WorldWideScience

Sample records for medium-energy spallation cross

  1. Lattice design of medium energy beam transport line for n spallation neutron source

    International Nuclear Information System (INIS)

    Dhingra, Rinky; Kulkarni, Nita S.; Kumar, Vinit

    2015-01-01

    A 1 GeV H - injector linac is being designed at RRCAT for the proposed Indian Spallation Neutron Source (ISNS). The front-end of the injector linac will consist of Radiofrequency Quadrupole (RFQ) linac, which will accelerate the H - beam from 50 keV to 3 MeV. The beam will be further accelerated in superconducting Single Spoke Resonators (SSRs). A Medium Energy Beam Transport (MEBT) line will be used to transport the beam from the exit of RFQ to the input of SSR. The main purpose of MEBT is to carry out beam matching from RFQ to SSR, and beam chopping. In this paper, we describe the optimization criteria for the lattice design of MEBT. The optimized lattice element parameters are presented for zero and full (15 mA) current case. Beam dynamics studies have been carried out using an envelope tracing code Trace-3D. Required beam deflection angle due to the chopper housed inside the MEBT for beam chopping has also been estimated. (author)

  2. An intercomparison of medium energy cross-section codes

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1988-05-01

    Five medium energy proton reaction cases are selected for benchmarking nuclear model codes. The quantities calculated are isotopic activation yields for 180 MeV protons on Al and 40-200 MeV protons on Co, and double differential neutron emission spectra from Al, Zr-90 and Pb-208 for 35, 80, 160, 318, and 800 presented consist of three types: a closed form preequilibrium plus evaporation model, an intranuclear-cascade and evaporation model, and a model relying on nuclear systematics. The characteristics of each code are described. There are orders of magnitude differences in the time for each type of code to calculate neutron emission spectra, with codes using systematics, preequilibrium and intranuclear-cascade models requiring seconds, minutes and hours, respectively. Calculations are not compared with experiment in this initial study. For double differential neutron emission spectra, there is good overall agreement in magnitude among the different types of codes at forward angles. Differences where they occur at forward angles are greatest for the mid-energy neutrons emitted. At back angles the incident energy at which the best overall agreement is obtained is 160 MeV and the material for which the best overall agreement is obtained is Al. 4 refs., 7 tabs

  3. Measurements of neutron spallation cross section. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.

    1997-03-01

    Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)

  4. Cross correlation analysis of medium energy gamma rays for the northern hemisphere

    International Nuclear Information System (INIS)

    Long, J.; Zanrosso, E.; Zych, A.D.; White, R.S.

    1982-01-01

    Data obtained with the UCR gamma telescope have been analyzed using the cross-correlation method. The observations extended over 37.5 hr from 0930 UT, 30 Sept. to 2300 UT, 1 oct. 1978 at 32deg N. Lat. (Palestine, Texas). The Crab Nebula- Anticenter region was observed on consecutive days. The telescope's wide field-of-view permitted the search for a number of other medium energy (1-30 MeV) source candidates. As the telescope swept the sky, the count rates for fixed celestial directions were correlated with the expected response as a function of time and telescope geometry. Similar correlations were carried out for sources measured in the laboratory and computer-simulated sources. In the correlation method the time independence and azimuthal symmetry of the atmospheric and cosmic diffuse backgrounds provide zero correlation. In contrast, a celestial source produces an asymmetric response with respect to the azimuthal direction which varies predictably in time to give a positive correlation. Preliminary correlation skymaps of the Anticenter region are presented and their statistical significance discussed. An energy spectrum obtained from the ''correlated counts'' is compared with measurements by other methods

  5. A medium energy neutron deep penetration experiment

    International Nuclear Information System (INIS)

    Amian, W.; Cloth, P.; Druecke, V.; Filges, D.; Paul, N.; Schaal, H.

    1986-11-01

    A deep penetration experiment conducted at the Los Alamos WNR facility's Spallation Neutron Target is compared with calculations using intra-nuclear-cascade and S N -transport codes installed at KFA-IRE. In the experiment medium energy reactions induced by neutrons between 15 MeV and about 150 MeV inside a quasi infinite slab of iron have been measured using copper foil monitors. Details of the experimental procedure and the theoretical methods are described. A comparison of absolute reaction rates for both experimentally and theoretically derived reactions is given. The present knowledge of the corresponding monitor reaction cross sections is discussed. (orig.)

  6. Neutron cross sections for the interpretation of a spallation experiment

    International Nuclear Information System (INIS)

    Bortignon, P.F.; Mariani, F.; Perini, A.; Sangiust, V.

    1994-01-01

    An irradiation was carried out in a spallation neutron spectrum at the beam stop of LAMPF (Los Alamos); many activation detectors were used in order to obtain a fluence mapping inside the capsule volume. The cross sections were derived from ENDF B/V Dosimetry File up to 20 MeV and were based on calculations with the code ALICE up to 200 MeV. From 200 to 800 MeV an empirical extrapolation was employed since no data, calculated or measured, were available at the moment. An attempt has been made in this paper to revisit the interpretation of the experiment reconsidering the cross sections in the energy range from 200 to 800 MeV as given by the semiempirical models of Rudstam, Silberger and Tsao and Hufner

  7. Direct acceleration of ions to low and medium energies by a crossed-laser-beam configuration

    Directory of Open Access Journals (Sweden)

    Yousef I. Salamin

    2011-07-01

    Full Text Available Calculations show that 10 keV helium and carbon ions, injected midway between two identical 1 TW-power crossed laser beams of radial polarization, can be accelerated in vacuum to energies of utility in ion lithography. As examples, identical laser beams, crossed at 10° and focused to waist radii of 7.42  μm, accelerate He^{2+} and C^{6+} ions to average kinetic energies near 75 and 165 keV over distances averaging less than 7 and 6 mm, respectively. The spread in kinetic energy in both cases is less than 1% and the particle average angular deflection is less than 7 mrad. More energy-demanding industrial applications require higher-power laser beams for their direct ion laser acceleration.

  8. Evaluation at the medium energy region for Pb-208 and Bi-209

    International Nuclear Information System (INIS)

    Fukahori, Tokio; Pearlstein, S.

    1991-01-01

    Medium energy nuclear data in the 1--1000 MeV range is necessary to accelerator applications which include spallation neutron sources for radioactive waste treatment and accelerator shielding design, medical applications which include isotopes production and radiation therapy, and space applications. For the design of fission and fusion reactors, the nuclear data file for neutrons below 20 MeV is available and well evaluated. Evaluated nuclear data for protons and data in the medium energy region, however, have not been prepared completely. Evaluation in the medium energy region was performed using the theoretical calculation code ALICE-P or experimental data. In this paper, the evaluation of neutron and proton induced nuclear data for Pb-208 and Bi-209 has been performed using ALICE-P, empirical calculations and new systematics for the fission cross section. The evaluated data are compiled for possible inclusion in the ENDF/B-VI High Energy File. 204 refs., 51 figs., 9 tabs

  9. Gamma-ray emission cross section from proton-incident spallation reaction

    International Nuclear Information System (INIS)

    Iga, Kiminori; Ishibashi, Kenji; Shigyo, Nobuhiro

    1996-01-01

    Gamma-ray emission double differential cross sections from proton-incident spallation reaction have been measured at incident energies of 0.8, 1.5 and 3.0 GeV with Al, Fe, In and Pb targets. The experimental results have been compared with calculate values of HETC-KFA2. The measured cross sections disagree with the calculated results in the gamma ray energies above 10 MeV. (author)

  10. Cross-sections of spallation residues produced in Proton –Induced reactions

    International Nuclear Information System (INIS)

    Al-Haydari, A.; Khan, A.A.; Abdul Ganai, A.; Hassan, G.S.

    2013-01-01

    The recent available GSI data for proton-induced spallation reactions by using inverse kinematics at different energies are analyzed for different reactions in terms of the percolation model together with the intranuclear cascade model (MCAS). The simulation results obtained for the cross sections of production of light ions and isotopes as a function of mass and charge number is calculated. Results of calculations are in good agreement with experiment

  11. Measurement of nuclide cross-sections of spallation residues in 1 A GeV 238U + proton collisions

    International Nuclear Information System (INIS)

    Taieb, J.; Tassan-Got, L.; Bernas, M.; Mustapha, B.; Rejmund, F.; Stephan, C.; Schmidt, K.H.; Armbruster, P.; Benlliure, J.; Enqvist, T.; Boudard, A.; Legrain, R.; Leray, S.; Volant, C.; Wlazlo, W.; Casarejos, E.; Czajkowski, S.; Pravikoff, M.

    2003-02-01

    The production of heavy nuclides from the spallation-evaporation reaction of 238 U induced by 1 GeV protons was studied in inverse kinematics. The evaporation residues from tungsten to uranium were identified in-flight in mass and atomic number. Their production cross-sections and their momentum distributions were determined. The data are compared with empirical systematics. A comparison with previous results from the spallation of 208 Pb and 197 Au reveals the strong influence of fission in the spallation of 238 U. (orig.)

  12. Cross Sections for the Production of Residual Nuclides by Proton-Induced Reactions with Uranium at Medium Energies

    International Nuclear Information System (INIS)

    Issa, S.A.M.; Michel, R.; Uosif, M.A.M.; Issa, S.A.M.; Flamentc, J.L.; David, J.C.; Leray, S.

    2009-01-01

    The production of residual nuclides by proton-induced reactions on uranium is investigated using activated targets from irradiation experiments at Saturne II synchrocyclotron at the Laboratory National Saturne/Saclay. These investigations contribute to the European research project NUDATRA within the IP EUROTRANS in which the feasibility of accelerator-driven transmutation of nuclear waste is evaluated. Experimental cross sections are derived from gamma-spectrometric measurements. A total of 1894 cross-section was deter-mined covering 44 residual nuclides in the energy range from 211 MeV to 2530 MeV. The experimental data together with those of earlier work of our group are discussed in the context of theoretical excitation functions calculated by the newly developed INCL4 + ABLA and the TALYS codes

  13. The PSIMECX medium-energy neutron activation cross-section library. Part III: Calculational methods for heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.

    1998-09-01

    The PSIMECX library contains calculated nuclide production cross-sections from neutron-induced reactions in the energy range about 2 to 800 MeV in the following 72 stable isotopes of 24 elements: {sup 12}C, {sup 13}C, {sup 16}O, {sup 17}O, {sup 18}O, {sup 23}Na, {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 27}Al, {sup 28}Si, {sup 29}Si, {sup 30}Si, {sup 31}P, {sup 32}S, {sup 33}S, {sup 34}S, {sup 36}S, {sup 35}Cl, {sup 37}Cl, {sup 39}K, {sup 40}K, {sup 41}K, {sup 40}Ca, {sup 42}Ca, {sup 43}Ca, {sup 44}Ca, {sup 46}Ca, {sup 48}Ca, {sup 46}Ti, {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 50}Ti, {sup 50}V, {sup 51}V, {sup 50}Cr, {sup 52}Cr, {sup 53}Cr, {sup 54}Cr, {sup 55}Mn, {sup 54}Fe, {sup 56}Fe, {sup 57}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 61}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 66}Zn, {sup 67}Zn, {sup 68}Zn, {sup 70}Zn, {sup 92}Mo, {sup 94}Mo, {sup 95}Mo, {sup 96}Mo, {sup 97}Mo, {sup 98}Mo, {sup 100}Mo, {sup 121}Sb, {sup 123}Sb, {sup 204}Pb, {sup 206}Pb, {sup 207}Pb, {sup 208}Pb, {sup 232}Th and {sup 238}U. The energy range covers essentially all transmutation channels other than capture. The majority of the selected elements are main constituents of normal materials of construction used in and around accelerator facilities and the library is, first and foremost, designed to be a tool for the estimation of their activation in wide-band neutron fields. This third report describes and discusses the calculational methods used for the heavy nuclei. The library itself has been described in the first report of this series and the treatment for the medium and light mass nuclei is given in the second. (author)

  14. Universal odd-even staggering in isotopic fragmentation and spallation cross sections of neutron-rich fragments

    Science.gov (United States)

    Mei, B.; Tu, X. L.; Wang, M.

    2018-04-01

    An evident odd-even staggering (OES) in fragment cross sections has been experimentally observed in many fragmentation and spallation reactions. However, quantitative comparisons of this OES effect in different reaction systems are still scarce for neutron-rich nuclei near the neutron drip line. By employing a third-order difference formula, the magnitudes of this OES in extensive experimental cross sections are systematically investigated for many neutron-rich nuclei with (N -Z ) from 1 to 23 over a broad range of atomic numbers (Z ≈3 -50 ). A comparison of these magnitude values extracted from fragment cross sections measured in different fragmentation and spallation reactions with a large variety of projectile-target combinations over a wide energy range reveals that the OES magnitude is almost independent of the projectile-target combinations and the projectile energy. The weighted average of these OES magnitudes derived from cross sections accurately measured in different reaction systems is adopted as the evaluation value of the OES magnitude. These evaluated OES magnitudes are recommended to be used in fragmentation and spallation models to improve their predictions for fragment cross sections.

  15. Ranking and validation of spallation models for isotopic production cross sections of heavy residua

    Science.gov (United States)

    Sharma, Sushil K.; Kamys, Bogusław; Goldenbaum, Frank; Filges, Detlef

    2017-07-01

    The production cross sections of isotopically identified residual nuclei of spallation reactions induced by 136Xe projectiles at 500AMeV on hydrogen target were analyzed in a two-step model. The first stage of the reaction was described by the INCL4.6 model of an intranuclear cascade of nucleon-nucleon and pion-nucleon collisions whereas the second stage was analyzed by means of four different models; ABLA07, GEM2, GEMINI++ and SMM. The quality of the data description was judged quantitatively using two statistical deviation factors; the H-factor and the M-factor. It was found that the present analysis leads to a different ranking of models as compared to that obtained from the qualitative inspection of the data reproduction. The disagreement was caused by sensitivity of the deviation factors to large statistical errors present in some of the data. A new deviation factor, the A factor, was proposed, that is not sensitive to the statistical errors of the cross sections. The quantitative ranking of models performed using the A-factor agreed well with the qualitative analysis of the data. It was concluded that using the deviation factors weighted by statistical errors may lead to erroneous conclusions in the case when the data cover a large range of values. The quality of data reproduction by the theoretical models is discussed. Some systematic deviations of the theoretical predictions from the experimental results are observed.

  16. Ranking and validation of spallation models for isotopic production cross sections of heavy residua

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sushil K.; Kamys, Boguslaw [Jagiellonian University, The Marian Smoluchowski Institute of Physics, Krakow (Poland); Goldenbaum, Frank; Filges, Detlef [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany)

    2017-07-15

    The production cross sections of isotopically identified residual nuclei of spallation reactions induced by {sup 136}Xe projectiles at 500 AMeV on hydrogen target were analyzed in a two-step model. The first stage of the reaction was described by the INCL4.6 model of an intranuclear cascade of nucleon-nucleon and pion-nucleon collisions whereas the second stage was analyzed by means of four different models; ABLA07, GEM2, GEMINI++ and SMM. The quality of the data description was judged quantitatively using two statistical deviation factors; the H-factor and the M-factor. It was found that the present analysis leads to a different ranking of models as compared to that obtained from the qualitative inspection of the data reproduction. The disagreement was caused by sensitivity of the deviation factors to large statistical errors present in some of the data. A new deviation factor, the A factor, was proposed, that is not sensitive to the statistical errors of the cross sections. The quantitative ranking of models performed using the A-factor agreed well with the qualitative analysis of the data. It was concluded that using the deviation factors weighted by statistical errors may lead to erroneous conclusions in the case when the data cover a large range of values. The quality of data reproduction by the theoretical models is discussed. Some systematic deviations of the theoretical predictions from the experimental results are observed. (orig.)

  17. Spallation reaction study for fission products in nuclear waste: Cross section measurements for {sup 137}Cs and {sup 90}Sr on proton and deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H., E-mail: wanghe@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otsu, H.; Sakurai, H.; Ahn, D.S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aikawa, M. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Doornenbal, P.; Fukuda, N.; Isobe, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawakami, S. [Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192 (Japan); Koyama, S. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kubo, T.; Kubono, S.; Lorusso, G. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Maeda, Y. [Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192 (Japan); Makinaga, A. [Graduate School of Medicine, Hokkaido University, North-14, West-5, Kita-ku, Sapporo 060-8648 (Japan); Momiyama, S. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakano, K. [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Niikura, M. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Shiga, Y. [Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501 (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Söderström, P.-A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); and others

    2016-03-10

    We have studied spallation reactions for the fission products {sup 137}Cs and {sup 90}Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of {sup 137}Cs and {sup 90}Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.

  18. Cross-sections of spallation residues produced in 1A GeV 208Pb on proton reactions

    International Nuclear Information System (INIS)

    Wlazlo, W.; Uniwersytet Jagiellonski, Cracow; Enqvist, T.; Armbruster, P.

    2000-02-01

    Spallation residues produced in 1 GeV per nucleon 208 Pb on proton reactions have been studied using the fragment separator facility at GSI. Isotopic production cross-sections of elements from 61 Pm to 82 Pb have been measured down to 0.1 mb with a high accuracy. The recoil kinetic energies of the produced fragments were also determined. The obtained cross-sections agree with most of the few existing gamma-spectroscopy data. Data are compared with different intranuclear-cascade and evaporation-fission models. Drastic deviations were found for a standard code used in technical applications. (orig.)

  19. Measurement of isotopic cross sections of spallation residues in 800 A MeV {sup 197}Au + p collisions

    Energy Technology Data Exchange (ETDEWEB)

    Rejmund, F.; Mustapha, B.; Bernas, M.; Stephan, C.; Taieb, J.; Tassan-Got, L. [Institut de Physique Nucleaire, (IN2P3/CNRS) 91 - Orsay (France); Armbruster, P.; Benlliure, J.; Enqvist, T.; Schmidt, K.H.; Taieb, J. [GSI, Planckstrasse, Darmstadt (Germany); Benlliure, J. [Universidad de Santiago de Compostela (Spain); Boudard, A.; Legrain, R.; Leray, S.; Volant, C. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee (DAPNIA), 91 - Gif-sur-Yvette (France); Dufour, J.P. [CENBG, IN2P3, 33 - Gradignan (France)

    2000-07-01

    The spallation of {sup 197}Au by 800 MeV protons was investigated in inverse kinematics at GSI, Darmstadt, by use of a {sup 197}Au beam bombarding a liquid-hydrogen target. The fragment separator (FRS) was used to select and identify the reaction products prior to {beta} decay. The individual production cross sections and the kinematical properties of 396 isotopes for all elements between mercury (Z=80) and neodymium (Z=60) have been measured. A comparison with Monte Carlo calculations based on different two-step models of the spallation reaction is given. The shape of the isotopic distributions close to the projectile is found to differ strongly from that resulting from aluminium-induced fragmentation of {sup 197}Au. The mean kinetic energies of the fragments are deduced from the experimental data. The importance of the new data to improve our understanding of the spallation mechanism and the relevance for the design of accelerator-driven sub-critical reactors is discussed. (authors)

  20. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs, 90Sr and 107Pd on proton and deuteron

    Directory of Open Access Journals (Sweden)

    Wang He

    2017-01-01

    Full Text Available Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.

  1. Materials performance experience at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    There is a growing, but not yet substantial, data base for materials performance at spallation neutron sources. Specially designed experiments using medium energy protons (650 MeV) have been conducted at the Proton Irradiation Experiment (PIREX) facility at the Swiss Nuclear Institute accelerator (SIN). Specially designed experiments using 760-800 MeV copper target have been completed at the Los Alamos Spallation Radiation Effects Facility (LASREF) at Los Alamos Meson Physics Facility (LAMPF). An extensive material testing program was initiated at LASREF in support of the German spallation neutron source (SNQ) project, before it terminated in 1985.

  2. Cosmogenic nuclide shielding corrections determined via MCNPX radiation transport and spallation cross sections

    Science.gov (United States)

    Argento, D.; Reedy, R. C.; Stone, J. O.

    2011-12-01

    Cosmogenic Nuclides (CNs) are a critical new tool for geomorphology, allowing researchers to date Earth surface events and measure process rates [1]. Prior to CNs, many of these events and processes had no absolute method for measurement and relied entirely on relative methods. Reliable absolute measurement methods impact research constraining ice age extents and provide important climatic data via well constrained erosion rates, etc. [2]. Continuing to improve CN methods is critical for these sciences. Significant progress has been made in the last two decades in refining the method and reducing analytic uncertainties [1,3]. CRONUS-Earth, a collaboration of cosmogenic nuclide researchers, has been developing calibration data and scaling methods to provide a self-consistent platform for use in interpreting nuclide concentration values into geologic data. However, several aspects of the radiation cascade have been exceedingly difficult to measure empirically with either accuracy or spatial extent. One such aspect is the angular distribution of secondary cosmic rays that are energetic enough to produce cosmogenic nuclides via spallation. Researchers studying the angular distribution of such cosmic rays have usually described the distribution as (cos(Θ))^m. Currently, the standard corrections, assume an m of 2.3, which is based on very sparse data sets with very limited spatial and altitude variation [1,4,5]. Researchers using CNs must know the production rate at the sample location, and then make corrections for the portion of the sky that is blocked by nearby topography. If the shielding correction model currently used is too simplistic, this introduces error into the final results. In this study, a Monte Carlo method radiation transport code, MCNPX is used to model the Galactic Cosmic Ray (GCR) radiation impinging on the upper atmosphere and tracks the resulting secondary particles through a model of the Earth's atmosphere. Angle and energy distributions are

  3. Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing.

    CERN Document Server

    Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; Lèpez, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifenecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, A; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, J A; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin; CERN. Geneva. SPS and LEP Division

    2000-01-01

    The results of the TARC experiment are summarized herewith, whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons, produced by spallation at relatively high energy (En * 1 MeV), slow down quasi adiabatically, with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 GeV/c and 3.5 GeV/c protons) slowing down in a 3.3 m x 3.3 m x 3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational t...

  4. SEE cross section calibration and application to quasi-monoenergetic and spallation facilities

    Directory of Open Access Journals (Sweden)

    Alía Rubén García

    2017-01-01

    Full Text Available We describe an approach to calibrate SEE-based detectors in monoenergetic fields and apply the resulting semi-empiric responses to more general mixed-field cases in which a broad variety of particle species and energy spectra are involved. The calibration of the response functions is based both on experimental proton and neutron data and considerations derived from Monte Carlo simulations using the FLUKA code. The application environments include the quasi-monoenergetic neutrons at RCNP, the atmospheric-like VESUVIO spallation spectrum and the CHARM high-energy accelerator test facility.

  5. Medium energy ion scattering (MEIS)

    International Nuclear Information System (INIS)

    Dittmann, K.; Markwitz, A.

    2009-01-01

    This report gives an overview about the technique and experimental study of medium energy ion scattering (MEIS) as a quantitative technique to determine and analyse the composition and geometrical structure of crystalline surfaces and near surface-layers by measuring the energy and yield of the backscattered ions. The use of a lower energy range of 50 to 500 keV accelerated ions impinging onto the target surface and the application of a high-resolution electrostatic energy analyser (ESA) makes medium energy ion scattering spectroscopy into a high depth resolution and surface-sensitive version of RBS with less resulting damage effects. This report details the first steps of research in that field of measurement technology using medium energetic backscattered ions detected by means of a semiconductor radiation detector instead of an ESA. The study of medium energy ion scattering (MEIS) has been performed using the 40 keV industrial ion implanter established at GNS Sciences remodelled with supplementary high voltage insulation for the ion source in order to apply voltages up to 45 kV, extra apertures installed in the beamline and sample chamber in order to set the beam diameter accurately, and a semiconductor radiation detector. For measurement purposes a beam of positive charged helium ions accelerated to an energy of about 80 keV has been used impinging onto target surfaces of lead implanted into silicon (PbSi), scandium implanted into aluminium (ScAl), aluminium foil (Al) and glassy carbon (C). First results show that it is possible to use the upgraded industrial implanter for medium energy ion scattering. The beam of 4 He 2+ with an energy up to 88 keV has been focussed to 1 mm in diameter. The 5 nA ion beam hit the samples under 2 x 10 -8 mbar. The results using the surface barrier detector show scattering events from the samples. Cooling of the detector to liquid nitrogen temperatures reduced the electronic noise in the backscattering spectrum close to zero. A

  6. Photoelectric atomic absorption cross sections for elements Z = 6 to 54 in the medium energy X-ray range (5 to 25 keV). Pt. 1

    International Nuclear Information System (INIS)

    Hildebrandt, G.; Stephenson, J.D.; Wagenfeld, H.

    1975-01-01

    Photoelectric atomic absorption cross sections have been calculated by means of hydrogen-like eigenfunctions for the atomic K, L, M and N sub-shells of the elements Z = 6 to 54, using revised screening constants and an extension of the theory. The absorption cross sections have been further separated into dipole and quadrupole components so that the numerical data can also be applied to the Borrmann effect. (orig.) [de

  7. Calculations of the main free path on neutron emission cross-section for spallation reaction of target and fuel nuclei

    International Nuclear Information System (INIS)

    Tel, E.; Kisoglu, H. F.; Topaksu, A. K.; Aydin, A.; Kaplan, A.

    2007-01-01

    There are several new technological application fields of fast neutrons such as accelerator-driven incineration/ transmutation of the long-lived radioactive nuclear wastes (in particular transuranium nuclides) to short-lived or stable isotopes by secondary spallation neutrons produced by high-intensity, intermediate-energy, charged-particle beams, prolonged planetary space missions, shielding for particle accelerators. Especially, accelerator driven subcritical systems (ADS) can be used for fission energy production and /or nuclear waste transmutation as well as in the intermediate-energy accelerator driven neutron sources, ions and neutrons with energies beyond 20 MeV, the upper limit of exiting data files that produced for fusion and fission applications. In these systems, the neutron scattering cross sections and emission differential data are very important for reactor neutronics calculations. The transition rate calculation involves the introduction of the parameter of mean free path determines the mean free path of the nucleon in the nuclear matter. This parameter allows an increase in mean free path, with simulation of effect, which is not considered in the calculations, such as conservation of parity and angular momentum in intra nuclear transitions. In this study, we have investigated the multiple preequilibrium matrix element constant from internal transition for Uranium, Thorium, (n,xn) neutron emission spectra. The neutron-emission spectra produced by (n,xn) reactions on nuclei of some target (for spallation) have been calculated. In the calculations, we have used the geometry dependent hybrid model and the cascade exciton model including the effects of the preequilibrium. The pre-equilibrium direct effects have been examined by using full exciton model. All calculated results have been compared with the experimental data. The obtained results have been discussed and compared with the available experimental data and found agreement with each other

  8. Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing

    Science.gov (United States)

    Abánades, A.; Aleixandre, J.; Andriamonje, S.; Angelopoulos, A.; Apostolakis, A.; Arnould, H.; Belle, E.; Bompas, C. A.; Brozzi, D.; Bueno, J.; Buono, S.; Carminati, F.; Casagrande, F.; Cennini, P.; Collar, J. I.; Cerro, E.; Del Moral, R.; Díez, S.; Dumps, L.; Eleftheriadis, C.; Embid, M.; Fernández, R.; Gálvez, J.; García, J.; Gelès, C.; Giorni, A.; González, E.; González, O.; Goulas, I.; Heuer, D.; Hussonnois, M.; Kadi, Y.; Karaiskos, P.; Kitis, G.; Klapisch, R.; Kokkas, P.; Lacoste, V.; Le Naour, C.; López, C.; Loiseaux, J. M.; Martínez-Val, J. M.; Méplan, O.; Nifenecker, H.; Oropesa, J.; Papadopoulos, I.; Pavlopoulos, P.; Pérez-Enciso, E.; Pérez-Navarro, A.; Perlado, M.; Placci, A.; Poza, M.; Revol, J.-P.; Rubbia, C.; Rubio, J. A.; Sakelliou, L.; Saldaña, F.; Savvidis, E.; Schussler, F.; Sirvent, C.; Tamarit, J.; Trubert, D.; Tzima, A.; Viano, J. B.; Vieira, S.; Vlachoudis, V.; Zioutas, K.

    2002-02-01

    We summarize here the results of the TARC experiment whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons produced by spallation at relatively high energy ( E n⩾1 MeV) slow down quasi-adiabatically with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 and 3.5 GeV/ c protons) slowing down in a 3.3 m×3.3 m×3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational tools necessary for the analysis and understanding of the data were developed and validated in detail. Our direct experimental observation of ARC demonstrates the possibility to destroy, in a parasitic mode, outside the Energy Amplifier core, large amounts of 99Tc or 129I at a rate exceeding the production rate, thereby making it practical to reduce correspondingly the existing stockpile of LLFFs. In addition, TARC opens up new possibilities for radioactive isotope production as an alternative to nuclear reactors, in particular for medical applications, as well as new possibilities for neutron research and industrial applications.

  9. Studies in medium energy physics

    International Nuclear Information System (INIS)

    Green, A.; Hoffmann, G.W.; McDonough, J.; Purcell, M.J.; Ray, R.L.; Read, D.E.; Worn, S.D.

    1991-12-01

    This document constitutes the (1991--1992) technical progress report and continuation proposal for the ongoing medium energy nuclear physics research program supported by the US Department of Energy through special Research Grant DE-FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF) and the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics; (2) provide unique, first-of-a-kind ''exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics

  10. The PSIMECX medium-energy neutron activation cross-section library. Part II: Calculational methods for light to medium mass nuclei

    International Nuclear Information System (INIS)

    Atchison, F.

    1998-09-01

    The PSIMECX library contains calculated nuclide production cross-sections from neutron-induced reactions in the energy range about 2 to 800 MeV in the following 72 stable isotopes of 24 elements: 12 C, 13 C, 16 O, 17 O, 18 O, 23 Na, 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si, 29 Si, 30 Si, 31 P, 32 S, 33 S, 34 S, 36 S, 35 Cl, 37 Cl, 39 K, 40 K, 41 K, 40 Ca, 42 Ca, 43 Ca, 44 Ca, 46 Ca, 48 Ca, 46 Ti, 47 Ti, 48 Ti, 49 Ti, 50 Ti, 50 V, 51 V, 50 Cr, 52 Cr, 53 Cr, 54 Cr, 55 Mn, 54 Fe, 56 Fe, 57 Fe, 58 Fe, 58 Ni, 60 Ni, 61 Ni, 62 Ni, 64 Ni, 63 Cu, 65 Cu, 64 Zn, 66 Zn, 67 Zn, 68 Zn, 70 Zn, 92 Mo, 94 Mo, 95 Mo, 96 Mo, 97 Mo, 98 Mo, 100 Mo, 121 Sb, 123 Sb, 204 Pb, 206 Pb, 207 Pb, 208 Pb, 232 Th and 238 U. The energy range covers essentially all transmutation channels other than capture. The majority of the selected elements are principal constituents of normal materials of construction used in and around accelerator facilities and the library is, first and foremost, designed to be a tool for the estimation of their activation in wide-band neutron fields. This second report, of a series of three, describes and discusses the calculational methods used for the stable isotopes up to and including 123 Sb. The library itself has been described in the first report of the series and the treatment for the heavy nuclei is given in the third. (author)

  11. The PSIMECX medium-energy neutron activation cross-section library. Part II: Calculational methods for light to medium mass nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.

    1998-09-01

    The PSIMECX library contains calculated nuclide production cross-sections from neutron-induced reactions in the energy range about 2 to 800 MeV in the following 72 stable isotopes of 24 elements: {sup 12}C, {sup 13}C, {sup 16}O, {sup 17}O, {sup 18}O, {sup 23}Na, {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 27}Al, {sup 28}Si, {sup 29}Si, {sup 30}Si, {sup 31}P, {sup 32}S, {sup 33}S, {sup 34}S, {sup 36}S, {sup 35}Cl, {sup 37}Cl, {sup 39}K, {sup 40}K, {sup 41}K, {sup 40}Ca, {sup 42}Ca, {sup 43}Ca, {sup 44}Ca, {sup 46}Ca, {sup 48}Ca, {sup 46}Ti, {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 50}Ti, {sup 50}V, {sup 51}V, {sup 50}Cr, {sup 52}Cr, {sup 53}Cr, {sup 54}Cr, {sup 55}Mn, {sup 54}Fe, {sup 56}Fe, {sup 57}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 61}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 66}Zn, {sup 67}Zn, {sup 68}Zn, {sup 70}Zn, {sup 92}Mo, {sup 94}Mo, {sup 95}Mo, {sup 96}Mo, {sup 97}Mo, {sup 98}Mo, {sup 100}Mo, {sup 121}Sb, {sup 123}Sb, {sup 204}Pb, {sup 206}Pb, {sup 207}Pb, {sup 208}Pb, {sup 232}Th and {sup 238}U. The energy range covers essentially all transmutation channels other than capture. The majority of the selected elements are principal constituents of normal materials of construction used in and around accelerator facilities and the library is, first and foremost, designed to be a tool for the estimation of their activation in wide-band neutron fields. This second report, of a series of three, describes and discusses the calculational methods used for the stable isotopes up to and including {sup 123}Sb. The library itself has been described in the first report of the series and the treatment for the heavy nuclei is given in the third. (author)

  12. Isotopic production cross-sections and recoil velocities of spallation-fission fragments in the reaction 238U(1A GeV)+e

    CERN Document Server

    Pereira, J; Wlazlo, W; Benlliure, J; Casarejos, E; Armbruster, P; Bernas, M; Enqvist, T; Legrain, R; Leray, S; Rejmund, F; Mustapha, B; Schmidt, K.-H; Stéphan, C; Taïeb, J; Tassan-Got, L; Volant, C; Boudard, A; Czajkowski, S; 10.1103/PhysRevC.75.014602

    2007-01-01

    Fission fragments of 1A GeV 238U nuclei interacting with a deuterium target have been investigatedwith the Fragment Separator (FRS) at GSI (Darmstadt) by measuring their isotopicproduction cross-sections and recoil velocities. The results, along with those obtained recently forspallation-evaporation fragments, provide a comprehensive analysis of the spallation nuclear productionsin the reaction 238U(1A GeV)+d. Details about experiment performance, data reductionand results will be presented.

  13. Utilizing Monte-Carlo radiation transport and spallation cross sections to estimate nuclide dependent scaling with altitude

    Science.gov (United States)

    Argento, D.; Reedy, R. C.; Stone, J.

    2010-12-01

    Cosmogenic Nuclides (CNs) are a critical new tool for geomorphology, allowing researchers to date Earth surface events and measure process rates [1]. Prior to CNs, many of these events and processes had no absolute method for measurement and relied entirely on relative methods [2]. Continued improvements in CN methods are necessary for expanding analytic capability in geomorphology. In the last two decades, significant progress has been made in refining these methods and reducing analytic uncertainties [1,3]. Calibration data and scaling methods are being developed to provide a self consistent platform for use in interpreting nuclide concentration values into geologic data [4]. However, nuclide dependent scaling has been difficult to address due to analytic uncertainty and sparseness in altitude transects. Artificial target experiments are underway, but these experiments take considerable time for nuclide buildup in lower altitudes. In this study, a Monte Carlo method radiation transport code, MCNPX, is used to model the galactic cosmic-ray radiation impinging on the upper atmosphere and track the resulting secondary particles through a model of the Earth’s atmosphere and lithosphere. To address the issue of nuclide dependent scaling, the neutron flux values determined by the MCNPX simulation are folded in with estimated cross-section values [5,6]. Preliminary calculations indicate that scaling of nuclide production potential in free air seems to be a function of both altitude and nuclide production pathway. At 0 g/cm2 (sea-level) all neutron spallation pathways have attenuation lengths within 1% of 130 g/cm2. However, the differences in attenuation length are exacerbated with increasing altitude. At 530 g/cm2 atmospheric height (~5,500 m), the apparent attenuation lengths for aggregate SiO2(n,x)10Be, aggregate SiO2(n,x)14C and K(n,x)36Cl become 149.5 g/cm2, 151 g/cm2 and 148 g/cm2 respectively. At 700 g/cm2 atmospheric height (~8,400m - close to the highest

  14. Spallation reactions: calculations

    International Nuclear Information System (INIS)

    Bertini, H.W.

    1975-01-01

    Current methods for calculating spallation reactions over various energy ranges are described and evaluated. Recent semiempirical fits to existing data will probably yield the most accurate predictions for these reactions in general. However, if the products in question have binding energies appreciably different from their isotropic neighbors and if the cross section is approximately 30 mb or larger, then the intranuclear-cascade-evaporation approach is probably better suited. (6 tables, 12 figures, 34 references) (U.S.)

  15. A sistematical study of spallation reaction

    International Nuclear Information System (INIS)

    Foshina, M.

    1982-01-01

    A four-parameter semi-empirical formulae is proposed to calculate photo-spallation cross sections. This formulae is deduced starting from a nuclear model considered as a particle mixture without differences among them and the spallation phenomenous is considered as sucessive nucleon emission ruled by determined probability law. The formulae parameters are obtained from photo-spallation yields experimentally determined and available in literature. A variation study of the values of different parameters with the mass number of the 'seed' nucleus and incident energy is made. A parallel study for the spallation reactions induced by protons of a sampling of 720 data is also presented. (L.C.) [pt

  16. Studies in Medium Energy Physics

    International Nuclear Information System (INIS)

    Hoffmann, G.W.; McDonough, J.; Purcell, M.J.; Ray, R.L.; Read, D.M.; Worm, S.D.

    1992-12-01

    Progress is briefly reported in the following areas: p + A precision elastic forward-angle cross sections for 500- to 800-MeV p on 40 Ca; precision measurement of D NN for 13 C(rvec p, rvec p) at 500 MeV; design of a polarized nuclear target; search for very rare K L decays; search for the H dibaryon; experimental search for quark -- gluon plasma; and theoretical work on proton -- nucleus scattering

  17. Spallation reactions; Reactions de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Cugon, J.

    1996-12-31

    Spallation reactions dominate the interactions of hadrons with nuclei in the GeV range (from {approx} 0.1 to {approx} 10 GeV). They correspond to a sometimes important ejection of light particles leaving most of the time a residue of mass commensurate with the target mass. The main features of the experimental data are briefly reviewed. The most successful theoretical model, namely the intranuclear cascade + evaporation model, is presented. Its physical content, results and possible improvements are critically discussed. Alternative approaches are shortly reviewed. (author). 84 refs.

  18. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1992-06-01

    This paper covers the following topics: Experiment 87-02: Threshold Electrodisintegration of the Deuteron at High Q 2 ; Measurement of the 5th Structure Function in Deuterium and 12 C; Single-Particle Densities of sd-Shell Nuclei; Experiment 84-28: Transverse Form Factors of 117 Sn; Experiment 82-11: Elastic Magnetic Electron Scattering from 13 C; Experiment 89-09: Measurement of the Elastic Magnetic Form Factor of 3 He at High Momentum Transfer; Experiment 89-15: Coincidence Measurement of the D(e,e'p) Cross-Section at Low Excitation Energy and High Momentum Transfer; Experiment 87-09: Measurement of the Quadrupole Contribution to the N → Δ Excitation; Experiment E-140: Measurement of the x-, Q 2 and A-Dependence of R = σ L /σ T ; PEP Beam-Gas Event Analysis: Physics with the SLAC TPC/2γ Detector; Drift Chamber Tests at Brookhaven National Laboratory; Experiment PR-89-031: Multi-nucleon Knockout Using the CLAS Detector; Electronics Design for the CLAS Region 1 Drift Chamber; Color Transparencies in the Electroproduction of Nucleon Resonances; and Experiment PR-89-015: Study of Coincidence Reactions in the Dip and Delta-Resonance Regions

  19. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1991-06-01

    This report discusses research conducted on the following topics: transverse from factors of 117 Sn; elastic magnetic electron scattering from 13 C at Q 2 = 1 GeV 2 /c 2 ; a re-analysis of 13 C elastic scattering; deuteron threshold electrodisintegration; measurement of the elastic magnetic form factor of 3 He at high momentum transfer; coincidence measurement of the D(e,e'p) cross-section at low excitation energy and high momentum transfer; measurement of the quadrupole contribution to the N → Δ excitation; measurement of the x-, Q 2 -, and A-dependence of R = σ L /σ T ; the PEGASYS project; PEP beam-gas event analysis; plans for other experiments at SLAC: polarized electron scattering on polarized nuclei; experiment PR-89-015: study of coincidence reactions in the dip and delta-resonance regions; experiment PR-89-031: multi-nulceon knockout using the CLAS detector; drift chamber tests; a memorandum of understanding and test experiments; photoprotons from 10 B; and hadronic electroproduction at LEP

  20. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1993-06-01

    The University of Massachusetts (UMass) Nuclear Physics Program continues to concentrate upon the use of the electromagnetic interaction in a joint experimental and theoretical approach to the study of nucleon and nuclear properties. During the past year the activities of the group involved data analysis, design and construction of equipment, planning for new experiments, completion of papers and review articles for publication, writing of proposals for experiments, but very little actual data acquisition. Section II.A. described experiments at Bates Linear Accelerator Center. They include the following: electrodisintegration of deuteron; measurement of the elastic magnetic form factor of 3 He; coincidence measurement of the D(e,e'p) cross section; transverse form factors of 117 Sn; ground state magnetization density of 89 Y; and measurement of the 5th structure function in deuterium and 12 C. Section II.B. includes the following experiments at Stanford Linear Accelerator Center: deuteron threshold electrodisintegration; separation of charge and magnetic form factors of the neutron and proton; measurement of the X-, Q 2 , and A-dependence of R = σ L /σ T ; and analysis of 14.5 GeV electrons and positions scattered from gases in the PEP Storage Ring. Section III.C. includes the following experiments at NIKHEF and Lund: complementary studies of single-nucleon knockout and single-nucleon wave functions using electromagnetic interactions and single-particle densities of sd-shell nuclei. Section II.D. discusses preparations for future work at CEBAF: electronics for the CLAS region 1 drift chamber Section III. includes theoretical work on parity-violating electron scattering and nuclear structure

  1. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T 20 experiment, the UMass group was able to complete data acquisition on experiments involving 180 degrees elastic magnetic scattering on 117 Sn and 41 Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e') measurements were made in November of 1987 on 10 B in order to better determine the p 3/2 wave function from the transition from the J pi = 3 + ground state to the O + excited state at 1.74 MeV. In 1988, (e,e'p) coincidence measurements on 10 B were completed. The objective was to obtain information on the p 3/2 wave function by another means

  2. Spallation studies at Saturne

    Energy Technology Data Exchange (ETDEWEB)

    Frehaut, J. [Centre d`Etudes de Bruyeres-le-Chatel (France)

    1995-10-01

    SATURNE is a synchrotron accelerator which can deliver particles of momentum P and charge Z up to P/Z = 4 GeV/c. Monokinetic neutron beams of momentum up to 2 GeV/c can be produced. The spallation studies deal with measurements of: (i) differential neutron production cross sections from thin targets, (ii) neutron multiplicity distribution for proton and {sup 3}He induced reactions, and (iii) nuclide production in thin target. Measurements on thick or composite targets are under consideration.

  3. Medium-energy charged-particle data for evaluation

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1989-01-01

    Medium-energy charged particles incident on targets can cause a variety of nuclear reactions. Charged-particle transport calculations require access to a large body of cross-section data, which results in interest in an evaluated charged-particle data library. Developing an evaluated data library can involve several steps. An index to the literature on measurements and theory is useful to locate information relevant to data evaluation. A computerized compilation of measurements facilitates the intercomparison of different experiments and the determination of how well data are known. Nuclear models, based on theory or phenomenological evidence, are compared with experiment and, where validated, are used to fill in regions where experimental data are not available. Finally, the selected data are placed into computer-readable formats for use in transport calculations. Specialized indexes to bibliography help the scientist to keep up with his field and catch up with new subjects of interest. Several indexes are relevant to medium-energy nuclear data. In addition, these data are covered in several reports not issued on a regular basis. The technical area of medium-energy charged-particle data is maturing. From isolated measurements and theories, a comprehensive approach toward establishing a validated data base extending from low to high energies is emerging

  4. Medium-energy ion reflection from solids

    CERN Document Server

    Mashkova, ES

    1985-01-01

    ``Medium-Energy Ion Reflection from Solids'' analyses the results of experimental, theoretical and computer investigations on the process of scattering of ions by solid surfaces. Surface scattering is a relatively young and rapidly developing branch of the physics of atomic collisions and the literature on this subject has rapidly grown.As the first monograph devoted specifically to surface scattering of ions, this book is directed at scientists involved in ion-solid interaction studies.

  5. Medium energy probes and nuclear structure

    International Nuclear Information System (INIS)

    Ginocchio, J.N.

    1984-01-01

    In this paper we explore two topics. The first topic is the marriage of medium energy reaction theory with the interacting boson model of nuclei in such a way that the multiple scattering is summed to all orders. The second topic is an exactly solvable potential model which gives realistic shell model eigenfunctions which can be used to calculate static and transition nuclear densities. (orig./HSI)

  6. Medium energy hadron scattering from nuclei

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Wenes, G.

    1986-01-01

    The Glauber approximation for medium energy scattering of hadronic projectiles from nuclei is combined with the interacting boson model of nuclei to produce a transition matrix for elastic and inelastic scattering in algebraic form which includes coupling to all the intermediate states. We present closed form analytic expresions for the transition matrix elements for the three dynamical symmetries of the interacting boson model; that is for, a spherical quadrupole vibrator, a γ unstable rotor, and both prolate and oblate axially symmetric rotors. We give examples of application of this formalism to proton scattering from 154 Sm and 154 Gd. 27 refs., 5 figs., 1 tab

  7. Differential production cross sections of multiply charged fragments in 800 MeV proton-induced spallation of carbon, aluminum, and nickel

    International Nuclear Information System (INIS)

    Luckstead, S.C.

    1978-09-01

    Differential production cross sections for multiply charged fragments from 800-MeV proton-induced spallation of 12 C, 27 Al, and natural Ni were measured at 30 and 90 degrees. The ion fragments were identified by use of time-of-flight, ΔE--E detector telescope capable of complete particle identification for energies as low as .25 MeV/nucleon. The very short ranges of the particles of interest required the construction of very thin detectors with minimal deadlayer material. The time-pick-off detectors and gas ionization chamber developed are unique, and represent the state-of-the-art in fast timing for time-of-flight measurements and in construction of thin detectors. The resolutions achieved allowed the cross sections of 3 He, 4 He, 6 Li, 7 Li, 7 Be, 9 Be, 10 Be, 10 B, 11 B, 11 C, 12 C, and 13 C to be determined, along with those of nitrogen and oxygen without isotope separation. The cross sections were found to have weak angular dependence. Consequently, pseudo cross sections were calculated from the 90 0 data by integrating the differential cross sections from 0 to 25 MeV for each product and multiplying by 4π. Pseudo theoretical cross sections were similarly calculated from theoretical differential cross sections. These differential cross sections were calculated by use of a Monte Carlo computer code which incorporated the cascade-evaporation model of high-energy nuclear reactions. Implications are drawn for modifications of the model. The results suggest reducing the transparency of the struck nucleus to pions produced in the cascade stage of the reaction model in order that a higher excitation energy be left for the evaporation stage. Also, there is some evidence that evaporations of nuclear aggregates more massive than 4 He occur. Inclusion of such evaporations should improve the model. 82 figures, 1 table

  8. Positronium-alkali atom scattering at medium energies

    International Nuclear Information System (INIS)

    Chakraborty, Ajoy; Basu, Arindam; Sarkar, Nirmal K; Sinha, Prabal K

    2004-01-01

    We investigate the scattering of orthopositronium (o-Ps) atom off different atomic alkali targets (Na to Cs) at low and medium energies (up to 120 eV). Projectile-elastic and target-elastic close-coupling models have been employed to investigate the systems in addition to the static-exchange model. Elastic, excitation and total cross sections have been reported for all four systems. The magnitude of the alkali excitation cross section increases with increasing atomic number of the target atom while the position of the peak value shifts towards lower incident energies. The magnitudes of the Ps excitation and ionization cross sections increase steadily with atomic number with no change in the peak position. The reported results show regular behaviour with increasing atomic number of the target atom. Scattering parameters for the Ps-Rb and Ps-Cs systems are being reported for the first time

  9. Spallation reactions - physics and applications

    International Nuclear Information System (INIS)

    Kelic, A.; Ricciardi, M.; Schmidt, K-H.

    2009-01-01

    Spallation reactions have become an ideal tool for studying the equation of state and thermal instabilities of nuclear matter. In astrophysics, the interactions of cosmic rays with the interstellar medium have to be understood in detail for deducing their original composition and their production mechanisms. Renewed interest in spallation reactions with protons around 1 GeV came up recently with the developments of spallation neutron sources. The project of an accelerator-driven system (ADS) as a technological solution for incinerating the radioactive waste even intensified the efforts for better understanding the physics involved in the spallation process. Experiments on spallation reactions were performed for determining the production cross sections and properties of particles, fragments and heavy residues. Traditional experiments on heavy residues, performed in direct kinematics, were limited to the direct observation of long-lived radioactive nuclides and did not provide detailed information on the kinematics of the reaction. Therefore, an innovative experimental method has been developed, based on inverse kinematics, which allowed to identify all reaction residues in-flight, using the high resolution magnetic spectrometer FRS of GSL Darmstadt. It also gives direct access to the reaction kinematics. An experimental campaign has been carried out in a Europe-wide collaboration, investigating the spallation of several nuclei ranging from 56 Fe to 238 U Complementary experiments were performed with a full-acceptance detection system, yielding total fission cross sections. Recently, another detection system using the large acceptance ALADIN dipole and the LAND neutron detector was introduced to measure light particles in coincidence with the heavy residues. Another intense activity was dedicated to developing codes, which cover nuclear reactions occurring in an ADS. The first phase of the reaction is successfully described by a sequence of quasi-free nucleon

  10. Spallation neutron sources

    International Nuclear Information System (INIS)

    Fraser, J.S.; Bartholomew, G.A.

    1983-01-01

    The principles and theory of spallation neutron sources are outlined and a comparison is given with other types of neutron source. A summary of the available accelerator types for spallation neutron sources and their advantages and disadvantages is presented. Suitable target materials are discussed for specific applications, and typical target assemblies shown. (U.K.)

  11. Fragmentation cross sections outside the limiting-fragmentation regime

    CERN Document Server

    Sümmerer, K

    2003-01-01

    The empirical parametrization of fragmentation cross sections, EPAX, has been successfully applied to estimate fragment production cross sections in reactions of heavy ions at high incident energies. It is checked whether a similar parametrization can be found for proton-induced spallation around 1 GeV, the range of interest for ISOL-type RIB facilities. The validity of EPAX for medium-energy heavy-ion induced reactions is also checked. Only a few datasets are available, but in general EPAX predicts the cross sections rather well, except for fragments close to the projectile, where the experimental cross sections are found to be larger.

  12. Spallator - accelerator breeder

    International Nuclear Information System (INIS)

    Steinberg, M.

    1985-01-01

    The concept involves the use of spallation neutrons produced by interaction of a high energy proton (1 to 2 GeV) from a linear accelerator (LINAC) with a heavy metal target (uranium). The principal spallator concept is based on generating fissile fuel for use in LWR nuclear power plants. The spallator functions in conjunction with a reprocessing plant to regenerate and produce the Pu-239 or U-233 for fabrication into fresh LWR reactor fuel elements. Advances in proton accelerator technology has provided a solid base for predicting performance and optimizing the design of a reliable, continuous wave, high-current LINAC required by a fissile fuel production machine

  13. Frequency domain Monte Carlo simulation method for cross power spectral density driven by periodically pulsed spallation neutron source using complex-valued weight Monte Carlo

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro

    2014-01-01

    Highlights: • The cross power spectral density in ADS has correlated and uncorrelated components. • A frequency domain Monte Carlo method to calculate the uncorrelated one is developed. • The method solves the Fourier transformed transport equation. • The method uses complex-valued weights to solve the equation. • The new method reproduces well the CPSDs calculated with time domain MC method. - Abstract: In an accelerator driven system (ADS), pulsed spallation neutrons are injected at a constant frequency. The cross power spectral density (CPSD), which can be used for monitoring the subcriticality of the ADS, is composed of the correlated and uncorrelated components. The uncorrelated component is described by a series of the Dirac delta functions that occur at the integer multiples of the pulse repetition frequency. In the present paper, a Monte Carlo method to solve the Fourier transformed neutron transport equation with a periodically pulsed neutron source term has been developed to obtain the CPSD in ADSs. Since the Fourier transformed flux is a complex-valued quantity, the Monte Carlo method introduces complex-valued weights to solve the Fourier transformed equation. The Monte Carlo algorithm used in this paper is similar to the one that was developed by the author of this paper to calculate the neutron noise caused by cross section perturbations. The newly-developed Monte Carlo algorithm is benchmarked to the conventional time domain Monte Carlo simulation technique. The CPSDs are obtained both with the newly-developed frequency domain Monte Carlo method and the conventional time domain Monte Carlo method for a one-dimensional infinite slab. The CPSDs obtained with the frequency domain Monte Carlo method agree well with those with the time domain method. The higher order mode effects on the CPSD in an ADS with a periodically pulsed neutron source are discussed

  14. Microscopic optical potential at medium energies

    International Nuclear Information System (INIS)

    Malecki, A.

