of British and American dictionaries. In addition to symbols for both vowels and consonants, the paper also deals with the different representations of word accentuation and the issue of consistency regarding application of phonemic (systemic, broad, rather than phonetic (allophonic, narrow transcription. The different transcriptions are assessed from the points of view of their departures from the International Phonetic Alphabet, their overlapping with orthographic representation (spelling and their appropriateness in terms of reflecting actual pronunciation in standard British and/or American pronunciation.

  12. Crowdsourcing for quantifying transcripts: An exploratory study.

    Science.gov (United States)

    Azzam, Tarek; Harman, Elena

    2016-02-01

    This exploratory study attempts to demonstrate the potential utility of crowdsourcing as a supplemental technique for quantifying transcribed interviews. Crowdsourcing is the harnessing of the abilities of many people to complete a specific task or a set of tasks. In this study multiple samples of crowdsourced individuals were asked to rate and select supporting quotes from two different transcripts. The findings indicate that the different crowdsourced samples produced nearly identical ratings of the transcripts, and were able to consistently select the same supporting text from the transcripts. These findings suggest that crowdsourcing, with further development, can potentially be used as a mixed method tool to offer a supplemental perspective on transcribed interviews. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  14. Runx transcription factors in neuronal development

    Directory of Open Access Journals (Sweden)

    Shiga Takashi

    2008-08-01

    Full Text Available Abstract Runt-related (Runx transcription factors control diverse aspects of embryonic development and are responsible for the pathogenesis of many human diseases. In recent years, the functions of this transcription factor family in the nervous system have just begun to be understood. In dorsal root ganglion neurons, Runx1 and Runx3 play pivotal roles in the development of nociceptive and proprioceptive sensory neurons, respectively. Runx appears to control the transcriptional regulation of neurotrophin receptors, numerous ion channels and neuropeptides. As a consequence, Runx contributes to diverse aspects of the sensory system in higher vertebrates. In this review, we summarize recent progress in determining the role of Runx in neuronal development.

  15. Transcriptional inhibition by the retinoblastoma protein

    DEFF Research Database (Denmark)

    Fattaey, A; Helin, K; Harlow, E

    1993-01-01

    The retinoblastoma protein, pRB, appears to play a key role in coordinating the regulation of cell cycle position and transcriptional events. pRB undergoes specific cell-cycle-dependent phosphorylation, being underphosphorylated in G1 and heavily phosphorylated in S, G2, and M. The underphosphory......The retinoblastoma protein, pRB, appears to play a key role in coordinating the regulation of cell cycle position and transcriptional events. pRB undergoes specific cell-cycle-dependent phosphorylation, being underphosphorylated in G1 and heavily phosphorylated in S, G2, and M......-mediated transcription would be lost by mutation in the retinoblastoma gene in human tumours, by pRB's interaction with DNA tumour virus oncoproteins, or by phosphorylation during the cell cycle....

  16. Deciphering the Innate Lymphoid Cell Transcriptional Program

    Directory of Open Access Journals (Sweden)

    Cyril Seillet

    2016-10-01

    Full Text Available Innate lymphoid cells (ILCs are enriched at mucosal surfaces, where they provide immune surveillance. All ILC subsets develop from a common progenitor that gives rise to pre-committed progenitors for each of the ILC lineages. Currently, the temporal control of gene expression that guides the emergence of these progenitors is poorly understood. We used global transcriptional mapping to analyze gene expression in different ILC progenitors. We identified PD-1 to be specifically expressed in PLZF+ ILCp and revealed that the timing and order of expression of the transcription factors NFIL3, ID2, and TCF-1 was critical. Importantly, induction of ILC lineage commitment required only transient expression of NFIL3 prior to ID2 and TCF-1 expression. These findings highlight the importance of the temporal program that permits commitment of progenitors to the ILC lineage, and they expand our understanding of the core transcriptional program by identifying potential regulators of ILC development.

  17. Transcription as a Threat to Genome Integrity.

    Science.gov (United States)

    Gaillard, Hélène; Aguilera, Andrés

    2016-06-02

    Genomes undergo different types of sporadic alterations, including DNA damage, point mutations, and genome rearrangements, that constitute the basis for evolution. However, these changes may occur at high levels as a result of cell pathology and trigger genome instability, a hallmark of cancer and a number of genetic diseases. In the last two decades, evidence has accumulated that transcription constitutes an important natural source of DNA metabolic errors that can compromise the integrity of the genome. Transcription can create the conditions for high levels of mutations and recombination by its ability to open the DNA structure and remodel chromatin, making it more accessible to DNA insulting agents, and by its ability to become a barrier to DNA replication. Here we review the molecular basis of such events from a mechanistic perspective with particular emphasis on the role of transcription as a genome instability determinant.

  18. Molecular imaging of transcriptional regulation during inflammation

    Directory of Open Access Journals (Sweden)

    Carlsen Harald

    2010-04-01

    Full Text Available Abstract Molecular imaging enables non-invasive visualization of the dynamics of molecular processes within living organisms in vivo. Different imaging modalities as MRI, SPECT, PET and optic imaging are used together with molecular probes specific for the biological process of interest. Molecular imaging of transcription factor activity is done in animal models and mostly in transgenic reporter mice, where the transgene essentially consists of a promoter that regulates a reporter gene. During inflammation, the transcription factor NF-κB is widely involved in orchestration and regulation of the immune system and almost all imaging studies in this field has revolved around the role and regulation of NF-κB. We here present a brief introduction to experimental use and design of transgenic reporter mice and a more extensive review of the various studies where molecular imaging of transcriptional regulation has been applied during inflammation.

  19. Harnessing transcription for bioproduction in cyanobacteria

    DEFF Research Database (Denmark)

    Stensjö, Karin; Vavitsas, Konstantinos; Tyystjärvi, Taina

    2018-01-01

    Sustainable production of biofuels and other valuable compounds is one of our future challenges. One tempting possibility is to use photosynthetic cyanobacteria as production factories. Currently, tools for genetic engineering of cyanobacteria are yet not good enough to exploit the full potential...... of cyanobacteria. A wide variety of expression systems will be required to adjust both the expression of heterologous enzyme(s) and metabolic routes to the best possible balance, allowing the optimal production of a particular substance. In bacteria, transcription, especially the initiation of transcription, has...

  20. Transcription and the aspect ratio of DNA

    DEFF Research Database (Denmark)

    Olsen, Kasper Wibeck; Bohr, Jakob

    2013-01-01

    analysis of transcription. It is shown that under certain reasonable assumptions transcription is only possible if the aspect ratio is in the regime corresponding to further twisting. We find this constraint to be in agreement with long-established crystallographic studies of DNA.......Two separate regimes exist for the aspect ratio of DNA. A low aspect regime where DNA will twist further under strain and a high aspect regime where DNA will untwist under strain. The question of the overall geometry, i.e. the aspect ratio, of DNA is revisited from the perspective of a geometrical...

  1. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2006-11-01

    Full Text Available Many biological processes are controlled by intricate networks of transcriptional regulators. With the development of microarray technology, transcriptional changes can be examined at the whole-genome level. However, such analysis often lacks information on the hierarchical relationship between components of a given system. Systemic acquired resistance (SAR is an inducible plant defense response involving a cascade of transcriptional events induced by salicylic acid through the transcription cofactor NPR1. To identify additional regulatory nodes in the SAR network, we performed microarray analysis on Arabidopsis plants expressing the NPR1-GR (glucocorticoid receptor fusion protein. Since nuclear translocation of NPR1-GR requires dexamethasone, we were able to control NPR1-dependent transcription and identify direct transcriptional targets of NPR1. We show that NPR1 directly upregulates the expression of eight WRKY transcription factor genes. This large family of 74 transcription factors has been implicated in various defense responses, but no specific WRKY factor has been placed in the SAR network. Identification of NPR1-regulated WRKY factors allowed us to perform in-depth genetic analysis on a small number of WRKY factors and test well-defined phenotypes of single and double mutants associated with NPR1. Among these WRKY factors we found both positive and negative regulators of SAR. This genomics-directed approach unambiguously positioned five WRKY factors in the complex transcriptional regulatory network of SAR. Our work not only discovered new transcription regulatory components in the signaling network of SAR but also demonstrated that functional studies of large gene families have to take into consideration sequence similarity as well as the expression patterns of the candidates.

  2. Post-transcriptional bursting in genes regulated by small RNA molecules

    Science.gov (United States)

    Rodrigo, Guillermo

    2018-03-01

    Gene expression programs in living cells are highly dynamic due to spatiotemporal molecular signaling and inherent biochemical stochasticity. Here we study a mechanism based on molecule-to-molecule variability at the RNA level for the generation of bursts of protein production, which can lead to heterogeneity in a cell population. We develop a mathematical framework to show numerically and analytically that genes regulated post transcriptionally by small RNA molecules can exhibit such bursts due to different states of translation activity (on or off), mostly revealed in a regime of few molecules. We exploit this framework to compare transcriptional and post-transcriptional bursting and also to illustrate how to tune the resulting protein distribution with additional post-transcriptional regulations. Moreover, because RNA-RNA interactions are predictable with an energy model, we define the kinetic constants of on-off switching as functions of the two characteristic free-energy differences of the system, activation and formation, with a nonequilibrium scheme. Overall, post-transcriptional bursting represents a distinctive principle linking gene regulation to gene expression noise, which highlights the importance of the RNA layer beyond the simple information transfer paradigm and significantly contributes to the understanding of the intracellular processes from a first-principles perspective.

  3. The transcription factor KLF2 restrains CD4⁺ T follicular helper cell differentiation.

    Science.gov (United States)

    Lee, June-Yong; Skon, Cara N; Lee, You Jeong; Oh, Soohwan; Taylor, Justin J; Malhotra, Deepali; Jenkins, Marc K; Rosenfeld, M Geoffrey; Hogquist, Kristin A; Jameson, Stephen C

    2015-02-17

    T follicular helper (Tfh) cells are essential for efficient B cell responses, yet the factors that regulate differentiation of this CD4(+) T cell subset are incompletely understood. Here we found that the KLF2 transcription factor serves to restrain Tfh cell generation. Induced KLF2 deficiency in activated CD4(+) T cells led to increased Tfh cell generation and B cell priming, whereas KLF2 overexpression prevented Tfh cell production. KLF2 promotes expression of the trafficking receptor S1PR1, and S1PR1 downregulation is essential for efficient Tfh cell production. However, KLF2 also induced expression of the transcription factor Blimp-1, which repressed transcription factor Bcl-6 and thereby impaired Tfh cell differentiation. Furthermore, KLF2 induced expression of the transcription factors T-bet and GATA3 and enhanced Th1 differentiation. Hence, our data indicate KLF2 is pivotal for coordinating CD4(+) T cell differentiation through two distinct and complementary mechanisms: via control of T cell localization and by regulation of lineage-defining transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A network of paralogous stress response transcription factors in the human pathogen Candida glabrata.

    Directory of Open Access Journals (Sweden)

    Jawad eMerhej

    2016-05-01

    Full Text Available The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq, transcriptome analyses and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1 transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption and iron metabolism.

  5. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    Science.gov (United States)

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Mood stabilizing drugs regulate transcription of immune, neuronal and metabolic pathway genes in Drosophila.

    Science.gov (United States)

    Herteleer, L; Zwarts, L; Hens, K; Forero, D; Del-Favero, J; Callaerts, P

    2016-05-01

    Lithium and valproate (VPA) are drugs used in the management of bipolar disorder. Even though they reportedly act on various pathways, the transcriptional targets relevant for disease mechanism and therapeutic effect remain unclear. Furthermore, multiple studies used lymphoblasts of bipolar patients as a cellular proxy, but it remains unclear whether peripheral cells provide a good readout for the effects of these drugs in the brain. We used Drosophila culture cells and adult flies to analyze the transcriptional effects of lithium and VPA and define mechanistic pathways. Transcriptional profiles were determined for Drosophila S2-cells and adult fly heads following lithium or VPA treatment. Gene ontology categories were identified using the DAVID functional annotation tool with a cut-off of p neuronal development, neuronal function, and metabolism. (i) Transcriptional effects of lithium and VPA in Drosophila S2 cells and heads show significant overlap. (ii) The overlap between transcriptional alterations in peripheral versus neuronal cells at the single gene level is negligible, but at the gene ontology and pathway level considerable overlap can be found. (iii) Lithium and VPA act on evolutionarily conserved pathways in Drosophila and mammalian models.

  7. Derivation of human differential photoreceptor-like cells from the iris by defined combinations of CRX, RX and NEUROD.

    Directory of Open Access Journals (Sweden)

    Yuko Seko

    Full Text Available Examples of direct differentiation by defined transcription factors have been provided for beta-cells, cardiomyocytes and neurons. In the human visual system, there are four kinds of photoreceptors in the retina. Neural retina and iris-pigmented epithelium (IPE share a common developmental origin, leading us to test whether human iris cells could differentiate to retinal neurons. We here define the transcription factor combinations that can determine human photoreceptor cell fate. Expression of rhodopsin, blue opsin and green/red opsin in induced photoreceptor cells were dependent on combinations of transcription factors: A combination of CRX and NEUROD induced rhodopsin and blue opsin, but did not induce green opsin; a combination of CRX and RX induced blue opsin and green/red opsin, but did not induce rhodopsin. Phototransduction-related genes as well as opsin genes were up-regulated in those cells. Functional analysis; i.e. patch clamp recordings, clearly revealed that generated photoreceptor cells, induced by CRX, RX and NEUROD, responded to light. The response was an inward current instead of the typical outward current. These data suggest that photosensitive photoreceptor cells can be generated by combinations of transcription factors. The combination of CRX and RX generate immature photoreceptors: and additional NEUROD promotes maturation. These findings contribute substantially to a major advance toward eventual cell-based therapy for retinal degenerative diseases.

  8. Defining Ecosystem Assets for Natural Capital Accounting.

    Science.gov (United States)

    Hein, Lars; Bagstad, Ken; Edens, Bram; Obst, Carl; de Jong, Rixt; Lesschen, Jan Peter

    2016-01-01

    In natural capital accounting, ecosystems are assets that provide ecosystem services to people. Assets can be measured using both physical and monetary units. In the international System of Environmental-Economic Accounting, ecosystem assets are generally valued on the basis of the net present value of the expected flow of ecosystem services. In this paper we argue that several additional conceptualisations of ecosystem assets are needed to understand ecosystems as assets, in support of ecosystem assessments, ecosystem accounting and ecosystem management. In particular, we define ecosystems' capacity and capability to supply ecosystem services, as well as the potential supply of ecosystem services. Capacity relates to sustainable use levels of multiple ecosystem services, capability involves prioritising the use of one ecosystem service over a basket of services, and potential supply considers the ability of ecosystems to generate services regardless of demand for these services. We ground our definitions in the ecosystem services and accounting literature, and illustrate and compare the concepts of flow, capacity, capability, and potential supply with a range of conceptual and real-world examples drawn from case studies in Europe and North America. Our paper contributes to the development of measurement frameworks for natural capital to support environmental accounting and other assessment frameworks.

  9. Defining meridians: a modern basis of understanding.

    Science.gov (United States)

    Longhurst, John C

    2010-06-01

    Acupuncture, one of the primary methods of treatment in traditional Oriental medicine, is based on a system of meridians. Along the meridians lie acupuncture points or acupoints, which are stimulated by needling, pressure or heat to resolve a clinical problem. A number of methods have been used to identify meridians and to explain them anatomically. Thus, tendinomuscular structures, primo-vessels (Bonghan ducts), regions of increased temperature and low skin resistance have been suggested to represent meridians or as methods to identify them. However, none of these methods have met the criteria for a meridian, an entity that, when stimulated by acupuncture can result in clinical improvement. More recently, modern physiologists have put forward the "neural hypothesis" stating that the clinical influence of acupuncture is transmitted primarily through stimulation of sensory nerves that provide signals to the brain, which processes this information and then causes clinical changes associated with treatment. Although additional research is warranted to investigate the role of some of the structures identified, it seems clear that the peripheral and central nervous system can now be considered to be the most rational basis for defining meridians. The meridian maps and associated acupoints located along them are best viewed as road maps that can guide practitioners towards applying acupuncture to achieve optimal clinical results. Copyright 2010 Korean Pharmacopuncture Institute. Published by .. All rights reserved.

  10. Software Defined Networks in Wireless Sensor Architectures

    Directory of Open Access Journals (Sweden)

    Jesús Antonio Puente Fernández

    2018-03-01

    Full Text Available Nowadays, different protocols coexist in Internet that provides services to users. Unfortunately, control decisions and distributed management make it hard to control networks. These problems result in an inefficient and unpredictable network behaviour. Software Defined Networks (SDN is a new concept of network architecture. It intends to be more flexible and to simplify the management in networks with respect to traditional architectures. Each of these aspects are possible because of the separation of control plane (controller and data plane (switches in network devices. OpenFlow is the most common protocol for SDN networks that provides the communication between control and data planes. Moreover, the advantage of decoupling control and data planes enables a quick evolution of protocols and also its deployment without replacing data plane switches. In this survey, we review the SDN technology and the OpenFlow protocol and their related works. Specifically, we describe some technologies as Wireless Sensor Networks and Wireless Cellular Networks and how SDN can be included within them in order to solve their challenges. We classify different solutions for each technology attending to the problem that is being fixed.

  11. Defining the landscape of adaptive genetic diversity.

    Science.gov (United States)

    Eckert, Andrew J; Dyer, Rodney J

    2012-06-01

    Whether they are used to describe fitness, genome architecture or the spatial distribution of environmental variables, the concept of a landscape has figured prominently in our collective reasoning. The tradition of landscapes in evolutionary biology is one of fitness mapped onto axes defined by phenotypes or molecular sequence states. The characteristics of these landscapes depend on natural selection, which is structured across both genomic and environmental landscapes, and thus, the bridge among differing uses of the landscape concept (i.e. metaphorically or literally) is that of an adaptive phenotype and its distribution across geographical landscapes in relation to selective pressures. One of the ultimate goals of evolutionary biology should thus be to construct fitness landscapes in geographical space. Natural plant populations are ideal systems with which to explore the feasibility of attaining this goal, because much is known about the quantitative genetic architecture of complex traits for many different plant species. What is less known are the molecular components of this architecture. In this issue of Molecular Ecology, Parchman et al. (2012) pioneer one of the first truly genome-wide association studies in a tree that moves us closer to this form of mechanistic understanding for an adaptive phenotype in natural populations of lodgepole pine (Pinus contorta Dougl. ex Loud.). © 2012 Blackwell Publishing Ltd.

  12. Defining a standard metric for electricity savings

    International Nuclear Information System (INIS)

    Koomey, Jonathan; Akbari, Hashem; Blumstein, Carl; Brown, Marilyn; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B; Greenberg, Steve

    2010-01-01

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70% capacity factor with 7% T and D losses. Displacing such a plant for one year would save 3 billion kWh/year at the meter and reduce emissions by 3 million metric tons of CO 2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question-Dr Arthur H Rosenfeld.

  13. Defining a standard metric for electricity savings

    Energy Technology Data Exchange (ETDEWEB)

    Koomey, Jonathan [Lawrence Berkeley National Laboratory and Stanford University, PO Box 20313, Oakland, CA 94620-0313 (United States); Akbari, Hashem; Blumstein, Carl; Brown, Marilyn; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B; Greenberg, Steve, E-mail: JGKoomey@stanford.ed

    2010-01-15

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70% capacity factor with 7% T and D losses. Displacing such a plant for one year would save 3 billion kWh/year at the meter and reduce emissions by 3 million metric tons of CO{sub 2} per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question-Dr Arthur H Rosenfeld.

  14. Defining functional dyspepsia Definiendo la dispepsia funcional

    Directory of Open Access Journals (Sweden)

    Fermín Mearin

    2011-12-01

    Full Text Available Dyspepsia and functional dyspepsia represent a highly significant public health issue. A good definition of dyspepsia is key for helping us to better approach symptoms, decision making, and therapy indications. During the last few years many attempts were made at establishing a definition of dyspepsia. Results were little successful on most occasions, and clear discrepancies arose on whether symptoms should be associated with digestion, which types of symptoms were to be included, which anatomic location should symptoms have, etc. The Rome III Committee defined dyspepsia as "a symptom or set of symptoms that most physicians consider to originate from the gastroduodenal area", including the following: postprandial heaviness, early satiety, and epigastric pain or burning. Two new entities were defined: a food-induced dyspeptic symptoms (postprandial distress syndrome; and b epigastric pain (epigastric pain syndrome. These and other definitions have shown both strengths and weaknesses. At times they have been much too complex, at times much too simple; furthermore, they have commonly erred on the side of being inaccurate and impractical. On the other hand, some (the most recent ones are difficult to translate into the Spanish language. In a meeting of gastroenterologists with a special interest in digestive functional disorders, the various aspects of dyspepsia definition were discussed and put to the vote, and the following conclusions were arrived at: dyspepsia is defined as a set of symptoms, either related or unrelated to food ingestion, localized on the upper half of the abdomen. They include: a epigastric discomfort (as a category of severity or pain; b postprandial heaviness; and c early satiety. Associated complaints include: nausea, belching, bloating, and epigastric burn (heartburn. All these must be scored according to severity and frequency. Furthermore, psychological factors may be involved in the origin of functional dyspepsia. On the

  15. [Defining AIDS terminology. A practical approach].

