WorldWideScience

Sample records for megaspores

  1. Megaspore competition in F1 and F2 hybrids between Oenothera hookeri and Oe. suaveolens

    Directory of Open Access Journals (Sweden)

    Renata Śnieżko

    2014-01-01

    Full Text Available Megasporogenesis and development of the embryo sac were investigated in F1 and F2 hybrids from crosses of Oe. hookeri and Oe. suaveolens. All hybrids form heteropolar and homopolar magaspore tetrads; the embryo sac, however, usually develops from the micropylar megaspore. Its development may occur immediately after degeneration of three other megaspores or after a period of competition between both apical megaspores. They develop simultaneously for a relatively short time, after which the growth of the chalazal megaspore is inhibited, although the latter does not degenerate. The micropylar megaspore as a rule develops without disturbances into the embryo sac, but in some ovules it is formed from the chalazal megaspore or double ones arise from both apical megaspores of the tetrad. The frequency of the micropylar embryo sac formation seems to be dependent above all on the hybrid plant genome and not on the haploid genome of the megaspore.

  2. Arabidopsis ICK/KRP cyclin-dependent kinase inhibitors function to ensure the formation of one megaspore mother cell and one functional megaspore per ovule.

    Directory of Open Access Journals (Sweden)

    Ling Cao

    2018-03-01

    Full Text Available In most plants, the female germline starts with the differentiation of one megaspore mother cell (MMC in each ovule that produces four megaspores through meiosis, one of which survives to become the functional megaspore (FM. The FM further develops into an embryo sac. Little is known regarding the control of MMC formation to one per ovule and the selective survival of the FM. The ICK/KRPs (interactor/inhibitor of cyclin-dependent kinase (CDK/Kip-related proteins are plant CDK inhibitors and cell cycle regulators. Here we report that in the ovules of Arabidopsis mutant with all seven ICK/KRP genes inactivated, supernumerary MMCs, FMs and embryo sacs were formed and the two embryo sacs could be fertilized to form two embryos with separate endosperm compartments. Twin seedlings were observed in about 2% seeds. Further, in the mutant ovules the number and position of surviving megaspores from one MMC were variable, indicating that the positional signal for determining the survival of megaspore was affected. Strikingly, ICK4 fusion protein with yellow fluorescence protein was strongly present in the degenerative megaspores but absent in the FM, suggesting an important role of ICKs in the degeneration of non-functional megaspores. The absence of or much weaker phenotypes in lower orders of mutants and complementation of the septuple mutant by ICK4 or ICK7 indicate that multiple ICK/KRPs function redundantly in restricting the formation of more than one MMC and in the selective survival of FM, which are critical to ensure the development of one embryo sac and one embryo per ovule.

  3. Vliv macerace na velikost megaspor Laevigatisporites glabratus (Zerndt) Pot. et Kr

    Czech Academy of Sciences Publication Activity Database

    Dašková, Jiřina

    2009-01-01

    Roč. 2008, - (2009), s. 91-92 ISSN 0514-8057 R&D Projects: GA AV ČR IAA304070701 Institutional research plan: CEZ:AV0Z30130516 Keywords : palynology * spores * palaeobotany * methods Subject RIV: DB - Geology ; Mineralogy http://www.geology.cz/zpravy/obsah/2008/2008-24.pdf

  4. Desynapsis and FDR 2N-megaspore formation in diploid potato : potentials and limitations for breeding and for the induction of diplosporic apomixis

    NARCIS (Netherlands)

    Jongedijk, E.

    1991-01-01

    The cultivated potato, Solanum tuberosum L., is a highly heterozygous autotetraploid (2n=4x=48) plant species, which after its introduction into Europe in the 16th century has become one of the world's major food crops. The potato has traditionally been grown from

  5. Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae).

    Science.gov (United States)

    Papini, Alessio; Mosti, Stefano; Milocani, Eva; Tani, Gabriele; Di Falco, Pietro; Brighigna, Luigi

    2011-10-01

    The degeneration of three of four meiotic products is a very common process in the female gender of oogamous eukaryotes. In Tillandsia (and many other angiosperms), the surviving megaspore has a callose-free wall in chalazal position while the other three megaspores are completely embedded in callose. Therefore, nutrients and signals can reach more easily the functional megaspore from the nucellus through the chalazal pole with respect to the other megaspores. The abortion of three of four megaspores was already recognized as the result of a programmed cell death (PCD) process. We investigated the process to understand the modality of this specific type of PCD and its relationship to the asymmetric callose deposition around the tetrad. The decision on which of the four megaspores will be the supernumerary megaspores in angiosperms, and hence destined to undergo programmed cell death, appears to be linked to the callose layer deposition around the tetrad. During supernumerary megaspores degeneration, events leading to the deletion of the cells do not appear to belong to a single type of cell death. The first morphological signs are typical of autophagy, including the formation of autophagosomes. The TUNEL positivity and a change in morphology of mitochondria and chloroplasts indicate the passage to an apoptotic-like PCD phase, while the cellular remnants undergo a final process resembling at least partially (ER swelling) necrotic morphological syndromes, eventually leading to a mainly lipidic cell corpse still separated from the functional megaspore by a callose layer.

  6. Fulltext PDF

    Indian Academy of Sciences (India)

    Srinivas

    Functional embryo sac formation in Arabidopsis without meiosis – one ... centromere organization during meiosis. In swi1 ... megaspore undergoes three rounds of mitosis to produce a seven-celled gamete structure also called an embryo sac.

  7. Reinterpretation of Azolla primaeva (Azollaceae, Eocene, Canada) using electron microscopy and X-ray tomographic microscopy

    NARCIS (Netherlands)

    Collinson, Margaret E.; van Konijnenburg-van Cittert, Johanna H.A.; Marone, Federica; Brain, Anthony P.R.

    Azolla primaeva (Penhallow) Arnold fertile whole plants from the lower Eocene of Driftwood Creek, Canada have been examined using LM, SEM, TEM and SRXTM methods on hand specimens and sieved residues. The new data have resulted in an emended diagnosis. The megaspore is partly covered by filosum and

  8. Pattern of callose deposition during the course of meiotic diplospory in Chondrilla juncea (Asteraceae, Cichorioideae).

    Science.gov (United States)

    Musiał, Krystyna; Kościńska-Pająk, Maria

    2017-07-01

    Total absence of callose in the ovules of diplosporous species has been previously suggested. This paper is the first description of callose events in the ovules of Chondrilla juncea, which exhibits meiotic diplospory of the Taraxacum type. We found the presence of callose in the megasporocyte wall and stated that the pattern of callose deposition is dynamically changing during megasporogenesis. At the premeiotic stage, no callose was observed in the ovules. Callose appeared at the micropylar pole of the cell entering prophase of the first meioticdivision restitution but did not surround the megasporocyte. After the formation of a restitution nucleus, a conspicuous callose micropylar cap and dispersed deposits of callose were detected in the megasporocyte wall. During the formation of a diplodyad, the micropylar callose cap decreased and the walls of a newly formed megaspores showed scattered distribution of callose. Within the older diplodyad, callose was mainly accumulated in the wall between megaspores, as well as in the wall of the micropylar cell; however, a dotted fluorescence of callose was also visible in the wall of the chalazal megaspore. Gradual degradation of callose in the wall of the chalazal cell and intense callose accumulation in the wall of the micropylar cell were related to the selection of the functional megaspore. Thus, our findings may suggest that callose fulfills a similar role both during megasporogenesis in sexual angiosperms and in the course of meiotic diplospory in apomicts and seems to form a regulatory interface between reproductive and somatic cells.