    1979-01-01

    The problems concerning a microscopic optical model for the elastic nuclear collisions at medium energies are discussed. We describe the method for constructing the optical potential which makes use of the particular properties of quantum scattering in the eikonal limit. The resulting potential is expressed in terms of the nuclear wave functions and the nucleon-nucleon scattering amplitudes. This potential has a dynamic character since by including the effects of multiple scattering it allows for the possibility of intermediate excitations of the projectile and target nuclei. The use of the potential in the exact wave equation accounts for the most important mechanisms present in the collisions between composite particles. The microscopic optical model was successfully applied in the analysis of elastic scattering of protons and α-particles on atomic nuclei in the energy range of 300-1000 MeV/nucleon. The dynamic optical potential in this case represents a considerable improvement over the eikonal Glauber model and the static optical potential of Watson. The possibilities to extend the microscopic description of the proton-nucleus interaction by considering the spin dependence of the elementary amplitude and the Majorana exchange effects were investigated. (author)

  15. Multiple scattering in the nuclear rearrangement reactions at medium energy

    International Nuclear Information System (INIS)

    Tekou, A.

    1980-09-01

    It is shown that the multiple scattering mechanism is very important in the transfer of the large momenta involved in the nuclear rearrangement reactions at medium energy. In contrast to the usual belief, the reaction cross-section is not very sensitive to the high momenta components of the nuclear wave function. The multiple scattering mechanism is especially important in 4 He(p,d) 3 He reaction around 800 MeV. Here the collisions involving two nucleons of the target nucleus are dominant. The triple collisions contribution is also important. The four collision contribution is negligible in the forward direction and sizeable at large angles. Thus, using the K.M.T. approach in DWBA calculations, the second order term of the optical potential must be included. So, is it not well established that the second term of the K.M.T. optical potential is important for the proton elastic scattering on light nuclei. (author)

  16. Spallation: understanding for predicting !?

    International Nuclear Information System (INIS)

    David, J.-C.

    2012-01-01

    This HDR report summarizes about ten years spent around spallation reaction modelling. Spallation reactions are defined as interaction of a light particle, say a nucleon, and a nucleus at an incident energy from 100 MeV up to 2-3 GeV. These reactions are divided in two steps. A first and fast phase, direct reactions also called intranuclear cascade, following by a slower phase, deexcitation of the remnant nucleus. Using the combination of INCL4, the intranuclear cascade model developed by the group, and the deexcitation code Abla from GSI, as a connecting thread, the multi-faceted spallation is presented. Chapter one deals with physics and codes, then different types of benchmarks are addressed, followed by several domains where spallation modelling plays a role, and finally, taking advantage of what has been said previously and of what can be read in the literature, new developments are suggested. (author) [fr

  17. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  18. Development of the Medium Energy Linac Systems

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Park, Bum Sik; Seol, Kyung Tae; Song, Young Gi; Yun, Sang Pil; Cho, Yong Sub; Hong, In Seok

    2008-05-01

    The main purpose of this project is developing 100-MeV proton linear accelerator (linac) for proton engineering frontier project (PEFP). In the first phase of the PEFP, the development of the 20-MeV linac has successfully finished. Hence the work scope of this project is designing the linac to accelerate proton beams from 20-MeV up to 100-MeV, fabricating the linac up to 45 MeV, fabricating one set of the medium energy beam transport (MEBT) tank, and developing the low level radio frequency (LLRF) system and the control system. The basic role of the new proton accelerator is accelerating 20-mA proton beams from 20 MeV up to 100 MeV. The first step of the design procedure is optimizing and determining the accelerator parameters. The beam loss is also main concern in the design stage. The drift tube (DT) and the quadrupole magnets are designed to be optimized to the new linac design. The other purpose is confirming the new design by fabricating and tuning the drift tube linac (DTL). The 20MeV proton beam divided into two directions. One is supplying the beams to user group by turning on the 45-degree bending magnet. The other is guided into the 100-MeV DTL by tuning off the dipole magnet. That is why the PEFP MEBT located after 20-MeV DTL. The MEBT is realized as two small DTL tanks with three cells and a 45-degree bending magnet. The fabrication of one MEBT tank is another purpose of this project. The other purposes of this project is developing the LLRF system to control the RF signal and control system to monitor and control the vacuum system, magnet power supply, etc

  19. The DHG sum rule measured with medium energy photons

    International Nuclear Information System (INIS)

    Hicks, K.; Ardashev, K.; Babusci, D.

    1997-01-01

    The structure of the nucleon has many important features that are yet to be uncovered. Of current interest is the nucleon spin-structure which can be measured by doing double-polarization experiments with photon beams of medium energies (0.1 to 2 GeV). One such experiment uses dispersion relations, applied to the Compton scattering amplitude, to relate measurement of the total reaction cross section integrated over the incident photon energy to the nucleon anomalous magnetic moment. At present, no single facility spans the entire range of photon energies necessary to test this sum rule. The Laser-Electron Gamma Source (LEGS) facility will measure the double-polarization observables at photon energies between 0.15--0.47 MeV. Either the SPring8 facility, the GRAAL facility (France), or Jefferson Laboratory could make similar measurements at higher photon energies. A high-precision measurement of the spin-polarizability and the Drell-Hearn-Gerasimov sum rule is now possible with the advent of high-polarization solid HD targets at medium energy polarized photon facilities such as LEGS, GRAAL and SPring8. Other facilities with lower polarization in either the photon beam or target (or both) are also pursuing these measurements because of the high priority associated with this physics. The Spin-asymmetry (SASY) detector that will be used at LEGS has been briefly outlined in this paper. The detector efficiencies have been explored with simulations studies using the GEANT software, with the result that both charged and uncharged pions can be detected with a reasonable efficiency (> 30%) over a large solid angle. Tracking with a TPC, which will be built at LEGS over the next few years, will improve the capabilities of these measurements

  20. Results from the IAEA benchmark of spallation models

    International Nuclear Information System (INIS)

    Leray, S.; David, J.C.; Khandaker, M.; Mank, G.; Mengoni, A.; Otsuka, N.; Filges, D.; Gallmeier, F.; Konobeyev, A.; Michel, R.

    2011-01-01

    Spallation reactions play an important role in a wide domain of applications. In the simulation codes used in this field, the nuclear interaction cross-sections and characteristics are computed by spallation models. The International Atomic Energy Agency (IAEA) has recently organised a benchmark of the spallation models used or that could be used in the future into high-energy transport codes. The objectives were, first, to assess the prediction capabilities of the different spallation models for the different mass and energy regions and the different exit channels and, second, to understand the reason for the success or deficiency of the models. Results of the benchmark concerning both the analysis of the prediction capabilities of the models and the first conclusions on the physics of spallation models are presented. (authors)

  1. Signature for g bosons from medium energy proton scattering experiments

    International Nuclear Information System (INIS)

    Kuyucak, S.

    1993-01-01

    We apply the recently developed algebraic (1/N expansion) scattering formalism to medium energy proton scattering from 154 Sm and 176 Yb. The nuclear structure effects in this formalism are described by the interacting boson model generalized to arbitrary interactions and types of bosons i.e. s,d,g, etc. We find that, in the sd boson model, a consistent description of cross sections is possible only for the 0 + and 2 + states. The failure of the model with regard to the 4 + states indicates that the effective hexadecapole operator used in the sd model is inadequate. In contrast, the data for scattering to the 0 + , 2 + and 4 + states could be consistently described in the sdg boson model. The spectroscopic data for the low-lying levels usually can not distinguish between the sd and sdg models due to renormalization of parameters, and one has to look at high spin or energy data for evidence of g bosons. The inelastic proton scattering experiments, on the other hand, directly probe the wave functions, and hence could provide a signature for g bosons even in the ground band states

  2. Double photoionization of lithium at medium energies

    International Nuclear Information System (INIS)

    Wehlitz, R.; Bluett, J.B.; Martinez, M.M.; Lukic, D.; Whitfield, S.B.

    2004-01-01

    Full text: The double-to-single photoionization ratio of atomic lithium has been measured for photon energies ranging from 120 eV to 910 eV . Through the extensive use of various filters we were able to significantly extend the previous range of measurements. We d that our data are in agreement with the predicted high-energy limit of 3.4%. By applying simple model curves to our data, we attempt to disentangle the different processes leading to a doubly charged Li ion. Our model corroborates the notion that sequential processes contribute substantially to the double-photoionization cross-section ratio as predicted by theory. This work was supported by NSF under Grant No. PHY-9987638. The SRC is supported by NSF Grant No. DMR-0084402. M.M.M. acknowledges financial support through the NSF REU program

  3. Photoproduction of scalar mesons at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, M. L. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-090, Pelotas, RS (Brazil); Machado, M. V. [High Energy Physics Phenomenology Group, GFPAE IF-UFRGS, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS (Brazil)

    2013-03-25

    In this work we will focus on photoproduction of mesons states a{sub 0}(980), f{sub 0}(1500) and f{sub 0}(1710). The f{sub 0}(1500) and f{sub 0}(1710) mesons will be considered in distinct mixing possibilities and assuming that a{sub 0}(980) is member of the ground-state nonet. The theoretical formalism is the Regge approach with reggeized {rho} and {omega} exchange. The differential and integrated total cross section are computed for the cases of the mesons a{sub 0}(980), f{sub 0}(1500) and f{sub 0}(1710) focusing the GlueX energy regime with photon energy E = 9 GeV.

  4. Deep spallation of medium mass isotopes by protons

    International Nuclear Information System (INIS)

    Kolsky, K.L.; Karol, P.J.

    1993-01-01

    Spallation systematics have been extended into the deep spallation mass region. Production cross sections of scandium radioisotopes from 0.8 GeV protons on 89 Y, 92,96,100 Mo, and 130 Te targets were measured and the cross sections were used to generate isobaric yield curves at A p =47. In the latter target, this corresponds to a mass loss of >80 nucleons. At ∼10 MeV/nucleon and for products outside the multifragmentation region, this is an extreme manifestation of the spallation process. The results prove to fit smooth extrapolations from trends developed in earlier work on less deep spallation. The influence of target composition is still evident even from 130 Te, in contrast to expectations, based on evaporation considerations, that this so-called memory effect would wash out

  5. Pulsed spallation Neutron Sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1994-01-01

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology

  6. Pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1996-01-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology

  7. Cross section measurement of residues produced in proton- and deuteron-induced spallation reactions on 93Zr at 105 MeV/u using the inverse kinematics method

    Directory of Open Access Journals (Sweden)

    Kawase Shoichiro

    2017-01-01

    Full Text Available Isotopic production cross sections in the proton- and deuteron-induced spallation reactions on 93Zr at an energy of 105 MeV/u were measured in inverse kinematics conditions for the development of realistic nuclear transmutation processes for long-lived fission products (LLFPs with neutron and light-ion beams. The experimental results were compared to the PHITS calculations describing the intra-nuclear cascade and evaporation processes. Although an overall agreement was obtained, a large overestimation of the production cross sections for the removal of a few nucleons was seen. A clear shell effect associated with the neutron magic number N = 50 was observed in the measured isotopic production yields of Zr and Y isotopes, which can be reproduced reasonably by the PHITS calculation.

  8. Use of medium energy particles in radiobiology and radiotherapy

    International Nuclear Information System (INIS)

    Larsson, B.

    1984-01-01

    The radiological properties of ion beams are described and their biomedical use reviewed. The special features and potentialities of secondary radiations obtained with medium-energy accelerators for protons of electrons are mentioned, for comparison. Examples are given from work at heavy accelerators which has contributed to our basic knowledge of radiation effects on cells and tissues, or to recent advances in experimental and clinical radiology. The author tries to identify areas where important spin-off contributions from medium-energy physics to the biomedical sciences could be made, or where such contributions would have significant implications for the society. The conclusion is made that medium energy accelerators have great potential in experimental and preclinical research, particularly in neurophysiology and oncology

  9. Precompound decay models for medium energy nuclear reactions

    International Nuclear Information System (INIS)

    Blann, M.

    1989-11-01

    The formulations used for precompound decay models are presented and explained in terms of the physics of the intranuclear cascade model. Several features of spectra of medium energy (10--1000 MeV) reactions are summarized. Results of precompound plus evaporation calculations from the code ALICE are compared with a wide body of proton, alpha, and heavy ion induced reaction data to illustrate both the power and deficiencies of predicting yield of these reactions in the medium energy regime. 23 refs., 13 figs

  10. Spallation neutrons pulsed sources

    International Nuclear Information System (INIS)

    Carpenter, J.

    1996-01-01

    This article describes the range of scientific applications which can use these pulsed neutrons sources: Studies on super fluids, measures to verify the crawling model for the polymers diffusion; these sources are also useful to study the neutron disintegration, the ultra cold neutrons. In certain applications which were not accessible by neutrons diffusion, for example, radiations damages, radionuclides production and activation analysis, the spallation sources find their use and their improvement will bring new possibilities. Among others contributions, one must notice the place at disposal of pulsed muons sources and neutrinos sources. (N.C.). 3 figs

  11. On the polarized beam acceleration in medium energy synchrotrons

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1992-01-01

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined

  12. On the polarized beam acceleration in medium energy synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1992-12-31

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined.

  13. Medium-Energy Nuclear Data Library (MENDLIB): Phase 1

    International Nuclear Information System (INIS)

    Siciliano, E.R.; Arthur, E.D.

    1987-10-01

    This document describes an initial step towards the formation of a computerized on-line data library, which would contain published medium-energy experimental data, and which would serve the basic and applied needs of the medium-energy nuclear physics community. The data emphasized in this project will be from measured charged-particle and meson induced nuclear scattering and reactions; an area for which no such data base presently exists. Access to the data will be through a menu-driven program in a user-friendly environment. The project is divided into three phases: Phase 1 involves compilation of Clinton P. Anderson Meson Physics Facility (LAMPF) data from nucleon and pion induced reactions, Phase 2 includes nucleon and pion data from other medium-energy facilities, and Phase 3 includes electron, light-ion, and possibly kaon and anti-nucleon data. The initial goals, the manner in which they would be pursued, and the resources needed to implement Phase 1 (the pilot phase) are discussed in detail. Possible expansion of Phase 1 to attain the envisioned goals of Phase 2 and 3 are briefly outlined. During all stages of the project, input from the community will be sought via the various facility user groups and the American Physical Society Division of Nuclear Physics. It is proposed that the Applied Nuclear Science Group (T-2) of the Los Alamos National Laboratory oversees the development and implementation of this project, and the LAMPF VAX computers be used as the host computers for on-line access

  14. Theoretical interpretation of medium energy nucleon nucleus inelastic scattering

    International Nuclear Information System (INIS)

    Lagrange, Christian

    1970-06-01

    A theoretical study is made of the medium energy nucleon-nucleus inelastic scattering (direct interaction), by applying the distorted wave Born approximation such as can be deduced from the paired equation method. It is applied to the interpretation of the inelastic scattering of 12 MeV protons by 63 Cu; this leads us to make use of different sets of wave functions to describe the various states of the target nucleus. We analyze the nature of these states and the shape of the nucleon-nucleus interaction potential, and we compare the results with those obtained from other theoretical and experimental work. (author) [fr

  15. [Medium energy physics at Syracuse University: Technical progress report

    International Nuclear Information System (INIS)

    Souder, P.A.

    1986-01-01

    The primary focus of research has been an experiment at the MIT-Bates Linear Accelerator Center to measure the spin-dependence of elastic scattering of electrons from carbon. The Syracuse University Medium Energy Physics Group is also part of a collaboration which will measure the tensor polarization of deuterons scattered by electrons. Finally, analysis has been completed for an experiment at LAMPF in which the first observation of the exotic ion μ + e - e - was made. 17 refs., 18 figs., 2 tabs

  16. Medium energy high intensity proton accelerator (MEHIPA): Reference Design Report (RDR) Ver. 1.0

    International Nuclear Information System (INIS)

    2016-11-01

    Recent progress in accelerator technology has made it possible to use a proton accelerator to produce nuclear energy. In an accelerator-driven system (ADS), a high-intensity proton accelerator is used to produce protons of around 1 GeV energy, which strike a target such as lead or tungsten to produce spallation neutrons. ADS can be used to produce power, incinerate minor actinides and long-lived fission products, and for the utilization of thorium as an alternative nuclear fuel. The accelerator for ADS has to produce high energy (1 GeV) protons, and deliver tens of milli amperes of beam current with minimum (< 1 nA/m) beam loss for hands-on maintenance of the accelerator. This makes the development of accelerators for ADS very challenging. In India, it is planned to take a staged approach towards development of the requisite accelerator technology, and it is planned to develop the accelerator in three phases: 20 MeV, 200 MeV and 1 GeV. This report presents a reference design report for the Medium Energy High Intensity Proton Accelerator (MEHIPA) which will accelerate the beam to 200 MeV. The linac consists of a 3 MeV normal conducting RFQ followed by three families of superconducting Single Spoke Resonators (SSR) to accelerate the beam to 200 MeV. The major elements of the physics design of MEHIPA, as well as layouts and specifications of the major accelerator sub-systems are presented in this report. (author)

  17. Introduction to spallation physics and spallation-target design

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; Pitcher, E.J.; Daemen, L.L. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    When coupled with the spallation process in appropriate target materials, high-power accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation offers exciting new possibilities for generating intense neutron fluxes for a variety of applications, including: (a) spallation-neutron sources for materials science research; (b) accelerator-based production of tritium; (c) accelerator-based transmutation of waste; (d) accelerator-based destruction of plutonium; and (e) radioisotope production for medical and energy applications. Target design plays a key role in these applications, with neutron production/leakage being strongly dependent on the incident particle type and energy, and target material and geometry.

  18. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    Science.gov (United States)

    Nishimura, Tomoaki

    2016-03-01

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of 16O(4He, 4He)16O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  19. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tomoaki, E-mail: t-nishi@hosei.ac.jp

    2016-03-15

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of {sup 16}O({sup 4}He, {sup 4}He){sup 16}O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  20. Spallation source neutron target systems

    International Nuclear Information System (INIS)

    Russell, G.; Brown, R.; Collier, M.; Donahue, J.

    1996-01-01

    This is the final report for a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to design a next-generation spallation source neutron target system for the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) at Los Alamos. It has been recognized for some time that new advanced neutron sources are needed in the US if the country is to maintain a competitive position in several important scientific and technological areas. A recent DOE panel concluded that the proposed Advanced Neutron Source (a nuclear reactor at Oak Ridge National Laboratory) and a high-power pulsed spallation source are both needed in the near future. One of the most technically challenging designs for a spallation source is the target station itself and, more specifically, the target-moderator-reflector arrangement. Los Alamos has demonstrated capabilities in designing, building, and operating high-power spallation-neutron-source target stations. Most of the new design ideas proposed worldwide for target system design for the next generation pulsed spallation source have either been conceived and implemented at LANSCE or proposed by LANSCE target system designers. These concepts include split targets, flux-trap moderators, back scattering and composite moderators, and composite reflectors

  1. Development of a Telescope for Medium-Energy Gamma-ray Astronomy

    Science.gov (United States)

    Sunter, Stan

    2012-01-01

    Since the launch of AGILE and FERMI, the scientific progress in high-energy (Eg greater than approximately 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from approximately 20 MeV to greater than 10 GeV. However, neither instrument is optimized for observations below approximately 200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, there will nonetheless remain a significant sensitivity gap in the medium-energy (approximately 0.1-200 MeV) regime; the lower end of this range remains largely unexplored whereas the upper end will allow comparison with FERMI data. Tapping into this unexplored regime requires significant improvements in sensitivity. A major emphasis of modern detector development, with the goal of providing significant improvements in sensitivity in the medium-energy regime, focuses on high-resolution electron tracking. The Three-Dimensional Track Imager (3-DTI) technology being developed at GSFC provides high resolution tracking of the electron-positron pair from gamma-ray interactions from 5 to 200 MeV. The 3-DTI consists of a time projection chamber (TPC) and 2-D cross-strip microwell detector (MWD). The low-density and homogeneous design of the 3-DTI, offers unprecedented sensitivity by providing angular resolution near the kinematic limit. Electron tracking also enables measurement of gamma-ray polarization, a new tool to study astrophysical phenomenon. We describe the design, fabrication, and performance of a 30x30x30 cm3 3-DTI detector prototype of a medium-energy gamma-ray telescope.

  2. Materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Sommer, W.F.; Daemen, L.L.

    1996-03-01

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations

  3. Photonuclear spallation reactions in Cu

    International Nuclear Information System (INIS)

    Shibata, S.; Imamura, M.; Miyachi, T.

    1986-06-01

    Formation yields of 24 radioactive nuclides by the interaction of bremsstrahlung in the maximum end-point energies of 100 MeV - 1 GeV with Cu have been measured by direct γ-ray counting of irradiated targets. The yields in the mass range of 42 to 60 except for 60 Cu were analysed by non-linear least-squares fit to construct the mass yield and charge dispersion curves in spallation reactions. From the parameter values obtained, the energy dependence of the slope of the mass yield curve and the relationship between target N/Z and the most probable product N/Z were investigated in comparison with the results of proton, α and heavy ion-induced spallations of Cu. The characteristics of photon-induced spallations are discussed. (author)

  4. Spallation-mechanism and characteristics

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Wojciechowski, A.

    1996-01-01

    Mechanism of spallation is revealed experimentally. Spallation is a complicated nuclear reaction initiated by fast hadron in which three stages may be distinguished: a) the first stage in which the target nucleus is locally damaged, it lasts ∼10 -24 +10 -22 s; b) the slow stage which lasts ∼10 -22 +10 -17 s after the collision started, the damaged and excited nucleus uses to emit the black track leaving particles; c) the final stage in which residual target nucleus uses to split into two or more fragments. Quantitative characteristics of each of the stages are presented. 35 refs

  5. The inelastic scattering of medium energy α particles

    International Nuclear Information System (INIS)

    Crut, M.

    1960-01-01

    The aim of this work is to find out what are the properties of the so-called 'anomalous states' in medium weight nuclei. These states preferentially excited in the inelastic scattering of medium energy charged particles have an excitation energy at about 4 MeV for nuclei with Z ≤ 29 and in the range 2-3 MeV for high Z nuclei. From a combination of angular distribution data in the elastic and inelastic scattering of 30 MeV α particles, and correlation data between inelastic α particles and deexcitation γ rays, we show that for even-even nuclei, we can attribute spin 3 and parity minus to these 'anomalous states'. This is quite in agreement with the interpretation of these levels suggested by Lane as due to collective octupole oscillations. We give a resume of the theories used in the analysis of the data and a description of the experimental set-up. (author) [fr

  6. A program in medium-energy nuclear physics

    International Nuclear Information System (INIS)

    Berman, B.L.; Dhuga, K.S.

    1992-01-01

    This report reviews progress on our nuclear-physics program for the last year, and includes as well copies of our publications and other reports for that time period. The structure of this report follows that of our 1991 Renewal Proposal and Progress Report: Sec. II outlines our research activities aimed at future experiments at CEBAF, NIKHEF, and Bates; Sec. III gives results of our recent research activities at NIKHEF, LAMPF, and elsewhere; Sec. IV provides an update of our laboratory activities at GWU, including the acquisition of our new Nuclear Detector Laboratory at our new Virginia Campus; and Sec. V is a list of our publications, proposals, and other reports. copies of those on medium-energy nuclear physics are reproduced in the Appendix

  7. Injection system of teh SSC Medium Energy Booster

    International Nuclear Information System (INIS)

    Mao, N.; Gerig, R.; McGill, J.; Brown, K.

    1994-04-01

    The Medium Energy Booster (MEB) is the third of the SSCL accelerators and the largest of the resistive magnet synchrotrons. It accelerates protons from an injection momentum of 12 GeV/c to a top momentum of 200 GeV/c. A beam injection system has been designed to inject the beam transferred from the Low Energy Booster onto the MEB closed orbit in the MEB injection insertion region. The beam is injected via a vertical bending Lambertson septum magnet and a horizontal kicker with appropriate matching and very little beam loss and emittance dilution. The beam optics of the injection system is described in this paper. The required parameters of the Lambertson septum magnet and the injection kicker are given

  8. Thermal features of spallation window targets

    International Nuclear Information System (INIS)

    Martinez-Val, J. M.; Sordo, F.; Leon, P. T.

    2007-01-01

    Subcritical nuclear reactors have been proposed for a number of applications, from energy production to fertile-to-fissile conversion, and to transmutation of long-lived radio nuclei into stable or much shorter-lived nuclei. The main advantage of subcritical reactors is their large reactivity margin for not to attain prompt-supercritical power surges. On the contrary, subcritical reactors present some economic drawbacks and technical complexities that deserve suitable attention in the Research and Development phase. Namely, they need a very intense neutron source in order to keep the neutron flux and the reactor power at the required level. The most intense neutron source seems to be based on the proton-induced (or deuteron-induced) spallation reaction in heavy nuclei targets, which present very demanding thermal features that must be properly limited. Those limits pose upper bounds to the neutron yield of the target. In turn, the limits depend on the features of the impinging particle beam and the material composition and geometry of the target. Although the potential design window for spallation targets is rather wide, the analysis presented in this paper identifies specific topics that must properly be covered in the detailed project of a spallation source, in order to avoid unacceptable temperatures and mechanical stresses in the most critical parts of the source. In this paper, some calculations are reported on solid targets (water cooled or helium cooled) and molten metals targets. It is seen that thermal-hydraulic and mechanical calculations of spallation targets are fundamental elements in the coherent design of this type of very intense neutron sources. This coherence implies the need of a suitable trade-off among the relevant beam parameters (proton energy, total intensity and cross-section shape) and the features of the target (structural materials, coolant characteristics and target geometry). The goal of maximizing the neutron yield has to be checked

  9. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  10. Theoretical studies in medium-energy nuclear and hadronic physics

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Macfarlane, M.H.; Matsui, T.; Serot, B.D.

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e'p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus endash nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark endash gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon endash nucleon force

  11. Nuclear structure and reaction studies at medium energies

    International Nuclear Information System (INIS)

    Hoffmann, G.W.; Ray, R.L.

    1990-10-01

    This document constitutes the (1988--1991) technical progress report for the ongoing medium energy physics research program supported by the US Department of Energy through special Research Grant FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF), the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL), and at the Fermi National Accelerator Laboratory (FNAL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics;(2) provide unique, first-of-a-kind ''exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics

  12. Fragment mass distribution of proton-induced spallation reaction with intermediate energy

    International Nuclear Information System (INIS)

    Fan Sheng; Ye Yanlin; Xu Chuncheng; Chen Tao; Sobolevsky, N.M.

    2000-01-01

    The test of part benchmark of SHIELD code is finished. The fragment cross section and mass distribution and excitation function of the residual nuclei from proton-induced spallation reaction on thin Pb target with intermediate energy have been calculated by SHIELD code. And the results are in good agreement with measured data. The fragment mass distribution of the residual nuclei from proton-induced spallation reaction on thick Pb target with incident energy 1.6 GeV have been simulated

  13. An attempt to analyse spallation yelds with a four-parameter formula

    International Nuclear Information System (INIS)

    Martins, J.B.; Napoli, V. di; Tavares, O.A.P.; Terranova, M.L.; Portanova, R.

    1978-09-01

    A semiempirical four-parameter formula, following the formalism of Gupta, is proposed in order to systematise spallation yields. A preliminary test made by comparing calculated and experimentally determined cross sections for 2-GeV bremsstrahlung-induced spallation in natural copper gave very encouraging results (a coefficient of reproducibility R = 1.7 or better). The formula will be used for an exhaustive study of intermediate- and high-energy photospallation of medium-weight nuclei [pt

  14. Spallation neutron source moderator design

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Gabriel, T.A.; Johnson, J.O.

    1998-01-01

    This paper describes various aspects of the spallation neutron source (SNS) moderator design. Included are the effects of varying the moderator location, interaction effects between moderators, and the impact on neutron output when various reflector materials are used. Also included is a study of the neutron output from composite moderators, where it is found that a combination of liquid H 2 O and liquid H 2 can produce a spectrum very similar to liquid methane (L-CH 4 ). (orig.)

  15. Validity of medium-energy collimator for sentinel lymphoscintigraphy imaging

    International Nuclear Information System (INIS)

    Tsushima, Hiroyuki; Yamanaga, Takashi; Shimonishi, Yoshihiro; Kosakai, Kazuhisa; Takayama, Teruhiko; Kizu, Hiroto; Noguchi, Atsushi; Onoguchi, Masahisa

    2007-01-01

    For lymphoscintigraphy to detect sentinel lymph node (SLN) in the breast cancer, the lead shielding of the injection site is often used to avoid artifacts, but the method tends to cover the neighborhood SLN. To exclude this defect, authors developed ME (medium-energy) method where ME collimator and energy setting shifted to its higher region were employed. This paper described the development and validity evaluation of the ME method. Performed were examinations with 3 acrylic phantoms of the injection site (IS), LN and combination of IS+LN (CB): IS was a cylinder, containing 40 MBq of 99m Tc-pertechnetate and LN, a plate with 30 sealed holes having 0.78-400 kBq. CB phantom consisted from LN-simulating holes (each, 40 kBq) placed linearly around the center of IS in H and S directions. Imaging was conducted with 2 kinds of 2-detector gamma camera, FORTE (ADAGA) and DSX rectangular (Sopha Medical Corp.). CB phantom was found optimally visualized by ME collimator at 146, rather than 141, keV. In clinic, 99m Tc-Sn-colloid 40 MBq was given near the tumor of a patient and imaging was done with or without the lead shield with FORTE equipped with low energy high-resolution or ME collimator for their comparison. The present ME method described above set at 146 keV was found to give the image with excellent contrast and without false positive when compared with the lead shield method hitherto. (R.T.)

  16. Investigation of GeV proton-induced spallation reactions

    International Nuclear Information System (INIS)

    Hilscher, D.; Herbach, C.-M.; Jahnke, U.

    2003-01-01

    A reliable and precise modeling of GeV proton-induced spallation reactions is indispensable for the design of the spallation module and the target station of future accelerator driven hybrid reactors (ADS) or spallation neutron sources (ESS), in particular, to provide precise predictions for the neutron production, the radiation damage of materials (window), and the production of radioactivity ( 3 H, 7 Be etc.) in the target medium. Detailed experimental nuclear data are needed for sensitive validations and improvements of the models, whose predictive power is strongly dependent on the correct physical description of the three main stages of a spallation reaction: (i) the Intra-Nuclear-Cascade (INC) with the fast heating of the target nucleus, (ii) the de-excitation due to pre-equilibrium emission including the possibility of multi-fragmentation, and (iii) the statistical decay of thermally excited nuclei by evaporation of light particles and fission in the case of heavy nuclei. Key experimental data for this endeavour are absolute production cross sections and energy spectra for neutrons and light charged-particles (LCPs), emission of composite particles prior and post to the attainment of an equilibrated system, distribution of excitation energies deposited in the nuclei after the INC, and fission probabilities. The correlations of these quantities are particularly important to detect and identify possible deficiencies of the theoretical modeling of the various stages of a spallation reaction. Systematic measurements of such data are furthermore needed over large ranges of target nuclei and incident proton energies. Such data has been measured with the NESSI detector. An overview of new and previous results will be given. (authors)

  17. Development of global medium-energy nucleon-nucleus optical model potentials

    International Nuclear Information System (INIS)

    Madland, D.G.; Sierk, A.J.

    1997-01-01

    The authors report on the development of new global optical model potentials for nucleon-nucleus scattering at medium energies. Using both Schroedinger and Dirac scattering formalisms, the goal is to construct a physically realistic optical potential describing nucleon-nucleus elastic scattering observables for a projectile energy range of (perhaps) 20 meV to (perhaps) 2 GeV and a target mass range of 16 to 209, excluding regions of strong nuclear deformation. They use a phenomenological approach guided by conclusions from recent microscopic studies. The experimental database consists largely of proton-nucleus elastic differential cross sections, analyzing powers, spin-rotation functions, and total reaction cross sections, and neutron-nucleus total cross sections. They will use this database in a nonlinear least-squares adjustment of optical model parameters in both relativistic equivalent Schroedinger (including relativistic kinematics) and Dirac (second-order reduction) formalisms. Isospin will be introduced through the standard Lane model and a relativistic generalization of that model

  18. Radiation damage for the spallation target of ADS

    International Nuclear Information System (INIS)

    Fan Sheng; Ye Yanlin; Xu Chuncheng; Chen Tao; Sobolevsky, N.M.

    2000-01-01

    By using SHIELD codes system, the authors investigate the radiation damage, such as radiation damage cross section, displacement atom cross section and the rate of displacement atom, gas production cross section, the rate of gas production and the ratio, R, of the helium and displacement production rates in target, container window and spallation neutron source materials as W and Pb induced from intermediate energy proton and neutron incident. And the study of radiation damage in the thick Pb target with long 60 cm, radius 20 cm is presented

  19. Spallation reactions studied with 4-detector arrays

    Indian Academy of Sciences (India)

    Recently there has been a renewed interest in the study of spallation reactions in basic nuclear physics as well as in potential applications. Spallation reactions induced by light projectiles (protons, antiprotons, pions, etc.) in the GeV range allow the formation of hot nuclei which do not suffer the collective excitations ...

  20. AGS Spallation Target Experiment (ASTE) Collaboration

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1999-01-01

    An experiment on mercury spallation target with high energy proton beam, called as the AGS Spallation Target Experiment (ASTE) Collaboration, has been performed at Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL) in USA, in cooperation among the laboratories in Japan, Europe and USA. The experimental setup, scope and preliminary results are presented in the paper. (author)

  1. Recent results in the development of a global medium-energy nucleon-nucleus optical-model potential

    International Nuclear Information System (INIS)

    Madland, D.G.

    1988-02-01

    Initial results are presented for the determination of a global medium-energy nucleon-nucleus phenomenological optical-model potential using a relativistic Schroedinger representation. The starting point for this work is the global phenomenological optical-model potential of Schwandt /ital et al./, which is based on measured elastic scattering cross sections and analyzing power for polarized protons ranging from 80 to 180 MeV. This potential is optimally modified to reproduce experimental proton reaction cross sections as a function of energy, while allowing only minimal deterioration in the fits to the elastic cross sections and analyzing powers. Further modifications in the absorptive potential were found necessary to extrapolate the modified potential to higher energies. The final potential is converted to a neutron-nucleus potential by use of standard Lane model assumptions and by accounting approximately for the Coulomb correction. Comparisons of measured and calculated proton reaction and neutron total cross sections are presented for 27 Al, 56 Fe, and 208 Pb. Medium-energy optical-model potentials for complex projectiles are briefly discussed in an appendix. 7 refs., 20 figs

  2. Spallator: a new option for nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated.

  3. Spallator: a new option for nuclear power

    International Nuclear Information System (INIS)

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated

  4. Medium Energy measurements on N-N parameters

    International Nuclear Information System (INIS)

    Ambrose, D.; Bachman, M.; Coffey, P.; Glass, G.; Jobst, B.; McNaughton, K.H.; Nguyen, C.; Riley, P.J.

    1992-12-01

    Research is reported on the following topics: Spin transfer measurements in np elastic scattering; pp elastic differential cross section measurements; single pion production in np scattering; and a new search for rare kaon decays (K L →μμ and K L →ee). 68 refs., 33 figs, 3 tabs

  5. Medium energy measurements of N-N parameters

    International Nuclear Information System (INIS)

    Riley, P.J.

    1990-01-01

    This paper discusses the following topics: pp elastic absolute cross section measurement; spin transfer measurements in np elastic scattering; single pion production in np scattering; photoproduction of high P t jets in the wide band beam of the tevatron; and search for K L 0 → μe, K L 0 → ee

  6. COSY Juelich - a cooler synchrotron for unpolarized and polarized medium-energy studies

    International Nuclear Information System (INIS)

    Seyfarth, H.

    2001-01-01

    Full text: The Forschungszentrum Juelich (Research Center Juelich) is one of the sixteen national research institutions in the 'Hermann von Helmholtz Association of German Research Centers'. It is dedicated to fundamental and applied research and development which can be summarized under five priorities: (i) structure of matter and materials research, (ii) information technology, (iii) life sciences, (iv) environment precaution research, and (v) energy technology. As one of the institutes within (i). the Institut fur Kernphysik (Institute for Nuclear Research) operates the COSY cooler synchrotron which allows to accelerate unpolarized and polarized protons and deuterons to the maximum momentum of 3450 MeV/c (2640 MeV and 2050 MeV kinetic energy for protons and deuterons, respectively). At low energy electron cooling can be used for beam preparation, whereas stochastic cooling can be applied to the accelerated beam. In the first years of operation since 1993 the experiments have been performed with the unpolarized proton beam. Since 1997 the polarized proton beam is available with increasing intensity and a typical degree of polarization of about 75 % up to the maximum beam energy. In 2000 the first unpolarized deuteron beam could be accelerated and stored at the maximum energy. Four target places exist for the internal experiments PISA. EDDA, COSY-II, and ANKE which use the circulating beam with thin solid strip or fiber targets and gas targets. The four experiments TOF, MOMO, GEM, NESSI, and JESSICA are using external beams. The programs of the experiments JESSICA (Juelich Experimental Spallation Setup in the COSY Area), NESSI (Neutron Scintillator and Silicon), and PISA (Proton Induced Spallation) aim at the measurement of data needed or the design of the target station of the planned European Spallation neutron Source (ESS). The set-up of PISA is replacing the earlier experiment COSY-13 which successfully completed its investigations on the production of

  7. Medium energy measurements of N-N parameters

    International Nuclear Information System (INIS)

    Ambrose, D.; Bachman, M.; Coffey, P.; Glass, G.; Jobst, B.; McNaughton, Kok Heong; Nguyen, Chau; Riley, P.J.

    1993-01-01

    Most of the effort was devoted to the study of nucleon-nucleon interactions, specifically, spin transfer measurements in np elastic scattering at LAMPF, pp elastic differential cross section measurements at LAMPF, and single-pion production in np scattering. Differential cross sections and analyzing powers are shown for np→ppπ - interactions. A new search for rare K L 0 decays to μe, μμ, and ee is being undertaken. Collaborative work has been begun on a very large, complex collider detector STAR (Solenoidal Tracker At RHIC). STAR is envisioned as a combination of a silicon vertex tracker, a time projection chamber, a set of trigger scintillators, and time-of-flight counters. It would allow measurements of spin dependence at p T above 10 GeV/c

  8. Reliability model of SNS linac (spallation neutron source-ORNL)

    International Nuclear Information System (INIS)

    Pitigoi, A.; Fernandez, P.

    2015-01-01

    A reliability model of SNS LINAC (Spallation Neutron Source at Oak Ridge National Laboratory) has been developed using risk spectrum reliability analysis software and the analysis of the accelerator system's reliability has been performed. The analysis results have been evaluated by comparing them with the SNS operational data. This paper presents the main results and conclusions focusing on the definition of design weaknesses and provides recommendations to improve reliability of the MYRRHA ( linear accelerator. The reliability results show that the most affected SNS LINAC parts/systems are: 1) SCL (superconducting linac), front-end systems: IS, LEBT (low-energy beam transport line), MEBT (medium-energy beam transport line), diagnostics and controls; 2) RF systems (especially the SCL RF system); 3) power supplies and PS controllers. These results are in line with the records in the SNS logbook. The reliability issue that needs to be enforced in the linac design is the redundancy of the systems, subsystems and components most affected by failures. For compensation purposes, there is a need for intelligent fail-over redundancy implementation in controllers. Enough diagnostics has to be implemented to allow reliable functioning of the redundant solutions and to ensure the compensation function

  9. Energy dependence of isotopic spectra from spallation residues

    International Nuclear Information System (INIS)

    Audouin, L.

    2003-09-01

    Spallation reactions are collisions between heavy nuclei and light particle with an energy of a few hundreds MeV. The y are considered as a suitable way to create high- flux neutrons sources, which may used for example for the transmutation of nuclear wastes (hybrid reactors). The study of the residues from such reactions is both a way to understand the physics of the spallation and to provide information required for the design of industrial targets. The residues from the spallation of lead by proton at 500 MeV have been measured using the inverse kinematics technique in the FRS (fragments recoil separator). spectrometer from GSI (Barmstadt). This low energy required the use of new technique, for the experimental setup as well as during the analysis. The fragments were identified in-flight, prior to β decay. Complete isotopic distributions are obtained with an accuracy ranging between 10 and 30%. Detailed information on the reaction kinematics are also obtained. Data are in excellent agreement with radio-chemical measurements, and bring new insights about the spallation process. The comparison with data measured on the same system with an incident energy of 1 GeV allows to discuss the influence of the projectile energy on the residues formation. It is concluded that the independence of the shape of the isobaric production cross sections regarding mass and energy of the projectile is preserved at low incident energies. The behaviour of Monte-Carlo codes is discussed with respect to those sets of data. The calculations show an improving agreement with decreasing energy, indicating that high-energy phenomena, for which some common assumptions become questionable, are the main reason for the observed discrepancies. (author)

  10. Refinement of the AdEPT Medium-Energy Gamma-Ray Science

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to explore the theoretical framework for the relatively unexplored field of medium energy (5--200 MeV) gamma-ray astronomy for a mission concept...

  11. Medium energy measurements of n-n parameters. Progress report, January 1-December 31, 1985

    International Nuclear Information System (INIS)

    1986-01-01

    This document constitutes a progress report (1985-86) for the ongoing medium energy nuclear physics research program. A major part of the work has been and will continue to be associated with research done at the Nucleon Physics Laboratory (NPL) at the Los Alamos Meson Physics Facility (LAMPF). The aim of the experimental program is the determination of the nucleon-nucleon amplitudes at medium energy. The required data include both elastic and inelastic experiments, and in addition the measurement of polarization and polarization transfer parameters. We have been emphasizing single pion production measurements using polarized proton beams, and expect that our present data base will provide stringent tests of theoretical models. With the development of the LAMPF high intensity polarized proton source, we expect that a reasonably intense beam of medium energy polarized neutrons will become available, and are planning a series of experiments utilizing polarized neutrons to determine the importance of the I = 0 reaction amplitudes at medium energies

  12. Determination of the molecular structure via the medium energy electrons (500 eV-1,5 KeV) Ar, N2, Co e HCl

    International Nuclear Information System (INIS)

    Nogueira, J.C.

    1977-01-01

    Elastic Differential and Total Differential Cross Sections are measured for electron collision in medium-energy range (500 eV - 1,5 KeV) with argon, nitrogen, carbon monoxide and hydrogen chloride, all in their electronic ground state. Theoretical calculation for the Elastic Differential Cross Sections by atoms were done employing Hartree-Fock-Clementy wave function, and making use of Partial Wave and WKBJ Methods. Exchange effect is included in the case of argon. Independent Atom Model, Half Molecule Model and a new model, the Ionic Model were utilized for the molecular calculations. The Ionic Model is suggested for the interaction between HCl and electrons. Inelastic Differential Cross Section were also computed, making use of the First Born Approximation and Hartree-Fock-Clementi wave function. It is also demonstrated, for the first time, that medium energy electrons (500 eV - 1,5 Kev) can be used to determine molecular structure parameters, in gas phase [pt

  13. Gamma-ray astronomy in the medium energy (10-50 MeV) range

    International Nuclear Information System (INIS)

    Kniffen, D.A.; Bertsch, D.L.; Palmeira, R.A.R.; Rao, K.R.

    1977-01-01

    Gamma-ray astronomy in the medium energy (10-50 MeV) range can provide unique information with which to study many astrophysical problems. Observations in the 10-50 MeV range provide the cleanest window with which to view the isotropic diffuse component of the radiation and to study the possible cosmological implications of the spectrum. For the study of compact sources, this is the important region between the X-ray sky and the vastly different γ-ray sky seen by SAS-2 and COS-B. To understand the implications of medium energy γ-ray astronomy to the study of the galactic diffuse γ-radiation, the model developed to explain the high energy γ-ray observations of SAS-2 is extended to the medium energy range. This work illustrates the importance of medium energy γ-ray astronomy for studying the electromagnetic component of the galactic cosmic rays. To observe the medium energy component of the intense galactic center γ-ray emission, two balloon flights of a medium energy γ-ray spark chamber telescope were flown in Brazil in 1975. These results indicate the emission is higher than previously thought and above the predictions of the theoretical model

  14. Energy dependence of isotopic spectra from spallation residues; Dependance en energie des spectres isotopiques de residus de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Audouin, L

    2003-09-01

    Spallation reactions are collisions between heavy nuclei and light particle with an energy of a few hundreds MeV. The y are considered as a suitable way to create high- flux neutrons sources, which may used for example for the transmutation of nuclear wastes (hybrid reactors). The study of the residues from such reactions is both a way to understand the physics of the spallation and to provide information required for the design of industrial targets. The residues from the spallation of lead by proton at 500 MeV have been measured using the inverse kinematics technique in the FRS (fragments recoil separator). spectrometer from GSI (Barmstadt). This low energy required the use of new technique, for the experimental setup as well as during the analysis. The fragments were identified in-flight, prior to {beta} decay. Complete isotopic distributions are obtained with an accuracy ranging between 10 and 30%. Detailed information on the reaction kinematics are also obtained. Data are in excellent agreement with radio-chemical measurements, and bring new insights about the spallation process. The comparison with data measured on the same system with an incident energy of 1 GeV allows to discuss the influence of the projectile energy on the residues formation. It is concluded that the independence of the shape of the isobaric production cross sections regarding mass and energy of the projectile is preserved at low incident energies. The behaviour of Monte-Carlo codes is discussed with respect to those sets of data. The calculations show an improving agreement with decreasing energy, indicating that high-energy phenomena, for which some common assumptions become questionable, are the main reason for the observed discrepancies. (author)

  15. THE SPALLATION NEUTRON SOURCE PROJECT - PHYSICAL CHALLENGES.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.

    2002-06-03

    The Spallation Neutron Source (SNS) is designed to reach an average proton beam power of 1.4 MW for pulsed neutron production. This paper summarizes design aspects and physical challenges to the project.

  16. The spallation neutron source: New opportunities

    Indian Academy of Sciences (India)

    The spallation neutron source (SNS) facility became operational in the spring of ... the opportunity to develop science and instrumentation programs which take ... in telecommunications, manufacturing, transportation, information technology, ...

  17. Targets for neutron beam spallation sources

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1980-01-01

    The meeting on Targets for Neutron Beam Spallation Sources held at the Institut fuer Festkoerperforschung at KFA Juelich on June 11 and 12, 1979 was planned as an informal get-together for scientists involved in the planning, design and future use of spallation neutron sources in Europe. These proceedings contain the papers contributed to this meeting. For further information see hints under relevant topics. (orig./FKS)

  18. Physics and technology of spallation neutron sources

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1998-08-01

    Next to fission and fusion, spallation is an efficient process for releasing neutrons from nuclei. Unlike the other two reactions, it is an endothermal process and can, therefore, not be used per se in energy generation. In order to sustain a spallation reaction, an energetic beam of particles, most commonly protons, must be supplied onto a heavy target. Spallation can, however, play an important role as a source of neutrons whose flux can be easily controlled via the driving beam. Up to a few GeV of energy, the neutron production is roughly proportional to the beam power. Although sophisticated Monte Carlo codes exist to compute all aspects of a spallation facility, many features can be understood on the basis of simple physics arguments. Technically a spallation facility is very demanding, not only because a reliable and economic accelerator of high power is needed to drive the reaction, but also, and in particular, because high levels of radiation and heat are generated in the target which are difficult to cope with. Radiation effects in a spallation environment are different from those commonly encountered in a reactor and are probably even more temperature dependent than the latter because of the high gas production rate. A commonly favored solution is the use of molten heavy metal targets. While radiation damage is not a problem in this case, except for the container, a number of other issues are discussed. (author)

  19. Nuclear spallation of cosmic ray nuclei in the interstellar medium

    International Nuclear Information System (INIS)

    Raisbeck, G.

    1974-01-01

    Nuclear spallation of cosmic rays during propagation is qualitatively reviewed. After the problem is defined, a discussion is presented of the relevant information obtainable from studying nuclear reactions, specifically, quantity and distribution of traversed matter, time and place of propagation, and source composition. Comments are offered on the cross sections and nuclear reactions that are critical for a complete understanding in this area. This is followed by a brief look at the present status of research and possibilities for further work using the Bevalac. (U.S.)

  20. Spallation symbiont and thorium breeding

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1991-01-01

    The medium term world energy and environment countermeasures for 2020-2070 are not yet clearly established. The forecast of energy situation hereafter, its problems and the measures for solution are considered. World trend is removing borders, and the north-south problems are increasing the importance. The rational and clear idea with the support of concrete technology is required. The demand of energy will increase enormously at the annual rate of 2.3%. The world energy situation was forecast considering the increase of population, and it will be 115 TW at the end of the next century. The present status, problems and the countermeasures in nuclear fission energy technology are explained. The countermeasures should be based on three principles, namely Th-U-233 cycle, the utilization of molten fluoride fuel medium and the separation of molten salt breeders and molten salt reactors. Accelerator molten salt breeders, small molten salt reactors, the nuclear fuel cycle and the annihilation process for radioactive wastes are reported. The perspective that the nuclear energy system, in which the reactor safety, the measures to wastes and others are improved by the spallation-fission symbiont using thorium molten salt as the working medium, can be constructed is shown. (K.I.)

  1. Target for a spallation source

    International Nuclear Information System (INIS)

    Fassbender, J.; Meister, G.

    1983-01-01

    This invention concerns a liquid metal target for a spallation source. It is composed of a flow channel in which liquid metal flows at a sufficiently high rate. The flow channel has an aperture to let in the proton beam; it is shaped in a way as to generate by appropriately diverting the liquid flow inertial forces which are designed so that they avoid liquid metal penetrating through the aperture. This is achieved by the fact that the combined effect of inertial forces and gravitational forces causes near the aperture the formation of a liquid surface of the channel sides that is more or less parallel to the channel side having the aperture. According to the invention this effect can be obtained by using a bent channel piece with the aperture placed in the side pointing towards the centre of curvature or by constricting the flow of liquid before it gets to the aperture and subsequent expansion behind it. A combination of the two methods is possible according to the invention. (orig./PW)

  2. Target for a spallation source

    International Nuclear Information System (INIS)

    Fassbender, J.; Meister, G.

    1981-01-01

    This invention concerns a liquid metal target for a spallation source. It is composed of a flow channel in which liquid metal flows at a sufficiently high rate. The flow channel has an aperture to let in the proton beam; it is shaped in a way as to generate by appropriately diverting the liquid flow inertial forces which are designed so that they avoid liquid metal penetrating through the aperture. This is achieved by the fact that the combined effect of inertial forces and gravitational forces causes near the aperture the formation of a liquid surface of the channel sides that is more or less parallel the channel side having the aperture. According to the invention this effect can be obtained by using a bent channel piece with the aperture placed in the side pointing towards the centre of curvature or by constricting the flow of liquid before it gets to the aperture and subsequent expansion behind it. A combination of the two methods is possible according to the invention. (orig.) [de

  3. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  4. Thin and thick target benchmark investigations to validate spallation physics models

    International Nuclear Information System (INIS)

    Filges, D.; Neef, R.D.; Goldenbaum, F.; Nuenighoff, K.; Galin, J.; Letourneau, A.; Lott, B.; Patois, Y.; Schroeder, W.N.