    Science.gov (United States)

    Locutura, Jaime; Almirante, Benito; Berenguer, Juan; Muñoz, Agustín; Peña, José María

    2003-01-01

    Since the appearance of AIDS, the study of this disease has generated a large amount of information and an extensive related vocabulary comprised of new terms or terms borrowed from other scientific fields. The urgent need to provide names for newly described phenomena and concepts in this field has resulted in the application of terms that are not always appropriate from the linguistic and scientific points of view. We discuss the difficulties in attempting to create adequate AIDS terminology in the Spanish language, considering both the general problems involved in building any scientific vocabulary and the specific problems inherent to this activity in a field whose defining illness has important social connotations. The pressure exerted by the predominance of the English language in reporting scientific knowledge is considered, and the inappropriate words most often found in a review of current literature are examined. Finally, attending to the two most important criteria for the creation of new scientific terms, accuracy and linguistic correction, we propose some well thought-out alternatives that conform to the essence of the Spanish language.

  16. Defining Ecosystem Assets for Natural Capital Accounting

    Science.gov (United States)

    Hein, Lars; Bagstad, Ken; Edens, Bram; Obst, Carl; de Jong, Rixt; Lesschen, Jan Peter

    2016-01-01

    In natural capital accounting, ecosystems are assets that provide ecosystem services to people. Assets can be measured using both physical and monetary units. In the international System of Environmental-Economic Accounting, ecosystem assets are generally valued on the basis of the net present value of the expected flow of ecosystem services. In this paper we argue that several additional conceptualisations of ecosystem assets are needed to understand ecosystems as assets, in support of ecosystem assessments, ecosystem accounting and ecosystem management. In particular, we define ecosystems’ capacity and capability to supply ecosystem services, as well as the potential supply of ecosystem services. Capacity relates to sustainable use levels of multiple ecosystem services, capability involves prioritising the use of one ecosystem service over a basket of services, and potential supply considers the ability of ecosystems to generate services regardless of demand for these services. We ground our definitions in the ecosystem services and accounting literature, and illustrate and compare the concepts of flow, capacity, capability, and potential supply with a range of conceptual and real-world examples drawn from case studies in Europe and North America. Our paper contributes to the development of measurement frameworks for natural capital to support environmental accounting and other assessment frameworks. PMID:27828969

  17. Medical device software: defining key terms.

    Science.gov (United States)

    Pashkov, Vitalii; Gutorova, Nataliya; Harkusha, Andrii

    one of the areas of significant growth in medical devices has been the role of software - as an integral component of a medical device, as a standalone device and more recently as applications on mobile devices. The risk related to a malfunction of the standalone software used within healthcare is in itself not a criterion for its qualification or not as a medical device. It is therefore, necessary to clarify some criteria for the qualification of stand-alone software as medical devices Materials and methods: Ukrainian, European Union, United States of America legislation, Guidelines developed by European Commission and Food and Drug Administration's, recommendations represented by international voluntary group and scientific works. This article is based on dialectical, comparative, analytic, synthetic and comprehensive research methods. the legal regulation of software which is used for medical purpose in Ukraine limited to one definition. In European Union and United States of America were developed and applying special guidelines that help developers, manufactures and end users to difference software on types standing on medical purpose criteria. Software becomes more and more incorporated into medical devices. Developers and manufacturers may not have initially appreciated potential risks to patients and users such situation could have dangerous results for patients or users. It is necessary to develop and adopt the legislation that will intend to define the criteria for the qualification of medical device software and the application of the classification criteria to such software, provide some illustrative examples and step by step recommendations to qualify software as medical device.

  18. Software-defined Quantum Networking Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The software enables a user to perform modeling and simulation of software-defined quantum networks. The software addresses the problem of how to synchronize transmission of quantum and classical signals through multi-node networks and to demonstrate quantum information protocols such as quantum teleportation. The software approaches this problem by generating a graphical model of the underlying network and attributing properties to each node and link in the graph. The graphical model is then simulated using a combination of discrete-event simulators to calculate the expected state of each node and link in the graph at a future time. A user interacts with the software by providing an initial network model and instantiating methods for the nodes to transmit information with each other. This includes writing application scripts in python that make use of the software library interfaces. A user then initiates the application scripts, which invokes the software simulation. The user then uses the built-in diagnostic tools to query the state of the simulation and to collect statistics on synchronization.

  19. Defining Astrology in Ancient and Classical History

    Science.gov (United States)

    Campion, Nicholas

    2015-05-01

    Astrology in the ancient and classical worlds can be partly defined by its role, and partly by the way in which scholars spoke about it. The problem is complicated by the fact that the word is Greek - it has no Babylonian or Egyptian cognates - and even in Greece it was interchangeable with its cousin, 'astronomy'. Yet if we are to understand the role of the sky, stars and planets in culture, debates about the nature of ancient astrology, by both classical and modern scholars, must be taken into account. This talk will consider modern scholars' typologies of ancient astrology, together with ancient debates from Cicero in the 1st century BC, to Plotinus (204/5-270 AD) and Isidore of Seville (c. 560 - 4 April 636). It will consider the implications for our understanding of astronomy's role in culture, and conclude that in the classical period astrology may be best understood through its diversity and allegiance to competing philosophies, and that its functions were therefore similarly varied.

  20. Defining ecosystem assets for natural capital accounting

    Science.gov (United States)

    Hein, Lars; Bagstad, Kenneth J.; Edens, Bram; Obst, Carl; de Jong, Rixt; Lesschen, Jan Peter

    2016-01-01

    In natural capital accounting, ecosystems are assets that provide ecosystem services to people. Assets can be measured using both physical and monetary units. In the international System of Environmental-Economic Accounting, ecosystem assets are generally valued on the basis of the net present value of the expected flow of ecosystem services. In this paper we argue that several additional conceptualisations of ecosystem assets are needed to understand ecosystems as assets, in support of ecosystem assessments, ecosystem accounting and ecosystem management. In particular, we define ecosystems’ capacity and capability to supply ecosystem services, as well as the potential supply of ecosystem services. Capacity relates to sustainable use levels of multiple ecosystem services, capability involves prioritising the use of one ecosystem service over a basket of services, and potential supply considers the ability of ecosystems to generate services regardless of demand for these services. We ground our definitions in the ecosystem services and accounting literature, and illustrate and compare the concepts of flow, capacity, capability, and potential supply with a range of conceptual and real-world examples drawn from case studies in Europe and North America. Our paper contributes to the development of measurement frameworks for natural capital to support environmental accounting and other assessment frameworks.

  1. Methodologies for defining quality of life

    Energy Technology Data Exchange (ETDEWEB)

    Glicken, J. [Ecological Planning and Toxicology, Inc., Albuquerque, NM (United States); Engi, D. [Sandia National Labs., Albuquerque, NM (United States)

    1996-10-10

    Quality of life as a concept has been used in many ways in the public policy arena. It can be used in summative evaluations to assess the impacts of policies or programs. Alternatively, it can be applied to formative evaluations to provide input to the formation of new policies. In short, it provides the context for the understanding needed to evaluate the results of choices that have been made in the public policy arena, or the potential of choices yet to be made. In either case, the public policy question revolves around the positive or negative impact the choice will have on quality of life, and the magnitude of that impact. This discussion will develop a conceptual framework that proposes that an assessment of quality of life is based on a comparison of expectations with experience. The framework defines four basic components from which these expectations arise: natural conditions, social conditions, the body, and the mind. Each one of these components is generally described, and associated with a general policy or rhetorical category which gives it its policy vocabulary--environmental quality, economic well-being, human health, and self-fulfillment.

  2. Defining a Standard Metric for Electricity Savings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst

    2009-03-01

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.

  3. HIV-induced immunodeficiency and mortality from AIDS-defining and non-AIDS-defining malignancies

    DEFF Research Database (Denmark)

    Monforte, Antonella d'Arminio; Abrams, Donald; Pradier, Christian

    2008-01-01

    OBJECTIVE: To evaluate deaths from AIDS-defining malignancies (ADM) and non-AIDS-defining malignancies (nADM) in the D:A:D Study and to investigate the relationship between these deaths and immunodeficiency. DESIGN: Observational cohort study. METHODS: Patients (23 437) were followed prospectively......-fold higher latest CD4 cell count was associated with a halving of the risk of ADM mortality. Other predictors of an increased risk of ADM mortality were homosexual risk group, older age, a previous (non-malignancy) AIDS diagnosis and earlier calendar years. Predictors of an increased risk of nADM mortality...

  4. Direct conversion of human fibroblasts into functional osteoblasts by defined factors.

    Science.gov (United States)

    Yamamoto, Kenta; Kishida, Tsunao; Sato, Yoshiki; Nishioka, Keisuke; Ejima, Akika; Fujiwara, Hiroyoshi; Kubo, Toshikazu; Yamamoto, Toshiro; Kanamura, Narisato; Mazda, Osam

    2015-05-12

    Osteoblasts produce calcified bone matrix and contribute to bone formation and remodeling. In this study, we established a procedure to directly convert human fibroblasts into osteoblasts by transducing some defined factors and culturing in osteogenic medium. Osteoblast-specific transcription factors, Runt-related transcription factor 2 (Runx2), and Osterix, in combination with Octamer-binding transcription factor 3/4 (Oct4) and L-Myc (RXOL) transduction, converted ∼ 80% of the fibroblasts into osteocalcin-producing cells. The directly converted osteoblasts (dOBs) induced by RXOL displayed a similar gene expression profile as normal human osteoblasts and contributed to bone repair after transplantation into immunodeficient mice at artificial bone defect lesions. The dOBs expressed endogenous Runx2 and Osterix, and did not require continuous expression of the exogenous genes to maintain their phenotype. Another combination, Oct4 plus L-Myc (OL), also induced fibroblasts to produce bone matrix, but the OL-transduced cells did not express Osterix and exhibited a more distant gene expression profile to osteoblasts compared with RXOL-transduced cells. These findings strongly suggest successful direct reprogramming of fibroblasts into functional osteoblasts by RXOL, a technology that may provide bone regeneration therapy against bone disorders.

  5. BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire

    OpenAIRE

    Najafova, Zeynab; Tirado-Magallanes, Roberto; Subramaniam, Malayannan; Hossan, Tareq; Schmidt, Geske; Nagarajan, Sankari; Baumgart, Simon J.; Mishra, Vivek?Kumar; Bedi, Upasana; Hesse, Eric; Knapp, Stefan; Hawse, John R.; Johnsen, Steven A.

    2016-01-01

    Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4)was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is rec...

  6. Conservation of transcription factor binding events predicts gene expression across species

    OpenAIRE

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to funct...

  7. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program

    DEFF Research Database (Denmark)

    Morrison-Nozik, Alexander; Anand, Priti; Zhu, Han

    2015-01-01

    in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription......Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy...... factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although...

  8. The FOUR LIPS and MYB88 transcription factor genes are widely expressed in Arabidopsis thaliana during development.

    Science.gov (United States)

    Lei, Qin; Lee, EunKyoung; Keerthisinghe, Sandra; Lai, Lien; Li, Meng; Lucas, Jessica R; Wen, Xiaohong; Ren, Xiaolin; Sack, Fred D

    2015-09-01

    The FOUR LIPS (FLP) and MYB88 transcription factors, which are closely related in structure and function, control the development of stomata, as well as entry into megasporogenesis in Arabidopsis thaliana. However, other locations where these transcription factors are expressed are poorly described. Documenting additional locations where these genes are expressed might define new functions for these genes. Expression patterns were examined throughout vegetative and reproductive development. The expression from two transcriptional-reporter fusions were visualized with either β-glucuronidase (GUS) or green fluorescence protein (GFP). Both flp and myb88 genes were expressed in many, previously unreported locations, consistent with the possibility of additional functions for FLP and MYB88. Moreover, expression domains especially of FLP display sharp cutoffs or boundaries. In addition to stomatal and reproductive development, FLP and MYB88, which are R2R3 MYB transcription factor genes, are expressed in many locations in cells, tissues, and organs. © 2015 Botanical Society of America.

  9. Software Defined Common Processing System (SDCPS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Coherent Logix, Incorporated proposes the Software Defined Common Processing System (SDCPS) program to facilitate the development of a Software Defined Radio...

  10. Transcriptional role of androgen receptor in the expression of long non-coding RNA Sox2OT in neurogenesis.

    Directory of Open Access Journals (Sweden)

    Valentina Tosetti

    Full Text Available The complex architecture of adult brain derives from tightly regulated migration and differentiation of precursor cells generated during embryonic neurogenesis. Changes at transcriptional level of genes that regulate migration and differentiation may lead to neurodevelopmental disorders. Androgen receptor (AR is a transcription factor that is already expressed during early embryonic days. However, AR role in the regulation of gene expression at early embryonic stage is yet to be determinate. Long non-coding RNA (lncRNA Sox2 overlapping transcript (Sox2OT plays a crucial role in gene expression control during development but its transcriptional regulation is still to be clearly defined. Here, using Bicalutamide in order to pharmacologically inactivated AR, we investigated whether AR participates in the regulation of the transcription of the lncRNASox2OTat early embryonic stage. We identified a new DNA binding region upstream of Sox2 locus containing three androgen response elements (ARE, and found that AR binds such a sequence in embryonic neural stem cells and in mouse embryonic brain. Our data suggest that through this binding, AR can promote the RNA polymerase II dependent transcription of Sox2OT. Our findings also suggest that AR participates in embryonic neurogenesis through transcriptional control of the long non-coding RNA Sox2OT.

  11. A Methodology to Define Flood Resilience

    Science.gov (United States)

    Tourbier, J.

    2012-04-01

    Flood resilience has become an internationally used term with an ever-increasing number of entries on the Internet. The SMARTeST Project is looking at approaches to flood resilience through case studies at cities in various countries, including Washington D.C. in the United States. In light of U.S. experiences a methodology is being proposed by the author that is intended to meet ecologic, spatial, structural, social, disaster relief and flood risk aspects. It concludes that: "Flood resilience combines (1) spatial, (2) structural, (3) social, and (4) risk management levels of flood preparedness." Flood resilience should incorporate all four levels, but not necessarily with equal emphasis. Stakeholders can assign priorities within different flood resilience levels and the considerations they contain, dividing 100% emphasis into four levels. This evaluation would be applied to planned and completed projects, considering existing conditions, goals and concepts. We have long known that the "road to market" for the implementation of flood resilience is linked to capacity building of stakeholders. It is a multidisciplinary enterprise, involving the integration of all the above aspects into the decision-making process. Traditional flood management has largely been influenced by what in the UK has been called "Silo Thinking", involving constituent organizations that are responsible for different elements, and are interested only in their defined part of the system. This barrier to innovation also has been called the "entrapment effect". Flood resilience is being defined as (1) SPATIAL FLOOD RESILIENCE implying the management of land by floodplain zoning, urban greening and management to reduce storm runoff through depression storage and by practicing Sustainable Urban Drainage (SUD's), Best Management Practices (BMP's, or Low Impact Development (LID). Ecologic processes and cultural elements are included. (2) STRUCTURAL FLOOD RESILIENCE referring to permanent flood defense

  12. Mitochondrial transcription factor A protects human retinal ...

    African Journals Online (AJOL)

    Purpose: To investigate the impact of mitochondrial transcription factor A (TFAM), as a modulator of NF-κB, on proliferation of hypoxia-induced human retinal endothelial cell (HREC), and the probable mechanism. Methods: After exposure to hypoxia (1 % O2) for 5 days, cell proliferation and cell cycle of HREC were ...

  13. RNA Polymerase II–The Transcription Machine

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 3. RNA Polymerase II – The Transcription Machine - Nobel Prize in Chemistry 2006. Jiyoti Verma Aruna Naorem Anand Kumar Manimala Sen Parag Sadhale. General Article Volume 12 Issue 3 March 2007 pp 47-53 ...

  14. Cross-Family Transcription Factor Interactions

    NARCIS (Netherlands)

    Bemer, Marian; Dijk, van Aalt-Jan; Immink, Richard G.H.; Angenent, Gerco C.

    2017-01-01

    Specific and dynamic gene expression strongly depends on transcription factor (TF) activity and most plant TFs function in a combinatorial fashion. They can bind to DNA and control the expression of the corresponding gene in an additive fashion or cooperate by physical interactions, forming larger

  15. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

    Science.gov (United States)

    Le Billan, Florian; Amazit, Larbi; Bleakley, Kevin; Xue, Qiong-Yao; Pussard, Eric; Lhadj, Christophe; Kolkhof, Peter; Viengchareun, Say; Fagart, Jérôme; Lombès, Marc

    2018-05-07

    Mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) are two closely related hormone-activated transcription factors that regulate major pathophysiologic functions. High homology between these receptors accounts for the crossbinding of their corresponding ligands, MR being activated by both aldosterone and cortisol and GR essentially activated by cortisol. Their coexpression and ability to bind similar DNA motifs highlight the need to investigate their respective contributions to overall corticosteroid signaling. Here, we decipher the transcriptional regulatory mechanisms that underlie selective effects of MRs and GRs on shared genomic targets in a human renal cellular model. Kinetic, serial, and sequential chromatin immunoprecipitation approaches were performed on the period circadian protein 1 ( PER1) target gene, providing evidence that both receptors dynamically and cyclically interact at the same target promoter in a specific and distinct transcriptional signature. During this process, both receptors regulate PER1 gene by binding as homo- or heterodimers to the same promoter region. Our results suggest a novel level of MR-GR target gene regulation, which should be considered for a better and integrated understanding of corticosteroid-related pathophysiology.-Le Billan, F., Amazit, L., Bleakley, K., Xue, Q.-Y., Pussard, E., Lhadj, C., Kolkhof, P., Viengchareun, S., Fagart, J., Lombès, M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

  16. Transcriptional networks in epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Christo Venkov

    Full Text Available Epithelial-mesenchymal transition (EMT changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis.Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells.Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts.

  17. Ramifications of defining high-level waste

    International Nuclear Information System (INIS)

    Wood, D.E.; Campbell, M.H.; Shupe, M.W.

    1987-01-01

    The Nuclear Regulatory Commission (NRC) is considering rule making to provide a concentration-based definition of high-level waste (HLW) under authority derived from the Nuclear Waste Policy Act (NWPA) of 1982 and the Low Level Waste Policy Amendments Act of 1985. The Department of Energy (DOE), which has the responsibility to dispose of certain kinds of commercial waste, is supporting development of a risk-based classification system by the Oak Ridge National Laboratory to assist in developing and implementing the NRC rule. The system is two dimensional, with the axes based on the phrases highly radioactive and requires permanent isolation in the definition of HLW in the NWPA. Defining HLW will reduce the ambiguity in the present source-based definition by providing concentration limits to establish which materials are to be called HLW. The system allows the possibility of greater-confinement disposal for some wastes which do not require the degree of isolation provided by a repository. The definition of HLW will provide a firm basis for waste processing options which involve partitioning of waste into a high-activity stream for repository disposal, and a low-activity stream for disposal elsewhere. Several possible classification systems have been derived and the characteristics of each are discussed. The Defense High Level Waste Technology Lead Office at DOE - Richland Operations Office, supported by Rockwell Hanford Operations, has coordinated reviews of the ORNL work by a technical peer review group and other DOE offices. The reviews produced several recommendations and identified several issues to be addressed in the NRC rule making. 10 references, 3 figures

  18. Defining malnutrition: A plea to rethink.

    Science.gov (United States)

    Soeters, P; Bozzetti, F; Cynober, L; Forbes, A; Shenkin, A; Sobotka, L

    2017-06-01

    In a recent consensus report in Clinical Nutrition the undernourished category of malnutrition was proposed to be defined and diagnosed on the basis of a low BMI or unintentional weight loss combined with low BMI or FFMI with certain cut off points. The definition was endorsed by ESPEN despite recent endorsement of a very different definition. The approach aims to assess whether nutritional intake is sufficient but is imprecise because a low BMI does not always indicate malnutrition and individuals with increasing BMI's may have decreasing FFM's. The pathophysiology of individuals, considered to be malnourished in rich countries and in areas with endemic malnutrition, results predominantly from deficient nutrition combined with infection/inflammation. Both elements jointly determine body composition and function and consequently outcome of disease, trauma or treatment. When following the consensus statement only an imprecise estimate is acquired of nutritional intake without knowing the impact of inflammation. Most importantly, functional abilities are not assessed. Consequently it will remain uncertain how well the individual can overcome stressful events, what the causes are of dysfunction, how to set priorities for treatment and how to predict the effect of nutritional support. We therefore advise to consider the pathophysiology of malnourished individuals leading to inclusion of the following elements in the definition of malnutrition: a disordered nutritional state resulting from a combination of inflammation and a negative nutrient balance, leading to changes in body composition, function and outcome. A precise diagnosis of malnutrition should be based on assessment of these elements. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Defining the critical hurdles in cancer immunotherapy

    Science.gov (United States)

    2011-01-01

    Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators; others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet if overcome, have the potential to improve outcomes of patients with cancer. PMID:22168571

  20. Towards defining restlessness in individuals with dementia.

    Science.gov (United States)

    Regier, Natalie G; Gitlin, Laura N

    2017-05-01

    Most individuals with dementia develop significant behavioral problems. Restlessness is a behavioral symptom frequently endorsed by caregivers as distressing, yet is variably defined and measured. Lack of conceptual and operational clarity hinders an understanding of this common behavioral type, its prevalence, and development of effective interventions. We advance a systematic definition and understanding of restlessness from which to enhance reporting and intervention development. We reviewed the literature for existing definitions and measures of restlessness, identified common elements across existing definitions, assessed fit with relevant theoretical frameworks, and explored the relationship between restlessness and other behavioral symptoms in a data set of 272 community-dwelling persons with dementia. Twenty-five scales assessing restlessness were identified. Shared components included motor/neurological, psychiatric, and needs-based features. Exploratory analyses suggest that restlessness may co-occur primarily with argumentation, anxiety, waking the caregiver, delusions/hallucinations, and wandering. We propose that restlessness consists of three key attributes: diffuse motor activity or motion subject to limited control, non-productive or disorganized behavior, and subjective distress. Restlessness should be differentiated from and not confused with wandering or elopement, pharmacological side effects, a (non-dementia) mental or movement disorder, or behaviors occurring in the context of a delirium or at end-of-life. Restlessness appears to denote a distinct set of behaviors that have overlapping but non-equivalent features with other behavioral symptoms. We propose that it reflects a complex behavior involving three key characteristics. Understanding its specific manifestations and which components are present can enhance tailoring interventions to specific contexts of this multicomponent behavioral type.

