WorldWideScience

Sample records for medium sn-driven galactic

  1. GLOBAL GALACTIC DYNAMO DRIVEN BY COSMIC RAYS AND EXPLODING MAGNETIZED STARS

    International Nuclear Information System (INIS)

    Hanasz, Michal; Woltanski, Dominik; Kowalik, Kacper

    2009-01-01

    We report the first results of the first global galactic-scale cosmic ray (CR)-MHD simulations of CR-driven dynamo. We investigate the dynamics of magnetized interstellar medium (ISM), which is dynamically coupled with CR gas. We assume that exploding stars deposit small-scale, randomly oriented, dipolar magnetic fields into the differentially rotating ISM, together with a portion of CRs, accelerated in supernova shocks. We conduct numerical simulations with the aid of a new parallel MHD code PIERNIK. We find that the initial magnetization of galactic disks by exploding magnetized stars forms favorable conditions for the CR-driven dynamo. We demonstrate that dipolar magnetic fields supplied on small supernova remnant scales can be amplified exponentially by the CR-driven dynamo, to the present equipartition values, and transformed simultaneously to large galactic scales. The resulting magnetic field structure in an evolved galaxy appears spiral in the face-on view and reveals the so-called X-shaped structure in the edge-on view.

  2. Galactic Winds Driven by Supernovae and Radiation Pressure: Theory and Simulations

    Science.gov (United States)

    Zhang, Dong; Davis, Shane

    2018-01-01

    Galactic winds are ubiquitous in most rapidly star-forming galaxies. They are crucial to the process of galaxy formation and evolution, regulating star formation, shaping the stellar mass function and the mass-metallicity relation, and enriching the intergalactic medium with metals. Although important, the physics of galactic winds is still unclear. Winds may be driven by many mechanisms including overlapping supernovae explosions, radiation pressure of starlight on dust grains, and cosmic rays. However, the growing observations of multiphase structure in galactic winds in a large number of galaxies have not been well explained by any models. In this talk I will focus on the models of supernova- and radiation-pressure-driven winds. Using the state-of-the-art numerical simulations, I will assess the relative merits of these driving mechanisms for accelerating cold and warm clouds to observed velocities, and momentum flux boost during wind propagation.

  3. COS-burst: Observations of the Impact of Starburst-driven Winds on the Properties of the Circum-galactic Medium

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, Timothy; Borthakur, Sanchayeeta [Center for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Wild, Vivienne [School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9AJ (United Kingdom); Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Bordoloi, Rongmon, E-mail: theckma1@jhu.edu [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2017-09-10

    We report on observations made with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope ( HST ) using background quasi-stellar objects to probe the circum-galactic medium (CGM) around 17 low-redshift galaxies that are undergoing or have recently undergone a strong starburst (the COS-Burst program). The sightlines extend out to roughly the virial radius of the galaxy halo. We construct control samples of normal star-forming low-redshift galaxies from the COS/ HST archive that match the starbursts in terms of galaxy stellar mass and impact parameter. We find clear evidence that the CGM around the starbursts differs systematically compared to the control galaxies. The Ly α , Si iii, C iv, and possibly O vi absorption lines are stronger as a function of impact parameter, and the ratios of the equivalent widths of C iv/Ly α and Si iii/Ly α are both higher than in normal star-forming galaxies. We also find that the widths and the velocity offsets (relative to v {sub sys}) of the Ly α absorption lines are significantly larger in the CGM of the starbursts, implying velocities of the absorbing material that are roughly twice the halo virial velocity. We show that these properties can be understood as a consequence of the interaction between a starburst-driven wind and the preexisting CGM. These results underscore the importance of winds driven from intensely star-forming galaxies in helping drive the evolution of galaxies and the intergalactic medium. They also offer a new probe of the properties of starburst-driven winds and of the CGM itself.

  4. THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Christine M.; Pakmor, Rüdiger; Pfrommer, Christoph; Springel, Volker [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Marinacci, Federico [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Glover, Simon C. O. [Zentrum für Astronomie der Universität Heidelberg, ITA, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Clark, Paul C. [School of Physics and Astronomy, Queen’s Buildings, The Parade, Cardiff University, Cardiff CF24 3AA (United Kingdom); Smith, Rowan J., E-mail: Christine.Simpson@h-its.org [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-08-20

    We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.

  5. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  6. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    International Nuclear Information System (INIS)

    Rest, A.; Welch, D.L.; Suntzeff, N.B.; Oaster, L.; Lanning, H.; Olsen, K.; Smith, R.C.; Becker, A.C.; Bergmann, M.; Challis, P.; Clocchiatti, A.; Cook, K.H.; Damke, G.; Garg, A.; Huber, M.E.; Matheson, T.; Minniti, D.; Prieto, J.L.; Wood-Vasey, W.M.

    2008-01-01

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane

  7. H II REGION DRIVEN GALACTIC BUBBLES AND THEIR RELATIONSHIP TO THE GALACTIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, Michael D.; Clemens, D. P., E-mail: pavelmi@bu.edu, E-mail: clemens@bu.edu [Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2012-12-01

    The relative alignments of mid-infrared traced Galactic bubbles are compared to the orientation of the mean Galactic magnetic field in the disk. The orientations of bubbles in the northern Galactic plane were measured and are consistent with random orientations-no preferential alignment with respect to the Galactic disk was found. A subsample of H II region driven Galactic bubbles was identified, and as a single population they show random orientations. When this subsample was further divided into subthermal and suprathermal H II regions, based on hydrogen radio recombination linewidths, the subthermal H II regions showed a marginal deviation from random orientations, but the suprathermal H II regions showed significant alignment with the Galactic plane. The mean orientation of the Galactic disk magnetic field was characterized using new near-infrared starlight polarimetry and the suprathermal H II regions were found to preferentially align with the disk magnetic field. If suprathermal linewidths are associated with younger H II regions, then the evolution of young H II regions is significantly affected by the Galactic magnetic field. As H II regions age, they cease to be strongly linked to the Galactic magnetic field, as surrounding density variations come to dominate their morphological evolution. From the new observations, the ratios of magnetic-to-ram pressures in the expanding ionization fronts were estimated for younger H II regions.

  8. Cosmic ray driven outflows in an ultraluminous galaxy

    Science.gov (United States)

    Fujita, Akimi; Mac Low, Mordecai-Mark

    2018-06-01

    In models of galaxy formation, feedback driven both by supernova (SN) and active galactic nucleus is not efficient enough to quench star formation in massive galaxies. Models of smaller galaxies have suggested that cosmic rays (CRs) play a major role in expelling material from the star-forming regions by diffusing SN energy to the lower density outskirts. We therefore run gas dynamical simulations of galactic outflows from a galaxy contained in a halo with 5 × 1012 M⊙ that resembles a local ultraluminous galaxy, including both SN thermal energy and a treatment of CRs using the same diffusion approximation as Salem & Bryan. We find that CR pressure drives a low-density bubble beyond the edge of the shell swept up by thermal pressure, but the main bubble driven by SN thermal pressure overtakes it later, which creates a large-scale biconical outflow. CRs diffusing into the disc are unable to entrain its gas in the outflows, yielding a mass-loading rate of only ˜ 0.1 per cent with varied CR diffusion coefficients. We find no significant difference in mass-loading rates in SN-driven outflows with or without CR pressure. Our simulations strongly suggest that it is hard to drive a heavily mass-loaded outflow with CRs from a massive halo potential, although more distributed star formation could lead to a different result.

  9. Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium

    CSIR Research Space (South Africa)

    Modibedi, RM

    2011-04-01

    Full Text Available Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts were prepared by the chemical reduction method, using sodium borohydride and ethylene glycol mixture as the reducing agent. The catalytic activity towards ethanol electro-oxidation in alkaline medium...

  10. The dependence of cosmic ray-driven galactic winds on halo mass

    Science.gov (United States)

    Jacob, Svenja; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker; Pfrommer, Christoph

    2018-03-01

    Galactic winds regulate star formation in disc galaxies and help to enrich the circum-galactic medium. They are therefore crucial for galaxy formation, but their driving mechanism is still poorly understood. Recent studies have demonstrated that cosmic rays (CRs) can drive outflows if active CR transport is taken into account. Using hydrodynamical simulations of isolated galaxies with virial masses between 1010 and 1013 M⊙, we study how the properties of CR-driven winds depend on halo mass. CRs are treated in a two-fluid approximation and their transport is modelled through isotropic or anisotropic diffusion. We find that CRs are only able to drive mass-loaded winds beyond the virial radius in haloes with masses below 1012 M⊙. For our lowest examined halo mass, the wind is roughly spherical and has velocities of ˜20 km s-1. With increasing halo mass, the wind becomes biconical and can reach 10 times higher velocities. The mass loading factor drops rapidly with virial mass, a dependence that approximately follows a power law with a slope between -1 and -2. This scaling is slightly steeper than observational inferences, and also steeper than commonly used prescriptions for wind feedback in cosmological simulations. The slope is quite robust to variations of the CR injection efficiency or the CR diffusion coefficient. In contrast to the mass loading, the energy loading shows no significant dependence on halo mass. While these scalings are close to successful heuristic models of wind feedback, the CR-driven winds in our present models are not yet powerful enough to fully account for the required feedback strength.

  11. Widespread rotationally hot hydronium ion in the galactic interstellar medium

    International Nuclear Information System (INIS)

    Lis, D. C.; Phillips, T. G.; Schilke, P.; Comito, C.; Higgins, R.

    2014-01-01

    We present new Herschel observations of the (6,6) and (9,9) inversion transitions of the hydronium ion toward Sagittarius B2(N) and W31C. Sensitive observations toward Sagittarius B2(N) show that the high, ∼500 K, rotational temperatures characterizing the population of the highly excited metastable H 3 O + rotational levels are present over a wide range of velocities corresponding to the Sagittarius B2 envelope, as well as the foreground gas clouds between the Sun and the source. Observations of the same lines toward W31C, a line of sight that does not intersect the Central Molecular Zone but instead traces quiescent gas in the Galactic disk, also imply a high rotational temperature of ∼380 K, well in excess of the kinetic temperature of the diffuse Galactic interstellar medium. While it is plausible that some fraction of the molecular gas may be heated to such high temperatures in the active environment of the Galactic center, characterized by high X-ray and cosmic-ray fluxes, shocks, and high degree of turbulence, this is unlikely in the largely quiescent environment of the Galactic disk clouds. We suggest instead that the highly excited states of the hydronium ion are populated mainly by exoergic chemical formation processes and the temperature describing the rotational level population does not represent the physical temperature of the medium. The same arguments may be applicable to other symmetric top rotors, such as ammonia. This offers a simple explanation of the long-standing puzzle of the presence of a pervasive, hot molecular gas component in the central region of the Milky Way. Moreover, our observations suggest that this is a universal process not limited to the active environments associated with galactic nuclei.

  12. Transmutation of 126Sn in spallation targets of accelerator-driven systems

    International Nuclear Information System (INIS)

    Han, Chi Young; Saito, Masaki; Sagara, Hiroshi

    2009-01-01

    The practical feasibility of 126 Sn transmutation in spallation targets of accelerator-driven systems was evaluated from the viewpoints of accumulation of radioactive spallation products and neutron production as well as transmutation amount of 126 Sn. A cylindrical liquid 126 Sn target whose length depends on proton beam energy was described, based on a Pb-Bi target design of accelerator-driven system being developed in JAEA. A proton beam of 1.5 GeV-20 mA was estimated to give the transmutation rate of 126 Sn 6.4 kg/yr, which corresponds to the amount of 126 Sn annually discharged in 27 LWRs of 1 GWt and 33 GWd/THM. The equilibrium radioactivity of spallation products would reach 9% of that of 126 Sn transmuted in the spallation target, and the equilibrium toxicity would be just 3%. Some parametric analyses showed that the effective half-life of 126 Sn could be reduced through a proper reduction of the target size. The 126 Sn target was calculated to produce 40 neutrons per proton of 1.5 GeV and give a neutron spectrum very similar to that of the reference Pb-Bi target. As a result, the transmutation of 126 Sn in the spallation target has a high feasibility in terms of better transmutation performance and comparable target performance. (author)

  13. Circum-Galactic Medium in the Halo of Quasars

    Directory of Open Access Journals (Sweden)

    Riccardo Ottolina

    2017-12-01

    Full Text Available The properties of circum-galactic gas in the halo of quasar host galaxies are investigated analyzing Mg II 2800 and C IV 1540 absorption-line systems along the line of sight close to quasars. We used optical spectroscopy of closely aligned pairs of quasars (projected distance ≤ 200 kpc, but at very different redshift obtained at the VLT and Gran Telescopio Canarias to investigate the distribution of the absorbing gas for a sample of quasars at z ~1. Absorption systems of EW ≥0.3 associated with the foreground quasars are revealed up to 200 kpc from the centre of the host galaxy, showing that the structure of the absorbing gas is patchy with a covering fraction quickly decreasing beyond 100 kpc. In this contribution we use optical and near-IR images obtained at VLT to investigate the relations between the properties of the circum-galactic medium of the host galaxies and of the large scale galaxy environments of the foreground quasars.

  14. Iron and Silicate Dust Growth in the Galactic Interstellar Medium: Clues from Element Depletions

    Science.gov (United States)

    Zhukovska, Svitlana; Henning, Thomas; Dobbs, Clare

    2018-04-01

    The interstellar abundances of refractory elements indicate a substantial depletion from the gas phase, which increases with gas density. Our recent model of dust evolution, based on hydrodynamic simulations of the life cycle of giant molecular clouds (GMCs), proves that the observed trend for [Sigas/H] is driven by a combination of dust growth by accretion in the cold diffuse interstellar medium (ISM) and efficient destruction by supernova (SN) shocks. With an analytic model of dust evolution, we demonstrate that even with optimistic assumptions for the dust input from stars and without destruction of grains by SNe it is impossible to match the observed [Sigas/H]–n H relation without growth in the ISM. We extend the framework developed in our previous work for silicates to include the evolution of iron grains and address a long-standing conundrum: “Where is the interstellar iron?” Much higher depletion of Fe in the warm neutral medium compared to Si is reproduced by the models, in which a large fraction of interstellar iron (70%) is locked as inclusions in silicate grains, where it is protected from efficient sputtering by SN shocks. The slope of the observed [Fegas/H]–n H relation is reproduced if the remaining depleted iron resides in a population of metallic iron nanoparticles with sizes in the range of 1–10 nm. Enhanced collision rates due to the Coulomb focusing are important for both silicate and iron dust models to match the slopes of the observed depletion–density relations and the magnitudes of depletion at high gas density.

  15. Active galactic nucleus outflows in galaxy discs

    Science.gov (United States)

    Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar

    2018-05-01

    Galactic outflows, driven by active galactic nuclei (AGNs), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes (BHs). AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the free-fall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the BH mass with the halo velocity dispersion of MBH ∝ σ4.8.