    1999-01-01

    In the ESS (European Spallation Source) study report several areas have been identified where further spallation physics research and code validation is urgently needed: Neutron and charged particle production and multiplicities above one GeV incident protons, energy deposition and heating, material damage parameters, radioactivity and after heat, and high energy source shielding. All simulation calculations will be done using the Juelich HERMES code system. For this purpose various collaborations were organised. One of the collaborations is NESSI (Neutron Scintillator Silicon Detector), which concerns fundamental data as cross-section measurements on neutron multiplicities and charged particles for different ESS relevant materials. (author)

  5. Spallation target-moderator-reflector studies at the Weapons Neutron Research facility

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.; Prael, S.D.; Robinson, H.; Howe, S.D.

    1980-01-01

    Basic neutronics data, initiated by 800-MeV proton spallation reactions, are important to spallation neutron source development and electronuclear fuel production. Angle-dependent and energy-dependent neutron production cross sections, energy-dependent and total neutron yields, thermal and epithermal neutron surface and beam fluxes, and fertile-to-fissile conversion ratios are being measured. The measurements are being done at the Weapons Neutron Research facility on a variety of targets and target-moderator-reflector configurations. The experiments are relevant to the above applications, and provide data to validate computer codes. Preliminary results are presented and compared to calculated predictions. 13 figures

  6. Quantitative considerations in medium energy ion scattering depth profiling analysis of nanolayers

    Energy Technology Data Exchange (ETDEWEB)

    Zalm, P.C.; Bailey, P. [International Institute for Accelerator Applications, University of Huddersfield, Queensgate, Huddersfield HD1 3DH (United Kingdom); Reading, M.A. [Physics and Materials Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Rossall, A.K. [International Institute for Accelerator Applications, University of Huddersfield, Queensgate, Huddersfield HD1 3DH (United Kingdom); Berg, J.A. van den, E-mail: j.vandenberg@hud.ac.uk [International Institute for Accelerator Applications, University of Huddersfield, Queensgate, Huddersfield HD1 3DH (United Kingdom)

    2016-11-15

    The high depth resolution capability of medium energy ion scattering (MEIS) is becoming increasingly relevant to the characterisation of nanolayers in e.g. microelectronics. In this paper we examine the attainable quantitative accuracy of MEIS depth profiling. Transparent but reliable analytical calculations are used to illustrate what can ultimately be achieved for dilute impurities in a silicon matrix and the significant element-dependence of the depth scale, for instance, is illustrated this way. Furthermore, the signal intensity-to-concentration conversion and its dependence on the depth of scattering is addressed. Notably, deviations from the Rutherford scattering cross section due to screening effects resulting in a non-coulombic interaction potential and the reduction of the yield owing to neutralization of the exiting, backscattered H{sup +} and He{sup +} projectiles are evaluated. The former mainly affects the scattering off heavy target atoms while the latter is most severe for scattering off light target atoms and can be less accurately predicted. However, a pragmatic approach employing an extensive data set of measured ion fractions for both H{sup +} and He{sup +} ions scattered off a range of surfaces, allows its parameterization. This has enabled the combination of both effects, which provides essential information regarding the yield dependence both on the projectile energy and the mass of the scattering atom. Although, absolute quantification, especially when using He{sup +}, may not always be achievable, relative quantification in which the sum of all species in a layer adds up to 100%, is generally possible. This conclusion is supported by the provision of some examples of MEIS derived depth profiles of nanolayers. Finally, the relative benefits of either using H{sup +} or He{sup +} ions are briefly considered.

  7. Medium energy measurements of N-N parameters: Progress report, January 1, 1988--December 31, 1988

    International Nuclear Information System (INIS)

    Riley, P.J.

    1988-01-01

    We report here progress made for the period January 1, 1988, to December 31, 1988, for the Department of Energy Three-year Grant No. DE-FG05-88ER40446, first year. A major part of the work has been and will continue to be associated with research done at the Nucleon Physics Laboratory (NPL) at the Los Alamos Meson Physics Facility (LAMPF). The aim of the experimental program is the determination of the nucleon-nucleon amplitudes at medium energies. The required data include both elastic and inelastic experiments, and in addition the measurement of polarization and polarization transfer parameters. The measurements can be broadly categorized into those of proton-proton elastic scattering, which probe the isospin-1 elastic channel, neutron-proton elastic scattering, which allow measurements of isospin-0 amplitudes, proton-proton inelastic scattering, and neutron-proton inelastic scattering. We are nearing completion of a long-range series of p-p elastic scattering measurements, and believe that the required goals have been achieved. During the past few years we have emphasized proton-proton inelastic scattering measurements, and believe that the determination of the I = 1 inelastic phase shifts is progressing well. The I = 0 amplitudes, both elastic, and inelastic, are still poorly determined, at best. These measurements require a much more intense polarized neutron beam than is yet available, and therefore have needed the high-intensity optically pumped polarized ion source, due to come on-line during late 1989. During the past year our work emphasized p-p elastic differential scattering cross-section measurements in the energy range 500--800 MeV at LAMPF. The measurements aimed for an absolute accuracy of 1%, and we believe that this was achieved. We also have been involved in what we believe is the first partial wave analysis of pp → npπ + data

  8. Experimental study of the production of light fragments in the α+α interactions at medium energy

    International Nuclear Information System (INIS)

    Avome-Nze, M.-M.

    1979-01-01

    The production of light nuclides 3 He, 4 He, 6 Li, 7 Li and 7 Be in the α+α interactions to 103 MeV and to 218 MeV of incident energy is studied. The technique of semiconductors telescope has permitted to proceed to identification of these nuclides, to measure their energy spectra and their angular range. The cross sections of different nuclides were measured by integration on energy E and on solid angle Ω. The different values show that the α + α reactions can take prominent part in the production of helium-3. They appear sufficient to expound 6 Li abundance in the interstellar environment. On the contrary, the spallation is not sufficient to explain 7 Li abundance in the interstellar environment [fr

  9. Neutron PSDs for the next generation of spallation neutron sources

    CERN Document Server

    Eijk, C W

    2002-01-01

    A review of R and D for neutron PSDs to be used at anticipated new spallation neutron sources: the Time-of-Flight system facility, European Spallation Source, Spallation Neutron Source and Neutron Arena, is presented. The gas-filled detectors, scintillation detectors and hybrid systems are emphasized.

  10. New science at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Finney, J L [University Coll., London (United Kingdom). Dept. of Physics and Astronomy

    1996-05-01

    The European Spallation Source is a trans-European project aimed at the ultimate construction of a next-generation pulsed spallation neutron source that will deliver 30 times the beam power of ISIS. The reference design for the proposed source has been set, and work is in progress to develop an updated scientific case for the construction of the source early in the next century. Together with improvements in instrumentation, effective flux gains of over two orders of magnitude are likely in some areas, opening up major new opportunities for the exploitation of neutron studies in fundamental, strategic, and applied science. (author)

  11. Analysis of low and medium energy physics records in databases. Science and technology indicators in low and medium energy physics. With particular emphasis on nuclear data

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1998-12-01

    An analysis of the literature on low and medium energy physics, with particular emphasis on nuclear data, was performed on the basis of the contents of the bibliographic database INIS (International Nuclear Information System). Quantitative data were obtained on various characteristics of relevant INIS records such as subject categories, language and country of publication, publication types, etc. Rather surprisingly, it was found that the number of records in nuclear physics has remained nearly constant over the last decade. The analysis opens up the possibility of further studies, e.g. on international research co-operation and on publication patterns. (author)

  12. Description of inelastic nucleus-nucleus interactions at medium energy using dual parton model

    International Nuclear Information System (INIS)

    Polanski, A.; Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    It is shown that the dual parton model taking into account the processes of diffraction dissociation to the low mass states and finite energy corrections to the asymptotic Abramovski-Gribov-Kancheli cutting rules allows satisfactory description of existing experimental data on hadron-nucleus and nucleus-nucleus interactions at medium energy. (orig.)

  13. Medium-energy physics program. Progress report, February 1--April 1, 1976

    International Nuclear Information System (INIS)

    Dunn, E.

    1976-09-01

    A quarterly report on the medium-energy physics program at LAMPF is given. Topics covered include: (1) engineering support; (2) accelerator support; (3) accelerator systems development; (4) injector systems; (5) electronic instrumentation and computer systems; (6) accelerator operations; (7) experimental areas; (8) beam line development; (9) large-spectrometer systems; (10) research; (11) nuclear chemistry; (12) practical applications of LAMPF; and (13) management

  14. Medium-energy physics program. Progress report, August 1--October 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    van Dyck, O.B.; Dunn, E.D. (comps.)

    1978-05-01

    A report is given of the medium-energy physics program at the LAMPF linac for the period from August 1 through October 31, 1977. Topics discussed include: (1) accelerator facilities and development; (2) the main beam lines; (3) experimental areas; (4) research; (5) nuclear chemistry; (6) practical applications; (7) linac technology; and (8) management. (PMA)

  15. Medium-energy physics program. Progress report, August 1--October 31, 1977

    International Nuclear Information System (INIS)

    van Dyck, O.B.; Dunn, E.D.

    1978-05-01

    A report is given of the medium-energy physics program at the LAMPF linac for the period from August 1 through October 31, 1977. Topics discussed include: (1) accelerator facilities and development; (2) the main beam lines; (3) experimental areas; (4) research; (5) nuclear chemistry; (6) practical applications; (7) linac technology; and (8) management

  16. Performance of a Polarized Deuterium Internal Target in a Medium-Energy Electron Storage Ring.

    NARCIS (Netherlands)

    Zhou, Z.L.; Ferro Luzzi, M.M.E.; van den Brand, J.F.J.; Bulten, H.J.; Alarcon, R.; van Bommel, R.; Botto, T.; Bouwhuis, M.; Buchholz, M.; Choi, S.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Gaulard, C.; de Jager, C.W.; Lang, J.; de Lange, D.J.; Miller, M.A.; Passchier, E.; Passchier, I.; Poolman, H.R.; Six, E.; Steijger, J.J.M.; Unal, O.; de Vries, H.

    1996-01-01

    A polarized deuterium target internal to a medium-energy electron storage ring is described in the context of spindependent (e, e′d) and (e ,e′p) experiments. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used

  17. Experimental medium energy physics: Annual progress report June 1987--May 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report discusses progress in experimental medium energy physics at Carnegie Mellon University. Some of the topics covered are: search for the ξ(2230); hyperon-antihyperon production studies; relativistic proton-nucleus and heavy ion-nucleus collisions; H dibaryon physics; hypernuclear physics research; pion physics; H particle experiment design and development; and electron scattering

  18. Study of the spallation residues in the reaction Au (800 MeV/nucleon) + p

    International Nuclear Information System (INIS)

    Mustapha, Brahim

    1999-01-01

    As a neutron source, the spallation reaction is of importance for different fields of research and for a possible hybrid reactor. The study of spallation residues, their cross sections and their energetic properties, is necessary for such applications and for a better understanding of this process. Several studies of spallation products were done using spectroscopic methods. Only radioactive nuclides were detected. Aiming at a more precise measurement, covering the whole range of spallation residues, this study was done using the reverse kinematics method. A liquid hydrogen target was irradiated by an 800 MeV/nucleon gold beam. The produced nuclei were detected in flight before any radioactive decay with about 10% precision. Independent cross section were then obtained. Velocity distributions were completely reconstructed. In their present forms, the theoretical calculations based upon the two-step model, 'intra-nuclear cascade' + 'evaporation', are unable to reproduce the whole set of experimental aspects. An inter-comparison using different INC/EVA combinations permitted to identify the more significant points in these calculations. The important behaviour of this codes were examined. Due to compensation effects between both steps, cascade and evaporation, this study did not lead to a definite conclusion. (author)

  19. Spallation Neutron Sources For Science And Technology

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2011-01-01

    Spallation Neutron Facilities Increasing interest has been noticed in spallation neutron sources (SNS) during the past 20 years. The system includes high current proton accelerator in the GeV region and spallation heavy metal target in the Hg-Bi region. Among high flux currently operating SNSs are: ISIS in UK (1985), SINQ in Switzerland (1996), JSNS in Japan (2008), and SNS in USA (2010). Under construction is the European spallation source (ESS) in Sweden (to be operational in 2020). The intense neutron beams provided by SNSs have the advantage of being of non-reactor origin, are of continuous (SINQ) or pulsed nature. Combined with state-of-the-art neutron instrumentation, they have a diverse potential for both scientific research and diverse applications. Why Neutrons? Neutrons have wavelengths comparable to interatomic spacings (1-5 A) Neutrons have energies comparable to structural and magnetic excitations (1-100 meV) Neutrons are deeply penetrating (bulk samples can be studied) Neutrons are scattered with a strength that varies from element to element (and isotope to isotope) Neutrons have a magnetic moment (study of magnetic materials) Neutrons interact only weakly with matter (theory is easy) Neutron scattering is therefore an ideal probe of magnetic and atomic structures and excitations Neutron Producing Reactions Several nuclear reactions are capable of producing neutrons. However the use of protons minimises the energetic cost of the neutrons produced solid state physics and astrophysics Inelastic neutron scattering

  20. The Spallation Neutron Source RF Reference System

    CERN Document Server

    Piller, Maurice; Crofford, Mark; Doolittle, Lawrence; Ma, Hengjie

    2005-01-01

    The Spallation Neutron Source (SNS) RF Reference System includes the master oscillator (MO), local oscillator(LO) distribution, and Reference RF distribution systems. Coherent low noise Reference RF signals provide the ability to control the phase relationships between the fields in the front-end and linear accelerator (linac) RF cavity structures. The SNS RF Reference System requirements, implementation details, and performance are discussed.

  1. SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    STOVALL, J.; NATH, S.

    2000-01-01

    The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance

  2. Neutron Production by Muon Spallation I: Theory

    International Nuclear Information System (INIS)

    Luu, T; Hagmann, C

    2006-01-01

    We describe the physics and codes developed in the Muon Physics Package. This package is a self-contained Fortran90 module that is intended to be used with the Monte Carlo package MCNPX. We calculate simulated energy spectra, multiplicities, and angular distributions of direct neutrons and pions from muon spallation

  3. Radiation effects concerns at a spallation source

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1990-01-01

    Materials used at spallation neutron sources are exposed to energetic particle and photon radiation. Mechanical and physical properties of these materials are altered; radiation damage on the atomic scale leads to radiation effects on the macroscopic scale. Most notable among mechanical-property radiation effects in metals and metal alloys are changes in tensile strength and ductility, changes in rupture strength, dimensional stability and volumetric swelling, and dimensional changes due to stress-induced creep. Physical properties such as electrical resistivity also are altered. The fission-reactor community has accumulated a good deal of data on material radiation effects. However, when the incident particle energy exceeds 50 MeV or so, a new form of radiation damage ensues; spallation reactions lead to more energetic atom recoils and the subsequent temporal and spatial distribution of point defects is much different from that due to a fission-reactor environment. In addition, spallation reactions cause atomic transmutations with these new atoms representing an impurity in the metal. The higher-energy case is of interest at spallation sources; limited detailed data exist for material performance in this environment. 35 refs., 13 figs., 1 tab

  4. Linac design for the European spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, H. [Universitaet Postfach, Frankfurt am Main (Germany)

    1995-10-01

    A study group has started to develop a conceptual design for a European Spallation Source (ESS). This pulsed 5 MW source presently consists of a 1.334 GeV linac and two compressor rings. In the following mainly the high intensity linac part will be discussed, which has some features of interest for accelerators for transmutation of radioactive waste too.

  5. Design of the MYRRHA Spallation Target Assembly

    International Nuclear Information System (INIS)

    Keijers, S.; Fernandez, R.; Stankovskiy, A.; Kennedy, G.; Van Tichelen, K.

    2015-01-01

    MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is a multi-purpose research facility currently being developed at SCK.CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level. As a flexible irradiation facility, the MYRRHA research reactor will be able to work in both critical and subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material research for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by Lead Bismuth Eutectic (LBE) and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. This paper describes the evolution of the MYRRHA spallation target design. In the early phase of the MYRRHA project (XT-ADS), the target design was based on a dedicated spallation loop inside the primary reactor vessel. Within the core, the 3 central fuel assembly positions were occupied by the spallation target, which enabled a windowless design created by a free surface of LBE facing the proton beam. The windowless option was preferred because of high heat loads in combination with severe irradiation damage in the target region would result in unacceptably short lifetimes of a target window. The LBE in the loop served as spallation target and as target coolant, but was separated from the LBE cooling the reactor core. The loop was equipped with its own pump, heat exchanger and conditioning system. The change from cyclotron to linear accelerator allowed the increase in proton energy from 350 MeV to 600 MeV. This modification led to an important reduction of the specific heat load at the target level and an improvement of the neutronic performance. In addition to

  6. Delayed neutrons in liquid metal spallation targets

    International Nuclear Information System (INIS)

    Ridikas, D.; Bokov, P.; David, J.C.; Dore, D.; Giacri, M.L.; Van Lauwe, A.; Plukiene, R.; Plukis, A.; Ignatiev, S.; Pankratov, D.

    2003-01-01

    The next generation spallation neutron sources, neutrino factories or RIB production facilities currently being designed and constructed around the world will increase the average proton beam power on target by a few orders of magnitude. Increased proton beam power results in target thermal hydraulic issues leading to new target designs, very often based on flowing liquid metal targets such as Hg, Pb, Pb-Bi. Radioactive nuclides produced in liquid metal targets are transported into hot cells, past electronics, into pumps with radiation sensitive components, etc. Besides the considerable amount of photon activity in the irradiated liquid metal, a significant amount of the delayed neutron precursor activity can be accumulated in the target fluid. The transit time from the front of a liquid metal target into areas, where delayed neutrons may be important, can be as short as a few seconds, well within one half-life of many delayed neutron precursors. Therefore, it is necessary to evaluate the total neutron flux (including delayed neutrons) as a function of time and determine if delayed neutrons contribute significantly to the dose rate. In this study the multi-particle transport code MCNPX combined with the material evolution program CINDER'90 will be used to evaluate the delayed neutron flux and spectra. The following scientific issues will be addressed in this paper: - Modeling of a typical geometry of the liquid metal spallation target; - Predictions of the prompt neutron fluxes, fission fragment and spallation product distributions; - Comparison of the above parameters with existing experimental data; - Time-dependent calculations of delayed neutron precursors; - Neutron flux estimates due to the prompt and delayed neutron emission; - Proposal of an experimental program to measure delayed neutron spectra from high energy spallation-fission reactions. The results of this study should be directly applicable in the design study of the European MegaPie (1 MW

  7. Design of the Next Generation Spallation Target

    Energy Technology Data Exchange (ETDEWEB)

    Ferres, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-13

    The purpose of this summary is to detail the studies that enable new nuclear physics experiments currently limited by neutron intensity or energy resolution available at LANSCE. The target is being redesigned so that the Flight Paths (FP) in the upper tier provide a higher intensity in the epithermal and medium energy ranges.

  8. Space-time picture of relativistic propagation of medium energy hadrons through nuclei

    International Nuclear Information System (INIS)

    Bleszynski, M.; Jaroszewicz, T.

    1985-01-01

    Relativistic virtual pair creation effects in hadron-nucleus scattering at medium energies are discussed. A close analogy is found between these effects (particle propagation backwards in time) and some of noneikonal correlations to the Glauber theory, arising from particle propagation backwards in space. In multiple scattering both effects appear only for configurations involving overlapping scatterers and lead to the non-additivity of phase shifts. The proper-time path-integral formalism is found to provide an intuitive geometrical picture of these phenomena. The relativistic corrections are estimated to be of the order k/(aE/sup 2/), k being the particle momentum, E its energy, and a the target size. At medium energies they are comparable to noneikonal corrections, of order 1/(ak). Both effects vanish at high energy, when particle propagation in space-time can be described by means of geometrical optics

  9. Medium energy hadron-nucleus scattering in the 1/N expansion formalism

    International Nuclear Information System (INIS)

    Kuyucak, S.; Morrison, I.

    1992-01-01

    The algebraic-eikonal approach to the medium energy hadron-nucleus scattering is generalized to arbitrary interactions and boson types using the 1/N expansion technique for the interacting boson model. The results are used in a comparative study of proton scattering from deformed nuclei in the sd and sdg boson models. The two models give almost identical results for a pure quadrupole interaction but widely differ when a hexadecapole interaction is included. 25 refs., 3 tabs., 7 figs

  10. Medium-energy physics program. Progress report, February 1--April 1, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, E. (comp.)

    1976-09-01

    A quarterly report on the medium-energy physics program at LAMPF is given. Topics covered include: (1) engineering support; (2) accelerator support; (3) accelerator systems development; (4) injector systems; (5) electronic instrumentation and computer systems; (6) accelerator operations; (7) experimental areas; (8) beam line development; (9) large-spectrometer systems; (10) research; (11) nuclear chemistry; (12) practical applications of LAMPF; and (13) management. (PMA)

  11. Absorbed dose determination in water in medium energy x-ray beam

    International Nuclear Information System (INIS)

    Nisevic, G.; Spasic-Jokic, V.

    1998-01-01

    Absorbed dose determination in water phantom in medium energy X-ray beam, according to IAEA recommendations is given. This method is applied on Radiotherapy department of Military Academy Hospital in Belgrade. Reference points of measurements are on depth of 5 cm and 2 cm as it recommended in ref. Experimental results are shown in aim to introduce new dosimetric concept based on air kerma calibration factor recommended for application in our radiotherapy centers (author)

  12. Angular distribution of scattered electron and medium energy electron spectroscopy for metals

    International Nuclear Information System (INIS)

    Oguri, Takeo; Ishioka, Hisamichi; Fukuda, Hisashi; Irako, Mitsuhiro

    1986-01-01

    The angular distribution (AD) of scattered electrons produced by medium energy incident electrons (E P = 50 ∼ 300 eV) from polycrystalline Ti, Fe, Ni, Cu and Au were obtained by the angle-resolved medium energy electron spectrometer. The AD of the energy loss peaks are similar figures to AD of the elastically reflected electron peaks. Therefore, the exchanged electrons produced by the knock-on collision between the incident electrons and those of metals without momentum transfer are observed as the energy loss spectra (ELS). This interpretation differs from the inconsequent interpretation by the dielectric theory or the interband transition. The information depth and penetration length are obtained from AD of the Auger electron peaks. The contribution of the surface to spectra is 3 % at the maximum for E P = 50 eV. The true secondary peaks representing the secondary electron emission spectroscopy (SES) are caused by the emissions of the energetic electrons (kT e ≥ 4 eV), and SES is the inversion of ELS. The established fundamental view is that the medium energy electron spectra represent the total bulk density of states. (author)

  13. Spallation neutron experiment at SATURNE

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    The double differential cross sections for (p,xn) reactions and the spectra of neutrons produced from the thick target have been measured at SATURNE in SACLAY from 1994 to 1997. The status of the experiment and the preliminary experimental results are presented. (author)

  14. A linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1998-01-01

    The Spallation Neutron Source Project (SNS), to be constructed at Oak Ridge National Laboratory, accelerates H - ions to an energy of 1.0 GeV with an average current of 1-mA for injection into an accumulator ring that produces the short intense burst of protons needed for the spallation-neutron source. The linac will be the most intense source of H - ions and as such requires advanced design techniques to meet project technical goals. In particular, low beam loss is stressed for the chopped beam placing strong requirements on the beam dynamics and linac construction. Additionally, the linac is to be upgraded to the 2- and 4-MW beam-power levels with no increase in duty factor. The author gives an overview of the linac design parameters and design choices made

  15. Neutron moderators for the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Zanini, L.; Batkov, K.

    The design of the neutron moderators for the European Spallation Source, intended to be installed at the start of operations of the facility in 2019 has now been finalized and the moderators are being fabricated. Among the driving principles in the design have been flexibility for instruments...... to have access to cold and thermal neutrons with highest possible source brightness. Different design and configuration options were evaluated. The final configuration accepted for construction foresees two moderators with identical para-hydrogen (so-called "butterfly") shape, but different heights......, placed above and below the spallation target. Both moderators are able to serve the full 2 x 120° beam extraction sectors of instrument suite. The top, 3-cm tall moderator, has both high thermal and high cold brightness, more than by a factor of 2.5 compared to the previous design of the Technical Design...

  16. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  17. Basic aspects of spallation radiation damage to materials

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, M.S.; Lin, C. [North Carolina State Univ., Raleigh, NC (United States); Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The nature of radiation effects, as learned from investigations using reactor neutron irradiations, is reviewed, and its relevance to spallation radiation damage to materials in accelerator-driven neutron sources is discussed. Property changes upon irradiation are due to (1) displaced atoms, producing vacancy and interstitial defect clusters, which cause radiation hardening and embrittlement; (2) helium production, the helium then forming bubbles, which engenders high-temperature grain-boundary fracture; and (3) transmutations, which means that impurity concentrations are introduced. Methods for analyzing displacement production are related, and recent calculations of displacement cross sections using SPECTER and LAHET are described, with special reference to tungsten, a major candidate for a target material in accelerator-driven neutron systems.

  18. New neutron physics using spallation sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1988-01-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. The energy range of neutron research which is being explored with these sources extends from thermal energies to almost 800 MeV. The emphasis here is on prospective experiments below 100 keV neutron energy using the intense neutron bursts produced by the Proton Storage Ring (PSR) at Los Alamos. 30 refs., 10 figs

  19. Outline of spallation neutron source engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noboru [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science-technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R and D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources. The present review was prepare aiming at giving a better understanding on pulsed spallation neutron sources not only to neutron source researchers but also more widely to neutron scattering researchers and accelerator scientists in this field. The contents involve, starting from what is neutron scattering and what neutrons are necessary for neutron scattering, what is the spallation reaction, how to produce neutrons required for neutron scattering more efficiently, target-moderator-reflector neutronics and its engineering, shielding, target station, material issues, etc. The author have engaged in R and D of pulsed apallation neutron sources and neutron scattering research using them over 30 years. The present review is prepared based on the author's experiences with useful information obtained through ICANS collaboration and recent data from the JSNS (Japanese Spallation Neutron Source) design team. (author)

  20. Decommissioning Plan for European Spallation Source

    Directory of Open Access Journals (Sweden)

    Ene Daniela

    2017-01-01

    Full Text Available This paper is a survey of the European Spallation Source initial decommissioning plan developed in compliance with Swedish Regulatory Authority requirements. The report outlines the decommissioning strategy selected and the baseline plan for decommissioning. Types and quantities of radioactive waste estimated to be generated at the final shut-down of the facility are further provided. The paper ends up with the analysis of the key elements of the decommissioning plan and the recommendations to the ESS management team..

  1. Shielding concerns at a spallation source

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.; Legate, G.L.; Woods, R.

    1989-01-01

    Neutrons produced by 800-MeV proton reactions at the Los Alamos Neutron Scattering Center spallation neutron source cause a variety of challenging shielding problems. We identify several characteristics distinctly different from reactor shielding and compute the dose attenuation through an infinite slab/shield composed of iron (100 cm) and borated polyethylene (15 cm). Our calculations show that (for an incident spallation spectrum characteristic of neutrons leaking from a tungsten target at 90/degree/) the dose through the shield is a complex mixture of neutrons and gamma rays. High-energy (> 20 MeV) neutron production from the target is ≅5% of the total, yet causes ≅68% of the dose at the shield surface. Primary low-energy (< 20 MeV) neutrons from the target contribute negligibly (≅0.5%) to the dose at the shield surface yet cause gamma rays, which contribute ≅31% to the total dose at the shield surface. Low-energy neutrons from spallation reactions behave similarly to neutrons with a fission spectrum distribution. 6 refs., 8 figs., 1 tab

  2. Neutronics of pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source

  3. Structural materials for fusion and spallation sources

    International Nuclear Information System (INIS)

    Cottrell, G.A.; Baker, L.J.

    2003-01-01

    Experimental investigation of neutron-induced irradiation damage in structural materials is fundamental to the development of magnetic confinement fusion. Proposals for the testing of candidate materials are described, indicating that a period of at least 10 years will elapse before a suitable high neutron fluence fusion test facility becomes available. In this circumstance, the possibility that neutron spallation sources could be exploited to shorten the time-scale of fusion materials development is attractive. Although fusion displacement and transmutation reaction rates can be replicated in spallation sources, there are significant differences arising from the harder neutron spectra and the presence of energetic protons. These differences, including higher energy PKA, electron heating effects, transmutation rates and pulsing are described and their consequences discussed, together with the concomitant development of theoretical models, needed to understand the effects. It is concluded that spallation source experiments could make a significant contribution to the database required for the validation of theoretical models, and hence reduce the time scale of fusion materials development

  4. Linac-driven spallation-neutron source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1995-01-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications

  5. 2. International workshop on spallation materials technology

    International Nuclear Information System (INIS)

    Carsughi, F.; Mansur, L.K.; Sommer, W.F.; Ullmaier, H.

    1997-11-01

    This document contains 25 papers consisting an abstract prepared by the authors, followed by copies of the presentation viewgraphs used by speakers. The topics were: Target options for SINQ; Overview of the NSNS target system; ISIS target and moderator materials; Trispal project; JHF N-ARENA; Design, load conditions and manufacturing aspect of the ESS MERCURY TARGET unit; Radiation damage simulatiion to measure recoil spectra distribution; Radiation damage calculation to spallation neutron source materials; Hadron-induced neutron production in Pb and U targets from 1-5 GeV; Proton beam effects on W rods, surface cooled by water; Corrosion and fatigue behavior of metals and alloys in high radiation fields; compability of materials with mercury for NSNS target system; Research activities at PSI on structural materials for spallation neutron source; The accelerator production of tritium materials reserach program and Los Alamos National Laboratory; Experimental program on irradiation effects in structural materials of the Trispal project; First pulsed power materials test at Livermore; Plan of thermal shock fracture test at JAERI; Is there a hydrogen problem in target materials in high-power spatllation source?; Materials consideration for the NSNS target; Materials durability issures in spallation neutron source applications; Post-irradiation investigations at the FZJ; Microstructure and hardening of steels containing high helium concentrations; Tensile properties and microstructure of the F82H ferritic-martensitic steel after irradiation in the PIREX facility

  6. A comparison between short pulse spallation source and long pulse spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Kazuya; Watanabe, Noboru; Suzuki, Jun-ichi; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Osakabe, Toyotaka; Teshigawara, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Mezei, F.

    1997-11-01

    The performance for a 5 MW short pulse spallation source (SPSS) and a 4.5 MW long pulse spallation source (LPSS) in a JAERI program which is based on the availability of a 1.5 GeV superconducting linac with a 30 mA peak current for both proton and H{sup -} beams is discussed. We have examined the superiority of SPSS to LPSS. While a LPSS facility is a second option, we propose an SPSS facility as a first option. (author)

  7. A comparison between short pulse spallation source and long pulse spallation source

    International Nuclear Information System (INIS)

    Aizawa, Kazuya; Watanabe, Noboru; Suzuki, Jun-ichi; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Osakabe, Toyotaka; Teshigawara, Makoto; Mezei, F.

    1997-01-01

    The performance for a 5 MW short pulse spallation source (SPSS) and a 4.5 MW long pulse spallation source (LPSS) in a JAERI program which is based on the availability of a 1.5 GeV superconducting linac with a 30 mA peak current for both proton and H - beams is discussed. We have examined the superiority of SPSS to LPSS. While a LPSS facility is a second option, we propose an SPSS facility as a first option. (author)

  8. The primary exposure standard of ENEA for medium energy X-ray: characteristics and measurements procedures

    International Nuclear Information System (INIS)

    Laitano, R.F.; Toni, M.P.

    1983-01-01

    A description is given of a medium energy X-ray free-air chamber used, as primary exposure standard, at the Laboratorio di Metrologia delle Radiazioni Ionizzanti of the Enea in Italy. The main features of an X-ray facility for the production of radiation between 40 KeV and 400 KeV are also described. The measurements procedures are then analyzed with respect to the realization of the exposure unit in the relevant energy range. Finally the results of some international comparisons are reported

  9. Inelastic collisions of medium energy atomic elements. Qualitative model of energy losses during collisions

    International Nuclear Information System (INIS)

    Pustovit, A.N.

    2006-01-01

    A new approach to the theoretical description of energy losses of atomic particle of medium energy during their interaction with the substance is proposed. The corner-stone of this approach is the supposition that all of the collision processes have inelastic nature during particle movement through the substance, while the calculation of the atomic particles braking is based on the law of their dispersion and the laws of energy and momentum conservation at the inelastic collisions. It is shown that inelastic atomic collision there are three dispersion zones for the only potential interaction with different laws, which characterize energy losses. The application conditions of this approach are determined [ru

  10. Structural characterization of CdSe/ZnS quantum dots using medium energy ion scattering

    Science.gov (United States)

    Sortica, M. A.; Grande, P. L.; Radtke, C.; Almeida, L. G.; Debastiani, R.; Dias, J. F.; Hentz, A.

    2012-07-01

    In the present work, we have analyzed CdSe/ZnS core-shell quantum dots by medium energy ion scattering (MEIS), which is a powerful technique to explore the synthesis, formation, stability, and elemental distribution of such core-shell structures, along with other auxiliary analytical techniques. By comparing different quantum-dot structural models spectra with the experimental MEIS data, we were able to obtain some sample structural information. We found that, despite the well known non stoichiometric Cd:Se ratio, the core is stoichiometric, and there is an excess of cadmium distributed in the shell.

  11. Experimental parameters for quantitative surface analysis by medium energy ion scattering, ch. 1

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Kersten, H.H.; Colenbrander, B.G.; Jongh, A.P. de; Saris, F.W.

    1976-01-01

    A new UHV chamber for surface and surface layer analysis by collision spectroscopy of backscattered ions at medium energies is described. Experimental parameters like energy, angular and depth resolution, crystal alignment and background pressure are discussed. Formulae based on the use of an electrostatic energy analyser show that the analysis can be quantitative. Effects of beam induced build-up of a hydro-carbon layer, sputter cleaning and creation of radiation damage have been investigated for Cu (110) and Ni (110). Detection sensitivity for Carbon, Oxygen and Sulfur on Cu and Ni has been found to be 0.2, 0.1 and 0.03 of a monolayer respectively

  12. Intercomparison of medium-energy neutron attenuation in iron and concrete

    International Nuclear Information System (INIS)

    Hirayama, H.

    1999-01-01

    Neutron attenuation of medium energy below 1 GeV has not been well understood until now. It is desired to obtain common agreements concerning the behaviours of neutrons inside various materials. This is necessary in order to agree on definitions of the attenuation length, which is very important for shielding calculations involving high energy accelerators. As one attempt, it was proposed by Japanese attendants of SATIF-2 to compare the attenuation of medium-energy neutrons inside iron and concrete shields between various computer codes and data, and was cited as a suitable action for SATIF. The first results from three groups were presented at SATIF-3. It has become clear that neutrons above 20 MeV are important for understanding the attenuation inside materials and that the geometry, planar or spherical, does not affect the results very much. Considering the CPU times required for Monte Carlo calculations and this result, revised problems to be calculated were prepared by the Japanese Working Group and sent to the participants of this action. The geometry is only plane, and calculations are required only for neutrons above 20 MeV. The secondary neutrons from high energy protons, which were calculated by H. Nakashima, are also included in the problem. The results from four groups were sent to the organizer at the end of August. This paper presents a comparison between groups concerning the attenuation length together with the neutron spectrum and the future themes which come from this intercomparison. (author)

  13. Qualification tests of materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Sommer, W.F.; Maloy, S.; Wechsler, M.S.

    1997-01-01

    Several laboratories will take part in an extensive materials qualification program that includes irradiation in the proton beam and neutron field available at the Los Alamos Spallation Radiation Damage Facility (LASREF). A number of candidate materials will be exposed to prototypic spallation producing particle radiation. Studies of corrosion-related phenomena and the mitigation of these effects will also be accomplished

  14. Multi-criteria comparative evaluation of spallation reaction models

    Science.gov (United States)

    Andrianov, Andrey; Andrianova, Olga; Konobeev, Alexandr; Korovin, Yury; Kuptsov, Ilya

    2017-09-01

    This paper presents an approach to a comparative evaluation of the predictive ability of spallation reaction models based on widely used, well-proven multiple-criteria decision analysis methods (MAVT/MAUT, AHP, TOPSIS, PROMETHEE) and the results of such a comparison for 17 spallation reaction models in the presence of the interaction of high-energy protons with natPb.

  15. Spallation neutron production on thick target at saturne

    International Nuclear Information System (INIS)

    David, J.C.; David, J.C.; Varignon, C.; Borne, F.; Boudard, A.; Brochard, F.; Crespin, S.; Duchazeaubeneix, J.C.; Durand, D.; Durand, J.M.; Frehaut, J.; Hannappe, F.; Lebrun, C.; Lecolley, J.F.; Ledoux, X.; Lefebvres, F.; Legrain, R.; Leray, S.; Louvel, M.; Martinez, E.; Menard, S.; Milleret, G.; Patin, Y.; Petitbon, E.; Plouin, F.; Schapira, J.P.; Stugge, L.; Terrien, Y.; Thun, J.; Volant, C.; Whittal, D.M.

    2003-01-01

    In view of the new spallation neutron source projects, we discuss the characteristics of the neutron spectra on thick targets measured at SATURNE. Some comparisons to spallation models, and especially INCL4/ABLA implemented in the LAHET code, are done. (orig.)

  16. Fundamental physics possibilities at the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Soldner, Torsten

    2016-01-01

    The construction of the European Spallation Source ESS is ongoing in Lund, Sweden. This new high power spallation source with its long-pulse structure opens up new possibilities for fundamental physics experiments. This paper focusses on two proposals for fundamental physics at the ESS: The ANNI...

  17. Experimental studies of spallation on thin target

    International Nuclear Information System (INIS)

    Borne, F.; Crespin, S.; Drake, D.; Frehaut, J.; Ledoux, X.; Lochard, J.P.; Martinez, E.; Patin, Y.; Petibon, E.; Pras, Ph.; Boudard, A.; Legrain, R.; Leray, S.; Terrien, Y.; Bouyer, P.; Brochard, F.; Duchazeaubeneix, J.C.; Durand, J.M.; Meigo, S.I.; Milleret, G.; Thun, J.; Whittal, D.M.; Wlazlo, W.; Lebrun, C.; Lecolley, J.F.; Lecolley, F.R.; Lefebvres, F.; Louvel, M.; Varignon, C.; Menard, S.; Stugge, L.; Hanappe, F.

    2000-01-01

    Angular distribution of spallation neutrons induced by protons (0.8, 1.2 and 1.6 GeV) and deuterons (0.8 and 1.6 GeV beams on various thin targets have been measured at SATURNE (CEA Saclay/France) with two complementary experimental techniques: the time-of-flight measurement with tagged incident protons for low energy neutrons (2-400 MeV) and the use of a hydrogen converter associated are analysed, interpreted and finally compared with theoretical previsions of simulation codes using the TIERCE system including the intranuclear cascade codes of BERTINI and CUGNON. (authors)

  18. Status of Cea spallation modules for ads

    International Nuclear Information System (INIS)

    Enderle, R.; Poitevin, Y.; Deffain, J.P.; Bergeron, J.

    2001-01-01

    In the framework of CEA studies on ADS dedicated to waste transmutation, a liquid metal reference concept and an alternative solid target have been evaluated to produce neutrons inside the spallation module. This work examines the design (neutronic, thermohydraulic and mechanical aspects) and the performances of both options. It is shown that a liquid Pb-Bi target offers more possibilities regarding to high protons current densities (possible industrial extrapolation) but that a solid target made with tungsten particles offers also interesting ability to create a neutrons flux appropriated (strong spectrum and flat axial distribution) to an sub-critical core dedicated to incineration. (author)

  19. Spallation neutron spectra measured at Saturne

    International Nuclear Information System (INIS)

    Boyard, J.L.; Bouyer, P.; Brochard, F.; Duchazeaubeneix, J.C.; Durand, J.M.; Leray, S.; Milleret, G.; Plouin, F.; Uematsu, M.; Whittal, D.M.; Martinez, E.; Beau, M.; Boue, F.; Crespin, S.; Drake, D.; Frehaut, J.; Lochard, J.P.; Patin, Y.; Petibon, E.; Legrain, R.; Terrien, Y.

    1995-01-01

    Good knowledge of spallation reactions is necessary to design accelerator-based transmutation systems. An extensive program has begun at Saturne to measure energy and angular distributions of neutrons produced by incident protons or deuterons of up to 2 GeV on several thin targets. Our measurements will extend the available data to higher energies than the present limit of 800 MeV enabling improvements to the codes which are sometimes in poor agreement with the data. (Authors). 7 refs., 7 figs

  20. Measurement of the spallation reaction 56Fe+p in inverse kinematics

    International Nuclear Information System (INIS)

    Boehmer, M.

    2006-01-01

    In this work the spallation reaction 56 Fe+p was investigated in inverse kinematics with regard to complete identification of the heavy residues. A ring imaging Cerenkov counter was used for velocity measurements in the experimental setup located at GSI in Darmstadt. A new fast readout electronic was developed and has been operated successfully in the experiment. Momentum reconstruction was carried out with the ALADiN spectrometer and a new software package written for this purpose. Cross sections and velocity distributions for more than 100 mass separated isotopes could be extracted from the dataset and compared with empirical models and other spallation experiments. The experiences gained in this experiment will be used for systematic improvements in the setup of the new spectrometer R3B at FAIR. (orig.)

  1. The US spallation neutron source (SNS) project

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1999-01-01

    The SNS is a 1 MW pulsed spallation neutron source that will be sited at Oak Ridge. It will consist of a high-current, normal-conducting linac accelerating an H - beam to 1 GeV, an accumulator ring which compresses each 1 ms linac pulse into a 600 ns bunch which is then extracted in a single turn onto a liquid mercury target. Neutron pulses emerge at a 60 Hz rate from the two ambient, and two cryogenic moderators. Eighteen beam ports surrounding the target station are available for neutron-scattering instrumentation. Funds for ten instruments are included in the construction project; these instruments will provide basic measurement capability for the many and varied research activities at the SNS facility. The new spallation source is being built by a consortium of laboratories; the partners are LBNL, LANL, BNL, ANL and ORNL. The breadth and depth of experience and resources brought by such a wide-spread team offers very significant advantages. Construction will start in October of 1998, operation will begin in October, 2005. (J.P.N.)

  2. EURAC: A liquid target neutron spallation

    Energy Technology Data Exchange (ETDEWEB)

    Perlado, J.M.; Minguez, E.; Sanz, J. [Universidad Politecnica de Madrid (Spain)] [and others

    1995-10-01

    Euratom/JRC Ispra led some years ago the design of an accelerator based neutron spallation source EURAC, with special emphasis as a fusion material testing device. DENIM was involved in the development of the last version of this source. EURAC proposes to use a beam of 600 MeV or 1.5 GeV protons, produced by an effective and low cost ring cyclotron with a current of 6 mA impinging in a liquid lead, or lead-bismuth, target. It will use an advanced cyclotron technology which can be implemented in the next future, in the line of the actual technology of the upgraded SIN-type cyclotron. The adjacent rows to the target correspond to the lead, or Li{sub 17}Pb{sub 83}, cooled channels where the samples will be located. The available volumes there were shown enough for material testing purposes. Here, proposal of using those experimental areas to introduce small masses of radioactive wastes for testing of transmutation in spallation source is made. In addition, extrapolation of present conceptual design to make available larger volumes under flexible conditions seems to be possible. Neutrons leaking from the test zone drive a subcritical booster (<10 MW) which could provide a thermal neutron flux trap with a liquid hydrogen moderator in the center.

  3. Study of the spallation residues in the reaction Au (800 MeV/nucleon) + p; Etude des residus de spallation dans la reaction Au (800 MeV par nucleon) + p

    Energy Technology Data Exchange (ETDEWEB)

    Mustapha, Brahim [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-09-09

    As a neutron source, the spallation reaction is of importance for different fields of research and for a possible hybrid reactor. The study of spallation residues, their cross sections and their energetic properties, is necessary for such applications and for a better understanding of this process. Several studies of spallation products were done using spectroscopic methods. Only radioactive nuclides were detected. Aiming at a more precise measurement, covering the whole range of spallation residues, this study was done using the reverse kinematics method. A liquid hydrogen target was irradiated by an 800 MeV/nucleon gold beam. The produced nuclei were detected in flight before any radioactive decay with about 10% precision. Independent cross section were then obtained. Velocity distributions were completely reconstructed. In their present forms, the theoretical calculations based upon the two-step model, 'intra-nuclear cascade' + 'evaporation', are unable to reproduce the whole set of experimental aspects. An inter-comparison using different INC/EVA combinations permitted to identify the more significant points in these calculations. The important behaviour of this codes were examined. Due to compensation effects between both steps, cascade and evaporation, this study did not lead to a definite conclusion. (author)

  4. A Pair Production Telescope for Medium-Energy Gamma-Ray Polarimetry

    Science.gov (United States)

    Hunter, Stanley D.; Bloser, Peter F.; Depaola, Gerardo; Dion, Michael P.; DeNolfo, Georgia A.; Hanu, Andrei; Iparraguirre, Marcos; Legere, Jason; Longo, Francesco; McConnell, Mark L.; hide

    2014-01-01

    We describe the science motivation and development of a pair production telescope for medium-energy (approximately 5-200 Mega electron Volts) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (approximately 0.6 deg at 70 Mega electron Volts), continuum sensitivity comparable with the Fermi-LAT front detector (is less than 3 x 10(exp -6) Mega electron Volts per square centimeter per second at 70 Mega electron Volts), and minimum detectable polarization less than 10% for a 10 milliCrab source in 10(exp 6) s.

  5. Some topics concerning N--N and N--D experiments at medium energy

    International Nuclear Information System (INIS)

    Simmons, J.E.

    1975-01-01

    The status of recent proton-proton phase shift analyses is reviewed at medium energy with mention of the state of the n-p I = 0 analyses. Some conclusions are reached, including a recommendation for renewed theoretical effort to calculate absorption parameters for N--N scattering above 300 MeV in higher partial waves (l greater than or equal to 3). Recent experimental data are examined for p-p small angle scattering at 630 MeV and also near 500 MeV. Further small angle experiments on p-p and p-d scattering are deemed desirable. A brief discussion of recent n-p charge exchange experiments is given. Finally, the status of medium to high energy (100 to 2000 MeV) p-d elastic scattering is reviewed with emphasis on back angle scattering and the usefulness of p-d polarization measurements. (1 table, 12 figures, 94 references) (U.S.)

  6. Ion-induced particle desorption in time-of-flight medium energy ion scattering

    Science.gov (United States)

    Lohmann, S.; Primetzhofer, D.

    2018-05-01

    Secondary ions emitted from solids upon ion impact are studied in a time-of-flight medium energy ion scattering (ToF-MEIS) set-up. In order to investigate characteristics of the emission processes and to evaluate the potential for surface and thin film analysis, experiments employing TiN and Al samples were conducted. The ejected ions exhibit a low initial kinetic energy of a few eV, thus, requiring a sufficiently high acceleration voltage for detection. Molecular and atomic ions of different charge states originating both from surface contaminations and the sample material are found, and relative yields of several species were determined. Experimental evidence that points towards a predominantly electronic sputtering process is presented. For emitted Ti target atoms an additional nuclear sputtering component is suggested.

  7. Proceedings of the meeting on few-body problems in high and medium energy physics

    International Nuclear Information System (INIS)

    Yukawa, T.

    1985-12-01

    The study meeting on few-body problems in high and medium energy physics was held from October 3 to 5, 1985, at National Laboratory for High Energy Physics. Two meetings were held already concerning few body physics, but most of the participants were theorists. In this meeting, high priority was put on the attendance of experimental physicists. As a bridge between particle and nuclear physics, the few body physics in an intermediate energy region has become important recently. The topics in this meeting were meson spectroscopy, baryonium, kaon physics, muonic fusion, dibaryon, φNN system, quarks and skyrmions, NN correlation, and symmetry test in few-body system. The gists of the papers presented are collected in this book. (Kako, I.)

  8. Transport calculation of medium-energy protons and neutrons by Monte Carlo method

    International Nuclear Information System (INIS)

    Ban, Syuuichi; Hirayama, Hideo; Katoh, Kazuaki.

    1978-09-01

    A Monte Carlo transport code, ARIES, has been developed for protons and neutrons at medium energy (25 -- 500 MeV). Nuclear data provided by R.G. Alsmiller, Jr. were used for the calculation. To simulate the cascade development in the medium, each generation was represented by a single weighted particle and an average number of emitted particles was used as the weight. Neutron fluxes were stored by the collisions density method. The cutoff energy was set to 25 MeV. Neutrons below the cutoff were stored to be used as the source for the low energy neutron transport calculation upon the discrete ordinates method. Then transport calculations were performed for both low energy neutrons (thermal -- 25 MeV) and secondary gamma-rays. Energy spectra of emitted neutrons were calculated and compared with those of published experimental and calculated results. The agreement was good for the incident particles of energy between 100 and 500 MeV. (author)

  9. CsI electromagnetic calorimeter development for a low or medium energy e+e- collider

    International Nuclear Information System (INIS)

    King, M.E.