  1. Defining the critical hurdles in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2011-12-01

    Full Text Available Abstract Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC, convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators; others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet if overcome, have the potential to improve outcomes of patients with cancer.

  2. Defining food literacy: A scoping review.

    Science.gov (United States)

    Truman, Emily; Lane, Daniel; Elliott, Charlene

    2017-09-01

    The term "food literacy" describes the idea of proficiency in food related skills and knowledge. This prevalent term is broadly applied, although its core elements vary from initiative to initiative. In light of its ubiquitous use-but varying definitions-this article establishes the scope of food literacy research by identifying all articles that define 'food literacy', analysing its key conceptualizations, and reporting outcomes/measures of this concept. A scoping review was conducted to identify all articles (academic and grey literature) using the term "food literacy". Databases included Medline, Pubmed, Embase, CAB Abstracts, CINAHL, Scopus, JSTOR, and Web of Science, and Google Scholar. Of 1049 abstracts, 67 studies were included. From these, data was extracted on country of origin, study type (methodological approach), primary target population, and the primary outcomes relating to food literacy. The majority of definitions of food literacy emphasize the acquisition of critical knowledge (information and understanding) (55%) over functional knowledge (skills, abilities and choices) (8%), although some incorporate both (37%). Thematic analysis of 38 novel definitions of food literacy reveals the prevalence of six themes: skills and behaviours, food/health choices, culture, knowledge, emotions, and food systems. Study outcomes largely focus on knowledge generating measures, with very few focusing on health related outcome measures. Current definitions of food literacy incorporate components of six key themes or domains and attributes of both critical and functional knowledge. Despite this broad definition of the term, most studies aiming to improve food literacy focus on knowledge related outcomes. Few articles address health outcomes, leaving an important gap (and opportunity) for future research in this field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Future Scenarios for Software-Defined Metro and Access Networks and Software-Defined Photonics

    Directory of Open Access Journals (Sweden)

    Tommaso Muciaccia

    2017-01-01

    Full Text Available In recent years, architectures, devices, and components in telecommunication networks have been challenged by evolutionary and revolutionary factors which are drastically changing the traffic features. Most of these changes imply the need for major re-configurability and programmability not only in data-centers and core networks, but also in the metro-access segment. In a wide variety of contexts, this necessity has been addressed by the proposed introduction of the innovative paradigm of software-defined networks (SDNs. Several solutions inspired by the SDN model have been recently proposed also for metro and access networks, where the adoption of a new generation of software-defined reconfigurable integrated photonic devices is highly desirable. In this paper, we review the possible future application scenarios for software-defined metro and access networks and software-defined photonics (SDP, on the base of analytics, statistics, and surveys. This work describes the reasons underpinning the presented radical change of paradigm and summarizes the most significant solutions proposed in literature, with a specific emphasis to physical-layer reconfigurable networks and a focus on both architectures and devices.

  4. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.

    Directory of Open Access Journals (Sweden)

    Haisun Zhu

    2008-01-01

    Full Text Available The circadian clock plays a vital role in monarch butterfly (Danaus plexippus migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of a Drosophila-like cryptochrome (cry, designated cry1, and a vertebrate-like cry, designated cry2, that are both expressed in the butterfly and by placing these genes in the context of other relevant clock genes in vivo. We found that similar temporal patterns of clock gene expression and protein levels occur in the heads, as occur in DpN1 cells, of a monarch cell line that contains a light-driven clock. CRY1 mediates TIMELESS degradation by light in DpN1 cells, and a light-induced TIMELESS decrease occurs in putative clock cells in the pars lateralis (PL in the brain. Moreover, monarch cry1 transgenes partially rescue both biochemical and behavioral light-input defects in cry(b mutant Drosophila. CRY2 is the major transcriptional repressor of CLOCK:CYCLE-mediated transcription in DpN1 cells, and endogenous CRY2 potently inhibits transcription without involvement of PERIOD. CRY2 is co-localized with clock proteins in the PL, and there it translocates to the nucleus at the appropriate time for transcriptional repression. We also discovered CRY2-positive neural projections that oscillate in the central complex. The results define a novel, CRY-centric clock mechanism in the monarch in which CRY1 likely functions as a blue-light photoreceptor for entrainment, whereas CRY2 functions within the clockwork as the transcriptional repressor of a negative transcriptional feedback loop. Our data further suggest that CRY2 may have a dual role in the monarch butterfly's brain-as a core clock element and as an output that regulates circadian activity in the central complex, the likely site of the sun compass.

  5. Transcription of Russian intonation ToRI, an interactive research tool and learning module on the internet

    NARCIS (Netherlands)

    Odé, C.

    2008-01-01

    This article discusses a new system for the Transcription of Russian Intonation, ToRI, on the Internet. Section 1 presents a general outline of the system. The terminology used in ToRI is defined in an online glossary, from which Section 2 gives the following examples: pitch accent and

  6. Proteins mediating DNA loops effectively block transcription.

    Science.gov (United States)

    Vörös, Zsuzsanna; Yan, Yan; Kovari, Daniel T; Finzi, Laura; Dunlap, David

    2017-07-01

    Loops are ubiquitous topological elements formed when proteins simultaneously bind to two noncontiguous DNA sites. While a loop-mediating protein may regulate initiation at a promoter, the presence of the protein at the other site may be an obstacle for RNA polymerases (RNAP) transcribing a different gene. To test whether a DNA loop alters the extent to which a protein blocks transcription, the lac repressor (LacI) was used. The outcome of in vitro transcription along templates containing two LacI operators separated by 400 bp in the presence of LacI concentrations that produced both looped and unlooped molecules was visualized with scanning force microscopy (SFM). An analysis of transcription elongation complexes, moving for 60 s at an average of 10 nt/s on unlooped DNA templates, revealed that they more often surpassed LacI bound to the lower affinity O2 operator than to the highest affinity Os operator. However, this difference was abrogated in looped DNA molecules where LacI became a strong roadblock independently of the affinity of the operator. Recordings of transcription elongation complexes, using magnetic tweezers, confirmed that they halted for several minutes upon encountering a LacI bound to a single operator. The average pause lifetime is compatible with RNAP waiting for LacI dissociation, however, the LacI open conformation visualized in the SFM images also suggests that LacI could straddle RNAP to let it pass. Independently of the mechanism by which RNAP bypasses the LacI roadblock, the data indicate that an obstacle with looped topology more effectively interferes with transcription. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  7. Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis.

    Science.gov (United States)

    Luna-Zurita, Luis; Stirnimann, Christian U; Glatt, Sebastian; Kaynak, Bogac L; Thomas, Sean; Baudin, Florence; Samee, Md Abul Hassan; He, Daniel; Small, Eric M; Mileikovsky, Maria; Nagy, Andras; Holloway, Alisha K; Pollard, Katherine S; Müller, Christoph W; Bruneau, Benoit G

    2016-02-25

    Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Defining Compensable Injury in Biomedical Research.

    Science.gov (United States)

    Larkin, Megan E

    2015-01-01

    Biomedical research provides a core social good by enabling medical progress. In the twenty-first century alone, this includes reducing transmission of HIV/AIDS, developing innovative therapies for cancer patients, and exploring the possibilities of personalized medicine. In order to continue to advance medical science, research relies on the voluntary participation of human subjects. Because research is inherently uncertain, unintended harm is an inevitable part of the research enterprise. Currently, injured research participants in the United States must turn to the “litigation lottery” of the tort system in search of compensation. This state of affairs fails research participants, who are too often left uncompensated for devastating losses, and makes the United States an outlier in the international community. In spite of forty years’ worth of Presidential Commissions and other respected voices calling for the development of a no-fault compensation system, no progress has been made to date. One of the reasons for this lack of progress is the failure to develop a coherent ethical basis for an obligation to provide compensation for research related injuries. This problem is exacerbated by the lack of a clear definition of “compensable injury” in the biomedical research context. This article makes a number of important contributions to the scholarship in this growing field. To begin, it examines compensation systems already in existence and concludes that there are four main definitional elements that must be used to define “compensable injury.” Next, it examines the justifications that have been put forth as the basis for an ethical obligation to provide compensation, and settles on retrospective nonmaleficence and distributive and compensatory justice as the most salient and persuasive. Finally, it uses the regulatory elements and the justifications discussed in the first two sections to develop a well-rounded definition of “compensable injury

  9. Understanding and defining bullying - adolescents' own views.

    Science.gov (United States)

    Hellström, Lisa; Persson, Louise; Hagquist, Curt

    2015-01-01

    The negative consequences of peer-victimization on children and adolescents are major public health concerns which have been subjected to extensive research. Given all efforts made to analyze and estimate the social and health consequences of peer-victimization, the adolescents' own experiences and understandings have had surprisingly little impact on the definition of bullying. Therefore, the aim of the current study is to explore adolescents' definitions of bullying. A questionnaire study (n = 128) and four focus group interviews (n = 21) were conducted among students aged 13 and 15. First, gender and age differences were analyzed with respect to what behaviors are considered bullying (questionnaire data). Second, analysis of what bullying is (focus group interviews) was conducted using qualitative content analysis. The adolescents own understanding and definition of bullying didn't just include the traditional criteria of repetition and power imbalance, but also a criterion based on the health consequences of bullying. The results showed that a single but hurtful or harmful incident also could be considered bullying irrespective of whether the traditional criteria were fulfilled or not. Further, girls and older students had a more inclusive view of bullying and reported more types of behaviors as bullying compared to boys and younger students. The results of the current study adds to the existing literature by showing that adolescents consider the victim's experience of hurt and harm as a criterion for defining bullying and not only as consequences of bullying. This may be of special relevance for the identification and classification of bullying incidents on the internet where devastating consequences have been reported from single incidents and the use of the traditional criteria of intent, repetition and power imbalance may not be as relevant as for traditional bullying. It implies that the traditional criteria included in most definitions of bullying

  10. Method to determine transcriptional regulation pathways in organisms

    Science.gov (United States)

    Gardner, Timothy S.; Collins, James J.; Hayete, Boris; Faith, Jeremiah

    2012-11-06

    The invention relates to computer-implemented methods and systems for identifying regulatory relationships between expressed regulating polypeptides and targets of the regulatory activities of such regulating polypeptides. More specifically, the invention provides a new method for identifying regulatory dependencies between biochemical species in a cell. In particular embodiments, provided are computer-implemented methods for identifying a regulatory interaction between a transcription factor and a gene target of the transcription factor, or between a transcription factor and a set of gene targets of the transcription factor. Further provided are genome-scale methods for predicting regulatory interactions between a set of transcription factors and a corresponding set of transcriptional target substrates thereof.

  11. Post-transcription cleavage generates the 3' end of F17R transcripts in vaccinia virus

    International Nuclear Information System (INIS)

    D'Costa, Susan M.; Antczak, James B.; Pickup, David J.; Condit, Richard C.

    2004-01-01

    Most vaccinia virus intermediate and late mRNAs possess 3' ends that are extremely heterogeneous in sequence. However, late mRNAs encoding the cowpox A-type inclusion protein (ATI), the second largest subunit of the RNA polymerase, and the late telomeric transcripts possess homogeneous 3' ends. In the case of the ATI mRNA, it has been shown that the homogeneous 3' end is generated by a post-transcriptional endoribonucleolytic cleavage event. We have determined that the F17R gene also produces homogeneous transcripts generated by a post-transcriptional cleavage event. Mapping of in vivo mRNA shows that the major 3' end of the F17R transcript maps 1262 nt downstream of the F17R translational start site. In vitro transcripts spanning the in vivo 3' end are cleaved in an in vitro reaction using extracts from virus infected cells, and the site of cleavage is the same both in vivo and in vitro. Cleavage is not observed using extract from cells infected in the presence of hydroxyurea; therefore, the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. The cis-acting sequence responsible for cleavage is orientation specific and the factor responsible for cleavage activity has biochemical properties similar to the factor required for cleavage of ATI transcripts. Partially purified cleavage factor generates cleavage products of expected size when either the ATI or F17R substrates are used in vitro, strongly suggesting that cleavage of both transcripts is mediated by the same factor

  12. Cyclin D3 interacts with human activating transcription factor 5 and potentiates its transcription activity

    International Nuclear Information System (INIS)

    Liu Wenjin; Sun Maoyun; Jiang Jianhai; Shen Xiaoyun; Sun Qing; Liu Weicheng; Shen Hailian; Gu Jianxin

    2004-01-01

    The Cyclin D3 protein is a member of the D-type cyclins. Besides serving as cell cycle regulators, D-type cyclins have been reported to be able to interact with several transcription factors and modulate their transcriptional activations. Here we report that human activating transcription factor 5 (hATF5) is a new interacting partner of Cyclin D3. The interaction was confirmed by in vivo coimmunoprecipitation and in vitro binding analysis. Neither interaction between Cyclin D1 and hATF5 nor interaction between Cyclin D2 and hATF5 was observed. Confocal microscopy analysis showed that Cyclin D3 could colocalize with hATF5 in the nuclear region. Cyclin D3 could potentiate hATF5 transcriptional activity independently of its Cdk4 partner. But Cyclin D1 and Cyclin D2 had no effect on hATF5 transcriptional activity. These data provide a new clue to understand the new role of Cyclin D3 as a transcriptional regulator

  13. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  14. Mammalian transcriptional hotspots are enriched for tissue specific enhancers near cell type specific highly expressed genes and are predicted to act as transcriptional activator hubs.

    Science.gov (United States)

    Joshi, Anagha

    2014-12-30

    Transcriptional hotspots are defined as genomic regions bound by multiple factors. They have been identified recently as cell type specific enhancers regulating developmentally essential genes in many species such as worm, fly and humans. The in-depth analysis of hotspots across multiple cell types in same species still remains to be explored and can bring new biological insights. We therefore collected 108 transcription-related factor (TF) ChIP sequencing data sets in ten murine cell types and classified the peaks in each cell type in three groups according to binding occupancy as singletons (low-occupancy), combinatorials (mid-occupancy) and hotspots (high-occupancy). The peaks in the three groups clustered largely according to the occupancy, suggesting priming of genomic loci for mid occupancy irrespective of cell type. We then characterized hotspots for diverse structural functional properties. The genes neighbouring hotspots had a small overlap with hotspot genes in other cell types and were highly enriched for cell type specific function. Hotspots were enriched for sequence motifs of key TFs in that cell type and more than 90% of hotspots were occupied by pioneering factors. Though we did not find any sequence signature in the three groups, the H3K4me1 binding profile had bimodal peaks at hotspots, distinguishing hotspots from mono-modal H3K4me1 singletons. In ES cells, differentially expressed genes after perturbation of activators were enriched for hotspot genes suggesting hotspots primarily act as transcriptional activator hubs. Finally, we proposed that ES hotspots might be under control of SetDB1 and not DNMT for silencing. Transcriptional hotspots are enriched for tissue specific enhancers near cell type specific highly expressed genes. In ES cells, they are predicted to act as transcriptional activator hubs and might be under SetDB1 control for silencing.

  15. DEFINED CONTRIBUTION PLANS, DEFINED BENEFIT PLANS, AND THE ACCUMULATION OF RETIREMENT WEALTH

    Science.gov (United States)

    Poterba, James; Rauh, Joshua; Venti, Steven; Wise, David

    2010-01-01

    The private pension structure in the United States, once dominated by defined benefit (DB) plans, is currently divided between defined contribution (DC) and DB plans. Wealth accumulation in DC plans depends on the participant's contribution behavior and on financial market returns, while accumulation in DB plans is sensitive to a participant's labor market experience and to plan parameters. This paper simulates the distribution of retirement wealth under representative DB and DC plans. It uses data from the Health and Retirement Study (HRS) to explore how asset returns, earnings histories, and retirement plan characteristics contribute to the variation in retirement wealth outcomes. We simulate DC plan accumulation by randomly assigning individuals a share of wages that they and their employer contribute to the plan. We consider several possible asset allocation strategies, with asset returns drawn from the historical return distribution. Our DB plan simulations draw earnings histories from the HRS, and randomly assign each individual a pension plan drawn from a sample of large private and public defined benefit plans. The simulations yield distributions of both DC and DB wealth at retirement. Average retirement wealth accruals under current DC plans exceed average accruals under private sector DB plans, although DC plans are also more likely to generate very low retirement wealth outcomes. The comparison of current DC plans with more generous public sector DB plans is less definitive, because public sector DB plans are more generous on average than their private sector counterparts. PMID:21057597

  16. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases.

    Science.gov (United States)

    Lavysh, Daria; Sokolova, Maria; Slashcheva, Marina; Förstner, Konrad U; Severinov, Konstantin

    2017-02-14

    Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5' ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. IMPORTANCE Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages. Copyright © 2017 Lavysh et al.

  17. Ancient mtDNA genetic variants modulate mtDNA transcription and replication.

    Directory of Open Access Journals (Sweden)

    Sarit Suissa

    2009-05-01

    Full Text Available Although the functional consequences of mitochondrial DNA (mtDNA genetic backgrounds (haplotypes, haplogroups have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened >2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74% and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%. The variant defining Caucasian haplogroup J (C295T increased the binding of TFAM (Electro Mobility Shift Assay and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1, a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds harboring haplogroup J mtDNA had a >2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mt

  18. The "fourth dimension" of gene transcription.

    Science.gov (United States)

    O'Malley, Bert W

    2009-05-01

    The three dimensions of space provide our relationship to position on the earth, but the fourth dimension of time has an equally profound influence on our lives. Everything from light and sound to weather and biology operate on the principle of measurable temporal periodicity. Consequently, a wide variety of time clocks affect all aspects of our existence. The annual (and biannual) cycles of activity, metabolism, and mating, the monthly physiological clocks of women and men, and the 24-h diurnal rhythms of humans are prime examples. Should it be surprising to us that the fourth dimension also impinges upon gene expression and that the genome itself is regulated by the fastest running of all biological clocks? Recent evidence substantiates the existence of such a ubiquitin-dependent transcriptional clock that is based upon the activation and destruction of transcriptional coactivators.

  19. Deconstructing transcriptional heterogeneity in pluripotent stem cells

    Science.gov (United States)

    Shalek, Alex K.; Satija, Rahul; DaleyKeyser, AJay; Li, Hu; Zhang, Jin; Pardee, Keith; Gennert, David; Trombetta, John J.; Ferrante, Thomas C.; Regev, Aviv; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates, but the regulatory circuits specifying these states and enabling transitions between them are not well understood. We set out to characterize transcriptional heterogeneity in PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signaling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signaling pathways and chromatin regulators. Strikingly, either removal of mature miRNAs or pharmacologic blockage of signaling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal, and a distinct chromatin state, an effect mediated by opposing miRNA families acting on the c-myc / Lin28 / let-7 axis. These data illuminate the nature of transcriptional heterogeneity in PSCs. PMID:25471879

  20. Computational Investigations of Post-Transcriptional Regulation

    DEFF Research Database (Denmark)

    Rasmussen, Simon Horskjær

    and miRNA regulation was studied by cross-linking immunoprecipitation (CLIP) and RBP double knockdown experiments. A comprehensive analysis of 107 CLIP datasets of 49 RBPs demonstrated that RBPs modulate miRNA regulation. Results suggest it is mediated by RBP-binding hotspots that likely...... investigated using high-throughput data. Analysis of IMP RIP-seq, iCLIP and RNA-seq datasets identified transcripts associated with cytoplasmic IMP ribonucleoproteins. Many of these transcripts were functionally involved in actin cytoskeletal remodeling. Further analyses of this data permitted estimation...... of a bipartite motif, composed of an AU-rich and a CA-rich domain. In addition, a regulatory motif discovery method was developed and applied to identify motifs using differential expression data and CLIP-data in the above investigations. This thesis increased the understanding of the role of RBPs in mi...

  1. Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Rach

    2011-01-01

    Full Text Available The application of deep sequencing to map 5' capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: "focused" promoters with transcription start sites (TSSs that occur in a narrowly defined genomic span and "dispersed" promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z and marks (H3K4 methylation, as well as insulator binding (such as CTCF, independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5' capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization.