  16. SEDIGISM: Structure, excitation, and dynamics of the inner Galactic interstellar medium

    Science.gov (United States)

    Schuller, F.; Csengeri, T.; Urquhart, J. S.; Duarte-Cabral, A.; Barnes, P. J.; Giannetti, A.; Hernandez, A. K.; Leurini, S.; Mattern, M.; Medina, S.-N. X.; Agurto, C.; Azagra, F.; Anderson, L. D.; Beltrán, M. T.; Beuther, H.; Bontemps, S.; Bronfman, L.; Dobbs, C. L.; Dumke, M.; Finger, R.; Ginsburg, A.; Gonzalez, E.; Henning, T.; Kauffmann, J.; Mac-Auliffe, F.; Menten, K. M.; Montenegro-Montes, F. M.; Moore, T. J. T.; Muller, E.; Parra, R.; Perez-Beaupuits, J.-P.; Pettitt, A.; Russeil, D.; Sánchez-Monge, Á.; Schilke, P.; Schisano, E.; Suri, S.; Testi, L.; Torstensson, K.; Venegas, P.; Wang, K.; Wienen, M.; Wyrowski, F.; Zavagno, A.

    2017-05-01

    Context. The origin and life-cycle of molecular clouds are still poorly constrained, despite their importance for understanding the evolution of the interstellar medium. Many large-scale surveys of the Galactic plane have been conducted recently, allowing for rapid progress in this field. Nevertheless, a sub-arcminute resolution global view of the large-scale distribution of molecular gas, from the diffuse medium to dense clouds and clumps, and of their relationshipto the spiral structure, is still missing. Aims: We have carried out a systematic, homogeneous, spectroscopic survey of the inner Galactic plane, in order to complement the many continuum Galactic surveys available with crucial distance and gas-kinematic information. Our aim is to combine this data set with recent infrared to sub-millimetre surveys at similar angular resolutions. Methods: The SEDIGISM survey covers 78 deg2 of the inner Galaxy (-60°≤ℓ≤ 18°, |b|≤ 0.5°) in the J = 2-1 rotational transition of 13CO. This isotopologue of CO is less abundant than 12CO by factors up to 100. Therefore, its emission has low to moderate optical depths, and higher critical density, making it an ideal tracer of the cold, dense interstellar medium. The data have been observed with the SHFI single-pixel instrument at APEX. The observational setup covers the 13CO(2-1) and C18O(2-1) lines, plus several transitions from other molecules. Results: The observations have been completed. Data reduction is in progress, and the final data products will be made available in the near future. Here we give a detailed description of the survey and the dedicated data reduction pipeline. To illustrate the scientific potential of this survey, preliminary results based on a science demonstration field covering -20°≤ℓ ≤ -18.5° are presented. Analysis of the 13CO(2-1) data in this field reveals compact clumps, diffuse clouds, and filamentary structures at a range of heliocentric distances. By combining our data with

  17. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Butsky, Iryna [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Zrake, Jonathan; Kim, Ji-hoon; Yang, Hung-I; Abel, Tom [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025 (United States)

    2017-07-10

    We study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulent dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO 's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk’s spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.

  18. Faraday tomography of the local interstellar medium with LOFAR: Galactic foregrounds towards IC 342

    NARCIS (Netherlands)

    Van Eck, C. L.; Haverkorn, M.; Alves, M. I. R.; Beck, R.; de Bruyn, A. G.; Enßlin, T.; Farnes, J. S.; Ferrière, K.; Heald, G.; Horellou, C.; Horneffer, A.; Iacobelli, M.; Jelić, V.; Martí-Vidal, I.; Mulcahy, D. D.; Reich, W.; Röttgering, H. J. A.; Scaife, A. M. M.; Schnitzeler, D. H. F. M.; Sobey, C.; Sridhar, S. S.

    2017-01-01

    Magnetic fields pervade the interstellar medium (ISM), but are difficult to detect and characterize. The new generation of low-frequency radio telescopes, such as the Low Frequency Array (LOFAR: a Square Kilometre Array-low pathfinder), provides advancements in our capability of probing Galactic

  19. Some consequences of shear on galactic dynamos with helicity fluxes

    Science.gov (United States)

    Zhou, Hongzhe; Blackman, Eric G.

    2017-08-01

    Galactic dynamo models sustained by supernova (SN) driven turbulence and differential rotation have revealed that the sustenance of large-scale fields requires a flux of small-scale magnetic helicity to be viable. Here we generalize a minimalist analytic version of such galactic dynamos to explore some heretofore unincluded contributions from shear on the total turbulent energy and turbulent correlation time, with the helicity fluxes maintained by either winds, diffusion or magnetic buoyancy. We construct an analytic framework for modelling the turbulent energy and correlation time as a function of SN rate and shear. We compare our prescription with previous approaches that include only rotation. The solutions depend separately on the rotation period and the eddy turnover time and not just on their ratio (the Rossby number). We consider models in which these two time-scales are allowed to be independent and also a case in which they are mutually dependent on radius when a radial-dependent SN rate model is invoked. For the case of a fixed rotation period (or a fixed radius), we show that the influence of shear is dramatic for low Rossby numbers, reducing the correlation time of the turbulence, which, in turn, strongly reduces the saturation value of the dynamo compared to the case when the shear is ignored. We also show that even in the absence of winds or diffusive fluxes, magnetic buoyancy may be able to sustain sufficient helicity fluxes to avoid quenching.

  20. Planck early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo

    DEFF Research Database (Denmark)

    Poutanen, T.; Natoli, P.; Polenta, G.

    2011-01-01

    by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T ~ 20 K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible......This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800deg2 at high Galactic latitude. The main goal...... of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average Hi column density lower than 2...

  1. A cloud/particle model of the interstellar medium - Galactic spiral structure

    Science.gov (United States)

    Levinson, F. H.; Roberts, W. W., Jr.

    1981-01-01

    A cloud/particle model for gas flow in galaxies is developed that incorporates cloud-cloud collisions and supernovae as dominant local processes. Cloud-cloud collisions are the main means of dissipation. To counter this dissipation and maintain local dispersion, supernova explosions in the medium administer radial snowplow pushes to all nearby clouds. The causal link between these processes is that cloud-cloud collisions will form stars and that these stars will rapidly become supernovae. The cloud/particle model is tested and used to investigate the gas dynamics and spiral structures in galaxies where these assumptions may be reasonable. Particular attention is given to whether large-scale galactic shock waves, which are thought to underlie the regular well-delineated spiral structure in some galaxies, form and persist in a cloud-supernova dominated interstellar medium; this question is answered in the affirmative.

  2. Detection of the Galactic Warm Neutral Medium in HI 21cm absorption

    Science.gov (United States)

    Patra, Narendra Nath; Kanekar, Nissim; Chengalur, Jayaram N.; Roy, Nirupam

    2018-05-01

    We report a deep Giant Metrewave Radio Telescope (GMRT) search for Galactic HI 21cm absorption towards the quasar B0438-436, yielding the detection of wide, weak HI 21cm absorption, with a velocity-integrated HI 21cm optical depth of 0.0188 ± 0.0036 km s-1. Comparing this with the HI column density measured in the Parkes Galactic All-Sky Survey gives a column density-weighted harmonic mean spin temperature of 3760 ± 365 K, one of the highest measured in the Galaxy. This is consistent with most of the HI along the sightline arising in the stable warm neutral medium (WNM). The low peak HI 21cm optical depth towards B0438-436 implies negligible self-absorption, allowing a multi-Gaussian joint decomposition of the HI 21cm absorption and emission spectra. This yields a gas kinetic temperature of T_k ≤ (4910 ± 1900) K, and a spin temperature of T_s = (1000 ± 345) K for the gas that gives rise to the HI 21cm absorption. Our data are consistent with the HI 21cm absorption arising from either the stable WNM, with T_s ≪ T_k, T_k ≈ 5000 K, and little penetration of the background Lyman-α radiation field into the neutral hydrogen, or from the unstable neutral medium, with T_s ≈ T_k ≈ 1000K.

  3. PHOTOIONIZATION OF HIGH-ALTITUDE GAS IN A SUPERNOVA-DRIVEN TURBULENT INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Wood, Kenneth; Hill, Alex S.; Haffner, L. Matthew; Reynolds, R. J.; Joung, M. Ryan; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Madsen, G. J.

    2010-01-01

    We investigate models for the photoionization of the widespread diffuse ionized gas (DIG) in galaxies. In particular, we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium (ISM) have low-density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find that ionizing fluxes throughout our simulation grids are larger than predicted by one-dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Hα. In previous studies of such clouds, the photoionization scenario had been rejected and the Hα had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Hα observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high-altitude DIG in a realistic three-dimensional ISM.

  4. Reactivation and reuse of TiO2-SnS2 composite catalyst for solar-driven water treatment.

    Science.gov (United States)

    Kovacic, Marin; Kopcic, Nina; Kusic, Hrvoje; Stangar, Urska Lavrencic; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2018-01-01

    One of the most important features of photocatalytic materials intended to be used for water treatment is their long-term stability. The study is focused on the application of thermal and chemical treatments for the reactivation of TiO 2 -SnS 2 composite photocatalyst, prepared by hydrothermal synthesis and immobilized on the glass support using titania/silica binder. Such a catalytic system was applied in solar-driven treatment, solar/TiO 2 -SnS 2 /H 2 O 2 , for the purification of water contaminated with diclofenac (DCF). The effectiveness of studied reactivation methods for retaining TiO 2 -SnS 2 activity in consecutive cycles was evaluated on basis of DCF removal and conversion, and TOC removal and mineralization of organic content. Besides these water quality parameters, biodegradability changes in DCF aqueous solution treated by solar/TiO 2 -SnS 2 /H 2 O 2 process using simply reused (air-dried) and thermally and chemically reactivated composite photocatalyst through six consecutive cycles were monitored. It was established that both thermal and chemical reactivation retain TiO 2 -SnS 2 activity in the second cycle of its reuse. However, both treatments caused the alteration in the TiO 2 -SnS 2 morphology due to the partial transformation of visible-active SnS 2 into non-active SnO 2 . Such alteration, repeated through consecutive reactivation and reuse, was reflected through gradual activity loss of TiO 2 -SnS 2 composite in applied solar-driven water treatment.

  5. Medium Resolution Spectroscopy and Chemical Composition of Galactic Globular Clusters

    Directory of Open Access Journals (Sweden)

    Khamidullina D. A.

    2014-12-01

    Full Text Available We used integrated-light medium-resolution spectra of six Galactic globular clusters and model stellar atmospheres to carry out population synthesis and to derive chemical composition and age of the clusters. We used medium-resolution spectra of globular clusters published by Schiavon et al. (2005, as well as our long-slit observations with the 1.93 m telescope of the Haute Provence Observatory. The observed spectra were fitted to the theoretical ones interactively. As an initial approach, we used masses, radii and log g of stars in the clusters corresponding to the best fitting isochrones in the observed color-magnitude diagrams. The computed synthetic blanketed spectra of stars were summed according to the Chabrier mass function. To improve the determination of age and helium content, the shape and depth of the Balmer absorption lines was analysed. The abundances of Mg, Ca, C and several other elements were derived. A reasonable agreement with the literature data both in chemical composition and in age of the clusters is found. Our method might be useful for the development of stellar population models and for a better understanding of extragalactic star clusters.

  6. Medium resolution spectroscopy and chemical composition of Galactic globular clusters

    Science.gov (United States)

    Khamidullina, D. A.; Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    We used integrated-light medium-resolution spectra of six Galactic globular clusters and model stellar atmospheres to carry out population synthesis and to derive chemical composition and age of the clusters. We used medium-resolution spectra of globular clusters published by Schiavon et al. (2005), as well as our long-slit observations with the 1.93 m telescope of the Haute Provence Observatory. The observed spectra were fitted to the theoretical ones interactively. As an initial approach, we used masses, radii and log g of stars in the clusters corresponding to the best fitting isochrones in the observed color-magnitude diagrams. The computed synthetic blanketed spectra of stars were summed according to the Chabrier mass function. To improve the determination of age and helium content, the shape and depth of the Balmer absorption lines was analysed. The abundances of Mg, Ca, C and several other elements were derived. A reasonable agreement with the literature data both in chemical composition and in age of the clusters is found. Our method might be useful for the development of stellar population models and for a better understanding of extragalactic star clusters.

  7. Scaling Relations of Starburst-driven Galactic Winds

    International Nuclear Information System (INIS)

    Tanner, Ryan; Cecil, Gerald; Heitsch, Fabian

    2017-01-01

    Using synthetic absorption lines generated from 3D hydrodynamical simulations, we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations for neutral and low ionized gas, but no correlation for highly ionized gas. The correlations for neutral and low ionized gas only hold for SFRs below a critical limit set by the mass loading of the starburst, above which point the scaling relations flatten abruptly. Below this point the scaling relations depend on the temperature regime being probed by the absorption line, not on the mass loading. The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas can be up to five times lower than the average velocity of ionized gas, with the velocity difference increasing for higher ionization states. Furthermore, the velocity difference depends on both the SFR and mass loading of the starburst. Thus, absorption lines of neutral or low ionized gas cannot easily be used as a proxy for the outflow velocity of the hot gas.

  8. Scaling Relations of Starburst-driven Galactic Winds

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Ryan [Department of Chemistry and Physics, Augusta University, Augusta, GA 30912 (United States); Cecil, Gerald; Heitsch, Fabian, E-mail: rytanner@augusta.edu [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States)

    2017-07-10

    Using synthetic absorption lines generated from 3D hydrodynamical simulations, we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations for neutral and low ionized gas, but no correlation for highly ionized gas. The correlations for neutral and low ionized gas only hold for SFRs below a critical limit set by the mass loading of the starburst, above which point the scaling relations flatten abruptly. Below this point the scaling relations depend on the temperature regime being probed by the absorption line, not on the mass loading. The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas can be up to five times lower than the average velocity of ionized gas, with the velocity difference increasing for higher ionization states. Furthermore, the velocity difference depends on both the SFR and mass loading of the starburst. Thus, absorption lines of neutral or low ionized gas cannot easily be used as a proxy for the outflow velocity of the hot gas.

  9. Galactic neutral hydrogen and the magnetic ISM foreground

    Science.gov (United States)

    Clark, S. E.

    2018-05-01

    The interstellar medium is suffused with magnetic fields, which inform the shape of structures in the diffuse gas. Recent high-dynamic range observations of Galactic neutral hydrogen, combined with novel data analysis techniques, have revealed a deep link between the morphology of neutral gas and the ambient magnetic field. At the same time, an observational revolution is underway in low-frequency radio polarimetry, driven in part by the need to characterize foregrounds to the cosmological 21-cm signal. A new generation of experiments, capable of high angular and Faraday depth resolution, are revealing complex filamentary structures in diffuse polarization. The relationship between filamentary structures observed in radio-polarimetric data and those observed in atomic hydrogen is not yet well understood. Multiwavelength observations will enable new insights into the magnetic interstellar medium across phases.