    1993-10-01

    Design considerations for an electromagnetic Csl calorimeter suitable for use at low and medium energy, high-luminosity e + e - storage rings are presented, together with results of a test of an array of Csl(Tl) crystals in an e - /π - beam (120 to 400 MeV) at TRIUMF. The crystal array used in the test was designed to explore longitudinal and transverse crystal segmentation, and a redundant wavelength-shifter and photodiode readout system. Energy resolution of (1.69 ± 0.08)%/√E and (1.83 ± 0.05)%/√E was obtained for two different crystal tower configurations. Position resolution of 6.5 (9.0) mm was obtained at 300 (120)MeV for four 4x4 cm 2 , 4 rl. Csl crystals

  10. MEGA - A next generation mission in Medium Energy Gamma-Ray Astronomy

    International Nuclear Information System (INIS)

    Kanbach, Gottfried

    2001-01-01

    A Medium Energy Gamma-Ray Astronomy (MEGA) detector is being developed and proposed for a small satellite mission. MEGA intends to improve the sensitivity at medium γ-ray energies (0.4-50 MeV) by at least an order of magnitude with respect to past instruments. Its large field of view will be especially important for the discovery of transient sources and for conducting all-sky surveys. Key science objectives for MEGA are the investigation of cosmic high-energy accelerators and of nucleosynthesis sites with γ-ray lines. The large-scale structure of the galactic and cosmic diffuse background is another important goal for this mission. MEGA records and images γ-ray events by completely tracking Compton and pair creation interactions in a stack of double sided Si-strip track detectors and 3-D resolving CsI calorimeters

  11. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  12. Progress in the development of global medium-energy nucleon-nucleus optical model potentials

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    Two existing global medium-energy nucleon-nucleus phenomenological optical model potentials are described and compared with experiment and with each other. The first of these employs a Dirac approach (second-order reduction) that is global in projectile energy and projectile isospin and applies to the target nucleus 208 Pb. The second of these employs a relativistic equivalent to the Schroedinger equation (including relativistic kinematics) that is global in projectile energy, projectile isospin, and target (Z,A). Finally, current work is described and the influence of the nuclear bound state problem (treated in relativistic mean field theory) on the Dirac scattering problem is mentioned. Spherical target nuclei are treated in the present work and strongly-collective target nuclei (rotational and vibrational) requiring coupled-channels approaches will be treated in a future paper. (author)

  13. Final Report: Medium Energy Measurements of N-N Parameters, April 1, 1994 - September 30, 1996

    International Nuclear Information System (INIS)

    Ambrose, David; Betts, Wayne; Coffey, Patrick; Glass, George; McDonough, James; Riley, Peter; Tang, Jaw-Luen

    1998-01-01

    Our research program had four main thrusts, only one of which can be considered as measurements of N-N parameters: (1) Finishing the data analyses associated with recent LAMPF and TRIUMPF N-N experiments, whose overall purpose has been the determination of the nucleon-nucleon amplitudes, both for isospin 0 and 1 at medium energies; (2) continuing work on BNL E871, a search for rare decay modes of the KL; (3) work on the RHIC-STAR project, an experiment to create and study a quark gluon plasma and nuclear matter at high energy density; (4) beginning a new AGS experiment (E896) which will search for the lowest mass state of the predicted strange di-baryons, the Ho, and other exotic states of nuclear matter through nucleus-nucleus collisions

  14. Estimation of thermochemical behavior of spallation products in mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H{sub 2}O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH{sup +}, BeO{sup +} and Be{sup 2+} under the condition of less than 10{sup -8} of the Be mole fraction in the cooling water. (author)

  15. Estimation of thermochemical behavior of spallation products in mercury target

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H 2 O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH + , BeO + and Be 2+ under the condition of less than 10 -8 of the Be mole fraction in the cooling water. (author)

  16. Development of a nuclear spallation simulation code and calculations of primary spallation products

    International Nuclear Information System (INIS)

    Nishida, Takahiko; Nakahara, Yasuaki; Tsutsui, Tsuneo

    1986-08-01

    In order to make evaluations of computational models for the nuclear spallation reaction from a nuclear physics point of view, a simulation code NUCLEUS has been developed by modifying and combining the Monte Carlo codes NMTC/JAERI and NMTA/JAERI for calculating only the nuclear spallation reaction (intranuclear cascade + evaporation and/or fast fission) between a nucleus and a projectile without taking into consideration of internuclear transport. New several plotting routines have been provided for the rapid process of much more event data, obtained by using the ARGUS plotting system. The results obtained by our code can be directly compared with the experimental results using by thin foil experiments in which internuclear multiple collisions have little effects, and will serve to upgrade the calculational methods and the values of nuclear parameters currently used in the calculations. Some discussions are done about the preliminary computational results obtained by using NUCLEUS. The mass distribution and charge dispersion of reaction products are examined in some detail for the nuclear spallation reaction between incident protons and target nuclei, such as U, Pb and Ag, in the energy range from 0.5 GeV to 3.0 GeV. These results show that the distribution of reaction products ceases to change its form as the proton energy increases over about 2 GeV. The same tendency is seen in the energy dependence of the number of primary particles emitted from a nucleus. After spallation reactions, a variety of nuclei, especially many neutron deficient nuclides with nuclear charges nearly equal to ones of a target nucleus, are produced. Due to their short lifetime most of them will change to stable nuclides in due time. Finally, some important issues are discussed to improve the present simulation method. (author)

  17. Study of spallation neutrons for the transmutation of long-lived nuclear waste

    International Nuclear Information System (INIS)

    Brochard, F.; Boyard, J.L.; Duchazeaubeneix, J.C.; Durand, J.M.; Faivre, J.C.; Leray, S.; Milleret, G.; Plouin, F.; Whittal, D.M.; Beau, M.; Crespin, S.; Frehaut, J.; Lochard, J.P.; Martinez, E.; Patin, Y.; Petitbon, E.; Sigaud, J.; Legrain, R.; Lepretre, A.; Terrien, Y.; Bacha, F.; Maillard, J.; Silva, J.

    1994-01-01

    With the renewed interest in accelerator-driven systems to transmute long-lived nuclear waste or to produce energy, new requirements for intermediate-energy nuclear data are now emerging. In all these systems, neutrons are produced by spallation reactions induced by around 1 GeV protons on a heavy target. These neutrons then drive a sub-critical blanket in which wastes are burned or energy is produced. A good knowledge of the spallation process (energy and angular distribution of the neutrons) is necessary to design and optimize the target-blanket system: for instance, to determine the best choices of beam energy, of composition and geometry of the target, in order to have the maximum neutron yield at the lowest cost, or to minimize the back-scattering of neutrons to the accelerator. A programme aimed at measuring the double differential cross-sections for the production of spallation neutrons induced by protons and deuterons GeV beams on different targets, is beginning at SATURNE. (authors). 3 refs., 3 figs

  18. Experimental Study of the Phenomenology of Spallation Neutrons in a Large Lead Block

    CERN Multimedia

    Galvez Altamirano, J; Lopez, C; Perlado, J M; Perez-Navarro, A

    2002-01-01

    %PS211 %title \\\\ \\\\The purpose of PS211 is to determine how neutrons, produced by spallation inside a large Lead volume are slowed down by undergoing a very large number of scatterings, losing each time a small fraction ($\\sim$ 1\\%) of their kinetic energy. The focus is in determining the probability for a spallation neutron produced at an energy of several MeV or more, to survive capture on Lead resonances and to reach resonance energies of materials to be transmuted, such as 5.6 eV for $^{99}$Tc. This process, of Adiabatic Resonance Crossing, involves a subtle interplay between the capture resonances of the Lead medium and of selected impurities. This phenomenology of spallation neutrons in a large Lead volume, is the physics foundation of the Fast Energy Amplifier proposed by C. Rubbia, and could open up new possibilities in the incineration of long-lived nuclear waste such as Actinides or Fission Fragments (e.g. $^{99}$Tc, $^{129}$I, etc.).\\\\ \\\\334 tons of high purity Lead, installed in t7, are exposed to...

  19. Design specification for the European Spallation Source neutron generating target element

    International Nuclear Information System (INIS)

    Aguilar, A.; Sordo, F.; Mora, T.; Mena, L.; Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P.; Magan, M.; Vivanco, R.; Jimenez-Villacorta, F.; Sjogreen, K.; Oden, U.; Perlado, J.M.

    2017-01-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  20. Design specification for the European Spallation Source neutron generating target element

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, A. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sordo, F., E-mail: fernando.sordo@essbilbao.org [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mora, T. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Mena, L. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Magan, M.; Vivanco, R. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Jimenez-Villacorta, F. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sjogreen, K.; Oden, U. [European Spallation Source ERIC, P.O Box 176, SE-221 00 Lund (Sweden); Perlado, J.M. [Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); and others

    2017-06-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  1. Mass formula dependence of calculated spallation reaction product distributions

    International Nuclear Information System (INIS)

    Nishida, Takahiko; Nakahara, Yasuaki

    1990-01-01

    A new version of the spallation reaction simulation code NUCLEUS was developed by incorporating Uno and Yamada's mass formula. This version was used to calculate the distribution of products from the spallation of uranium nuclei by high-energy protons. The dependence of the distributions on the mass formula was examined by comparing the results with those from the original version, which is based on Cameron's mass formula and the mass table compiled by Wapstra et al. As regards the fission component of spallation products, the new version reproduces the reaction product data obtained from thin foil experiments much better, especially on the neutron excess side. (orig.) [de

  2. Thick target spallation product yields from 800 MeV protons on tungsten

    International Nuclear Information System (INIS)

    Ullmann, J.L.; Staples, P.; Butler, G.

    1994-01-01

    A number of newly-conceived accelerator based technologies will employ medium-energy particles stopping in thick targets to produce large numbers of neutrons. It is important to quantify the residual radionuclides in the target because one must understand what nuclei and decay gammas are produced in order to design adequate shielding, to estimate ultimate waste disposal problems, and to predict possible effects of accidental dispersion during operation. Because stopping-length targets are considered, radionuclide production must be known as a function of energy. Moreover, secondary particle production, mostly neutrons, implies a need to be able to calculate particle transport. To test the overall ability to calculate radionuclide yields, a thick-target measurement was carried out and the results compared to detailed calculations. Although numerous measurements of thin-target spallation yields have been made, there have been only a few measurements on thick systems. The most complete study showed results for Pb and U systems. In this contribution, the authors report on measurements made for a stopping-length W target. Special efforts were made to measure short-lived isotopes, and reliable data on isotopes with two or three minute half-lives were obtained

  3. CFD analysis of the HYPER spallation target

    International Nuclear Information System (INIS)

    Cho, Chungho; Tak, Nam-il; Choi, Jae-Hyuk; Lee, Yong-Bum

    2008-01-01

    KAERI (Korea Atomic Energy Research Institute) is developing an accelerator driven system (ADS) named HYPER (HYbrid Power Extraction Reactor) for a transmutation of long-lived nuclear wastes. One of the challenging tasks for the HYPER system is to design a large spallation target with a beam power of 15-25 MW. The paper focuses on a thermal-hydraulic analysis of the active part of the HYPER target. Computational fluid dynamics (CFD) analysis was performed by using a commercial code CFX 5.7.1. Several advanced turbulence models with different grid structures were applied. The CFX results reveal a significant impact of the turbulence model on the window temperature. Particularly, the k-ε model predicts the lowest window temperature among the five investigated turbulence models

  4. Spallation neutron source target station issues

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1996-01-01

    In many areas of physics, materials and nuclear engineering, it is extremely valuable to have a very intense source of neutrons so that the structure and function of materials can be studied. One facility proposed for this purpose is the National Spallation Neutron Source (NSNS). This facility will consist of two parts: (1) a high-energy (∼1 GeV) and high powered (∼ 1 MW) proton accelerator, and (2) a target station which converts the protons to low-energy (≤ 2 eV) neutrons and delivers them to the neutron scattering instruments. This paper deals with the second part, i.e., the design and development of the NSNS target station and the scientifically challenging issues. Many scientific and technical disciplines are required to produce a successful target station. These include engineering, remote handling, neutronics, materials, thermal hydraulics, and instrumentation. Some of these areas will be discussed

  5. BNL feasibility studies of spallation neutron sources

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Ruggiero, A.G.; Van Steenbergen, A.; Weng, W.T.

    1995-01-01

    This paper is the summary of conceptual design studies of a 5 MW Pulsed Spallation Neutron Source (PSNS) conducted by an interdepartmental study group at Brookhaven National Laboratory. The study was made of two periods. First, a scenario based on the use of a 600 MeV Linac followed by two fast-cycling 3.6 GeV Synchrotrons was investigated. Then, in a subsequent period, the attention of the study was directed toward an Accumulator scenario with two options: (1) a 1.25 GeV normal conducting Linac followed by two Accumulator Rings, and (2) a 2.4 GeV superconducting Linac followed by a single Accumulator Ring. The study did not make any reference to a specific site

  6. Radiochemical aspects of liquid mercury spallation targets

    CERN Document Server

    Neuhausen, Joerg; Eichler, Bernd; Eller, Martin; Horn, Susanne; Schumann, Dorothea; Stora, Thierry

    2012-01-01

    Liquid metal spallation targets using mercury as target material are used in state-of-the-art high power pulsed neutron sources that have been constructed in the USA and Japan within the last decade. Similar target concepts were also proposed for next generation ISOL, beta-beam and neutrino facilities. A large amount of radioactivity will be induced in the liquid metal during operation caused by the interaction of the target material with the intense proton beam. This radioactivity - carried by a wide range of radioisotopes of all the elements of the periodic table from hydrogen up to thallium - must be considered for the assessment of safe operation and maintenance procedures as well as for a final disposal of the used target material and components. This report presents an overview on chemical investigations performed in our laboratory that deal with the behavior of radionuclides in proton irradiated mercury samples. The solubility of elements in mercury was calculated using thermodynamical data obtained by...

  7. Medium energy measurements of n-n parameters: Progress in research, January 1, 1986-December 31, 1986

    International Nuclear Information System (INIS)

    Riley, P.J.

    1987-01-01

    A major part of the work has been and will continue to be associated with research done at the Nucleon Physics Laboratory (NPL) at the Los Alamos Meson Physics Facility (LAMPF). The aim of the experimental program is the determination of the nucleon-nucleon amplitudes at medium energy. The required data include both elastic and inelastic experiments, and in addition the measurement of polarization and polarization transfer parameters. We have been emphasizing single pion production measurements using polarized proton beams, and expect that our present data base will provide stringent tests of theoretical models. With the development of the LAMPF high intensity polarized proton source, we expect that a reasonably intense beam of medium energy polarized neutrons will become available, and are planning a series of experiments utilizing polarized neutrons to determine the importance of the I = 0 reaction amplitudes at medium energies

  8. Strain rate effects for spallation of concrete

    Science.gov (United States)

    Häussler-Combe, Ulrich; Panteki, Evmorfia; Kühn, Tino

    2015-09-01

    Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property - which can be covered by rate dependent stress strain relations - or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  9. Strain rate effects for spallation of concrete

    Directory of Open Access Journals (Sweden)

    Häussler-Combe Ulrich

    2015-01-01

    Full Text Available Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property – which can be covered by rate dependent stress strain relations – or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  10. Radiation physics of high power spallation targets. State of the art simulation methods and experiments, the 'European Spallation Source' (ESS)

    International Nuclear Information System (INIS)

    Filges, D.; Cloth, P.; Neef, R.D.; Schaal, H.

    1998-01-01

    Particle transport and nuclear interactions of planned high power spallation targets with GeV proton beams can be simulated using widely developed Monte Carlo transport methods. This includes available high energy radiation transport codes and systems for low energy, earlier developed for reactor physics and fusion technology. Monte Carlo simulation codes and applied methods are discussed. The capabilities of the world-wide existing state-of-the-art computer code systems are demonstrated. Results of computational studies for the 'European Spallation Source' (ESS) mercury high power target station are given. The needs for spallation related data and planned experiments are shown. (author)

  11. Invited talks (Abstracts only) The spallation neutron source: New ...

    Indian Academy of Sciences (India)

    The spallation neutron source (SNS) facility became operational in the spring of 2006, and is ... torate at ORNL providing the opportunity to develop science and instrumentation pro- ... tion, information technology, biotechnology, and health.

  12. Proceedings of the international workshop on spallation materials technology

    International Nuclear Information System (INIS)

    Mansur, L.K.; Ullmaier, H.

    1996-01-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility

  13. Proceedings of the international workshop on spallation materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Ullmaier, H. [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  14. Quantum molecular dynamics approach to estimate spallation yield ...

    Indian Academy of Sciences (India)

    Consequently, the need for reliable data to design and construct spallation neutron sources has prompted ... A major disadvantage of the QMD code .... have estimated the average neutron multiplicities per primary reaction and kinetic energy.

  15. Range calculations for spallation recoils in ThF4 by use of the computer code 'Marlowe'

    International Nuclear Information System (INIS)

    Westmeier, W.; Roessler, K.

    1978-12-01

    The determination of cross sections of spallation reactions requires a knowledge of the target thickness since only the products recoiling from the target are measured and their yield depends on the range. The effective target thickness is a function of the projectile's Z, A and spallation recoil energy and, thus, varies for the individual products. The computer code MARLOWE was used to evaluate energy vs. range curves in the binary collisions approximation. The program was extended to the high energy regime taking into account the stripping of electrons from the projectile and the concomitant changes in the interaction potentials especially for the inelastic part of the collisions. A complementary computer program LATTIC was developed for the parameterization of the lattice description. This code enables the application of MARLOWE to target materials with complicated crystallographic structure. Test calculations for a series of projectile/target combinations showed a reasonable agreement with experimental recoil ranges of Pd, Ag, Os and Ir isotopes from proton induced spallation in Ag, In and Pb targets, respectively. MARLOWE was then applied to calculate product ranges of the 232 Th(p,spall)X-reaction in the ployatomic system ThF 4 . The calculated energy vs. range curves enabled the evaluation of the mean spallation recoil ranges for all possible products, e.g. 170.8 μg/cm 2 for 192 Tl, 115.2 μg/cm 2 for 208 At and 37.1 μg/cm 2 for 223 Ac. (orig.)

  16. Some results of applied spallation physics research at Los Alamos

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.

    1983-01-01

    At the Los Alamos National Laboratory, we have an active effort in the general area of Applied Spallation Physics Research. The main emphasis of this activity has been on obtaining basic data relevant to spallation neutron source development, accelerator breeder technology, and validation of computer codes used in these applications. We present here an overview of our research effort and show some measured and calculated results of differential and clean integral experiments

  17. Constraining statistical-model parameters using fusion and spallation reactions

    Directory of Open Access Journals (Sweden)

    Charity Robert J.

    2011-10-01

    Full Text Available The de-excitation of compound nuclei has been successfully described for several decades by means of statistical models. However, such models involve a large number of free parameters and ingredients that are often underconstrained by experimental data. We show how the degeneracy of the model ingredients can be partially lifted by studying different entrance channels for de-excitation, which populate different regions of the parameter space of the compound nucleus. Fusion reactions, in particular, play an important role in this strategy because they fix three out of four of the compound-nucleus parameters (mass, charge and total excitation energy. The present work focuses on fission and intermediate-mass-fragment emission cross sections. We prove how equivalent parameter sets for fusion-fission reactions can be resolved using another entrance channel, namely spallation reactions. Intermediate-mass-fragment emission can be constrained in a similar way. An interpretation of the best-fit IMF barriers in terms of the Wigner energies of the nascent fragments is discussed.

  18. Strain relaxation of CdTe on Ge studied by medium energy ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, J.C., E-mail: jean-christophe.pillet@cea.fr [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA, LETI, Département Optique et Photonique, F38054 Grenoble (France); Pierre, F. [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA, LETI, Service de Caractérisation des Matériaux et Composants, F38054 Grenoble (France); Jalabert, D. [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA-INAC/UJF-Grenoble 1 UMR-E, SP2M, LEMMA, Minatec Grenoble F-38054 (France)

    2016-10-01

    We have used the medium energy ion scattering (MEIS) technique to assess the strain relaxation in molecular-beam epitaxial (MBE) grown CdTe (2 1 1)/Ge (2 1 1) system. A previous X-ray diffraction study, on 10 samples of the same heterostructure having thicknesses ranging from 25 nm to 10 μm has allowed the measurement of the strain relaxation on a large scale. However, the X-ray diffraction measurements cannot achieve a stress measurement in close proximity to the CdTe/Ge interface at the nanometer scale. Due to the huge lattice misfit between the CdTe and Ge, a high degree of disorder is expected at the interface. The MEIS in channeling mode is a good alternative in order to profile defects with a high depth resolution. For a 21 nm thick CdTe layer, we observed, at the interface, a high density of Cd and/or Te atoms moved from their expected crystallographic positions followed by a rapid recombination of defects. Strain relaxation mechanisms in the vicinity of the interface are discussed.

  19. Dose distribution considerations of medium energy electron beams at extended source-to-surface distance

    International Nuclear Information System (INIS)

    Saw, Cheng B.; Ayyangar, Komanduri M.; Pawlicki, Todd; Korb, Leroy J.

    1995-01-01

    Purpose: To determine the effects of extended source-to-surface distance (SSD) on dose distributions for a range of medium energy electron beams and cone sizes. Methods and Materials: The depth-dose curves and isodose distributions of 6 MeV, 10 MeV, and 14 MeV electron beams from a dual photon and multielectron energies linear accelerator were studied. To examine the influence of cone size, the smallest and the largest cone sizes available were used. Measurements were carried out in a water phantom with the water surface set at three different SSDs from 101 to 116 cm. Results: In the region between the phantom surface and the depth of maximum dose, the depth-dose decreases as the SSD increases for all electron beam energies. The effects of extended SSD in the region beyond the depth of maximum dose are unobservable and, hence, considered minimal. Extended SSD effects are apparent for higher electron beam energy with small cone size causing the depth of maximum dose and the rapid dose fall-off region to shift deeper into the phantom. However, the change in the depth-dose curve is small. On the other hand, the rapid dose fall-off region is essentially unaltered when the large cone is used. The penumbra enlarges and electron beam flatness deteriorates with increasing SSD

  20. Beam dynamics and commissioning of low and medium energy H- beam at Linac4

    CERN Document Server

    Satri, Masoomeh Yarmohammadi; Lombardi, Alessandra; Lamehi-Rachti , Mohammad

    The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...

  1. A program in medium-energy nuclear physics. Progress report, January 1, 1992--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Berman, B.L.; Dhuga, K.S.

    1994-08-01

    This renewal proposal requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past three years we have focused our attention ever more sharply on experiments with real tagged photons at CEBAF. We are part of the Hall-B Collaboration at CEBAF. We are co-spokespersons on two approved CEBAF experiments, Photoreactions on {sup 3}He and Photoabsorption and Photofission of Nuclei, and we are preparing another, Nondiffractive Photoproduction of the {rho} Meson with Linearly Polarized Photons, for presentation to the next CEBAF PAC. We are part of the team that is instrumenting the Photon Tagger and a high-energy tagged polarized-photon beam for Hall B; some of the instrumentation for these projects is being built at our Nuclear Detector Laboratory, under the auspices of The George Washington University Center for Nuclear Studies. Our recent measurements of pion scattering from {sup 3}H and {sup 3}He at LAMPF and of cluster knockout from few-body nuclei at NIKHEF have yielded very provocative results, showing the importance of the very light nuclei as a laboratory for quantifying important aspects of the nuclear many-body force. We look forward to expanding our studies of short-range forces in nuclei, particularly the very fight nuclei using electromagnetic probes and employing the extraordinary power of CEBAF and the CLAS.

  2. Experimental Medium Energy Physics annual progress report, June 1984-May 1985

    International Nuclear Information System (INIS)

    1985-01-01

    During the past year the principal activities of the CMU Medium Energy Physics Group have included the running of three previously approved experiments, the development of hardware and software for these experiments, and final analysis of previously accumulated data. In a two week run at LEAR at the beginning of this year 100 data tapes were collected on experiment PS-185. This spring sigma hyperon production in Lithium was studied in a run on AGS experiment E-774. We are currently setting up AGS experiment E-788 in an investigation of Lambda weak decay in Helium hypernuclei. In addition a new experiment to search for strangeness S = -2 dibaryon production was presented and approved by the AGS program advisory committee for 1000 h (E-813). For these experiments extensive hardware and software development has taken place, requiring much of the group's effort. Analysis of LEAR experiment PS-185 is in full progress at CMU. Both the weak decay studies of 12 C (AGS E-759) and the pion annihilation studies in Lithium and Oxygen have now been fully analyzed with the results submitted for publication in several papers. All of these activities are described. Specific hardware and software projects are discussed

  3. Microscopic study of elastic and inelastic ALPHA-nucleus scattering at medium energies

    International Nuclear Information System (INIS)

    Dao Tien Khoa; Hoang Si Than; Do Cong Cuong; Ngo Van Luyen; Nguyen Ngoc Quynh; Nguyen Tuan Anh

    2007-01-01

    Analyses of the inelastic α + 12 C scattering at medium energies have indicated that the strength of the Hoyle state (the isoscalar O 2 + excitation at 7.65 MeV in 12 C) seems to exhaust only 7 to 9% of the monopole energy weighted sum rule (EWSR), compared to about 15% of the EWSR extracted from inelastic electron scattering data. The full monopole transition strength predicted by realistic microscopic α-cluster models of the Hoyle state can be shown to exhaust up to 22% of the EWSR. To explore the missing monopole strength in the inelastic α + 12 C scattering, we have performed a fully microscopic folding model analysis of the inelastic α + 12 C scattering at E lab =104 to 240 MeV using the 3-α resonating group wave function of the Hoyle state obtained by Kamimura, and a complex density-dependent M3Y interaction newly parametrized based on the Brueckner Hartree Fock results for nuclear matter. Our folding model analysis has shown consistently that the missing monopole strength of the Hoyle state is not associated with the uncertainties in the analysis of the α + 12 C scattering, but is most likely due to the short lifetime and weakly bound structure of this state which significantly enhances absorption in the exit α + 12 C * (O 2 + ) channel. (author)

  4. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  5. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  6. A program in medium-energy nuclear physics. Renewal proposal and progress report August 1, 1994

    International Nuclear Information System (INIS)

    Berman, B.L.; Dhuga, K.S.

    1994-01-01

    This renewal proposal requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past three years we have focused our attention ever more sharply on experiments with real tagged photons at CEBAF. We are part of the Hall-B Collaboration at CEBAF. We are co-spokespersons on two approved CEBAF experiments, Photoreactions on 3 He and Photoabsorption and Photofission of Nuclei, and we are preparing another, Nondiffractive Photoproduction of the ρ Meson with Linearly Polarized Photons, for presentation to the next CEBAF PAC. We are part of the team that is instrumenting the Photon Tagger and a high-energy tagged polarized-photon beam for Hall B; some of the instrumentation for these projects is being built at our Nuclear Detector Laboratory, under the auspices of The George Washington University Center for Nuclear Studies. Our recent measurements of pion scattering from 3 H and 3 He at LAMPF and of cluster knockout from few-body nuclei at NIKHEF have yielded very provocative results, showing the importance of the very light nuclei as a laboratory for quantifying important aspects of the nuclear many-body force. We look forward to expanding our studies of short-range forces in nuclei, particularly the very fight nuclei using electromagnetic probes and employing the extraordinary power of CEBAF and the CLAS

  7. Experimental medium-energy physics. Annual progress report, June 1982-May 1983

    International Nuclear Information System (INIS)

    1983-01-01

    During the past year the principal activities of the C-MU Medium Energy Physics Group have included running of previously approved experiments, the development of hardware and software for new experiments, continued analysis of previously accumulated data, and the development of model calculations to be compared with these data. Major data runs have taken place on two hypernuclear experiments (AGS 759 and 760) at the AGS, and testing and running will soon begin at CERN/LEAR for our antiproton work (LEAR PS-185). For these experiments extensive hardware and software development has taken place, requiring much of the group's effort. This activity is described in detail. In our ongoing studies of the pion annihilation mechanism, the emphasis has shifted from two-body processes to those involving three-body final states. A large effort is being devoted to the analysis of our (π,pp), (π,pd) and pionic fission data accumulated at LAMPF on targets of 6 7 Li, 14 N, 16 O and CD 2 . During the past year we have also completed analysis of 800 MeV/c π scattering data from C and Ca nuclei, an experiment done simultaneously with our earlier kaon scattering measurement. In addition, considerable effort has been devoted to development of model calculations for the (π,2p) and anti pp → anti #betta# #betta# reactions; these are described

  8. Statistical calculation of complete events in medium-energy nuclear collisions

    International Nuclear Information System (INIS)

    Randrup, J.

    1984-01-01

    Several heavy-ion accelerators throughout the world are presently able to deliver beams of heavy nuclei with kinetic energies in the range from tens to hundreds of MeV per nucleon, the so-called medium or intermediate energy range. At such energies a large number of final channels are open, each consisting of many nuclear fragments. The disassembly of the collision system is expected to be a very complicated process and a detailed dynamical description is beyond their present capability. However, by virtue of the complexity of the process, statistical considerations may be useful. A statistical description of the disassembly yields the least biased expectations about the outcome of a collision process and provides a meaningful reference against which more specific dynamical models, as well as the data, can be discussed. This lecture presents the essential tools for formulating a statistical model for the nuclear disassembly process. The authors consider the quick disassembly (explosion) of a hot nuclear system, a so-called source, into multifragment final states, which complete according to their statistical weight. First some useful notation is introduced. Then the expressions for exclusive and inclusive distributions are given and the factorization of an exclusive distribution into inclusive ones is carried out. In turn, the grand canonical approximation for one-fragment inclusive distributions is introduced. Finally, it is outlined how to generate a statistical sample of complete final states. On this basis, a model for statistical simulation of complete events in medium-energy nuclear collisions has been developed

  9. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    International Nuclear Information System (INIS)

    Abeyratne, S.; Accardi, A.; Ahmed, S.; Barber, D.; Bisognano, J.; Bogacz, A.; Castilla, A.; Chevtsov, P.; Corneliussen, S.; Deconinck, W.; Degtiarenko, P.; Delayen, J.; Derbenev, Ya.; DeSilva, S.; Douglas, D.; Dudnikov, V.; Ent, R.; Erdelyi, B.; Evtushenko, P.; Fujii, Yu; Filatov, Yury; Gaskell, D.; Geng, R.; Guzey, V.; Horn, T.; Hutton, A.; Hyde, C.; Johnson, R.; Kim, Y.; Klein, F.; Kondratenko, A.; Kondratenko, M.; Krafft, G.; Li, R.; Lin, F.; Manikonda, S.; Marhauser, F.; McKeown, R.; Morozov, V.; Dadel-Turonski, P.; Nissen, E.; Ostroumov, P.; Pivi, M.; Pilat, F.; Poelker, M.; Prokudin, A.; Rimmer, R.; Satogata, T.; Sayed, H.; Spata, M.; Sullivan, M.; Tennant, C.; Terzic, B.; Tiefenback, M.; Wang, H.; Wang, S.; Weiss, C.; Yunn, B.; Zhang, Y.

    2012-01-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  10. Experimental medium energy physics. Annual progress report, June 1983-May 1984

    International Nuclear Information System (INIS)

    1984-01-01

    During the past year the principal activities of the C-MU Medium Energy Physics Group have included running of previously approved experiments, the development of hardware and software for new experiments, continued analysis of previously accumulated data, and the development of model calculations to be compared with these data. Major data runs have taken place on a hypernuclear experiment (AGS 781) at the AGS, and on an antiproton run at CERN/LEAR (PS-185). In addition, planning is continuing for further hypernuclear lifetime measurements in 4 5 He, and for a possible search for the H-particle. For these experiments extensive hardware and software development has taken place, requiring much of the group's effort. In our ongoing studies of the pion annihilation mechanism, the emphasis has shifted from two-body processes to those involving three-body final states. A large effort is being devoted to the analysis of our (π,xy) data accumulated at LAMPF on targets of 6 7 Li, 14 N, 16 O and CD 2 . During the year considerable effort was devoted to Monte Carlo simulations of the rare weak decay K + → π + nu anti nu; this experiment has been approved as AGS 787. In addition, work has continued on the development of model calculations of the (π,pp) and anti pp → anti ΛΛ reactions

  11. The COHERENT Experiment at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Steven Ray [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  12. Calculation of displacement, gas, and transmutation production in stainless steel irradiated with spallation neutrons

    International Nuclear Information System (INIS)

    Wechsler, M.A.; Ramavarapu, R.; Daugherty, E.L.; Palmer, R.C.; Bullen, D.B.; Sommer, W.F.

    1993-01-01

    Calculations using the high-energy transport code LAHET have been made for the production of displacements, helium gas, and transmuted atoms for stainless steel (Fe-18 wt % Cr-10 wt % Ni) irradiated with spallation neutrons at energies of 100 to 1600 MeV. The damage energy cross section increased from about 250 to 350 b keV for increasing neutron energies from 100 to 1600 MeV with a spallation spectrum average of 281 barns-keV. For a displacement threshold energy of 33 eV, the corresponding spectrum-average displacement cross section is 3400 barns. The PKA spectrum was found to be fairly independent of the incident neutron energy, with an average damage energy of 0.25--0.30 MeV. The helium production cross section increased monotonically with increasing neutron energy, with a spectrum average of 0.32 barns. The maximum transmutation yield was observed near manganese (Z = 25), corresponding to a production cross section of about 0.2 barns. Relevance to fusion materials is discussed

  13. Spallation study with proton beams around 1 GeV: neutron production

    International Nuclear Information System (INIS)

    Boudard, A.; Borne, F.; Brochard, F.; Crespin, S.; Drake, D.; Duchazeaubeneix, J.C.; Durand, D.; Durand, J.M.; Frehaut, J.; Hanappe, F.; Kowalski, L.; Lebrun, C.; Lecolley, F.R.; Lecolley, J.F.; Ledoux, X.; Lefebvres, F.; Legrain, R.; Leray, S.; Louvel, M.; Martinez, E.; Meigo, S.I.; Menard, S.; Milleret, G.; Patin, Y.; Petibon, E.; Plouin, F.; Pras, P.; Schapira, J.P.; Stuttge, L.; Terrien, Y.; Thun, J.; Uematsu, M.; Varignon, C.; Volant, C.; Whittal, D.M.; Wlazlo, W.

    2000-01-01

    Experiments performed at Lab. Nat. SATURNE on neutron produced by spallation from proton beams in the range 0.8 - 1.6 GeV are presented. Experimental data compared with codes show a significant improvement of the recent intra-nuclear cascade (J. Cugnon). This is also true in the same way for the neutron production from thick targets. However the model underestimates the energetic neutrons produced in the backward direction and other quantities as residual nuclei cross sections are not accurately predicted

  14. A model for consecutive spallation and fragmentation reactions in inverse kinematics at relativistic energies

    International Nuclear Information System (INIS)

    Napolitani, P.; Tassan-Got, L.; Bernas, M.; Armbruster, P.

    2003-04-01

    Secondary reactions induced by relativistic beams in inverse kinematics in a thick target are relevant in several fields of experimental physics and technology, like secondary radioactive beams, production of exotic nuclei close to the proton drip line, and cross-section measurements for applications of spallation reactions for energy production and incineration of nuclear wastes. A general mathematical formulation is presented and successively applied as a tool to disentangle the primary reaction yields from the secondary production in the measurement of fission of a 238 U projectile impinging on a proton target at the energy of 1 A GeV. (orig.)

  15. PRISMA - a spectrometer for the measurement of coherent excitations on a pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Andreani, C.; Cilloco, F.; Petrillo, C.; Sacchetti, F.; Windsor, C.G.

    1986-04-01

    The measurement of nuclear and magnetic excitation spectra from single crystal samples remains central to condensed matter physics. The requirements in terms of the range and resolution of the scattering vector Q and energy transfer h/2πω are reviewed and typical experiments with a well defined cross-section are chosen. The performance and limitations of existing instruments are reviewed. A design for a new spectrometer, PRISMA, to be installed on the UK spallation neutron source, ISIS, is presented. Its performance for chosen experiments is given in terms of the Q and h/2πω range covered in a single scan, the resolution and the count rate. (author)

  16. Isobaric yield curves at A=72 from the spallation of medium mass isotopes by intermediate energy protons

    International Nuclear Information System (INIS)

    Tobin, M.J.; Karol, P.J.; Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213)

    1989-01-01

    Cross sections of radionuclides in the A∼72 mass region produced by the interaction 800 MeV protons with 89 Y, /sup 92,96,100/Mo, and 130 Te were measured. Particular emphasis was paid to the measurement of short-lived products far from β stability. The cross sections were used to generate isobaric yield curves at A=72. Precise characterization of these curves showed that the distribution parameters (mean, standard deviation, skewness) vary in a regular fashion with target N/Z. For 89 Y, relative isobaric curves produced by 500 and 800 MeV protons were found to be identical within experimental error. The yield distributions for the /sup 92,96,100/Mo targets also scaled with those from an earlier alpha-induced spallation study. These findings lend strong support to the argument that the spallation mechanism is independent of projectile energy and target composition

  17. Medium-Energy Particle experiments (MEPs) for the Exploration of energization and Radiation in Geospace (ERG) mission

    Science.gov (United States)

    Kasahara, S.; Yokota, S.; Mitani, T.; Asamura, K.; Hirahara, M.; Shibano, Y.; Yamamoto, K.; Takashima, T.

    2017-12-01

    ERG (Exploration of energization and Radiation in Geospace) is the geospace exploration spacecraft, which was launched on 20 December 2016. The mission goal is to unveil the physics behind the drastic radiation belt variability during space storms. One of key observations is the measurement of ions and electrons in the medium-energy range (10-200 keV), since these particles excite EMIC, magnetosonic, and whistler waves, which are theoretically suggested to play significant roles in the relativistic electron acceleration and loss. Medium-Energy Particle experiments - electron analyser (MEP-e) measures the energy and the direction of each incoming electron in the range of 7 to 87 keV. The sensor covers 2π radian disk-like field-of-view with 16 detectors, and the solid angle coverage is achieved by using spacecraft spin motion. The electron energy is independently measured by an electrostatic analyser and avalanche photodiodes, enabling the significant background reduction. Medium-Energy Particle experiments - ion mass analyzer (MEP-i) measures the energy, mass, and charge state of the direction of each incoming ion in the medium-energy range (180 keV/q). MEP-i thus provides the velocity distribution functions of medium-energy ions (e.g., protons and oxygens), from which we can obtain significant information on local ion energization and pitch angle scattering in the inner magnetosphere. Heavy ion measurements can also play an important role to restrict global mass transport including the ionosphere and the plasmasheet. Here we show the technical approaches, data output, and highlights of initial observations.

  18. Experimental studies of spallation on thin target; Etudes experimentales de la spallation en cible mince

    Energy Technology Data Exchange (ETDEWEB)

    Borne, F.; Crespin, S.; Drake, D.; Frehaut, J.; Ledoux, X.; Lochard, J.P.; Martinez, E.; Patin, Y.; Petibon, E.; Pras, Ph. [CEA/DAM-Ile de France, Dept. de Physique Theorique et Appliquee, DPTA, 91 - Bruyeres-Le-Chatel (France); Boudard, A.; Legrain, R.; Leray, S.; Terrien, Y. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee, DAPNIA, 91 - Gif-sur-Yvette (France); Bouyer, P.; Brochard, F.; Duchazeaubeneix, J.C.; Durand, J.M.; Meigo, S.I.; Milleret, G.; Thun, J.; Whittal, D.M.; Wlazlo, W. [Laboratoire National Saturne - Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Lebrun, C.; Lecolley, J.F.; Lecolley, F.R.; Lefebvres, F.; Louvel, M.; Varignon, C. [Caen Univ., Lab. de Physique Corpusculaire, 14 (France); Menard, S. [Institut de Physique Nucleaire, IN2P3/CNRS, 91 - Orsay (France); Stugge, L. [Institut de Recherches Subatomiques, IReS, 67 - Strasbourg (France); Hanappe, F. [IIM, Bruxelles (Belgium)

    2000-07-01

    Angular distribution of spallation neutrons induced by protons (0.8, 1.2 and 1.6 GeV) and deuterons (0.8 and 1.6 GeV) beams on various thin targets have been measured at SATURNE (CEA Saclay/France) with two complementary experimental techniques: the time-of-flight measurement with tagged incident protons for low energy neutrons (2-400 MeV) and the use of a hydrogen converter associated are analysed, interpreted and finally compared with theoretical previsions of simulation codes using the TIERCE system including the intranuclear cascade codes of BERTINI and CUGNON. (authors)

  19. Subthreshold pion production study with heavy ions at low and medium energy

    International Nuclear Information System (INIS)

    Rebreyend, D.

    1988-02-01

    In the domain of subthreshold pion production with heavy ions at low and medium energy (40-100 MeV/u), only Π 0 have been up to now, extensively studied. The incompleteness of the charged pion data and especially the lack of results for pions of energy less than 30 MeV have led to conceive the magnetic spectrometer SPIC. In the present work, we demonstrate that this spectrometer is particularly well suited for the detection of low energy charged pions (Inferior threshold of detection: T Π = 7 MeV), emitted around 0 0 in heavy ion collisions. Principle and performances, successfully tested at 38 and 93 MeV/u, are described in detail. The main characteristics of a Π 0 spectrometer, that was used to realize a comparative experiment of Π 0 production, are then given. The last chapter is devoted to experimental results. First, we present the results obtained with the 16 0 beam of 38 MeV/u of the SARA accelerator, in charged pions (Al and Ni targets) and in Π 0 (Al and Au targets). A comparison of the data Π - /Π 0 seems to indicate that coulomb effects are surprisingly small. Finally, we report the data obtained with the 16 0 beam of 93 MeV/u of GANIL. In contrast with low energy data, coulomb effects are very strong (ratio Π - /Π + = 100 for pions of low energy with heavy targets) and allowed us to extract informations on the geometry of the collision [fr

  20. A program in medium energy nuclear physics. Progress report and continuation proposal October 1, 1995

    International Nuclear Information System (INIS)

    Berman, B.L.; Dhuga, K.S.

    1995-01-01

    This progress report and continuation proposal summarizes our achievements for the period from July 1, 1994 to September 30, 1995 and requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past year we have focused our attention ever more sharply on experiments with real tagged photons, and we have successfully defended two new experimental proposals: Photofission of Actinide and Preactinide Nuclei at SAL and Photoproduction of the ρ Meson from the Proton with Linearly Polarized Photons at CEBAF. (We are co-spokespersons on two previously approved Hall-B experiments at CEBAF, Photoreactions on 3 He and Photoabsorption and Photofission of Nuclei.) As part of the team that is instrumenting the Photon Tagger for Hall B; we report excellent progress on the focal-plane detector array that is being built at our Nuclear Detector Laboratory, as well as progress on our plans for instrumentation of a tagged polarized-photon beam using coherent bremsstrahlung. Also, we shall soon receive a large computer system (from the SSC) which will form the basis for our new Data Analysis Center, which, like the Nuclear Detector Laboratory, will be operated under the auspices of The George Washington University Center for Nuclear Studies. Finally, during the past year we have published six more papers on the results of our measurements of pion scattering at LAMPF and of electron scattering at NIKHEF and Bates, and we can report that nearly all of the remaining papers documenting this long series of measurements are in the pipeline

  1. High resolution medium energy ion scattering study of silicon oxidation and oxy nitridation

    International Nuclear Information System (INIS)

    Gusev, E.P.; Lu, H.C.; Garfunkel, E.; Gustafsson, T.

    1998-01-01

    Full text: Silicon oxide is likely to remain the material of choice for gate oxides in microelectronics for the foreseeable future. As device become ever smaller and faster, the thickness of these layers in commercial products is predicted to be less than 50 Angstroms in just a few years. An understanding of such devices will therefore likely to be based on microscopic concepts and should now be investigated by atomistic techniques. With medium energy ion scattering (MEIS) using an electrostatic energy analyzer, depth profiling of thin (<60 Angstroms) silicon oxide films on Si(100) with 3 - 5 Angstroms depth resolution in the near region has been done. The growth mechanism of thin oxide films on Si(100) has been studied, using sequential oxygen isotope exposures. It is found that the oxide films are stoichiometric to within approx. 10 Angstroms of the interface. It is also found that the oxidation reactions occur at the surface, in the transition region and at interface, with only the third region being included in the conventional (Deal-Grove) model for oxide formation. Nitrogen is sometimes added to gate oxides, as it has been found empirically that his improves some of the electrical properties. The role, location and even the amount of nitrogen that exists in such films are poorly understood, and represent interesting analytical challenges. MEIS data will be presented that address these questions, measured for a number of different processing conditions. We have recently demonstrated how to perform nitrogen nano-engineering in such ultrathin gate dielectrics, and these results will also be discussed

  2. Experimental medium energy physics. Annual progress report, June 1985-May 1986

    International Nuclear Information System (INIS)

    1986-01-01

    During the past year the CMU Medium Energy Physics Group has been involved in the running of three experiments. In addition, software and hardware for two new experiments scheduled to take place over the next few months have been developed. A new proposal, ''Search for a Strangeness -2 Dibaryon Using a 3 He Target,'' was submitted to the Brookhaven Program Advisory Committee and recently approved. In the spring of this year, studies of hypernuclear decay shifted to few body systems. Data on the decay of 5 /sub Λ/He was taken along with preliminary data on 4 /sub Λ/He. This was followed a month later by a run at LEAR to study anti ΛΛ production. The high statistics runs should allow extraction of the spin correlation coefficients not previously obtainable and also includes a detailed study at threshold. In December, a second run at LEAR began the start of anti ΛΣ production studies and tested the ability to measure K/sub s/K/sub s/ production; this channel will be used to search for the ξ(2230) in the summer of 1986. In preparation for the ξ(2230) search, extensive Monte Carlo simulations have been performed at CMU to aid in the design of the detector system. Data analysis routines from hyperon production studies were modified and the first K/sub s/K/sub s/ event was extracted from existing data. The CMU group has had extensive involvement in an experiment to search for strangeness production relativistic heavy ion collisions. Hardware to provide the online analysis and data storage facilities for the experiment has been purchased and developed. CMU personnel has also worked on the development of software with the flexibility required to monitor this complex experiment. 37 refs., 53 figs., 8 tabs

  3. Experimental medium energy physics: Annual progress report, June 1986-May 1987

    International Nuclear Information System (INIS)

    1987-01-01

    During the past year the Carnegie Mellon University (CMU) Medium Energy Physics Group activities included five experimental programs, each at different stages of development. The analyses of data from two previous experiments were completed over the last year; a recent doctoral thesis represents a milestone in our study of the weak decays of hypernuclei. Software and hardware support was continued and data analysis initiated for the two experiments which received running time during this period. The status of the H dibaryon search proposals changed from conditional approval to full approval when funds were allocated for the new kaon beam line required for the experiments. The measurements of anti ΛΛ production at LEAR (PS-185) have been completed. A study of the polarization and angular distributions near threshold have been submitted for publication and an analysis of a CP test of the decay asymmetry parameters is complete. Results of data taken last year are being finalized. The analysis of data on the decay of 5 /sub Λ/He (AGS E-788) taken at BNL has also been completed in the past year and a publication is in preparation. Last summer the focus of the PS185 collaboration shifted from anti ΛΛ to a search for evidence of the ξ(2230) using the anti pp → K/sub s/K/sub s/ channel. Modifications designed to increase the acceptance of the LEAR anti ΛΛ experimental apparatus for this reaction were completed and a scan of the energy region near 2230 MeV took place in August. The data from this experiment are being analyzed at CMU. The CMU group has had extensive involvement in an experiment to search for strangeness production relativistic heavy ion collisions (CERN NA36). CMU personnel have installed computer hardware and worked on the development of new software designed for the on-line monitoring. The work was completed in time for the first running of the experiment in November of 1986

  4. Study of spallation residues of gold at 0.8 GeV/N in reverse kinematics

    International Nuclear Information System (INIS)

    Tassan-Got, L.; Mustapha, B.; Rejmund, F.

    2000-01-01

    Spallation residue cross-sections of gold have been measured in reverse kinematics. For the first time isotopic distributions have been obtained for such a heavy nucleus at a level of accuracy of 10 %. When compared to model calculations the results appear to be very sensitive to the distribution of excitation energy in the fast step of the reaction. This allows an insight on the mechanism of the energy and momentum deposition. (authors)

  5. Spallation nucleosynthesis by accelerated charged-particles

    International Nuclear Information System (INIS)

    Goriely, S.

    2008-01-01

    Recent observations have suggested the presence of radioactive elements, such as Pm and 84≤Z≤99 elements) at the surface of the magnetic star HD101065, also known as Przybylski's star. This star is know to be a chemically peculiar star and its anomalous 38 30 heavy elements can be achieved. In this nucleosynthesis process, the secondary-neutron captures play a crucial role. The most attractive feature of the spallation process is the systematic production of Pm and Tc and the possible synthesis of actinides and sub-actinides.Based on such a parametric model, it is also shown that intense fluences of accelerated charged-particles interacting with surrounding material can efficiently produce elements heavier than iron. Different regimes are investigated and shown to be at the origin of p- and s-nuclei in the case of high-fluence low-flux events and r-nuclei for high-fluence high-flux irradiations. The possible existence of such irradiation events need to be confirmed by hydrodynamics simulations, but most of all by spectroscopic observations through the detection of short-lived radio-elements

  6. The Spallation Neutron Source accelerator system design

    Science.gov (United States)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  7. Synchrotron based spallation neutron source concepts

    International Nuclear Information System (INIS)

    Cho, Y.

    1998-01-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required ∼ 1 micros. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources

  8. The European Spallation Source (ESS) project

    International Nuclear Information System (INIS)

    Clausen, K.N.

    2001-01-01

    The European Spallation Source (ESS) is a proposal for a next generation neutron source in Europe. The first phase of the project - establishing the scientific case and the technical feasibility - is now followed by an intensive period of R and D activities. Three target station options: l) a 5 MW 50 Hz short pulse station, 2) a 1 MW 10 Hz short pulse station and 3) a 4 to 5 MW 16 2/3 Hz 2.5 ms long pulse station, and the use of novel advanced cold moderators will be studied. A superconducting option for the accelerator will be investigated in a Europe-wide feasibility study for a multipurpose facility (CONCERT) with potential applications in areas such as neutron scattering, high power irradiation, R and D on transmutation and radioactive beams. It will explore possible synergies of such a facility compared with a standalone solution for the ESS. The milestones for the next three years are: June 2001 - Decision on neutron parameters and target station options, June 2002 - Conclusion of the Concert multipurpose accelerator study and June 2003 - Proposal ready for submission to funding agencies. The facility could be ready for operation around 2010. (author)

  9. Spallation neutron production and the current intra-nuclear cascade and transport codes

    International Nuclear Information System (INIS)

    Filges, D.; Goldenbaum, F.

    2001-01-01

    A recent renascent interest in energetic proton-induced production of neutrons originates largely from the inception of projects for target stations of intense spallation neutron sources, like the planned European Spallation Source (ESS), accelerator-driven nuclear reactors, nuclear waste transmutation, and also from the application for radioactive beams. In the framework of such a neutron production, of major importance is the search for ways for the most efficient conversion of the primary beam energy into neutron production. Although the issue has been quite successfully addressed experimentally by varying the incident proton energy for various target materials and by covering a huge collection of different target geometries --providing an exhaustive matrix of benchmark data-- the ultimate challenge is to increase the predictive power of transport codes currently on the market. To scrutinize these codes, calculations of reaction cross-sections, hadronic interaction lengths, average neutron multiplicities, neutron multiplicity and energy distributions, and the development of hadronic showers are confronted with recent experimental data of the NESSI collaboration. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross-sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target generally within less than 10% deviation, while production cross-section measurements for light charged particles on thin targets point out that appreciable distinctions exist within these models. (orig.)

  10. Spallation neutron production and the current intra-nuclear cascade and transport codes

    Science.gov (United States)

    Filges, D.; Goldenbaum, F.; Enke, M.; Galin, J.; Herbach, C.-M.; Hilscher, D.; Jahnke, U.; Letourneau, A.; Lott, B.; Neef, R.-D.; Nünighoff, K.; Paul, N.; Péghaire, A.; Pienkowski, L.; Schaal, H.; Schröder, U.; Sterzenbach, G.; Tietze, A.; Tishchenko, V.; Toke, J.; Wohlmuther, M.

    A recent renascent interest in energetic proton-induced production of neutrons originates largely from the inception of projects for target stations of intense spallation neutron sources, like the planned European Spallation Source (ESS), accelerator-driven nuclear reactors, nuclear waste transmutation, and also from the application for radioactive beams. In the framework of such a neutron production, of major importance is the search for ways for the most efficient conversion of the primary beam energy into neutron production. Although the issue has been quite successfully addressed experimentally by varying the incident proton energy for various target materials and by covering a huge collection of different target geometries --providing an exhaustive matrix of benchmark data-- the ultimate challenge is to increase the predictive power of transport codes currently on the market. To scrutinize these codes, calculations of reaction cross-sections, hadronic interaction lengths, average neutron multiplicities, neutron multiplicity and energy distributions, and the development of hadronic showers are confronted with recent experimental data of the NESSI collaboration. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross-sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target generally within less than 10% deviation, while production cross-section measurements for light charged particles on thin targets point out that appreciable distinctions exist within these models.

  11. Development of nuclear design criteria for neutron spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Sordo, F.; Abanades, A. [E.T.S. Industriales, Madrid Polytechnic University, UPM, J.Gutierrez Abascal, 2 -28006 Madrid (Spain)

    2008-07-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  12. Development of nuclear design criteria for neutron spallation sources

    International Nuclear Information System (INIS)

    Sordo, F.; Abanades, A.

    2008-01-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  13. Analysis of the spallation residues and the associated particles in the reaction Fe+p at 1 GeV per nucleon

    International Nuclear Information System (INIS)

    Le Gentil, E.

    2006-09-01

    SPALADIN is a new type of spallation experiment that has been carried out at the GSI accelerator facility (Germany) in order to improve the modelling of the spallation reaction. This experiment is based on the coincidence measurement in inverse kinematics of the spallation residues and the de-excitation fragments. This work presents the analysis of Fe 56 + p reaction at 1 GeV per nucleon. Results on cross-sections and heavy residue velocity spectra are compared to previous data and enabled us to characterize the setup. Most of the element production cross-sections have been obtained with an uncertainty below 10 per cent. In the particular case of helium, its production cross-section has been measured to be σ(1 GeV) = (598 ± 67) mb. The knowledge of this cross-section is important to assess the irradiation damage undergone by the window separating the accelerator from the target. The study of the de-excitation of the pre-fragment shows that the evaporation of light particles (Z ≤ 2) is the main way of de-excitation whatever the collision centrality. However, the de-excitation through the emission of intermediate mass fragments is observed in 5% of the events and most of these events correspond to a very asymmetric binary breaking. The velocity distributions of light residues (with regards to the mass of the projectile) show a significant disagreement with the average velocities predicted by spallation codes. (A.C.)