  9. Revision of species of Minerisporites, Azolla and associated plant microfossils from deposits of the Upper Palaeocene and Palaeocene/Eocene transition in the Netherlands, Belgium and the USA.

    Science.gov (United States)

    Batten, D J.; Collinson, M E.

    2001-05-01

    Species of the megaspore genus Minerisporites Potonié, megaspore apparatuses of species of the water fern Azolla Lamarck, and some associated organic-walled microfossils recovered from deposits of the Upper Palaeocene and Palaeocene/Eocene transition in the southern part of the Netherlands and neighbouring Belgium are redescribed on the basis of an examination of specimens under scanning and transmission electron microscopes. Originally studied about 40 years ago by S.J. Dijkstra, the re-examination has enabled emended diagnoses to be produced for six taxa: Minerisporites glossoferus (Dijkstra) Tschudy, M. mirabilis (Miner) Potonié, M. mirabilissimus (Dijkstra) Potonié, Azolla schopfii Dijkstra, A. teschiana Florschütz, and A. velus (Dijkstra) Jain and Hall. In addition, a revised description is provided for massulae of Salvinia Séguier that were originally thought to be megaspores and, hence, named by Dijkstra as Triletes? exiguus. The gross morphology and construction of the exospore of the species of Minerisporites are similar, but nevertheless sufficiently distinct for them to be maintained as separate taxa. Monolete microspores are preserved in hollows in the reticulate surface of some of the specimens of M. mirabilissimus. This is consistent with the presumed isoetalean affinity of Minerisporites. An apparent stratigraphic morphocline from M. glossoferus to M. mirabilis, suggested previously, is confirmed following our reassessment of their characteristics. The species of Azolla are all multi-floated, but they differ from each other in several ways, in particular with respect to the ultrastructure of the megaspore wall. They are also distinct from all other species that have been considered in sufficient detail for satisfactory comparisons to be made. The massulae of A. teschiana are described for the first time. The floats in A. velus are attached to the proximal part of the megaspore only by suprafilosal hairs. There are no maniculae. It is argued that

  10. The Palynological Investigation of Carboniferous Coal Measures In the Amasra Basin

    Directory of Open Access Journals (Sweden)

    Yaşar ERGÖNÜL

    1960-12-01

    Full Text Available In the field of modern coal geology and palaeontology systematic studies of isolated fossil spores constitute a relatively new phase of paleobotanical research. In this paper, the content of the Megaspores in the paleophytogenetic material has been investigated. All the coal samples of this study were collected from the coal borings executed by the M. T. A. Institute in the Amasra district dining the year 1959-1960. For the maceration of the Amasra coal samples, Schultze's and Zetzsche's methods were applied. Our new Megaspore species described here are based on the morphological study. These species are referred to spore genera as defined by Potonie and Kremp (1954 and Bhardwaj (1955. As a result of this palynological study, one new genus and 14 new species have been discovered, described and stratigraphically evaluated.

  11. Untitled

    Indian Academy of Sciences (India)

    Figs, 12-27. Fig. 12, Cross-section of anther, X200. Figs. 13-15. A part of anther icte, x1,620. Figs. 16-18. Pollen grains, x2,125. Fig. 19. Archesporial cell, X2,125. Fig. 20. Megaspore mother cell, X2,125. Figs. 21-22. Tetrads, X2,125. Fig. 23. Functional nega- spore, X2,125. Fig. 24. Four-nucleate embryo-sac, X2,125. Fig. 25.

  12. The Eocene Arctic Azolla phenomenon: species composition, temporal range and geographic extent.

    Science.gov (United States)

    Collinson, Margaret; Barke, Judith; van der Burgh, Johan; van Konijnenburg-van Cittert, Johanna; Pearce, Martin; Bujak, Jonathan; Brinkhuis, Henk

    2010-05-01

    Azolla is a free-floating freshwater fern that is renowned for its rapid vegetative spread and invasive biology, being one of the world's fastest growing aquatic macrophytes. Two species of this plant have been shown to have bloomed and reproduced in enormous numbers in the latest Early to earliest Middle Eocene of the Arctic Ocean and North Sea based on samples from IODP cores from the Lomonosov Ridge (Arctic) and from outcrops in Denmark (Collinson et al 2009 a,b Review of Palaeobotany and Palynology 155,1-14; and doi:10.1016/j.revpalbo.2009.12.001). To determine the geographic and temporal extent of this Azolla phenomenon, and the spatial distribution of the different species, we have examined samples from 15 additional sites using material from ODP cores and commercial exploration wells. The sites range from the Sub-Arctic (Northern Alaska and Canadian Beaufort Mackenzie Basin) to the Nordic Seas (Norwegian-Greenland Sea and North Sea Basin). Our data show that the Azolla phenomenon involved at least three species. These are distinguished by characters of the megaspore apparatus (e.g. megaspore wall, floats, filosum) and the microspore massulae (e.g. glochidia fluke tips). The Lomonosov Ridge (Arctic) and Danish occurrences are monotypic but in other sites more than one species co-existed. The attachment to one another and the co-occurrence of megaspore apparatus and microspore massulae, combined with evidence that these spores were shed at the fully mature stage of their life cycle, shows that the Azolla remains were not transported over long distances, a fact which could not be assumed from isolated massula fragments alone. Our evidence, therefore, shows that Azolla plants grew on the ocean surfaces for approximately 1.2 million years (from 49.3 to 48.1 Ma) and that the Azolla phenomenon covered the area from Denmark northwards across the North Sea Basin and the whole of the Arctic and Nordic seas. Apparently, early Middle Eocene Northern Hemisphere middle

  13. A micropalaeontological and palynological insight into Early Carboniferous floodplain environments

    Science.gov (United States)

    Bennett, Carys; Kearsey, Timothy; Davies, Sarah; Millward, David; Marshall, John; Reeves, Emma

    2016-04-01

    Romer's Gap, the interval following the end Devonian mass extinction, is traditionally considered to be depauperate in tetrapod and fish fossils. A major research project (TW:eed -Tetrapod World: early evolution and diversification) focusing on the Tournaisian Ballagan Formation of Scotland is investigating how early Carboniferous ecosystems rebuilt following the extinction. A multi-proxy approach, combining sedimentology, micropalaeontology and palynology, is used to investigate the different floodplain environments in which tetrapods, fish, arthropods and molluscs lived. The formation is characterised by an overbank facies association of siltstone, sandstone and palaeosols, interbedded with dolostone and evaporite units, and cut by fluvial sandstone facies associations of fining-upwards conglomerate lags, cross-bedded sandstone and rippled siltstone. Macrofossils are identified from 326 horizons within a 520 metre thick Ballagan Formation field section at Burnmouth, near Berwick-upon-Tweed, Scottish Borders. Common fauna are ostracods, bivalves, arthropods, sarcopterygians, dipnoans, acanthodians, tetrapods and chondrichthyans. Quantitative microfossil picking of the three sedimentary rock types in which tetrapods occur was undertaken to gain further insight into the palaeoecology. The sediments are; 1) laminated grey siltstones, deposited in floodplain lakes; 2) sandy siltstones, grey siltstones with millimetre size clasts. 71% of these beds overlie palaeosols or desiccated surfaces and are formed in small-scale flooding events; 3) conglomerates, mostly lags at the base of thick sandstones, with centimetre sized siltstone, sandstone and dolostone clasts. Grey siltstones contain a microfauna of common plant fragments, megaspores and sparse actinopterygian and rhizodont fragments. Sandy siltstones have the highest fossil diversity and contain microfossil fragments of plants, megaspores, charcoal, ostracods, actinopterygians, rhizodonts, eurypterids and rarer non

  14. Palaeontology of the upper Turonian paralic deposits of the Sainte-Mondane Formation, Aquitaine Basin, France

    Energy Technology Data Exchange (ETDEWEB)

    Neraudenau, D.; Saint Martin, S.; Battern, D.J.; Colin, J.P.; Daviero-Gomez, V.; Girard, V.; Gomez, B.; Nohra, Y.A.; Polette, F.; Platel, J.P.; Saint Martin, J.P.; Vullo, R.