  10. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    Science.gov (United States)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}} 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  11. SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium

    Science.gov (United States)

    Kuncarayakti, Hanindyo; Maeda, Keiichi; Ashall, Christopher J.; Prentice, Simon J.; Mattila, Seppo; Kankare, Erkki; Fransson, Claes; Lundqvist, Peter; Pastorello, Andrea; Leloudas, Giorgos; Anderson, Joseph P.; Benetti, Stefano; Bersten, Melina C.; Cappellaro, Enrico; Cartier, Régis; Denneau, Larry; Della Valle, Massimo; Elias-Rosa, Nancy; Folatelli, Gastón; Fraser, Morgan; Galbany, Lluís; Gall, Christa; Gal-Yam, Avishay; Gutiérrez, Claudia P.; Hamanowicz, Aleksandra; Heinze, Ari; Inserra, Cosimo; Kangas, Tuomas; Mazzali, Paolo; Melandri, Andrea; Pignata, Giuliano; Rest, Armin; Reynolds, Thomas; Roy, Rupak; Smartt, Stephen J.; Smith, Ken W.; Sollerman, Jesper; Somero, Auni; Stalder, Brian; Stritzinger, Maximilian; Taddia, Francesco; Tomasella, Lina; Tonry, John; Weiland, Henry; Young, David R.

    2018-02-01

    SN 2017dio shows both spectral characteristics of a type-Ic supernova (SN) and signs of a hydrogen-rich circumstellar medium (CSM). Prominent, narrow emission lines of H and He are superposed on the continuum. Subsequent evolution revealed that the SN ejecta are interacting with the CSM. The initial SN Ic identification was confirmed by removing the CSM interaction component from the spectrum and comparing with known SNe Ic and, reversely, adding a CSM interaction component to the spectra of known SNe Ic and comparing them to SN 2017dio. Excellent agreement was obtained with both procedures, reinforcing the SN Ic classification. The light curve constrains the pre-interaction SN Ic peak absolute magnitude to be around {M}g=-17.6 mag. No evidence of significant extinction is found, ruling out a brighter luminosity required by an SN Ia classification. These pieces of evidence support the view that SN 2017dio is an SN Ic, and therefore the first firm case of an SN Ic with signatures of hydrogen-rich CSM in the early spectrum. The CSM is unlikely to have been shaped by steady-state stellar winds. The mass loss of the progenitor star must have been intense, \\dot{M}∼ 0.02{({ε }{{H}α }/0.01)}-1 ({v}{wind}/500 km s‑1) ({v}{shock}/10,000 km s‑1)‑3 M ⊙ yr‑1, peaking at a few decades before the SN. Such a high mass-loss rate might have been experienced by the progenitor through eruptions or binary stripping. Based on observations made with the NOT, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This work is based (in part) on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO program 188.D-3003, 191.D-0935, 197.D-1075. Based on observations made with the Liverpool Telescope operated on the

  12. Photoionization of the diffuse interstellar medium and galactic halo by OB associtations

    Science.gov (United States)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    Assuming smoothly varying H I distributions in te Galactic disk, we have calculated the geometry of diffuse II regions due to OB associations in the Galactic plane. Near the solar circle, OB associations with a Lyman continuum (Lyc) photon luminosity Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1), produce H II regions that are density bounded in the vertical direction (H II chimneys) allowing Lyc to escape the gaseous disk and penetrate into the Galactic halo. We provide analytic formulae for the Lyc escape fraction as functions of S(sub 0) O-star catalog of Garmany and a new Lyc stellar stellar Lyc stellar flux calibration, we find a production rate of Lyc photons by OB associations within 2.5 kpc of Psi(sub Lyc) = 3.3 x 10(exp 7) cm(exp -2) s(exp -1). Integrating the fraction of Lyc photons that escape the disk over our adopted luminosity function of OB associations, we estimate that approximately 7% of the ionizing photons, or Phi(sub Lyc) = 2.3 x 10(exp 6) cm(exp -2) s(exp -1), escape each side of the H I disk layer and penetrate the diffuse ionized medium ('Reynolds layer'). This flux is sufficient to explain the potoionization of this, although we have not constructed a model for the observed H-alpha emission and pulsar dispersion measures that is fully consistent with the absorption rate of Lyc in the H II layer. Since our quiescent model does not account for the effects of dynamic chimneys and superbubbles, which should enhance Lyc escape, we conclude the O stars are the probable source of ionizing radiation for the Reynolds layer. For a random distribution of OB associations throughout the disk, the Lyc flux is nearly uniform for heights Z is greater than approximately 0.8 kpc above the midplane.

  13. Metal-enhanced galactic winds. I

    International Nuclear Information System (INIS)

    Vader, J.P.

    1986-01-01

    Supernova-driven gas loss during the early evolution of elliptical galaxies is considered as a possible explanation for the correlations among the observed chemical and structural properties of these systems. Mass loss from systems with a chemically homogeneous interstellar medium does not work. It is pointed out that supernova-driven winds are in fact metal-enhanced with respect to the star-forming gas because the metal production of any supernova that drives the wind is directly flushed out of the galaxy. The fraction of the total metal production lost in the wind is thus at least as large as the fraction epsilon(z) of supernovae that power the wind, independent of the total mass loss. As a corollary, the yield of heavy elements that are recycled in the galaxy is reduced by a factor 1 - epsilon(z). Metal-enhanced galactic winds, which can carry away a large fraction of the metal production in spite of a moderate total mass loss, offer a promising explanation for the low metallicities of dwarf elliptical galaxies. 62 references

  14. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    Science.gov (United States)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  15. Dynamics of supernova remnants in the Galactic centre.

    Science.gov (United States)

    Bortolas, E.; Mapelli, M.; Spera, M.

    The Galactic centre (GC) is a unique place to study the extreme dynamical processes occurring near a super-massive black hole (SMBH). Here we simulate a large set of binaries orbiting the SMBH while the primary member undergoes a supernova (SN) explosion, in order to study the impact of SN kicks on the orbits of stars and dark remnants in the GC. We find that SN explosions are efficient in scattering neutron stars and other light stars on new (mostly eccentric) orbits, while black holes (BHs) tend to retain memory of the orbit of their progenitor star. SN kicks are thus unable to eject BHs from the GC: a cusp of dark remnants may be lurking in the central parsec of our Galaxy.

  16. NMR insights on the properties of ZnCl2 molten salt hydrate medium through its interaction with SnCl4 and fructose

    DEFF Research Database (Denmark)

    Qiao, Yan; Pedersen, Christian Marcus; Wang, Yingxiong

    2014-01-01

    The solvent properties of ZnCl2 molten salt medium and its synergic effect with the Lewis acid catalyst, Sn4+, for biomass conversion, were investigated by nuclear magnetic resonance. The tautomeric distribution of fructose in the ZnCl2 molten salt medium was examined, and its effect for humins...... formation during the biomass conversion was evaluated. The ion complex composed by Sn4+ and Zn2+ indicated that there is a synergic catalytic effect between these two Lewis acid ions. 13C NMR spectra of fructose in different ZnCl2 molten salt hydrate concentrations revealed that the concentration of β...

  17. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    Science.gov (United States)

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.

  18. Imprints to the terrestrial environment at galactic arm crossings of the solar system

    Science.gov (United States)

    Fahr, H. J.; Fichtner, H.; Scherer, K.; Stawicki, O.

    At its itinerary through our milky way galaxy the solar system moves through highly variable interstellar environments. Due to its orbital revolution around the galactic center, the solar system also crosses periodically the spiral arms of our galactic plane and thereby expe riences pronounced enviromental changes. Gas densities, magnetic fields and galactic cosmic ray intensities are substantially higher there compared to interarm conditions. Here we present theoretical calculations describing the SN-averaged galactic cosmic ray spectrum for regions inside and outside of galactic arms which then allow to predict how periodic passages of the solar system through galactic arms should be reflected by enhanced particle irradiations of the earth`s atmosphere and by correlated terrestrial Be-10 production rates.

  19. Galactic Winds and the Role Played by Massive Stars

    Science.gov (United States)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  20. Effects of interlayer Sn-Sn lone pair interaction on the band gap of bulk and nanosheet SnO

    Science.gov (United States)

    Umezawa, Naoto; Zhou, Wei

    2015-03-01

    Effects of interlayer lone-pair interactions on the electronic structure of SnO are firstly explored by the density-functional theory. Our comprehensive study reveals that the band gap of SnO opens as increase in the interlayer Sn-Sn distance. The effect is rationalized by the character of band edges which consists of bonding and anti-bonding states from interlayer lone pair interactions. The band edges for several nanosheets and strained double-layer SnO are estimated. We conclude that the double-layer SnO is a promising material for visible-light driven photocatalyst for hydrogen evolution. This work is supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) program.

  1. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Science.gov (United States)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  2. Suppression of AGN-driven Turbulence by Magnetic Fields in a Magnetohydrodynamic Model of the Intracluster Medium

    Science.gov (United States)

    Bambic, Christopher J.; Morsony, Brian J.; Reynolds, Christopher S.

    2018-04-01

    We investigate the role of active galactic nucleus (AGN) feedback in turbulent heating of galaxy clusters. Specifically, we analyze the production of turbulence by g-modes generated by the supersonic expansion and buoyant rise of AGN-driven bubbles. Previous work that neglects magnetic fields has shown that this process is inefficient, with less than 1% of the injected energy ending up in turbulence. This inefficiency primarily arises because the bubbles are shredded apart by hydrodynamic instabilities before they can excite sufficiently strong g-modes. Using a plane-parallel model of the intracluster medium (ICM) and 3D ideal magnetohydrodynamics (MHD) simulations, we examine the role of a large-scale magnetic field that is able to drape around these rising bubbles, preserving them from hydrodynamic instabilities. We find that while magnetic draping appears better able to preserve AGN-driven bubbles, the driving of g-modes and the resulting production of turbulence is still inefficient. The magnetic tension force prevents g-modes from transitioning into the nonlinear regime, suppressing turbulence in our model ICM. Our work highlights the ways in which ideal MHD is an insufficient description for the cluster feedback process, and we discuss future work such as the inclusion of anisotropic viscosity as a means of simulating high β plasma kinetic effects. These results suggest the hypothesis that other mechanisms of heating the ICM plasma such as sound waves or cosmic rays may be responsible for the observed feedback in galaxy clusters.

  3. THE MORPHOLOGY AND DYNAMICS OF JET-DRIVEN SUPERNOVA REMNANTS: THE CASE OF W49B

    Energy Technology Data Exchange (ETDEWEB)

    González-Casanova, Diego F.; De Colle, Fabio [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70-543, 04510 D. F. (Mexico); Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lopez, Laura A. [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664H, Cambridge, MA 02139 (United States)

    2014-02-01

    The circumstellar medium (CSM) of a massive star is modified by its winds before a supernova (SN) explosion occurs, and thus the evolution of the resulting supernova remnant (SNR) is influenced by both the geometry of the explosion as well as the complex structure of the CSM. Motivated by recent work suggesting the SNR W49B was a jet-driven SN expanding in a complex CSM, we explore how the dynamics and the metal distributions in a jet-driven explosion are modified by the interaction with the surrounding environment. In particular, we perform hydrodynamical calculations to study the dynamics and explosive nucleosynthesis of a jet-driven SN triggered by the collapse of a 25 M {sub ☉} Wolf-Rayet star and its subsequent interaction with the CSM up to several hundred years following the explosion. We find that although the CSM has small-scale effects on the structure of the SNR, the overall morphology and abundance patterns are reflective of the initial asymmetry of the SN explosion. Thus, we predict that jet-driven SNRs, such as W49B, should be identifiable based on morphology and abundance patterns at ages up to several hundred years, even if they expand into a complex CSM environment.

  4. Simulation of the annihilation emission of galactic positrons

    International Nuclear Information System (INIS)

    Gillard, W.

    2008-01-01

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  5. Observation of galactic gamma radiation

    International Nuclear Information System (INIS)

    Paul, J.A.

    1982-09-01

    A complete and deep survey of the galactic high-energy gamma radiation is now available, thanks to the gamma-ray telescopes on board of the SAS-2 and COS-B spacecrafts. A comparison of the COS-B gamma-ray survey with a fully sampled CO survey together with an Hsub(I) survey is used to show that a simple model, in which uniformly distributed cosmic rays interact with the interstellar gas, can account for almost all the gamma-ray emission observed in the first galactic quadrant. At medium galactic latitudes, it is shown that a relationship exists between the gamma radiation and the interstellar absorption derived from galaxy counts. Therefore gamma rays from the local galactic environment can be used as a valuable probe of the content and structure of the local interstellar medium. The large scale features of the local interstellar gas are revealed, in particular wide concentrations of nearby molecular hydrogen. On a smaller scale, the detection of numerous localized gamma-ray sources focuses the attention on some particular phases of clusters of young and massive stars where diffuse processes of gamma-ray emission may also be at work

  6. DYNAMICALLY DRIVEN EVOLUTION OF THE INTERSTELLAR MEDIUM IN M51

    International Nuclear Information System (INIS)

    Koda, Jin; Scoville, Nick; Potts, Ashley E.; Carpenter, John M.; Corder, Stuartt A.; Patience, Jenny; Sargent, Anneila I.; Sawada, Tsuyoshi; La Vigne, Misty A.; Vogel, Stuart N.; White, Stephen M.; Zauderer, B. Ashley; Pound, Marc W.; Wright, Melvyn C. H.; Plambeck, Richard L.; Bock, Douglas C. J.; Hawkins, David; Hodges, Mark; Lamb, James W.; Kemball, Athol

    2009-01-01

    Massive star formation occurs in giant molecular clouds (GMCs); an understanding of the evolution of GMCs is a prerequisite to develop theories of star formation and galaxy evolution. We report the highest-fidelity observations of the grand-design spiral galaxy M51 in carbon monoxide (CO) emission, revealing the evolution of GMCs vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (giant molecular associations (GMAs)) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H 2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics-their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the interarm region and into the next spiral arm passage.

  7. Role of Turbulent Damping in Cosmic Ray Galactic Winds

    Science.gov (United States)

    Holguin, Francisco; Ruszkowski, Mateusz; Lazarian, Alex; Yang, H. Y. Karen

    2018-06-01

    Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, pushing and redistributing material throughout the interstellar medium (ISM) and galactic halo. A detailed understanding of the exact physical mechanisms responsible for these winds is lacking. Non-thermal feedback from galactic cosmic rays (CR), high-energy charged particles accelerated in supernovae and young stars, can impact the efficiency in accelerating the wind. In the self-confinement model, CR stream along magnetic field lines at the Alfven speed due to scattering off self-excited Aflv{é}n waves. However, magneto-hydrodynamic (MHD) turbulence stirred up by stellar feedback dissipates these confining waves, allowing CR to be super Aflvenic. Previous simulations relying on a simplified model of transport have shown that super-Alfv{é}nic streaming of CRs can launch a stronger wind. We perform three-dimensional MHD simulations of a section of a galactic disk, including CR streaming dependent on the local environment, using a realistic model of turbulent dissipation of Alfven waves presented in Lazarian (2016). In this implementation, the CR streaming speed can be super Alfv{é}nic depending on local conditions. We compare results for Alfv{é}nic and locally determined streaming, and find that gas/CR distributions and instantaneous mass loading factor of the wind are different depending on the level of turbulence.Lazarian, A. “Damping of Alfven waves by turbulence and its consequences: from cosmic-ray streaming to launching winds.” ApJ. Vol. 833, Num. 2. (2016).