  14. Accumulation of the Hf-178m2 isomeric nuclei through spallation with internediate-energy protons of tantalum and rhenium targets

    Czech Academy of Sciences Publication Activity Database

    Karamian, S. A.; Adam, Jindřich; Filossov, DV.; Henzlová, D.; Henzl, V.; Kalinnikov, V. B.; Lebedev, NA.; Novgorodov, A. F.; Collins, CB.; Popescu, II.; UR, CA.

    2002-01-01

    Roč. 489, 1/3 (2002), s. 448-468 ISSN 0168-9002 R&D Projects: GA AV ČR KSK2067107 Keywords : protons * spallation * target activation * radionuclides * isomers * cross-section * multistep model Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.167, year: 2002

  15. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.

    Science.gov (United States)

    Ebenau, Melanie; Radeck, Désirée; Bambynek, Markus; Sommer, Holger; Flühs, Dirk; Spaan, Bernhard; Eichmann, Marion

    2016-08-01

    Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm(3)) made from the commonly used plastic scintillator BC400. Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a (60)Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks' formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks' formula was determined to be kB = (12.3 ± 0.9) mg MeV(-1) cm(-2). The energy response was quantified relative to the response to (60)Co which is the common radiation quality for the calibration of therapy dosemeters. The observed energy dependence could be well explained with the

  16. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy

    Energy Technology Data Exchange (ETDEWEB)

    Ebenau, Melanie, E-mail: melanie.ebenau@tu-dortmunde.de; Sommer, Holger; Spaan, Bernhard; Eichmann, Marion [Fakultät Physik, Technische Universität Dortmund, Otto-Hahn Str. 4a, 44221 Dortmund (Germany); Radeck, Désirée; Bambynek, Markus [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Flühs, Dirk [Universitätsklinikum Essen, Hufelandstr. 55, 45147 Essen (Germany)

    2016-08-15

    Purpose: Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm{sup 3}) made from the commonly used plastic scintillator BC400. Methods: Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a {sup 60}Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks’ formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. Results: The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks’ formula was determined to be kB = (12.3 ± 0.9) mg MeV{sup −1} cm{sup −2}. Conclusions: The energy response was quantified relative to the response to {sup 60}Co which is the common radiation quality for the calibration of therapy dosemeters. The

  17. Moderator materials for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Charlton, L.A.

    1999-01-01

    The Spallation Neutron Source (SNS) is a neutron source providing intense neutron fluxes that will be used for performing a large variety of neutron scattering experiments. SNS is to be completed and start operation in 2005. Protons will be accelerated to 1 GeV, stored in an accumulator ring, and then injected into a neutron-producing target. After leaving the target (Hg in the ca/se of SNS), the neutrons are prepared for experiments by first using a moderator to impose energy and width requirements on the neutron pulse. One of the most important ingredients is the moderator material. Four materials that are commonly used and that were considered for use in SNS are liquid hydrogen (L-H 2 ), liquid water (L-H 2 O), liquid methane (L-CH 4 ), and solid methane (S-CH 4 ). The spectra (neutron current versus neutron energy) for these four materials are shown. As may be seen, at low neutron energies ( 4 , which produces up to four times as many neutrons in this energy range as L-H 2 . The problem with the material is the internal storage of energy that can be spontaneously and explosively released. At energies of just above 10 MeV, the most effective moderator material is L-CH 4 . Polymerization problems, however, preclude its use at high powers (again such as in SNS), where the buildup of undesirable materials becomes prohibitive. This is, however, an important energy range for neutron experiments. Preliminary consideration is being given to a composite moderator that contains two adjacent sections, one of L-H 2 and one of L-H 2 O, which produces a spectrum that is very similar to L-CH 4

  18. Spallation reactions and energy deposition in heavy target materials comparison of measurements and MC-calculations

    International Nuclear Information System (INIS)

    Filges, D.; Enke, M.; Galin, J.

    2001-01-01

    A renascence of interest for energetic proton induced production of neutrons originates recently by the inception of new projects for target stations of intense spallation neutron sources (like the planned European Spallation Source ESS), accelerator-driven nuclear reactors, nuclear waste transmutation and also the application for radioactive beams. Here we verify the predictive power of transport codes currently on the market by confronting observables and quantities of interest with an exhaustive matrix of benchmark data essentially coming from two experiments being performed at the Cooler Synchrotron COSY at Juelich. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin(!) targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target. While also the observables related to the energy deposition in thick targets are in a good agreement with the model predictions, the production cross section measurements however for light charged particles on thin targets point out that problems exist within these models. (author)

  19. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  20. On the role of secondary pions in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Mancusi, Davide [Paris-Saclay Univ., Gif-sur-Yvette (France). Den-Service d' Etude des Reacteurs et de Mathematiques Appliquees (SERMA); Lo Meo, Sergio [ENEA, Research Centre ' ' Ezio Clementel' ' , Bologna (Italy); INFN, Bologna (Italy); Colonna, Nicola [INFN, Bari (Italy); Boudard, Alain; David, Jean-Christophe; Leray, Sylvie [Paris-Saclay Univ., Gif-sur-Yvette (France). IRFU, CEA; Cortes-Giraldo, Miguel Antonio; Lerendegui-Marco, Jorge [Sevilla Univ. (Spain). Facultad de Fisica; Cugnon, Joseph [Liege Univ. (Belgium). AGO Dept.; Massimi, Cristian [INFN, Bologna (Italy); Bologna Univ. (Italy). Physics and Astronomy Dept.; Vlachoudis, Vasilis [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2017-05-15

    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the nTOF lead spallation target, irradiated with 20 GeV/c protons, neutral pions are involved in the production of ∝ 90% of the high-energy photons; charged pions participate in ∝ 40% of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets. (orig.)

  1. Systematics of spallation yields with a four-parameter formula

    International Nuclear Information System (INIS)

    Foshina, M.; Martins, J.B.; Tavares, O.A.P.; Di Napoli, V.

    1982-01-01

    A semi-empirical four-parameter formula is proposed in order to systematize intermediate- and high-energy proton-induced spallation yields of target nuclei covering the 50-100 mass number interval. The measured yields are reproduced by the formula with a degree of accuracy which is comparable with or better than those obtained in previous proton-spallation systematics. The formula predicts reliable values for the most probable mass number of isotopic distributions. For a number of irradiation conditions which may be encountered in practical and physical applications, estimates of proton spallation yields can be obtained by the proposed four-parameter formula with no need of high-speed machines. (M.A.F.) [pt

  2. Characterization of the radiation background at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    DiJulio, Douglas D.; Cherkashyna, Nataliia; Scherzinger, Julius; Khaplanov, Anton; Pfeiffer, Dorothea; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Kanaki, Kalliopi; Kirstein, Oliver; Hall-Wilton, Richard J.; Bentley, Phillip M.; Ehlers, Georg; Gallmeier, Franz X.; Hornbach, Donald E.; Iverson, Erik B.; Newby, Robert J.

    2016-01-01

    We present a survey of the radiation background at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, TN, USA during routine daily operation. A broad range of detectors was used to characterize primarily the neutron and photon fields throughout the facility. These include a WENDI-2 extended range dosimeter, a thermoscientific NRD, an Arktis 4 He detector, and a standard NaI photon detector. The information gathered from the detectors was used to map out the neutron dose rates throughout the facility and also the neutron dose rate and flux profiles of several different beamlines. The survey provides detailed information useful for developing future shielding concepts at spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden. (paper)

  3. On the role of secondary pions in spallation targets

    CERN Document Server

    Mancusi, Davide; Colonna, Nicola; Boudard, Alain; Cortés-Giraldo, Miguel Antonio; Cugnon, Joseph; David, Jean-Christophe; Leray, Sylvie; Lerendegui-Marco, Jorge; Massimi, Cristian; Vlachoudis, Vasilis

    2017-01-01

    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the n_TOF lead spallation target, irradiated with 20-GeV/c protons, neutral pions are involved in the production of ~90% of the high-energy photons; charged pions participate in ~40% of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets.

  4. Future prospects of imaging at spallation neutron sources

    International Nuclear Information System (INIS)

    Strobl, M.

    2009-01-01

    The advent of state-of-the-art spallation neutron sources is a major step forward in efficient neutron production for most neutron scattering techniques. Although they provide lower time-averaged neutron flux than high flux reactor sources, advantage for different instrumental techniques can be derived from the pulsed time structure of the available flux, which can be translated into energy, respectively, wavelength resolution. Conventional neutron imaging on the other hand relies on an intense continuous beam flux and hence falls short in profiting from the new development. Nevertheless, some recently developed novel imaging techniques require and some can benefit from energy resolution. The impact of the emerging spallation sources on different imaging techniques has been investigated, ways to benefit will be identified (where possible) and prospects of future imaging instruments and possible options and layouts at a spallation neutron source will be discussed and outlined.

  5. H- radio frequency source development at the Spallation Neutron Source.

    Science.gov (United States)

    Welton, R F; Dudnikov, V G; Gawne, K R; Han, B X; Murray, S N; Pennisi, T R; Roseberry, R T; Santana, M; Stockli, M P; Turvey, M W

    2012-02-01

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent ∼38 mA peak current in the linac and an availability of ∼90%. H(-) beam pulses (∼1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, ∼60 kW) of a copper antenna that has been encased with a thickness of ∼0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of ∼99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of ∼75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance∕installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to ∼100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  6. Development of the Advanced Energetic Pair Telescope (AdEPT) for Medium-Energy Gamma-Ray Astronomy

    Science.gov (United States)

    Hunter, Stanley D.; Bloser, Peter F.; Dion, Michael P.; McConnell, Mark L.; deNolfo, Georgia A.; Son, Seunghee; Ryan, James M.; Stecker, Floyd W.

    2011-01-01

    Progress in high-energy gamma-ray science has been dramatic since the launch of INTEGRAL, AGILE and FERMI. These instruments, however, are not optimized for observations in the medium-energy (approx.0.3< E(sub gamma)< approx.200 MeV) regime where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. We outline some of the major science goals of a medium-energy mission. These science goals are best achieved with a combination of two telescopes, a Compton telescope and a pair telescope, optimized to provide significant improvements in angular resolution and sensitivity. In this paper we describe the design of the Advanced Energetic Pair Telescope (AdEPT) based on the Three-Dimensional Track Imager (3-DTI) detector. This technology achieves excellent, medium-energy sensitivity, angular resolution near the kinematic limit, and gamma-ray polarization sensitivity, by high resolution 3-D electron tracking. We describe the performance of a 30x30x30 cm3 prototype of the AdEPT instrument.

  7. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  8. Validation of MC models of spallation reactions in thin and thick targets in the GeV range

    International Nuclear Information System (INIS)

    Goldenbaum, F.; Filges, D.; Neef, R.D.; Nuenighoff, K.; Paul, N.; Schaal, H.; Sterzenbach, G.; Tietze, A.; Wohlmuther, M.; Galin, J.; Letourneau, A.; Lott, B.; Peghaire, A.; Pienkowski, L.

    2001-01-01

    In the framework of new projects of intense spallation neutron sources an extensive experimental and theoretical effort is devoted to the precise prediction and optimization of the targets and shielding in terms of reaction cross sections, hadronic interaction lengths and usable neutrons produced in proton induced spallation reactions. Strong constraints on Monte-Carlo high energy transport codes are put by a measurement campaign of the NESSI (neutron scintillator and silicon detector) collaboration. While the predictive power of inter- and intra-nuclear cascade models coupled to evaporation codes and transport systems is excellent as far as neutron production in thick targets is concerned, there are considerable discrepancies not only between experiments and models, but also among the different codes themselves when regarding charged particle production in thin targets. In the current contribution a representative validation will be executed and possible deficiencies within the codes are elaborated. (orig.)

  9. Detection of supernova neutrinos at spallation neutron sources

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  10. Neutron scattering instruments for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Crawford, R.K.; Fornek, T.; Herwig, K.W.

    1998-01-01

    The Spallation Neutron Source (SNS) is a 1 MW pulsed spallation source for neutron scattering planned for construction at Oak Ridge National Laboratory. This facility is being designed as a 5-laboratory collaboration project. This paper addresses the proposed facility layout, the process for selection and construction of neutron scattering instruments at the SNS, the initial planning done on the basis of a reference set of ten instruments, and the plans for research and development (R and D) to support construction of the first ten instruments and to establish the infrastructure to support later development and construction of additional instruments

  11. Theoretical study on pp → pnπ+ reaction at medium energies

    International Nuclear Information System (INIS)

    Ouyang, Zhen; Xie, Jujun; Zou, Bingsong; Xu, Hushan

    2009-01-01

    The pp → pnπ + reaction is a channel with the largest total cross section for pp collision in COSY/CSR energy region. In this work, we investigate individual contributions from various N* and Δ* resonances with mass up to about 2 GeV for the pp → pnπ + reaction. We extend a resonance model, which can reproduce the observed total cross section quite well, to give theoretical predictions of various differential cross sections for the present reaction at T p = 2.88 GeV. It could serve as a reference for identifying new physics in the future experiments at HIRFL-CSR. (author)

  12. Mercury erosion experiments for spallation target system

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro

    2003-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct the spallation neutron source at the Tokai Research Establishment, JAERI, under the High-Intensity Proton Accelerator Project (J-PARC). A mercury circulation system has been designed so as to supply mercury to the target stably under the rated flow rate of 41 m 3 /hr. Then, it was necessary to confirm a mercury pump performance from the viewpoint of making the mercury circulation system feasible, and more, to investigate erosion rate under the mercury flow as well as an amount of mercury remained on the surface after drain from the viewpoints of mechanical strength relating to the lifetime and remote handling of mercury components. The mercury pump performance was tested under the mercury flow conditions by using an experimental gear pump, which had almost the same structure as a practical mercury pump to be expected in the mercury circulation system, and the erosion rates in a mercury pipeline as well as the amount of mercury remained on the surface were also investigated. The discharged flow rates of the experimental gear pump increased linearly with the rotation speed, so that the gear pump would work as the flow meter. Erosion rates obtained under the mercury velocity less than 1.6 m/s was found to be so small that decrease of pipeline wall thickness would be 390 μm after 30-year operation under the rated mercury velocity of 0.7 m/s. For the amount of remaining mercury on the pipeline, remaining rates of weight and volume were estimated at 50.7 g/m 2 and 3.74 Hg-cm 3 /m 2 , respectively. Applying these remaining rates of weight and volume to the mercury target, the remaining mercury was estimated at about 106.5 g and 7.9 cm 3 . Radioactivity of this remaining mercury volume was found to be three-order lower than that of the target casing. (author)

  13. Analysis of the spallation residues and the associated particles in the reaction Fe+p at 1 GeV per nucleon; Analyse des residus de spallation et des particules associees dans la reaction Fe+p a 1 GeV par nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Le Gentil, E

    2006-09-15

    SPALADIN is a new type of spallation experiment that has been carried out at the GSI accelerator facility (Germany) in order to improve the modelling of the spallation reaction. This experiment is based on the coincidence measurement in inverse kinematics of the spallation residues and the de-excitation fragments. This work presents the analysis of Fe{sup 56} + p reaction at 1 GeV per nucleon. Results on cross-sections and heavy residue velocity spectra are compared to previous data and enabled us to characterize the setup. Most of the element production cross-sections have been obtained with an uncertainty below 10 per cent. In the particular case of helium, its production cross-section has been measured to be {sigma}(1 GeV) = (598 {+-} 67) mb. The knowledge of this cross-section is important to assess the irradiation damage undergone by the window separating the accelerator from the target. The study of the de-excitation of the pre-fragment shows that the evaporation of light particles (Z {<=} 2) is the main way of de-excitation whatever the collision centrality. However, the de-excitation through the emission of intermediate mass fragments is observed in 5% of the events and most of these events correspond to a very asymmetric binary breaking. The velocity distributions of light residues (with regards to the mass of the projectile) show a significant disagreement with the average velocities predicted by spallation codes. (A.C.)

  14. Peculiarities of light ion-nucleus scattering in medium-energy region

    International Nuclear Information System (INIS)

    Berezhnoj, Yu.A.; Pilipenko, V.V.

    1982-01-01

    Differential cross-sections of 3 He and 4 He nuclei elastic scattering at E > or approximately 10 MeV/nucleon are analyzed in the quasi-classical approximation. At energies E > or approximately 25 MeV/nucleon in differential cross sections of 3 He and 4 He nuclei elastic scattering by atomic nuclei in the field of scattering angles THETA > or approximately 35 deg diffraction minima start to appear. ScuiSuch effect of Fraunhofer cross section oscillations is eluciiated on the basis of diffraction theory by means of modelfree determination of nuclear scattering phase and quantum deviation function. It is shown that the elastic scattering cross section in the field of energies under consideration represents a typical quasiclassical picture of ''iridescent'' scattering at strong absorption. The theoretical analysis performed permits to correctly describe the experimentally measured differential cross sections of 3 He nuclei elastic scattering at 109.2 MeV by 40 Ca, 58 Ni nuclei and at 118.5 NeV by 58 Ni nuclei as well as 4 He at 166 MeV by 24 Mg, 32 S and at 141.7 MeV by 40 Ca nuclei

  15. Medium-energy nuclear physics research. Final technical progress report, May 1, 1971-November 30, 1981

    International Nuclear Information System (INIS)

    Willard, H.B.

    1981-01-01

    Final results are summarized for this program with the primary emphasis on measurement of ten independent parameters for proton-proton elastic scattering at 800 MeV and four independent such parameters at 650 MeV. Inelastic proton-proton reactions have also been measured at 800 MeV. Proton-deuteron elastic scattering cross sections and polarization analyzing powers have been obtained at 800 MeV. Proton-nucleus total and total reaction cross sections were measured at 700 MeV for a number of nuclei. Major instrumentation was designed and constructed to carry out this program

  16. Proceedings of the specialists' meeting on physics and engineering of fission and spallation, 1989

    International Nuclear Information System (INIS)

    Nakagome, Yoshihiro

    1990-07-01

    The third meeting was held on August 1, and the fourth meeting was held on December 12, 1989. The reports of the international conferences on 50 years research on nuclear fission in Germany and USA, and the reports on the nuclear data of fission-produced nuclei for evaluating reactor decay heat, the atomic mass formula considering proton-neutron interaction and unstable nuclei, research on short life fission fragments by on-line isotope separation process, the reactor physics on waste annihilation disposal and fuel breeding with an accelerator, the double differential cross section of back neutrons in nuclear spallation reaction, measurement of fission cross section and fission neutron spectra with fast neutrons, U-235 fission spectra by unfolding activation foil data and production mechanisms of intermediate mass fragments from hot nuclei-emission of complex and fission fragments for 84 Kr+ 27 Al at 10.6 MeV/u were made. (K.I.)

  17. Radiation effects in structural materials of spallation targets

    Science.gov (United States)

    Jung, P.

    2002-02-01

    Effects of radiation damage by protons and neutrons in structural materials of spallation neutron sources are reviewed. Effects of atomic displacements, defect mobility and transmutation products, especially hydrogen and helium, on physical and mechanical properties are discussed. The most promising candidate materials (austenitic stainless steels, ferritic/martensitic steels and refractory alloys) are compared, and needed investigations are identified.

  18. MEGAPIE-TEST: A European Project on Spallation Target Testing

    International Nuclear Information System (INIS)

    Knebel, Joachim U.; Klein, Jean-Christophe; Gorse, Dominique; Agostini, Pietro; Groeschel, Friedrich; Kupschus, Peter; Kirchner, Thomas; Vogt, Jean-Bernard

    2002-01-01

    Within the Euratom 5. Framework Programme (5FP) the European Commission is funding the MEGAPIE-TEST Project (Megawatt Pilot Experiment - Testing) over a period of three years, starting in September 2001. The project is combining the efforts of 8 main associations. MEGAPIE is a liquid metal spallation target of 1 MW of beam power. The main results of the MEGAPIE-TEST project will be: Development and comprehensive testing of a liquid metal spallation target both under beam-off and beam-on conditions, and the set up of a handbook on the design of a neutron spallation source in general. The operation of MEGAPIE within the accelerator complex SINQ at Paul Scherrer Institute (PSI), Switzerland, is envisaged in 2004. MEGAPIE is a first decisive step to realize a liquid metal spallation target in Europe. This report is giving an overview of the MEGAPIE-TEST Project, the overall work plan, and preliminary results from the design support and validation, which form an important basis for the project. (authors)

  19. Analytic model of heat deposition in spallation neutron target

    International Nuclear Information System (INIS)

    Findlay, D.J.S.

    2015-01-01

    A simple analytic model for estimating deposition of heat in a spallation neutron target is presented—a model that can readily be realised in an unambitious spreadsheet. The model is based on simple representations of the principal underlying physical processes, and is intended largely as a ‘sanity check’ on results from Monte Carlo codes such as FLUKA or MCNPX.

  20. Analytic model of heat deposition in spallation neutron target

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, D.J.S.

    2015-12-11

    A simple analytic model for estimating deposition of heat in a spallation neutron target is presented—a model that can readily be realised in an unambitious spreadsheet. The model is based on simple representations of the principal underlying physical processes, and is intended largely as a ‘sanity check’ on results from Monte Carlo codes such as FLUKA or MCNPX.

  1. Towards the construction of the European spallation source–The ...

    Indian Academy of Sciences (India)

    The possible realization of the European spallation source has been a long and winding story. However, thanks to the conjunction of a number of events it now looks highly probable that in 2008 there will indeed be a decision on the site and on a funding partnership of European countries who will together build and ...

  2. Validation of PHITS Spallation Models from the Perspective of the Shielding Design of Transmutation Experimental Facility

    Science.gov (United States)

    Iwamoto, Hiroki; Meigo, Shin-ichiro

    2017-09-01

    The impact of different spallation models implemented in the particle transport code PHITS on the shielding design of Transmutation Experimental Facility is investigated. For 400-MeV proton incident on a lead-bismuth eutectic target, an effective dose rate at the end of a thick radiation shield (3-m-thick iron and 3-m-thick concrete) calculated by the Liège intranuclear cascade (INC) model version 4.6 (INCL4.6) coupled with the GEMcode (INCL4.6/GEM) yields about twice as high as the Bertini INC model (Bertini/GEM). A comparison with experimental data for 500-MeV proton incident on a thick lead target suggest that the prediction accuracy of INCL4.6/GEM would be better than that of Bertini/GEM. In contrast, it is found that the dose rates in beam ducts in front of targets calculated by the INCL4.6/GEMare lower than those by the Bertini/GEM. Since both models underestimate the experimental results for neutron-production doubledifferential cross sections at 180° for 140-MeV proton incident on carbon, iron, and gold targets, it is concluded that it is necessary to allow a margin for uncertainty caused by the spallation models, which is a factor of two, in estimating the dose rate induced by neutron streaming through a beam duct.

  3. Spallation radiation damage and dosimetry for accelerator transmutation of waste applications

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.

    1993-01-01

    Proposals are currently being made for systems to treat radioactive waste based on the use of accelerator-driven neutron sources. A linear proton accelerator with energies as high as 1600 MeV and currents up to 250 ma are anticipated for the driver. The neutron fluxes may reach up to 10 20 neutrons/m 2 s as generated by the spallation reactions that occur when the protons strike target materials. Calculations are described to determine radiation fluxes and flux spectra inherent in such systems and to estimate likely radiation effects on system components. The calculations use LAHET, a Monte Carlo high-energy transport code, and MCNP, a generalized-geometry, coupled neutron-photon Monte Carlo transport code. Cross sections for displacement and helium production are presented for spallation neutrons of energies from 21 MeV to 1600 MeV for Inconel 718 (Ni plus 18.5, 18.5, 5.1, and 3 wt % of Cr, Fe, Nb, and Mo, respectively), an alloy that is used for the proton beam entry window in several accelerators. In addition, results for this alloy are presented for the primary knocked-on atom (PKA) spectrum and the transmutation yield for 1600 MeV incident neutrons

  4. CFD studies on thermal hydraulics of spallation targets

    International Nuclear Information System (INIS)

    Tak, N.I.; Batta, A.; Cheng, X.

    2005-01-01

    Full text of publication follows: Due to the fast advances in computer hardware as well as software in recent years, more and more interests have been aroused to use computational fluid dynamics (CFD) technology in nuclear engineering and designs. During recent many years, Forschungszentrum Karlsruhe (FZK) has been actively involved in the thermal hydraulic analysis and design of spallation targets. To understand the thermal hydraulic behaviors of spallation targets very detailed simulations are necessary because of their complex geometries, complicated boundary conditions such as spallation heat distributions, and very strict design limits. A CFD simulation is believed to be the best for this purpose even though the validation of CFD codes are not perfectly completed yet in specific topics like liquid metal heat transfer. The research activities on three spallation targets (i.e., MEGAPIE, TRADE, and XADS targets) are currently very active in Europe in order to consolidate the European ADS road-map. In the thermal hydraulics point of view, two kinds of the research activities, i.e., (1) numerical design and (2) experimental work, are required to achieve the objectives of these targets. It should be noted that CFD studies play important role on both kinds of two activities. A preliminary design of a target can be achieved by sophisticated CFD analysis and pre-and-post analyses of an experimental work using a CFD code help the design of the test section of the experiment as well as the analysis of the experimental results. The present paper gives an overview about the recent CFD studies relating to thermal hydraulics of the spallation targets recently involved in FZK. It covers numerical design studies as well as CFD studies to support experimental works. The CFX code has been adopted for the studies. Main recent results for the selected examples performed by FZK are presented and discussed with their specific lessons learned. (authors)

  5. Nuclear structure studies by the scattering of medium-energy electrons. Progress report, September 1, 1984-August 31, 1985

    International Nuclear Information System (INIS)

    Peterson, G.A.; Hicks, R.S.

    1985-09-01

    The University of Massachusetts Medium Energy Nuclear Physics Group reports the status of its experimental and theoretical programs. An overview of projects in elastic and quasi-elastic electron scattering which have been completed in the past year is given. Projects which have been designed and which will soon be started are described as well. Descriptions of the theoretical models for nucleon-nucleon interactions, nuclear structure, electromagnetic interactions, and weak interactions are given as well. Listings of the literature of the group are given

  6. Direct observation and theory of trajectory-dependent electronic energy losses in medium-energy ion scattering.

    Science.gov (United States)

    Hentz, A; Parkinson, G S; Quinn, P D; Muñoz-Márquez, M A; Woodruff, D P; Grande, P L; Schiwietz, G; Bailey, P; Noakes, T C Q

    2009-03-06

    The energy spectrum associated with scattering of 100 keV H+ ions from the outermost few atomic layers of Cu(111) in different scattering geometries provides direct evidence of trajectory-dependent electronic energy loss. Theoretical simulations, combining standard Monte Carlo calculations of the elastic scattering trajectories with coupled-channel calculations to describe inner-shell ionization and excitation as a function of impact parameter, reproduce the effects well and provide a means for far more complete analysis of medium-energy ion scattering data.

  7. Medium energy measurements of N-N parameters. Progress in research, January 1, 1983-December 31, 1983

    International Nuclear Information System (INIS)

    1983-12-01

    The aim of the experimental program is the determination of the nucleon-nucleon amplitudes at medium energy. Experiments described include D/sub SS/, D/sub LS/, D/sub SL/, D/sub LL/, and P for p-p elastic scattering, the measurement of polarization observables in ppvector → pvector π + nu and ppvector → ppvector π, and measurements of the spin rotation parameters for pvector d → pvector d elastic scattering at 496, 647, and 800 MeV. Also, progress on an energy dependent proton-carbon analyzing power fit is reported. Current approved LAMPF proposals are described and 1983 publications are listed

  8. Thermal-hydraulic performance of a water-cooled tungsten-rod target for a spallation neutron source

    International Nuclear Information System (INIS)

    Poston, D.I.

    1997-08-01

    A thermal-hydraulic (T-H) analysis is conducted to determine the feasibility and limitations of a water-cooled tungsten-rod target at powers of 1 MW and above. The target evaluated has a 10-cm x 10-cm cross section perpendicular to the beam axis, which is typical of an experimental spallation neutron source - both for a short-pulse spallation source and long-pulse spallation source. This report describes the T-H model and assumptions that are used to evaluate the target. A 1-MW baseline target is examined, and the results indicate that this target should easily handle the T-H requirements. The possibility of operating at powers >1 MW is also examined. The T-H design is limited by the condition that the coolant does not boil (actual limits are on surface subcooling and wall heat flux); material temperature limits are not approached. Three possible methods of enhancing the target power capability are presented: reducing peak power density, altering pin dimensions, and improving coolant conditions (pressure and temperature). Based on simple calculations, it appears that this target concept should have little trouble reaching the 2-MW range (from a purely T-H standpoint), and possibly much higher powers. However, one must keep in mind that these conclusions are based solely on thermal-hydraulics. It is possible, and perhaps likely, that target performance could be limited by structural issues at higher powers, particularly for a short-pulse spallation source because of thermal shock issues

  9. Low and medium energy deuteron-induced reactions on (63,65)Cu nuclei

    Czech Academy of Sciences Publication Activity Database

    Šimečková, Eva; Bém, Pavel; Honusek, Milan; Štefánik, Milan; Fischer, U.; Simakov, SP.; Forrest, R.A.; Koning, A.J.; Sublet, J. C.; Avrigeanu, M.; Roman, F.L.; Avrigeanu, V.

    2011-01-01

    Roč. 84, č. 1 (2011), 014605/1-014605/12 ISSN 0556-2813 R&D Projects: GA MPO 2A-1TP1/101 Institutional research plan: CEZ:AV0Z10480505 Keywords : ACTIVATION CROSS-SECTIONS * INCLUSIVE PROTON SPECTRA * EXCITATION- FUNCTIONS * CHANNELS CALCULATIONS * MODEL Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.308, year: 2011

  10. Medium energy nucleon-nucleus scattering theory by semi-classical distorted wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Kazuyuki [Kyushu Univ., Fukuoka (Japan)

    1998-07-01

    The semiclassical distorted wave model (SCDW) is one of the quantum mechanical models for nucleon inelastic and charge exchange scattering at intermediate energies. SCDW can reproduce the double differential inclusive cross sections for multi-step direct processes quite well in the angular and outgoing energy regions where the model is expected to work. But the model hitherto assumed on-the-energy-shell (on-shell) nucleon-nucleon scattering in the nucleus, neglecting the difference in the distorting potentials for the incoming and the outgoing particles and also the Q-value in the case of (p,n) reactions. There had also been a problem in the treatment of the exchange of colliding nucleons. Now we modify the model to overcome those problems and put SCDW on sounder theoretical foundations. The modification results in slight reduction (increase) of double differential cross sections at forward (backward) angles. We also examine the effect of the in-medium modification of N-N cross sections in SCDW and find it small. A remedy of the disagreement at very small and large angles in terms of the Wigner transform of the single particle density matrix is also discussed. This improvement gives very promising results. (author)

  11. Beacon-S TM: Non-uniform attenuation correction for SPECT imaging. The new medium-energy transmission device for AXIS and IRIX

    International Nuclear Information System (INIS)

    Daniel Gagnon, D.

    1999-01-01

    The paper presents new medium-energy transmission device for SPECT imaging. Beacon-S includes a 356-keV medium energy 133 Ba source with a 10.54-year half-life. Beacon-S provide high-resolution and high-contrast transmission scans. The higher energy of the gamma substantially improves the transmission contrast for larger patients by virtue of better penetration through the body

  12. Medium-energy electrons and heavy ions in Jupiter's magnetosphere - Effects of lower hybrid wave-particle interactions

    Science.gov (United States)

    Barbosa, D. D.

    1986-01-01

    A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.

  13. CAPTAIN-Miner@@a. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    International Nuclear Information System (INIS)

    Mauger, Christopher M.

    2015-01-01

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NO@@A, MINER@@A and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINER@@A detector in the NuMI beamline and combining the data from the CAPTAIN, MINER@@A and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINER@@A@@@s scintillator (CH) target, a new level of precision can be achieved in the measurements of the effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINER@@A experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.

  14. Investigations of Few-Nucleon System Dynamics in Medium Energy Domain

    Science.gov (United States)

    Ciepał, I.; Kłos, B.; Kistryn, St.; Stephan, E.; Biegun, A.; Bodek, K.; Deltuva, A.; Epelbaum, E.; Eslami-Kalantari, M.; Fonseca, A. C.; Golak, J.; Jha, V.; Kalantar-Nayestanaki, N.; Kamada, H.; Khatri, G.; Kirillov, Da.; Kirillov, Di.; Kliczewski, St.; Kozela, A.; Kravcikova, M.; Machner, H.; Magiera, A.; Martinska, G.; Messchendorp, J.; Nogga, A.; Parol, W.; Ramazani-Moghaddam-Arani, A.; Roy, B. J.; Sakai, H.; Sekiguchi, K.; Sitnik, I.; Siudak, R.; Skibiński, R.; Sworst, R.; Urban, J.; Witała, H.; Wrońska, A.; Zejma, J.

    2013-08-01

    Precise and large set of cross sections, vector A x , A y and tensor A xx , A xy , A yy analyzing powers for the 1 H( d, pp) n breakup reactions were measured at 100 and 130 MeV deuteron beam energies with the use of the SALAD and BINA detectors at KVI and Germanium Wall setup at FZ-Jülich. Results are compared with various theoretical approaches which model the three-nucleon (3N) system dynamics. The calculations are based on different two-nucleon (2N) potentials which can be combined with models of the three-nucleon force (3NF) and other pieces of the dynamics can also be included like the Coulomb interaction and relativistic effects. The cross sections data reveal seizable 3NF and Coulomb force influence. In case of analyzing powers very low sensitivity to the effects was found and the data are well describe by 2N models only. At 130 MeV for A xy serious disagreements appear when 3NF models are included into calculations.

  15. Investigations of Few-Nucleon System Dynamics in Medium Energy Domain

    International Nuclear Information System (INIS)

    Ciepał, I.; Kistryn, St.; Biegun, A.; Bodek, K.; Golak, J.; Khatri, G.; Magiera, A.; Parol, W.; Skibiński, R.; Sworst, R.; Witała, H.; Wrońska, A.; Zejma, J.; Kłos, B.; Stephan, E.; Kozela, A.; Kliczewski, St.; Siudak, R.; Eslami-Kalantari, M.; Ramazani-Moghaddam-Arani, A.; Kalantar-Nayestanaki, N.; Messchendorp, J.; Machner, H.; Nogga, A.; Epelbaum, E.; Deltuva, A.; Fonseca, A. C.; Kamada, H.; Jha, V.; Kirillov, Da.; Kirillov, Di.; Sitnik, I.; Kravcikova, M.; Martinska, G.; Urban, J.; Roy, B.J.; Sakai, H.; Sekiguchi, K.

    2013-01-01

    Precise and large set of cross sections, vector A x , A y and tensor A xx , A xy , A yy analyzing powers for the 1 H(d, pp)n breakup reactions were measured at 100 and 130 MeV deuteron beam energies with the use of the SALAD and BINA detectors at KVI and Germanium Wall setup at FZ-Jülich. Results are compared with various theoretical approaches which model the three-nucleon (3N) system dynamics. The calculations are based on different two-nucleon (2N) potentials which can be combined with models of the three-nucleon force (3NF) and other pieces of the dynamics can also be included like the Coulomb interaction and relativistic effects. The cross sections data reveal seizable 3NF and Coulomb force influence. In case of analyzing powers very low sensitivity to the effects was found and the data are well describe by 2N models only. At 130 MeV for A xy serious disagreements appear when 3NF models are included into calculations. (author)

  16. CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Mauger, Christopher M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-29

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of the effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.

  17. Neutrino physics at the spallation neutron source. Pt. 2

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Lillie, R.A.; Bishop, B.L.; Wilczynski, J.; Zeitnitz, B.

    1981-06-01

    The shielding and detector analysis associated with a contemplated low energy (approx. equal to10 to 50 MeV) neutrino experiment at a spallation neutron source are presented and discussed. This analysis includes neutrino production and interaction rates, time dependence of the neutrino pulse, shielding considerations for neutrons coming directly from the spallation source and those which are scattered from other experimental areas, shielding considerations for galactic sources especially muons and finally detector responses to neutrino and background radiations. In general for a 1 mA (200 ns/pulse, 100 Hz), 1.1 GeV proton beam incident on a lead target surrounded by a moderator system, approximately 8 m of iron are required to reduce the background so that the event rate in the detector systems is approx. [de

  18. Measured radionuclide production from copper, gold and lead spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.; Belian, A.P. [Texas A & M Univ., College Station, TX (United States)

    1995-10-01

    Spallation target materials are chosen so as to produce large numbers of neutrons while at the same time avoiding the creation of long-lived radioactive wastes. While there has been considerable research to determine the number of neutrons produced per incident particle for various target materials, there has been less effort to precisely quantify the types and amounts of radionuclides produced. Accurate knowledge of the radioactive species produced by spallation reactions is important for specifying waste disposal criteria for targets. In order to verify the production rates calculated by LAHET, a study has been conducted using the Texas A&M University (TAMU) Cyclotron to measure radionuclide yields from copper, gold, and lead targets.

  19. Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    CERN Document Server

    Cherkashyna, Nataliia; DiJulio, Douglas D.; Khaplanov, Anton; Pfeiffer, Dorothea; Scherzinger, Julius; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Ansell, Stuart; Iverson, Erik B.; Ehlers, Georg; Gallmeier, Franz X.; Panzner, Tobias; Rantsiou, Emmanouela; Kanaki, Kalliopi; Filges, Uwe; Kittelmann, Thomas; Extegarai, Maddi; Santoro, Valentina; Kirstein, Oliver; Bentley, Phillip M.

    2015-01-01

    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument pe...

  20. The spallation in reverse kinematics: what for a coincidence measurement?

    International Nuclear Information System (INIS)

    Ducret, J.E.

    2006-07-01

    The Spaladin installation has been designed to study spallation reactions in reverse kinematics. Furthermore, the heavy and light fragments are detected by coincidence which allows us to get an instantaneous picture of the reaction at a level of accuracy better than that obtained through inclusive measurement. The first part is dedicated to the theoretical description of the different mechanisms involved in the spallation reactions. In the second part we describe the Spaladin installation and report some results on the reaction: Fe 56 + p at an energy of 1 GeV/nucleon. In the third part we expose the performance of the installation through its simulation with the Geant-IV model. We present a study about the sensitivity of the Spaladin installation to theoretical predictions. The fourth part is dedicated to the future experiments that will be performed with the Spaladin installation. (A.C.)

  1. Accumulator ring lattice for the national spallation neutron source

    International Nuclear Information System (INIS)

    Gardner, C.J.; Lee, Y.Y.; Luccio, A.U.

    1997-01-01

    The Accumulator Ring for the proposed National Spallation Neutron Source (NSNS) is to accept a 1.03 millisecond beam pulse from a 1 GeV Proton Linac at a repetition rate of 60 Hz. For each beam pulse, 10 14 protons are to be accumulated via charge-exchange injection. A 295 nanosecond gap in the beam, maintained by an rf system, will allow for extraction to an external target for the production of neutrons by spallation. This paper describes the four-fold symmetric lattice that has been chosen for the ring. The lattice contains four long dispersion-free straight sections to accomodate injection, extraction, rf cavities, and beam scraping respectively. The four-fold symmetry allows for easy adjustment of the tunes and flexibility in the placement of correction elements, and ensures that potentially dangerous betatron structure resonances are avoided

  2. An update on measurements of helium-production reactions with a spallation neutron source

    International Nuclear Information System (INIS)

    Haight, R.C.; Bateman, F.B.; Chadwick, M.B.

    1995-01-01

    This report gives the status, updated since the last Research Coordination Meeting, of alpha-particle production cross sections, emission spectra and angular distributions which we are measuring at the spallation source of fast neutrons at the Los Alamos Meson Physics Facility (LAMPF). Detectors at angles of 30, 60, 90 and 135 degrees are used to identify alpha particles, measure their energy spectra, and indicate the time-of-flight, and hence the energy, of the neutrons inducing the reaction. The useful neutron energy ranges from less than 1 MeV to approximately 50 MeV for the present experimental setup. Targets under study at present include C, N, 0, 27 Al, Si, 51 V, 56 Fe, 59 CO, 58,60 Ni, 89 Y and 93 Nb. Data for 59 Co have been re-analyzed. The results illustrate the capabilities of the approach, agreement with literature values, and comparisons with nuclear reaction model calculations

  3. Status of helium-production reaction studies with a spallation neutron source

    International Nuclear Information System (INIS)

    Haight, R.C.; Bateman, F.B.; Chadwick, M.B.

    1994-01-01

    Alpha--particle production cross sections and spectra are being measured at the spallation source of fast neutrons at the Los Alamos Meson Physics Facility (LAMPF). Detectors at angles of 30, 60, 90 and 135 degree are used to identify alpha particles, measure their energy spectra, and indicate the time-of-flight, and hence the energy, of the neutrons inducing the reaction. The useful neutron energy ranges from less than 1 MeV to approximately 50 MeV for the present experimental setup. Targets under study at present include C, N, O, 27 Al, Si, 51 V, 56 Fe, 59 Co, 58,60 Ni, 89 Y and 93 Nb. Results for 59 Co illustrate the capabilities of the approach

  4. A Large Neutrino Detector Facility at the Spallation Neutron Source at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Efremenko, Y.V.

    1999-01-01

    The ORLaND (Oak Ridge Large Neutrino Detector) collaboration proposes to construct a large neutrino detector in an underground experimental hall adjacent to the first target station of the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory. The main mission of a large (2000 ton) Scintillation-Cherenkov detector is to measure bar ν μ -> bar ν e neutrino oscillation parameters more accurately than they can be determined in other experiments, or significantly extending the covered parameter space below (sin'20 le 10 -4 ). In addition to the neutrino oscillation measurements, ORLaND would be capable of making precise measurements of sin 2 θ W , search for the magnetic moment of the muon neutrino, and investigate the anomaly in the KARMEN time spectrum, which has been attributed to a new neutral particle. With the same facility an extensive program of measurements of neutrino nucleus cross sections is also planned to support nuclear astrophysics

  5. Advanced spallation neutron sources for condensed matter research

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Stirling, G.C.

    1984-03-01

    Advanced spallation neutron sources afford significant advantages over existing high flux reactors. The effective flux is much greater than that currently available with reactor sources. A ten-fold increase in neutron flux will be a major benefit to a wide range of condensed matter studies, and it will realise important experiments that are marginal at reactor sources. Moreover, the high intensity of epithermal neutrons open new vistas in studies of electronic states and molecular vibrations. (author)

  6. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  7. New scientific horizons with pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carlile, C.J.; Finney, J.L.

    1991-01-01

    Pulsed spallation sources are not just another way of producing neutrons: the time structure of the neutron pulse has consequences which allow new scientific areas to be investigated and traditional areas to be explored afresh. In addition to the high epithermal neutron component traditionally associated with pulsed sources the recent development of cold neutron techniques at ISIS illustrates that very high energy and momentum resolutions can be achieved on pulsed sources over a surprisingly wide range. (orig.)

  8. Neutronic moderator design for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Johnson, J.O.; Gabriel, T.A.

    1998-01-01

    Neutronics analyses are now in progress to support the initial selection of moderator design parameters for the Spallation Neutron Source (SNS). The results of the initial optimization studies involving moderator poison plate location, moderator position, and premoderator performance for the target system are presented in this paper. Also presented is an initial study of the use of a composite moderator to produce a liquid methane like spectrum

  9. Integral measurements of neutron production in spallation targets

    International Nuclear Information System (INIS)

    Frehaut, J.; Deneuville, D.; Ledoux, X.; Lochard, J.P.; Longuet, J.L.; Petibon, E.; Alrick, K.; Bownan, D.; Cverna, F.; King, N.S.P.; Morgan, G.L.; Greene, G.; Hanson, A.; Snead, L.; Thompson, R.; Ward, T.

    1998-01-01

    Measurements of neutron production for thick iron, tungsten and lead targets of different diameter prototypic for spallation systems have been made at SATURNE in an incident proton energy range from 400 MeV to 2 GeV. TIERCE code system calculations are in good agreement with experiment for iron and large diameter tungsten and lead targets. They overestimate the measured neutron production for tungsten and lead targets for diameter ≤20 cm. (author)

  10. The BLAIRR Irradiation Facility Hybrid Spallation Target Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Simos N.; Hanson A.; Brown, D.; Elbakhshawn, M.

    2016-04-11

    BLAIRR STUDY STATUS OVERVIEW Beamline Complex Evaluation/Assessment and Adaptation to the Goals Facility Radiological Constraints ? Large scale analyses of conventional facility and integrated shield (concrete, soil)Target Optimization and Design: Beam-target interaction optimization Hadronic interaction and energy deposition limitations Single phase and Hybrid target concepts Irradiation Damage Thermo-mechanical considerations Spallation neutron fluence optimization for (a) fast neutron irradiation damage (b) moderator/reflector studies, (c) NTOF potential and optimization (d) mono-energetic neutron beam

  11. Astrophysical Li-7 as a product of big bang nucleosynthesis and galactic cosmic-ray spallation

    Science.gov (United States)

    Olive, Keith A.; Schramm, David N.

    1992-01-01

    The astrophysical Li-7 abundance is considered to be largely primordial, while the Be and B abundances are thought to be due to galactic cosmic ray (GCR) spallation reactions on top of a much smaller big bang component. But GCR spallation should also produce Li-7. As a consistency check on the combination of big bang nucleosynthesis and GCR spallation, the Be and B data from a sample of hot population II stars is used to subtract from the measured Li-7 abundance an estimate of the amount generated by GCR spallation for each star in the sample, and then to add to this baseline an estimate of the metallicity-dependent augmentation of Li-7 due to spallation. The singly reduced primordial Li-7 abundance is still consistent with big bang nucleosynthesis, and a single GCR spallation model can fit the Be, B, and corrected Li-7 abundances for all the stars in the sample.

  12. Calculation of the spallation product distribution in the evaporation process

    International Nuclear Information System (INIS)

    Nishida, T.; Kanno, I.; Nakahara, Y.; Takada, H.

    1989-01-01

    Some investigations are performed for the calculational model of nuclear spallation reaction in the evaporation process. A new version of a spallation reaction simulation code NUCLEUS has been developed by incorporating the newly revised Uno ampersand Yamada's mass formula and extending the counting region of produced nuclei. The differences between the new and original mass formulas are shown in the comparisons of mass excess values. The distributions of spallation products of a uranium target nucleus bombarded by energy (0.38 - 2.9 GeV) protons have been calculated with the new and original versions of NUCLEUS. In the fission component Uno ampersand Yamada's mass formula reproduces the measured data obtained from thin foil experiments significantly better, especially in the neutron excess side, than the combination of the Cameron's mass formula and the mass table compiled by Wapstra, et al., in the original version of NUCLEUS. Discussions are also made on how the mass-yield distribution of products varies dependent on the level density parameter a characterizing the particle evaporation. 16 refs., 7 figs., 1 tab

  13. Calculation of the spallation product distribution in the evaporation process

    International Nuclear Information System (INIS)

    Nishida, T.; Kanno, I.; Nakahara, Y.; Takada, H.

    1989-01-01

    Some investigations are performed for the calculational model of nuclear spallation reaction in the evaporation process. A new version of a spallation reaction simulation code NUCLEUS has been developed by incorporating the newly revised Uno and Yamada's mass formula and extending the counting region of produced nuclei. The differences between the new and original mass formulas are shown in the comparisons of mass excess values. The distributions of spallation products of a uranium target nucleus bombarded by energy (0.38 - 2.9 GeV) protons have been calculated with the new and original versions of NUCLEUS. In the fission component Uno and Yamada's mass formula reproduces the measured data obtained from thin foil experiments significantly better, especially in the neutron excess side, than the combination of the Cameron's mass formula and the mass table compiled by Wapstra, et al., in the original version of NUCLEUS. Discussions are also made on how the mass-yield distribution of products varies dependent on the level density parameter α characterizing the particle evaporation. (author)

  14. GEM-based thermal neutron beam monitors for spallation sources

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Caniello, R.; Cazzaniga, C.; Grosso, G.; Murtas, F.; Tardocchi, M.; Vassallo, E.; Gorini, G.; Horstmann, C.; Kampmann, R.; Nowak, G.; Stoermer, M.

    2013-01-01

    The development of new large area and high flux thermal neutron detectors for future neutron spallation sources, like the European Spallation Source (ESS) is motivated by the problem of 3 He shortage. In the framework of the development of ESS, GEM (Gas Electron Multiplier) is one of the detector technologies that are being explored as thermal neutron sensors. A first prototype of GEM-based thermal neutron beam monitor (bGEM) has been built during 2012. The bGEM is a triple GEM gaseous detector equipped with an aluminum cathode coated by 1μm thick B 4 C layer used to convert thermal neutrons to charged particles through the 10 B(n, 7 Li)α nuclear reaction. This paper describes the results obtained by testing a bGEM detector at the ISIS spallation source on the VESUVIO beamline. Beam profiles (FWHM x =31 mm and FWHM y =36 mm), bGEM thermal neutron counting efficiency (≈1%), detector stability (3.45%) and the time-of-flight spectrum of the beam were successfully measured. This prototype represents the first step towards the development of thermal neutrons detectors with efficiency larger than 50% as alternatives to 3 He-based gaseous detectors

  15. Helium production for 0.8-2.5 GeV proton induced spallation reactions, damage induced in metallic window materials

    International Nuclear Information System (INIS)

    Hilscher, D.; Herbach, C.-M.; Jahnke, U.; Tishchenko, V.; Enke, M.; Filges, D.; Goldenbaum, F.; Neef, R.-D.; Nuenighoff, K.; Paul, N.; Schaal, H.; Sterzenbach, G.; Letourneau, A.; Boehm, A.; Galin, J.; Lott, B.; Peghaire, A.; Pienkowski, L.

    2001-01-01

    Production cross-sections for neutrons and charged particles as well as excitation energy distributions in spallation reactions were measured recently by the NESSI-collaboration and have been employed to test different intra nuclear cascade models and the subsequent evaporation. The INCL/GEMINI code, which describes best the experimental data has been employed to calculate the damage cross-sections in Fe and Ta as well as the He/dpa ratio as a function of proton energy. For the same amount of neutron production in a typical target of a spallation neutron source the proton beam induced radiation damage in an Fe window is shown to decrease almost linearly with proton energy. For heavier materials such as Ta a similar decrease of the radiation damage is found only for energies above about 3 GeV

  16. Status of spallation neutron source program in High Intensity Proton Accelerator Project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    2001-01-01

    Japan Atomic Energy Research Institute and High Energy Accelerator Organization are jointly designing a 1 MW spallation neutron source as one of the research facilities planned in the High Intensity Proton Accelerator Project. The spallation neutron source is driven by 3 GeV proton beam with a mercury target and liquid hydrogen moderators. The present status of design for these spallation source and relevant facility is overviewed. (author)

  17. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    International Nuclear Information System (INIS)

    Mohammadi, S.M.; Tavakoli-Anbaran, H.; Zeinali, H.Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  18. Phenomenological model for particle production from the collisions of nucleons and pions with fissile elements at medium energies

    International Nuclear Information System (INIS)

    Alsmiller, F.S.; Alsmiller, R.G. Jr.; Gabriel, T.A.; Lillie, R.A.; Barish, J.

    1981-03-01

    A fission channel has been added to the intranuclear-cascade-evaporation model of nuclear reactions so that this model may be used to obtain the differential particle production data that are needed to study the transport of medium-energy nucleons and pions through fissionable material. The earlier work of Hahn and Bertini on the incorporation of fission-evaporation competition into the intranuclear-cascade-evaporation model has been retained, and the statistical model of fission has been utilized to predict particle production from the fission process. Approximate empirically derived kinetic energies and deformation energies are used in the statistical model. The calculated number of emitted neutrons and residual nuclei distributions are in reasonable agreement with experimental data, but the number of emitted neutrons at the higher incident nucleon energies (approx. > 500 MeV) are sensitive to the level density parameter used. 9 figures, 2 tables

  19. Intercomparison of the medium energy primary standards for X-ray exposure of NPL and ENEA, Italy

    International Nuclear Information System (INIS)

    Moretti, C.J.; Heaton, J.A.; Laitano, R.F.; Toni, M.P.