    2016-07-01

    The upper Turonian lignite deposits of Sainte-Mondane, Dordogne (Aquitaine Basin, SW France), consist of clays bearing translucent, orange to red, amber micrograins. The amber exhibits different types of microbial inclusions. The clays contain several conifers including the genera Brachyphyllum, Frenelopsis and Glenrosa, and a few leaf fragments of eudicot angiosperms. Among the plant meso-fossils the occurrence of Costatheca, Spermatites and abundant, diverse, megaspores, including species of Ariadnaesporites, Bacutriletes, Echitriletes, Erlansonisporites, Maexisporites, Minerisporites and Verrutriletes, is noteworthy. Pollen grains of the Normapolles group are important components of the palynomorph assemblage. The clays were deposited in a calm, estuarine or lagoonal, muddy environment. The overlying lignitic sands contain large fossil wood pieces of the conifer Agathoxylon, small solitary corals, fragmentary oysters and pectinids, echinoid spines, a few teeth of marine selachians and bony fishes, but no amber is present. These sands were deposited in a high-energy coastal marine environment. (Author)

  15. Analysis of B chromosome nondisjunction induced by the r-X1 deficiency in maize.

    Science.gov (United States)

    Tseng, Shih-Hsuan; Peng, Shu-Fen; Cheng, Ya-Ming

    2017-11-20

    The maize B chromosome typically undergoes nondisjunction during the second microspore division. For normal A chromosomes, the r-X1 deficiency in maize can induce nondisjunction during the second megaspore and first microspore divisions. However, it is not known whether the r-X1 deficiency also induces nondisjunction of the maize B chromosome during these cell divisions. To answer this question, chromosome numbers were determined in the progeny of r-X1/R-r female parents carrying two B chromosomes. Some of the r-X1-lacking progeny (21.2%) contained zero or two B chromosomes. However, a much higher percentage of the r-X1-containing progeny (43.4%) exhibited zero or two B chromosomes, but none displayed more than two B chromosomes. Thus, the results indicated that the r-X1 deficiency could also induce nondisjunction of the B chromosome during the second megaspore division; moreover, the B chromosome in itself could undergo nondisjunction during the same division. In addition, pollen grains from plants with two B chromosomes lacking or exhibiting the r-X1 deficiency were compared via pollen fluorescence in situ hybridization (FISH) using a B chromosome-specific probe. The results revealed that the r-X1 deficiency could induce the occurrence of B chromosome nondisjunction during the first microspore division and that the B chromosome in itself could undergo nondisjunction during the same division at a lower frequency. Our data shed more light on the behavior of the maize B chromosome during cell division.

  16. The long and winding road: transport pathways for amino acids in Arabidopsis seeds.

    Science.gov (United States)

    Karmann, Julia; Müller, Benedikt; Hammes, Ulrich Z

    2018-03-16

    Pathways for assimilates. During their life cycle, plants alternate between a haploid stage, the gametophyte, and a diploid stage, the sporophyte. In higher plants, meiosis generates the gametophyte deeply embedded in the maternal tissue of the flower. The megaspore mother cell undergoes meiosis, and then, the surviving megaspore of the four megaspores produced undergoes mitotic divisions and finally gives rise to the female gametophyte, consisting of the egg cell, two synergids, the central cell, which due to the fusion of two nuclei is diploid (double haploid) in Arabidopsis and most angiosperms and the antipods, whose number is not fixed and varies significantly between species (Yadegari and Drews in Plant Cell 16(Suppl):S133-S141, 2004). The maternal tissues that harbor the female gametophyte and the female gametophyte are referred to as the ovule (Fig. 1). Double fertilization of the egg cell and the central cell by the two generative nuclei of the pollen leads to the diploid embryo and the endosperm, respectively (Hamamura et al. in Curr Opin Plant Biol 15:70-77, 2012). Upon fertilization, the ovule is referred to as the seed. Seeds combine two purposes: to harbor storage compounds for use by the embryo upon germination and to protect the embryo until the correct conditions for germination are encountered. As a consequence, seeds are the plant tissue that is of highest nutritional value and the human diet, by a considerable amount, consists of seeds or seed-derived products. Amino acids are of special interest, because plants serve as the main source for the so-called essential amino acids, that animals cannot synthesize de novo and are therefore often a limiting factor for human growth and development (WHO in Protein and amino acid requirements in human nutrition. WHO technical report series, WHO, Geneva, 2007). The plant embryo needs amino acids for general protein synthesis, and additionally they are used to synthesize storage proteins in the seeds of

  17. Plesiosaur-bearing rocks from the Late Cretaceous Tahora Fm, Mangahouanga, New Zealand - a palaeoenvironmental study

    Science.gov (United States)

    Vajda, Vivi; Raine, J. Ian

    2010-05-01

    Mangahouanga Stream, Hawkes Bay, New Zealand is world-famous for its high southern latitude vertebrate fossils including plesiosaurs, mosasaurs and more rarely, dinosaurs. The fossils are preserved in the conglomeratic facies of the Maungataniwha Sandstone Member of the Tahora Formation. A palynological investigation of sediments from the boulders hosting vertebrate fossils reveals well-preserved palynological assemblages dominated by pollen and spores from land plants but also including marine dinoflagellate cysts in one sample. The palynofacies is strongly dominated by wood fragments including charcoal, and the sample taken from a boulder hosting plesiosaur vertebrae is entirely terrestrially derived, suggesting a fresh-water habitat for at least some of these plesiosaurs. The key-pollen taxa Nothofagidites senectus and Tricolpites lilliei, together with the dinocyst Isabelidinium pellucidum and the megaspore Grapnelispora evansii, strongly indicate an early Maastrichtian age for the host rock. The terrestrial palynoflora reflects a mixed vegetation dominated by podocarp conifers and angiosperms with a significant tree-fern subcanopy component. The presence of taxa with modern temperate distributions such as Nothofagus (southern beech), Proteaceae and Cyatheaceae (tree-ferns), indicates a mild-temperate climate and lack of severe winter freezing during the latest Cretaceous, providing an ecosystem which most probably made it possible for polar dinosaurs to overwinter. The paper is dedicated to Mrs Joan Wiffen who with her great persistence, enthusiasm and courage put Mangahouanga on the world map, becoming a role model for many young scientists.