  2. Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Ludmila R.P. Ferreira

    2008-03-01

    Full Text Available The differentiation of proliferating epimastigote forms of Trypanosoma cruzi , the protozoan parasite that causes Chagas’ disease, into the infective and non-proliferating metacyclic forms can be reproduced in the laboratory by incubating the cells in a chemically-defined medium that mimics the urine of the insect vector. Epimastigotes have a spherical nucleus, a flagellum protruding from the middle of the protozoan cell, and a disk-shaped kinetoplast - an organelle that corresponds to the mitochondrial DNA. Metacyclic trypomastigotes have an elongated shape with the flagellum protruding from the posterior portion of the cell and associated with a spherical kinetoplast. Here we describe the morphological events of this transformation and characterize a novel intermediate stage by three-dimensional reconstruction of electron microscope serial sections. This new intermediate stage is characterized by a kinetoplast compressing an already elongated nucleus, indicating that metacyclogenesis involves active movements of the flagellar structure relative to the cell body. As transcription occurs more intensely in proliferating epimastigotes than in metacyclics, we also examined the presence of RNA polymerase II and measured transcriptional activity during the differentiation process. Both the presence of the enzyme and transcriptional activity remain unchanged during all steps of metacyclogenesis. RNA polymerase II levels and transcriptional activity only decrease after metacyclics are formed. We suggest that transcription is required during the epimastigote-to-metacyclic trypomastigote differentiation process, until the kinetoplast and flagellum reach the posterior position of the parasites in the infective form.A diferenciação de formas epimastigotas (proliferativas do Trypanosoma cruzi, parasita protozoário causador da doença de Chagas, em formas metacíclicas tripomastigotas (infectivas e não proliferativas, pode ser reproduzida em laborat

  3. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Directory of Open Access Journals (Sweden)

    Kovaleva Galina

    2011-06-01

    Full Text Available Abstract Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. Results To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR, numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp. Conclusions We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S

  4. The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts.

    Directory of Open Access Journals (Sweden)

    Clément Monot

    2013-05-01

    Full Text Available L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP first uses its endonuclease (EN to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A tail, a process known as target-primed reverse transcription (TPRT. Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5'-TTTT/A-3' sites and frequently preceded by imperfect T-tracts. However, it is currently unclear whether--and to which degree--the liberated 3'-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3' end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3' overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3' end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome.

  5. Host transcription factors in the immediate pro-inflammatory response to the parasitic mite Psoroptes ovis.

    Directory of Open Access Journals (Sweden)

    Stewart T G Burgess

    Full Text Available BACKGROUND: Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. RESULTS: Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. CONCLUSIONS: Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen.

  6. The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts.

    Science.gov (United States)

    Monot, Clément; Kuciak, Monika; Viollet, Sébastien; Mir, Ashfaq Ali; Gabus, Caroline; Darlix, Jean-Luc; Cristofari, Gaël

    2013-05-01

    L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP) first uses its endonuclease (EN) to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A) tail, a process known as target-primed reverse transcription (TPRT). Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5'-TTTT/A-3' sites) and frequently preceded by imperfect T-tracts. However, it is currently unclear whether--and to which degree--the liberated 3'-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A) tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3' end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3' overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3' end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome.

  7. Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control.

    Science.gov (United States)

    Rothenberg, Ellen V; Ungerbäck, Jonas; Champhekar, Ameya

    2016-01-01

    T-lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of innate lymphoid cells (ILCs) that share transcriptional regulation programs extensively with T-cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate. © 2016 Elsevier Inc. All rights reserved.

  8. Human cytomegalovirus (HCMV) induces human endogenous retrovirus (HERV) transcription.

    Science.gov (United States)

    Assinger, Alice; Yaiw, Koon-Chu; Göttesdorfer, Ingmar; Leib-Mösch, Christine; Söderberg-Nauclér, Cecilia

    2013-11-12

    Emerging evidence suggests that human cytomegalovirus (HCMV) is highly prevalent in tumours of different origin. This virus is implied to have oncogenic and oncomodulatory functions, through its ability to control host gene expression. Human endogenous retroviruses (HERV) are also frequently active in tumours of different origin, and are supposed to contribute as cofactors to cancer development. Due to the high prevalence of HCMV in several different tumours, and its ability to control host cell gene expression, we sought to define whether HCMV may affect HERV transcription. Infection of 3 established cancer cell lines, 2 primary glioblastoma cells, endothelial cells from 3 donors and monocytes from 4 donors with HCMV (strains VR 1814 or TB40/F) induced reverse transcriptase (RT) activity in all cells tested, but the response varied between donors. Both, gammaretrovirus-related class I elements HERV-T, HERV-W, HERV-F and ERV-9, and betaretrovirus-related class II elements HML-2 - 4 and HML-7 - 8, as well as spuma-virus related class III elements of the HERV-L group were up-regulated in response to HCMV infection in GliNS1 cells. Up-regulation of HERV activity was more pronounced in cells harbouring active HCMV infection, but was also induced by UV-inactivated virus. The effect was only slightly affected by ganciclovir treatment and was not controlled by the IE72 or IE86 HCMV genes. Within this brief report we show that HCMV infection induces HERV transcriptional activity in different cell types.

  9. Transcription reprogramming during root nodule development in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Sandra Moreau

    Full Text Available Many genes which are associated with root nodule development and activity in the model legume Medicago truncatula have been described. However information on precise stages of activation of these genes and their corresponding transcriptional regulators is often lacking. Whether these regulators are shared with other plant developmental programs also remains an open question. Here detailed microarray analyses have been used to study the transcriptome of root nodules induced by either wild type or mutant strains of Sinorhizobium meliloti. In this way we have defined eight major activation patterns in nodules and identified associated potential regulatory genes. We have shown that transcription reprogramming during consecutive stages of nodule differentiation occurs in four major phases, respectively associated with (i early signalling events and/or bacterial infection; plant cell differentiation that is either (ii independent or (iii dependent on bacteroid differentiation; (iv nitrogen fixation. Differential expression of several genes involved in cytokinin biosynthesis was observed in early symbiotic nodule zones, suggesting that cytokinin levels are actively controlled in this region. Taking advantage of databases recently developed for M. truncatula, we identified a small subset of gene expression regulators that were exclusively or predominantly expressed in nodules, whereas most other regulators were also activated under other conditions, and notably in response to abiotic or biotic stresses. We found evidence suggesting the activation of the jasmonate pathway in both wild type and mutant nodules, thus raising questions about the role of jasmonate during nodule development. Finally, quantitative RT-PCR was used to analyse the expression of a series of nodule regulator and marker genes at early symbiotic stages in roots and allowed us to distinguish several early stages of gene expression activation or repression.

  10. VLDL hydrolysis by hepatic lipase regulates PPARδ transcriptional responses.

    Directory of Open Access Journals (Sweden)

    Jonathan D Brown

    Full Text Available PPARs (α,γ,δ are a family of ligand-activated transcription factors that regulate energy balance, including lipid metabolism. Despite these critical functions, the integration between specific pathways of lipid metabolism and distinct PPAR responses remains obscure. Previous work has revealed that lipolytic pathways can activate PPARs. Whether hepatic lipase (HL, an enzyme that regulates VLDL and HDL catabolism, participates in PPAR responses is unknown.Using PPAR ligand binding domain transactivation assays, we found that HL interacted with triglyceride-rich VLDL (>HDL≫LDL, IDL to activate PPARδ preferentially over PPARα or PPARγ, an effect dependent on HL catalytic activity. In cell free ligand displacement assays, VLDL hydrolysis by HL activated PPARδ in a VLDL-concentration dependent manner. Extended further, VLDL stimulation of HL-expressing HUVECs and FAO hepatoma cells increased mRNA expression of canonical PPARδ target genes, including adipocyte differentiation related protein (ADRP, angiopoietin like protein 4 and pyruvate dehydrogenase kinase-4. HL/VLDL regulated ADRP through a PPRE in the promoter region of this gene. In vivo, adenoviral-mediated hepatic HL expression in C57BL/6 mice increased hepatic ADRP mRNA levels by 30%. In ob/ob mice, a model with higher triglycerides than C57BL/6 mice, HL overexpression increased ADRP expression by 70%, demonstrating the importance of triglyceride substrate for HL-mediated PPARδ activation. Global metabolite profiling identified HL/VLDL released fatty acids including oleic acid and palmitoleic acid that were capable of recapitulating PPARδ activation and ADRP gene regulation in vitro.These data define a novel pathway involving HL hydrolysis of VLDL that activates PPARδ through generation of specific monounsaturated fatty acids. These data also demonstrate how integrating cell biology with metabolomic approaches provides insight into specific lipid mediators and pathways of lipid

  11. Reconstructing transcriptional regulatory networks through genomics data

    OpenAIRE

    Sun, Ning; Zhao, Hongyu

    2009-01-01

    One central problem in biology is to understand how gene expression is regulated under different conditions. Microarray gene expression data and other high throughput data have made it possible to dissect transcriptional regulatory networks at the genomics level. Owing to the very large number of genes that need to be studied, the relatively small number of data sets available, the noise in the data and the different natures of the distinct data types, network inference presents great challen...

  12. NUR TRANSCRIPTION FACTORS IN STRESS AND ADDICTION

    Directory of Open Access Journals (Sweden)

    Danae eCampos-Melo

    2013-12-01

    Full Text Available The Nur transcription factors Nur77 (NGFI-B, NR4A1, Nurr1 (NR4A2 and Nor-1 (NR4A3 are a sub-family of orphan members of the nuclear receptor superfamily. These transcription factors are products of immediate early genes, whose expression is rapidly and transiently induced in the central nervous system by several types of stimuli. Nur factors are present throughout the hypothalamus-pituitary-adrenal axis where are prominently induced in response to stress. Drugs of abuse and stress also induce the expression of Nur factors in nuclei of the motivation/reward circuit of the brain, indicating their participation in the process of drug addiction and in non-hypothalamic responses to stress. Repeated use of addictive drugs and chronic stress induce long-lasting dysregulation of the brain motivation/reward circuit, due to reprogramming of gene expression and enduring alterations in neuronal function. Here, we review the data supporting that Nur transcription factors are key players in the molecular basis of the dysregulation of neuronal circuits involved in chronic stress and addiction.

  13. The transcriptional regulatory network of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Joaquín Sanz

    Full Text Available Under the perspectives of network science and systems biology, the characterization of transcriptional regulatory (TR networks beyond the context of model organisms offers a versatile tool whose potential remains yet mainly unexplored. In this work, we present an updated version of the TR network of Mycobacterium tuberculosis (M.tb, which incorporates newly characterized transcriptional regulations coming from 31 recent, different experimental works available in the literature. As a result of the incorporation of these data, the new network doubles the size of previous data collections, incorporating more than a third of the entire genome of the bacterium. We also present an exhaustive topological analysis of the new assembled network, focusing on the statistical characterization of motifs significances and the comparison with other model organisms. The expanded M.tb transcriptional regulatory network, considering its volume and completeness, constitutes an important resource for diverse tasks such as dynamic modeling of gene expression and signaling processes, computational reliability determination or protein function prediction, being the latter of particular relevance, given that the function of only a small percent of the proteins of M.tb is known.

  14. Curated compendium of human transcriptional biomarker data.

    Science.gov (United States)

    Golightly, Nathan P; Bell, Avery; Bischoff, Anna I; Hollingsworth, Parker D; Piccolo, Stephen R

    2018-04-17

    One important use of genome-wide transcriptional profiles is to identify relationships between transcription levels and patient outcomes. These translational insights can guide the development of biomarkers for clinical application. Data from thousands of translational-biomarker studies have been deposited in public repositories, enabling reuse. However, data-reuse efforts require considerable time and expertise because transcriptional data are generated using heterogeneous profiling technologies, preprocessed using diverse normalization procedures, and annotated in non-standard ways. To address this problem, we curated 45 publicly available, translational-biomarker datasets from a variety of human diseases. To increase the data's utility, we reprocessed the raw expression data using a uniform computational pipeline, addressed quality-control problems, mapped the clinical annotations to a controlled vocabulary, and prepared consistently structured, analysis-ready data files. These data, along with scripts we used to prepare the data, are available in a public repository. We believe these data will be particularly useful to researchers seeking to perform benchmarking studies-for example, to compare and optimize machine-learning algorithms' ability to predict biomedical outcomes.

  15. The Mediator complex and transcription regulation

    Science.gov (United States)

    Poss, Zachary C.; Ebmeier, Christopher C.

    2013-01-01

    The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064

  16. Adaptive evolution of transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Berg Johannes

    2004-10-01

    Full Text Available Abstract Background The regulation of a gene depends on the binding of transcription factors to specific sites located in the regulatory region of the gene. The generation of these binding sites and of cooperativity between them are essential building blocks in the evolution of complex regulatory networks. We study a theoretical model for the sequence evolution of binding sites by point mutations. The approach is based on biophysical models for the binding of transcription factors to DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics model including mutations, genetic drift, and selection. Results We show that the selection for factor binding generically leads to specific correlations between nucleotide frequencies at different positions of a binding site. We demonstrate the possibility of rapid adaptive evolution generating a new binding site for a given transcription factor by point mutations. The evolutionary time required is estimated in terms of the neutral (background mutation rate, the selection coefficient, and the effective population size. Conclusions The efficiency of binding site formation is seen to depend on two joint conditions: the binding site motif must be short enough and the promoter region must be long enough. These constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive evolution of genetic switches and of signal integration through binding cooperativity between different sites. Experimental tests of this picture involving the statistics of polymorphisms and phylogenies of sites are discussed.

  17. Transcription initiation complex structures elucidate DNA opening.

    Science.gov (United States)

    Plaschka, C; Hantsche, M; Dienemann, C; Burzinski, C; Plitzko, J; Cramer, P

    2016-05-19

    Transcription of eukaryotic protein-coding genes begins with assembly of the RNA polymerase (Pol) II initiation complex and promoter DNA opening. Here we report cryo-electron microscopy (cryo-EM) structures of yeast initiation complexes containing closed and open DNA at resolutions of 8.8 Å and 3.6 Å, respectively. DNA is positioned and retained over the Pol II cleft by a network of interactions between the TATA-box-binding protein TBP and transcription factors TFIIA, TFIIB, TFIIE, and TFIIF. DNA opening occurs around the tip of the Pol II clamp and the TFIIE 'extended winged helix' domain, and can occur in the absence of TFIIH. Loading of the DNA template strand into the active centre may be facilitated by movements of obstructing protein elements triggered by allosteric binding of the TFIIE 'E-ribbon' domain. The results suggest a unified model for transcription initiation with a key event, the trapping of open promoter DNA by extended protein-protein and protein-DNA contacts.

  18. Transcription of tandemly repetitive DNA: functional roles.

    Science.gov (United States)

    Biscotti, Maria Assunta; Canapa, Adriana; Forconi, Mariko; Olmo, Ettore; Barucca, Marco

    2015-09-01

    A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.

  19. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Directory of Open Access Journals (Sweden)

    Amanda Malvessi Cattani

    Full Text Available Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  20. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Science.gov (United States)

    Cattani, Amanda Malvessi; Siqueira, Franciele Maboni; Guedes, Rafael Lucas Muniz; Schrank, Irene Silveira

    2016-01-01

    Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  1. Modulation of transcription factors by curcumin.

    Science.gov (United States)

    Shishodia, Shishir; Singh, Tulika; Chaturvedi, Madan M

    2007-01-01

    Curcumin is the active ingredient of turmeric that has been consumed as a dietary spice for ages. Turmeric is widely used in traditional Indian medicine to cure biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. Extensive investigation over the last five decades has indicated that curcumin reduces blood cholesterol, prevents low-density lipoprotein oxidation, inhibits platelet aggregation, suppresses thrombosis and myocardial infarction, suppresses symptoms associated with type II diabetes, rheumatoid arthritis, multiple sclerosis, and Alzheimer's disease, inhibits HIV replication, enhances wound healing, protects from liver injury, increases bile secretion, protects from cataract formation, and protects from pulmonary toxicity and fibrosis. Evidence indicates that the divergent effects of curcumin are dependent on its pleiotropic molecular effects. These include the regulation of signal transduction pathways and direct modulation of several enzymatic activities. Most of these signaling cascades lead to the activation of transcription factors. Curcumin has been found to modulate the activity of several key transcription factors and, in turn, the cellular expression profiles. Curcumin has been shown to elicit vital cellular responses such as cell cycle arrest, apoptosis, and differentiation by activating a cascade of molecular events. In this chapter, we briefly review the effects of curcumin on transcription factors NF-KB, AP-1, Egr-1, STATs, PPAR-gamma, beta-catenin, nrf2, EpRE, p53, CBP, and androgen receptor (AR) and AR-related cofactors giving major emphasis to the molecular mechanisms of its action.

  2. Fatty Acid–Regulated Transcription Factors in the Liver

    Science.gov (United States)

    Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.

    2014-01-01

    Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177

  3. To Your Health: NLM update transcript - Gun safety strategies

    Science.gov (United States)

    ... transcript040918.html To Your Health: NLM update Transcript Gun safety strategies : 04/09/2018 To use the ... on weekly topics. An evidence-based, public health gun safety strategy that is consistent with second amendment ...

  4. Determination of specificity influencing residues for key transcription factor families

    DEFF Research Database (Denmark)

    Patel, Ronak Y.; Garde, Christian; Stormo, Gary D.

    2015-01-01

    Transcription factors (TFs) are major modulators of transcription and subsequent cellular processes. The binding of TFs to specific regulatory elements is governed by their specificity. Considering the gap between known TFs sequence and specificity, specificity prediction frameworks are highly de...

  5. c-Jun controls the efficiency of MAP kinase signaling by transcriptional repression of MAP kinase phosphatases

    International Nuclear Information System (INIS)

    Sprowles, Amy; Robinson, Dan; Wu Yimi; Kung, H.-J.; Wisdom, Ron

    2005-01-01

    The mammalian JNK signaling pathway regulates the transcriptional response of cells to environmental stress, including UV irradiation. This signaling pathway is composed of a classical MAP kinase cascade; activation results in phosphorylation of the transcription factor substrates c-Jun and ATF2, and leads to changes in gene expression. The defining components of this pathway are conserved in the fission yeast S. pombe, where the genetic studies have shown that the ability of the JNK homolog Spc1 to be activated in response to UV irradiation is dependent on the presence of the transcription factor substrate Atf1. We have used genetic analysis to define the role of c-Jun in activation of the mammalian JNK signaling pathway. Our results show that optimal activation of JNK requires the presence of its transcription factor substrate c-Jun. Mutational analysis shows that the ability of c-Jun to support efficient activation of JNK requires the ability of Jun to bind DNA, suggesting a transcriptional mechanism. Consistent with this, we show that c-Jun represses the expression of several MAP kinase phosphatases. In the absence of c-Jun, the increased expression of MAP kinase phosphatases leads to impaired activation of the ERK, JNK, and p38 MAP kinases after pathway activation. The results show that one function of c-Jun is to regulate the efficiency of signaling by the ERK, p38, and JNK MAP kinases, a function that is likely to affect cellular responses to many different stimuli

  6. DNA Binding by the Ribosomal DNA Transcription Factor Rrn3 Is Essential for Ribosomal DNA Transcription*

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H.; Rothblum, Katrina; Schneider, David A.; Rothblum, Lawrence I.

    2013-01-01

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382–400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I. PMID:23393135

  7. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H; Rothblum, Katrina; Schneider, David A; Rothblum, Lawrence I

    2013-03-29

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382-400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I.

  8. Validation, automatic generation and use of broad phonetic transcriptions

    NARCIS (Netherlands)

    Bael, Cristophe Patrick Jan Van

    2007-01-01

    Broad phonetic transcriptions represent the pronunciation of words as strings of characters from specifically designed symbol sets. In everyday life, broad phonetic transcriptions are often used as aids to pronounce (foreign) words. In addition, broad phonetic transcriptions are often used for

  9. DNA residence time is a regulatory factor of transcription repression

    Science.gov (United States)

    Clauß, Karen; Popp, Achim P.; Schulze, Lena; Hettich, Johannes; Reisser, Matthias; Escoter Torres, Laura; Uhlenhaut, N. Henriette

    2017-01-01

    Abstract Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation. PMID:28977492

  10. DNA to DNA transcription might exist in eukaryotic cells

    OpenAIRE

    Li, Gao-De

    2016-01-01

    Till now, in biological sciences, the term, transcription, mainly refers to DNA to RNA transcription. But our recently published experimental findings obtained from Plasmodium falciparum strongly suggest the existence of DNA to DNA transcription in the genome of eukaryotic cells, which could shed some light on the functions of certain noncoding DNA in the human and other eukaryotic genomes.

  11. Transcription-associated quality control of mRNP

    DEFF Research Database (Denmark)

    Schmid, Manfred; Jensen, Torben Heick

    2013-01-01

    Although a prime purpose of transcription is to produce RNA, a substantial amount of transcript is nevertheless turned over very early in its lifetime. During transcription RNAs are matured by nucleases from longer precursors and activities are also employed to exert quality control over the RNA...

  12. Programmed transcription of the var gene family, but not of stevor, in Plasmodium falciparum gametocytes

    DEFF Research Database (Denmark)

    Sharp, Sarah; Lavstsen, Thomas; Fivelman, Quinton L

    2006-01-01

    are expressed in gametocytes, the transmissible parasite stage, but the role of these proteins in the biology of sexual-stage parasites remains unknown. PfEMP1 may continue to mediate antigenic variation in gametocytes, which need to persist in the host for many days before reaching maturity. Using quantitative...... reverse transcription-PCR and Northern hybridization, we demonstrate that transcription of a defined subset of type C var loci occurs during gametocyte development in vitro. This transcriptional program occurs in gametocytes regardless of the var expression phenotype of their asexual progenitors...

  13. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  14. Transcription factor FoxO1 is essential for enamel biomineralization.

    Directory of Open Access Journals (Sweden)

    Ross A Poché

    Full Text Available The Transforming growth factor β (Tgf-β pathway, by signaling via the activation of Smad transcription factors, induces the expression of many diverse downstream target genes thereby regulating a vast array of cellular events essential for proper development and homeostasis. In order for a specific cell type to properly interpret the Tgf-β signal and elicit a specific cellular response, cell-specific transcriptional co-factors often cooperate with the Smads to activate a discrete set of genes in the appropriate temporal and spatial manner. Here, via a conditional knockout approach, we show that mice mutant for Forkhead Box O transcription factor FoxO1 exhibit an enamel hypomaturation defect which phenocopies that of the Smad3 mutant mice. Furthermore, we determined that both the FoxO1 and Smad3 mutant teeth exhibit changes in the expression of similar cohort of genes encoding enamel matrix proteins required for proper enamel development. These data raise the possibility that FoxO1 and Smad3 act in concert to regulate a common repertoire of genes necessary for complete enamel maturation. This study is the first to define an essential role for the FoxO family of transcription factors in tooth development and provides a new molecular entry point which will allow researchers to delineate novel genetic pathways regulating the process of biomineralization which may also have significance for studies of human tooth diseases such as amelogenesis imperfecta.