    1991-04-01

    An intercomparison between the primary standards of exposure for medium energy X-rays held by the National Physical Laboratory (NPL) and ENEA in Italy is described. The intercomparison, using four different transfer chambers, took place at NPL in December 1989 and at ENEA during March 1990. Measurements were made at four therapy-level qualities, with half value layers of 0.15, 0.5, 1.0 and 2.5 mm Cu (nominal generating voltages of 100, 135, 180 and 250 kV respectively). At the 2.5 mm Cu HVL quality the primary standards were found to agree to within about 0.8%; for the other three qualities the chambers differed by no more than 0.3%. (author)

  20. Rationale for a spallation neutron source target system test facility at the 1-MW Long-Pulse Spallation Source

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1995-12-01

    The conceptual design study for a 1-MW Long-Pulse Spallation Source at the Los Alamos Neutron Science Center has shown the feasibility of including a spallation neutron test facility at a relatively low cost. This document presents a rationale for developing such a test bed. Currently, neutron scattering facilities operate at a maximum power of 0.2 MW. Proposed new designs call for power levels as high as 10 MW, and future transmutation activities may require as much as 200 MW. A test bed will allow assessment of target neutronics; thermal hydraulics; remote handling; mechanical structure; corrosion in aqueous, non-aqueous, liquid metal, and molten salt systems; thermal shock on systems and system components; and materials for target systems. Reliable data in these areas are crucial to the safe and reliable operation of new high-power facilities. These tests will provide data useful not only to spallation neutron sources proposed or under development, but also to other projects in accelerator-driven transmutation technologies such as the production of tritium

  1. Design of an experimental device dedicated to the measurement of spallation reactions; Mise au point d'un dispositif experimental pour des mesures exclusives des reactions de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Lafriakh, A

    2005-12-15

    Spallation mechanisms are not yet completely understood, especially because of the difficulty of experimentally disentangling the effects of the different steps of the reaction. In order to understand these mechanisms, we have developed a new experimental device able to perform inclusive measurements. We propose a detection system based on a combination of ionization chambers and proportional counters and on a wall of plastic scintillators to measure light charged particles. In particular the detection of light charged particles is described in detail. In order to validate our device, we have compared our preliminary results obtained on the Fe{sup 56} + p system at 1 GeV/u with inclusive measurements previously obtained at the FRS spectrometer of the GSI facility. A comparison of charge differential cross section shows reasonable agreement. However, our new device allowed extension of those measurements down to Z = 1 and Z = 2. These cross sections are important for material damage studies. Taking into account our error brackets, the evolution of mean longitudinal velocities with respect to residue masses is comparable to that obtained at the FRS. These first results, although preliminary, allow us to validate our experimental device. It is now possible to exploit the strong points of our exclusive measurements, namely correlations between different measured observables. Finally, experimental problems encountered will be taken into account in the future experimental programs, in order to ensure the best measurements conditions.

  2. X-ray diffraction study of stress relaxation in cubic boron nitride films grown with simultaneous medium-energy ion bombardment

    International Nuclear Information System (INIS)

    Abendroth, B.; Gago, R.; Eichhorn, F.; Moeller, W.

    2004-01-01

    Relaxation of the intrinsic stress of cubic boron nitride (cBN) thin films has been studied by x-ray diffraction (XRD) using synchrotron light. The stress relaxation has been attained by simultaneous medium-energy ion bombardment (2-10 keV) during magnetron sputter deposition, and was confirmed macroscopically by substrate curvature measurements. In order to investigate the stress-release mechanisms, XRD measurements were performed in in-plane and out-of-plane geometry. The analysis shows a pronounced biaxial state of compressive stress in the cBN films grown without medium-energy ion bombardment. This stress is partially released during the medium-energy ion bombardment. It is suggested that the main path for stress relaxation is the elimination of strain within the cBN grains due to annealing of interstitials

  3. Moisture-Induced TBC Spallation on Turbine Blade Samples

    Science.gov (United States)

    Smialek, James

    2011-01-01

    Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. The weekend effect or DeskTop Spallation (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond coat are reported. Cut sections were intermittently oxidized at 1100, 1150, and 1200 C and monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that embrittle the interface. A negative synergistic effect with interfacial sulfur is also invoked.

  4. New spallation neutron sources, their performance and applications

    International Nuclear Information System (INIS)

    1985-01-01

    Pulsed spallation sources now operating in the world are at the KEK Laboratory in Japan (the KENS source), at Los Alamos National Laboratory (WNR) and at Argonne National Laboratory (IPNS), both the latter being in the US. The Intense Pulsed Neutron Source (IPNS) is currently the world's most intense source with a peak neutron flux of 4 x 10 14 n cm -2 s -1 at a repetition rate of 30 Hz, and globally producing approx. 1.5 x 10 15 n/sec. Present pulsed sources are still relatively weak compared to their potential. In 1985 the Rutherford Spallation Neutron Source will come on line, and eventually be approx. 30 more intense than the present IPNS. Later, in 1986 the WNR/PSR option at Los Alamos will make that facility of comparable intensity, while a subcritical fission booster at IPNS will keep IPNS competitive. These new sources will expand the applications of pulsed neutrons but are still based on accelerators built for other scientific purposes, usually nuclear or high-energy physics. Accelerator physicists are now designing machines expressly for spallation neutron research, and the proton currents attainable appear in the milliamps. (IPNS now runs at 0.5 GeV and 14 μA). Such design teams are at the KFA Laboratory Julich, Argonne National Laboratory and KEK. Characteristics, particularly the different time structure of the pulses, of these new sources will be discussed. Such machines will be expensive and require national, if not international, collaboration across a wide spectrum of scientific disciplines. The new opportunities for neutron research will, of course, be dramatic with these new sources

  5. Experimental Medium Energy Physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following topics: Search for the H Dibaryon at the AGS; hypernuclear weak decay studies at the LAGS; search for strangelets using the 2 GeV/c beam line; experiment to detect double lambda hypernuclei; hyperon photoproduction at CEBAF; the region 1 drift chambers for the CLAS spectrometer; parity violating electron scattering from the proton: the G 0 experiment at CEBAF; and relativistic heavy ion - nucleus collisions at the SPS

  6. [Medium energy particle physics

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of 3 H, 3 He, 4 He; Detailed Balance in pd right reversible γ 3 H; Interaction Dynamics); and Search for the Rare Decay Μ + → e + + γ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects

  7. [Medium energy meson research

    International Nuclear Information System (INIS)

    Crowe, K.M.

    1992-01-01

    The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p bar p annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report

  8. Experimental medium energy physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report discusses the following topics: search for the ξ(2230) at LEAR; hyperon-antihyperon production studies at LEAR; relativistic proton-nucleus and heavy ion-nucleus collisions at the SPS; search for the H dibaryon at the AGS; hypernuclear physics research; CEBAF activities; pion physics at PSI; and H particle experiment design and development

  9. Experimental medium energy physics

    International Nuclear Information System (INIS)

    Barnes, P.D.

    1990-01-01

    This report discusses the following topics: search for the H-dibaryon at the AGS; weak interaction studies with hypernuclear decays at the AGS; search for the ξ(2230) at LEAR; relativistic proton-nucleus and heavy ion-nucleus collisions at the SPS; hyperon-antihyperon production studies at LEAR; photoproduction of strange CEBAF; and experiment design development

  10. Experimental medium energy physics

    International Nuclear Information System (INIS)

    Barnes, P.D.

    1991-01-01

    This report discusses the following topics: Search for the H Dibaryon at the AGS; Hypernuclear Weak Decay Studies at the AGS; Relativistic Proton-Nucleus and Heavy Ion-Nucleus Collisions at the SPS; Hyperon-Antihyperon Production studies at LEAR; Hyperon Photoproduction at CEBAF; Double Lambda Hypernuclei; Weak Decay of Light Hypernuclei; and π 0 /γDetection with the CMU Scintillator Arrays

  11. Overview of the national spallation neutron source with emphasis on the target station

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1997-01-01

    The technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the National Spallation Neutron Source (NSNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis and the planned hardware research and development program are also described

  12. Workshop: Research and development plans for high power spallation neutron testing at BNL

    International Nuclear Information System (INIS)

    1996-01-01

    This report consists of vugraphs from presentations at the meeting. The papers covered the following topics: (1) APS as a proton source; (2) target status for NSNS (National Spallation Neutron Source); (3) spallation neutron source in Japan; (4) liquid LiBi flow loop; and (5) research and development plans for high power tests at the AGS

  13. Research activities on structure materials of spallation neutron source at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.; Dai, Y. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    With the growing interests on powerful spallation neutron sources, especially with liquid metal targets, and accelerator driven energy systems, spallation materials science and technology have been received wide attention. At SINQ, material research activities are focused on: a) liquid metal corrosion; b) radiation damage; and c) interaction of corrosion and radiation damage. (author) 1 fig., refs.

  14. VESPA: The vibrational spectrometer for the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Fedrigo, Anna, E-mail: anna.fedrigo@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø (Denmark); Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 50019 Sesto Fiorentino (Italy); European Spallation Source ESS AB, SE-221 00 Lund (Sweden); Colognesi, Daniele; Grazzi, Francesco; Zoppi, Marco [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 50019 Sesto Fiorentino (Italy); Bertelsen, Mads; Strobl, Markus [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø (Denmark); European Spallation Source ESS AB, SE-221 00 Lund (Sweden); Hartl, Monika; Deen, Pascale P. [European Spallation Source ESS AB, SE-221 00 Lund (Sweden); Lefmann, Kim [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø (Denmark)

    2016-06-15

    VESPA, Vibrational Excitation Spectrometer with Pyrolytic-graphite Analysers, aims to probe molecular excitations via inelastic neutron scattering. It is a thermal high resolution inverted geometry time-of-flight instrument designed to maximise the use of the long pulse of the European Spallation Source. The wavelength frame multiplication technique was applied to provide simultaneously a broad dynamic range (about 0-500 meV) while a system of optical blind choppers allows to trade flux for energy resolution. Thanks to its high flux, VESPA will allow the investigation of dynamical and in situ experiments in physical chemistry. Here we describe the design parameters and the corresponding McStas simulations.

  15. Beginnings of remote handling at the RAL Spallation Neutron Source

    International Nuclear Information System (INIS)

    Liska, D.J.; Hirst, J.

    1985-01-01

    Expenditure of funds and resources for remote maintenance systems traditionally are delayed until late in an accelerator's development. However, simple remote-surveillance equipment can be included early in facility planning to set the stage for future remote-handling needs and to identify appropriate personnel. Some basic equipment developed in the UK at the Spallation Neutron Source (SNS) that serves this function and that has been used to monitor beam loss during commissioning is described. A photograph of this equipment, positioned over the extractor septum magnet, is shown. This method can serve as a pattern approach to the problem of initiating remote-handling activities in other facilities

  16. Spallation neutron source target station design, development, and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R., E-mail: hainesjr@ornl.gov; McManamy, T.J.; Gabriel, T.A.; Battle, R.E.; Chipley, K.K.; Crabtree, J.A.; Jacobs, L.L.; Lousteau, D.C.; Rennich, M.J.; Riemer, B.W.

    2014-11-11

    The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed.

  17. Nondiffractive applications of neutrons at the spallation source SINQ

    International Nuclear Information System (INIS)

    Lehmann, E.

    1996-01-01

    The paper delivers an overview about experiments with neutrons from the spallation source SINQ which are not especially devoted to neutron scattering. A total of six experimental facilities are under construction using thermal as well as cold neutrons. Starting with some general considerations about the interaction of neutrons with matter, the principles, boundary conditions and the experimental set up of these experiments are described briefly. Some more details are given for the neutron radiography facility NEUTRA as the author's special interest and research field. (author) 7 figs., 2 tabs., 9 refs

  18. Nondiffractive applications of neutrons at the spallation source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    The paper delivers an overview about experiments with neutrons from the spallation source SINQ which are not especially devoted to neutron scattering. A total of six experimental facilities are under construction using thermal as well as cold neutrons. Starting with some general considerations about the interaction of neutrons with matter, the principles, boundary conditions and the experimental set up of these experiments are described briefly. Some more details are given for the neutron radiography facility NEUTRA as the author`s special interest and research field. (author) 7 figs., 2 tabs., 9 refs.

  19. Plans for a new pulsed spallation source at Los Alamos

    International Nuclear Information System (INIS)

    Pynn, R.

    1993-01-01

    Los Alamos National Laboratory has proposed to change the emphasis of research at its Meson Physics Facility (LAWF) by buabg a new pulsed spallation source for neutron scattering research. The new source would have a beam power of about one megawatt shared between two neutron production targets, one operating at 20 Hz and the other at 40 Hz. It would make use of much of the existing proton linac and would be designed to accommodate a later upgrade to a beam power of 5 MW or so. A study of technical feasibility is underway and will be published later this year

  20. Measurement of the spallation reaction {sup 56}Fe+p in inverse kinematics; Messung der Spallationsreaktion {sup 56}Fe+p in inverser Kinematik

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, M.

    2006-09-25

    In this work the spallation reaction {sup 56}Fe+p was investigated in inverse kinematics with regard to complete identification of the heavy residues. A ring imaging Cerenkov counter was used for velocity measurements in the experimental setup located at GSI in Darmstadt. A new fast readout electronic was developed and has been operated successfully in the experiment. Momentum reconstruction was carried out with the ALADiN spectrometer and a new software package written for this purpose. Cross sections and velocity distributions for more than 100 mass separated isotopes could be extracted from the dataset and compared with empirical models and other spallation experiments. The experiences gained in this experiment will be used for systematic improvements in the setup of the new spectrometer R3B at FAIR. (orig.)

  1. Ejection of fast recoil atoms from solids under ion bombardment (medium-energy ion scattering by solid surfaces: Pt. 3)

    International Nuclear Information System (INIS)

    Dodonoy, A.I.; Mashkova, E.S.; Molchanov, V.A.

    1989-01-01

    This paper is the third part of our review surface scattering. Part I, which was devoted to the scattering of ions by the surfaces of disordered solids, was published in 1972; Part II, concerning scattering by crystal surfaces, was published in 1974. Since the publication of these reviews the material contained in them has become obsolete in many respects. A more recent account of the status of the problem has been given in a number of studies, including the book by E.S. Mashkova and V.A. Molchanov, Medium-Energy Ion Scattering by Solid Surfaces (Atomizdat, Moscow, 1980), than extended version of which was published by North-Holland in 1985. We note, however, that at the time these reviews were written the study of fast recoil atoms had not been carried out systematically; the problem was studied only as a by-product of surface scattering and sputtering. For this reason, in the above-mentioned works and in other reviews the data relating to recoil atoms were considered only occasionally. In recent years there have appeared a number of works - theoretical, experimental and computer -specially devoted to the study of the ejection of recoil atoms under ion bombardment. A number of interesting effects, which are due to the crystal structure of the target, have been discovered. It therefore, appeared desirable to us to systematize the available material and to present it as Part III of our continuing review. (author)

  2. A Harmonic Kicker Scheme for the Circulator Cooler Ring in the Proposed Medium Energy Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Edward W.; Hutton, Andrew M.; Kimber, Andrew J.

    2013-06-01

    The current electron cooler design for the proposed Medium Energy Electron-Ion collider (MEIC) at Jefferson Lab utilizes a circulator ring for reuse of the cooling electron bunch up to 100 times to cool the ion beams. This cooler requires a fast kicker system for injecting and extracting individual bunches in the circulator ring. Such a kicker must work at a high repetition rate, up to 7.5 to 75 MHz depending on the number of turns in the recirculator ring. It also must have a very short rise and fall time (of order of 1 ns) such that it will kick an individual bunch without disturbing the others in the ring. Both requirements are orders of magnitude beyond the present state-of-the-art as well as the goals of other on-going kicker R&D programs such as that for the ILC damping rings. In this paper we report a scheme of creating this fast, high repetition rate kicker by combining RF waveforms at multiple frequencies to create a kicker waveform that will, for example, kick every eleventh bunch while leaving the other ten unperturbed. We also present a possible implementation of this scheme as well as discuss its limitations.

  3. Effect of gas filling pressure and operation energy on ion and neutron emission in a medium energy plasma focus device

    Science.gov (United States)

    Niranjan, Ram; Rout, R. K.; Srivastava, Rohit; Kaushik, T. C.

    2018-03-01

    The effects of gas filling pressure and operation energy on deuterium ions and neutrons have been studied in a medium energy plasma focus device, MEPF-12. The deuterium gas filling pressure was varied from 1 to 10 mbar at an operation energy of 9.7 kJ. Also, the operation energy was varied from 3.9 to 9.7 kJ at a deuterium gas filling pressure of 4 mbar. Time resolved emission of deuterium ions was measured using a Faraday cup. Simultaneously, time integrated and time resolved emissions of neutrons were measured using a silver activation detector and plastic scintillator detector, respectively. Various characteristics (fluence, peak density, and most probable energy) of deuterium ions were estimated using the Faraday cup signal. The fluence was found to be nearly independent of the gas filling pressure and operation energy, but the peak density and most probable energy of deuterium ions were found to be varying. The neutron yield was observed to be varying with the gas filling pressure and operation energy. The effect of ions on neutrons emission was observed at each operation condition.

  4. Inter-satellite calibration of FengYun 3 medium energy electron fluxes with POES electron measurements

    Science.gov (United States)

    Zhang, Yang; Ni, Binbin; Xiang, Zheng; Zhang, Xianguo; Zhang, Xiaoxin; Gu, Xudong; Fu, Song; Cao, Xing; Zou, Zhengyang

    2018-05-01

    We perform an L-shell dependent inter-satellite calibration of FengYun 3 medium energy electron measurements with POES measurements based on rough orbital conjunctions within 5 min × 0.1 L × 0.5 MLT. By comparing electron flux data between the U.S. Polar Orbiting Environmental Satellites (POES) and Chinese sun-synchronous satellites including FY-3B and FY-3C for a whole year of 2014, we attempt to remove less reliable data and evaluate systematic uncertainties associated with the FY-3B and FY-3C datasets, expecting to quantify the inter-satellite calibration factors for the 150-350 keV energy channel at L = 2-7. Compared to the POES data, the FY-3B and FY-3C data generally exhibit a similar trend of electron flux variations but more or less underestimate them within a factor of 5 for the medium electron energy 150-350 keV channel. Good consistency in the flux conjunctions after the inter-calibration procedures gives us certain confidence to generalize our method to calibrate electron flux measurements from various satellite instruments.

  5. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  6. Medium energy measurements of N-N parameters. Final technical report, April 1, 1994--September 30, 1996

    International Nuclear Information System (INIS)

    Ambrose, D.; Betts, W.; Coffey, P.; Glass, G.; McDonough, J.; Riley, P.; Tang, J.L.

    1998-08-01

    This document is a final technical report describing the accomplishments of the medium/high energy nuclear physics research program at the University of Texas at Austin. The research program had four main thrusts, only one of which can be considered as measurements of N-N parameters: (1) finishing the data analyses associated with recent LAMPF and TRIUMPF N-N experiments, whose overall purpose has been the determination of the nucleon-nucleon amplitudes, both for isospin 0 and 1 at medium energies; (2) continuing work on BNL E871, a search for rare decay modes of the K L ; (3) work on the RHIC-STAR project, an experiment to create and study a quark gluon plasma and nuclear matter at high energy density; (4) beginning a new AGS experiment (E896) which will search for the lowest mass state of the predicted strange di-baryons, the Ho, and other exotic states of nuclear matter through nucleus-nucleus collisions

  7. Electromagnetic design and development of a combined function horizontal and vertical dipole steerer magnet for medium energy beam transport line

    International Nuclear Information System (INIS)

    Singh, Kumud; Itteera, Janvin; Ukarde, Priti; Teotia, Vikas; Kumar, Prashant; Malhotra, Sanjay; Taly, Y.K.

    2013-01-01

    Medium Energy Beam Transport (MEBT) line is required to match the optical functions between the RFQ and SRF cavities/DTL cavities.The primary function of the MEBT lines is to keep the emittance growth of the output beam as low as possible in a highly space charge environment at low energies. The transverse focusing of the beam is achieved by strong focusing quadrupoles and the longitudinal dynamics is achieved by the buncher cavities. The Dipole Steerers serve the function of a control element to achieve the desired transverse beam position. To minimize the emittance growth high magnetic field rigidity is required in a highly constrained longitudinal space for these corrector magnets. The design and development of an air-cooled dipole steerer magnet has been done for an integral dipole field of 2.1mT-m in a Good Field Region (GFR) of 23 mm diameter with Integral Field homogeneity better than 0.5%. Electromagnetic field simulations were done using 3D-FEM simulation software OPERA. Error sensitivity studies have been carried out to specify the manufacturing tolerances to estimate and minimize the beam transmission loss due to likely misalignments and rotation of the magnet. A combined function dipole corrector magnet has been designed and fabricated at the Control Instrumentation Division, BARC. This paper discusses measurement results of a combined function dipole steerer for MEBT line for Proton (H + ) beam at 2.5 MeV. (author)

  8. Spallation production of neutron deficient radioisotopes in North America

    International Nuclear Information System (INIS)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-01-01

    The United States Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 from RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Be-10, Al-26, Mg-28, Si-32, El-44, Fe-52, Gd-248, and Hg-194. We will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes from Los Alamos and Brookhaven will be described. Chemical separation techniques have been developed to recover the radioisotopes of interest in both high radiochemical purity and yield and at the same time trying to reduce or eliminate the generation of mixed waste. nearly 75 neutron deficient radioisotopes produced in spallation targets have been produced and distributed to researchers around the world since the inception of the program in 1974

  9. Radiation problems expected for the German spallation neutron source

    International Nuclear Information System (INIS)

    Goebel, K.

    1981-01-01

    The German project for the construction of a Spallation Neutron Source with high proton beam power (5.5 MW) will have to cope with a number of radiation problems. The present report describes these problems and proposes solutions for keeping exposures for the staff and release of activity and radiation into the environment as low as reasonably achievable. It is shown that the strict requirements of the German radiation protection regulations can be met. The main problem will be the exposure of maintenance personnel to remanent gamma radiation, as is the case at existing proton accelerators. Closed ventilation and cooling systems will reduce the release of (mainly short-lived) activity to acceptable levels. Shielding requirements for different sections are discussed, and it is demonstrated by calculations and extrapolations from experiments that fence-post doses well below 150 mrem/y can be obtained at distances of the order of 100 metres from the principal source points. The radiation protection system proposed for the Spallation Neutron Source is discussed, in particular the needs for monitor systems and a central radiation protection data base and alarm system. (orig.)

  10. Materials considerations for the National Spallation Neutron Source target

    International Nuclear Information System (INIS)

    Mansur, L.K.; DiStefano, J.R.; Farrell, K.; Lee, E.H.; Pawel, S.J.; Wechsler, M.S.

    1997-08-01

    The National Spallation Neutron Source (NSNS), in which neutrons are generated by bombarding a liquid mercury target with 1 GeV protons, will place extraordinary demands on materials performance. The target structural material will operate in an aggressive environment, subject to intense fluxes of high energy protons, neutrons, and other particles, while exposed to liquid mercury and to water. Components that require special consideration include the Hg liquid target container and protective shroud, beam windows, support structures, moderator containers, and beam tubes. In response to these demands a materials R and D program has been developed for the NSNS that includes: selection of materials; calculations of radiation damage; irradiations, post irradiation testing, and characterization; compatibility testing and characterization; design and implementation of a plan for monitoring of materials performance in service; and materials engineering and technical support to the project. Irradiations are being carried out in actual and simulated spallation environments. Compatibility experiments in Hg are underway to ascertain whether the phenomena of liquid metal embrittlement and temperature gradient mass transfer will be significant. Results available to date are assessed in terms of the design and operational performance of the facility

  11. Complementarity of long pulse and short pulse spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Mezei, F [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1995-11-01

    The complementarity of short pulse spallation sources (SPSS) and steady state (CW) reactors is a widely accepted concept. SPSS and long pulse spallation sources (LPSS) are complementary in two ways: (a) in their performance in neutron scattering experiments LPSS closely emulate CW reactors. In this respect two facets of the time-of-flight (TOF) monochromator method adequate for LPSS will be discussed: the superiority of the TOF approach to the crystal monochromator method in high resolution powder diffraction, and the novel technique of repetition rate multiplication in TOF spectroscopy, (b) LPSS combined with adequate chopper systems can also emulate SPSS in a number of applications. It will be shown that the LPSS method of producing short neutron pulses is more efficient for cold and thermal neutrons (below an energy of about 100 MeV), while SPSS is the more favourable approach for hot, epithermal neutrons, i.e. in the slowing down regime in contrast to the moderated regime. These two aspects of complementarity of LPSS and SPSS lead to the conclusions that for about 75% of the spectrum of neutron scattering experiments as known of today the LPSS approach is the most advantageous one with a feasible neutron intensity exceeding that available at ILL by a factor of about 30, while for the remaining 25% of applications the SPSS technique is superior with a well-known potential of a similar gain over present day performances. (author) 7 figs., 6 refs.

  12. Complementarity of long pulse and short pulse spallation sources

    International Nuclear Information System (INIS)

    Mezei, F.

    1995-01-01

    The complementarity of short pulse spallation sources (SPSS) and steady state (CW) reactors is a widely accepted concept. SPSS and long pulse spallation sources (LPSS) are complementary in two ways: a) in their performance in neutron scattering experiments LPSS closely emulate CW reactors. In this respect two facets of the time-of-flight (TOF) monochromator method adequate for LPSS will be discussed: the superiority of the TOF approach to the crystal monochromator method in high resolution powder diffraction, and the novel technique of repetition rate multiplication in TOF spectroscopy, b) LPSS combined with adequate chopper systems can also emulate SPSS in a number of applications. It will be shown that the LPSS method of producing short neutron pulses is more efficient for cold and thermal neutrons (below an energy of about 100 MeV), while SPSS is the more favourable approach for hot, epithermal neutrons, i.e. in the slowing down regime in contrast to the moderated regime. These two aspects of complementarity of LPSS and SPSS lead to the conclusions that for about 75% of the spectrum of neutron scattering experiments as known of today the LPSS approach is the most advantageous one with a feasible neutron intensity exceeding that available at ILL by a factor of about 30, while for the remaining 25% of applications the SPSS technique is superior with a well-known potential of a similar gain over present day performances. (author) 7 figs., 6 refs

  13. Comparison of the air-kerma standards of the PTB and the BIPM in the medium-energy X-ray range

    International Nuclear Information System (INIS)

    Burns, D.T.; Bueermann, L.; Kramer, H.M.; Lange, B.

    2002-06-01

    An indirect comparison has been made between the air erma standards of the PTB and the BIPM in the medium-energy x-ray range. The results show the standards to be in general agreement at the level of the stated standard uncertainty, although the result for the 100 kV radiation quality differs significantly from that for the other qualities. (authors)

  14. Comparison of the air-kerma standards of the VNIIM and the BIPM in the medium-energy X-ray range

    International Nuclear Information System (INIS)

    Burns, D.T.; Villevalde, N.D.; Oborin, A.V.; Yurjatin, E.N.

    2001-09-01

    An indirect comparison has been made between the air-kerma standards of the VNIIM and the BIPM in the medium-energy x-ray range. The results show the standards to be in agreement within the stated uncertainty. (authors)

  15. Comparison of the air-kerma standards of the ENEA-INMRI and the BIPM in the medium-energy X-ray range

    International Nuclear Information System (INIS)

    Burns, D.T.; Toni, M.P.; Bovi, M.

    2000-08-01

    An indirect comparison has been made between the air erma standards of the ENEA-INMRI and the BIPM in the medium-energy x-ray range. The results show the standards to be in general agreement within the stated uncertainty, although there is evidence of a trend in the results at different radiation qualities. (authors)

  16. The dosimetric standards for low and medium energy X-rays; Les references dosimetriques pour les rayons X de basses et moyennes energies

    Energy Technology Data Exchange (ETDEWEB)

    Ksouri, W.; Denoziere, M.; Lecerf, N.; Leroy, E.

    2009-07-01

    The Laboratoire national Henri Becquerel (LNE-LNHB) has developed national dosimetric standards for x-rays of low and medium energies. This article describes these standards which are aimed at applications of radiation protection of workers and patients in the fields of medical diagnosis and industrial x-ray radiation. Developments for contact radiotherapy are also discussed. (author)

  17. International meeting on micro- and nanotechnologies with application of ion beams accelerated up to low and medium energies. Abstracts of reports

    International Nuclear Information System (INIS)

    Romanov, V.A.

    2007-01-01

    The collection contains abstracts presented on the International meeting Micro- and nanotechnologies with application of ion beams accelerated up to low and medium energies which took place 16-18 October 2007 in Obninsk (Russian Federation). The potentialities of ion implantation for creation of nanostructures is discussed. The accelerator complexes applied for manufacture of nanostructural materials are considered [ru

  18. The inelastic scattering of medium energy {alpha} particles; Sur la diffusion inelastique des particules {alpha} a moyenne energie

    Energy Technology Data Exchange (ETDEWEB)

    Crut, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-07-01

    The aim of this work is to find out what are the properties of the so-called 'anomalous states' in medium weight nuclei. These states preferentially excited in the inelastic scattering of medium energy charged particles have an excitation energy at about 4 MeV for nuclei with Z {<=} 29 and in the range 2-3 MeV for high Z nuclei. From a combination of angular distribution data in the elastic and inelastic scattering of 30 MeV {alpha} particles, and correlation data between inelastic {alpha} particles and deexcitation {gamma} rays, we show that for even-even nuclei, we can attribute spin 3 and parity minus to these 'anomalous states'. This is quite in agreement with the interpretation of these levels suggested by Lane as due to collective octupole oscillations. We give a resume of the theories used in the analysis of the data and a description of the experimental set-up. (author) [French] Le but de cette etude est de determiner les proprietes des niveaux dits 'anormalement excites' lors de la diffusion inelastique des particules chargees de moyenne energie sur des noyaux de masse moyenne et lourde. L'energie de ces niveaux est de l'ordre de 4 MeV pour les noyaux avec Z {<=} 29 et de 2 a 3 MeV pour les noyaux de Z plus eleve. De l'examen des courbes de distribution angulaire des particules {alpha} de 30 MeV diffusees elastiquement et inelastiquement, et de la correlation angulaire entre {alpha} excitant ces niveaux 'anormaux' et {gamma} de desexcitation, on deduit que, dans le cas des pair-pair, on peut attribuer a ces niveaux spin 3 et parite moins. Ceci renforce l'hypothese emise par Lane qui attribue ces niveaux a des oscillations octupolaires de la surface du noyau. On donne un apercu des theories utilisees dans l'analyse des resultats et une description des dispositifs experimentaux. (auteur)

  19. Preparation of the FXG gel dosemeter and studying its response for low and medium energy X-rays

    International Nuclear Information System (INIS)

    Bero, M.; Kharita, M. H.

    2008-02-01

    Gel dosimetry method was found to be capable of addressing complicated issues related to dose measurements particularly in modern sophisticated radiotherapy applications. Ferrous-sulphate Xylenol-orange and Gelatin (FXG) radiochromic gel dosemeter is one of the systems used for such applications. Some chemical dosemeters show different response for low and medium energies X-rays in comparison with high energy-photons. The energy and dose rate dependence of the FXG dose response was examined. In addition to the detector response other important dosimetric properties of the system were investigated for different X-ray beam qualities with tube voltages in the range 100 - 300 kv. An orthovoltage X-ray therapy unit was used to irradiate standard sized samples of FXG from different batches for radiation doses in the range 0 - 8 Gy. This work includes in the first stage the preparation of the radiochromic gel dosemeter (FXG) as well as its calibration in gamma radiation field. Furthermore, the stability and reproducibility of measurements were tested. The obtained results were found to be suitable as a basis to carry on the next stage of this study. The second phase was centred about the delivery of radiation doses from X-ray source that has increasing energy and evaluating the gel material properties as a dosemeter in this case, with concentration on finding the changes of the gel material response with the changes in the applied X-ray energy. Therefore establishing the response radiation energy dependence and comparing the measurement results with other results taken from other known dosimetry system such as ion chambers. Experiments shows that the FXG gel detector has a dynamic rage suitable for the dose delivered in radiotherapy treatment; its response as a function of the dose rate is also stable in the range of radiation energies applied.(Author)

  20. EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY

    Directory of Open Access Journals (Sweden)

    CHEOL HO PYEON

    2013-02-01

    Full Text Available Neutron spectrum analyses of spallation neutrons are conducted in the accelerator-driven system (ADS facility at the Kyoto University Critical Assembly (KUCA. High-energy protons (100 MeV obtained from the fixed field alternating gradient accelerator are injected onto a tungsten target, whereby the spallation neutrons are generated. For neutronic characteristics of spallation neutrons, the reaction rates and the continuous energy distribution of spallation neutrons are measured by the foil activation method and by an organic liquid scintillator, respectively. Numerical calculations are executed by MCNPX with JENDL/HE-2007 and ENDF/B-VI libraries to evaluate the reaction rates of activation foils (bismuth and indium set at the target and the continuous energy distribution of spallation neutrons set in front of the target. For the reaction rates by the foil activation method, the C/E values between the experiments and the calculations are found around a relative difference of 10%, except for some reactions. For continuous energy distribution by the organic liquid scintillator, the spallation neutrons are observed up to 45 MeV. From these results, the neutron spectrum information on the spallation neutrons generated at the target are attained successfully in injecting 100 MeV protons onto the tungsten target.

  1. Neutronic performance issues for the Spallation Neutron Source moderators

    International Nuclear Information System (INIS)

    Iverson, E.B.; Murphy, B.D.

    2001-01-01

    We continue to develop the neutronic models of the Spallation Neutron Source target station and moderators in order to better predict the neutronic performance of the system as a whole and in order to better optimize that performance. While we are not able to say that every model change leads to more intense neutron beams being predicted, we do feel that such changes are advantageous in either performance or in the accuracy of the prediction of performance. We have computationally and experimentally studied the neutronics of hydrogen-water composite moderators such as are proposed for the SNS Project. In performing these studies, we find that the composite moderator, at least in the configuration we have examined, does not provide performance characteristics desirable for the instruments proposed and being designed for this neutron scattering facility. The pulse width as a function of energy is significantly broader than for other moderators, limiting attainable resolution-bandwidth combinations. Furthermore, there is reason to expect that higher-energy (0.1-1 eV) applications will be significantly impacted by bimodal pulse shapes requiring enormous effort to parameterize. As a result of these studies, we have changed the SNS design, and will not use a composite moderator at this time. We have analyzed the depletion of a gadolinium poison plate in a hydrogen moderator at the Spallation Neutron Source, and found that conventional poison thicknesses will be completely unable to last the desired component lifetime of three operational years. A poison plate 300-600 μm thick will survive for the required length of time, but will somewhat degrade the intensity (by as much as 15% depending on neutron energy) and the consistency of the neutron source performance. Our results should scale fairly easily to other moderators on this or any other spallation source. While depletion will be important for all highly-absorbing materials in high-flux regions, we feel it likely that

  2. Cosmic ray-induced spallation recoil tracks in meteoritic phosphates: simulation at the CERN synchrocyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Perron, C [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Inst. d` Astrophysique; [Museum National d` Histoire Naturelle, 75 - Paris (France)

    1994-12-31

    Annealed meteoritic phosphate crystals have been irradiated by 600 MeV protons to simulate cosmic ray irradiation in space. Spallation recoil tracks were then revealed, which mimic fission tracks, specially when observed in the SEM. A production yield of 9.3 {+-} 2.2 x 10{sup 8} spallation track per proton has been obtained for merrillite, and a substantially lower value (2.5 per proton) for apatite. A nominal production yield in space of 6 tracks per year has been derived, which may be used for a rough estimate of spallation track densities in chondritic merrillite. (Author).

  3. The effect of annealing and desulfurization on oxide spallation of turbine airfoil material

    International Nuclear Information System (INIS)

    Briant, C.L.; Murphy, W.H.; Schaeffer, J.C.

    1995-01-01

    In this paper the authors report a study that addresses the sulfur-induced spallation theory. Previous work has shown that a high temperature anneal in hydrogen desulfurizes nickel-base alloys and greatly improves their resistance to oxide spallation. The authors will show that such an anneal can be applied successfully to a Ni-base airfoil material. Both Auger segregation experiments and chemical analyses show that this anneal desulfurizes the material, at least in the absence of yttrium. However, the results suggest that factors other than desulfurization may be contributing to the improvement in spallation resistance produced by the anneal

  4. Spallation RI beam facility and heavy element nuclear chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    An outline of the spallation RI (Radioactive Ion) beam facility is presented. Neutron-rich nuclides are produced in the reaction of high intensity (10-1000 {mu}A) protons with energy of 1.5 GeV and an uranium carbide target. Produced nuclides are ionized in an isotope separator on-line (ISOL) and accelerated by the JAERI tandem and the booster linac. Current progress and a future project on the development of the RI beam facility are given. Studies of transactinide elements, including the synthesis of superheavy elements, nuclear structure far from stability, and RI-probed material science are planned with RI beams. An outlook of the transactinide nuclear chemistry studies using neutron-rich RI beams is described. (author)

  5. The concept of a European spallation neutron source (ESS)

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-11-01

    The next generation neutron source in Europe, which was studied by a collaboration between twelve laboratories, has been conceived as a 5 MW short pulse spallation source because of the superior overall scientific potential attributed to such a facility relative to all other options considered. While the accelerator side can use essentially established technology with some extensions in performance, a novel target concept based on the use of Mercury as a flowing liquid metal target was developed, which is not only expected to lead the way further into the future, but which was also found to give the best neutronic performance of all known choices. Close permanent interaction with a large user community yielded important input for the concept in general and for the upcoming R and D and design phases in particular. (author)

  6. Spallation production of neutron deficient radioisotopes in North America

    International Nuclear Information System (INIS)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-01-01

    The US Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 and RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Al-26, Mg-28, Si-32, Ti-44, Fe-52, Gd-148, and Hg-194. The authors will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes will be described

  7. Radiological Hazard of Spallation Products in Accelerator-Driven System

    International Nuclear Information System (INIS)

    Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu.

    2002-01-01

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs

  8. The Spallation Neutron Source (SNS) conceptual design shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Odano, N.; Lillie, R.A.

    1998-03-01

    The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented

  9. Sulfur and Moisture Effects on Alumina Scale and TBC Spallation

    Science.gov (United States)

    Smialek, James L.

    2007-01-01

    It has been well established that a few ppmw sulfur impurity may segregate to the interface of thermally grown alumina scales and the underlying substrate, resulting in bond degradation and premature spallation. This has been shown for NiAl and NiCrAl-based alloys, bare single crystal superalloys, or coated superalloys. The role of reactive elements (especially Y) has been to getter the sulfur in the bulk and preclude interfacial segregation. Pt additions are also very beneficial, however a similar thermodynamic explanation does not apply. The purpose of the present discussion is to highlight some observations of these effects on Rene'142, Rene'N5, PWA1480, and PWA1484. For PWA1480, we have mapped cyclic oxidation and spallation in terms of potential sulfur interfacial layers and found that a cumulative amount of about one monolayer is sufficient to degrade long term adhesion. Depending on substrate thickness, optimum performance occurs if sulfur is reduced below about 0.2-0.5 ppmw. This is accomplished in the laboratory by hydrogen annealing or commercially by melt-fluxing. Excellent 1150 C cyclic oxidation is thus demonstrated for desulfurized Rene'142, Rene'N5, and PWA1484. Alternatively, a series of N5 alloys provided by GE-AE have shown that as little as 15 ppmw of Y dopant was effective in providing remarkable scale adhesion. In support of a Y-S gettering mechanism, hydrogen annealing was unable to desulfurize these alloys from their initial level of 5 ppmw S. This impurity and critical doping level corresponds closely to YS or Y2S3 stoichiometry. In many cases, Y-doped alloys or alloys with marginal sulfur levels exhibit an oxidative sensitivity to the ambient humidity called Moisture-Induced Delayed Spallation (MIDS). After substantial scale growth, coupled with damage from repeated cycling, cold samples may spall after a period of time, breathing on them, or immersing them in water. While stress corrosion arguments may apply, we propose that the underlying

  10. Study on induced radioactivity of China Spallation Neutron Source

    International Nuclear Information System (INIS)

    Wu Qingbiao; Wang Qingbin; Wu Jingmin; Ma Zhongjian

    2011-01-01

    China Spallation Neutron Source (CSNS) is the first High Energy Intense Proton Accelerator planned to be constructed in China during the State Eleventh Five-Year Plan period, whose induced radioactivity is very important for occupational disease hazard assessment and environmental impact assessment. Adopting the FLUKA code, the authors have constructed a cylinder-tunnel geometric model and a line-source sampling physical model, deduced proper formulas to calculate air activation, and analyzed various issues with regard to the activation of different tunnel parts. The results show that the environmental impact resulting from induced activation is negligible, whereas the residual radiation in the tunnels has a great influence on maintenance personnel, so strict measures should be adopted.(authors)

  11. Electron Cloud Mitigation in the Spallation Neutron Source Ring

    International Nuclear Information System (INIS)

    Wei, J.; Blaskiewicz, Michael; Brodowski, J.; Cameron, P.; Davino, Daniele; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Ludewig, H.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Catalan-Lasheras, N.; Macek, R.J.; Furman, Miguel A.; Aleksandrov, A.; Cousineau, S.; Danilov, V.; Henderson, S.

    2008-01-01

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H - injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron-cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation

  12. Characteristics of the WNR: a pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Russell, G.J.; Lisowski, P.W.; Howe, S.D.; King, N.S.P.; Meier, M.M.

    1982-01-01

    The Weapons Neutron Research facility (WNR) is a pulsed spallation neutron source in operation at the Los Alamos National Laboratory. The WNR uses part of the 800-MeV proton beam from the Clinton P. Anderson Meson Physics Facility accelerator. By choosing different target and moderator configurations and varying the proton pulse structure, the WNR can provide a white neutron source spanning the energy range from a few MeV to 800 MeV. The neutron spectrum from a bare target has been measured and is compared with predictions using an Intranuclear Cascade model coupled to a Monte Carlo transport code. Calculations and measurements of the neutronics of WNR target-moderator assemblies are presented

  13. Magnets for the national spallation neutron source accumulator ring

    International Nuclear Information System (INIS)

    Tuozzolo, J.; Brodowski, J.; Danby, G.

    1997-01-01

    The National Spallation Neutron Source Accumulator Ring will require large aperture dipole magnets, strong focusing quadrupole magnets, and smaller low field dipole, quadrupole, and sextupole correcting magnets. All of the magnets will provide a fixed magnetic field throughout the accumulator's fill/storage/extraction cycle. Similar fixed field magnets will also be provided for the beam transport systems. Because of the high intensity in the accumulator, the magnets must be designed with high tolerances for optimum field quality and for the high radiation environment which may be present at the injection/extraction areas, near the collimators, and near the target area. Field specifications and field plots are presented as well as planned fabrication methods and procedures, cooling system design, support, and installation

  14. The Spallation Neutron Source Beam Commissioning and Initial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Stuart [Argonne National Lab. (ANL), Argonne, IL (United States); Aleksandrov, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Assadi, Saeed [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bartoski, Dirk [University of Texas, Houston, TX (United States). Anderson Cancer Center; Blokland, Willem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Casagrande, F. [Michigan State Univ., East Lansing, MI (United States); Campisi, I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chu, C. [Michigan State Univ., East Lansing, MI (United States); Cousineau, Sarah M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crofford, Mark T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Danilov, Viatcheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deibele, Craig E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dodson, George W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feshenko, A. [Inst. for Nuclear Research (INR), Moscow (Russian Federation); Galambos, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Han, Baoxi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hardek, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holmes, Jeffrey A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Howell, Matthew P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jeon, D. [Inst. for Basic Science, Daejeon (Korea); Kang, Yoon W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kasemir, Kay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kravchuk, L. [Institute for Nuclear Research (INR), Moscow (Russian Federation); Long, Cary D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamy, T. [McManamy Consulting, Inc., Middlesex, MA (United States); Pelaia, II, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Piller, Chip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Plum, Michael A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pogge, James R. [Tennessee Technological Univ., Cookeville, TN (United States); Purcell, John David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shea, T. [European Spallation Source, Lund (Sweden); Shishlo, Andrei P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sibley, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stockli, Martin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stout, D. [Michigan State Univ., East Lansing, MI (United States); Tanke, E. [European Spallation Source, Lund (Sweden); Welton, Robert F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Y. [Michigan State Univ., East Lansing, MI (United States); Zhukov, Alexander P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  15. Thermal shock analysis of liquid-mercury spallation target

    CERN Document Server

    Ishikura, S; Futakawa, M; Hino, R; Date, H

    2002-01-01

    The developments of the neutron scattering facilities are carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (Hg) target used as a spallation neutron source in a MW-class neutron scattering facility, dynamic stress behavior due to the incident of a 1 MW-pulsed proton beam was analyzed by using FEM code. Two-type target containers with semi-cylindrical type and flat-plate type window were used as models for analyses. As a result, it is confirmed that the stress (pressure wave) generated by dynamic thermal shock becomes the largest at the center of window, and the flat-plate type window is more advantageous from the structural viewpoint than the semi-cylindrical type window. It has been understood that the stress generated in the window by the pressure wave can be treated as the secondary stress. (author)

  16. Beam Instrumentation for the Spallation Neutron Source Ring

    International Nuclear Information System (INIS)

    Witkover, R. L.; Cameron, P. R.; Shea, T. J.; Connolly, R. C.; Kesselman, M.

    1999-01-01

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10 -4 . A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring

  17. Electron-cloud mitigation in the spallation neutron source ring

    International Nuclear Information System (INIS)

    Wei, J.; Blaskiewicz, M.; Brodowski, J.; Cameron, P.; Davino, D.; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Danilov, V.; Henderson, S.; Furman, M.; Pivi, M.; Macek, R.

    2003-01-01

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H- injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation

  18. High-energy nuclear reaction mechanisms - fission, fragmentation and spallation

    International Nuclear Information System (INIS)

    Kaufman, S.B.

    1987-01-01

    Measurements of the correlations in kinetic energy, mass, charge, and angle of coincident fragments formed in high-energy nuclear reactions have helped to characterize the processes of fission, fragmentation and spallation. For example, fission or fission-like two-body breakup mechanisms result in a strong angular correlation between two heavy fragments; in addition, the momentum transfer in the reaction can be deduced from the correlation. Another example is the multiplicity of light charged particles associated with a given heavy fragment, which is a measure of the violence of the collision, thus distinguishing between central and peripheral collisions. A summary of what has been learned about these processes from such studies will be given, along with some suggestions for further experiments

  19. Materials compatibility studies for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Pawel, S.J.; Manneschmidt, E.T.

    1998-01-01

    The Spallation Neutron Source (SNS) is a high power facility for producing neutrons that utilizes flowing liquid mercury inside an austenitic stainless steel container as the target for a 1.0 GeV proton beam. Type 316 SS has been selected as the container material for the mercury and consequences of exposure of 316 SS to radiation, thermal shock, thermal stress, cavitation and hot, flowing mercury are all being addressed by R and D programs. In addition, corrosion studies also include evaluation of Inconel 718 because it has been successfully used in previous spallation neutron systems as a window material. Two types of compatibility issues relative to 316 SS/mercury and Inconel 718/mercury are being examined: (1) liquid metal embrittlement (LME) and (2) temperature gradient mass transfer. Studies have shown that mercury does not easily wet type 316 SS below 275 C. In the LME experiments, attempts were made to promote wetting of the steel by mercury either by adding gallium to the mercury or coating the specimen with a tin-silver solder that the mercury easily wets. The latter proved more reliable in establishing wetting, but there was no evidence of LME in any of the constant extension rate tensile tests either at 23 or 100 C. Inconel 718 also showed no change in room temperature properties when tested in mercury or mercury-gallium. However, there was evidence that the fracture was less ductile. Preliminary evaluation of mass transfer of either type 316 SS or Inconel 718 in mercury or mercury-gallium at 350 C (maximum temperature) did not reveal significant effects. Two 5,000 h thermal convection loop tests of type 316 SS are in progress, with specimens in both hot and cold test regions, at 300 and 240 C, respectively

  20. EFFECT OF LOW ENERGY VERSUS MEDIUM ENERGY RADIAL SHOCK WAVE THERAPY IN THE TREATMENT OF CHRONIC PLANTER FASCIITIS

    Directory of Open Access Journals (Sweden)

    Khaled Z. Fouda

    2016-02-01

    Full Text Available Background: Plantar fasciitis (PF is the most common cause of heel pain and it can often be a challenge for clinicians to treat successfully. Radial shock wave therapy (RSWT has been introduced recently for treatment of musculoskeletal disorders. Different energy levels of shock wave therapy have been used in the literatures for treatment of PF with no clear settled parameters. Therefore, the purpose of this study was intended to investigate and compare the efficacy of two different energy levels of RSWT on PF patients. Methods: Forty patients having unilateral chronic PF were recruited for the study from orthopedic outpatient clinics of Cairo University hospitals and National Institute of Neuromotor System Cairo Egypt, with a mean age of (47.15±4.57 years. Patients were randomly assigned into two equal groups. Group (A treated with low intensity level of 1.6 bars (0.16 mJ/mm2 RSWT and group (B treated with medium intensity level of 4 bars (0.38 mJ/mm2 RSWT. Functional assessment of the foot based on Foot Function Index (FFI and Present pain intensity was measured during rest by Visual Analogue Scale (VAS. Results: There was as significant decreased in the total FFI scores from (118.42 ±6.51 to (81.37 ±3.46 for group (A and from (118.93 ±6.85 to (58.50 ±3.22 for group (B. Also regarding VAS Scores there was as significant decreased in the pain intensity from (5.11 ±0.41 to (2.85 ±0.31 for group (A and from (4.95 ±0.39 to (2.05 ±0.22 for group (B. Conclusion: Radial shock wave therapy is an effective modality that should be considered in the treatment of chronic PF, while the medium energy level RSWT is better than the low energy level RSWT in regarding to the measured treatment outcomes.

  1. Cross sections for atmospheric corrections

    International Nuclear Information System (INIS)

    Meyer, J.P.; Casse, M.; Westergaard, N.

    1975-01-01

    A set of cross sections for spallation of relativistic nuclei is proposed based on (i) the best available proton cross sections, (ii) an extrapolation to heavier nuclei of the dependence on the number of nucleons lost of the 'target factor' observed for C 12 and O 16 by Lindstrom et al. (1975), in analogy with Rudstam's formalism, and (iii) on a normalization of all cross sections to the total cross sections for production of fragments with Asub(f) >= 6. The obtained cross sections for peripheral interactions are not inconsistent with simple geometrical considerations. (orig.) [de

  2. MEGAPIE spallation target: Design, manufacturing and preliminary tests of the first pro-typical spallation target for future ADS

    International Nuclear Information System (INIS)

    Latge, Ch.; Laffont, G.; Groeschel, F.; Thomsen, K.; Wagner, W.; Agostini, P.; Dierckx, M.; Fazio, C.; Kirchner, T.; Kurata, Y.; Song, T.; Woloshun, K.