  18. Egg cell signaling by the secreted peptide ZmEAL1 controls antipodal cell fate.

    Science.gov (United States)

    Krohn, Nadia Graciele; Lausser, Andreas; Juranić, Martina; Dresselhaus, Thomas

    2012-07-17

    Unlike in animals, female gametes of flowering plants are not the direct products of meiosis but develop from a functional megaspore after three rounds of free mitotic divisions. After nuclei migration and positioning, the eight-nucleate syncytium differentiates into the embryo sac, which contains two female gametes as well as accessory cells at the micropylar and chalazal pole, respectively. We report that an egg-cell-specific gene, ZmEAL1, is activated at the micropylar pole of the eight-nucleate syncytium. ZmEAL1 translation is restricted to the egg cell, resulting in the generation of peptide-containing vesicles directed toward its chalazal pole. RNAi knockdown studies show that ZmEAL1 is required for robust expression of the proliferation-regulatory gene IG1 at the chalazal pole of the embryo sac in antipodal cells. We further show that ZmEAL1 is required to prevent antipodal cells from adopting central cell fate. These findings show how egg cells orchestrate differentiation of the embryo sac. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Accelerated Generation of Selfed Pure Line Plants for Gene Identification and Crop Breeding

    Directory of Open Access Journals (Sweden)

    Guijun Yan

    2017-10-01

    Full Text Available Production of pure lines is an important step in biological studies and breeding of many crop plants. The major types of pure lines for biological studies and breeding include doubled haploid (DH lines, recombinant inbred lines (RILs, and near isogenic lines (NILs. DH lines can be produced through microspore and megaspore culture followed by chromosome doubling while RILs and NILs can be produced through introgressions or repeated selfing of hybrids. DH approach was developed as a quicker method than conventional method to produce pure lines. However, its drawbacks of genotype-dependency and only a single chance of recombination limited its wider application. A recently developed fast generation cycling system (FGCS achieved similar times to those of DH for the production of selfed pure lines but is more versatile as it is much less genotype-dependent than DH technology and does not restrict recombination to a single event. The advantages and disadvantages of the technologies and their produced pure line populations for different purposes of biological research and breeding are discussed. The development of a concept of complete in vitro meiosis and mitosis system is also proposed. This could integrate with the recently developed technologies of single cell genomic sequencing and genome wide selection, leading to a complete laboratory based pre-breeding scheme.

  20. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis.

    Science.gov (United States)

    Zhao, Lihua; He, Jiangman; Cai, Hanyang; Lin, Haiyan; Li, Yanqiang; Liu, Renyi; Yang, Zhenbiao; Qin, Yuan

    2014-11-01

    Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. The Canonical E2Fs Are Required for Germline Development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Xiaozhen Yao

    2018-05-01

    Full Text Available A number of cell fate determinations, including cell division, cell differentiation, and programmed cell death, intensely occur during plant germline development. How these cell fate determinations are regulated remains largely unclear. The transcription factor E2F is a core cell cycle regulator. Here we show that the Arabidopsis canonical E2Fs, including E2Fa, E2Fb, and E2Fc, play a redundant role in plant germline development. The e2fa e2fb e2fc (e2fabc triple mutant is sterile, although its vegetative development appears normal. On the one hand, the e2fabc microspores undergo cell death during pollen mitosis. Microspores start to die at the bicellular stage. By the tricellular stage, the majority of the e2fabc microspores are degenerated. On the other hand, a wild type ovule often has one megaspore mother cell (MMC, whereas the majority of e2fabc ovules have two to three MMCs. The subsequent female gametogenesis of e2fabc mutant is aborted and the vacuole is severely impaired in the embryo sac. Analysis of transmission efficiency showed that the canonical E2Fs from both male and female gametophyte are essential for plant gametogenesis. Our study reveals that the canonical E2Fs are required for plant germline development, especially the pollen mitosis and the archesporial cell (AC-MMC transition.

  2. Genome-Wide Analysis of DNA Methylation During Ovule Development of Female-Sterile Rice fsv1

    Directory of Open Access Journals (Sweden)

    Helian Liu

    2017-11-01

    Full Text Available The regulation of female fertility is an important field of rice sexual reproduction research. DNA methylation is an essential epigenetic modification that dynamically regulates gene expression during development processes. However, few reports have described the methylation profiles of female-sterile rice during ovule development. In this study, ovules were continuously acquired from the beginning of megaspore mother cell meiosis until the mature female gametophyte formation period, and global DNA methylation patterns were compared in the ovules of a high-frequency female-sterile line (fsv1 and a wild-type rice line (Gui99 using whole-genome bisulfite sequencing (WGBS. Profiling of the global DNA methylation revealed hypo-methylation, and 3471 significantly differentially methylated regions (DMRs were observed in fsv1 ovules compared with Gui99. Based on functional annotation and Kyoto encyclopedia of genes and genomes (KEGG pathway analysis of differentially methylated genes (DMGs, we observed more DMGs enriched in cellular component, reproduction regulation, metabolic pathway, and other pathways. In particular, many ovule development genes and plant hormone-related genes showed significantly different methylation patterns in the two rice lines, and these differences may provide important clues for revealing the mechanism of female gametophyte abortion.

  3. New observations on gametogenic development and reproductive experimental tools to support seed yield improvement in cowpea [Vigna unguiculata (L.) Walp].

    Science.gov (United States)

    Salinas-Gamboa, Rigel; Johnson, Susan D; Sánchez-León, Nidia; Koltunow, Anna M G; Vielle-Calzada, Jean-Philippe

    2016-06-01

    Cowpea reproductive tools. Vigna unguiculata L. Walp. (cowpea) is recognized as a major legume food crop in Africa, but seed yields remain low in most varieties adapted to local conditions. The development of hybrid cowpea seed that could be saved after each generation, enabling significant yield increases, will require manipulation of reproductive development from a sexual to an asexual mode. To develop new technologies that could support the biotechnological manipulation of reproductive development in cowpea, we examined gametogenesis and seed formation in two transformable, African-adapted, day-length-insensitive varieties. Here, we show that these two varieties exhibit distinct morphological and phenological traits but share a common developmental sequence in terms of ovule formation and gametogenesis. We present a reproductive calendar that allows prediction of male and female gametogenesis on the basis of sporophytic parameters related to floral bud size and reproductive organ development, determining that gametogenesis occurs more rapidly in the anther than in the ovule. We also show that the mode of megagametogenesis is of the Polygonum-type and not Oenothera-type, as previously reported. Finally, we developed a whole-mount immunolocalization protocol and applied it to detect meiotic proteins in the cowpea megaspore mother cell, opening opportunities for comparing the dynamics of protein localization during male and female meiosis, as well as other reproductive events in this emerging legume model system.

  4. Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations

    Science.gov (United States)

    Hand, M L; Vít, P; Krahulcová, A; Johnson, S D; Oelkers, K; Siddons, H; Chrtek, J; Fehrer, J; Koltunow, A M G

    2015-01-01

    The Hieracium and Pilosella (Lactuceae, Asteraceae) genera of closely related hawkweeds contain species with two different modes of gametophytic apomixis (asexual seed formation). Both genera contain polyploid species, and in wild populations, sexual and apomictic species co-exist. Apomixis is known to co-exist with sexuality in apomictic Pilosella individuals, however, apomictic Hieracium have been regarded as obligate apomicts. Here, a developmental analysis of apomixis within 16 Hieracium species revealed meiosis and megaspore tetrad formation in 1 to 7% of ovules, for the first time indicating residual sexuality in this genus. Molecular markers linked to the two independent, dominant loci LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) controlling apomixis in Pilosella piloselloides subsp. praealta were screened across 20 phenotyped Hieracium individuals from natural populations, and 65 phenotyped Pilosella individuals from natural and experimental cross populations, to examine their conservation, inheritance and association with reproductive modes. All of the tested LOA and LOP-linked markers were absent in the 20 Hieracium samples irrespective of their reproductive mode. Within Pilosella, LOA and LOP-linked markers were essentially absent within the sexual plants, although they were not conserved in all apomictic individuals. Both loci appeared to be inherited independently, and evidence for additional genetic factors influencing quantitative expression of LOA and LOP was obtained. Collectively, these data suggest independent evolution of apomixis in Hieracium and Pilosella and are discussed with respect to current knowledge of the evolution of apomixis. PMID:25026970

  5. Chromatin dynamics in Pollen Mother Cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Wenjing eShe

    2015-04-01

    Full Text Available Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMCs committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition towards the male reproductive lineage. Here we show that Arabidopsis PMCs differentiation is accompanied by large-scale changes in chromatin organization. This is characterized by significant increase in nuclear volume, chromatin decondensation, reduction in heterochromatin, eviction of linker histones and the H2AZ histone variant. These structural alterations are accompanied by dramatic, quantitative changes in histone modifications levels compared to that of surrounding somatic cells that do not share a sporogenic fate. All these changes are highly reminiscent of those we have formerly described in female megaspore mother cells (MMCs. This indicates that chromatin reprogramming is a common underlying scenario in the somatic-to-reproductive cell fate transition in both male and female lineages.