  8. Are young supernova remnants interacting with circumstellar gas

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1982-01-01

    The young remnants of galactic Type I supernovae (SN 1006, SN 1572, and SN 1604) appear to be interacting with moderately dense gas (n/sub O/> or =0.1 cm -3 ). If the gas in the ambient interstellar medium, the observations suggest that gas of this density is fairly pervasive. If the gas is circumstellar, there are important implications for the progenitors of Type I supernovae. A plausible density distribution for circumstellar gas is rhoinfinityr -2 . The expansion of a supernova into such a medium is examined and is compared with expansion into a uniform medium. The two cases can be distinguished on the basis of their density profiles and their rates of expansion. Currently available data factor the hypothesis of expansion in a uniform medium for all three Type I remnants; the evidence is the strongest for SN 1572 and the weakest for SN 1604. Further X-ray and radio observations of the galactic remnants and of extragalactic Type I supernovae should serve to test this hypothesis

  9. A synoptic view of galactic processes

    Science.gov (United States)

    Stecker, F. W.

    1981-01-01

    The power of using synoptic galactic surveys in many wavelength bands in order to obtain a more complete picture and a better understanding of the dynamics of the interstellar medium and to study galactic structure and evolution on a large scale is discussed. The implications of the picture presented by mm wave CO, far infrared and X ray surveys of the Galaxy are emphasized.

  10. Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production.

    Science.gov (United States)

    Zhou, Chao; Zhao, Yufei; Bian, Tong; Shang, Lu; Yu, Huijun; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2013-10-28

    Hierarchical Sn2Nb2O7 hollow spheres were prepared for the first time via a facile hydrothermal route using bubbles generated in situ from the decomposition of urea as soft templates. The as-obtained hollow spheres with a large specific surface area of 58.3 m(2) g(-1) show improved visible-light-driven photocatalytic H2 production activity in lactic acid aqueous solutions, about 4 times higher than that of the bulk Sn2Nb2O7 sample prepared by a conventional high temperature solid state reaction method.

  11. ASAS-SN Discovery of a Possible Galactic Nova ASASSN-18ix

    Science.gov (United States)

    Stanek, K. Z.; Kochanek, C. S.; Shields, J. V.; Thompson, T. A.; Chomiuk, L.; Strader, J.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Dong, Subo; Stritzinger, M.

    2018-04-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from multiple ASAS-SN telescopes, we detect a new bright transient source, possibly a classical nova, but it might also be a young, large amplitude outburst of a cataclysmic variable Object RA (J2000) DEC (J2000) Gal l (deg) Gal b (deg) Disc.

  12. Positrons annihilation and the Galactic center

    International Nuclear Information System (INIS)

    Wallyn, Pierre

    1992-01-01

    The Galactic center has been observed in gamma rays, many times since more than two decades and we do not still have a full comprehensive picture of this region. It is fairly well established that the 511 keV annihilation line has two origins: a steady diffuse emission, which follows more or less the type I supernovae distribution along the Galactic plane and a variable emission coming from the positrons emitted by (at least) one compact object and annihilating in a nearby cold molecular cloud. We present here an analysis of the profiles and intensifies of the 511 keV annihilation line observed in the direction of the Galactic center. We find that a warm medium (temperature of 8000 K) can describe the annihilation of positrons from the diffuse component of the line. The high state observations of the 511 keV line can be explained if the time-variable component is coming from the annihilation of the positrons in a cold medium (temperature around 80 K). This constraint on the annihilation medium temperature supports the association with the molecular cloud G-0.86-0.08 in the direction of 1E1740.7-2942. On may 22, 1989, HEXAGONE detected a narrow 511 keV line and also a broad emission around 170 keV in the direction of the Galactic center. Two weeks before, EXITE observed in the same direction a new transient source EXS 1737.9-2952 which showed a bump around 102 keV. We propose a simple semi-quantitative model which can mimic the bumps as well as its time variations and emphasize the strong similarities between EXS1737.9-2952 and Nova Muscae. We study the behaviour of positron annihilation by charge exchange in the cold phase of the interstellar medium. We calculate formula for the slowing-down time before thermalization of positrons of a given initial energy, for different medium densities. Our scenario explains the lack of detection of the recombination lines from positronium and gives new constraints on their possible observation. (author) [fr

  13. Fluid-Driven Deformation of a Soft Porous Medium

    Science.gov (United States)

    Lutz, Tyler; Wilen, Larry; Wettlaufer, John

    2017-11-01

    Viscous drag forces resisting the flow of fluid through a soft porous medium are maintained by restoring forces associated with deformations in the solid matrix. We describe experimental measurements of the deformation of foam under a pressure-driven flow of water along a single axis. Image analysis techniques allow tracking of the foam displacement while pressure sensors allow measurement of the fluid pressure. Experiments are performed for a series of different pressure heads ranging from 10 to 90 psi, and the results are compared to theory. This work builds on previous measurements of the fluid-induced deformation of a bed of soft hydrogel spheres. Compared to the hydrogel system, foams have the advantage that the constituents of the porous medium do not rearrange during an experiment, but they have the disadvantage of having a high friction coefficient with any boundaries. We detail strategies to characterize and mitigate the effects of friction on the observed foam deformations.

  14. Planck 2015 results. XXVIII. The Planck Catalogue of Galactic Cold Clumps

    CERN Document Server

    Ade, P.A.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D.J.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J.P.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.

    2016-01-01

    We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and contained 915 high S/N sources. It is based on the Planck 48 months mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 545, 353 GHz) have been combined with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC so...

  15. Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, Zachary; Silk, Joseph [The Johns Hopkins University Department of Physics and Astronomy, Bloomberg Center for Physics and Astronomy, Room 366, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Gaibler, Volker [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-07-20

    To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2–3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-driven and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.

  16. Molecular cloud formation by gravitational instabilities in a clumpy interstellar medium

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1989-01-01

    A dispersion relation is derived for gravitational instabilities in a medium with cloud collisional cooling, using a time-dependent energy equation instead of the adiabatic equation of state. The instability extends to much smaller length scales than in the conventional Jeans analysis, and, in regions temporarily without cloud stirring, it has a large growth rate down to the cloud collision mean free path. These results suggests that gravitational instabilities in a variety of environments, such as galactic density wave shocks, swept-up shells, and extended, quiescent regions of the interstellar medium, can form molecular clouds with masses much less than the conventional Jeans mass, e.g., from 100 to 10 million solar masses for the ambient medium, and they can do this even when the unperturbed velocity dispersion remains high. Similar processes operating inside existing clouds might promote gravitationally driven fragmentation. 29 refs

  17. Magnetic braking in galactic flows

    International Nuclear Information System (INIS)

    Sparke, L.S.

    1982-01-01

    The nuclear fireworks of active galaxies are believed to derive their power from the kinetic energy of gas falling onto a massive central objects; mass shed from evolving galactic stars is an obvious source of fuel for this process. But this ejected material shares the galactic rotation, and a centrifugal barrier will prevent it from reaching the nucleus, if its angular momentum is not removed. This paper shows that, if the large-scale galactic magnetic field has a strong enough radial component, magnetic torques can act to spin down the infalling matter. Rotation of the interstellar gas induces a toroidal magnetic field, and Maxwell stresses remove angular momentum from the flow; gas can then fall inward to the galactic center. In this way, the monster in the nucleus can be fed on gas from a galaxy's own stars. The magnetic fields in M87 and NGC 1275, giant elliptical galaxies which are accreting from an intracluster medium, appear to be strong enough to allow magnetic braking

  18. Cloud-particle galactic gas dynamics and star formation

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.

    1983-01-01

    Galactic gas dynamics, spiral structure, and star formation are discussed in the context of N-body computational studies based on a cloud-particle model of the interstellar medium. On the small scale, the interstellar medium appears to be cloud-dominated and supernova-perturbed. The cloud-particle model simulates cloud-cloud collisions, the formation of stellar associations, and supernova explosions as dominant local processes. On the large scale in response to a spiral galactic gravitational field, global density waves and galactic shocks develop with large-scale characteristics similar to those found in continuum gas dynamical studies. Both the system of gas clouds and the system of young stellar associations forming from the clouds share in the global spiral structure. However, with the attributes of neither assuming a continuum of gas (as in continuum gas dynamical studies) nor requiring a prescribed equation of state such as the isothermal condition so often employed, the cloud-particle picture retains much of the detail lost in earlier work: namely, the small-scale features and structures so important in understanding the local, turbulent state of the interstellar medium as well as the degree of raggedness often observed superposed on global spiral structure. (Auth.)

  19. How supernovae launch galactic winds?

    Science.gov (United States)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  20. Ethanol electro-oxidation in alkaline medium using Pd/MWCNT and PdAuSn/MWCNT electrocatalysts prepared by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Andrade e Silva, Leonardo Gondin de; Spinace, Estevam Vitorio; Oliveira Neto, Almir, E-mail: drinager@ig.com.br, E-mail: dfsilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Santos, Mauro Coelho dos [Universidade Federal do ABC (LEMN/CCNH/UFABC), Santo Andre, SP (Brazil)

    2015-07-01

    Environmental problems and the world growing demand for energy has mobilized the scientific community in finding of clean and renewable energy sources. In this context, fuel cells appear as appropriate technology for generating electricity through alcohols electro-oxidation. Multi Wall Carbon Nanotubes (MWCNT)-supported Pd and trimetallic PdAuSn (Pd:Au:Sn 50:10:40 atomic ratio) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by VC, Chronoamperometry, EDX, TEM and XRD. The catalytic activities of electrocatalysts toward ethanol electro-oxidation were evaluated in alkaline medium in a single alkaline direct ethanol fuel cell (ADEFC) in a range temperature 60 to 90 deg C. The best performances were obtained at 85 deg C: 33 mW.cm{sup -2} and 31 mW.cm{sup -2} for Pd/ MWCNT and PdAuSn/MWCNT electrocatalysts, respectively. X-ray diffractograms of electrocatalysts showed the presence of Pd-rich (fcc) and Au-rich (fcc) phases. Cyclic voltammetry and chronoamperometry experiments showed that PdAuSn/MWCNT electrocatalyst demonstrated similar activity toward ethanol electro-oxidation at room temperature, compared to electrocatalyst Pd/MWCNT. (author)

  1. Ethanol electro-oxidation in alkaline medium using Pd/MWCNT and PdAuSn/MWCNT electrocatalysts prepared by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Andrade e Silva, Leonardo Gondin de; Spinace, Estevam Vitorio; Oliveira Neto, Almir; Santos, Mauro Coelho dos

    2015-01-01

    Environmental problems and the world growing demand for energy has mobilized the scientific community in finding of clean and renewable energy sources. In this context, fuel cells appear as appropriate technology for generating electricity through alcohols electro-oxidation. Multi Wall Carbon Nanotubes (MWCNT)-supported Pd and trimetallic PdAuSn (Pd:Au:Sn 50:10:40 atomic ratio) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by VC, Chronoamperometry, EDX, TEM and XRD. The catalytic activities of electrocatalysts toward ethanol electro-oxidation were evaluated in alkaline medium in a single alkaline direct ethanol fuel cell (ADEFC) in a range temperature 60 to 90 deg C. The best performances were obtained at 85 deg C: 33 mW.cm -2 and 31 mW.cm -2 for Pd/ MWCNT and PdAuSn/MWCNT electrocatalysts, respectively. X-ray diffractograms of electrocatalysts showed the presence of Pd-rich (fcc) and Au-rich (fcc) phases. Cyclic voltammetry and chronoamperometry experiments showed that PdAuSn/MWCNT electrocatalyst demonstrated similar activity toward ethanol electro-oxidation at room temperature, compared to electrocatalyst Pd/MWCNT. (author)

  2. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    Science.gov (United States)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  3. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A. Y.; Umemura, M. [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  4. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    International Nuclear Information System (INIS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  5. Physics, SN1987A, and the next nearby supernova

    International Nuclear Information System (INIS)

    Burrows, A.

    1989-01-01

    The scientific community has extracted quite a bit of information from SN1987A, some of it enduring. I will summarize what I believe we learned, what we did not learn, and what we can learn about supernovae, neutrinos, and particle physics when the next galactic supernova explodes onto the news

  6. Fluid-sensitive nanoscale switching with quantum levitation controlled by α -Sn/β -Sn phase transition

    Science.gov (United States)

    Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas

    2018-03-01

    We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α -Sn to metallic β -Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α -Sn and β -Sn , giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening liquid mixture. In this way, one may be able to produce phase-transition-controlled quantum levitation in a liquid medium.

  7. The Metallicity Gradient of the Old Galactic Bulge Population

    Science.gov (United States)

    Sans Fuentes, Sara Alejandra; De Ridder, Joris

    Understanding the structure, formation and evolution of the Galactic Bulge requires the proper determination of spatial metallicity gradients in both the radial and vertical directions. RR Lyrae pulsators, known to be excellent distance indicators, may hold the key to determining these gradients. Jurcsik and Kovacs (A&A 312:111, 1996) has shown that RR Lyrae light curves and the phase difference of their Fourier decomposition, ϕ 31, can be used to estimate photometric metallicities. The existence of galactic bulge metallicity gradients is a currently debated topic that would help pinpoint the Galaxy's formation and evolution. A recent study of the OGLE-III Galactic Bulge RR Lyrae Population by Pietrukowicz et al. (ApJ 750:169, 2012) suggests that the spatial distribution is uniform. We investigate how small a gradient would be detectable within the current S/N levels of the present data set, given the random and systematic errors associated with the derivation of a photometric metallicity versus spatial position relationship.

  8. Planck early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo

    Science.gov (United States)

    Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Blagrave, K.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Joncas, G.; Jones, A.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; Lockman, F. J.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pinheiro Gonçalves, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800 deg2 at high Galactic latitude. The main goal of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average Hi column density lower than 2 × 1020 cm-2 is well correlated with 21-cm emission because in such diffuse areas the hydrogen is predominantly in the neutral atomic phase. The residual emission in these fields, once the Hi-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. The brighter fields in our sample, with an average Hi column density greater than 2 × 1020 cm-2, show significant excess dust emission compared to the Hi column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. In the higher Hi column density fields the excess emission at 857 GHz is about 40% of that coming from the Hi, but over all the high latitude fields surveyed the molecular mass faction is about 10%. Dust emission from IVCs is detected with high significance by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T ~ 20K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected

  9. Low-frequency observations of Galactic supernova remnants and the distribution of low-density ionized gas in the interstellar medium

    International Nuclear Information System (INIS)

    Kassim, N.E.