    2006-01-01

    Partitioning and Transmutation (P and T) techniques could contribute to reduce the radioactive inventory and its associated radiotoxicity. Sub-critical Accelerator Driven Systems (ADS) are potential candidates as dedicated transmutation systems, and thus their development is a relevant R and D topic in Europe. Following a first phase focused on the understanding of the basic principles of ADS (e.g. the programme MUSE), the R and D has been streamlined and focused on practical demonstration key issues. These demonstrations cover high intensity proton accelerators (beam current in the range 1 to 20 mA), spallation targets of high power and their effective coupling with a subcritical core. Presently there is general consensus that up to 1 MW of beam power solid targets are feasible from a heat removal point of view. For higher power levels liquid metal targets are the option of choice because of their higher heat removal capability, higher spallation material density in the volume and lower specific radioactivity, Therefore, a key experiment in the ADS road map, the Megawatt Pilot Experiment (MEGAPIE) (1 MW) was initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at Paul Scherrer Institute (PSI). It has to be equipped to provide the largest possible amount of scientific and technical information without jeopardizing its safe operation. The minimum design service life has been fixed at 1 year (6000 mAh). Whereas the interest of the partner institutes is driven by the development needs of ADS, PSI interest lies also in the potential use of a LM target as a SINQ standard target providing a higher neutron flux than the current solid targets. Calculations of the radial distribution of the undisturbed thermal neutron flux for the LBE target in comparison to the former Zircaloy and current steel-clad solid lead target were done with different nuclear codes; nevertheless

  3. Tool for the study of matter - the spallation neutron source. Werkzeug zur Erforschung der Materie - die Spallations-Neutronenquelle

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    It deals with the optimal use of a whole series of matter penetrating radiation types at the construction of a spallation neutron source which the Kernforschungsanlage Juelich will realize in agreement with its associated. This new big science device for the fundamental research in the Federal Republic of Germany shall as the most modern and intense source of neutrons, protons, pions, muons, and neutrinos permits to proceed in the fields of solid state physics, chemistry, molecular biology, intermediate-energy nuclear physics, radiochemistry and radiopharmacology, medicine, and materials science to virgin territory and to provide top research. All interested German groups of researchers and also scientists of foreign countries shall be able to work with this directive big science device.

  4. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pynn, R.; Weinacht, D.

    1995-01-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the US with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW, long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the US. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE's Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide US scientists with a complementary pair of high-performance neutron sources to rival the world's leading facilities in Europe

  5. Electron cloud instabilities in the Proton Storage Ring and Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    M. Blaskiewicz

    2003-01-01

    Full Text Available Electron cloud instabilities in the Los Alamos Proton Storage Ring and those foreseen for the Oak Ridge Spallation Neutron Source are examined theoretically, numerically, and experimentally.

  6. Technology and science at a high-power spallation source: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    These proceedings cover many aspects of the usefulness of spallation neutrons. Nine different areas are considered: surfaces and interfaces, engineering, materials science, polymers and complex fluids, chemistry, structural biology, nuclear engineering and radiation effects, condensed matter physics and fundamental physics.

  7. Technology and science at a high-power spallation source: Proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    These proceedings cover many aspects of the usefulness of spallation neutrons. Nine different areas are considered: surfaces and interfaces, engineering, materials science, polymers and complex fluids, chemistry, structural biology, nuclear engineering and radiation effects, condensed matter physics and fundamental physics

  8. Mercury purification in the megawatt liquid metal spallation target of EURISOL-DS

    CERN Document Server

    Neuhausen, Joerg; Eller, Martin; Schumann, Dorothea; Eichler, Bernd; Horn, Susanne

    High power spallation targets are going to be used extensively in future research and technical facilities such as spallation neutron sources, neutrino factories, radioactive beam facilities or accelerator driven systems for the transmutation of long-lived nuclear waste. Within EURISOL-DS, a 4 MW liquid metal spallation target is designed to provide neutrons for a fission target, where neutron rich radionuclides will be produced. For the spallation target, mercury is planned to be used as target material. A large amount of radionuclides ranging from atomic number Z=1 to 81 will be produced in the liquid metal during long term irradiation. It is planned to remove those radionuclides by chemical or physicochemical methods to reduce its radioactivity. For the development of a purification procedure, knowledge about the chemical state of the different elements present in the mixture is required. We present a general concept of applicable separation techniques in a target system and show some results of experiment...

  9. ELECTRON CLOUD AT COLLIMATOR AND INJECTION REGION OF THE SPALLATION NEUTRON SOURCE ACCUMULATOR RING

    International Nuclear Information System (INIS)

    WANG, L.; HSEUH, H.-C.; LEE, Y.Y.; RAPARIA, D.; WEI, J.; COUSINEAU, S.

    2005-01-01

    The beam loss along the Spallation Neutron Source's accumulator ring is mainly located at the collimator region and injection region. This paper studied the electron cloud build-up at these two regions with the three-dimension program CLOUDLAND

  10. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pynn, R.; Weinacht, D.

    1995-01-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the U.S. with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the U.S. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE's Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide U.S. scientists with a complementary pair of high-performance neutron sources to rival the world's leading facilities in Europe. (author) 1 ref

  11. Detailed EXOSAT and optical observations of the intermediate polar 3A0729+103: discovery of two medium energy X-ray emission regions

    International Nuclear Information System (INIS)

    McHardy, I.M.; Pye, J.P.; Fairall, A.P.; Menzies, J.W.

    1987-01-01

    EXOSAT observations of the intermediate polar cataclysmic variable 3A0729+103 reveal a strong orbital modulation, with the 2-4KeV X-rays being significantly more modulated than the 4-6keV X-rays, indicative of photoelectric absorption. The 913 second modulation which is very prominent in the optical light curve, is weakly detected in the medium-energy X-ray light curve, confirming that it represents the white dwarf spin period. These observations are well explained by a combination of two sources of medium-energy X-ray emission. The presence of two emission regions is also clearly seen in the optical spectroscopy, particularly in the intensity of the He II4686 line which has two peaks during the orbit. The authors identify the two optical emission regions with the two X-ray emission regions. (author)

  12. Anomalous behavior in temporal evolution of ripple wavelength under medium energy Ar{sup +}-ion bombardment on Si: A case of initial wavelength selection

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Sandeep Kumar [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Cuerno, Rodolfo [Departamento de Matematicas and Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, 28911 Leganes (Spain); Kanjilal, Dinakar [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Som, Tapobrata, E-mail: tsom@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India)

    2016-06-14

    We have studied the early stage dynamics of ripple patterns on Si surfaces, in the fluence range of 1–3 × 10{sup 18} ions cm{sup −2}, as induced by medium energy Ar{sup +}-ion irradiation at room temperature. Under our experimental conditions, the ripple evolution is found to be in the linear regime, while a clear decreasing trend in the ripple wavelength is observed up to a certain time (fluence). Numerical simulations of a continuum model of ion-sputtered surfaces suggest that this anomalous behavior is due to the relaxation of the surface features of the experimental pristine surface during the initial stage of pattern formation. The observation of this hitherto unobserved behavior of the ripple wavelength seems to have been enabled by the use of medium energy ions, where the ripple wavelengths are found to be order(s) of magnitude larger than those at lower ion energies.

  13. Big-bang nucleosynthesis with a long-lived CHAMP including He4 spallation process

    Science.gov (United States)

    Yamanaka, Masato; Jittoh, Toshifumi; Kohri, Kazunori; Koike, Masafumi; Sato, Joe; Sugai, Kenichi; Yazaki, Koichi

    2014-03-01

    We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property. This talk is based on the work of ref. [1].

  14. Licensing review process of the European Spallation Source (ESS) research facility

    International Nuclear Information System (INIS)

    Brewitz, Erica

    2014-01-01

    On 3 January 2012 a license application under the Radiation Protection Act (SFS, 1988b) for the European Spallation Source research facility was submitted to the Swedish Radiation Safety Authority. The European Spallation Source research facility will be the site of a new and quite unusual kind of neutron source, based on a large proton accelerator that bombards a heavy material with protons. The Swedish Radiation Safety Authority is now reviewing the application. (authors)

  15. Shielding design study for the JAERI/KEK spallation neutron source

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Teshigawara, Makoto; Konno, Chikara; Ikeda, Yujiro; Watanabe, Noboru

    2001-01-01

    Shielding design for the JAERI/KEK spallation neutron source was studied. Bulk shielding characteristics and optimization of a beam shutter were investigated by using Monte Carlo calculation code NMTC/JAM and MCNP with LA-150 neutron cross-section library. The following remarks were derived. (1) Neutron dose outside of the concrete shield at 6.6 m from the center is ∼10 μSv/hr regardless of angles with respect to the proton beam axis. The neutron dose can be reduced more than a factor of 30 by adding natural boron of 5 wt% in the concrete. (2) When a beam shutter position just outside the void vessel and the shutter length of 2 m are assumed, a shutter made of copper (1.7 m) with polyethylene (0.3 m) is the optimum in terms of shielding performance as well as cost merit. A shutter made of tungsten is not so effective. (3) Further studies are needed for optimization of beam shutter position. (author)

  16. An update on measurements of helium-production reactions with a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, R.C.; Bateman, F.B.; Chadwick, M.B. [and others

    1995-10-01

    This report gives the status, updated since the last Research Coordination Meeting, of alpha-particle production cross sections, emission spectra and angular distributions which we are measuring at the spallation source of fast neutrons at the Los Alamos Meson Physics Facility (LAMPF). Detectors at angles of 30, 60, 90 and 135{degrees} are used to identify alpha particles, measure their energy spectra, and indicate the time-of-flight, and hence the energy, of the neutrons inducing the reaction. The useful neutron energy ranges from less than 1 MeV to approximately 50 MeV for the present experimental setup. Targets under study at present include C, N, 0, {sup 27}Al, Si, {sup 51}V, {sup 56}Fe, {sup 59}CO, {sup 58,60}Ni, {sup 89}Y and {sup 93}Nb. Data for {sup 59}Co have been re-analyzed. The results illustrate the capabilities of the approach, agreement with literature values, and comparisons with nuclear reaction model calculations.

  17. General-purpose readout electronics for white neutron source at China Spallation Neutron Source.

    Science.gov (United States)

    Wang, Q; Cao, P; Qi, X; Yu, T; Ji, X; Xie, L; An, Q

    2018-01-01

    The under-construction White Neutron Source (WNS) at China Spallation Neutron Source is a facility for accurate measurements of neutron-induced cross section. Seven spectrometers are planned at WNS. As the physical objectives of each spectrometer are different, the requirements for readout electronics are not the same. In order to simplify the development of the readout electronics, this paper presents a general method for detector signal readout. This method has advantages of expansibility and flexibility, which makes it adaptable to most detectors at WNS. In the WNS general-purpose readout electronics, signals from any kinds of detectors are conditioned by a dedicated signal conditioning module corresponding to this detector, and then digitized by a common waveform digitizer with high speed and high precision (1 GSPS at 12-bit) to obtain the full waveform data. The waveform digitizer uses a field programmable gate array chip to process the data stream and trigger information in real time. PXI Express platform is used to support the functionalities of data readout, clock distribution, and trigger information exchange between digitizers and trigger modules. Test results show that the performance of the WNS general-purpose readout electronics can meet the requirements of the WNS spectrometers.

  18. The CENNS-10 liquid argon detector to measure CEvNS at the Spallation Neutron Source

    Science.gov (United States)

    Tayloe, R.

    2018-04-01

    The COHERENT collaboration is deploying a suite of low-energy detectors in a low-background corridor of the ORNL Spallation Neutron Source (SNS) to measure coherent elastic neutrino-nucleus scattering (CEvNS) on an array of nuclear targets employing different detector technologies. A measurement of CEvNS on different nuclei will test the N2-dependence of the CEvNS cross section and further the physics reach of the COHERENT effort. The first step of this program has been realized recently with the observation of CEvNS in a 14.6 kg CsI detector. Operation and deployment of Ge and NaI detectors are also underway. A 22 kg, single-phase, liquid argon detector (CENNS-10) started data-taking in Dec. 2016 and will provide results on CEvNS from a lighter nucleus. Initial results indicate that light output, pulse-shape discrimination, and background suppression are sufficient for a measurement of CEvNS on argon.

  19. Cooperative effort between Consorcio European Spallation Source--Bilbao and Oak Ridge National Laboratory spallation neutron source for manufacturing and testing of the JEMA-designed modulator system

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, David E [ORNL

    2017-01-02

    The JEMA modulator was originally developed for the European Spallation Source (ESS) when Spain was under consideration as a location for the ESS facility. Discussions ensued and the Spallation Neutron Source Research Accelerator Division agreed to form a collaboration with ESS-Bilbao (ESS-B) consortium to provide services for specifying the requirements for a version of the modulator capable of operating twelve 550 kW klystrons, monitoring the technical progress on the contract with JEMA, installing and commissioning the modulator at SNS, and performing a 30 day full power test. This work was recently completed, and this report discusses those activities with primary emphasis on the installation and testing activities.

  20. Cooperative effort between Consorcio European Spallation Source--Bilbao and Oak Ridge National Laboratory spallation neutron source for manufacturing and testing of the JEMA-designed modulator system

    International Nuclear Information System (INIS)

    Anderson, David E.

    2017-01-01

    The JEMA modulator was originally developed for the European Spallation Source (ESS) when Spain was under consideration as a location for the ESS facility. Discussions ensued and the Spallation Neutron Source Research Accelerator Division agreed to form a collaboration with ESS-Bilbao (ESS-B) consortium to provide services for specifying the requirements for a version of the modulator capable of operating twelve 550 kW klystrons, monitoring the technical progress on the contract with JEMA, installing and commissioning the modulator at SNS, and performing a 30 day full power test. This work was recently completed, and this report discusses those activities with primary emphasis on the installation and testing activities.

  1. On spallation and fragmentation of heavy ions at intermediate energies

    International Nuclear Information System (INIS)

    Musulmanbekov, G.; Al-Haidary, A.

    2002-01-01

    A new code for simulation of spallation and (multi)fragmentation of nuclei in proton and nucleus induced collisions at intermediate and high energies is developed. The code is a combination of modified intranuclear cascade model with traditional fission - evaporation part and multifragmentation part based on lattice representation of nuclear structure and percolation approach. The production of s-wave resonances and formation time concept included into standard intranuclear cascade code provides correct calculation of excitation energy of residues. This modified cascade code served as a bridge between low and high energy model descriptions of nucleus-nucleus collisions. A good agreement with experiments has been obtained for multiparticle production at intermediate and relatively high energies. Nuclear structure of colliding nuclei is represented as face centered cubic lattice. This representation, being isomorphic to the shell model of nuclear structure, allows to apply percolation approach for nuclear fragmentation. The offered percolation model includes both site and bond percolation. Broken sites represent holes left by nucleons knocked out at cascade state. Therefore, in the first cascade stage mutual rescattering of the colliding nuclei results in knocking some nucleons out of them. After this fast stage paltrily destruct and excited residues remain. On the second stage residual nuclei either evaporate nucleons and light nuclei up to alpha-particles or fragment into pieces with intermediate masses. The choice depends on residue's destruction degree. At low excitation energy and small destruction of the residue the evaporation and fission mechanisms are preferable. The more excitation energy and destruction the more probability of (multi)fragmentation process. Moreover, the more destruction degree of the residual the more the site percolation probability. It is concluded, that at low and intermediate excitation energies the fragmentation of nuclei is slow

  2. Device for Writing the Time Tail from Spallation Neutron Pulses

    International Nuclear Information System (INIS)

    Langan, P.; Schoenborn, Benno P.; Daemen, L.L.

    2001-01-01

    Recent work at Los Alamos Neutron Science Center (LANSCE), has shown that there are large gains in neutron beam intensity to be made by using coupled moderators at spallation neutron sources. Most of these gains result from broadening the pulse-width in time. However the accompanying longer exponential tail at large emission times can be a problem in that it introduces relatively large beam-related backgrounds at high resolutions. We have designed a device that can reshape the moderated neutron beam by cutting the time-tail so that a sharp time resolution can be re-established without a significant loss in intensity. In this work the basic principles behind the tail-cutter and some initial results of Monte Carlo simulations are described. Unwanted neutrons in the long time-tail are diffracted out of the transmitted neutron beam by a nested stack of aperiodic multi-layers, rocking at the same frequency as the source. Nested aperiodic multi-layers have recently been used at X-ray sources and as band-pass filters in quasi-Laue neutron experiments at reactor neutron sources. Optical devices that rock in synchronization with a pulsed neutron beam are relatively new but are already under construction at LANSCE. The tail-cutter described here is a novel concept that uses existing multi-layer technology in a new way for spallation neutrons. Coupled moderators in combination with beam shaping devices offer the means of increasing flux whilst maintaining a sharp time distribution. A prototype device is being constructed for the protein crystallography station at LANSCE. The protein crystallography station incorporates a water moderator that has been judiciously coupled in order to increase the flux over neutron energies that are important to structural biology (3-80meV). This development in moderator design is particularly important because protein crystallography is flux limited and because conventional ambient water and cold hydrogen moderators do not provide relatively

  3. Light particle production in spallation reactions induced by protons of 0.8-2.5 GeV incident kinetic energy

    International Nuclear Information System (INIS)

    Herbach, Claus-Michael; Enke, Michael; Boehm, Andreas

    2002-01-01

    Absolute production cross sections have been measured simultaneously for neutrons and light charged particles in 0.8-2.5 GeV proton induced spallation reactions for a series of target nuclei from aluminum up to uranium. The high detection efficiency both for neutral and charged evaporative particles provides an event-wise access to the amount of projectile energy dissipated into nuclear excitation. Various intra nuclear cascade plus evaporation models have been confronted with the experimental data showing large discrepancies for hydrogen and helium production. (author)

  4. Mechanical Engineering of the Linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Bultman, N.K.; Chen, Z.; Collier, M.; Erickson, J.L.; Guthrie, A.; Hunter, W.T.; Ilg, T.; Meyer, R.K.; Snodgrass, N.L.

    1999-01-01

    The linac for the Spallation Neutron Source (SNS) Project will accelerate an average current of 1 mA of H - ions from 20 MeV to 1GeV for injection into an accumulator ring. The linac will be an intense source of H - ions and as such requires advanced design techniques to meet project technical goals as well as to minimize costs. The DTL, CCDTL and CCL are 466m long and operate at 805 MHz with a maximum H - input current of 28 mA and 7% rf duty factor. The Drift Tube Linac is a copper-plated steel structure using permanent magnetic quadrupoles. The Coupled-Cavity portions are brazed copper structures and use electromagnetic quads. RF losses in the copper are 80 MW, with total rf power supplied by 52 klystrons. Additionally, the linac is to be upgraded to the 2- and 4-MW beam power levels with no increase in duty factor. The authors give an overview of the linac mechanical engineering effort and discuss the special challenges and status of the effort

  5. Feasibility study for the spallation neutron source (SNQ). Pt. 1

    International Nuclear Information System (INIS)

    Bauer, G.S.; Sebening, H.; Vetter, J.E.; Willax, H.

    1981-06-01

    A concept for a new neutron source for fundamental research has been developed and is described in this report. The spallation neutron source SNQ is characterized in its first stage by a time average thermal neutron flux of 7 x 10 14 cm -2 s -1 and a peak flux of 1.3 x 10 16 cm -2 s -1 at 100 Hz repetition rate. The scientific case is presented with particular emphasis on solid state and nuclear physics. In these research domains, unique conditions are given for experimental use. The proposed machine consists in its basic stage of a 1.1 GeV, 5 mA time average, 100 mA peak current proton linear accelerator, a rotating lead target, and H 2 O and D 2 O moderators. Additional beam channels are provided for experiments with protons at 350 MeV and at the final energy. Construction of the SNQ is considered feasible within eight years at a cost of 680 million DM. As future options, use of uranium as a target material, increase of the accelerator beam power by a factor of 2, addition of a pulse compressor and a second target station for pulsed neutron and neutrino research are described. As a back-up solution to the rotating target, a liquid metal target was studied. (orig.) [de

  6. Neutron diffractometers for structural biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B.P.; Pitcher, E. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical {sup 3}He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5{Angstrom} with a flight path length of 10m and an energy resolution of 0.25{Angstrom}. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux.

  7. Engineering design of the EURISOL multi-MW spallation target

    CERN Document Server

    Herrera-Martínez, A; Ashrafi-Nik, M; Samec, K; Freibergs, J; Platacis, E

    2007-01-01

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order of 1...

  8. ENGINEERING DESIGN OF THE EURISOL MULTI-MW SPALLATION TARGET

    CERN Document Server

    Adonai Herrera-Martinez*, Yacine Kadi, Morteza Ashrafi-Nik, Karel Samec, Janis Freibergs, Ernests Platacis

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order ...

  9. Spallation Neutron Source Accident Terms for Environmental Impact Statement Input

    Energy Technology Data Exchange (ETDEWEB)

    Devore, J.R.; Harrington, R.M.

    1998-08-01

    This report is about accidents with the potential to release radioactive materials into the environment surrounding the Spallation Neutron Source (SNS). As shown in Chap. 2, the inventories of radioactivity at the SNS are dominated by the target facility. Source terms for a wide range of target facility accidents, from anticipated events to worst-case beyond-design-basis events, are provided in Chaps. 3 and 4. The most important criterion applied to these accident source terms is that they should not underestimate potential release. Therefore, conservative methodology was employed for the release estimates. Although the source terms are very conservative, excessive conservatism has been avoided by basing the releases on physical principles. Since it is envisioned that the SNS facility may eventually (after about 10 years) be expanded and modified to support a 4-MW proton beam operational capability, the source terms estimated in this report are applicable to a 4-MW operating proton beam power unless otherwise specified. This is bounding with regard to the 1-MW facility that will be built and operated initially. See further discussion below in Sect. 1.2.

  10. Spallation neutron source target design for radioactive waste transmutation

    International Nuclear Information System (INIS)

    Beard, C.A.

    1992-01-01

    The disposal of high-level radioactive waste has long been one of the most serious problems facing the nuclear industry. Transmutation of this waste through particle bombardment has been suggested numerous times as a possible method of enhancing the waste management process. Due to advances in accelerator technology, the feasibility of an accelerator based transmutation system has increased enough to allow serious investigation of this process. Therefore, in pursuit of this goal, an accelerator target was designed for use in an accelerator based transmutation system. The target design consists of an array of tantalum rods, cooled by liquid sodium, which are arranged in a cylindrical configuration 40 cm in diameter and 125 cm in height. Tantalum was chosen as the target material over tungsten, lead, bismuth, and a lead-bismuth alloy (55 w/o bismuth) due to a large neutron yield, low activation, low chemical toxicity, and the fact that it does not produce significant amounts of long-lived isotopes through spallation or activation. The target yields a neutron source of 29.7 neutrons/proton when exposed to a 1600 MeV proton beam, and is suitable for use with both thermal or fast spectrum transmutation systems

  11. Beam dynamics simulation of the Spallation Neutron Source linear accelerator

    International Nuclear Information System (INIS)

    Takeda, H.; Billen, J.H.; Bhatia, T.S.

    1998-01-01

    The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H - pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 βλ structure to a CCDTL operated at 805 MHz with a 12 βλ structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large (±500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac

  12. Feasibility study of a 1-MW pulsed spallation source

    International Nuclear Information System (INIS)

    Cho, Y.; Chae, Y.C.; Crosbie, E.

    1995-01-01

    A feasibility study of a 1-MW pulsed spallation source based on a rapidly cycling proton synchrotron (RCS) has been completed. The facility consists of a 400-MeV HP - linac, a 30-Hz RCS that accelerates the 400-MeV beam to 2 GeV, and two neutron-generating target stations. The design time-averaged current of the accelerator system is 0.5 mA, or 1.04x1014 protons per pulse. The linac system consists of an H - ion source, a 2-MeV RFQ, a 70-MeV DTL and a 330-MeV CCL. Transverse phase space painting to achieve a Kapchinskij-Vladimirskij (K-V) distribution of the injected particles in the RCS is accomplished by charge exchange injection and programming of the closed orbit during injection. The synchrotron lattice uses FODO cells of ∼90 degrees phase advance. Dispersion-free straight sections are obtained by using a missing magnet scheme. Synchrotron magnets are powered by a dual-frequency resonant circuit that excites the magnets at a 20-Hz rate and de-excites them at a 60-Hz rate, resulting in an effective rate of 30 Hz, and reducing the required peak rf voltage by 1/3. A key feature, of the design of this accelerator system is that beam losses are from injection to extraction, reducing activation to levels consistent with hands-on maintenance. Details of the study are presented

  13. Neutron diffractometers for structural biology at spallation neutron sources

    International Nuclear Information System (INIS)

    Schoenborn, B.P.; Pitcher, E.

    1994-01-01

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical 3 He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5 Angstrom with a flight path length of 10m and an energy resolution of 0.25 Angstrom. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux

  14. Cold moderators at pulsed spallation sources: A personal view

    International Nuclear Information System (INIS)

    Pynn, R.

    1991-01-01

    When Maier-Leibnitz built the ILL, he came first to the US and to Canada where there were several prominent neutron scattering centers. He asked what instruments he should build. The reply was unanimous: 'First you build some three-axis machines to form the base program and then you see what else you can thin of.' Maier-Leibnitz's reply was equally characteristic: 'Thank you very much hor-ellipsis there will be no three-axis spectrometers at my institute.' He wasn't quite right - there was one at the beginning. But the point is that, instead of following conventional wisdom, Maier-Leibnitz hired a bunch of young scientists who didn't know as much about neutron scattering as their colleagues on the American continent and who therefore did not know what was 'impossible.' So, they built the impossible - a cold source integrated into the reactor, several hundred meters of guides, a 40-meter SANS machine, a back-scattering spectrometer, a hedgehog - the whole works. And they changed the face of neutron scattering forever. The author is going to adopt the same philosophy - because he knows very little about cold moderators at spallation sources, he doesn't know what is possible or what is stupid. So he is going to make some outrageous comments to stimulate Peter Egelstaff's discussion session. He makes these remarks, not as Director of LANSCE, but as a research scientist looking well beyond his ares of expertise

  15. Spallative production of Li, Be and B in superbubbles

    Science.gov (United States)

    Parizot, Etienne

    We investigate the spallative production of the light elements (Li, Be and B) associated with the evolution of a superbubble (SB) blown by repeated supernova explosions in an OB association. It is shown that if about ten percent of the SN energy can power the acceleration of particles from the material inside the SB, the observed abundances of LiBeB in halo stars, as a function of O, can be explained in a fully consistent way over several decades of metallicity. We investigate two different energy spectra for the EPs: the standard cosmic ray source spectrum and a specific `SB spectrum' as results from Bykov's SB acceleration mechanism. We find that the latter spectrum is more efficient in producing LiBeB, and that the SNR spectrum can be reconciled with the observational data if an imperfect mixing of the SN ejecta with the rest of the SB material and/or a selective acceleration is invoked (enhancing the C and O abundance amongst the EPs by a factor of ˜ 6). One consequence of the model is that the observed linear growth of Be and B abundances as a function of the metallicity expresses a dilution line rather than a continuous, monotonic increase throughout the Galaxy. We also find that the recent 6 Li observations in halo stars fit equally well in the framework of the SB model (see Parizot & Drury, 1999c, for more details).

  16. Spallation Neutron Source Second Target Station Integrated Systems Update

    Energy Technology Data Exchange (ETDEWEB)

    Ankner, John Francis [ORNL; An, Ke [ORNL; Blokland, Willem [ORNL; Charlton, Timothy R. [ORNL; Coates, Leighton [ORNL; Dayton, Michael J. [ORNL; Dean, Robert A. [ORNL; Dominguez-Ontiveros, Elvis E. [ORNL; Ehlers, Georg [ORNL; Gallmeier, Franz X. [ORNL; Graves, Van B. [ORNL; Heller, William T. [ORNL; Holmes, Jeffrey A. [ORNL; Huq, Ashfia [ORNL; Lumsden, Mark D. [ORNL; McHargue, William M. [ORNL; McManamy, Thomas J. [ORNL; Plum, Michael A. [ORNL; Rajic, Slobodan [ORNL; Remec, Igor [ORNL; Robertson, Lee [ORNL; Sala, Gabriele [ORNL; Stoica, Alexandru Dan [ORNL; Trotter, Steven M. [ORNL; Winn, Barry L. [ORNL; Abudureyimu, Reheman [ORNL; Rennich, Mark J. [ORNL; Herwig, Kenneth W. [ORNL

    2017-04-01

    The Spallation Neutron Source (SNS) was designed from the beginning to accommodate both an accelerator upgrade to increase the proton power and a second target station (STS). Four workshops were organized in 2013 and 2014 to identify key science areas and challenges where neutrons will play a vital role [1-4]. Participants concluded that the addition of STS to the existing ORNL neutron sources was needed to complement the strengths of High Flux Isotope Reactor (HFIR) and the SNS first target station (FTS). To address the capability gaps identified in the workshops, a study was undertaken to identify instrument concepts that could provide the required new science capabilities. The study outlined 22 instrument concepts and presented an initial science case for STS [5]. These instrument concepts formed the basis of a planning suite of instruments whose requirements determined an initial site layout and moderator selection. An STS Technical Design Report (TDR) documented the STS concept based on those choices [6]. Since issue of the TDR, the STS concept has significantly matured as described in this document.

  17. Spallation Neutron Source High Power RF Installation and Commissioning Progress

    CERN Document Server

    McCarthy, Michael P; Bradley, Joseph T; Fuja, Ray E; Gurd, Pamela; Hardek, Thomas; Kang, Yoon W; Rees, Daniel; Roybal, William; Young, Karen A

    2005-01-01

    The Spallation Neutron Source (SNS) linac will provide a 1 GeV proton beam for injection into the accumulator ring. In the normal conducting (NC) section of this linac, the Radio Frequency Quadupole (RFQ) and six drift tube linac (DTL) tanks are powered by seven 2.5 MW, 402.5 MHz klystrons and the four coupled cavity linac (CCL) cavities are powered by four 5.0 MW, 805 MHz klystrons. Eighty-one 550 kW, 805 MHz klystrons each drive a single cavity in the superconducting (SC) section of the linac. The high power radio frequency (HPRF) equipment was specified and procured by LANL and tested before delivery to ensure a smooth transition from installation to commissioning. Installation of RF equipment to support klystron operation in the 350-meter long klystron gallery started in June 2002. The final klystron was set in place in September 2004. Presently, all RF stations have been installed and high power testing has been completed. This paper reviews the progression of the installation and testing of the HPRF Sys...

  18. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  19. Program in medium energy nuclear physics research. Technical progress report, 1 September 1975--31 August 1976

    International Nuclear Information System (INIS)

    Willard, H.B.

    1976-01-01

    Experimental results are reported on proton-proton differential elastic scattering cross sections at 647 and 800 MeV, proton-nucleus total and total reaction cross sections at 700 MeV, double pion production from p-p collisions at 800 MeV, and stopped pion capture in tritium. Development of the associated apparatus to carry out these and future experiments is discussed. These include multi-wire proportional chambers, readout electronics, a polarized proton target, and a new type of spectrometer for detection of neutral pions. A list of publications is included

  20. The performance of the INER improved free-air ionization chamber in the comparison of air kerma calibration coefficients for medium-energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.-H. E-mail: jhlee@iner.gov.tw; Kotler, L.H.; Bueermann, Ludwig; Hwang, W.-S.; Chiu, J.-H.; Wang, C.-F

    2005-01-01

    This paper describes modifications to an original design, correction factors and uncertainty evaluations for an improved free-air ionization chamber constructed at the Institute of Nuclear Energy Research (INER, Taiwan). In addition, a comparison of secondary standard air kerma calibration coefficients for 100-250 kV medium-energy X-rays was performed to verify the experimental accuracy and measurement consistency of the improved chamber. The comparison results showed a satisfactory agreement in the measurements which were within the combined expanded uncertainties (k=2)

  1. Transmutation of 126Sn in spallation targets of accelerator-driven systems

    International Nuclear Information System (INIS)

    Han, Chi Young; Saito, Masaki; Sagara, Hiroshi

    2009-01-01

    The practical feasibility of 126 Sn transmutation in spallation targets of accelerator-driven systems was evaluated from the viewpoints of accumulation of radioactive spallation products and neutron production as well as transmutation amount of 126 Sn. A cylindrical liquid 126 Sn target whose length depends on proton beam energy was described, based on a Pb-Bi target design of accelerator-driven system being developed in JAEA. A proton beam of 1.5 GeV-20 mA was estimated to give the transmutation rate of 126 Sn 6.4 kg/yr, which corresponds to the amount of 126 Sn annually discharged in 27 LWRs of 1 GWt and 33 GWd/THM. The equilibrium radioactivity of spallation products would reach 9% of that of 126 Sn transmuted in the spallation target, and the equilibrium toxicity would be just 3%. Some parametric analyses showed that the effective half-life of 126 Sn could be reduced through a proper reduction of the target size. The 126 Sn target was calculated to produce 40 neutrons per proton of 1.5 GeV and give a neutron spectrum very similar to that of the reference Pb-Bi target. As a result, the transmutation of 126 Sn in the spallation target has a high feasibility in terms of better transmutation performance and comparable target performance. (author)

  2. Los Alamos pulsed spallation neutron source target systems - present and future

    International Nuclear Information System (INIS)

    Russell, G.J.; Daemen, L.L.; Pitcher, E.J.; Brun, T.O.; Hjelm, R.P. Jr.

    1993-01-01

    For the past 16 yr, spallation target-system designers have devoted much time and effort to the design and optimization of pulsed spallation neutron sources. Many concepts have been proposed, but, in practice, only one has been implemented horizontal beam insertion with moderators in wing geometry i.e., until we introduced the innovative split-target/flux-trap-moderator design with a composite reflector shield at the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE). The LANSCE target system design is now considered a classic by spallation target system designers worldwide. LANSCE, a state-of-the-art pulsed spallation neutron source for materials science and nuclear physics research, uses 800-MeV protons from the Clinton P. Anderson Meson Physics Facility. These protons are fed into the proton storage ring to be compressed to 250-ns pulses before being delivered to LANSCE at 20 Hz. LANSCE produces the highest peak neutron flux of any pulsed spallation neutron source in the world

  3. Preparation and testing of corrosion and spallation-resistant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John P. [Univ. of North Dakota, Grand Forks, ND (United States); Cavalli, Matthew N. [Univ. of North Dakota, Grand Forks, ND (United States)

    2016-06-30

    its standard oxidation, spallation, and corrosion testing, which was scheduled for completion in the spring of 2016. However, because of commercial demands, the tests were not completed by the time of this report except some initial spallation tests at 1150°C. In those tests, several of the APMT plates separated from the CM247LC, likely because of the remaining aluminum oxide scale on the surface of the CM247LC. This implies that surface preparation may need to include machining to remove the oxide scale before bonding rather than just sandblasting. In previous tensile testing at 950°C, the breaks in the tensile samples always occurred in the APMT and not at the joints. Gasifier sampling was completed to determine what types of trace contaminants may occur in cleaned and combusted syngas and that could lead to corrosion or deposition in turbines firing coal syngas. The sampling was done from a pressurized fluidized-bed gasifier and a pressurized entrained-flow gasifier. The particles captured on a filter from syngas were typically 0.2 to 0.5 μm in diameter, whereas those captured from the combusted syngas were slightly larger and more spherical. X-ray photoelectron spectroscopy done at Oak Ridge National Laboratory showed that the particles do not contain any metals and have an atomic composition almost identical to that of the polycarbonate filter. This indicates that the particles are primarily soot-based and not formed from volatilization of metals in the gasifiers.

  4. Accelerator and spallation target technologies for ADS applications

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient and safe management of spent fuel produced during the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from reactors currently operating will require disposal. These numbers account for only high-level radio-active waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium. When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus be done in controlled environments having timescales of centuries rather than millennia. To address the disposal of transuranics, accelerator-driven systems (ADS), i.e. a sub-critical system driven by an accelerator to sustain the chain reaction, seem to have great potential for transuranic transmutation, though much R and D work is still required in order to demonstrate their desired capability as a whole system. This report describes the current status of accelerator and spallation target technologies and suggests technical issues that need to be resolved for ADS applications. It will be of particular interest to nuclear scientists involved in ADS development and in advanced fuel cycles in general. (author)

  5. 5 MW pulsed spallation neutron source, Preconceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  6. 5 MW pulsed spallation neutron source, Preconceptual design study

    International Nuclear Information System (INIS)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in ∼ 1 μsec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs

  7. Lead-Bismuth-Eutectic Spallation Neutron Source for Nuclear Transmuter

    International Nuclear Information System (INIS)

    Gohar, Y.; Herceg, J.; Krajtl, L.; Micklich, B.; Pointer, D.; Saiveau, J.; Sofu, T.; Finck, P.

    2002-01-01

    A lead-bismuth eutectic (LBE) spallation target design concept has been developed for the subcritical multiplier (SCM) design of the accelerator-driven test facility (ADTF). The design is based on a coaxial geometrical configuration, which has been carefully analyzed and designed to achieve an optimum performance. The target design description, the results from the parametric studies, and the design analyses including neutronics, heat transfer, and hydraulics analyses are given in this paper. A detailed MCNPX geometrical model for the target has been developed to generate heating rates and nuclear responses in the structural material for the design process. The beam has a uniform distribution of 600 MeV protons and 5-MW total power. A small LBE buffer is optimized to reduce the irradiation damage in the SCM fuel elements from the scatter protons and the high-energy neutrons, to maximize the neutron yield to the SCM operation, and to provide inlet and outlet manifolds for the LBE coolant. A special attention has been given to the target window design to enhance its lifetime. The window volumetric heating is 766 W/cm 3 relative to 750 W/cm 3 in LBE for a 40-μA/cm 2 current density. The results show that the nuclear heating from the proton beam diminishes at about 32 cm along the beam axis in the LBE target material. The neutron contribution to the atomic displacement is in the range of 94 to ∼100% for the structure material outside the proton beam path. In the beam window, the neutron contribution is ∼74% and the proton beam is responsible for more than 95% of the total gas production. The proton contribution to the gas production vanishes outside the beam path. The LBE average velocity is ∼2 m/s. The heat transfer and the hydraulics analyses have been iterated to reduce the maximum temperature and the thermal stress level in the target window to enhance its operating life. (authors)

  8. Big-bang nucleosynthesis with a long-lived charged massive particle including He4 spallation processes

    Science.gov (United States)

    Jittoh, Toshifumi; Kohri, Kazunori; Koike, Masafumi; Sato, Joe; Sugai, Kenichi; Yamanaka, Masato; Yazaki, Koichi

    2011-08-01

    We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.

  9. Design and implementation of low-Q diffractometers at spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P.

    1993-01-01

    Low-Q diffractometers at spallation sources that use time of flight methods have been successfully implemented at several facilities, including the Los Alamos Neutron Scattering Center. The proposal to build new, more powerful, advanced spallation sources using advanced moderator concepts will provide luminosity greater than 20 times the brightest spallation source available today. These developments provide opportunity and challenge to expand the capabilities of present instruments with new designs. The authors review the use of time of flight for low-Q measurements and introduce new designs to extend the capabilities of present-day instruments. They introduce Monte Carlo methods to optimize design and simulate the performance of these instruments. The expected performance of the new instruments are compared to present day pulsed source- and reactor-based small-angle neutron scattering instruments. They review some of the new developments that will be needed to use the power of brighter sources effectively

  10. Target development for the SINQ high-power neutron spallation source

    International Nuclear Information System (INIS)

    Wagner, Werner

    2002-01-01

    SINQ is a 1 MW class research spallation neutron source, driven by the PSI proton accelerator system. In terms of beam power, it is, by a large margin, the most powerful spallation neutron source currently in operation worldwide. As a consequence, target load levels prevail in SINQ which are beyond the realm of existing experience. Therefore, an extensive materials irradiation program (STIP) is currently underway which will help to select the proper structural material and make dependable life time estimates accounting for the real operating conditions that prevail in the facility. In parallel, both theoretical and experimental work is going on within the MEGAPIE (MEGAwatt Pilot Experiment) project, to develop a liquid lead-bismuth spallation target for a beam power level of 1MW

  11. H{sup -} radio frequency source development at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Welton, R. F.; Gawne, K. R.; Han, B. X.; Murray, S. N.; Pennisi, T. R.; Roseberry, R. T.; Santana, M.; Stockli, M. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37830-6471 (United States); Dudnikov, V. G. [Muons, Inc., 552 N. Batavia Avenue, Batavia, Illinois 60510 (United States); Turvey, M. W. [Villanova University, 800E. Lancaster Ave, Villanova, Pennsylvania 19085 (United States)

    2012-02-15

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent {approx}38 mA peak current in the linac and an availability of {approx}90%. H{sup -} beam pulses ({approx}1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, {approx}60 kW) of a copper antenna that has been encased with a thickness of {approx}0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of {approx}99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of {approx}75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to {approx}100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  12. APMP/TCRI key comparison report of measurement of air kerma for medium-energy x-rays (APMP.RI(I)-K3)

    International Nuclear Information System (INIS)

    Lee, J.H.; Hwang, W.S.; Kotler, L.H.; Webb, D.V.; Buermann, L.; Burns, D.T.; Takeyeddin, M.; Shaha, V.V.; Srimanoroth, S.; Meghzifene, A.; Hah, S.H.; Chun, K.J.; Kadni, T.B.; Takata, N.; Msimang, Z.

    2008-01-01

    The APMP/TCRI Dosimetry Working Group performed the APMP.RI(I)-K3 key comparison of measurement of air kerma for medium-energy x-rays (100 kV to 250 kV) between 2000 and 2003. In total, 11 institutes took part in the comparison, among which 8 were APMP member laboratories. Two commercial cavity ionization chambers were used as transfer instruments and circulated among the participants. All the participants established the 100 kV, 135 kV, 180 kV and 250 kV x-ray beam qualities equivalent to those of the BIPM. The results showed that the maximum difference between the participants and the BIPM in the medium-energy x-ray range, evaluated using the comparison data of the linking laboratories ARPANSA and PTB, is less than 1.4%. The degrees of equivalence between the participants are presented and this comparison confirms the calibration capabilities of the participating laboratories. (authors)

  13. Development of an experimental method for the determination of the dose equivalent indices for low - and medium energy X- and gamma rays

    International Nuclear Information System (INIS)

    Silva Estrada, J.J. da.

    1980-01-01

    An experimental method was developed to measure Dose Equivalent Indices for low and medium energy X-rays. A sphere was constructed to simulate the human body in accordance with ICRU Report 19 but using plexiglass instead of tissue equivalent material of density 1 g.cm -3 . Experimentally it was demonstrated that for the purpose of applied radiation protection both materials are equivalent in spite of a 18% higher density of plexiglass. CaF 2 :Mn and LiF:Mg might be utilized to determine the absorbed dose distribution within the sphere. Measurements indicate that the effective energy can be determined with an accuracy better than 15% for the energy range under consideration. Depth dose curves measured with ionization chamber compared with those of LiF:Mg showed an agreement better than 12% and in the case of CaF 2 :Mn better than 11% for all irradiation conditions used. Conversion factors in units rad R -1 measured with TLD and compared with those obtained from the literature based upon Monte Carlo calculation showed an agreement better than 23% for CaF 2 :Mn and 19% for LiF:Mg. It is concluded from these experiments that the system plexiglass sphere-TLD dosimeters might be used to measure Dose Equivalent Indices for low and medium energy photons. (Author) [pt

  14. APMP/TCRI key comparison report of measurement of air kerma for medium-energy x-rays (APMP.RI(I)-K3)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.H.; Hwang, W.S. [Institute of Nuclear Energy Research, Longtan, Taiwan (China); Kotler, L.H.; Webb, D.V. [Australian Radiation Protection and Nuclear Safety Agency, Yallambie (Australia); Buermann, L. [Physikalisch Technische Bundesanstalt, Braunschweig (Germany); Burns, D.T. [Bureau International de Poids et Mesures, 92 - Sevres (France); Takeyeddin, M. [Atomic Energy Commission, Damascus (Syrian Arab Republic); Shaha, V.V. [Bhabha Atomic Research Centre, Mumbai (India); Srimanoroth, S. [Department of Medical Sciences, Nonthaburi (Thailand); Meghzifene, A. [International Atomic Energy Agency, Vienna (Austria); Hah, S.H.; Chun, K.J. [Korea Research Institute of Standards and Science, Yusong (Korea, Republic of); Kadni, T.B. [Malaysian Nuclear Agency, Kajang (Malaysia); Takata, N. [National Metrology Institute of Japan, Tsukuba (Japan); Msimang, Z. [National Metrology Institute of South Africa, Pretoria (South Africa)

    2008-10-15

    The APMP/TCRI Dosimetry Working Group performed the APMP.RI(I)-K3 key comparison of measurement of air kerma for medium-energy x-rays (100 kV to 250 kV) between 2000 and 2003. In total, 11 institutes took part in the comparison, among which 8 were APMP member laboratories. Two commercial cavity ionization chambers were used as transfer instruments and circulated among the participants. All the participants established the 100 kV, 135 kV, 180 kV and 250 kV x-ray beam qualities equivalent to those of the BIPM. The results showed that the maximum difference between the participants and the BIPM in the medium-energy x-ray range, evaluated using the comparison data of the linking laboratories ARPANSA and PTB, is less than 1.4%. The degrees of equivalence between the participants are presented and this comparison confirms the calibration capabilities of the participating laboratories. (authors)

  15. Structure of ultrathin films of Co on Cu(111) from normal-incidence x-ray standing wave and medium-energy ion scattering measurements

    International Nuclear Information System (INIS)

    Butterfield, M.T.; Crapper, M.D.; Noakes, T.C.Q.; Bailey, P.; Jackson, G.J.; Woodruff, D.P.

    2000-01-01

    Applications of the techniques of normal-incidence x-ray standing wave (NIXSW) and medium-energy ion scattering (MEIS) to the elucidation of the structure of an ultrathin metallic film, Co on Cu(111), are reported. NIXSW and MEIS are shown to yield valuable and complementary information on the structure of such systems, yielding both the local stacking sequence and the global site distribution. For the thinnest films of nominally two layers, the first layer is of entirely fcc registry with respect to the substrate, but in the outermost layer there is significant occupation of hcp local sites. For films up to 8 monolayers (ML) thick, the interlayer spacing of the Co layers is 0.058±0.006 Aa smaller than the Cu substrate (111) layer spacing. With increasing coverage, the coherent fraction of the (1(bar sign)11) NIXSW decreases rapidly, indicating that the film does not grow in a fcc continuation beyond two layers. For films in this thickness range, hcp-type stacking dominates fcc twinning by a ratio of 2:1. The variation of the (1(bar sign)11) NIXSW coherent fraction with thickness shows that the twinning occurs close to the Co/Cu interface. For thicker films of around 20 ML deposited at room temperature, medium-energy ion scattering measurements reveal a largely disordered structure. Upon annealing to 300 deg. C the 20-ML films order into a hcp structure

  16. Efficiency of an LBE spallation target in an accelerator-driven molten salt subcritical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Sang-In [Sungkyunkwan University, Suwon (Korea, Republic of); Hong, Seung-Woo [Sungkyunkwan University, Suwon (Korea, Republic of); Kadi, Yacine [CERN, Geneva (Switzerland)

    2016-10-15

    An Accelerator-Driven System (ADS) combined with a subcritical Molten Salt Reactor (MSR) is a type of hybrid reactor originally designed to breed uranium from thorium or to incinerate long-lived minor actinides in nuclear wastes. In an MSR, the salt material is used not only as a nuclear fuel but also as a primary coolant. In addition, this material is used as a target for inducing spallation neutrons in most AD-MSR concepts. A high energy proton beam impinges on a heavy metal target to induce spallation reactions and produces neutrons. Accordingly, a reliable proton accelerator is needed to feed the source neutrons. As ADSs have been criticized for requiring high power accelerators, minimization of beam power is an important aspect of ADS design. A primary concern associated with ADS development is stable high-power accelerators. We therefore studied the neutron source efficiencies of an AD-MSR involving chloride fuels by including a Pb-Bi eutectic (LBE) spallation target. The proton source efficiency and the accelerator beam power required have been studied for an AD-MSR. Adoption of an LBE spallation target induces an increase in proton source efficiencies in comparison to the case without a spallation target. Thus the presence of an efficient spallation target is useful in the reduction of the beam power of an accelerator. Almost 33 % of the beam power can be reduced in comparison to the case without the target for NaCl-Th/{sup 233}U fuel, and about 16 % for NaCl-U/TRU fuel. The beam power amplifications increase by 1.5 times for NaCl-Th/{sup 233}U and 1.2 times for NaCl-U/TRU in comparison with the no target AD-MSR.

  17. Technical design report of spallation neutron source facility in J-PARC

    International Nuclear Information System (INIS)

    Sakamoto, Shinichi

    2012-02-01

    One of the experimental facilities in Japan Proton Accelerator Research Complex (J-PARC) is the Materials and Life Science Experimental Facility (MLF), where high-intensity neutron beams are used as powerful probes for basic research on materials and life science, as well as research and development in industrial engineering. Neutrons are generated with nuclear spallation reaction by bombarding a mercury target with high-intensity proton beams. The neutrons are slowed down with supercritical hydrogen moderators and then extracted as beams to each experimental apparatus. The principal design of the spallation neutron source is compiled in this comprehensive report. (author)

  18. Geometric optimization of spallation targets for the MYRRHA reactor using MCNPX simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rebello Junior, Andre Luiz P.; Martinez, Aquilino S.; Golcalves, Alessandro C., E-mail: junior.rebello@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Nuclear

    2013-07-01

    The present work aims to evaluate the behavior of neutron multiplicity in a spallation target using MCNPX simulations, focusing on its application in the MYRRHA reactor. It was studied the two types of spallation target proposed for the MYRRHA project, windowless and windows target, in order to compare them and nd saturation boundaries. Some saturation boundaries were found and the windowless target proved to be as viable as the windows one. Each one produced nearly the same number of neutrons per incident proton. Using the concept of neutron cost, it was also observed that the optimum conditions on neutron production occur at about 1GeV, for both target designs. (author)

  19. Geometric optimization of spallation targets for the MYRRHA reactor using MCNPX simulations

    International Nuclear Information System (INIS)

    Rebello Junior, Andre Luiz P.; Martinez, Aquilino S.; Golcalves, Alessandro C.

    2013-01-01

    The present work aims to evaluate the behavior of neutron multiplicity in a spallation target using MCNPX simulations, focusing on its application in the MYRRHA reactor. It was studied the two types of spallation target proposed for the MYRRHA project, windowless and windows target, in order to compare them and nd saturation boundaries. Some saturation boundaries were found and the windowless target proved to be as viable as the windows one. Each one produced nearly the same number of neutrons per incident proton. Using the concept of neutron cost, it was also observed that the optimum conditions on neutron production occur at about 1GeV, for both target designs. (author)

  20. Present status of spallation target development. JAERI/KEK Joint Project

    International Nuclear Information System (INIS)

    Hino, R.; Kaminaga, M.; Haga, K.

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct a neutron scattering facility under the JAERI/KEK Joint Project. Design and R and D works are being carried out vigorously for realizing the mercury target system consisting of the mercury target, moderators and reflectors working as a spallation neutron source, as well as a remote handling system for exchanging such components which will be highly irradiated. This report introduces an outline of the present status of design and development activities on the spallation target system. (author)

  1. A comparison of microstructures in copper irradiated with fission, fusion, and spallation neutrons

    International Nuclear Information System (INIS)

    Muroga, T.; Heinisch, H.L.; Sommer, W.F.; Ferguson, P.D.

    1992-01-01

    The objective of this work is to investigate the effects of the neutron energy spectrum in low dose irradiations on the microstructure and mechanical properties of metals. The microstructures of pure copper irradiated to low doses at 36-90 C with spallation neutrons, fusion neutrons and fission neutrons are compared. The defect cluster densities for the spallation and fusion neutrons are very similar when compared on the basis of displacements per atom (dpa). In both cases, the density increases in proportion to the square root of the dpa. The difference in defect density between fusion neutrons and fission neutrons corresponds with differences observed in data on yield stress changes

  2. Calculations of radiation damage in target, container and window materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Mansur, L.K.

    1996-01-01

    Radiation damage in target, container, and window materials for spallation neutron sources is am important factor in the design of target stations for accelerator-driver transmutation technologies. Calculations are described that use the LAHET and SPECTER codes to obtain displacement and helium production rates in tungsten, 316 stainless steel, and Inconel 718, which are major target, container, and window materials, respectively. Results are compared for the three materials, based on neutron spectra for NSNS and ATW spallation neutron sources, where the neutron fluxes are normalized to give the same flux of neutrons of all energies

  3. Target station design for a 1 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Russell, G.J.; Baker, G.D.; Brewton, R.J.