  15. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network

    Directory of Open Access Journals (Sweden)

    Barabási Albert-László

    2004-01-01

    Full Text Available Abstract Background Transcriptional regulation of cellular functions is carried out through a complex network of interactions among transcription factors and the promoter regions of genes and operons regulated by them.To better understand the system-level function of such networks simplification of their architecture was previously achieved by identifying the motifs present in the network, which are small, overrepresented, topologically distinct regulatory interaction patterns (subgraphs. However, the interaction of such motifs with each other, and their form of integration into the full network has not been previously examined. Results By studying the transcriptional regulatory network of the bacterium, Escherichia coli, we demonstrate that the two previously identified motif types in the network (i.e., feed-forward loops and bi-fan motifs do not exist in isolation, but rather aggregate into homologous motif clusters that largely overlap with known biological functions. Moreover, these clusters further coalesce into a supercluster, thus establishing distinct topological hierarchies that show global statistical properties similar to the whole network. Targeted removal of motif links disintegrates the network into small, isolated clusters, while random disruptions of equal number of links do not cause such an effect. Conclusion Individual motifs aggregate into homologous motif clusters and a supercluster forming the backbone of the E. coli transcriptional regulatory network and play a central role in defining its global topological organization.

  16. The simian immunodeficiency virus targets central cell cycle functions through transcriptional repression in vivo.

    Directory of Open Access Journals (Sweden)

    Carl-Magnus Hogerkorp

    Full Text Available A massive and selective loss of CD4+ memory T cells occurs during the acute phase of immunodeficiency virus infections. The mechanism of this depletion is poorly understood but constitutes a key event with implications for progression. We assessed gene expression of purified T cells in Rhesus Macaques during acute SIVmac239 infection in order to define mechanisms of pathogenesis. We observe a general transcriptional program of over 1,600 interferon-stimulated genes induced in all T cells by the infection. Furthermore, we identify 113 transcriptional changes that are specific to virally infected cells. A striking downregulation of several key cell cycle regulator genes was observed and shared promotor-region E2F binding sites in downregulated genes suggested a targeted transcriptional control of an E2F regulated cell cycle program. In addition, the upregulation of the gene for the fundamental regulator of RNA polymerase II, TAF7, demonstrates that viral interference with the cell cycle and transcriptional regulation programs may be critical components during the establishment of a pathogenic infection in vivo.

  17. Mutation in an alternative transcript of CDKL5 in a boy with early-onset seizures.

    Science.gov (United States)

    Bodian, Dale L; Schreiber, John M; Vilboux, Thierry; Khromykh, Alina; Hauser, Natalie S

    2018-06-01

    Infantile-onset epilepsies are a set of severe, heterogeneous disorders for which clinical genetic testing yields causative mutations in ∼20%-50% of affected individuals. We report the case of a boy presenting with intractable seizures at 2 wk of age, for whom gene panel testing was unrevealing. Research-based whole-genome sequencing of the proband and four unaffected family members identified a de novo mutation, NM_001323289.1:c.2828_2829delGA in CDKL5, a gene associated with X-linked early infantile epileptic encephalopathy 2. CDKL5 has multiple alternative transcripts, and the mutation lies in an exon in the brain-expressed forms. The mutation was undetected by gene panel sequencing because of its intronic location in the CDKL5 transcript typically used to define the exons of this gene for clinical exon-based tests (NM_003159). This is the first report of a patient with a mutation in an alternative transcript of CDKL5 This finding suggests that incorporating alternative transcripts into the design and variant interpretation of exon-based tests, including gene panel and exome sequencing, could improve the diagnostic yield. © 2018 Bodian et al.; Published by Cold Spring Harbor Laboratory Press.

  18. ZNF649, a novel Kruppel type zinc-finger protein, functions as a transcriptional suppressor

    International Nuclear Information System (INIS)

    Yang Hong; Yuan Wuzhou; Wang Ying; Zhu Chuanbing; Liu Bisheng; Wang Yuequn; Yang, Dan; Li Yongqing; Wang Canding; Wu Xiushan; Liu Mingyao

    2005-01-01

    Cardiac differentiation involves a cascade of coordinated gene expression that regulates cell proliferation and matrix protein formation in a defined temporo-spatial manner. Many of the KRAB-ZFPs are involved in cardiac development or cardiovascular diseases. Here we report the identification and characterization of a novel human zinc-finger gene named ZNF649. The cDNA of ZNF649 is 3176 bp, encoding a protein of 505 amino acids in the nuclei. Northern blot analysis indicates that ZNF649 is expressed in most of the examined human adult and embryonic tissues. ZNF649 is a transcription suppressor when fused to GAL-4 DNA-binding domain and cotransfected with VP-16. Overexpression of ZNF649 in COS-7 cells inhibits the transcriptional activities of SRE and AP-1. Deletion analysis with a series of truncated fusion proteins indicates that the KRAB motif is a basal repression domain when the truncated fusion proteins were assayed for the transcriptional activities of SRE and AP-1. These results suggest that ZNF649 protein may act as a transcriptional repressor in mitogen-activated protein kinase signaling pathway to mediate cellular functions

  19. N-Myc and GCN5 regulate significantly overlapping transcriptional programs in neural stem cells.

    Directory of Open Access Journals (Sweden)

    Verónica Martínez-Cerdeño

    Full Text Available Here we examine the functions of the Myc cofactor and histone acetyltransferase, GCN5/KAT2A, in neural stem and precursor cells (NSC using a conditional knockout approach driven by nestin-cre. Mice with GCN5-deficient NSC exhibit a 25% reduction in brain mass with a microcephaly phenotype similar to that observed in nestin-cre driven knockouts of c- or N-myc. In addition, the loss of GCN5 inhibits precursor cell proliferation and reduces their populations in vivo, as does loss of N-myc. Gene expression analysis indicates that about one-sixth of genes whose expression is affected by loss of GCN5 are also affected in the same manner by loss of N-myc. These findings strongly support the notion that GCN5 protein is a key N-Myc transcriptional cofactor in NSC, but are also consistent with recruitment of GCN5 by other transcription factors and the use by N-Myc of other histone acetyltransferases. Putative N-Myc/GCN5 coregulated transcriptional pathways include cell metabolism, cell cycle, chromatin, and neuron projection morphogenesis genes. GCN5 is also required for maintenance of histone acetylation both at its putative specific target genes and at Myc targets. Thus, we have defined an important role for GCN5 in NSC and provided evidence that GCN5 is an important Myc transcriptional cofactor in vivo.

  20. Structural basis of transcriptional gene silencing mediated by Arabidopsis MOM1.

    Directory of Open Access Journals (Sweden)

    Taisuke Nishimura

    2012-02-01

    Full Text Available Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2 as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.

  1. Structural basis of transcriptional gene silencing mediated by Arabidopsis MOM1.

    Science.gov (United States)

    Nishimura, Taisuke; Molinard, Guillaume; Petty, Tom J; Broger, Larissa; Gabus, Caroline; Halazonetis, Thanos D; Thore, Stéphane; Paszkowski, Jerzy

    2012-02-01

    Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception. Here we define the 82 amino acid domain called CMM2 (Conserved MOM1 Motif 2) as a minimal MOM1 fragment capable of transcriptional regulation. As determined by X-ray crystallography, this motif folds into an unusual hendecad-based coiled-coil. Structure-based mutagenesis followed by transgenic complementation tests in plants demonstrate that CMM2 and its dimerization are effective for transcriptional suppression at chromosomal loci co-regulated by MOM1 and the siRNA pathway but not at loci controlled by MOM1 in an siRNA-independent fashion. These results reveal a surprising separation of epigenetic activities that enable the single, large MOM1 protein to coordinate cooperating mechanisms of epigenetic regulation.

  2. Patterns of subnet usage reveal distinct scales of regulation in the transcriptional regulatory network of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Carsten Marr

    Full Text Available The set of regulatory interactions between genes, mediated by transcription factors, forms a species' transcriptional regulatory network (TRN. By comparing this network with measured gene expression data, one can identify functional properties of the TRN and gain general insight into transcriptional control. We define the subnet of a node as the subgraph consisting of all nodes topologically downstream of the node, including itself. Using a large set of microarray expression data of the bacterium Escherichia coli, we find that the gene expression in different subnets exhibits a structured pattern in response to environmental changes and genotypic mutation. Subnets with fewer changes in their expression pattern have a higher fraction of feed-forward loop motifs and a lower fraction of small RNA targets within them. Our study implies that the TRN consists of several scales of regulatory organization: (1 subnets with more varying gene expression controlled by both transcription factors and post-transcriptional RNA regulation and (2 subnets with less varying gene expression having more feed-forward loops and less post-transcriptional RNA regulation.

  3. A trans-acting Variant within the Transcription Factor RIM101 Interacts with Genetic Background to Determine its Regulatory Capacity.

    Directory of Open Access Journals (Sweden)

    Timothy Read

    2016-01-01

    Full Text Available Most genetic variants associated with disease occur within regulatory regions of the genome, underscoring the importance of defining the mechanisms underlying differences in regulation of gene expression between individuals. We discovered a pair of co-regulated, divergently oriented transcripts, AQY2 and ncFRE6, that are expressed in one strain of Saccharomyces cerevisiae, ∑1278b, but not in another, S288c. By combining classical genetics techniques with high-throughput sequencing, we identified a trans-acting single nucleotide polymorphism within the transcription factor RIM101 that causes the background-dependent expression of both transcripts. Subsequent RNA-seq experiments revealed that RIM101 regulates many more targets in S288c than in ∑1278b and that deletion of RIM101 in both backgrounds abrogates the majority of differential expression between the strains. Strikingly, only three transcripts undergo a significant change in expression after swapping RIM101 alleles between backgrounds, implying that the differences in the RIM101 allele lead to a remarkably focused transcriptional response. However, hundreds of RIM101-dependent targets undergo a subtle but consistent shift in expression in the S288c RIM101-swapped strain, but not its ∑1278b counterpart. We conclude that ∑1278b may harbor a variant(s that buffers against widespread transcriptional dysregulation upon introduction of a non-native RIM101 allele, emphasizing the importance of accounting for genetic background when assessing the impact of a regulatory variant.

  4. Elucidating MicroRNA Regulatory Networks Using Transcriptional, Post-transcriptional, and Histone Modification Measurements

    Directory of Open Access Journals (Sweden)

    Sara J.C. Gosline

    2016-01-01

    Full Text Available MicroRNAs (miRNAs regulate diverse biological processes by repressing mRNAs, but their modest effects on direct targets, together with their participation in larger regulatory networks, make it challenging to delineate miRNA-mediated effects. Here, we describe an approach to characterizing miRNA-regulatory networks by systematically profiling transcriptional, post-transcriptional and epigenetic activity in a pair of isogenic murine fibroblast cell lines with and without Dicer expression. By RNA sequencing (RNA-seq and CLIP (crosslinking followed by immunoprecipitation sequencing (CLIP-seq, we found that most of the changes induced by global miRNA loss occur at the level of transcription. We then introduced a network modeling approach that integrated these data with epigenetic data to identify specific miRNA-regulated transcription factors that explain the impact of miRNA perturbation on gene expression. In total, we demonstrate that combining multiple genome-wide datasets spanning diverse regulatory modes enables accurate delineation of the downstream miRNA-regulated transcriptional network and establishes a model for studying similar networks in other systems.

  5. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka Anna

    2014-11-14

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  6. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka Anna; Ali, Zahir; Baazim, Hatoon; Li, Lixin; Abulfaraj, Aala A.; Alshareef, Sahar; Aouida, Mustapha; Mahfouz, Magdy M.

    2014-01-01

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  7. DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation

    OpenAIRE

    Alexandrov, Boian S.; Gelev, Vladimir; Yoo, Sang Wook; Alexandrov, Ludmil B.; Fukuyo, Yayoi; Bishop, Alan R.; Rasmussen, Kim ?.; Usheva, Anny

    2009-01-01

    We assess the role of DNA breathing dynamics as a determinant of promoter strength and transcription start site (TSS) location. We compare DNA Langevin dynamic profiles of representative gene promoters, calculated with the extended non-linear PBD model of DNA with experimental data on transcription factor binding and transcriptional activity. Our results demonstrate that DNA dynamic activity at the TSS can be suppressed by mutations that do not affect basal transcription factor binding–DNA co...

  8. Utilising artificial intelligence in software defined wireless sensor network

    CSIR Research Space (South Africa)

    Matlou, OG

    2017-10-01

    Full Text Available Software Defined Wireless Sensor Network (SDWSN) is realised by infusing Software Defined Network (SDN) model in Wireless Sensor Network (WSN), Reason for that is to overcome the challenges of WSN. Artificial Intelligence (AI) and machine learning...

  9. Downstream signaling mechanism of the C-terminal activation domain of transcriptional coactivator CoCoA

    OpenAIRE

    Kim, Jeong Hoon; Yang, Catherine K.; Stallcup, Michael R.

    2006-01-01

    The coiled-coil coactivator (CoCoA) is a transcriptional coactivator for nuclear receptors and enhances nuclear receptor function by the interaction with the bHLH-PAS domain (AD3) of p160 coactivators. The C-terminal activation domain (AD) of CoCoA possesses strong transactivation activity and is required for the coactivator function of CoCoA with nuclear receptors. To understand how CoCoA AD transmits its activating signal to the transcription machinery, we defined specific subregions, amino...

  10. Deletions of a differentially methylated CpG island at SNRPN define a putative imprinting control region

    Energy Technology Data Exchange (ETDEWEB)

    Sutcliffe, J.S.,; Nakao, M.; Beaudet, A.L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies, respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy, or other mutations. Four transcripts designated PAR-5, PAR-7, PAR-1 and PAR-4 were isolated and localized to a region within 300 kb telomeric to the gene encoding small nuclear ribonucleoprotein-associated polypeptide N (SNRPN). Analysis of the transcripts in cultured fibroblasts and lymphoblasts from deletion patients demonstrated that SNRPN, PAR-5 and PAR-1 are expressed exclusively from the paternal chromosome, defining an imprinted domain that spans at least 200 kb. All three imprinted transcripts were absent in cells from three PWS patients (one pair of sibs and one sporadic case) with small deletions that involve a differentially methylated CpG island containing a previously undescribed 5{prime} untranslated exon ({alpha}) of SNRPN. Methylation of the CpG island is specific for the maternal chromosome consistent with paternal expression of the imprinted domain. One deletion, which is benign when maternally transmitted, extends upstream <30 kb from the CpG island, and is associated with altered methylation centromeric to SNRPN, and loss of transcription telomeric to SNRPN, implying the presence of an imprinting control region around the CpG island containing exon {alpha}.

  11. Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan.

    Science.gov (United States)

    Bansal, Ankita; Kwon, Eun-Soo; Conte, Darryl; Liu, Haibo; Gilchrist, Michael J; MacNeil, Lesley T; Tissenbaum, Heidi A

    2014-01-01

    Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 have focused on post-translational regulation with little focus on transcriptional regulation. In C. elegans, we have previously shown that DAF-16d/f cooperates with DAF-16a to promote longevity. In this study, we generated transgenic strains expressing near-endogenous levels of either daf-16a or daf-16d/f, and examined temporal expression of the isoforms to further define how these isoforms contribute to lifespan regulation. Here, we show that DAF-16a is sensitive both to changes in gene dosage and to alterations in the level of insulin/IGF-1 signaling. Interestingly, we find that as worms age, the intestinal expression of daf-16d/f but not daf-16a is dramatically upregulated at the level of transcription. Preventing this transcriptional upregulation shortens lifespan, indicating that transcriptional regulation of daf-16d/f promotes longevity. In an RNAi screen of transcriptional regulators, we identify elt-2 (GATA transcription factor) and swsn-1 (core subunit of SWI/SNF complex) as key modulators of daf-16d/f gene expression. ELT-2 and another GATA factor, ELT-4, promote longevity via both DAF-16a and DAF-16d/f while the components of SWI/SNF complex promote longevity specifically via DAF-16d/f. Our findings indicate that transcriptional control of C. elegans FOXO/daf-16 is an essential regulatory event. Considering the conservation of FOXO across species, our findings identify a new layer of FOXO regulation as a potential determinant of mammalian longevity and age-related diseases such as cancer and diabetes.

  12. 48 CFR 311.7000 - Defining electronic information technology requirements.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Defining electronic information technology requirements. 311.7000 Section 311.7000 Federal Acquisition Regulations System HEALTH... Accessibility Standards 311.7000 Defining electronic information technology requirements. HHS staff that define...

  13. Variable Bandwidth Analog Channel Filters for Software Defined Radio

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    2001-01-01

    An important aspect of Software Defined Radio is the ability to define the bandwidth of the filter that selects the desired channel. This paper first explains the importance of channel filtering. Then the advantage of analog channel filtering with a variable bandwidth in a Software Defined Radio is

  14. Defining Generic Architecture for Cloud Infrastructure as a Service model

    NARCIS (Netherlands)

    Demchenko, Y.; de Laat, C.

    2011-01-01

    Infrastructure as a Service (IaaS) is one of the provisioning models for Clouds as defined in the NIST Clouds definition. Although widely used, current IaaS implementations and solutions doesn’t have common and well defined architecture model. The paper attempts to define a generic architecture for

  15. Defining generic architecture for Cloud IaaS provisioning model

    NARCIS (Netherlands)

    Demchenko, Y.; de Laat, C.; Mavrin, A.; Leymann, F.; Ivanov, I.; van Sinderen, M.; Shishkov, B.

    2011-01-01

    Infrastructure as a Service (IaaS) is one of the provisioning models for Clouds as defined in the NIST Clouds definition. Although widely used, current IaaS implementations and solutions doesn’t have common and well defined architecture model. The paper attempts to define a generic architecture for

  16. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates.

    Science.gov (United States)

    Barvík, Ivan; Rejman, Dominik; Panova, Natalya; Šanderová, Hana; Krásný, Libor

    2017-03-01

    RNA polymerase (RNAP) is the central enzyme of transcription of the genetic information from DNA into RNA. RNAP recognizes four main substrates: ATP, CTP, GTP and UTP. Experimental evidence from the past several years suggests that, besides these four NTPs, other molecules can be used to initiate transcription: (i) ribooligonucleotides (nanoRNAs) and (ii) coenzymes such as NAD+, NADH, dephospho-CoA and FAD. The presence of these molecules at the 5΄ ends of RNAs affects the properties of the RNA. Here, we discuss the expanding portfolio of molecules that can initiate transcription, their mechanism of incorporation, effects on RNA and cellular processes, and we present an outlook toward other possible initiation substrates. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. A model to compare a defined benefit pension fund with a defined contribution provident fund

    Directory of Open Access Journals (Sweden)

    J.M. Nevin

    2003-12-01

    Full Text Available During 1994 universities and certain other institutions were given the option of setting up private retirement funds as an alternative to the AIPF. Because of the underfundedness of the AIPF only a substantially reduced Actuarial Reserve Value could be transferred to the new fund on behalf of each member. Employees at these institutions had to make the difficult decision of whether to remain a member of the AIPF or to join a new fund. Several institutions created defined contribution funds as an alternative to the AIPF. In such funds the member carries the investment risk and most institutions felt the need to provide some form of top-up of the Transfer Value. A simple mathematical model is formulated to aid in the comparison of expected retirement benefits under the AIPF and a private fund and to investigate the management problem of distributing additional top-up funds in a fair manner amongst the various age groups within the fund.

  18. A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts

    Directory of Open Access Journals (Sweden)

    Hannah L. Fox

    2017-06-01

    Full Text Available Herpes simplex virus 1 (HSV-1 genes are transcribed by cellular RNA polymerase II (RNA Pol II. While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22 function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16 was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq. The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq, we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production.

  19. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Sollome, James; Martin, Elizabeth [Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Sethupathy, Praveen [Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC (United States); Fry, Rebecca C., E-mail: rfry@unc.edu [Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC (United States)

    2016-12-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression.

  20. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    International Nuclear Information System (INIS)

    Sollome, James; Martin, Elizabeth; Sethupathy, Praveen; Fry, Rebecca C.

    2016-01-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression

  1. Processivity and coupling in messenger RNA transcription.

    Directory of Open Access Journals (Sweden)

    Stuart Aitken

    2010-01-01

    Full Text Available The complexity of messenger RNA processing is now being uncovered by experimental techniques that are capable of detecting individual copies of mRNA in cells, and by quantitative real-time observations that reveal the kinetics. This processing is commonly modelled by permitting mRNA to be transcribed only when the promoter is in the on state. In this simple on/off model, the many processes involved in active transcription are represented by a single reaction. These processes include elongation, which has a minimum time for completion and processing that is not captured in the model.In this paper, we explore the impact on the mRNA distribution of representing the elongation process in more detail. Consideration of the mechanisms of elongation leads to two alternative models of the coupling between the elongating polymerase and the state of the promoter: Processivity allows polymerases to complete elongation irrespective of the promoter state, whereas coupling requires the promoter to be active to produce a full-length transcript. We demonstrate that these alternatives have a significant impact on the predicted distributions. Models are simulated by the Gillespie algorithm, and the third and fourth moments of the resulting distribution are computed in order to characterise the length of the tail, and sharpness of the peak. By this methodology, we show that the moments provide a concise summary of the distribution, showing statistically-significant differences across much of the feasible parameter range.We conclude that processivity is not fully consistent with the on/off model unless the probability of successfully completing elongation is low--as has been observed. The results also suggest that some form of coupling between the promoter and a rate-limiting step in transcription may explain the cell's inability to maintain high mRNA levels at low noise--a prediction of the on/off model that has no supporting evidence.