    1989-01-01

    New long-wavelength observations of Galactic SNRs at 30.9 and 57.5 MHz are used to derive detailed low-frequency radio spectra for 32 SNRs. Of these, about two-thirds show turnovers at low frequencies, implying the presence of a widespread, but inhomogeneous, ionized absorbing medium along the lines of sight. These observations are combined with other low-frequency data to derive free-free optical depths toward 457 SNRs and to constrain the physical properties of the ionized gas responsible for the absorption. These optical depths are consistent with the expected absorbing properties of extended H II region envelopes. 43 refs

  10. On the metallicity distribution of classical Cepheids in the Galactic inner disk

    NARCIS (Netherlands)

    Genovali, K.; Lemasle, B.; Bono, G.; Romaniello, M.; Primas, F.; Fabrizio, M.; Buonanno, R.; François, P.; Inno, L.; Laney, C.D.; Matsunaga, N.; Pedicelli, S.; Thévenin, F.

    2013-01-01

    We present homogeneous and accurate iron abundances for almost four dozen (47) of Galactic Cepheids using high-spectral resolution (R ~ 40 000) high signal-to-noise ratio (S/N ≥ 100) optical spectra collected with UVES at VLT. A significant fraction of the sample (32) is located in the inner disk

  11. Supernova models with slow energy pumping and galactic supernova remnants

    International Nuclear Information System (INIS)

    Utrobin, V.P.

    1978-01-01

    The study of supernova (SN) models with slow energy pumping is continued. At maximum luminosity the main characteristics of a SN are shown to be independent of the initial structure of the model. However, they depend on the mass Msub(e) of the envelope, and on the intensity of energy pumping Lsub(epsilon), with an increase of Msub(e) leading qualitatively to the same changes in the SN parameters as a decrease in Lsub(epsilon). A simple relationship connecting the important SN parameters is obtained. From the inflection of the color index B-V curve, the possibility of deriving the characteristic time of energy pumping with intensity Lsub(epsilon) approximately 10 44 erg s -1 is pointed out. The comparison of the extragalactic type I SN observations with the results of calculations leads to the estimate of Msub(e) approximately 0.3-0.7 solar masses. An investigation of the galactic type I SN remnants is carried out. The estimate of Msub(e) approximately 0.2-0.3 solar masses is obtained for the remnants of supernovae SN 1006, SN 1572, and SN 1604. It completely fits the results for the extragalactic type I SNs. The total initial mass of SN 1604 presupernova was shown to be at least about 7 solar masses. It was established that the Crab nebula resulted from the outburst of a peculiar SN. The unique properties of such SNs, including SN 1054, are due to the low intensity of energy pumping (Lsub(epsilon) approximately 10 42 erg s -1 ). The mass of the envelope of the Crab nebula is evaluated to be Msub(e) approximately 0.7 solar masses. (Auth.)

  12. Molecular diagnostics of Galactic star-formation regions

    Science.gov (United States)

    Loenen, Edo; Baan, Willem; Spaans, Marco

    2007-10-01

    We propose a sensitive spectral survey of Galactic star-formation regions. Using the broadband correlator at two different frequencies, we expect to detect the (1-0) transition of CO, CN, HNC, HCN, HCO+, and HCO and various of their isotopes lines, as well as the (12-11) and (10-9) transitions of HC3N. The purpose of these observations is to create a consistent (public) database of molecular emission from galactic star-formation regions. The data will be interpreted using extensive physical and chemical modeling of the whole ensemble of lines, in order to get an accurate description of the molecular environment of these regions. In particular, this diagnostic approach will describe the optical depths, the densities, and the radiation fields in the medium and will allow the establishment of dominant temperature gradients. These observations are part of a program to study molecular emission on all scales, going from individual Galactic star-formation regions, through resolved nearby galaxies, to unresolved extra-galactic emission.

  13. Spiral waves in driven dusty plasma medium: Generalized hydrodynamic fluid description

    Science.gov (United States)

    Kumar, Sandeep; Patel, Bhavesh; Das, Amita

    2018-04-01

    Spiral waves are observed in many natural phenomena. They have been extensively represented by the mathematical FitzHugh-Nagumo model [Barkley et al., Phys. Rev. A 42, 2489 (1990)] of excitable media. Also, in incompressible fluid simulations, the excitation of thermal spiral waves has been reported by Li et al. [Phys. of Fluids 22, 011701 (2010)]. In the present paper, the spatiotemporal development of spiral waves in the context of weak and strong coupling limits has been shown. While the weakly coupled medium has been represented by a simple fluid description, for strong coupling, a generalized visco-elastic fluid description has been employed. The medium has been driven by an external force in the form of a rotating electric field. It is shown that when the amplitude of force is small, the density perturbations in the medium are also small. In this case, the excitations do not develop as a spiral wave. Only when the amplitude of force is high so as to drive the density perturbations to nonlinear amplitudes does the spiral density wave formation occurs. The role of the forcing frequency and the effect of strong coupling and the sound velocity of medium in the formation and evolution of spiral waves have been investigated in detail.

  14. Well-crystalline porous ZnO-SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material.

    Science.gov (United States)

    Lamba, Randeep; Umar, Ahmad; Mehta, S K; Kansal, Sushil Kumar

    2015-01-01

    This work demonstrates the synthesis and characterization of porous ZnO-SnO2 nanosheets prepared by the simple and facile hydrothermal method at low-temperature. The prepared nanosheets were characterized by several techniques which revealed the well-crystallinity, porous and well-defined nanosheet morphology for the prepared material. The synthesized porous ZnO-SnO2 nanosheets were used as an efficient photocatalyst for the photocatalytic degradation of highly hazardous dye, i.e., direct blue 15 (DB 15), under visible-light irradiation. The excellent photocatalytic degradation of prepared material towards DB 15 dye could be ascribed to the formation of ZnO-SnO2 heterojunction which effectively separates the photogenerated electron-hole pairs and possess high surface area. Further, the prepared porous ZnO-SnO2 nanosheets were utilized to fabricate a robust chemical sensor to detect 4-nitrophenol in aqueous medium. The fabricated sensor exhibited extremely high sensitivity of ~ 1285.76 µA/mmol L(-1)cm(-2) and an experimental detection limit of 0.078 mmol L(-1) with a linear dynamic range of 0.078-1.25 mmol L(-1). The obtained results confirmed that the prepared porous ZnO-SnO2 nanosheets are potential material for the removal of organic pollutants under visible light irradiation and efficient chemical sensing applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Transport of gas from disk to halo in starforming galaxies

    Directory of Open Access Journals (Sweden)

    Shevchenko Mikhail G.

    2017-12-01

    Full Text Available Using 3-D gas dynamic simulations, we study the supernova (SNe driven transport of gas from the galactic disk. We assume that SNe are distributed randomly and uniformly in the galactic plane and we consider sufficiently high volume SNe rates that are typical for starforming galaxies: νSN = (0.3 − 3 × 10−11 pc−3 yr−1. We found that under such conditions, a major part of gas locked initially in the galactic disk is transported up to ∼ 1 − 5 stellar scale heights within several millions years. As expected gas transport is more efficient in the case of a thinner stellar disk. An decrease/increase of SN rate in the galactic disk with the same stellar scale height leads to an enlarging/shortening of time scale for gas transport. Independent of SN rate, the major fraction of the swept up gas is in the cold phase (T 106 K is elevated to larger heights than cold gas.

  16. New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J.A.B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A.F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.; Gaggero, D.; Grasso, D.

    2017-01-01

    The flux of very high-energy neutrinos produced in our Galaxy by the interaction of accelerated cosmic rays with the interstellar medium is not yet determined. The characterization of this flux will shed light on Galactic accelerator features, gas distribution morphology and Galactic cosmic ray

  17. Relations between the galactic evolution and the stellar evolution

    International Nuclear Information System (INIS)

    Audouze, J.

    1984-01-01

    After a quick definition of the galactic evolution and a summary of the basic ingredients (namely the abundances of the chemical elements observed in different astrophysical sites), the parameters directly related to the stellar evolution which govern the galactic evolution are outlined. They are the rates of star formation, the initial mass functions and the various nucleosynthetic yields. The 'classical' models of chemical evolution of galaxies are then briefly recalled. Finally, attention is drawn to three recent contributions concerning both the galactic evolution and the stellar evolution. They are (i) some prediction of the rate of star formation for low mass stars made from the planetary nebula abundance distribution (ii) the chemical evolution of C, O and Fe and (iii) the chemical evolution of the galactic interstellar medium. (Auth.)

  18. Line-driven disk winds in active galactic nuclei: The critical importance of ionization and radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Higginbottom, Nick; Knigge, Christian; Matthews, James H. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Proga, Daniel [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154-4002 (United States); Long, Knox S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sim, Stuart A., E-mail: nick_higginbottom@fastmail.fm [School of Mathematics and Physics, Queens University Belfast, University Road, Belfast, BT7 1NN (United Kingdom)

    2014-07-01

    Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga and Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.

  19. The origin of X-ray protrusions in the VELA supernova remnant

    Science.gov (United States)

    Gvaramadze, V. V.

    We propose a possible explanation for the formation of X-ray protrusions in the Vela SNR, recently observed by the ROSAT X-ray telescope (Aschenbach, Egger & Trumper, 1995, Nature, 373, 587). We suggest that the highly asymmetric shape of the Vela SNR is the result of the interaction of the SN ejecta/shock with the pre-existing wind-driven shell blown-up in a medium with a density gradient (perpendicular to the Galactic plane). The interaction of the radiative (north-east) half of the remnant, approaching towards the Galactic plane, with dense obstacles (cloudlets or wind zones of stars) can produce X-ray "bullets" radially moving beyond the SNR boundary. These "bullets" originate due to the cooling and condensation of a gas swept-up by converging conical shocks arising behind the dense obstacles overtaken by the SN shock. The X-ray protrusions observed in the western part of the remnant might be explained by outflows of hot gas of the SNR's interior emanating through the gaps in the shell. The origin of the X-ray "jet" (Markwardt & Ogelman, 1995, Nature, 375, 40) in the central part of the Vela SNR is also discussed.

  20. Syntheses, structural variants and characterization of AInM′S4 (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS4 and KInSnS4 compounds

    International Nuclear Information System (INIS)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru

    2016-01-01

    Ten AInM′S 4 (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS 4 (1-β), RbInGeS 4 (2), CsInGeS 4 (3-β), TlInGeS 4 (4-β), RbInSnS 4 (8-β) and CsInSnS 4 (9) compounds with three-dimensional BaGa 2 S 4 structure and CsInGeS 4 (3-α) and TlInGeS 4 (4-α) compounds with a layered TlInSiS 4 structure have tetrahedral [InM′S 4 ] − frameworks. On the other hand, LiInSnS 4 (5) with spinel structure and NaInSnS 4 (6), KInSnS 4 (7), RbInSnS 4 (8-α) and TlInSnS 4 (10) compounds with layered structure have octahedral [InM′S 4 ] − frameworks. NaInSnS 4 (6) and KInSnS 4 (7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS 4 and KInSnS 4 compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S 4 compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS 4 and KInSnS 4 compounds undergo facile topotactic ion-exchange at room temperature.

  1. Multimolecular studies of Galactic star-forming regions

    NARCIS (Netherlands)

    Baan, W. A.; Loenen, A. F.; Spaans, M.

    2014-01-01

    Molecular emission-line observations of isolated Galactic star-forming regions are used to model the physical properties of the molecular interstellar medium in these systems. Observed line ratios are compared with the results predicted by models that incorporate gas-phase chemistry and the heating

  2. Positrons from supernova and the origin of the galactic-center positron-annihilation radiation

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1983-01-01

    The emission of positrons from supernova ejecta is dicussed in terms of the galactic-center annihilation radiation. The positrons from the radioactive sequences 56 Ni→ 56 Co→ 56 Fe are the most numerous source from supernova. Only type I supernova will allow a significant fraction to escape the expanding ejecta. For a neutron star model of a type I SN a fraction 4 x 10 -3 of the escaped positron is enough to create the observed several year fluctuation of the annihilation radiation. The likelihood of this model is discussed in terms of other astrophysical evidence as well as the type I SN light curve

  3. Planck intermediate results: XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap

    DEFF Research Database (Denmark)

    Aghanim, N.; Alves, M. I R; Arzoumanian, D.

    2016-01-01

    Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < −60°). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the...

  4. Simulation of the annihilation emission of galactic positrons; Modelisation de l'emission d'annihilation des positrons Galactiques

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, W

    2008-01-15

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  5. Capillary-driven flow in a fracture located in a porous medium

    International Nuclear Information System (INIS)

    Martinez, M.J.

    1988-09-01

    Capillary-driven immiscible displacement of air by water along an isolated fracture located in a permeable medium is induced by an abrupt change in water saturation at the fracture inlet. The fracture is idealized as either a smooth slot with permeable walls or a high-permeability later. The penetration distance of moisture in the fracture permeability ratio and length scales for the problem. The models are applied to materials representative of the Yucca Mountain region of the Nevada Test Site. Fracture moisture-penetration histories are predicted for several units in Yucca Mountain and for representative fracture apertures. 18 refs., 20 figs., 6 tabs

  6. One-Pot Synthesis of Cu2ZnSnSe4 Nanoplates and their Visible-Light-Driven Photocatalytic Activity

    Science.gov (United States)

    Han, Zhenzhen; Li, Nan; Shi, Aihua; Wang, Haohua; Ma, Feng; Lv, Yi; Wu, Rongqian

    2018-01-01

    A SeO2 ethanol solution as the facile precursor has been used for the preparation of quaternary Cu2ZnSnSe4 (CZTSe) nanoplates. Monodispersed single-phase CZTSe nanoplates have been prepared successfully by a facile one-pot thermal chemical method. The as-prepared CZTSe nanoplates show uniform morphology with a bandgap of 1.4 eV. As a proof of concept, the CZTSe nanoplates have been used as a visible-light-driven photocatalyst for Rhodamine B dye degradation and show high photocatalytic activity and stability. The excellent dye removal is mainly ascribed to the efficient light utilization of CZTSe nanoplates.

  7. Interstellar Matters: Neutral Hydrogen and the Galactic Magnetic Field

    Science.gov (United States)

    Verschuur, Gerrit; Schmelz, Joan T.; Asgari-Targhi asgari-Targhi, M.

    2018-01-01

    The physics of the interstellar medium was revolutionized by the observations of the Galactic Arecibo L-Band Feed Array (GALFA) HI survey done at the Arecibo Observatory. The high-resolution, high-sensitivity, high-dynamic- range images show complex, tangled, extended filaments, and reveal that the fabric of the neutral interstellar medium is deeply tied to the structure of the ambient magnetic field. This discovery prompts an obvious question – how exactly is the interstellar {\\it neutral} hydrogen being affected by the galactic magnetic field? We look into this question by examining a set of GALFA-HI data in great detail. We have chosen a long, straight filament in the southern galactic sky. This structure is both close by and isolated in velocity space. Gaussian analysis of profiles both along and across the filament reveal internal structure – braided strands that can be traced through the simplest part, but become tangled in more complex segments. These braids do not resemble in any way the old spherical HI clouds and rudimentary pressure balance models that were used to explain the pre-GALFA- HI interstellar medium. It is clear that these structures are created, constrained, and dominated by magnetic fields. Like many subfields of astronomy before it, e.g., physics of the solar coronal, extragalactic radio jets, and pulsar environment, scientists are confronted with observations that simply cannot be explained by simple hydrodynamics and are forced to consider magneto-hydrodynamics.