    1993-01-01

    Target stations are vital components of the 1 MW, next generation spallation neutron source proposed for LANSCE. By and large, target stations design determines the overall performance of the facility. Many traditional concepts will probably have to be rethought, and many new concepts will have to be put forward to meet the 1 MW challenge. This article gives a brief overview of the proposed neutron spallation source from the target station viewpoint, as well as the general philosophy adopted for the design of the LANSCE-II target stations. Some of the saliant concepts and features envisioned for LANSCE-II are briefly described

  4. Medium Energy Industrial Electron Beam Accelerator (ILU-EBA) at Navi Mumbai for technology demonstration and commercial operations

    International Nuclear Information System (INIS)

    Benny, P.G.; Khader, S.A.; Sarma, K.S.S.

    2017-01-01

    BARC in early nineties installed a unique high pulse-powered electron beam accelerator of energy 2 MeV, (for the first time in India), in Trombay for developing industrial applications. The accelerator was capable of delivering powered electron beams up to 20kW average beam power (with 1200kW peak pulse power) with energy range from 1 to 2 MeV. Several applications have been developed and commercially exploited in the field of polymer cross linking, degradation, crystalline alterations etc. In addition, applications pertaining to the environmental remediation using electron beams were also worked out. The facility has been relocated at Navi Mumbai a decade ago operated under BARC safety regulatory body and was developed into a technology demonstration cum commercial plant with several product handling gadgets to evaluate the feasibility of different EB treatment processes for the industry viz. waste water treatment, polymer modifications, recycling to name a few

  5. The spallation in reverse kinematics: what for a coincidence measurement?; La spallation en cinematique inverse: pourquoi faire une mesure en coincidence?

    Energy Technology Data Exchange (ETDEWEB)

    Ducret, J.E

    2006-07-15

    The Spaladin installation has been designed to study spallation reactions in reverse kinematics. Furthermore, the heavy and light fragments are detected by coincidence which allows us to get an instantaneous picture of the reaction at a level of accuracy better than that obtained through inclusive measurement. The first part is dedicated to the theoretical description of the different mechanisms involved in the spallation reactions. In the second part we describe the Spaladin installation and report some results on the reaction: Fe{sup 56} + p at an energy of 1 GeV/nucleon. In the third part we expose the performance of the installation through its simulation with the Geant-IV model. We present a study about the sensitivity of the Spaladin installation to theoretical predictions. The fourth part is dedicated to the future experiments that will be performed with the Spaladin installation. (A.C.)

  6. Superconducting Prototype Cavities for the Spallation Neutron Source (SNS) Project

    International Nuclear Information System (INIS)

    Ciovati, G.; Kneisel, P.; Brawley, J.; Bundy, R.; Campisi, I.; Davis, K.; Macha, K.; Machie, D.; Mammosser, J.; Morgan, S.; Sundelin, R.; Turlington, L.; Wilson, K.; Doleans, M.; Kim, S.H.; Barni, D.; Pagani, C.; Pierini, P.; Matsumoto, K.; Mitchell, R.; Schrage, D.; Parodi, R.; Sekutowicz, J.; Ylae-Oijala, P.

    2001-01-01

    The Spallation Neutron Source project includes a superconducting linac section in the energy range from 192 MeV to 1000 MeV, operating at a frequency of 805 MHz at 2.1 K. For this energy range two types of cavities are needed with geometrical beta - values of beta= 0.61 and beta= 0.81. An aggressive cavity prototyping program is being pursued at Jlab, which calls for fabricating and testing of four beta= 0.61 cavities and two beta= 0.81 cavities. Both types consist of six cells made from high purity niobium and feature one HOM coupler on each beam pipe and a port for a high power coaxial input coupler. Three of the four beta= 0.61 cavities will be used for a cryomodule test in early 2002. At this time four medium beta cavities and one high beta cavity have been completed at JLab. The first tests on the beta=0.61 cavity and the beta= 0.81 exceeded the design values for gradient and Q - value: E acc = 1 0.3 MV/m and Q = 5 x 10 9 at 2.1K for beta= 0.61 and E acc = 12.3 MV/m and Q = 5 x 10 9 at 2.1K for beta= 0.81. One of the medium beta cavities has been equipped with an integrated helium vessel and measurements of the static and dynamic Lorentz force detuning will be done and compared to the ''bare'' cavities. In addition two single cell cavities have been fabricated, equipped with welded-on HOM couplers. They are being used to evaluate the HOM couplers with respect to multipacting, fundamental mode rejection and HOM damping as far as possible in a single cell. This paper will describe the cavity design with respect to electrical and mechanical features, the fabrication efforts and the results obtained with the different cavities existing at the time of this workshop

  7. Dissertation: Precompound Emission of Energetic Light Fragments in Spallation Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kerby, Leslie Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-04

    Emission of light fragments (LF) from nuclear reactions is an open question. Different reaction mechanisms contribute to their production; the relative roles of each, and how they change with incident energy, mass number of the target, and the type and emission energy of the fragments is not completely understood. None of the available models are able to accurately predict emission of LF from arbitrary reactions. However, the ability to describe production of LF (especially at energies ≳ 30 MeV) from many reactions is important for different applications, such as cosmic-ray-induced Single Event Upsets (SEUs), radiation protection, and cancer therapy with proton and heavy-ion beams, to name just a few. The Cascade-Exciton Model (CEM) version 03.03 and the Los Alamos version of the Quark-Gluon String Model (LAQGSM) version 03.03 event generators in Monte Carlo N-Particle Transport Code version 6 (MCNP6) describe quite well the spectra of fragments with sizes up to ⁴He across a broad range of target masses and incident energies (up to ~ 5 GeV for CEM and up to ~ 1 TeV/A for LAQGSM). However, they do not predict the high energy tails of LF spectra heavier than ⁴He well. Most LF with energies above several tens of MeV are emitted during the precompound stage of a reaction. The current versions of the CEM and LAQGSM event generators do not account for precompound emission of LF larger than ⁴He. The aim of our work is to extend the precompound model in them to include such processes, leading to an increase of predictive power of LF-production in MCNP6. This entails upgrading the Modified Exciton Model currently used at the preequilibrium stage in CEM and LAQGSM. It also includes expansion and examination of the coalescence and Fermi break-up models used in the precompound stages of spallation reactions within CEM and LAQGSM. Extending our models to include emission of fragments heavier than ⁴He at the precompound stage has indeed provided results that have much

  8. Preparation and Testing of Corrosion and Spallation-Resistant Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John

    2015-11-01

    with the Rene 80. One-inch-diameter buttons were machined from each of the bonded blocks and sent to Siemens for standard oxidation, spallation, and corrosion testing, which should be complete in the spring of 2016.

  9. Production of Actinium-225 via High Energy Proton Induced Spallation of Thorium-232

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, James T.; Nolen, Jerry; Vandergrift, George; Gomes, Itacil; Kroc, Tom; Horwitz, Phil; McAlister, Dan; Bowers, Del; Sullivan, Vivian; Greene, John

    2011-12-30

    The science of cancer research is currently expanding its use of alpha particle emitting radioisotopes. Coupled with the discovery and proliferation of molecular species that seek out and attach to tumors, new therapy and diagnostics are being developed to enhance the treatment of cancer and other diseases. This latest technology is commonly referred to as Alpha Immunotherapy (AIT). Actinium-225/Bismuth-213 is a parent/daughter alpha-emitting radioisotope pair that is highly sought after because of the potential for treating numerous diseases and its ability to be chemically compatible with many known and widely used carrier molecules (such as monoclonal antibodies and proteins/peptides). Unfortunately, the worldwide supply of actinium-225 is limited to about 1,000mCi annually and most of that is currently spoken for, thus limiting the ability of this radioisotope pair to enter into research and subsequently clinical trials. The route proposed herein utilizes high energy protons to produce actinium-225 via spallation of a thorium-232 target. As part of previous R and D efforts carried out at Argonne National Laboratory recently in support of the proposed US FRIB facility, it was shown that a very effective production mechanism for actinium-225 is spallation of thorium-232 by high energy proton beams. The base-line simulation for the production rate of actinium-225 by this reaction mechanism is 8E12 atoms per second at 200 MeV proton beam energy with 50 g/cm2 thorium target and 100 kW beam power. An irradiation of one actinium-225 half-life (10 days) produces {approx}100 Ci of actinium-225. For a given beam current the reaction cross section increases slightly with energy to about 400 MeV and then decreases slightly for beam energies in the several GeV regime. The object of this effort is to refine the simulations at proton beam energies of 400 MeV and above up to about 8 GeV. Once completed, the simulations will be experimentally verified using 400 MeV and 8 Ge

  10. Nuclear structure studies by the scattering of medium-energy electrons. Progress report, October 1, 1980-July 31, 1981

    International Nuclear Information System (INIS)

    Peterson, G.A.

    1981-08-01

    Electron scattering experiments are in progress at the Bates Linear Accelerator in Middleton, Massachusetts. Both magnetic elastic and transverse inelastic scattering cross sections have been measured at 180 0 by the apparatus constructed and brought into operation in late 1977 by the University of Massachusetts. A liquid-nitrogen-cooled gas target is being used in a study of deuteron elastic magnetic scattering and electrodisintegration over a large energy range. A measurement of elastic magnetic and transverse inelastic scattering from 14 N has been started. Measurements of the elastic magnetic scattering from 13 C, 15 N, 27 Al, 29 Si, and 31 P have been completed. The data set on 15 N inelastic scattering are now complete and analysis of the data is in progress. A study of M8 transitions in 54 Fe and 60 Ni is nearing completion. Several papers are being written on these subjects. A measurement of the transverse quasi-elastic scattering from 56 Fe has been started. Planning for an experiment utilizing radioactive 14 C is underway. Large-basis shell model calculations pertaining to the above nuclei and others have been made. Theoretical calculations of exchange currents, nuclear convection currents, and other nuclear phenomena are in progress. Finally, considerations are being given to the design of an integrated storage-ring-experimental system

  11. Nuclear-structure studies by the scattering of medium-energy electrons. Progress report, October 1, 1980-July 31, 1981

    International Nuclear Information System (INIS)

    Peterson, G.A.

    1981-08-01

    Electron scattering experiments are in progress at the Bates Linear Accelerator in Middleton, Massachusetts. Both magnetic elastic and transverse inelastic scattering cross sections have been measured at 180 0 by the apparatus constructed and brought into operation in late 1977 by the University of Massachusetts. A liquid-nitrogen-cooled gas target is being used in a study of deuteron elastic scattering and electrodisintegration over a large energy range. A measurement of elastic magnetic and transverse inelastic scattering from 14 N has been started. Measurements of the elastic magnetic scattering from 13 C, 15 N, 27 Al, 29 Si, and 31 P have been completed. The data set on 15 N inelastic scattering are now complete and analysis of the data is in progress. A study of M8 transitions in 54 Fe and 60 Ni is nearing completion. A measurement of the transverse quasielastic scattering from 56 Fe has been started. Planning for an experiment utilizing radioactive 14 C is underway. Large-basis shell model calculations pertaining to the above nuclei and others have been made. Theoretical calculations of exchange currents, nuclear convection currents, and other nuclear phenomena are in progress. Finally, considerations are being given to the design of an integrated storage-ring-experimental system

  12. Study of the d+d→4He+X0; production of light nuclei at medium energies

    International Nuclear Information System (INIS)

    Le Brun, Christian.

    1977-01-01

    The inclusive study of the d+d→ 4 He+X 0 reaction has been done by several deuteron momenta between 1.8 and 3.8 GeV/c. The alpha momentum spectra were measured with a double focusing magnetic spectrometer. The alphas were identified by both a time-of-flight and a pulse height-discrimination. The application to the reaction of the conservation laws implies X 0 to be a mesonic object with isospin 0. The π 0 production limit for Psub(d)=1.885GeV/c is calculated. This value, five times smaller than the previous one, shows that the isospin conservation law is not violated. The ω 0 , the only I=0 resonance observed, is produced at 0 0 with a differential cross section of 1 nb/sr. The ABC effect clearly dominates the greatest part of the measured spectra. The 0 0 alpha production varies greatly as a function of energy; the angular distribution at 2.5 GeV/c is strongly peaked in the forward direction. The ABC effect is directly related to the constraints set by the nuclei formation. Various models and especially a one-pion-exchange model have been calculated but no one gives, until to-day, quantitatively suitable results [fr

  13. Design of an experimental device dedicated to the measurement of spallation reactions; Mise au point d'un dispositif experimental pour des mesures exclusives des reactions de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Lafriakh, A

    2005-12-15

    Spallation mechanisms are not yet completely understood, especially because of the difficulty of experimentally disentangling the effects of the different steps of the reaction. In order to understand these mechanisms, we have developed a new experimental device able to perform inclusive measurements. We propose a detection system based on a combination of ionization chambers and proportional counters and on a wall of plastic scintillators to measure light charged particles. In particular the detection of light charged particles is described in detail. In order to validate our device, we have compared our preliminary results obtained on the Fe{sup 56} + p system at 1 GeV/u with inclusive measurements previously obtained at the FRS spectrometer of the GSI facility. A comparison of charge differential cross section shows reasonable agreement. However, our new device allowed extension of those measurements down to Z = 1 and Z = 2. These cross sections are important for material damage studies. Taking into account our error brackets, the evolution of mean longitudinal velocities with respect to residue masses is comparable to that obtained at the FRS. These first results, although preliminary, allow us to validate our experimental device. It is now possible to exploit the strong points of our exclusive measurements, namely correlations between different measured observables. Finally, experimental problems encountered will be taken into account in the future experimental programs, in order to ensure the best measurements conditions.

  14. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    Science.gov (United States)

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  15. INFLUENCE OF MICROSTRUCTURAL ANISOTROPY ON THE SPALLATION OF 1080 EUTECTOID STEEL

    International Nuclear Information System (INIS)

    GRAY, G.T.; LOPEZ, M.F.

    2001-01-01

    While the influence of crystallographic texture on elastic and plastic constitutive response has seen extensive investigation in recent years, the influence of texture on the dynamic fracture of engineering materials remains less extensively explored. In particular, the influence of anisotropy, both textural and morphological, on the spallation behavior of materials remains poorly quantified. In this study, the spallation response of 1080-steel has been studied as a function of microstructural morphological anisotropy. In this study the influence of elongated MnS stringers, resident within a crystallographically isotropic eutectoid steel, on the spallation response of 1080 steel was investigated. That of a fully-pearlitic 1080 steel loaded to 5 GPa was found to be dominated by the heterogeneous nucleation of damage normal and orthogonal to the MnS stringers. Delamination between the matrix pearlitic microstructure and the MnS stringers was seen to correlate to a significantly lower pull-back signal during transverse loading than to that parallel to the stringer axis. The ''pull-back'' signals and post-spallation metallographic observations are discussed with reference to the influence of microstructural anisotropy on void nucleation and growth

  16. Analysis of phase velocity designing on superconducting section of proton Linac for spallation neutron source

    International Nuclear Information System (INIS)

    Ouyang Huafu; Xu Taoguang; Yu Qingchang; Guan Xialing; Luo Zihua

    2001-01-01

    A preliminary design of superconducting section of proton linac for spallation neutron source is made, which includes the design and optimization of the cavity shape and the architecture design of the superconducting section. In addition, the choice of the cell number of the superconducting cavity, the value of the geometric β G , the optimization principles of cavity and the beam dynamic properties are discussed

  17. Evaluation of the transmutation of transuranic using neutrons spectrum from the spallation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gilberti, Mauricio; Pereira, Claubia, E-mail: mgilber@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Angra dos Reis, RJ (Brazil); Veloso, Maria A. Fortini, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizante, MG (Brazil). Dept. de Engenharia Nuclear

    2013-07-01

    The transmutation of transuranic was analyzed by simulating the neutron flux from different spallation sources across arrays of fissile material with isotopic composition PWR reprocessing. A simplified model of Accelerator-Driven Systems (ADS) containing target, moderator graphite, lead-bismuth coolant or sodium coolant, is used. The simulation was made using the particles transport code MCNPX 2.6.0 which allowed to evaluate the rate of transmutation of actinides (Np, Pu, Am, and Cm) at different locations in the system. The objective of the study is to evaluate which the behavior and influences the spectrum of the spallation in the transmutation without the contribution or interference of multiplier, medium subcritical, which would add the contribution of fission neutrons generated, thus interfering in the analysis. The arrangement enable to infer the influence of hardened neutron flux from the spallation reaction in the transmutation, the results show that this is independent of the target material chosen, and the spectrum of spallation has a negligible importance compared to the influence of moderation and scattering generated by the coolant or moderator used. (author)

  18. SINQ - a continuous spallation neutron source (an approach to 1 MWatt of beam power)

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-11-01

    In this status report we describe the continuous spallation source at PSI, which will come into operation in fall 1996. We present the present state of the construction work and review the expected performance of the source. (author) 10 figs., 2 tabs., refs.

  19. Final environmental impact statement, construction and operation of the Spallation Neutron Source Facility. Summary

    International Nuclear Information System (INIS)

    1999-04-01

    DOE proposes to construct and operate a state-of-the-art, short-pulsed, spallation neutron source comprised of an ion source, a linear accelerator, a proton accumulator ring, and an experiment building containing a liquid mercury target and a suite of neutron scattering instrumentation. The proposed Spallation Neutron Source would be designed to operate at a proton beam power of 1 megawatt. The design would accommodate future upgrades to a peak operating power of 4 megawatts. These upgrades may include construction of a second proton accumulator ring and a second target. This document analyzes the potential environmental impacts from the proposed action and the alternatives. The analysis assumes a facility operating at a power of 1 MW and 4 MW over the life of the facility. The two primary alternatives analyzed in this FEIS are: the proposed action (to proceed with building the Spallation Neutron Source) and the No-Action Alternative. The No-Action Alternative describes the expected condition of the environment if no action were taken. Four siting alternatives for the Spallation Neutron Source are evaluated: Oak Ridge National Laboratory, Oak Ridge, TN, (preferred alternative); Argonne National Laboratory, Argonne, IL; Brookhaven National Laboratory, Upton, NY; and Los Alamos National Laboratory, Los Alamos, NM

  20. The biological shield of a high-intensity spallation source: a monte Carlo design study

    International Nuclear Information System (INIS)

    Koprivnikar, I.; Schachinger, E.

    2004-01-01

    The design of high-intensity spallation sources requires the best possible estimates for the biological shield. The applicability of three-dimensional Monte Carlo simulation in the design of the biological shield of a spallation source will be discussed. In order to achieve reasonable computing times along with acceptable accuracy, biasing techniques are to be employed and it was the main purpose of this work to develop a strategy for an effective Monte Carlo simulation in shielding design. The most prominent MC computer codes, namely MCNPX and FLUKA99, have been applied to the same model spallation source (the European Spallation Source) and on the basis of the derived strategies, the design and characteristics of the target station shield are discussed. It is also the purpose of the paper to demonstrate the application of the developed strategy for the design of beam lines with their shielding using as an example the target-moderator-reflector complex of the ESS as the primary particle source. (author)

  1. Investigation of the energy correlations of spallation neutrons by the MCNPX code

    International Nuclear Information System (INIS)

    Szieberth, Mate; Radocz, Gabor

    2011-01-01

    Earlier works have suggested that the energy correlations in a spallation source may influence the neutron noise measurements in an ADS. For the calculation of this effect not only the generally known and used one-particle spectrum is needed but also the so-called two particle spectrum, which describes also the energy correlations. Since measured data are not available for the energy distribution of the neutrons from a single spallation event the physical models of the MCNPX code have been used to investigate the effect. The calculational model has been successfully validated with measurements of the number distribution of spallation neutrons. The simulated one- and two-particle energy distributions and spectra proved that the energy correlations exist and have an important effect in low multiplicity spallation events and in thin targets. On the other hand for thick targets this effect appears negligible and the factorization of the two-particle spectrum seems an acceptable approximation. Further investigations are in hand to quantify the actual effect of the energy correlations on the neutron noise measurements. (author)

  2. Evaluation of the transmutation of transuranic using neutrons spectrum from the spallation reaction

    International Nuclear Information System (INIS)

    Gilberti, Mauricio; Pereira, Claubia; Veloso, Maria A. Fortini

    2013-01-01

    The transmutation of transuranic was analyzed by simulating the neutron flux from different spallation sources across arrays of fissile material with isotopic composition PWR reprocessing. A simplified model of Accelerator-Driven Systems (ADS) containing target, moderator graphite, lead-bismuth coolant or sodium coolant, is used. The simulation was made using the particles transport code MCNPX 2.6.0 which allowed to evaluate the rate of transmutation of actinides (Np, Pu, Am, and Cm) at different locations in the system. The objective of the study is to evaluate which the behavior and influences the spectrum of the spallation in the transmutation without the contribution or interference of multiplier, medium subcritical, which would add the contribution of fission neutrons generated, thus interfering in the analysis. The arrangement enable to infer the influence of hardened neutron flux from the spallation reaction in the transmutation, the results show that this is independent of the target material chosen, and the spectrum of spallation has a negligible importance compared to the influence of moderation and scattering generated by the coolant or moderator used. (author)

  3. SINQ - a continuous spallation neutron source (an approach to 1 MWatt of beam power)

    International Nuclear Information System (INIS)

    Fischer, W.E.

    1995-01-01

    In this status report we describe the continuous spallation source at PSI, which will come into operation in fall 1996. We present the present state of the construction work and review the expected performance of the source. (author) 10 figs., 2 tabs., refs

  4. Thermal hydraulic studies of lead–bismuth eutectic spallation target of CIADS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kang [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000 (China); University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049 (China); Yang, Yongwei, E-mail: yangyongwei@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000 (China); Fan, Deliang; Gao, Yucui [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000 (China)

    2016-08-15

    Highlights: • A 3-D fluid-solid coupling thermal-hydraulic analysis is made for the LBE target. • The reactor and the spallation target is coupled in thermal process. • The heat transfer between the inlet and outlet of the spallation target is taken into account. - Abstract: For the China Initiative Accelerator Driven System (CIADS), it includes three sub-systems: accelerator, spallation target, and sub-critical reactor. The sub-system of spallation target is an important component of the CIADS, which is coupled with the other two sub-systems. The proton beam from the accelerator with an energy of 250 MeV and a current intensity of 2 mA reacts with the nuclei of the lead–bismuth eutectic (LBE), approximately 0.5 MW of heat is deposited in the target zone, which must be removed by circulating the LBE. To reach the goal, we carried out the study by using the Computational Fluid Dynamics (CFD) software FLUENT, to study the flow patterns and temperature distribution in the target zone. For these simulations, the heat transferred from the sub-critical reactor was taken into account. The results indicated that the heat deposited in the target zone can be removed safely.

  5. Tensile property changes of metals and irradiated to low doses with fission, fusion and spallation neutrons

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Hamilton, M.L.; Sommer, W.F.; Ferguson, P.D.

    1992-01-01

    The objective of this work is to investigate the effects of the neutron energy spectrum in low dose irradiations on the microstructures and mechanical properties of metals. Radiation effects due to low doses of spallation neutrons are compared directly to those produced by fission and fusion neutrons. Yield stress changes of pure Cu, alumina-dispersion-strengthened Cu and AISI 316 stainless steel irradiated at 36-55 C in the Los Alamos Spallation Radiation Effects Facility (LASREF) are compared with earlier results of irradiations at 90 C using 14 MeV D-T fusion neutrons at the Rotating Target Neutron Source and fission reactor neutrons in the Omega West Reactor. At doses up to 0.04 displacements per atom (dpa), the yield stress changes due to the three quite different neutron spectra correlate well on the basis of dpa in the stainless steel and the Cu alloy. However, in pure Cu, the measured yield stress changes due to spallation neutrons were anomalously small and should be verified by additional irradiations. With the exception of pure Cu, the low dose, low temperature experiments reveal no fundamental differences in radiation hardening by fission, fusion or spallation neutrons when compared on the basis of dpa

  6. Final environmental impact statement, construction and operation of the Spallation Neutron Source. Volume 1

    International Nuclear Information System (INIS)

    1999-04-01

    DOE proposes to construct and operate a state-of-the-art, short-pulsed, spallation neutron source comprised of an ion source, a linear accelerator, a proton accumulator ring, and an experiment building containing a liquid mercury target and a suite of neutron scattering instrumentation. The proposed Spallation neutron Source would be designed to operate at a proton beam power of 1 megawatt. The design would accommodate future upgrades to a peak operating power of 4 megawatts. These upgrades may include construction of a second proton accumulator ring and a second target. This document analyzes the potential environmental impacts from the proposed action and the alternatives. The analysis assumes a facility operating at a power of 1 MW and 4 MW over the life of the facility. The two primary alternatives analyzed in this FEIS are: the proposed action (to proceed with building the Spallation Neutron Source) and the No-Action Alternative. The No-Action Alternative describes the expected condition of the environment if no action were taken. Four siting alternatives for the Spallation Neutron Source are evaluated: Oak Ridge National Laboratory, Oak Ridge, TN, (preferred alternative); Argonne National Laboratory, Argonne, IL; Brookhaven National Laboratory, Upton, NY; and Los Alamos National Laboratory, Los Alamos, NM

  7. Laser-irradiated thermodynamic behaviors of spallation and recombination at solid-state interface

    International Nuclear Information System (INIS)

    Lai, H.-Y.; Huang, P.-H.

    2008-01-01

    A microscopic insight of interfacial spallation and recombination behaviors at multilayer thin-film interface induced by incident femtosecond pulsed laser is presented in this paper. Such two different aforementioned behaviors are investigated via the thermodynamic trajectories obtained by using standard Lennard-Jones (L-J) molecular dynamics (MD) simulation. Based on the simulation results, the interfacial damages of multilayer thin film are dominated by a critical threshold that induces an extraordinary expansive dynamics and phase transitions leading to the structural softened and tensile spallation at interface. The critical damage threshold is evaluated at around 8.5 J/m 2 which governs the possible occurrence of two different regimes, i.e. interfacial spallaiton and recombination. In interfacial damage region, quasi-isothermal thermodynamic trajectories can be observed after the interfacial spallation occurs. Moreover, the result of thermodynamic trajectories analyses indicates that, the relaxation of pressure wave may cause the over-heated interfacial zone to reduce volumetric density, thus leading to structural softness and even weaken interfacial structural strength. The crucial effect leading to the phenomenon of low tension spallation is identified

  8. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R; Weinacht, D [Los Alamos National Lab., NM (United States)

    1995-11-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the U.S. with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the U.S. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE`s Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide U.S. scientists with a complementary pair of high-performance neutron sources to rival the world`s leading facilities in Europe. (author) 1 ref.

  9. Stress and adhesion of chromia-rich scales on ferritic stainless steels in relation with spallation

    Directory of Open Access Journals (Sweden)

    A. Galerie

    2004-03-01

    Full Text Available The relation between chromia scale spallation during oxidation or cooling down of ferritic stainless steels is generally discussed in terms of mechanical stresses induced by volume changes or differential thermal expansion. In the present paper, growth and thermal stress measurements in scales grown on different ferritic steel grades have shown that the main stress accumulation occurs during isothermal scale growth and that thermal stresses are of minor importance. However, when spallation occurs, it is always during cooling down. Steel-oxide interface undulation seems to play a major role at this stage, thus relating spallation to the metal mechanical properties, thickness and surface preparation. A major influence on spallation of the minor stabilizing elements of the steels was observed which could not be related to any difference in stress state. Therefore, an original inverted blister test was developed to derive quantitative values of the metal-oxide adhesion energy. These values clearly confirmed that this parameter was influenced by scale thickness and by minor additions, titanium greatly increasing adhesion whereas niobium decreased it.

  10. Modelling of an experiment for the study of neutron spallation source at JINR

    International Nuclear Information System (INIS)

    Kumawat, Harphool; Goyal, Uttam; Kumar, V.; Barashenkov, V.S.

    2002-01-01

    Intense neutron spallation source (INSS) is a necessary requirement of accelerator driven sub-critical systems. INSS are proposed to be generated using the high current proton beams. Some studies are conducted for the neutron flux, transmutation rates and energy gains and a larger number of related experiments are being planned

  11. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  12. Application of a controlled swirl in the XT-ADS spallation target

    International Nuclear Information System (INIS)

    Roelofs, F.; Siccama, N. B.; Jeanmart, H.; Tichelen, K. V.; Dierckx, M.; Schuurmans, P.

    2008-01-01

    Within the EUROTRANS project, a windowless spallation target is designed and assessed in which there is direct contact between the proton beamline vacuum from the accelerator and a lead-bismuth free surface flow. Windowless spallation targets, which are designed by SCK.CEN, based on their experience for the MYRRHA concept, are experimentally examined in a well instrumented water-loop at UCL. The design work and the experimental campaign are supported by numerical simulations which are performed at NRG. In the current paper, the application of a mild swirl in the windowless spallation target is assessed. For this purpose, SCK.CEN has designed and fabricate, a spallation target in which a controlled swirl is introduced in the annular feeder of the target nozzle. An experimental programme is performed at UCL in their water-loop to evaluate various swirl strengths in one specific target nozzle design. Prior to the experimental programme, numerical simulations were performed at NRG assessing the influence of various swirl strengths on the free surface behaviour. Experimental and numerical results show that a mild swirl stabilizes the free surface and also indicate that applying a stronger swirl leads to undesired free surface behaviour, ultimately leading to a strong vortex in the central downcomer. (authors)

  13. Beam-Loss Driven Design Optimization for the Spallation Neutron Source (SNS) Ring

    International Nuclear Information System (INIS)

    Wei, J.

    1999-01-01

    This paper summarizes three-state design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.)

  14. Correction factors for the NMi free-air ionization chamber for medium-energy x-rays calculated with the Monte Carlo method

    International Nuclear Information System (INIS)

    Grimbergen, T.W.M.; Dijk, E. van; Vries, W. de

    1998-01-01

    A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range. (author)

  15. Study of particle transport in a high power spallation target for an accelerator-driven transmutation system

    International Nuclear Information System (INIS)

    Shetty, Nikhil Vittal

    2013-01-01

    AGATE is a project envisaged to demonstrate the feasibility of transmutation in a gas (helium) cooled accelerator-driven system using solid spallation target. Development of the spallation target module and assessing its safety aspects are studied in this work. According to the AGATE concept parameters, 600 MeV protons are delivered on to the segmented tungsten spallation target. The Monte Carlo toolkit Geant4 has been used in the simulation of particle transport. Binary cascade is used to simulate intra-nuclear cascades, along with the G4NDL neutron data library for low energy neutrons (<20 MeV).

  16. Study of particle transport in a high power spallation target for an accelerator-driven transmutation system

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Nikhil Vittal

    2013-01-31

    AGATE is a project envisaged to demonstrate the feasibility of transmutation in a gas (helium) cooled accelerator-driven system using solid spallation target. Development of the spallation target module and assessing its safety aspects are studied in this work. According to the AGATE concept parameters, 600 MeV protons are delivered on to the segmented tungsten spallation target. The Monte Carlo toolkit Geant4 has been used in the simulation of particle transport. Binary cascade is used to simulate intra-nuclear cascades, along with the G4NDL neutron data library for low energy neutrons (<20 MeV).

  17. Spallation Neutron Spectrum on a Massive Lead/Paraffin Target Irradiated with 1 GeV Protons

    CERN Document Server

    Adam, J; Barashenkov, V S; Brandt, R; Golovatiouk, V M; Kalinnikov, V G; Katovsky, K; Krivopustov, M I; Kumar, V; Kumawat, H; Odoj, R; Pronskikh, V S; Solnyshkin, A A; Stegailov, V I; Tsoupko-Sitnikov, V M; Westmeier, W

    2004-01-01

    The spectra of gamma-ray emitted by decaying residual nuclei, produced by spallation neutrons with (n, xn), (n,xnyp), (n,p), (n,gamma) reactions in activation threshold detectors - namely, ^{209}Bi, ^{197}Au, ^{59}Co, ^{115}In, ^{232}Th, were measured in the Laboratory of Nuclear Problems (LNP), JINR, Dubna, Russia. Spallation neutrons were generated by bombarding a 20 cm long cylindrical lead target, 8 cm in diameter, surrounded by a 6 cm thick layer of paraffin moderator, with a 1 GeV proton beam from the Nuclotron accelerator. Reaction rates and spallation neutron spectrum were measured and compared with CASCADE code calculations.

  18. The application of nuclear cross section measurements to spallation reactions in cosmic rays

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Yiou, F.

    1976-01-01

    The effects and implications of nuclear transformations of the comic ray particles themselves, and how those transformations are simulated in the laboratory are dealt with. Thus, although the majority of cosmic rays are protons and alpha particles, it is the small fraction of heavier species that is the main concern here. These nuclides interact with the interstellar matter (again mostly hydrogen and helium) in which they propagate, and thus can undergo nuclear reactions. For the cosmic ray physicist the effects of these reactions are both favourable and unfavourable. The unfavourable aspect arises from the fact that the composition of the cosmic ray is significantly altered, thus tending to mask an important indication as to their origin. Counterbalancing this is the fact that the effects left by the nuclear reactions are one of the most valuable links with the propagation process itself. A careful unravelling of these effects can thus reveal important information on where and how this propagation takes place. The type of nuclear information needed and techniques that are used to obtain it are considered. (Auth.)

  19. CFD Study of the Active Part of the HYPER LBE Spallation Target System

    International Nuclear Information System (INIS)

    Cho, Chung-ho; Tak, Nam-il; Lee, Yong-bum; Choi, Jae-Hyuk

    2007-01-01

    In an accelerator driven system (ADS), a high-energy proton beam impinges on a heavy metal target to produce spallation neutrons that are multiplied in a subcritical blanket. Therefore, the spallation target is one of the most important units of an ADS. A beam power of 15-25 MW is required for an operation of the HYPER system. But, the design of a 20 MW spallation target is very challenging because more than 60% of a beam power is deposited as heat in a small volume of a target system. LBE is preferred as the target material due to its high neutron production rate, effective heat removal, low melting point and vapor pressure, low neutron absorption and good radiation damage properties. In addition, it can be used simultaneously as a reactor coolant. Single hemi-spherical beam window is considered for the HYPER target. The beam window is a thin physical barrier to separate the vacuum space from the LBE. It is exposed to high thermal and irradiation loads, which affect its life time. The integrity of the beam window is crucial for a safe operation of the HYPER, for preventing the penetration of the radioactive spallation products into the accelerator island. Therefore, a sufficient cooling capability of the beam window is one of the key issues of the target design. In the previous study, a series of parametric thermal and mechanical studies were made for the optimization of the HYPER target. The optimized target has a 0.2 cm thick beam window with a diameter of 35 cm. Also, a 30 cm wide proton beam with a uniform beam distribution should be adopted for the spallation target of the HYPER. A dual injection tube is adopted to economize the LBE flow in the primary system. This paper presents the numerical studies on the optimized spallation target system. Several advanced turbulence models with different grid structures are investigated by using a commercial computational fluid dynamics (CFD) code CFX 5.7.1

  20. Medium energy charged particle spectrometer

    International Nuclear Information System (INIS)

    Keppler, E.; Wilken, B.; Richer, K.; Umlauft, G.; Fischer, K.; Winterhoff, H.P.

    1976-10-01

    The charged particle spectrometer E8 on HELIOS A and B will be described in some detail. It covers proton energies from 80 keV to 6 MeV, electrons from 20 keV to 2 MeV, and positrons from 150 to 550 keV. Its flight performance will be discussed. From examples of measurements the capability of the instrument will be demonstrated. (orig.) [de

  1. Hadron photoproduction at medium energy

    International Nuclear Information System (INIS)

    Dainton, J.B.

    1985-04-01

    Results from measurements of multibody photoproduction at medium incident photon energy (2.8 to 4.8 GeV) are presented and discussed. Particular emphasis is placed on topics which are not well understood and which therefore motivate experiments with the upgraded electron accelerator and storage ring ELSA at the University of Bonn, FR Germany. (author)

  2. Medium energy elementary particle physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics: muon beam development at LAMPF; muon physics; a new precision measurement of the muon g-2 value; measurement of the spin-dependent structure functions of the neutron and proton; and meson factories

  3. Safety concept for spallation target system. JAERI/KEK joint project

    International Nuclear Information System (INIS)

    Kobayashi, K.; Kaminaga, M.; Haga, K.; Kinoshita, H.; Hino, R.

    2001-01-01

    A MW-class mercury target of the spallation target generates much larger amounts of radioactive nuclides than existing spallation neutron sources. To estimate the maximum level of public exposure under the guillotine break of mercury pipelines that is one of the major accidents of the target system, the hazard analyses were carried out by using a transportation model which considers heat transmission of mercury decay heat, diffusion of evaporated radioactive nuclides, etc. In the analyses, mercury, iodine, bromine and noble gas were selected as the effective source term because of their high vapor pressures and activation levels. From the preliminary analytical results obtained under the conservative conditions of 2 m/s of the air velocity around the mercury leakage area, the maximum level of the public exposure was approximately 5.8 x 10 -3 mSv. This level is negligible in comparison with 1 mSV one-year natural radiation exposure. (author)

  4. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Mishustin, Igor, E-mail: mishustin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); “Kurchatov Institute”, National Research Center, 123182 Moscow (Russian Federation); Malyshkin, Yury, E-mail: malyshkin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Pshenichnov, Igor, E-mail: pshenich@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Greiner, Walter [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany)

    2015-04-15

    A possibility of synthesizing neutron-rich superheavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to {sup 249}Bk can be produced in multiple neutron capture reactions in macroscopic quantities. However, the neutron flux achievable in a spallation target is still insufficient to overcome the so-called fermium gap. Further optimization of the target design, in particular, by including moderating material and covering it by a reflector could turn ADS into an alternative source of transuranic elements in addition to nuclear fission reactors.

  5. Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Gallimore, S.; Nilsson, P.; Sabbagh, P.; Takibayev, A.; Weisend II, J. G. [European Spallation Source ESS AB, SE-22100 Lund (Sweden); Beßler, Y. [Forschungzentrum Jülich, Jülich (Germany); Klaus, M. [Technische Universität Dresden, Dresden (Germany)

    2014-01-29

    The European Spallation Source (ESS), Lund, Sweden will be a 5MW long-pulse neutron spallation research facility and will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. Neutrons are produced by accelerating a high-energy proton beam into a rotating helium-cooled tungsten target. These neutrons pass through moderators to reduce their energy to an appropriate range (< 5 meV for cold neutrons); two of which will use liquid hydrogen at 17 K as the moderating and cooling medium. There are several technical challenges to overcome in the design of a robust system that will operate under such conditions, not least the 20 kW of deposited heat. These challenges and the associated design solutions will be detailed in this paper.

  6. Studies of short-lived products of spallation fission reactions at TRIUMF

    CERN Document Server

    Bischoff, G; D'Auria, J M; Dautet, H; Lee, J K P; Pate, B D; Wiesehahn, W

    1976-01-01

    The gas-jet recoil transport technique has been used to transport products from spallation and fission reactions from a target chamber to a shielded location for nuclear spectroscopic studies. These involve X- beta - gamma coincidence measurements and (shortly) time- of-flight mass spectroscopy. It has been deduced that the proton beam at present intensities has no appreciable effect on the ability of ethylene and other cluster-producing gases to transport radioactivity. Preliminary results will be presented for shortlived fission products from uranium, and for spallation products of iodine and argon. The latter were obtained from the bombardment of gas and aerosol targets mixed with the transporting gas in the target chamber, which appears to be a generally useful technique.

  7. Neutronic Design Calculations on Moderators for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Murphy, D.B.

    1999-01-01

    The Spallation Neutron Source (SNS) to be built at the Oak Ridge National Laboratory will provide an intense source of neutrons for a large variety of experiments. It consists of a high-energy (1-GeV) and high-power (∼1-MW) proton accelerator, an accumulator ring, together with a target station and an experimental area. In the target itself, the proton beam will produce neutrons via the spallation process and these will be converted to low-energy ( 2 O moderators. Extensive engineering design work has been conducted on the moderator vessels. For our studies we have produced realistic neutronic representations of these moderators. We report on neutronic studies conducted on these representations of the moderators using Monte Carlo simulation techniques

  8. Spallation radiation damage and the radiation damage facility at the LAMPF A-6 target station

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, M.S.; Sommer, W.F. (Los Alamos National Lab., NM (USA))

    1984-05-01

    A redesign of the Clinton P. Anderson Los Alamos Meson Physics Facility (LAMPF) A-6 Target Station is underway that will permit materials irradiations to be conducted in the proton beam and in the spallation neutron environment under more controlled conditions than has been possible heretofore. The protons of energy near 800 MeV and beam current approaching one mA are able to produce radiation damage rates (displacement production rates) as high as can be achieved in fission reactors, and the damage is uniform over macroscopic dimensions. The spallation neutrons have a degraded fission spectrum energy distribution, with the important admixture of a high energy tail up to 800 MeV. Irradiations in these radiation environments can be used to address important problems in the development of materials for fusion reactors. The redesign of the A-6 Target Station is described and plans for its use are discussed.

  9. PROCEEDINGS ON SYNCHROTRON RADIATION: China Spallation Neutron Source - an overview of application prospects

    Science.gov (United States)

    Wei, Jie; Fu, Shi-Nian; Tang, Jing-Yu; Tao, Ju-Zhou; Wang, Ding-Sheng; Wang, Fang-Wei; Wang, Sheng

    2009-11-01

    The China Spallation Neutron Source (CSNS) is an accelerator-based multidisciplinary user facility to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an H- linear accelerator, a rapid cycling synchrotron accelerating the beam to 1.6 GeV, a solid-tungsten target station, and instruments for spallation neutron applications. The facility operates at 25 Hz repetition rate with an initial design beam power of 120 kW and is upgradeable to 500 kW. Construction of the CSNS project will lay the foundation of a leading national research center based on advanced proton-accelerator technology, pulsed neutron-scattering technology, and related programs including muon, fast neutron, and proton applications as well as medical therapy and accelerator-driven subcritical reactor (ADS) applications to serve China's strategic needs in scientific research and technological innovation for the next 30 plus years.

  10. Toward high-efficiency and detailed Monte Carlo simulation study of the granular flow spallation target

    Science.gov (United States)

    Cai, Han-Jie; Zhang, Zhi-Lei; Fu, Fen; Li, Jian-Yang; Zhang, Xun-Chao; Zhang, Ya-Ling; Yan, Xue-Song; Lin, Ping; Xv, Jian-Ya; Yang, Lei

    2018-02-01

    The dense granular flow spallation target is a new target concept chosen for the Accelerator-Driven Subcritical (ADS) project in China. For the R&D of this kind of target concept, a dedicated Monte Carlo (MC) program named GMT was developed to perform the simulation study of the beam-target interaction. Owing to the complexities of the target geometry, the computational cost of the MC simulation of particle tracks is highly expensive. Thus, improvement of computational efficiency will be essential for the detailed MC simulation studies of the dense granular target. Here we present the special design of the GMT program and its high efficiency performance. In addition, the speedup potential of the GPU-accelerated spallation models is discussed.

  11. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target

    International Nuclear Information System (INIS)

    Bauer, G.S.; Salvatores, M.; Heusener, G.

    2001-01-01

    MEGAPIE (Megawatt Pilot Target Experiment) is an initiative launched by Commissariat a l'Energie Atomique, Cadarache (France) and Forschungszentrum Karlsruhe (Germany) in collaboration with Paul Scherrer Institut (Switzerland), to demonstrate, in an international collaboration, the feasibility of a liquid lead bismuth target for spallation facilities at a beam power level of 1 MW. Such a target is under consideration for various concepts of accelerator driven systems (ADS) to be used in transmutation of nuclear waste and other applications world-wide. It also has the potential of increasing significantly the thermal neutron flux available at the spallation neutron source (SINQ) for neutron scattering. SINQ's beam power being close to 1 MW already, this facility offers a unique opportunity to realize such an experiment with a reasonably small number of new ancillary systems. The paper describes the basic features of the experiment and its boundary conditions, the technical concept of the target and underlying research carried out at participating laboratories. (author)

  12. Numerical model simulation of free surface behavior in spallation target of ADS

    International Nuclear Information System (INIS)

    Chai Xiang; Su Guanyu; Cheng Xu

    2012-01-01

    The spallation target in accelerator driven sub-critical system (ADS) couples the subcritical reactor core with accelerator. The design of a windowless target has to ensure the formation of a stable free surface with desirable shape, to avoid local over- heating of the heavy liquid metal (HLM). To investigate the free surface behavior of the spallation target, OpenFOAM, an opened CFD software platform, was used to simulate the formation and features of the free surface in the windowless target. VOF method was utilized as the interface-capturing methodology. The numerical results were compared to experimental data and numerical results obtained with FLUENT code. The effects of turbulence models were studied and recommendations were made related to application of turbulence models. (authors)

  13. Studies Performed in Preparation for the Spallation Neutron Source Accumulator Ring Commissioning

    CERN Document Server

    Cousineau, Sarah M; Henderson, Stuart; Holmes, Jeffrey Alan; Plum, Michael

    2005-01-01

    The Spallation Neutron Source accumulator ring will compress 1.5?1014, 1 GeV protons from a 1 ms bunch train to a single 695 ns proton bunch for use in neutron spallation. Due to the high beam power, unprecedented control of beam loss will be required in order to control radiation and allow for hands-on maintenance in most areas of the ring. A number of detailed investigations have been performed to understand the primary sources of beam loss and to predict and mitigate problems associated with radiation hot spots in the ring. The ORBIT particle tracking code is used to perform realistic simulations of the beam accumulation in the ring, including detailed modeling of the injection system, transport through the measured magnet fields including higher order multipoles, and beam loss and collimation. In this paper we present the results of a number of studies performed in preparation for the 2006 commissioning of the accumulator ring.

  14. Irradiation damage of ferritic/martensitic steels: Fusion program data applied to a spallation neutron source

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1997-01-01

    Ferritic/martensitic steels were chosen as candidates for future fusion power plants because of their superior swelling resistance and better thermal properties than austenitic stainless steels. For the same reasons, these steels are being considered for the target structure of a spallation neutron source, where the structural materials will experience even more extreme irradiation conditions than expected in a fusion power plant first wall (i.e., high-energy neutrons that produce large amounts of displacement damage and transmutation helium). Extensive studies on the effects of neutron irradiation on the mechanical properties of ferritic/martensitic steels indicate that the major problem involves the effect of irradiation on fracture, as determined by a Charpy impact test. There are indications that helium can affect the impact behavior. Even more helium will be produced in a spallation neutron target material than in the first wall of a fusion power plant, making helium effects a prime concern for both applications. 39 refs., 10 figs

  15. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    International Nuclear Information System (INIS)

    Bergstrom, P

    2016-01-01

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  16. Medium-energy ion-beam simulation of the effect of ionizing radiation and displacement damage on SiO{sub 2}-based memristive nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Alexey; Mikhaylov, Alexey; Korolev, Dmitry; Guseinov, Davud; Gryaznov, Eugeny; Okulich, Eugenia; Sergeev, Victor; Antonov, Ivan; Kasatkin, Alexandr; Gorshkov, Oleg [Lobachevsky University, 23/3 Gagarin prospect, 603950 Nizhny Novgorod (Russian Federation); Tetelbaum, David, E-mail: tetelbaum@phys.unn.ru [Lobachevsky University, 23/3 Gagarin prospect, 603950 Nizhny Novgorod (Russian Federation); Kozlovski, Vitali [St. Petersburg State Polytechnic University, 29 Polytechnicheskaya street, 195251 St. Petersburg (Russian Federation)

    2016-07-15

    The principles of ion-beam simulation of the effect of fast (fission) neutrons and high-energy protons based on medium-energy ion irradiation have been developed for the Au/Zr/SiO{sub 2}/TiN/Ti capacitor-like memristive nanostructures demonstrating the repeatable resistive switching phenomenon. By using the Monte-Carlo approach, the irradiation fluences of H{sup +}, Si{sup +} and O{sup +} ions at the energy of 150 keV are determined that provide the ionization and displacement damage equivalent to the cases of space protons (15 MeV) and fission neutrons (1 MeV) irradiation. No significant change in the resistive switching parameters is observed under ion irradiation up to the fluences corresponding to the extreme fluence of 10{sup 17} cm{sup −2} of space protons or fission neutrons. The high-level radiation tolerance of the memristive nanostructures is experimentally confirmed with the application of 15 MeV proton irradiation and is interpreted as related to the local nature of conducting filaments and high concentration of the initial field-induced defects in oxide film.

  17. Improved detection of sentinel lymph nodes in SPECT/CT images acquired using a low- to medium-energy general-purpose collimator.

    Science.gov (United States)

    Yoneyama, Hiroto; Tsushima, Hiroyuki; Kobayashi, Masato; Onoguchi, Masahisa; Nakajima, Kenichi; Kinuya, Seigo

    2014-01-01

    The use of the low-energy high-resolution (LEHR) collimator for lymphoscintigraphy causes the appearance of star-shaped artifacts at injection sites. The aim of this study was to confirm whether the lower resolution of the low- to medium-energy general-purpose (LMEGP) collimator is compensated by decrease in the degree of septal penetration and the reduction in star-shaped artifacts. A total of 106 female patients with breast cancer, diagnosed by biopsy, were enrolled in this study. Tc phytate (37 MBq, 1 mCi) was injected around the tumor, and planar and SPECT/CT images were obtained after 3 to 4 hours. When sentinel lymph nodes (SLNs) could not be identified from planar and SPECT/CT images by using the LEHR collimator, we repeated the study with the LMEGP collimator. Planar imaging performed using the LEHR and LEHR + LMEGP collimators positively identified SLNs in 96.2% (102/106) and 99.1% (105/106) of the patients, respectively. Using combination of planar and SPECT/CT imaging with the LEHR and LEHR + LMEGP collimators, SLNs were positively identified in 97.2% (103/106) and 100% (106/106) of the patients, respectively. The LMEGP collimator provided better results than the LEHR collimator because of the lower degree of septal penetration. The use of the LMEGP collimator improved SLN detection.

  18. Development of a new method to characterize low-to-medium energy X-ray beams (E≤150 keV) used in dosimetry

    International Nuclear Information System (INIS)

    Deloule, Sybelle

    2014-01-01

    In the field of dosimetry, the knowledge of the whole photon fluence spectrum is an essential parameter. In the low-to-medium energy range (i.e. E≤150 keV), the LNHB possess 5 X-ray tubes and iodine-125 brachytherapy seeds, both emitting high fluence rates. The performance of calculation (either Monte Carlo codes or deterministic software) is flawed by increasing uncertainties on fundamental parameters at low energies, and modelling issues. Therefore, direct measurement using a high purity germanium is preferred, even though it requires a time-consuming set-up and mathematical methods to infer impinging spectrum from measured ones (such as stripping, model-fitting or Bayesian inference). Concerning brachytherapy, the knowledge of the seed's parameters has been improved. Moreover, various calculated X-ray tube fluence spectra have been compared to measured ones, after unfolding. The results of all these methods have then be assessed, as well as their impact on dosimetric parameters. (author) [fr

  19. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, P [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (United States)

    2016-06-15

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  20. On the fine structure of medium energy electron fluxes in the auroral zone and related effects in the ionospheric D-region

    Directory of Open Access Journals (Sweden)

    J. K. Hargreaves

    2010-05-01

    Full Text Available This study is based on measurements of trapped and precipitated electrons of energy >30 keV and >100 keV observed by polar orbiting environmental satellites during overpasses of the imaging riometer at Kilpisjärvi, Finland. The satellites are in sun-synchronous orbits of about 850 km altitude, recording the electron fluxes at 2-s time resolution. The riometer measures the radiowave absorption at 38.2 MHz, showing the spatial pattern within a 240 km field of view. The analysis has focussed on two areas. Having found a close correlation between the radiowave absorption and the medium-energy electron fluxes during satellite overpasses, empirical relationships are derived, enabling one quantity to be predicted from the other for three sectors of local time. It is shown that small-scale variations observed during a pass are essentially spatial rather than temporal. Other properties, such as the spectra and the relation between precipitated and trapped components, are also considered in the light of the theory of pitch angle scattering by VLF waves. It is found that the properties and behaviour depend strongly on the time of day. In the noon sector, the precipitated and trapped fluxes are highly correlated through a square law relationship.