  6. Distribution and change patterns of free IAA, ABP 1 and PM H⁺-ATPase during ovary and ovule development of Nicotiana tabacum L.

    Science.gov (United States)

    Chen, Dan; Deng, Yingtian; Zhao, Jie

    2012-01-15

    Auxin plays key roles in flower induction, embryogenesis, seed formation and seedling development, but little is known about whether auxin regulates the development of ovaries and ovules before pollination. In the present report, we measured the content of free indole-3-acetic (IAA) in ovaries of Nicotiana tabacum L., and localized free IAA, auxin binding protein 1 (ABP1) and plasma membrane (PM) H⁺-ATPase in the ovaries and ovules. The level of free IAA in the developmental ovaries increased gradually from the stages of ovular primordium to the functional megaspore, but slightly decreased when the embryo sacs formed. Immunoenzyme labeling clearly showed that both IAA and ABP1 were distributed in the ovules, the edge of the placenta, vascular tissues and the ovary wall, while PM H⁺-ATPase was mainly localized in the ovules. By using immunogold labeling, the subcellular distributions of IAA, ABP1 and PM H⁺-ATPase in the ovules were also shown. The results suggest that IAA, ABP1 and PM H⁺-ATPase may play roles in the ovary and ovule initiation, formation and differentiation. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.

  7. Paleoecology of the Late Pennsylvanian-age Calhoun coal bed and implications for long-term dynamics of wetland ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Debra A. [US Geological Survey, 926A National Center, Reston (VA 20192 USA); Phillips, Tom L. [Department of Plant Biology, University of Illinois, Urbana (IL 61801 USA); Lesnikowska, Alicia D. [Box 24, Rt. 2, Vineyard Haven (MA 02568 USA); DiMichele, William A. [Department of Paleobiology, NMNH, Smithsonian Institution, Washington (DC 20560 USA)

    2007-01-02

    Quantitative plant assemblage data from coal balls, miospores, megaspores, and compression floras from the Calhoun coal bed (Missourian) of the Illinois Basin (USA) are used to interpret spatial and temporal changes in plant communities in the paleo-peat swamp. Coal-ball and miospore floras from the Calhoun coal bed are dominated strongly by tree ferns, and pteridosperms and sigillarian lycopsids are subdominant, depending on geographic location within the coal bed. Although the overall composition of Calhoun peat-swamp assemblages is consistent both temporally and spatially, site-to-site differences and short-term shifts in species dominance indicate local topographic and hydrologic control on species composition within the broader context of the swamp. Statistical comparison of the Calhoun miospore assemblages with those from other Late Pennsylvanian coal beds suggests that the same basic species pool was represented in each peat-swamp landscape and that the relative patterns of dominance and diversity were persistent from site to site. Therefore, it appears that the relative patterns of proportional dominance stayed roughly the same from one coal bed to the next during Late Pennsylvanian glacially-driven climatic oscillations. (author)

  8. Germination and sporophytic development of Regnellidium diphyllum Lindman (Marsileaceae in the presence of hexavalent chromium Germinação e desenvolvimento esporofítico de Regnellidium diphyllum Lindman (Marsileaceae na presença de cromo hexavalente

    Directory of Open Access Journals (Sweden)

    MA. Kieling-Rubio

    2010-12-01

    Full Text Available Regnellidium diphyllum Lindman is a heterosporous fern, growing in aquatic environments and surrounding wetlands, which is assumed to be threatened by increasing water pollution and disappearance of its natural habitats. Among contaminants, hexavalent chromium - Cr(VI - is known to be present in effluents from some leather tanning factories. Megaspore germination tests were performed using Meyer's solution, at concentrations 0 (control, 0.1, 0.5, 1, 5, 10, 15, 20, 30, 50, and 80 mg.L-1, from a standard solution of Titrisol® 1000 mg.L-1. The primary development of apomictic sporophytes was studied using solutions containing 0.025 to 4.8 mg.L-1 of Cr(VI. The experiments were conducted in a growth chamber at 24 ± 1 ºC and for a 12-hour photoperiod under fluorescent lights, providing a nominal irradiance of 77 µmol.m-2/s. Significant differences in megaspore germination, with subsequent sporophytic development, were verified from 0.5 mg.L-1 Cr(VI concentration onwards. Growth of primary root and primary and secondary leaves was significantly reduced at 3.2 mg.L-1 Cr(VI concentration or higher. Considering the pollution from Cr(VI in some areas of R. diphyllum natural occurrence, these data indicate that low reproductive rates and disappearance of populations are likely to occur in these situations.Regnellidium diphyllum Lindman é uma filicínea heterosporada que se desenvolve em ambientes aquáticos e áreas úmidas circundantes, sendo considerada ameaçada pelo aumento da poluição e desaparecimento dos seus hábitats naturais. Entre os contaminantes, o cromo hexavalente - Cr(VI - é conhecido por estar presente nos efluentes de algumas indústrias de curtimento de couro. Testes de germinação foram realizados em meio líquido de Meyer, com concentrações de 0(controle; 0,1; 0,5; 1; 5; 10; 15; 20; 30; 50; e 80 mg.L-1 de Cr(VI, a partir de uma solução padrão de Titrisol® a 1000 mg.L-1. O desenvolvimento primário dos esporófitos apom

  9. Anatomically preserved "strobili" and leaves from the Permian of China (Dorsalistachyaceae, fam. nov.) broaden knowledge of Noeggerathiales and constrain their possible taxonomic affinities.

    Science.gov (United States)

    Wang, Shi-Jun; Bateman, Richard M; Spencer, Alan R T; Wang, Jun; Shao, Longyi; Hilton, Jason

    2017-01-01

    Noeggerathiales are an extinct group of heterosporous shrubs and trees that were widespread and diverse during the Pennsylvanian-Permian Epochs (323-252 Ma) but are of controversial taxonomic affinity. Groups proposed as close relatives include leptosporangiate ferns, sphenopsids, progymnosperms, or the extant eusporangiate fern Tmesipteris. Previously identified noeggerathialeans lacked anatomical preservation, limiting taxonomic comparisons to their external morphology and spore structure. We here document from the upper Permian of China the first anatomically preserved noeggerathialeans, which enhance the perceived distinctiveness of the group and better indicate its systematic affinity. We describe in detail the newly discovered, anatomically preserved heterosporous strobilus Dorsalistachya quadrisegmentorum, gen. et sp. nov., and redescribe its suspected foliar correlate, the pinnate leaf Plagiozamites oblongifolius. Plagiozamites possesses an omega (Ω)-shaped vascular trace and prominent cortical secretory cavities-a distinctive anatomical organization that is echoed in the newly discovered strobili. Dorsalistachya strobili bear highly dissected sporophylls alternately in two vertical rows, suggesting that they are homologs of leaf pinnae. If so, the "strobilus" is strictly a pseudostrobilus and consists of sporangium-bearing units that are one hierarchical level below true sporophylls. The "sporophylls" bear four microsporangia on the lower (abaxial) surface, occasionally interspersed with short longitudinal rows of megasporangia. A single functional megaspore develops within each winged megasporangium, suggesting adaptation for dispersal as a single unit. Dorsalistachya presents a unique combination of reproductive features that amply justifies establishment of a new family, Dorsalistachyaceae. Noeggerathiales represent a distinct taxonomic Order of free-sporing plants that most resembles early-divergent eusporangiate ferns and the more derived among the

  10. The Westphalian D fossil lepidodendrid forest at Table Head, Sydney Basin, Nova Scotia: Sedimentology, paleoecology and floral response to changing edaphic conditions

    Science.gov (United States)

    Calder, J.H.; Gibling, M.R.; Eble, C.F.; Scott, A.C.; MacNeil, D.J.