  8. Gamma-ray astronomy in the medium energy (10-50 MeV) range

    International Nuclear Information System (INIS)

    Kniffen, D.A.; Bertsch, D.L.; Palmeira, R.A.R.; Rao, K.R.

    1977-01-01

    Gamma-ray astronomy in the medium energy (10-50 MeV) range can provide unique information with which to study many astrophysical problems. Observations in the 10-50 MeV range provide the cleanest window with which to view the isotropic diffuse component of the radiation and to study the possible cosmological implications of the spectrum. For the study of compact sources, this is the important region between the X-ray sky and the vastly different γ-ray sky seen by SAS-2 and COS-B. To understand the implications of medium energy γ-ray astronomy to the study of the galactic diffuse γ-radiation, the model developed to explain the high energy γ-ray observations of SAS-2 is extended to the medium energy range. This work illustrates the importance of medium energy γ-ray astronomy for studying the electromagnetic component of the galactic cosmic rays. To observe the medium energy component of the intense galactic center γ-ray emission, two balloon flights of a medium energy γ-ray spark chamber telescope were flown in Brazil in 1975. These results indicate the emission is higher than previously thought and above the predictions of the theoretical model

  9. SN 2006oz

    DEFF Research Database (Denmark)

    Leloudas, Georgios; Chatzopoulos, E.; Dilday, B.

    2012-01-01

    to contribute to a better understanding of these objects by studying SN 2006oz, a newly-recognized member of this class. Methods. We present multi-color light curves of SN 2006oz from the SDSS-II SN Survey that cover its rise time, as well as an optical spectrum that shows that the explosion occurred at z ~ 0.......376. We fitted black-body functions to estimate the temperature and radius evolution of the photosphere and used the parametrized code SYNOW to model the spectrum. We constructed a bolometric light curve and compared it with explosion models. In addition, we conducted a deep search for the host galaxy...... to a recombination wave in a circumstellar medium (CSM) and discuss whether this is a common property of all similar explosions. The subsequent rise can be equally well described by input from a magnetar or by ejecta-CSM interaction, but the models are not well constrained owing to the lack of post...

  10. Galactic winds and the hubble sequence

    International Nuclear Information System (INIS)

    Bregman, J.N.

    1978-01-01

    The conditions for maintenance of supernova-driven galactic winds have been investigated to assess their role in the morphology of disk-bulge galaxies. A fluid mechanical model with gas and stars which includes galactic rotation has been used to investigate several classes of winds. It is found that many galaxies, once their initial gas is depleted, can maintain a wind throughout the entire galaxy, a conditon most easily satisfied by systems with a small bulge-to-disk ratio. If the ratio of supernova heating to total mass loss falls below a critical value that depends on galaxy type and mass, only a partial wind exterior to a critical surface can exist, with infall occurring at interior points. Galaxies in which only the bulge was depleted of gas may support a bulge wind that does not interact with the colder and denser gas in the disk.These results indicate that if SO galaxies are a transition class between elliptical and spiral galaxies, it is probably because early galactic winds, which may initially deplete a galaxy of gas, are more prevalent in SO than in spiral galaxies. However, if SO's form a parallel sequence with spirals, the initial gas-depletion mechanism must be independent of bulge-to-disk ratio. These results are not strongly influenced by altering the galactic mass model, including electron conduction in the flow equations, or adding massive halos

  11. Syntheses, structural variants and characterization of AInM′S{sub 4} (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS{sub 4} and KInSnS{sub 4} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2016-06-15

    Ten AInM′S{sub 4} (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS{sub 4}(1-β), RbInGeS{sub 4}(2), CsInGeS{sub 4}(3-β), TlInGeS{sub 4}(4-β), RbInSnS{sub 4}(8-β) and CsInSnS{sub 4}(9) compounds with three-dimensional BaGa{sub 2}S{sub 4} structure and CsInGeS{sub 4}(3-α) and TlInGeS{sub 4}(4-α) compounds with a layered TlInSiS{sub 4} structure have tetrahedral [InM′S{sub 4}]{sup −} frameworks. On the other hand, LiInSnS{sub 4}(5) with spinel structure and NaInSnS{sub 4}(6), KInSnS{sub 4}(7), RbInSnS{sub 4}(8-α) and TlInSnS{sub 4}(10) compounds with layered structure have octahedral [InM′S{sub 4}]{sup −} frameworks. NaInSnS{sub 4}(6) and KInSnS{sub 4}(7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S{sub 4} compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo facile topotactic ion-exchange at room temperature.

  12. Lipase-catalyzed acidolysis of canola oil with caprylic acid to produce medium-, long- and medium-chain-type structured lipids

    DEFF Research Database (Denmark)

    Wang, Yingyao; Xia, Luan; Xu, Xuebing

    2012-01-01

    Lipase-catalyzed acidolysis of canola oil with caprylic acid was performed to produce structured lipids (SLs) containing medium-chain fatty acid (M) at position sn-1,3 and long-chain fatty acid (L) at the sn-2 position in a solvent-free system. Six commercial lipases from different sources were...

  13. Simulation of the annihilation emission of galactic positrons; Modelisation de l'emission d'annihilation des positrons Galactiques

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, W

    2008-01-15

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  14. Radio pulsars and transients in the Galactic center

    International Nuclear Information System (INIS)

    Lazio, Joseph; Deneva, J S; Bower, Geoffrey C; Cordes, J M; Hyman, Scott D; Backer, D C; Bhat, R; Chatterjee, S; Demorest, P; Ransom, S M; Vlemmings, W

    2006-01-01

    Radio pulsars and transients provide powerful probes of the star formation history, interstellar medium, and gravitational potential of the Galactic center. Historical radio observations of the Galactic center have not emphasized the time domain aspect of observing this region. We summarize a series of recent searches for and observations of radio transients and pulsars that make use of two advances in technology. The first is the formation of large fields of view (∼> 1 0 ) at relatively longer wavelengths (λ > 1 m), and the second is the construction of receivers and instruments capable of collecting data on microsecond time scales at relatively short wavelengths (∼ 3 cm)

  15. Impact of Cosmic-Ray Transport on Galactic Winds

    Science.gov (United States)

    Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.

    2018-04-01

    The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.

  16. Electrochemical energy storage behavior of Sn/SnO2 double phase nanocomposite anodes produced on the multiwalled carbon nanotube buckypapers for lithium-ion batteries

    Science.gov (United States)

    Alaf, Mirac; Akbulut, Hatem

    2014-02-01

    Recent development of electrode materials for Li-ion batteries is driven mainly by hybrid nanocomposite structures consisting of Li storage compounds and CNTs. In this study, tin/tinoxide (Sn/SnO2) films and tin/tinoxide/multi walled carbon nanotube (Sn/SnO2/MWCNT) nanocomposites are produced by a two steps process; thermal evaporation and subsequent plasma oxidation as anode materials for Li-ion batteries. The physical, structural, and electrochemical behaviors of the nanocomposite electrodes containing MWCNTs are discussed. The ratio between metallic tin (Sn) and tinoxide (SnO2) is controlled with plasma oxidation time and effects of the ratio are investigated on the structural and electrochemical properties. The greatly enhanced electrochemical performance is mainly due to the morphological stability and reduced diffusion resistance, which are induced by MWCNT core and deposited Sn/SnO2 double phase shell. The outstanding long-term cycling stability is a result of the two layers Sn and SnO2 phases on MWCNTs. The nanoscale Sn/SnO2/MWCNT network provides good electrical conductivity, and the creation of open spaces that buffer a large volume change during the Li-alloying/de-alloying reaction.

  17. Selective deuteration for molecular insights into the digestion of medium chain triglycerides.

    Science.gov (United States)

    Salentinig, Stefan; Yepuri, Nageshwar Rao; Hawley, Adrian; Boyd, Ben J; Gilbert, Elliot; Darwish, Tamim A

    2015-09-01

    Medium chain triglycerides (MCTs) are a unique form of dietary fat that have a wide range of health benefits. They are molecules with a glycerol backbone esterified with medium chain (6-12 carbon atoms) fatty acids on the two outer (sn-1 and sn-3) and the middle (sn-2) positions. During lipid digestion in the gastrointestinal tract, pancreatic lipase stereoselectively hydrolyses the ester bonds of these triglycerides on the sn-1 and sn-3 positions resulting in sn-2 monoglyceride and fatty acids as major products. However, the sn-2 monoglycerides are thermodynamically less stable than their sn-1/3 counterparts. Isomerization or fatty acid migration from the sn-2 monoglyceride to sn-1/3 monoglyceride may occur spontaneously and would lead to glycerol and fatty acid as final products. Here, tricaprin (C10) with selectively deuterated fatty acid chains was used for the first time to monitor chain migration and the stereoselectivity of the pancreatic lipase-catalyzed hydrolysis of ester bonds. The intermediate and final digestion products were studied using NMR and mass spectrometry under biologically relevant conditions. The hydrolysis of the sn-2 monocaprin to glycerol and capric acid did not occur within biologically relevant timescales and fatty acid migration occurs only in limited amounts as a result of the presence of undigested diglyceride species over long periods of time in the digestion medium. The slow kinetics for the exchange of the sn-2 fatty acid chain and the stereoselectivity of pancreatic lipase on MCTs is relevant for industrial processes that involve enzymatic interesterification and the production of high-value products such as specific structured triacylglycerols, confectionery fats and nutritional products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Investigations on the structures of sup(99m)Tc and 113Sn pyrophosphate complexes and of sup(99m)Tc and 113Sn ethane hydroxy diphosphate complexes

    International Nuclear Information System (INIS)

    Hohloch, M.

    1980-01-01

    The complex formation of double labelling of bivalent 113 Sn and reduced, quadrovalent sup(99m)Tc with pyrophosphate (PPi) or ethane hydroxy diphosphorate (EHDP) has been investigated by means of in vivo distribution in the rat. The molar rates of sup(99m)Tc and 113 Sn to PPi resp. EHDP, as well as the pH-value and the initial concentration is varied. Furthermore, both elements were oxidized with H 2 O 2 in the alkaline medium. Four typical sup(99m)Tc and two typical 113 Sn in-vivo distribution patterns can be differentiated: 1. Pertechnetate, characterized by a strong enrichment in the stomach, forms when all Sn-II has been oxidized to Sn-IV in the preparation. 2. One bone-seeking 113 Sn-II PPi (EHDP) complex and a sup(99m)Tc-IV PPi (EHDP) complex each, which are formed at least equimolar ratio of Sn to PPi (EHDP) and suffiently high concentration of PPi (EHDP) in the physiological pH-value. 3. A non-bone-seeking sup(99m)Tc-IV compound, which is enriched in the kidneys instead, is formed in the weakly alkaline medium or at low PPi (EHDP) concentration. This is probably monomeric technetium dioxide dihydrate. 4. A sup(99m)Tc as well as a Sn colloid is formed at deficient ligand concentration (PPi or EHDP to Sn). The chemical composition of the complexes is discussed the possible reaction courses are illustrated in the following diagrams. (orig./MG) [de

  19. Is the intercloud medium pervasive

    International Nuclear Information System (INIS)

    Heiles, C.

    1980-01-01

    We consider the pervasiveness of the ''not strongly absorbing'' (NSA) H I gas, which is the intercloud medium in steady state theories of the interstellar medium. We study the question by analyzing wide emission components in nearby gas, and the absence of absorption components in distant gas. We conclude that the NSA material is deficient in the immediately local solar vicinity. In nearby regions it contains 38% of the interstellar H I; it is generally pervasive and often has internal motions which greatly increase its velocity dispersion above the 5 km s -1 minimum value. It contains large holes, perhaps ranging up to 400 pc diameter, which probably occupy 10--20% of the volume. In distant regions the NSA material seems to be pervasive outside 8 kpc galactic radius. For galactic radii between 8 and 10 kpc its thickness agrees with previous determinations of 370 pc for nearby regions. Outside 10 kpc the thickness increases dramatically. Inside 8 kpc there are no data

  20. The development of 126Sn separation procedure by means of TBP resin

    International Nuclear Information System (INIS)

    Andris, Boris; Bena, Jozef

    2016-01-01

    Separation possibilities of 126 Sn with a new extraction-chromatographic material TBP Resin were studied. Suitable conditions for tin separation were determined in hydrochloric acid medium. 126 Sn was concentrated on TBP resin from 6 mol L -1 HCl and was eluted with 0.1 mol L -1 HCl. A purification step to remove 137 Cs with AMP-PAN column was necessary to obtain sufficiently purified samples which were directly measured with gamma spectrometry for 126 Sn activity. Separation of 126 Sn from a raw sludge sample was done according to proposed procedure, 126 Sn was detected and its activity was determined. (author)

  1. Isospin transport in 84Kr+112,124Sn reactions at Fermi energies

    Directory of Open Access Journals (Sweden)

    Piantelli S.

    2014-03-01

    Full Text Available Isospin transport phenomena in dissipative heavy ion collisions have been investigated at Fermi energies with a beam of 84Kr at 35AMeV. A comparison of the 〈N〉/Z of light and medium products forward-emitted in the centre of mass frame when the beam impinges on two different targets, the n-poor 112Sn and the n-rich 124Sn, is presented. Data were collected by means of a three-layer telescope with very good performances in terms of mass identification (full isotopic resolution up to Z ~ 20 for ions punching through the first detector layer built by the FAZIA Collaboration and located just beyond the grazing angle for both reactions. The 〈N〉/Z of the products detected when the n-rich target is used is always higher than that associated to the n-poor one; since the detector was able to measure only fragments coming from the QuasiProjectile decay and/or neck emission, the observed behaviour can be ascribed to the isospin diffusion process, driven by the isospin gradient between QuasiProjectile and QuasiTarget. Moreover, for light fragments the 〈N〉/Z as a function of the lab velocity of the fragment is observed to increase when we move from the QuasiProjectile velocity to the centre of mass (neck zone. This effect can be interpreted as an evidence of isospin drift driven by the density gradient between the QuasiProjectile zone (at normal density and the more diluted neck zone.

  2. Can Winds Driven by Active Galactic Nuclei Account for the Extragalactic Gamma-Ray and Neutrino Backgrounds?

    Science.gov (United States)

    Liu, Ruo-Yu; Murase, Kohta; Inoue, Susumu; Ge, Chong; Wang, Xiang-Yu

    2018-05-01

    Various observations are revealing the widespread occurrence of fast and powerful winds in active galactic nuclei (AGNs) that are distinct from relativistic jets, likely launched from accretion disks and interacting strongly with the gas of their host galaxies. During the interaction, strong shocks are expected to form that can accelerate nonthermal particles to high energies. Such winds have been suggested to be responsible for a large fraction of the observed extragalactic gamma-ray background (EGB) and the diffuse neutrino background, via the decay of neutral and charged pions generated in inelastic pp collisions between protons accelerated by the forward shock and the ambient gas. However, previous studies did not properly account for processes such as adiabatic losses that may reduce the gamma-ray and neutrino fluxes significantly. We evaluate the production of gamma rays and neutrinos by AGN-driven winds in detail by modeling their hydrodynamic and thermal evolution, including the effects of their two-temperature structure. We find that they can only account for less than ∼30% of the EGB flux, as otherwise the model would violate the independent upper limit derived from the diffuse isotropic gamma-ray background. If the neutrino spectral index is steep with Γ ≳ 2.2, a severe tension with the isotropic gamma-ray background would arise as long as the winds contribute more than 20% of the IceCube neutrino flux in the 10–100 TeV range. At energies ≳ 100 TeV, we find that the IceCube neutrino flux may still be accountable by AGN-driven winds if the spectral index is as small as Γ ∼ 2.0–2.1.