  2. Extensive polycistronism and antisense transcription in the mammalian Hox clusters.

    Directory of Open Access Journals (Sweden)

    Gaëll Mainguy

    Full Text Available The Hox clusters play a crucial role in body patterning during animal development. They encode both Hox transcription factor and micro-RNA genes that are activated in a precise temporal and spatial sequence that follows their chromosomal order. These remarkable collinear properties confer functional unit status for Hox clusters. We developed the TranscriptView platform to establish high resolution transcriptional profiling and report here that transcription in the Hox clusters is far more complex than previously described in both human and mouse. Unannotated transcripts can represent up to 60% of the total transcriptional output of a cluster. In particular, we identified 14 non-coding Transcriptional Units antisense to Hox genes, 10 of which (70% have a detectable mouse homolog. Most of these Transcriptional Units in both human and mouse present conserved sizeable sequences (>40 bp overlapping Hox transcripts, suggesting that these Hox antisense transcripts are functional. Hox clusters also display at least seven polycistronic clusters, i.e., different genes being co-transcribed on long isoforms (up to 30 kb. This work provides a reevaluated framework for understanding Hox gene function and dys-function. Such extensive transcriptions may provide a structural explanation for Hox clustering.

  3. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program.

    Science.gov (United States)

    Morrison-Nozik, Alexander; Anand, Priti; Zhu, Han; Duan, Qiming; Sabeh, Mohamad; Prosdocimo, Domenick A; Lemieux, Madeleine E; Nordsborg, Nikolai; Russell, Aaron P; MacRae, Calum A; Gerber, Anthony N; Jain, Mukesh K; Haldar, Saptarsi M

    2015-12-08

    Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming.

  4. Transcription arrest caused by long nascent RNA chains

    DEFF Research Database (Denmark)

    Bentin, Thomas; Cherny, Dmitry; Larsen, H Jakob

    2004-01-01

    on transcription. Using phage T3 RNA polymerase (T3 RNAP) and covalently closed circular (cccDNA) DNA templates that did not contain any strong termination signal, transcription was severely inhibited after a short period of time. Less than approximately 10% residual transcriptional activity remained after 10 min......The transcription process is highly processive. However, specific sequence elements encoded in the nascent RNA may signal transcription pausing and/or termination. We find that under certain conditions nascent RNA chains can have a strong and apparently sequence-independent inhibitory effect...... of incubation. The addition of RNase A almost fully restored transcription in a dose dependent manner. Throughout RNase A rescue, an elongation rate of approximately 170 nt/s was maintained and this velocity was independent of RNA transcript length, at least up to 6 kb. Instead, RNase A rescue increased...

  5. Transcriptional activation of ribosomal RNA genes during compensatory renal hypertrophy

    International Nuclear Information System (INIS)

    Ouellette, A.J.; Moonka, R.; Zelenetz, A.; Malt, R.A.

    1986-01-01

    The overall rate of rDNA transcription increases by 50% during the first 24 hours of compensatory renal hypertrophy in the mouse. To study mechanisms of ribosome accumulation after uninephrectomy, transcription rates were measured in isolated kidneys by transcriptional runoff. 32 P-labeled nascent transcripts were hybridized to blots containing linearized, denatured cloned rDNA, and hybridization was quantitated autoradiographically and by direct counting. Overall transcriptional activity of rDNA was increased by 30% above control levels at 6 hrs after nephrectomy and by 50% at 12, 18, and 24 hrs after operation. Hybridizing RNA was insensitive to inhibiby alpha-amanitin, and no hybridization was detected to vector DNA. Thus, accelerated rDNA transcription is one regulatory element in the accretion of ribosomes in renal growth, and the regulatory event is an early event. Mechanisms of activation may include enhanced transcription of active genes or induction of inactive DNA

  6. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates

    Czech Academy of Sciences Publication Activity Database

    Barvík, I.; Rejman, Dominik; Panova, Natalya; Šanderová, Hana; Krásný, Libor

    2017-01-01

    Roč. 41, č. 2 (2017), s. 131-138 ISSN 0168-6445 R&D Projects: GA ČR GA15-05228S; GA ČR GA15-11711S Institutional support: RVO:61388963 ; RVO:61388971 Keywords : RNA polymerase * non-canonical transcription initiation * transcription initiating substrate * nicotinamide adenine dinucleotide (NAD(+)) * coenzymes * RNA stability Subject RIV: EB - Genetics ; Molecular Biology; EE - Microbiology, Virology (MBU-M) OBOR OECD: Biochemistry and molecular biology; Microbiology (MBU-M) Impact factor: 12.198, year: 2016

  7. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors

    DEFF Research Database (Denmark)

    Österlund, Tobias; Bordel, Sergio; Nielsen, Jens

    2015-01-01

    % for the human network. The high controllability (low number of drivers needed to control the system) in yeast, mouse and human is due to the presence of internal loops in their regulatory networks where the TFs regulate each other in a circular fashion. We refer to these internal loops as circular control...... motifs (CCM). The E. coli transcriptional regulatory network, which does not have any CCMs, shows a hierarchical structure of the transcriptional regulatory network in contrast to the eukaryal networks. The presence of CCMs also has influence on the stability of these networks, as the presence of cycles...

  8. The evolution of WRKY transcription factors.

    Science.gov (United States)

    Rinerson, Charles I; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Rushton, Paul J

    2015-02-27

    The availability of increasing numbers of sequenced genomes has necessitated a re-evaluation of the evolution of the WRKY transcription factor family. Modern day plants descended from a charophyte green alga that colonized the land between 430 and 470 million years ago. The first charophyte genome sequence from Klebsormidium flaccidum filled a gap in the available genome sequences in the plant kingdom between unicellular green algae that typically have 1-3 WRKY genes and mosses that contain 30-40. WRKY genes have been previously found in non-plant species but their occurrence has been difficult to explain. Only two WRKY genes are present in the Klebsormidium flaccidum genome and the presence of a Group IIb gene was unexpected because it had previously been thought that Group IIb WRKY genes first appeared in mosses. We found WRKY transcription factor genes outside of the plant lineage in some diplomonads, social amoebae, fungi incertae sedis, and amoebozoa. This patchy distribution suggests that lateral gene transfer is responsible. These lateral gene transfer events appear to pre-date the formation of the WRKY groups in flowering plants. Flowering plants contain proteins with domains typical for both resistance (R) proteins and WRKY transcription factors. R protein-WRKY genes have evolved numerous times in flowering plants, each type being restricted to specific flowering plant lineages. These chimeric proteins contain not only novel combinations of protein domains but also novel combinations and numbers of WRKY domains. Once formed, R protein WRKY genes may combine different components of signalling pathways that may either create new diversity in signalling or accelerate signalling by short circuiting signalling pathways. We propose that the evolution of WRKY transcription factors includes early lateral gene transfers to non-plant organisms and the occurrence of algal WRKY genes that have no counterparts in flowering plants. We propose two alternative hypotheses

  9. Transcriptional regulation by Polycomb group proteins

    DEFF Research Database (Denmark)

    Di Croce, Luciano; Helin, Kristian

    2013-01-01

    Polycomb group (PcG) proteins are epigenetic regulators of transcription that have key roles in stem-cell identity, differentiation and disease. Mechanistically, they function within multiprotein complexes, called Polycomb repressive complexes (PRCs), which modify histones (and other proteins......) and silence target genes. The dynamics of PRC1 and PRC2 components has been the focus of recent research. Here we discuss our current knowledge of the PRC complexes, how they are targeted to chromatin and how the high diversity of the PcG proteins allows these complexes to influence cell identity....

  10. Transcriptional delay stabilizes bistable gene networks.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Ott, William; Josić, Krešimir; Bennett, Matthew R

    2013-08-02

    Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner.

  11. Transcription of repetitive DNA in Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K; Chaudhuri, R K

    1975-01-01

    Repeated DNA sequences of Neurospora crassa were isolated and characterized. Approximately 10 to 12 percent of N. crassa DNA sequence were repeated, of which 7.3 percent were found to be transcribed in mid-log phase of mycelial growth as measured by DNA:RNA hybridization. It is suggested that part of repetitive DNA transcripts in N. crassa were mitochondrial and part were nuclear DNA. Most of the nuclear repeated DNAs, however, code for rRNA and tRNA in N. crassa. (auth)

  12. Unique CCT repeats mediate transcription of the TWIST1 gene in mesenchymal cell lines

    International Nuclear Information System (INIS)

    Ohkuma, Mizue; Funato, Noriko; Higashihori, Norihisa; Murakami, Masanori; Ohyama, Kimie; Nakamura, Masataka

    2007-01-01

    TWIST1, a basic helix-loop-helix transcription factor, plays critical roles in embryo development, cancer metastasis and mesenchymal progenitor differentiation. Little is known about transcriptional regulation of TWIST1 expression. Here we identified DNA sequences responsible for TWIST1 expression in mesenchymal lineage cell lines. Reporter assays with TWIST1 promoter mutants defined the -102 to -74 sequences that are essential for TWIST1 expression in human and mouse mesenchymal cell lines. Tandem repeats of CCT, but not putative CREB and NF-κB sites in the sequences substantially supported activity of the TWIST1 promoter. Electrophoretic mobility shift assay demonstrated that the DNA sequences with the CCT repeats formed complexes with nuclear factors, containing, at least, Sp1 and Sp3. These results suggest critical implication of the CCT repeats in association with Sp1 and Sp3 factors in sustaining expression of the TWIST1 gene in mesenchymal cells

  13. MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis.

    Science.gov (United States)

    Lee, Hansol; Habas, Raymond; Abate-Shen, Cory

    2004-06-11

    During embryogenesis, differentiation of skeletal muscle is regulated by transcription factors that include members of the Msx homeoprotein family. By investigating Msx1 function in repression of myogenic gene expression, we identified a physical interaction between Msx1 and H1b, a specific isoform of mouse histone H1. We found that Msx1 and H1b bind to a key regulatory element of MyoD, a central regulator of skeletal muscle differentiation, where they induce repressed chromatin. Moreover, Msx1 and H1b cooperate to inhibit muscle differentiation in cell culture and in Xenopus animal caps. Our findings define a previously unknown function for "linker" histones in gene-specific transcriptional regulation.

  14. Transcriptional and functional differences in stem cell populations isolated from Extraocular and Limb muscles

    DEFF Research Database (Denmark)

    Pacheco-Pinedo, Eugenia Cristina; Budak, Murat T; Zeiger, Ulrike

    2008-01-01

    The extraocular muscles (EOMs) are a distinct muscle group that displays an array of unique contractile, structural and regenerative properties. They also have differential sensitivity to certain diseases and are enigmatically spared in Duchenne muscular dystrophy (DMD). The EOMs are so distinct...... from other skeletal muscles that the term: allotype has been coined to highlight EOM-group-specific properties. We hypothesized that increased and distinct stem cells may underlie the continual myogenesis noted in EOM. The side population (SP) stem cells were isolated and studied. EOMs had 15x higher...... SP cell content compared to limb muscles. Expression profiling revealed 348 transcripts that define the EOM-SP transcriptome. Over 92% of transcripts were SP-specific, as they were absent in previous whole-muscle microarray studies. Cultured EOM-SP cells revealed superior in vitro proliferative...

  15. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations.

    Science.gov (United States)

    Philippeos, Christina; Telerman, Stephanie B; Oulès, Bénédicte; Pisco, Angela O; Shaw, Tanya J; Elgueta, Raul; Lombardi, Giovanna; Driskell, Ryan R; Soldin, Mark; Lynch, Magnus D; Watt, Fiona M

    2018-04-01

    Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. The transcription factor c-Maf controls touch receptor development and function.

    Science.gov (United States)

    Wende, Hagen; Lechner, Stefan G; Cheret, Cyril; Bourane, Steeve; Kolanczyk, Maria E; Pattyn, Alexandre; Reuter, Katja; Munier, Francis L; Carroll, Patrick; Lewin, Gary R; Birchmeier, Carmen

    2012-03-16

    The sense of touch relies on detection of mechanical stimuli by specialized mechanosensory neurons. The scarcity of molecular data has made it difficult to analyze development of mechanoreceptors and to define the basis of their diversity and function. We show that the transcription factor c-Maf/c-MAF is crucial for mechanosensory function in mice and humans. The development and function of several rapidly adapting mechanoreceptor types are disrupted in c-Maf mutant mice. In particular, Pacinian corpuscles, a type of mechanoreceptor specialized to detect high-frequency vibrations, are severely atrophied. In line with this, sensitivity to high-frequency vibration is reduced in humans carrying a dominant mutation in the c-MAF gene. Thus, our work identifies a key transcription factor specifying development and function of mechanoreceptors and their end organs.

  17. Sensory Neuron Fates Are Distinguished by a Transcriptional Switch that Regulates Dendrite Branch Stabilization

    Science.gov (United States)

    Smith, Cody J.; O’Brien, Timothy; Chatzigeorgiou, Marios; Spencer, W. Clay; Feingold-Link, Elana; Husson, Steven J.; Hori, Sayaka; Mitani, Shohei; Gottschalk, Alexander; Schafer, William R.; Miller, David M.

    2013-01-01

    SUMMARY Sensory neurons adopt distinct morphologies and functional modalities to mediate responses to specific stimuli. Transcription factors and their downstream effectors orchestrate this outcome but are incompletely defined. Here, we show that different classes of mechanosensory neurons in C. elegans are distinguished by the combined action of the transcription factors MEC-3, AHR-1, and ZAG-1. Low levels of MEC-3 specify the elaborate branching pattern of PVD nociceptors, whereas high MEC-3 is correlated with the simple morphology of AVM and PVM touch neurons. AHR-1 specifies AVM touch neuron fate by elevating MEC-3 while simultaneously blocking expression of nociceptive genes such as the MEC-3 target, the claudin-like membrane protein HPO-30, that promotes the complex dendritic branching pattern of PVD. ZAG-1 exercises a parallel role to prevent PVM from adopting the PVD fate. The conserved dendritic branching function of the Drosophila AHR-1 homolog, Spineless, argues for similar pathways in mammals. PMID:23889932

  18. Simultaneous transcriptional profiling of bacteria and their host cells.

    Directory of Open Access Journals (Sweden)

    Michael S Humphrys

    Full Text Available We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness. Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.

  19. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    Science.gov (United States)

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  20. Development of a Transcription Factor-Based Lactam Biosensor

    DEFF Research Database (Denmark)

    Zhang, Jingwei; Barajas, Jesus F.; Burdu, Mehmet

    2017-01-01

    Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied a chemoi......Lactams are an important class of commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of lactams could be greatly improved by high-throughput sensors for lactam biosynthesis. To identify biosensors of lactams, we applied...... a chemoinformatic approach inspired by small molecule drug discovery. We define this approach as analogue generation toward catabolizable chemicals or AGTC. We discovered a lactam biosensor based on the ChnR/Pb transcription factor-promoter pair. The microbial biosensor is capable of sensing ε-caprolactam, Î......´-valerolactam, and butyrolactam in a dose-dependent manner. The biosensor has sufficient specificity to discriminate against lactam biosynthetic intermediates and therefore could potentially be applied for high-throughput metabolic engineering for industrially important high titer lactam biosynthesis....

  1. A human transcription factor in search mode.

    Science.gov (United States)

    Hauser, Kevin; Essuman, Bernard; He, Yiqing; Coutsias, Evangelos; Garcia-Diaz, Miguel; Simmerling, Carlos

    2016-01-08

    Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Transcriptional and posttranscriptional regulation of cyanobacterial photosynthesis.

    Science.gov (United States)

    Wilde, Annegret; Hihara, Yukako

    2016-03-01

    Cyanobacteria are well established model organisms for the study of oxygenic photosynthesis, nitrogen metabolism, toxin biosynthesis, and salt acclimation. However, in comparison to other model bacteria little is known about regulatory networks, which allow cyanobacteria to acclimate to changing environmental conditions. The current work has begun to illuminate how transcription factors modulate expression of different photosynthetic regulons. During the past few years, the research on other regulatory principles like RNA-based regulation showed the importance of non-protein regulators for bacterial lifestyle. Investigations on modulation of photosynthetic components should elucidate the contributions of all factors within the context of a larger regulatory network. Here, we focus on regulation of photosynthetic processes including transcriptional and posttranscriptional mechanisms, citing examples from a limited number of cyanobacterial species. Though, the general idea holds true for most species, important differences exist between various organisms, illustrating diversity of acclimation strategies in the very heterogeneous cyanobacterial clade. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Transcriptional regulation of Drosophila gonad formation.

    Science.gov (United States)

    Tripathy, Ratna; Kunwar, Prabhat S; Sano, Hiroko; Renault, Andrew D

    2014-08-15

    The formation of the Drosophila embryonic gonad, involving the fusion of clusters of somatic gonadal precursor cells (SGPs) and their ensheathment of germ cells, provides a simple and genetically tractable model for the interplay between cells during organ formation. In a screen for mutants affecting gonad formation we identified a SGP cell autonomous role for Midline (Mid) and Longitudinals lacking (Lola). These transcriptional factors are required for multiple aspects of SGP behaviour including SGP cluster fusion, germ cell ensheathment and gonad compaction. The lola locus encodes more than 25 differentially spliced isoforms and we have identified an isoform specific requirement for lola in the gonad which is distinct from that in nervous system development. Mid and Lola work in parallel in gonad formation and surprisingly Mid overexpression in a lola background leads to additional SGPs at the expense of fat body cells. Our findings support the idea that although the transcription factors required by SGPs can ostensibly be assigned to those being required for either SGP specification or behaviour, they can also interact to impinge on both processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Inferring Molecular Processes Heterogeneity from Transcriptional Data.

    Science.gov (United States)

    Gogolewski, Krzysztof; Wronowska, Weronika; Lech, Agnieszka; Lesyng, Bogdan; Gambin, Anna

    2017-01-01

    RNA microarrays and RNA-seq are nowadays standard technologies to study the transcriptional activity of cells. Most studies focus on tracking transcriptional changes caused by specific experimental conditions. Information referring to genes up- and downregulation is evaluated analyzing the behaviour of relatively large population of cells by averaging its properties. However, even assuming perfect sample homogeneity, different subpopulations of cells can exhibit diverse transcriptomic profiles, as they may follow different regulatory/signaling pathways. The purpose of this study is to provide a novel methodological scheme to account for possible internal, functional heterogeneity in homogeneous cell lines, including cancer ones. We propose a novel computational method to infer the proportion between subpopulations of cells that manifest various functional behaviour in a given sample. Our method was validated using two datasets from RNA microarray experiments. Both experiments aimed to examine cell viability in specific experimental conditions. The presented methodology can be easily extended to RNA-seq data as well as other molecular processes. Moreover, it complements standard tools to indicate most important networks from transcriptomic data and in particular could be useful in the analysis of cancer cell lines affected by biologically active compounds or drugs.

  5. Measuring replication competent HIV-1: advances and challenges in defining the latent reservoir.

    Science.gov (United States)

    Wang, Zheng; Simonetti, Francesco R; Siliciano, Robert F; Laird, Gregory M

    2018-02-13

    Antiretroviral therapy cannot cure HIV-1 infection due to the persistence of a small number of latently infected cells harboring replication-competent proviruses. Measuring persistent HIV-1 is challenging, as it consists of a mosaic population of defective and intact proviruses that can shift from a state of latency to active HIV-1 transcription. Due to this complexity, most of the current assays detect multiple categories of persistent HIV-1, leading to an overestimate of the true size of the latent reservoir. Here, we review the development of the viral outgrowth assay, the gold-standard quantification of replication-competent proviruses, and discuss the insights provided by full-length HIV-1 genome sequencing methods, which allowed us to unravel the composition of the proviral landscape. In this review, we provide a dissection of what defines HIV-1 persistence and we examine the unmet needs to measure the efficacy of interventions aimed at eliminating the HIV-1 reservoir.

  6. Plasma Cell Ontogeny Defined by Quantitative Changes in Blimp-1 Expression

    Science.gov (United States)

    Kallies, Axel; Hasbold, Jhagvaral; Tarlinton, David M.; Dietrich, Wendy; Corcoran, Lynn M.; Hodgkin, Philip D.; Nutt, Stephen L.