    1996-01-01

    Strata of Westphalian D age on the western coast of the Sydney Basin expose a fossil forest of approximately 30 lepidodendrid trees within one of several clastic splits of the Harbour Seam. A mutidisciplinary approach was employed to interpret the origins of the coal bed, the depositional history of the site and the response of the fossil forest to changing edaphic conditions. The megaspore and miospore records indicate that the mire vegetation was dominated by arboreous lycopsids, especially Paralycopodites, with subdominant tree ferns. Petrographic, palynological and geochemical evidence suggest that the Harbour coal bed at Table Head originated as a rheotrophic (cf. planar) mire (eutric histosol). The mire forest is interpreted to have been engulfed by prograding distributary-channel sediments; sparse protist assemblages are suggestive of a freshwater delta-plain lake environment occasionally in contact with brackish waters. Lepidodendrids persisted as site colonizers of clastic substrates even after burial of the rheotrophic peatland and influenced the morphology of deposited sediment, but apparently were unable to colonize distributary channels. Equivocal taxonomic data (compression fossils) show the fossil forest to have been composed of both monocarpic (Lepidodendron) and polycarpic (Diaphorodendron, Paralycopodites, ?Sigillaria) lycopsids, genera recorded in the palynology of the uppermost ply of the underlying coal bed. Comparatively rare within the clastic beds of the fossil forest, however, is the stem compression of Paralycopodites, whose dispersed megapores and miospores dominate the underlying coal bed. Tree diameter data recorded equivalent to breast height indicate a forest of mixed age. These data would appear to suggest that some lepidodendrids employing a polycarpic reproductive strategy were better able to cross the ecological barrier imposed between peat and clastic substrates. Foliar compressions indicate that an understory or stand of

  11. Embryo sac development in yellow passion fruit Passiflora edulis f. flavicarpa (Passifloraceae

    Directory of Open Access Journals (Sweden)

    Margarete Magalhães de Souza

    2002-01-01

    Full Text Available The yellow passion fruit, Passiflora edulis f. flavicarpa, is one of the most important Brazilian fruit crops. It is an allogamous, diploid, and self-incompatible species. It has hermaphrodite, solitary flowers, located in the leaf axils and protected by leaf bracts. The flower has an androgynophore, which is a straight stalk supporting its reproductive parts. There are usually five anthers, located at the tip of each of the five filaments. The ovary is borne just above the filaments, at the top of the androgynophore; there are three styles that are united at their base, and at the top there are three stigmas. The objective of this research was to observe embryo sac development in yellow passion flowers. Ovaries at different stages of development were fixed in FAA (formalin, acetic acid and alcohol solution, hydrated, stained with Mayer’s hemalum, and dehydrated. Ovules were cleared by using methyl salicylate, mounted on slides, and observed through a confocal scanning laser microscope. The yellow passion fruit ovule is bitegmic, crassinucellate, and anatropous, and its gametophyte development is of the Polygonum type. After meiosis, functional megaspores under go three successive mitotic divisions, resulting in an eight-nucleate megagametophyte: the egg apparatus at the micropylar end, two polar nuclei at the cell center, and three antipodals at the chalazal end. The egg apparatus is formed by an egg cell and two synergids, each with a filiform apparatus. The mature embryo sac has an egg cell, two synergids, two polar nuclei, and three antipodes, as has been described for most angiosperms.

  12. Genetic analysis of a hybrid sterility gene that causes both pollen and embryo sac sterility in hybrids between Oryza sativa L. and Oryza longistaminata.

    Science.gov (United States)

    Chen, H; Zhao, Z; Liu, L; Kong, W; Lin, Y; You, S; Bai, W; Xiao, Y; Zheng, H; Jiang, L; Li, J; Zhou, J; Tao, D; Wan, J

    2017-09-01

    Oryza longistaminata originates from African wild rice and contains valuable traits conferring tolerance to biotic and abiotic stress. However, interspecific crosses between O. longistaminata and Oryza sativa cultivars are hindered by reproductive barriers. To dissect the mechanism of interspecific hybrid sterility, we developed a near-isogenic line (NIL) using indica variety RD23 as the recipient parent and O. longistaminata as the donor parent. Both pollen and embryo sac semi-sterility were observed in F 1 hybrids between RD23 and NIL. Cytological analysis demonstrated that pollen abortion in F 1 hybrids occurred at the early bi-nucleate stage due to a failure of the first mitosis in microspores. Partial embryo sacs in the F 1 hybrids were defective during the functional megaspore formation stage. Most notably, nearly half of the male or female gametes were aborted in heterozygotes S40 i S40 l , regardless of their genotypes. Thus, S40 was indicated as a one-locus sporophytic sterility gene controlling both male and female fertility in hybrids between RD23 and O. longistaminata. A population of 16 802 plants derived from the hybrid RD23/NIL-S40 was developed to fine-map S40. Finally, the S40 locus was delimited to an 80-kb region on the short arm of chromosome 1 in terms with reference sequences of cv. 93-11. Eight open reading frames (ORFs) were localized in this region. On the basis of gene expression and genomic sequence analysis, ORF5 and ORF8 were identified as candidate genes for the S40 locus. These results are helpful in cloning the S40 gene and marker-assisted transferring of the corresponding neutral allele in rice breeding programs.

  13. Fine mapping of S37, a locus responsible for pollen and embryo sac sterility in hybrids between Oryza sativa L. and O. glaberrima Steud.

    Science.gov (United States)

    Shen, Yumin; Zhao, Zhigang; Ma, Hongyang; Bian, Xiaofeng; Yu, Yang; Yu, Xiaowen; Chen, Haiyuan; Liu, Linglong; Zhang, Wenwei; Jiang, Ling; Zhou, Jiawu; Tao, Dayun; Wan, Jianmin

    2015-11-01

    Hybrid sterility locus S37 between Oryza glaberrima and Oryza sativa results in both pollen and embryo sac sterility. Interspecific crossing between African cultivated rice Oryza glaberrima and Oryza sativa cultivars is hindered by hybrid sterility. To dissect the mechanism of interspecific hybrid sterility, we developed a near-isogenic line (NIL)-S37 using Dianjingyou1 (DJY1) as the recipient parent and an African cultivated rice variety as the donor parent. Empty pollen and embryo sac sterility were observed in F1 hybrids between DJY1 and NIL-S37. Cytological analyses showed that pollen abortion in the F1 hybrids occurred at the late binucleate stage due to a failure of starch accumulation in pollen grains. In addition, partial abortion of the embryo sac in the F1 hybrid was observed during function megaspore developing into mature embryo sac. Molecular analysis revealed that the semi-sterility was largely caused by the abortion of male and female gametophytes carrying the S37 allele from DJY1. A population of 25,600 plants derived from the hybrid DJY1/NIL-S37 was developed to fine map S37. Based on the physical location of molecular markers, S37 locus was finally delimited to a region of 205 kb on the short arm of chromosome 1 in terms of reference sequences of cv. Nipponbare. Interestingly, an about 97-kb DNA segment was deleted in the NIL-S37 based on BAC clone information of O. glaberrima. Fifty-four open reading frames (ORF) were predicted in this 205-kb region of DJY1, whereas only 31 ORFs were in that of NIL-S37. These results are valuable for cloning of S37 gene and further breaking reproductive isolation between Oryza glaberrima and Oryza sativa cultivars, as well as marker-assisted transferring of the corresponding neutral allele in rice breeding programs.