  3. Chemical Evolution and the Galactic Habitable Zone of M31

    NARCIS (Netherlands)

    Carigi, Leticia; Garcia-Rojas, Jorge; Meneses-Goytia, Sofia

    2013-01-01

    We have computed the Galactic Habitable Zones (GHZs) of the Andromeda galaxy (M31) based on the probability of terrestrial planet formation, which depends on the metallicity (Z) of the interstellar medium, and the number of stars formed per unit surface area. The GHZ was obtained from a chemical

  4. Positron Transport and Annihilation in the Galactic Bulge

    Directory of Open Access Journals (Sweden)

    Fiona Helen Panther

    2018-03-01

    Full Text Available The annihilation of positrons in the Milky Way Galaxy has been observed for ∼50 years; however, the production sites of these positrons remains hard to identify. The observed morphology of positron annihilation gamma-rays provides information on the annihilation sites of these Galactic positrons. It is understood that the positrons responsible for the annihilation signal originate at MeV energies. The majority of sources of MeV positrons occupy the star-forming thin disk of the Milky Way. If positrons propagate far from their sources, we must develop accurate models of positron propagation through all interstellar medium (ISM phases in order to reveal the currently uncertain origin of these Galactic positrons. On the other hand, if positrons annihilate close to their sources, an alternative source of MeV positrons with a distribution that matches the annihilation morphology must be identified. In this work, I discuss the various models that have been developed to understand the origin of the 511 keV line from the direction of the Galactic bulge, and the propagation of positrons in the ISM.

  5. Galactic structure

    International Nuclear Information System (INIS)

    1989-01-01

    The occurrence of hot, apparently normal, massive stars far from the galactic plane has been a major puzzle in an understanding of galactic structure and evolution. Such stars have been discovered and studied at the South African Astronomical Observatory (SAAO) over a number of years. During 1989 further evidence has been obtained indicating that these stars are normal, massive objects. Other studies of galactic structure conducted by the SAAO have included research on: the central bulge region of our galaxy; populations of M giants in the galaxy; a faint blue object survey; a survey of the galactic plane for distant Cepheid variables; interstellar reddening, and K-type dwarfs as tracers for the gravitational force perpendicular to the galactic plane. 1 fig

  6. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    Science.gov (United States)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  7. Constraining Magnetic Field Amplification in SN Shocks Using Radio Observations of SNe 2011fe and 2014J

    Science.gov (United States)

    Kundu, E.; Lundqvist, P.; Pérez-Torres, M. A.; Herrero-Illana, R.; Alberdi, A.

    2017-06-01

    We modeled the radio non-detection of two Type Ia supernovae (SNe), SN 2011fe and SN 2014J, considering synchrotron emission from the interaction between SN ejecta and the circumstellar medium. For ejecta whose outer parts have a power-law density structure, we compare synchrotron emission with radio observations. Assuming that 20% of the bulk shock energy is being shared equally between electrons and magnetic fields, we found a very low-density medium around both the SNe. A less tenuous medium with particle density ˜1 cm-3, which could be expected around both SNe, can be estimated when the magnetic field amplification is less than that presumed for energy equipartition. This conclusion also holds if the progenitor of SN 2014J was a rigidly rotating white dwarf (WD) with a main-sequence (MS) or red giant companion. For a He star companion, or a MS for SN 2014J, with 10% and 1% of bulk kinetic energy in magnetic fields, we obtain mass-loss rates of 99% onto the WD, but is less restricted for the latter case. However, if the tenuous medium is due to a recurrent nova, it is difficult from our model to predict synchrotron luminosities. Although the formation channels of SNe 2011fe and 2014J are not clear, the null detection in radio wavelengths could point toward a low amplification efficiency for magnetic fields in SN shocks.

  8. Plasma Diagnostics of the Interstellar Medium with Radio Astronomy

    OpenAIRE

    Haverkorn, Marijke; Spangler, Steven R.

    2013-01-01

    We discuss the degree to which radio propagation measurements diagnose conditions in the ionized gas of the interstellar medium (ISM). The "signal generators" of the radio waves of interest are extragalactic radio sources (quasars and radio galaxies), as well as Galactic sources, primarily pulsars. The polarized synchrotron radiation of the Galactic non-thermal radiation also serves to probe the ISM, including space between the emitting regions and the solar system. Radio propagation measurem...

  9. Electric field gradient studies in SnSe

    Energy Technology Data Exchange (ETDEWEB)

    Pal, G. [IUC, DAE Facilities (India); Sebastian, K.C. [M.S. University, Physics Department (India); Chintalapudi, S.N. [IUC, DAE Facilities (India); Somayajulu, D.R.S. [M.S. University, Physics Department (India)

    1999-09-15

    The EFG in IV-VI compound semiconductor SnSe was studied using two hyperfine interaction techniques, namely, TDPAC and Moessbauer spectroscopy. The EFG in this material increases sharply up to 300 K and thereafter at higher temperatures it gets saturated. However, the conductivity increases steadily at all the temperatures. The conductivity curve has two slopes. The first portion is due to the population of shallow Cd acceptor levels. Thus, in SnSe also the variation of the EFG with temperature is complex, as in other medium-gap semiconductors.

  10. Electric field gradient studies in SnSe

    International Nuclear Information System (INIS)

    Pal, G.; Sebastian, K.C.; Chintalapudi, S.N.; Somayajulu, D.R.S.

    1999-01-01

    The EFG in IV-VI compound semiconductor SnSe was studied using two hyperfine interaction techniques, namely, TDPAC and Moessbauer spectroscopy. The EFG in this material increases sharply up to 300 K and thereafter at higher temperatures it gets saturated. However, the conductivity increases steadily at all the temperatures. The conductivity curve has two slopes. The first portion is due to the population of shallow Cd acceptor levels. Thus, in SnSe also the variation of the EFG with temperature is complex, as in other medium-gap semiconductors

  11. The Origin and Evolution of the Infrared Light Curve of SN2010jl

    Science.gov (United States)

    Dwek, Eli; Sarangi, Arkaprabha; Arendt, Richard; Fox, Ori; Kallman, Timothy; Kazanas, Demosthenes

    2018-01-01

    SN2010jl is a luminous core-collapse supernova (CCSN) of Type IIn that is surrounded by a dense circumstellar medium (CSM). The supernova (SN) luminosity vastly exceeds the available power from radiactive elements in the ejecta, and is powered by the interaction of the SN shock wave with the ambient medium. Upper limits on the UV and near-IR (NIR) emission from pre-explosion images of the region suggest that any progenitor star was hidden by pre-existing CSM dust. After day ~80, the SN spectrum shows the development of an IR excess above the extrapolated UVO emission arising from the shocked CSM. This IR component is attributed to thermal emission from dust.After day ~300, the light curve exhibits a rise in the NIR luminosity, concurrent with a steep decline at UVO wavelengths. Ruling out any possible contribution of SN-condensed dust to the IR light curve, we show that the early IR emission arises from the pre-existing CSM dust that survived the flash of radiation from the shock breakout. The late IR emission arises from newly-formed CSM dust that condensed in the cooling dust-free postshock gas of the advancing SN shock wave. Our analysis presents the first detailed modeling of dust formation in a cooling postshock environment, and provides important insights into the interaction of the SN shock wave with the CSM.

  12. Galactic radio astronomy

    CERN Document Server

    Sofue, Yoshiaki

    2017-01-01

    This book is a concise primer on galactic radio astronomy for undergraduate and graduate students, and provides wide coverage of galactic astronomy and astrophysics such as the physics of interstellar matter and the dynamics and structure of the Milky Way Galaxy and galaxies. Radio astronomy and its technological development have led to significant progress in galactic astronomy and contributed to understanding interstellar matter and galactic structures. The book begins with the fundamental physics of radio-wave radiation, i.e., black body radiation, thermal emission, synchrotron radiation, and HI and molecular line emissions. The author then gives overviews of ingredients of galactic physics, including interstellar matter such as the neutral (HI), molecular hydrogen, and ionized gases, as well as magnetic fields in galaxies. In addition, more advanced topics relevant to the Galaxy and galaxies are also contained here: star formation, supernova remnants, the Galactic Center and black holes, galactic dynamics...

  13. Fatigue Life Estimation of Medium-Carbon Steel with Different Surface Roughness

    Directory of Open Access Journals (Sweden)

    Changyou Li

    2017-03-01

    Full Text Available Medium-carbon steel is commonly used for the rail, wire ropes, tire cord, cold heading, forging steels, cold finished steel bars, machinable steel and so on. Its fatigue behavior analysis and fatigue life estimation play an important role in the machinery industry. In this paper, the estimation of fatigue life of medium-carbon steel with different surface roughness using established S-N and P-S-N curves is presented. To estimate the fatigue life, the effect of the average surface roughness on the fatigue life of medium-carbon steel has been investigated using 75 fatigue tests in three groups with average surface roughness (Ra: 0.4 μm, 0.8 μm, and 1.6 μm, respectively. S-N curves and P-S-N curves have been established based on the fatigue tests. The fatigue life of medium-carbon steel is then estimated based on Tanaka-Mura crack initiation life model, the crack propagation life model using Paris law, and material constants of the S-N curves. Six more fatigue tests have been conducted to validate the presented fatigue life estimation formulation. The experimental results have shown that the presented model could estimate well the mean fatigue life of medium-carbon steel with different surface roughness.

  14. Transition from galactic to extra-galactic cosmic rays

    International Nuclear Information System (INIS)

    Aloisio, Roberto

    2006-01-01

    In this paper we review the main features of the observed Cosmic Rays spectrum in the energy range 10 17 eV to 10 20 eV. We present a theoretical model that explains the main observed features of the spectrum, namely the second Knee and Dip, and implies a transition from Galactic to Extra-Galactic cosmic rays at energy E ≅ 10 18 eV, with a proton dominated Extra-Galactic spectrum

  15. Galactic and extragalactic hydrogen in the X-ray spectra of Gamma Ray Bursts

    Science.gov (United States)

    Rácz, I. I.; Bagoly, Z.; Tóth, L. V.; Balázs, L. G.; Horváth, I.; Pintér, S.

    2017-07-01

    Two types of emission can be observed from gamma-ray bursts (GRBs): the prompt emission from the central engine which can be observed in gamma or X-ray (as a low energy tail) and the afterglow from the environment in X-ray and at shorter frequencies. We examined the Swift XRT spectra with the XSPEC software. The correct estimation of the galactic interstellar medium is very important because we observe the host emission together with the galactic hydrogen absorption. We found that the estimated intrinsic hydrogen column density and the X-ray flux depend heavily on the redshift and the galactic foreground hydrogen. We also found that the initial parameters of the iteration and the cosmological parameters did not have much effect on the fitting result.

  16. Galactic foreground science: Faraday Tomography at low frequencies

    Science.gov (United States)

    Haverkorn, Marijke

    2018-05-01

    This contribution describes how low-frequency radio-spectropolarimetric imaging as done for Epoch of Reionization detection is used to investigate the nearby Galactic interstellar medium. The method of Faraday Tomography allows disentangling of every line of sight into various components in Faraday depth, which is a proxy for density-weighted magnetic field. I discuss instrumental biases and side effects of this method, and early results it has yielded.

  17. Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits

    International Nuclear Information System (INIS)

    Boettinger, W.J.; Johnson, C.E.; Bendersky, L.A.; Moon, K.-W.; Williams, M.E.; Stafford, G.R.

    2005-01-01

    High purity bright Sn, Sn-Cu and Sn-Pb layers, 3, 7 and 16 μm thick were electrodeposited on phosphor bronze cantilever beams in a rotating disk apparatus. Beam deflection measurements within 15 min of plating proved that all electrodeposits had in-plane compressive stress. In several days, the surfaces of the Sn-Cu deposits, which have the highest compressive stress, develop 50 μm contorted hillocks and 200 μm whiskers, pure Sn deposits develop 20 μm compact conical hillocks, and Sn-Pb deposits, which have the lowest compressive stress, remain unchanged. The differences between the initial compressive stresses for each alloy and pure Sn is due to the rapid precipitation of Cu 6 Sn 5 or Pb particles, respectively, within supersaturated Sn grains produced by electrodeposition. Over longer time, analysis of beam deflection measurements indicates that the compressive stress is augmented by the formation of Cu 6 Sn 5 on the bronze/Sn interface, while creep of the electrodeposit tends to decrease the compressive stress. Uniform creep occurs for Sn-Pb because it has an equi-axed grain structure. Localized creep in the form of hillocks and whiskers occurs for Sn and Sn-Cu because both have columnar structures. Compact hillocks form for the Sn deposits because the columnar grain boundaries are mobile. Contorted hillocks and whiskers form for the Sn-Cu deposits because the columnar grain boundary motion is impeded

  18. Ionized Absorbers as Evidence for Supernova-driven Cooling of the Lower Galactic Corona

    NARCIS (Netherlands)

    Fraternali, Filippo; Marasco, Antonino; Marinacci, Federico; Binney, James

    2013-01-01

    We show that the ultraviolet absorption features, newly discovered in Hubble Space Telescope spectra, are consistent with being formed in a layer that extends a few kpc above the disk of the Milky Way. In this interface between the disk and the Galactic corona, high-metallicity gas ejected from the

  19. Enhancement of Feedback Efficiency by Active Galactic Nucleus Outflows via the Magnetic Tension Force in the Inhomogeneous Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, Yuta; Ohsuga, Ken [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Nomura, Mariko, E-mail: asahina@cfca.jp [Keio University, Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522 (Japan)

    2017-05-01

    By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tension force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.

  20. Enhancement of Feedback Efficiency by Active Galactic Nucleus Outflows via the Magnetic Tension Force in the Inhomogeneous Interstellar Medium

    International Nuclear Information System (INIS)

    Asahina, Yuta; Ohsuga, Ken; Nomura, Mariko

    2017-01-01

    By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tension force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.