    2004-01-01

    Plasma cells comprise a population of terminally differentiated B cells that are dependent on the transcriptional regulator B lymphocyte–induced maturation protein 1 (Blimp-1) for their development. We have introduced a gfp reporter into the Blimp-1 locus and shown that heterozygous mice express the green fluorescent protein in all antibody-secreting cells (ASCs) in vivo and in vitro. In vitro, these cells display considerable heterogeneity in surface phenotype, immunoglobulin secretion rate, and Blimp-1 expression levels. Importantly, analysis of in vivo ASCs induced by immunization reveals a developmental pathway in which increasing levels of Blimp-1 expression define developmental stages of plasma cell differentiation that have many phenotypic and molecular correlates. Thus, maturation from transient plasmablast to long-lived ASCs in bone marrow is predicated on quantitative increases in Blimp-1 expression. PMID:15492122

  7. Dissecting interferon-induced transcriptional programs in human peripheral blood cells.

    Directory of Open Access Journals (Sweden)

    Simon J Waddell

    2010-03-01

    Full Text Available Interferons are key modulators of the immune system, and are central to the control of many diseases. The response of immune cells to stimuli in complex populations is the product of direct and indirect effects, and of homotypic and heterotypic cell interactions. Dissecting the global transcriptional profiles of immune cell populations may provide insights into this regulatory interplay. The host transcriptional response may also be useful in discriminating between disease states, and in understanding pathophysiology. The transcriptional programs of cell populations in health therefore provide a paradigm for deconvoluting disease-associated gene expression profiles.We used human cDNA microarrays to (1 compare the gene expression programs in human peripheral blood mononuclear cells (PBMCs elicited by 6 major mediators of the immune response: interferons alpha, beta, omega and gamma, IL12 and TNFalpha; and (2 characterize the transcriptional responses of purified immune cell populations (CD4+ and CD8+ T cells, B cells, NK cells and monocytes to IFNgamma stimulation. We defined a highly stereotyped response to type I interferons, while responses to IFNgamma and IL12 were largely restricted to a subset of type I interferon-inducible genes. TNFalpha stimulation resulted in a distinct pattern of gene expression. Cell type-specific transcriptional programs were identified, highlighting the pronounced response of monocytes to IFNgamma, and emergent properties associated with IFN-mediated activation of mixed cell populations. This information provides a detailed view of cellular activation by immune mediators, and contributes an interpretive framework for the definition of host immune responses in a variety of disease settings.

  8. Multiple oxygen tension environments reveal diverse patterns of transcriptional regulation in primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    Full Text Available The central nervous system normally functions at O(2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O(2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O(2 tensions compared to the cell culture standard of 20% O(2, to investigate their ability to sense and translate this O(2 information to transcriptional activity. Variance of ambient O(2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O(2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O(2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O(2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional 'programs' may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity.

  9. A tobacco cDNA reveals two different transcription patterns in vegetative and reproductive organs

    Directory of Open Access Journals (Sweden)

    I. da Silva

    2002-08-01

    Full Text Available In order to identify genes expressed in the pistil that may have a role in the reproduction process, we have established an expressed sequence tags project to randomly sequence clones from a Nicotiana tabacum stigma/style cDNA library. A cDNA clone (MTL-8 showing high sequence similarity to genes encoding glycine-rich RNA-binding proteins was chosen for further characterization. Based on the extensive identity of MTL-8 to the RGP-1a sequence of N. sylvestris, a primer was defined to extend the 5' sequence of MTL-8 by RT-PCR from stigma/style RNAs. The amplification product was sequenced and it was confirmed that MTL-8 corresponds to an mRNA encoding a glycine-rich RNA-binding protein. Two transcripts of different sizes and expression patterns were identified when the MTL-8 cDNA insert was used as a probe in RNA blots. The largest is 1,100 nucleotides (nt long and markedly predominant in ovaries. The smaller transcript, with 600 nt, is ubiquitous to the vegetative and reproductive organs analyzed (roots, stems, leaves, sepals, petals, stamens, stigmas/styles and ovaries. Plants submitted to stress (wounding, virus infection and ethylene treatment presented an increased level of the 600-nt transcript in leaves, especially after tobacco necrosis virus infection. In contrast, the level of the 1,100-nt transcript seems to be unaffected by the stress conditions tested. Results of Southern blot experiments have suggested that MTL-8 is present in one or two copies in the tobacco genome. Our results suggest that the shorter transcript is related to stress while the larger one is a flower predominant and nonstress-inducible messenger.

  10. Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA.

    Science.gov (United States)

    Wahba, Amy; Ryan, Michael C; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J

    2018-01-02

    Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation. As compared to the transcriptome (total RNA) of untreated cells, the radiation-induced transcriptome contained 92 splice events suggesting that radiation induced alternative splicing. As compared to the translatome (polysome-bound RNA) of untreated cells, the radiation-induced translatome contained 280 splice events of which only 24 were overlapping with the radiation-induced transcriptome. These results suggest that radiation not only modifies alternative splicing of precursor mRNA, but also results in the selective association of existing mRNA isoforms with polysomes. Comparison of radiation-induced alternative transcripts to radiation-induced gene expression in total RNA revealed little overlap (about 3%). In contrast, in the radiation-induced translatome, about 38% of the induced alternative transcripts corresponded to genes whose expression level was affected in the translatome. This study suggests that whereas radiation induces alternate splicing, the alternative transcripts present at the time of irradiation may play a role in the radiation-induced translational control of gene expression and thus cellular radioresponse.

  11. Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and

  12. Computational assessment of the cooperativity between RNA binding proteins and MicroRNAs in Transcript Decay.

    Science.gov (United States)

    Jiang, Peng; Singh, Mona; Coller, Hilary A

    2013-01-01

    Transcript degradation is a widespread and important mechanism for regulating protein abundance. Two major regulators of transcript degradation are RNA Binding Proteins (RBPs) and microRNAs (miRNAs). We computationally explored whether RBPs and miRNAs cooperate to promote transcript decay. We defined five RBP motifs based on the evolutionary conservation of their recognition sites in 3'UTRs as the binding motifs for Pumilio (PUM), U1A, Fox-1, Nova, and UAUUUAU. Recognition sites for some of these RBPs tended to localize at the end of long 3'UTRs. A specific group of miRNA recognition sites were enriched within 50 nts from the RBP recognition sites for PUM and UAUUUAU. The presence of both a PUM recognition site and a recognition site for preferentially co-occurring miRNAs was associated with faster decay of the associated transcripts. For PUM and its co-occurring miRNAs, binding of the RBP to its recognition sites was predicted to release nearby miRNA recognition sites from RNA secondary structures. The mammalian miRNAs that preferentially co-occur with PUM binding sites have recognition seeds that are reverse complements to the PUM recognition motif. Their binding sites have the potential to form hairpin secondary structures with proximal PUM binding sites that would normally limit RISC accessibility, but would be more accessible to miRNAs in response to the binding of PUM. In sum, our computational analyses suggest that a specific set of RBPs and miRNAs work together to affect transcript decay, with the rescue of miRNA recognition sites via RBP binding as one possible mechanism of cooperativity.

  13. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    DEFF Research Database (Denmark)

    Fang, Xin; Sastry, Anand; Mih, Nathan

    2017-01-01

    Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN-probably the best characterized TRN-several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predi...

  14. Transcriptional and Post-Transcriptional Mechanisms of the Development of Neocortical Lamination

    Directory of Open Access Journals (Sweden)

    Tatiana Popovitchenko

    2017-11-01

    Full Text Available The neocortex is a laminated brain structure that is the seat of higher cognitive capacity and responses, long-term memory, sensory and emotional functions, and voluntary motor behavior. Proper lamination requires that progenitor cells give rise to a neuron, that the immature neuron can migrate away from its mother cell and past other cells, and finally that the immature neuron can take its place and adopt a mature identity characterized by connectivity and gene expression; thus lamination proceeds through three steps: genesis, migration, and maturation. Each neocortical layer contains pyramidal neurons that share specific morphological and molecular characteristics that stem from their prenatal birth date. Transcription factors are dynamic proteins because of the cohort of downstream factors that they regulate. RNA-binding proteins are no less dynamic, and play important roles in every step of mRNA processing. Indeed, recent screens have uncovered post-transcriptional mechanisms as being integral regulatory mechanisms to neocortical development. Here, we summarize major aspects of neocortical laminar development, emphasizing transcriptional and post-transcriptional mechanisms, with the aim of spurring increased understanding and study of its intricacies.

  15. Coordinated Evolution of Transcriptional and Post-Transcriptional Regulation for Mitochondrial Functions in Yeast Strains.

    Directory of Open Access Journals (Sweden)

    Xuepeng Sun

    Full Text Available Evolution of gene regulation has been proposed to play an important role in environmental adaptation. Exploring mechanisms underlying coordinated evolutionary changes at various levels of gene regulation could shed new light on how organism adapt in nature. In this study, we focused on regulatory differences between a laboratory Saccharomyces cerevisiae strain BY4742 and a pathogenic S. cerevisiae strain, YJM789. The two strains diverge in many features, including growth rate, morphology, high temperature tolerance, and pathogenicity. Our RNA-Seq and ribosomal footprint profiling data showed that gene expression differences are pervasive, and genes functioning in mitochondria are mostly divergent between the two strains at both transcriptional and translational levels. Combining functional genomics data from other yeast strains, we further demonstrated that significant divergence of expression for genes functioning in the electron transport chain (ETC was likely caused by differential expression of a transcriptional factor, HAP4, and that post-transcriptional regulation mediated by an RNA-binding protein, PUF3, likely led to expression divergence for genes involved in mitochondrial translation. We also explored mito-nuclear interactions via mitochondrial DNA replacement between strains. Although the two mitochondrial genomes harbor substantial sequence divergence, neither growth nor gene expression were affected by mitochondrial DNA replacement in both fermentative and respiratory growth media, indicating compatible mitochondrial and nuclear genomes between these two strains in the tested conditions. Collectively, we used mitochondrial functions as an example to demonstrate for the first time that evolution at both transcriptional and post-transcriptional levels could lead to coordinated regulatory changes underlying strain specific functional variations.

  16. Transcriptional Programs Controlling Perinatal Lung Maturation

    Science.gov (United States)

    Xu, Yan; Wang, Yanhua; Besnard, Valérie; Ikegami, Machiko; Wert, Susan E.; Heffner, Caleb; Murray, Stephen A.; Donahue, Leah Rae; Whitsett, Jeffrey A.

    2012-01-01

    The timing of lung maturation is controlled precisely by complex genetic and cellular programs. Lung immaturity following preterm birth frequently results in Respiratory Distress Syndrome (RDS) and Broncho-Pulmonary Dysplasia (BPD), which are leading causes of mortality and morbidity in preterm infants. Mechanisms synchronizing gestational length and lung maturation remain to be elucidated. In this study, we designed a genome-wide mRNA expression time-course study from E15.5 to Postnatal Day 0 (PN0) using lung RNAs from C57BL/6J (B6) and A/J mice that differ in gestational length by ∼30 hr (B6controlling lung maturation. We identified both temporal and strain dependent gene expression patterns during lung maturation. For time dependent changes, cell adhesion, vasculature development, and lipid metabolism/transport were major bioprocesses induced during the saccular stage of lung development at E16.5–E17.5. CEBPA, PPARG, VEGFA, CAV1 and CDH1 were found to be key signaling and transcriptional regulators of these processes. Innate defense/immune responses were induced at later gestational ages (E18.5–20.5), STAT1, AP1, and EGFR being important regulators of these responses. Expression of RNAs associated with the cell cycle and chromatin assembly was repressed during prenatal lung maturation and was regulated by FOXM1, PLK1, chromobox, and high mobility group families of transcription factors. Strain dependent lung mRNA expression differences peaked at E18.5. At this time, mRNAs regulating surfactant and innate immunity were more abundantly expressed in lungs of B6 (short gestation) than in A/J (long gestation) mice, while expression of genes involved in chromatin assembly and histone modification were expressed at lower levels in B6 than in A/J mice. The present study systemically mapped key regulators, bioprocesses, and transcriptional networks controlling lung maturation, providing the basis for new therapeutic strategies to enhance lung function in preterm

  17. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    International Nuclear Information System (INIS)

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-01-01

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4"+ T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4"+ T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4"+ T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation (IR) increases

  18. The Epigenome of Schistosoma mansoni Provides Insight about How Cercariae Poise Transcription until Infection

    Science.gov (United States)

    Freitag, Michael; Parrinello, Hugues; Groth, Marco; Emans, Rémi; Cosseau, Céline; Grunau, Christoph

    2015-01-01

    Background Chromatin structure can control gene expression and can define specific transcription states. For example, bivalent methylation of histone H3K4 and H3K27 is linked to poised transcription in vertebrate embryonic stem cells (ESC). It allows them to rapidly engage specific developmental pathways. We reasoned that non-vertebrate metazoans that encounter a similar developmental constraint (i.e. to quickly start development into a new phenotype) might use a similar system. Schistosomes are parasitic platyhelminthes that are characterized by passage through two hosts: a mollusk as intermediate host and humans or rodents as definitive host. During its development, the parasite undergoes drastic changes, most notable immediately after infection of the definitive host, i.e. during the transition from the free-swimming cercariae into adult worms. Methodology/Principal Findings We used Chromatin Immunoprecipitation followed by massive parallel sequencing (ChIP-Seq) to analyze genome-wide chromatin structure of S. mansoni on the level of histone modifications (H3K4me3, H3K27me3, H3K9me3, and H3K9ac) in cercariae, schistosomula and adults (available at http://genome.univ-perp.fr). We saw striking differences in chromatin structure between the developmental stages, but most importantly we found that cercariae possess a specific combination of marks at the transcription start sites (TSS) that has similarities to a structure found in ESC. We demonstrate that in cercariae no transcription occurs, and we provide evidences that cercariae do not possess large numbers of canonical stem cells. Conclusions/Significance We describe here a broad view on the epigenome of a metazoan parasite. Most notably, we find bivalent histone H3 methylation in cercariae. Methylation of H3K27 is removed during transformation into schistosomula (and stays absent in adults) and transcription is activated. In addition, shifts of H3K9 methylation and acetylation occur towards upstream and

  19. The Epigenome of Schistosoma mansoni Provides Insight about How Cercariae Poise Transcription until Infection.

    Directory of Open Access Journals (Sweden)

    David Roquis

    Full Text Available Chromatin structure can control gene expression and can define specific transcription states. For example, bivalent methylation of histone H3K4 and H3K27 is linked to poised transcription in vertebrate embryonic stem cells (ESC. It allows them to rapidly engage specific developmental pathways. We reasoned that non-vertebrate metazoans that encounter a similar developmental constraint (i.e. to quickly start development into a new phenotype might use a similar system. Schistosomes are parasitic platyhelminthes that are characterized by passage through two hosts: a mollusk as intermediate host and humans or rodents as definitive host. During its development, the parasite undergoes drastic changes, most notable immediately after infection of the definitive host, i.e. during the transition from the free-swimming cercariae into adult worms.We used Chromatin Immunoprecipitation followed by massive parallel sequencing (ChIP-Seq to analyze genome-wide chromatin structure of S. mansoni on the level of histone modifications (H3K4me3, H3K27me3, H3K9me3, and H3K9ac in cercariae, schistosomula and adults (available at http://genome.univ-perp.fr. We saw striking differences in chromatin structure between the developmental stages, but most importantly we found that cercariae possess a specific combination of marks at the transcription start sites (TSS that has similarities to a structure found in ESC. We demonstrate that in cercariae no transcription occurs, and we provide evidences that cercariae do not possess large numbers of canonical stem cells.We describe here a broad view on the epigenome of a metazoan parasite. Most notably, we find bivalent histone H3 methylation in cercariae. Methylation of H3K27 is removed during transformation into schistosomula (and stays absent in adults and transcription is activated. In addition, shifts of H3K9 methylation and acetylation occur towards upstream and downstream of the transcriptional start site (TSS. We conclude

  20. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Iordanskiy, Sergey [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Van Duyne, Rachel [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Romerio, Fabio [Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Kashanchi, Fatah, E-mail: fkashanc@gmu.edu [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States)

    2015-11-15

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4{sup +} T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4{sup +} T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4{sup +} T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation

  1. Graphs for information security control in software defined networks

    Science.gov (United States)

    Grusho, Alexander A.; Abaev, Pavel O.; Shorgin, Sergey Ya.; Timonina, Elena E.

    2017-07-01

    Information security control in software defined networks (SDN) is connected with execution of the security policy rules regulating information accesses and protection against distribution of the malicious code and harmful influences. The paper offers a representation of a security policy in the form of hierarchical structure which in case of distribution of resources for the solution of tasks defines graphs of admissible interactions in a networks. These graphs define commutation tables of switches via the SDN controller.

  2. Poster: A Software-Defined Multi-Camera Network

    OpenAIRE

    Chen, Po-Yen; Chen, Chien; Selvaraj, Parthiban; Claesen, Luc

    2016-01-01

    The widespread popularity of OpenFlow leads to a significant increase in the number of applications developed in SoftwareDefined Networking (SDN). In this work, we propose the architecture of a Software-Defined Multi-Camera Network consisting of small, flexible, economic, and programmable cameras which combine the functions of the processor, switch, and camera. A Software-Defined Multi-Camera Network can effectively reduce the overall network bandwidth and reduce a large amount of the Capex a...

  3. Non-self-adjoint Hamiltonians defined by generalized Riesz bases

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, H., E-mail: h-inoue@math.kyushu-u.ac.jp [Graduate School of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Takakura, M., E-mail: mayumi@fukuoka-u.ac.jp [Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180 (Japan)

    2016-08-15

    Bagarello, Inoue, and Trapani [J. Math. Phys. 55, 033501 (2014)] investigated some operators defined by the Riesz bases. These operators connect with quasi-Hermitian quantum mechanics, and its relatives. In this paper, we introduce a notion of generalized Riesz bases which is a generalization of Riesz bases and investigate some operators defined by the generalized Riesz bases by changing the frameworks of the operators defined in the work of Bagarello, Inoue, and Trapani.

  4. Defining health-related quality of life for young wheelchair users: A qualitative health economics study.

    Directory of Open Access Journals (Sweden)

    Nathan Bray

    Full Text Available Wheelchairs for children with impaired mobility provide health, developmental and psychosocial benefits, however there is limited understanding of how mobility aids affect the health-related quality of life of children with impaired mobility. Preference-based health-related quality of life outcome measures are used to calculate quality-adjusted life years; an important concept in health economics. The aim of this research was to understand how young wheelchair users and their parents define health-related quality of life in relation to mobility impairment and wheelchair use.The sampling frame was children with impaired mobility (≤18 years who use a wheelchair and their parents. Data were collected through semi-structured face-to-face interviews conducted in participants' homes. Qualitative framework analysis was used to analyse the interview transcripts. An a priori thematic coding framework was developed. Emerging codes were grouped into categories, and refined into analytical themes. The data were used to build an understanding of how children with impaired mobility define health-related quality of life in relation to mobility impairment, and to assess the applicability of two standard measures of health-related quality of life.Eleven children with impaired mobility and 24 parents were interviewed across 27 interviews. Participants defined mobility-related quality of life through three distinct but interrelated concepts: 1 participation and positive experiences; 2 self-worth and feeling fulfilled; 3 health and functioning. A good degree of consensus was found between child and parent responses, although there was some evidence to suggest a shift in perception of mobility-related quality of life with child age.Young wheelchair users define health-related quality of life in a distinct way as a result of their mobility impairment and adaptation use. Generic, preference-based measures of health-related quality of life lack sensitivity in this

  5. Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1-activated transcription of the interferon regulatory factor 1 gene (IRF1

    Directory of Open Access Journals (Sweden)

    Buro Lauren J

    2010-09-01

    Full Text Available Abstract Background Signal transducer and activator of transcription (STAT activation of gene expression is both rapid and transient, and when properly executed it affects growth, differentiation, homeostasis and the immune response, but when dysregulated it contributes to human disease. Transcriptional activation is regulated by alterations to the chromatin template. However, the role of histone modification at gene loci that are activated for transcription in response to STAT signaling is poorly defined. Results Using chromatin immunoprecipitation, we profiled several histone modifications during STAT1 activation of the interferon regulatory factor 1 gene (IRF1. Methylated lysine histone proteins H3K4me2, H3K4me3, H3K79me3, H3K36me3 and monoubiquitinated histone ubH2B are dynamic and correlate with interferon (IFNγ induction of STAT1 activity. Chemical inhibition of H3K4 methylation downregulates IRF1 transcription and decreases RNA polymerase II (Pol II occupancy at the IRF1 promoter. MEN1, a component of a complex proteins associated with Set1 (COMPASS-like complex and the hBRE1 component, RNF20, are localized to IRF1 in the uninduced state and are further recruited when IRF1 is activated. RNAi-mediated depletion of RNF20 lowers both ubH2B and H3K4me3, but surprisingly, upregulates IFNγ induced IRF1 transcription. The dynamics of phosphorylation in the C-terminal domain (CTD of Pol II are disrupted during gene activation as well. Conclusions H2B monoubiquitination promotes H3K4 methylation, but the E3 ubiquitin ligase, RNF20, is repressive of inducible transcription at the IRF1 gene locus, suggesting that ubH2B can, directly or indirectly, affect Pol II CTD phosphorylation cycling to exert control on ongoing transcription.

  6. Software Defined Common Processing System (SDCPS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Coherent Logix, Incorporated (CLX) proposes the development of a Software Defined Common Processing System (SDCPS) that leverages the inherent advantages of an...

  7. DEFINE: A Service-Oriented Dynamically Enabling Function Model

    Directory of Open Access Journals (Sweden)

    Tan Wei-Yi

    2017-01-01

    In this paper, we introduce an innovative Dynamically Enable Function In Network Equipment (DEFINE to allow tenant get the network service quickly. First, DEFINE decouples an application into different functional components, and connects these function components in a reconfigurable method. Second, DEFINE provides a programmable interface to the third party, who can develop their own processing modules according to their own needs. To verify the effectiveness of this model, we set up an evaluating network with a FPGA-based OpenFlow switch prototype, and deployed several applications on it. Our results show that DEFINE has excellent flexibility and performance.