  14. Analysis of conserved microRNAs in floral tissues of sexual and apomictic Boechera species

    Directory of Open Access Journals (Sweden)

    Vogel Heiko

    2011-10-01

    Full Text Available Abstract Background Apomixis or asexual seed formation represents a potentially important agronomic trait whose introduction into crop plants could be an effective way to fix and perpetuate a desirable genotype through successive seed generations. However, the gene regulatory pathways underlying apomixis remain unknown. In particular, the potential function of microRNAs, which are known to play crucial roles in many aspects of plant growth and development, remains to be determined with regards to the switch from sexual to apomictic reproduction. Results Using bioinformatics and microarray validation procedures, 51 miRNA families conserved among angiosperms were identified in Boechera. Microarray assay confirmed 15 of the miRNA families that were identified by bioinformatics techniques. 30 cDNA sequences representing 26 miRNAs could fold back into stable pre-miRNAs. 19 of these pre-miRNAs had miRNAs with Boechera-specific nucleotide substitutions (NSs. Analysis of the Gibbs free energy (ΔG of these pre-miRNA stem-loops with NSs showed that the Boechera-specific miRNA NSs significantly (p ≤ 0.05 enhance the stability of stem-loops. Furthermore, six transcription factors, the Squamosa promoter binding protein like SPL6, SPL11 and SPL15, Myb domain protein 120 (MYB120, RELATED TO AP2.7 DNA binding (RAP2.7, TOE1 RAP2.7 and TCP family transcription factor 10 (TCP10 were found to be expressed in sexual or apomictic ovules. However, only SPL11 showed differential expression with significant (p ≤ 0.05 up-regulation at the megaspore mother cell (MMC stage of ovule development in apomictic genotypes. Conclusions This study constitutes the first extensive insight into the conservation and expression of microRNAs in Boechera sexual and apomictic species. The miR156/157 target squamosa promoter binding protein-like 11 (SPL11 was found differentially expressed with significant (p ≤ 0.05 up-regulation at the MMC stage of ovule development in apomictic

  15. Differentiation of MIS 9 and MIS 11 in the continental record: vegetational, faunal, aminostratigraphic and sea-level evidence from coastal sites in Essex, UK

    Science.gov (United States)

    Roe, Helen M.; Coope, G. Russell; Devoy, Robert J. N.; Harrison, Colin J. O.; Penkman, Kirsty E. H.; Preece, Richard C.; Schreve, Danielle C.

    2009-11-01

    Multidisciplinary investigations of the vegetational, faunal and sea-level history inferred from the infills of buried channels on the coast of eastern Essex have a direct bearing on the differentiation of MIS 11 and MIS 9 in continental records. New data are presented from Cudmore Grove, an important site on Mersea Island that can be linked to the terrace sequence of the River Thames. The vegetational history has been reconstructed from a pollen sequence covering much of the interglacial represented. The temperate nature of the climate is apparent from a range of fossil groups, including plant remains, vertebrates (especially the rich herpetofauna), molluscs and beetles, which all have strong thermophilous components. The beetle data have been used to derive a Mutual Climatic Range reconstruction, suggesting that mean July temperatures were about 2 °C warmer than modern values for southeast England, whereas mean January temperatures may have been slightly colder. The sea-level history has been reconstructed from the molluscs, ostracods and especially the diatoms, which indicate that the marine transgression occurred considerably earlier in the interglacial cycle than at the neighbouring Hoxnian site at Clacton. There are a number of palynological similarities between the sequence at Cudmore Grove and Clacton, especially the presence of Abies and the occurrence of Azolla filiculoides megaspores. Moreover, both sites have yielded Palaeolithic archaeology, indeed the latter is the type site of the Clactonian (flake-and-core) industry. However, the sites can be differentiated on the basis of mammalian biostratigraphy, new aminostratigraphic data, as well as the differences in the sea-level history. The combined evidence suggests that the infill of the channel at Cudmore Grove accumulated during MIS 9, whereas the deposits at Clacton formed during MIS 11. The infill of a much later channel, yielding non-marine molluscs and vertebrates including Hippopotamus, appears

  16. Stratigraphy and paleoenvironment of the Danish Eocene Azolla event

    Science.gov (United States)

    Heilmann-Clausen, Claus; Beyer, Claus; Snowball, Ian

    2010-05-01

    Spores (massulae and megaspores) of the freshwater fern Azolla are recorded in several Danish Eocene outcrops and boreholes. The Azolla-bearing interval is 0.5 - ca. 3 m thick and occurs within the L2 Bed, a unit in the lower part of the hemipelagic, bathyal Lillebælt Clay Formation deposited in the central and eastern parts of the North Sea Basin. Intervals of organic-rich clay, usually including two distinctive, black sapropels, are present in the lower part of Bed L2, indicating a generally reduced oxygen content in the bottom waters during this time, with at least two episodes of severe, basinwide stagnation. The oxygen-deficit points to reduced circulation and/or enhanced marine productivity in the North Sea Basin. Azolla occurs in the upper part of this mainly organic-rich interval. The frequency of Azolla spores relative to marine dinoflagellate cysts fluctuates within the interval. The Azolla interval has previously been correlated to levels near the Ypresian/Lutetian transition in Belgium, based on dinoflagellate stratigraphy. Calibration of a new magnetostratigraphic study of the lower Lillebælt Clay with the dinoflagellate biostratigraphy suggests that Bed L2 spans the upper part of Chron 22r, C22n and lower part of C21r. The Azolla pulse spans the upper part of C22n and lowermost part of C21r. The combined bio-magnetostratigraphy from Denmark allows a detailed comparison with published data from the northern part of the Norwegian-Greenland Sea (ODP Hole 913B). The correlation confirms earlier assumptions, which were based on biostratigraphy alone, that the marine Azolla pulse in the two areas, and therefore probably over the whole Norwegian-Greenland Sea - North Sea region, is of the same age. An ongoing palynological study of the L2 Bed has so far revealed no indication for freshwater episodes or brackish waters in the basin during the Azolla pulse, except perhaps for Azolla itself. It is, therefore, suggested that the Azolla spores were transported

  17. The ASH1 HOMOLOG 2 (ASHH2 histone H3 methyltransferase is required for ovule and anther development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Paul E Grini

    Full Text Available BACKGROUND: SET-domain proteins are histone lysine (K methyltransferases (HMTase implicated in defining transcriptionally permissive or repressive chromatin. The Arabidopsis ASH1 HOMOLOG 2 (ASHH2 protein (also called SDG8, EFS and CCR1 has been suggested to methylate H3K4 and/or H3K36 and is similar to Drosophila ASH1, a positive maintainer of gene expression, and yeast Set2, a H3K36 HMTase. Mutation of the ASHH2 gene has pleiotropic developmental effects. Here we focus on the role of ASHH2 in plant reproduction. METHODOLOGY/PRINCIPAL FINDINGS: A slightly reduced transmission of the ashh2 allele in reciprocal crosses implied involvement in gametogenesis or gamete function. However, the main requirement of ASHH2 is sporophytic. On the female side, close to 80% of mature ovules lack embryo sac. On the male side, anthers frequently develop without pollen sacs or with specific defects in the tapetum layer, resulting in reduction in the number of functional pollen per anther by up to approximately 90%. In consistence with the phenotypic findings, an ASHH2 promoter-reporter gene was expressed at the site of megaspore mother cell formation as well as tapetum layers and pollen. ashh2 mutations also result in homeotic changes in floral organ identity. Transcriptional profiling identified more than 300 up-regulated and 600 down-regulated genes in ashh2 mutant inflorescences, whereof the latter included genes involved in determination of floral organ identity, embryo sac and anther/pollen development. This was confirmed by real-time PCR. In the chromatin of such genes (AP1, AtDMC1 and MYB99 we observed a reduction of H3K36 trimethylation (me3, but not H3K4me3 or H3K36me2. CONCLUSIONS/SIGNIFICANCE: The severe distortion of reproductive organ development in ashh2 mutants, argues that ASHH2 is required for the correct expression of genes essential to reproductive development. The reduction in the ashh2 mutant of H3K36me3 on down-regulated genes relevant to

  18. Why did heterospory evolve?

    Science.gov (United States)

    Petersen, Kurt B; Burd, Martin

    2017-08-01

    The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation-resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation - an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life-history patterns - suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm-producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency-dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex

  19. Miocene Antarctic Terrestrial Realm

    Science.gov (United States)

    Ashworth, A. C.; Lewis, A.; Marchant, D. R.

    2009-12-01

    The discovery of several locations in the Transantarctic Mountains that contain macrofossils and pollen is transforming our understanding of late Cenozoic Antarctica. The most southerly location is on the Beardmore Glacier (85.1°S) about 500 km from the South Pole. The environment was an active glacial margin in which plants, insects and freshwater mollusks inhabited the sand and gravel bars and small lakes on an outwash plain. In addition to leaves and wood of dwarf Nothofagus (Southern Beech) shrubs, achenes of Ranunculus (Buttercup), in situ cushion growth forms of mosses and a vascular plant, the assemblages contains various exoskeletal parts of carabid and curculionid beetles and a cyclorrhaphan fly, the shells of freshwater bivalve and gastropod species and a fish tooth. Initially the deposits were assigned a Pliocene age (3.5 Ma) but a mid- to early Miocene age is more probable (c. 14 - 25 Ma) based on correlation of fossil pollen from the deposits with 39Ar/40Ar dated pollen assemblages from the McMurdo Dry Valleys locations. The oldest location within the Dry Valleys also involved an active ice margin but was part of a valley system that was completely deglaciated for intervals long enough for thick paleosols to develop. The Friis Hills fossil deposits of the Taylor Valley region (77.8°S) are at least 19.76 Ma based on the 39Ar/40Ar age of a volcanic ash bed. The valley floor during the non-glacial phases had poorly-drained soils and the extensive development of mossy mires. Wood and leaves of Nothofagus are abundant in lacustrine deposits. The silts of shallow fluvial channels contain abundant megaspores and spiky leaves of the aquatic lycopod Isoetes (Quillwort). Fossils of beetles are also present in these deposits. During the glacial phases, proglacial lakes were surrounded by dwarfed, deciduous Nothofagus shrubs. The youngest fossils recovered from the Dry Valleys are from the Olympus Range (77.5°S) with an age of 14.07 Ma. The environment was an

  20. The early to mid-Miocene environment of Antarctica

    Science.gov (United States)

    Ashworth, A. C.; Lewis, A.

    2012-12-01

    Paleoecological studies in the Transantarctic Mountains of the McMurdo region provide evidence that the climate was both warmer and wetter in the early to mid-Miocene than it was during the late Miocene. The climate change was accompanied by a shift from wet- to cold-based glaciation in the TAM and the probable growth of the polar ice sheet. Terrestrial and freshwater aquatic fossil assemblages from the Friis Hills (77°S) and the Olympus Range (77°S), with endpoint 40Ar/39Ar ages on tephras of 19.76 Ma and 14.07 Ma, respectively, indicate climatic cooling during the interval. At c.14 Ma, the temperature dropped below the threshold required to support the plants and insects of a tundra biome, and they became extinct. This interpretation is supported by pollen studies from Ross Sea cores. The extinction of the tundra biota on the continent appears to have been time-transgressive, occurring at 12.8 Ma on the Antarctic Peninsula. Evidence of climatic cooling from early to mid-Miocene is based on a decrease in biodiversity. During interglacial phases of the early Miocene, the poorly drained valley of the Friis Hills supported a sexually-reproducing moss community dominated by Campylium cf. polygamum, which today grows on the margins of lakes and in soil between boulders. Wood and leaves of Nothofagus (Southern Beech), and the seeds of at least five other angiosperm species are preserved as fossils. In addition, there are abundant megaspores and spiny, curved leaves of the aquatic lycopod Isoetes (Quillwort), as well as chitinous remains of curculionid beetles and Chironomidae (midges). During glacial phases, the only fossils found are Nothofagus leaves of a species which appears to be different than that associated with the interglacial phases. Pollen supports the interpretation that there was more than one species of Nothofagus in the vegetation. The types and numbers of species indicate that the vegetation was a shrub tundra. The closest modern analog for the fossil

  1. Organic petrography:An approach for identification of maceral groups in Gheshlagh coal area, Eastern Alborz

    Directory of Open Access Journals (Sweden)

    Tahereh Rabani

    2016-07-01

    , collotelinite, and corpogelinite macerals. Collodetrinite maceral (20 to 65.6 vol.% is the most abundant maceral in the vitrinite group and is associated with inertodetrinite and microspornite macerals. Callotelinite (8.4 to 46.7 wt% occurs as a structureless, homogeneous mass in the Gheshlagh coal seams. The inertinite group (4.9 to 23.3 vol% includes fusinite, semifusinite, macrinite, secretinite, funginite and inertodetrinite macerals. Fusinite (1.7 to12.7 vol.% is present in all coal seams in the Gheshlagh area. Cell cavities of fusinite are filled mostly by corpogelinite and clay minerals. Semifusinite occurs in appreciable concentrations (2.1to 14.3vol.% and Cell lumens of this maceral are filled with mineral matter, pyrite and clay. The liptinite group (nil to 3.5 vol% includes sporinite, cutinite and resinite macerals. Sporinite is the dominant maceral in the liptinite group (nil to 2.3 vol.% and occurs as elongated thread-like or spindle-shaped bodies and occurs as microspores and megaspores. Resinite (nil to 0.1 vol.% occurs as round to oval bodies and as fillings of the cell cavities of fusinite, semifusinite and funginite. The mineral matter content of most of the Gheshlagh coal seams varies between 3.1 and 24.9 vol.%. Mineral matter occurs in primary ground mass or secondary cavity filling form and includes clay minerals, carbonate and sulphide. Conclusion Based on organic petrographic studies carried out on four active coal mines in the Gheshlagh area, the presence of three maceral groups were determined. The vitrinite group (66.2 to 87.2 vol% is the dominant maceral group, and callodetrinite maceral (20 to 65.6 vol% is also abundant. The inertinite group contenthas a range of 4.9 to 23.3 vol% while the fusinite and semifusinite macerals are the most abundant of this group. The lowest volume percentage of macerals belongs to the liptinite group (0 to 3.5 vol% with 2.3 vol% espornitebeing the most abundant Maceral of this group. The presence of espornite maceral at