  8. Detecting novel low-abundant transcripts in Drosophila

    DEFF Research Database (Denmark)

    Lee, Sanggyu; Bao, Jingyue; Zhou, Guolin

    2005-01-01

    Increasing evidence suggests that low-abundant transcripts may play fundamental roles in biological processes. In an attempt to estimate the prevalence of low-abundant transcripts in eukaryotic genomes, we performed a transcriptome analysis in Drosophila using the SAGE technique. We collected 244......,313 SAGE tags from transcripts expressed in Drosophila embryonic, larval, pupae, adult, and testicular tissue. From these SAGE tags, we identified 40,823 unique SAGE tags. Our analysis showed that 55% of the 40,823 unique SAGE tags are novel without matches in currently known Drosophila transcripts...... in the Drosophila genome. Our study reveals the presence of a significant number of novel low-abundant transcripts in Drosophila, and highlights the need to isolate these novel low-abundant transcripts for further biological studies. Udgivelsesdato: 2005-Jun...

  9. Automatic Phonetic Transcription for Danish Speech Recognition

    DEFF Research Database (Denmark)

    Kirkedal, Andreas Søeborg

    , like Danish, the graphemic and phonetic representations are very dissimilar and more complex rewriting rules must be applied to create the correct phonetic representation. Automatic phonetic transcribers use different strategies, from deep analysis to shallow rewriting rules, to produce phonetic......, syllabication, stød and several other suprasegmental features (Kirkedal, 2013). Simplifying the transcriptions by filtering out the symbols for suprasegmental features in a post-processing step produces a format that is suitable for ASR purposes. eSpeak is an open source speech synthesizer originally created...... for particular words and word classes in addition. In comparison, English has 5,852 spelling-tophoneme rules and 4,133 additional rules and 8,278 rules and 3,829 additional rules. Phonix applies deep morphological analysis as a preprocessing step. Should the analysis fail, several fallback strategies...

  10. A transcription factor for cold sensation!

    Directory of Open Access Journals (Sweden)

    Milbrandt Jeffrey

    2005-03-01

    Full Text Available Abstract The ability to feel hot and cold is critical for animals and human beings to survive in the natural environment. Unlike other sensations, the physiology of cold sensation is mostly unknown. In the present study, we use genetically modified mice that do not express nerve growth factor-inducible B (NGFIB to investigate the possible role of NGFIB in cold sensation. We found that genetic deletion of NGFIB selectively affected behavioral responses to cold stimuli while behavioral responses to noxious heat or mechanical stimuli were normal. Furthermore, behavioral responses remained reduced or blocked in NGFIB knockout mice even after repetitive application of cold stimuli. Our results provide strong evidence that the first transcription factor NGFIB determines the ability of animals to respond to cold stimulation.

  11. Transcriptional regulation of c-fos

    International Nuclear Information System (INIS)

    Prywes, R.; Fisch, T.M.; Roeder, R.G.

    1988-01-01

    Expression of the c-fos proto-oncogene is induced rapidly and transiently by serum and other mitogenic agents. This rapid induction is therefore likely to involve posttranslational modifications and provides an excellent model for an early nuclear target of the signal transduction process, growth factors that bind to tyrosine kinase receptors. The authors have sought to understand the mechanism of transcriptional induction by each of these agents. The first step in this process was to identify the sequence elements in the c-fos gene responsible for induction by each of these agents. A specific element, termed serum response element (SRE), has been identified by transfection experiments of c-fos promoter constructs. To study regulation via SRE, a nuclear factor that binds to the SRE, termed serum response factor (SRF), has been identified with the gel mobility shift assay

  12. An anatomic transcriptional atlas of human glioblastoma.

    Science.gov (United States)

    Puchalski, Ralph B; Shah, Nameeta; Miller, Jeremy; Dalley, Rachel; Nomura, Steve R; Yoon, Jae-Guen; Smith, Kimberly A; Lankerovich, Michael; Bertagnolli, Darren; Bickley, Kris; Boe, Andrew F; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Chapin, Mike; Datta, Suvro; Dee, Nick; Desta, Tsega; Dolbeare, Tim; Dotson, Nadezhda; Ebbert, Amanda; Feng, David; Feng, Xu; Fisher, Michael; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Hejazinia, Nika; Hohmann, John; Hothi, Parvinder; Howard, Robert; Joines, Kevin; Kriedberg, Ali; Kuan, Leonard; Lau, Chris; Lee, Felix; Lee, Hwahyung; Lemon, Tracy; Long, Fuhui; Mastan, Naveed; Mott, Erika; Murthy, Chantal; Ngo, Kiet; Olson, Eric; Reding, Melissa; Riley, Zack; Rosen, David; Sandman, David; Shapovalova, Nadiya; Slaughterbeck, Clifford R; Sodt, Andrew; Stockdale, Graham; Szafer, Aaron; Wakeman, Wayne; Wohnoutka, Paul E; White, Steven J; Marsh, Don; Rostomily, Robert C; Ng, Lydia; Dang, Chinh; Jones, Allan; Keogh, Bart; Gittleman, Haley R; Barnholtz-Sloan, Jill S; Cimino, Patrick J; Uppin, Megha S; Keene, C Dirk; Farrokhi, Farrokh R; Lathia, Justin D; Berens, Michael E; Iavarone, Antonio; Bernard, Amy; Lein, Ed; Phillips, John W; Rostad, Steven W; Cobbs, Charles; Hawrylycz, Michael J; Foltz, Greg D

    2018-05-11

    Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Single molecule transcription profiling with AFM

    International Nuclear Information System (INIS)

    Reed, Jason; Mishra, Bud; Pittenger, Bede; Magonov, Sergei; Troke, Joshua; Teitell, Michael A; Gimzewski, James K

    2007-01-01

    Established techniques for global gene expression profiling, such as microarrays, face fundamental sensitivity constraints. Due to greatly increasing interest in examining minute samples from micro-dissected tissues, including single cells, unorthodox approaches, including molecular nanotechnologies, are being explored in this application. Here, we examine the use of single molecule, ordered restriction mapping, combined with AFM, to measure gene transcription levels from very low abundance samples. We frame the problem mathematically, using coding theory, and present an analysis of the critical error sources that may serve as a guide to designing future studies. We follow with experiments detailing the construction of high density, single molecule, ordered restriction maps from plasmids and from cDNA molecules, using two different enzymes, a result not previously reported. We discuss these results in the context of our calculations

  14. Transcriptional Regulation of Hhex in Hematopoiesis and Hematopoietic Stem Cell Ontogeny

    DEFF Research Database (Denmark)

    Portero Migueles, Rosa; Shaw, Louise; Rodrigues, Neil P

    2017-01-01

    in endothelium of the dorsal aorta (DA) and in clusters of putative HSCs as they are specified during murine development. We exploited this observation, using the Hhex locus to define cis regulatory elements, enhancers and interacting transcription factors that are both necessary and sufficient to support gene...... for the Hhex ECR region during hematoendothelial development, we deleted the ECR element from the endogenous locus in the context of a targeted Hhex-RedStar reporter allele. Results indicate a specific requirement for the ECR in blood-associated Hhex expression during development and further demonstrate...

  15. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription

    OpenAIRE

    Lai, Fan; Orom, Ulf A; Cesaroni, Matteo; Beringer, Malte; Taatjes, Dylan J; Blobel, Gerd A.; Shiekhattar, Ramin

    2013-01-01

    Recent advances in genomic research have revealed the existence of a large number of transcripts devoid of protein-coding potential in multiple organisms 1-8 . While the functional role for long non-coding RNAs (lncRNAs) has been best defined in epigenetic phenomena such as X inactivation and imprinting, different classes of lncRNAs may have varied biological functions 8-13 . We and others have identified a class of lncRNAs, termed ncRNA-activating (ncRNA-a), that function to activate their n...

  16. Transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Riccardi Giovanna

    2009-03-01

    Full Text Available Abstract Background The ESAT-6 (early secreted antigenic target, 6 kDa family collects small mycobacterial proteins secreted by Mycobacterium tuberculosis, particularly in the early phase of growth. There are 23 ESAT-6 family members in M. tuberculosis H37Rv. In a previous work, we identified the Zur- dependent regulation of five proteins of the ESAT-6/CFP-10 family (esxG, esxH, esxQ, esxR, and esxS. esxG and esxH are part of ESAT-6 cluster 3, whose expression was already known to be induced by iron starvation. Results In this research, we performed EMSA experiments and transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis (msmeg0615-msmeg0625 and M. tuberculosis. In contrast to what we had observed in M. tuberculosis, we found that in M. smegmatis ESAT-6 cluster 3 responds only to iron and not to zinc. In both organisms we identified an internal promoter, a finding which suggests the presence of two transcriptional units and, by consequence, a differential expression of cluster 3 genes. We compared the expression of msmeg0615 and msmeg0620 in different growth and stress conditions by means of relative quantitative PCR. The expression of msmeg0615 and msmeg0620 genes was essentially similar; they appeared to be repressed in most of the tested conditions, with the exception of acid stress (pH 4.2 where msmeg0615 was about 4-fold induced, while msmeg0620 was repressed. Analysis revealed that in acid stress conditions M. tuberculosis rv0282 gene was 3-fold induced too, while rv0287 induction was almost insignificant. Conclusion In contrast with what has been reported for M. tuberculosis, our results suggest that in M. smegmatis only IdeR-dependent regulation is retained, while zinc has no effect on gene expression. The role of cluster 3 in M. tuberculosis virulence is still to be defined; however, iron- and zinc-dependent expression strongly suggests that cluster 3 is highly expressed in the infective process, and that the cluster

  17. A Resource for the Transcriptional Signature of Bona Fide Trophoblast Stem Cells and Analysis of Their Embryonic Persistence

    Directory of Open Access Journals (Sweden)

    Georg Kuales

    2015-01-01

    Full Text Available Trophoblast stem cells (TSCs represent the multipotent progenitors that give rise to the different cells of the embryonic portion of the placenta. Here, we analysed the expression of key TSC transcription factors Cdx2, Eomes, and Elf5 in the early developing placenta of mouse embryos and in cultured TSCs and reveal surprising heterogeneity in protein levels. We analysed persistence of TSCs in the early placenta and find that TSCs remain in the chorionic hinge until E9.5 and are lost shortly afterwards. To define the transcriptional signature of bona fide TSCs, we used inducible gain- and loss-of-function alleles of Eomes or Cdx2, and EomesGFP, to manipulate and monitor the core maintenance factors of TSCs, followed by genome-wide expression profiling. Combinatorial analysis of resulting expression profiles allowed for defining novel TSC marker genes that might functionally contribute to the maintenance of the TSC state. Analyses by qRT-PCR and in situ hybridisation validated novel TSC- and chorion-specific marker genes, such as Bok/Mtd, Cldn26, Duox2, Duoxa2, Nr0b1, and Sox21. Thus, these expression data provide a valuable resource for the transcriptional signature of bona fide and early differentiating TSCs and may contribute to an increased understanding of the transcriptional circuitries that maintain and/or establish stemness of TSCs.

  18. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  19. Global analysis of photosynthesis transcriptional regulatory networks.

    Directory of Open Access Journals (Sweden)

    Saheed Imam

    2014-12-01

    Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  20. How salicylic acid takes transcriptional control over jasmonic acid signaling

    Directory of Open Access Journals (Sweden)

    Lotte eCaarls

    2015-03-01

    Full Text Available Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA and jasmonic acid (JA are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well.

  1. Transcriptional mutagenesis: causes and involvement in tumor development

    Science.gov (United States)

    Brégeon, Damien; Doetsch, Paul W.

    2013-01-01

    The majority of normal cells in a human do not multiply continuously but are quiescent and devote most of their energy to gene transcription. When DNA damages in the transcribed strand of an active gene are bypassed by an RNA polymerase, they can miscode at the damaged site and produce mutant transcripts. This process known as transcriptional mutagenesis can lead to the production of mutant proteins that could be important in tumor development. PMID:21346784

  2. Characterization of human mesothelin transcripts in ovarian and pancreatic cancer

    International Nuclear Information System (INIS)

    Muminova, Zhanat E; Strong, Theresa V; Shaw, Denise R

    2004-01-01

    Mesothelin is an attractive target for cancer immunotherapy due to its restricted expression in normal tissues and high level expression in several tumor types including ovarian and pancreatic adenocarcinomas. Three mesothelin transcript variants have been reported, but their relative expression in normal tissues and tumors has been poorly characterized. The goal of the present study was to clarify which mesothelin transcript variants are commonly expressed in human tumors. Human genomic and EST nucleotide sequences in the public databases were used to evaluate sequences reported for the three mesothelin transcript variants in silico. Subsequently, RNA samples from normal ovary, ovarian and pancreatic carcinoma cell lines, and primary ovarian tumors were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and nucleotide sequencing to directly identify expressed transcripts. In silico comparisons of genomic DNA sequences with available EST sequences supported expression of mesothelin transcript variants 1 and 3, but there were no sequence matches for transcript variant 2. Newly-derived nucleotide sequences of RT-PCR products from tissues and cell lines corresponded to mesothelin transcript variant 1. Mesothelin transcript variant 2 was not detected. Transcript variant 3 was observed as a small percentage of total mesothelin amplification products from all studied cell lines and tissues. Fractionation of nuclear and cytoplasmic RNA indicated that variant 3 was present primarily in the nuclear fraction. Thus, mesothelin transcript variant 3 may represent incompletely processed hnRNA. Mesothelin transcript variant 1 represents the predominant mature mRNA species expressed by both normal and tumor cells. This conclusion should be important for future development of cancer immunotherapies, diagnostic tests, and gene microarray studies targeting mesothelin

  3. The transcriptional profiling of human in vivo-generated plasma cells identifies selective imbalances in monoclonal gammopathies.

    Directory of Open Access Journals (Sweden)

    Luis M Valor

    Full Text Available Plasma cells (PC represent the heterogeneous final stage of the B cells (BC differentiation process. To characterize the transition of BC into PC, transcriptomes from human naïve BC were compared to those of three functionally-different subsets of human in vivo-generated PC: i tonsil PC, mainly consisting of early PC; ii PC released to the blood after a potent booster-immunization (mostly cycling plasmablasts; and, iii bone marrow CD138+ PC that represent highly mature PC and include the long-lived PC compartment. This transcriptional transition involves subsets of genes related to key processes for PC maturation: the already known protein processing, apoptosis and homeostasis, and of new discovery including histones, macromolecule assembly, zinc-finger transcription factors and neuromodulation. This human PC signature is partially reproduced in vitro and is conserved in mouse. Moreover, the present study identifies genes that define PC subtypes (e.g., proliferation-associated genes for circulating PC and transcriptional-related genes for tonsil and bone marrow PC and proposes some putative transcriptional regulators of the human PC signatures (e.g., OCT/POU, XBP1/CREB, E2F, among others. Finally, we also identified a restricted imbalance of the present PC transcriptional program in monoclonal gammopathies that correlated with PC malignancy.

  4. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells.

    Science.gov (United States)

    Schwer, Bjoern; Wei, Pei-Chi; Chang, Amelia N; Kao, Jennifer; Du, Zhou; Meyers, Robin M; Alt, Frederick W

    2016-02-23

    High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)-deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.

  5. Comparison of multiplex reverse transcription-PCR-enzyme ...

    African Journals Online (AJOL)

    Comparison of multiplex reverse transcription-PCR-enzyme hybridization assay with immunofluorescence techniques for the detection of four viral respiratory pathogens in pediatric community acquired pneumonia.

  6. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  7. Cancer-type dependent expression of CK2 transcripts.

    Directory of Open Access Journals (Sweden)

    Melissa M J Chua

    Full Text Available A multitude of proteins are aberrantly expressed in cancer cells, including the oncogenic serine-threonine kinase CK2. In a previous report, we found increases in CK2 transcript expression that could explain the increased CK2 protein levels found in tumors from lung and bronchus, prostate, breast, colon and rectum, ovarian and pancreatic cancers. We also found that, contrary to the current notions about CK2, some CK2 transcripts were downregulated in several cancers. Here, we investigate all other cancers using Oncomine to determine whether they also display significant CK2 transcript dysregulation. As anticipated from our previous analysis, we found cancers with all CK2 transcripts upregulated (e.g. cervical, and cancers where there was a combination of upregulation and/or downregulation of the CK2 transcripts (e.g. sarcoma. Unexpectedly, we found some cancers with significant downregulation of all CK2 transcripts (e.g. testicular cancer. We also found that, in some cases, CK2 transcript levels were already dysregulated in benign lesions (e.g. Barrett's esophagus. We also found that CK2 transcript upregulation correlated with lower patient survival in most cases where data was significant. However, there were two cancer types, glioblastoma and renal cell carcinoma, where CK2 transcript upregulation correlated with higher survival. Overall, these data show that the expression levels of CK2 genes is highly variable in cancers and can lead to different patient outcomes.

  8. Nucleic Acid Analogue Induced Transcription of Double Stranded DNA

    DEFF Research Database (Denmark)

    1998-01-01

    RNA is transcribed from a double stranded DNA template by forming a complex by hybridizing to the template at a desired transcription initiation site one or more oligonucleic acid analogues of the PNA type capable of forming a transcription initiation site with the DNA and exposing the complex...... to the action of a DNA dependant RNA polymerase in the presence of nucleoside triphosphates. Equal length transcripts may be obtained by placing a block to transcription downstream from the initiation site or by cutting the template at such a selected location. The initiation site is formed by displacement...... of one strand of the DNA locally by the PNA hybridization....

  9. Developing social standards for wilderness encounters in Mount Rainier National Park: Manager-defined versus visitor-defined standards

    Science.gov (United States)

    Kristopher J. Lah

    2000-01-01

    This research compared the differences found between manager-defined and visitor-defined social standards for wilderness encounters in Mount Rainier National Park. Social standards in recreation areas of public land are defined by what is acceptable to the public, in addition to the area’s management. Social standards for the encounter indicator in Mount Rainier’s...

  10. 75 FR 27927 - Diversification Requirements for Certain Defined Contribution Plans

    Science.gov (United States)

    2010-05-19

    ... section 414(l) with respect to any other defined benefit plan or defined contribution plan maintained by... disclosure of the fund's portfolio holdings (for example, Form N-CSR, ``Certified Shareholder Report of... securities, as well as a direct or indirect benefit that is conditioned on investment in employer securities...

  11. 47 CFR 2.801 - Radiofrequency device defined.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Radiofrequency device defined. 2.801 Section 2... MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.801 Radiofrequency device defined. As used in this part, a radiofrequency device is any device which in its operation is capable of...

  12. 33 CFR 211.1 - Real estate defined.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Real estate defined. 211.1... DEFENSE REAL ESTATE ACTIVITIES OF THE CORPS OF ENGINEERS IN CONNECTION WITH CIVIL WORKS PROJECTS Real Estate; General § 211.1 Real estate defined. The term real estate as used in this part includes land...

  13. 46 CFR 9.5 - Night, Sunday, and holiday defined.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Night, Sunday, and holiday defined. 9.5 Section 9.5... COMPENSATION FOR OVERTIME SERVICES § 9.5 Night, Sunday, and holiday defined. (a) For the purpose of this part... term holiday shall mean only national legal public holidays, viz., January 1, February 22, May 30, July...

  14. 12 CFR 914.1 - Regulatory Report defined.

    Science.gov (United States)

    2010-01-01

    ... Bank. (b) Examples. Regulatory Report includes: (1) Call reports and reports of instrument-level risk... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Regulatory Report defined. 914.1 Section 914.1... DATA AVAILABILITY AND REPORTING § 914.1 Regulatory Report defined. (a) Definition. Regulatory Report...

  15. Normal Functions As A New Way Of Defining Computable Functions

    Directory of Open Access Journals (Sweden)

    Leszek Dubiel

    2004-01-01

    Full Text Available Report sets new method of defining computable functions. This is formalization of traditional function descriptions, so it allows to define functions in very intuitive way. Discovery of Ackermann function proved that not all functions that can be easily computed can be so easily described with Hilbert’s system of recursive functions. Normal functions lack this disadvantage.

  16. Normal Functions as a New Way of Defining Computable Functions

    Directory of Open Access Journals (Sweden)

    Leszek Dubiel

    2004-01-01

    Full Text Available Report sets new method of defining computable functions. This is formalization of traditional function descriptions, so it allows to define functions in very intuitive way. Discovery of Ackermann function proved that not all functions that can be easily computed can be so easily described with Hilbert's system of recursive functions. Normal functions lack this disadvantage.

  17. Defined Contribution Pension Plans: Mutual Fund Asset Allocation Changes

    OpenAIRE

    Clemens Sialm; Laura Starks; Hanjiang Zhang

    2015-01-01

    In this paper we compare changes in asset allocations between mutual funds held in defined contribution pension plans and funds held by other investors. We investigate how flows into equity and fixed income mutual funds depend on macroeconomic conditions. We find that defined contribution plans react more sensitively to these conditions, suggesting effects on mutual fund managers and other investors.

  18. Defining nuclear medical file formal based on DICOM standard

    International Nuclear Information System (INIS)

    He Bin; Jin Yongjie; Li Yulan

    2001-01-01

    With the wide application of computer technology in medical area, DICOM is becoming the standard of digital imaging and communication. The author discusses how to define medical imaging file formal based on DICOM standard. It also introduces the format of ANMIS system the authors defined the validity and integrality of this format

  19. 16 CFR 238.0 - Bait advertising defined. 1

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Bait advertising defined. 1 238.0 Section... BAIT ADVERTISING § 238.0 Bait advertising defined. 1 1 For the purpose of this part “advertising” includes any form of public notice however disseminated or utilized. Bait advertising is an alluring but...

  20. 26 CFR 1.1250-2 - Additional depreciation defined.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Additional depreciation defined. 1.1250-2... Additional depreciation defined. (a) In general—(1) Definition for purposes of section 1250(b)(1). Except as... depreciation means: (i) In the case of property which at the time of disposition has a holding period under...