  1. Observing the Next Galactic Supernova with the NOvA Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vasel, Justin A. [Indiana U.; Sheshukov, Andrey [Dubna, JINR; Habig, Alec [Minnesota U., Duluth

    2017-10-02

    The next galactic core-collapse supernova will deliver a wealth of neutrinos which for the first time we are well-situated to measure. These explosions produce neutrinos with energies between 10 and 100 MeV over a period of tens of seconds. Galactic supernovae are relatively rare events, occurring with a frequency of just a few per century. It is therefore essential that all neutrino detectors capable of detecting these neutrinos are ready to trigger on this signal when it occurs. This poster describes a data-driven trigger which is designed to detect the neutrino signal from a galactic core-collapse supernova with the NOvA detectors. The trigger analyzes 5ms blocks of detector activity and applies background rejection algorithms to detect the signal time structure over the background. This background reduction is an essential part of the process, as the NOvA detectors are designed to detect neutrinos from Fermilab's NuMI beam which have an average energy of 2GeV--well above the average energy of supernova neutrinos.

  2. A general protocol for the synthesis of Pt-Sn/C catalysts for the ethanol electrooxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.; Lee, Z.Y.; Cheng, C.H.; Lee, J.Y. [Chemical and Biomolecular Engineering, National University of Singapore (Singapore); Chia, Z.W. [NUS Graduate School for Integrative Sciences and Engineering (NGS), Centre for Life Sciences (CeLS), Singapore (Singapore); Liu, Z.L. [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore)

    2012-08-15

    A general protocol for the synthesis of Pt-Sn/C catalysts for ethanol electrooxidation by the polyol method is developed after a systematic variation of the preparation variables. This protocol enables the complete transfer of all catalytic elements in the preparation solution to the catalyst support; thereby providing a convenient means of catalyst composition control. Water is a necessary co-solvent for ethylene glycol in the polyol synthesis of Pt-Sn/C catalysts. The best preparation medium for controlling the particle size to small sizes is 0.1 M NaOH solution in a mixture of equal volumes of water and ethylene glycol. With this medium composition Pt-Sn/C catalysts with the optimized target Pt:Sn atomic ratio of 3:1 could be expeditiously prepared for ethanol electrooxidation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Glycerol electro-oxidation in alkaline medium using Pd/C and PdSn/C electrocatalysts prepared by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleao; Silva, Dionisio Fortunato da; Pino, Eddy Segura; Spinace, Estevan Vitorio; Oliveira Neto, Almir; Linardi, Marcelo; Santos, Mauro Coelhos dos

    2013-01-01

    Carbon-supported metal nanoparticles were prepared for fuel cell applications by radiation-induced reduction of metal ions precursors. Pd/C and PdSn/C electrocatalysts (Pd:Sn atomic ratio 90:10), prepared by using electron beam irradiation, were tested for glycerol electro-oxidation in single alkaline direct glycerol fuel cell (ADGFC). EDX analysis showed that the Pd:Sn atomic ratio is very similar to the nominal one. X-ray diffractograms of PdSn/C electrocatalyst showed the presence of Pd (fcc) phase. Cyclic voltammetry (CV) indicated that Pd/C and PdSn/C electrocatalysts have good activity for glycerol electro-oxidation, at room temperature. Experiments with single ADGFC were carried out from 60 to 90 deg C, using Pd/C and PdSn/C electrocatalysts and glycerol 2.0 mol.L -1 , as fuel. The best performance was obtained at 85 deg C, for both electrocatalysts. The Pd/C and PdSn/C electrocatalysts showed similar performance (34 mW cm -2 ), at 85 deg C. (author)

  4. Shape Engineering Driven by Selective Growth of SnO2 on Doped Ga2O3 Nanowires.

    Science.gov (United States)

    Alonso-Orts, Manuel; Sánchez, Ana M; Hindmarsh, Steven A; López, Iñaki; Nogales, Emilio; Piqueras, Javier; Méndez, Bianchi

    2017-01-11

    Tailoring the shape of complex nanostructures requires control of the growth process. In this work, we report on the selective growth of nanostructured tin oxide on gallium oxide nanowires leading to the formation of SnO 2 /Ga 2 O 3 complex nanostructures. Ga 2 O 3 nanowires decorated with either crossing SnO 2 nanowires or SnO 2 particles have been obtained in a single step treatment by thermal evaporation. The reason for this dual behavior is related to the growth direction of trunk Ga 2 O 3 nanowires. Ga 2 O 3 nanowires grown along the [001] direction favor the formation of crossing SnO 2 nanowires. Alternatively, SnO 2 forms rhombohedral particles on [110] Ga 2 O 3 nanowires leading to skewer-like structures. These complex oxide structures were grown by a catalyst-free vapor-solid process. When pure Ga and tin oxide were used as source materials and compacted powders of Ga 2 O 3 acted as substrates, [110] Ga 2 O 3 nanowires grow preferentially. High-resolution transmission electron microscopy analysis reveals epitaxial relationship lattice matching between the Ga 2 O 3 axis and SnO 2 particles, forming skewer-like structures. The addition of chromium oxide to the source materials modifies the growth direction of the trunk Ga 2 O 3 nanowires, growing along the [001], with crossing SnO 2 wires. The SnO 2 /Ga 2 O 3 junctions does not meet the lattice matching condition, forming a grain boundary. The electronic and optical properties have been studied by XPS and CL with high spatial resolution, enabling us to get both local chemical and electronic information on the surface in both type of structures. The results will allow tuning optical and electronic properties of oxide complex nanostructures locally as a function of the orientation. In particular, we report a dependence of the visible CL emission of SnO 2 on its particular shape. Orange emission dominates in SnO 2 /Ga 2 O 3 crossing wires while green-blue emission is observed in SnO 2 particles attached to Ga 2

  5. Phase diagram Fe-Sn-Sr. New experimental results

    International Nuclear Information System (INIS)

    Nieva, N; Jimenez, M.J; Gomez, A; Corvalan Moya, C; Arias, D

    2012-01-01

    Zr-based alloys are widely used in nuclear industry due to their specific characteristics. The information of the phase diagrams of the ternary system Fe-Zr-Sn is scarce. In this work we investigate, in a experimental way, the central and the Fe-Sn binary adjacent regions of the Fe-Sn-Zr Gibbs triangle at the temperature of 800 o C. For the experimental work, a set of seven ternary alloys was designed, produced and examined by different complementary techniques. There were performed two types of heat treatments: one of medium and another of long duration. We present a new proposal for the 800 o C isothermal section. The boundaries of the identified phases and the fields of one, two and three phases are indicated in the diagram

  6. High-energy radiation from collisions of high-velocity clouds and the Galactic disc

    Science.gov (United States)

    del Valle, Maria V.; Müller, A. L.; Romero, G. E.

    2018-04-01

    High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.

  7. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes.

    Science.gov (United States)

    Park, Ah-Ram; Park, Cheol-Min

    2017-06-27

    A cubic crystal-structured Sn-based compound, SnTe, was easily synthesized using a solid-state synthetic process to produce a better rechargeable battery, and its possible application as a Sn-based high-capacity anode material for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was investigated. The electrochemically driven phase change mechanisms of the SnTe electrodes during Li and Na insertion/extraction were thoroughly examined utilizing various ex situ analytical techniques. During Li insertion, SnTe was converted to Li 4.25 Sn and Li 2 Te; meanwhile, during Na insertion, SnTe experienced a sequential topotactic transition to Na x SnTe (x ≤ 1.5) and conversion to Na 3.75 Sn and Na 2 Te, which recombined into the original SnTe phase after full Li and Na extraction. The distinctive phase change mechanisms provided remarkable electrochemical Li- and Na-ion storage performances, such as large reversible capacities with high Coulombic efficiencies and stable cyclabilities with fast C-rate characteristics, by preparing amorphous-C-decorated nanostructured SnTe-based composites. Therefore, SnTe, with its interesting phase change mechanisms, will be a promising alternative for the oncoming generation of anode materials for LIBs and NIBs.

  8. The Incredibly Long-Lived SN 2005ip

    Science.gov (United States)

    Fox, Ori

    2016-10-01

    Type IIn supernovae (SNe IIn) are defined by their relatively narrow spectral line features associated with a dense circumstellar medium (CSM) formed by the progenitor star. The nature of the progenitor and mass loss remains relatively unknown. Shock interaction with the dense CSM can often result in significant UV emission for several years post-explosion, thereby probing the CSM characteristics, progenitor mass loss history and, ultimately, the progenitor itself. The Type IIn SN 2005ip proves to be one of the most interesting and well-studied targets within this subclass. Compared to all other supernovae, SN 2005ip is the most luminous for its age. Now more than 11 years post-explosion, the SN has released >10^51 erg throughout its lifetime as the forward shock continues to collide with a dense CSM. Here we propose HST/STIS-MAMA UV observations of SN 2005ip to investigate the massive CSM. When accounting for the shock travel time, these observations will probe material lost from the progenitor more than 1000 years prior to the explosion. We already have a single HST/STIS spectrum of SN 2005ip from 2014, which was obtained while the shock was still within a higher mass regime. With just 5 orbits, a second spectrum will allow us to directly trace the evolution of the CSM and produce new constraints on the pre-SN mass-loss history. Coinciding with Cycle 24's UV Initiative, this program offers new insight regarding both the progenitor and explosion characteristics of the SN IIn subclass.

  9. Galactic dynamics

    CERN Document Server

    Binney, James

    2008-01-01

    Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers. Every part of the book has been thoroughly overhauled, and many section

  10. The Optical-Mid-infrared Extinction Law of the l = 165° Sightline in the Galactic Plane: Diversity of the Extinction Law in the Diffuse Interstellar Medium

    Science.gov (United States)

    Wang, Shu; Jiang, B. W.; Zhao, He; Chen, Xiaodian; de Grijs, Richard

    2017-10-01

    Understanding the effects of dust extinction is important to properly interpret observations. The optical total-to-selective extinction ratio, {R}V={A}V/E(B-V), is widely used to describe extinction variations in ultraviolet and optical bands. Since the {R}V=3.1 extinction curve adequately represents the average extinction law of diffuse regions in the Milky Way, it is commonly used to correct observational measurements along sightlines toward diffuse regions in the interstellar medium. However, the {R}V value may vary even along different diffuse interstellar medium sightlines. In this paper, we investigate the optical-mid-infrared (mid-IR) extinction law toward a very diffuse region at l=165^\\circ in the Galactic plane, which was selected based on a CO emission map. Adopting red clump stars as extinction tracers, we determine the optical-mid-IR extinction law for our diffuse region in two APASS bands (B,V), three XSTPS-GAC bands (g,r,I), three 2MASS bands (J,H,{K}s), and two WISE bands (W1,W2). Specifically, 18 red clump stars were selected from the APOGEE-RC catalog based on spectroscopic data in order to explore the diversity of the extinction law. We find that the optical extinction curves exhibit appreciable diversity. The corresponding {R}V ranges from 1.7 to 3.8, while the mean {R}V value of 2.8 is consistent with the widely adopted average value of 3.1 for Galactic diffuse clouds. There is no apparent correlation between {R}V value and color excess E(B-V) in the range of interest, from 0.2 to 0.6 mag, or with specific visual extinction per kiloparsec, {A}V/d.

  11. Modeling for Stellar Feedback in Galaxy Formation Simulations

    Science.gov (United States)

    Núñez, Alejandro; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Hu, Chia-Yu; Choi, Ena

    2017-02-01

    Various heuristic approaches to model unresolved supernova (SN) feedback in galaxy formation simulations exist to reproduce the formation of spiral galaxies and the overall inefficient conversion of gas into stars. Some models, however, require resolution-dependent scalings. We present a subresolution model representing the three major phases of supernova blast wave evolution—free expansion, energy-conserving Sedov-Taylor, and momentum-conserving snowplow—with energy scalings adopted from high-resolution interstellar-medium simulations in both uniform and multiphase media. We allow for the effects of significantly enhanced SN remnant propagation in a multiphase medium with the cooling radius scaling with the hot volume fraction, {f}{hot}, as {(1-{f}{hot})}-4/5. We also include winds from young massive stars and AGB stars, Strömgren sphere gas heating by massive stars, and a mechanism that limits gas cooling that is driven by radiative recombination of dense H II regions. We present initial tests for isolated Milky Way-like systems simulated with the Gadget-based code SPHgal with improved SPH prescription. Compared to pure thermal SN input, the model significantly suppresses star formation at early epochs, with star formation extended both in time and space in better accord with observations. Compared to models with pure thermal SN feedback, the age at which half the stellar mass is assembled increases by a factor of 2.4, and the mass-loading parameter and gas outflow rate from the galactic disk increase by a factor of 2. Simulation results are converged for a variation of two orders of magnitude in particle mass in the range (1.3-130) × 104 solar masses.

  12. Figuring Out Gas and Galaxies in Enzo (FOGGIE): Simulating effects of feedback on galactic outflows

    Science.gov (United States)

    Morris, Melissa Elizabeth; Corlies, Lauren; Peeples, Molly; Tumlinson, Jason; O'Shea, Brian; Smith, Britton

    2018-01-01

    The circumgalactic medium (CGM) is the region beyond the galactic disk in which gas is accreted through pristine inflows from the intergalactic medium and expelled from the galaxy by stellar feedback in large outflows that can then be recycled back onto the disk. These gas cycles connect the galactic disk with its cosmic environment, making the CGM a vital component of galaxy evolution. However, the CGM is primarily observed in absorption, which can be difficult to interpret. In this study, we use high resolution cosmological hydrodynamic simulations of a Milky Way mass halo evolved with the code Enzo to aid the interpretation of these observations. In our simulations, we vary feedback strength and observe the effect it has on galactic outflows and the evolution of the galaxy’s CGM. We compare the star formation rate of the galaxy with the velocity flux and mass outflow rate as a function of height above the plane of the galaxy in order to measure the strength of the outflows and how far they extend outside of the galaxy.This work was supported by The Space Astronomy Summer Program at STScI and NSF grant AST-1517908.

  13. Toward Measuring Galactic Dense Molecular Gas Properties and 3D Distribution with Hi-GAL

    Science.gov (United States)

    Zetterlund, Erika; Glenn, Jason; Maloney, Phil

    2016-01-01

    The Herschel Space Observatory's submillimeter dust continuum survey Hi-GAL provides a powerful new dataset for characterizing the structure of the dense interstellar medium of the Milky Way. Hi-GAL observed a 2° wide strip covering the entire 360° of the Galactic plane in broad bands centered at 70, 160, 250, 350, and 500 μm, with angular resolution ranging from 10 to 40 arcseconds. We are adapting a molecular cloud clump-finding algorithm and a distance probability density function distance-determination method developed for the Bolocam Galactic Plane Survey (BGPS) to the Hi-GAL data. Using these methods we expect to generate a database of 105 cloud clumps, derive distance information for roughly half the clumps, and derive precise distances for approximately 20% of them. With five-color photometry and distances, we will measure the cloud clump properties, such as luminosities, physical sizes, and masses, and construct a three-dimensional map of the Milky Way's dense molecular gas distribution.The cloud clump properties and the dense gas distribution will provide critical ground truths for comparison to theoretical models of molecular cloud structure formation and galaxy evolution models that seek to emulate spiral galaxies. For example, such models cannot resolve star formation and use prescriptive recipes, such as converting a fixed fraction of interstellar gas to stars at a specified interstellar medium density threshold. The models should be compared to observed dense molecular gas properties and galactic distributions.As a pilot survey to refine the clump-finding and distance measurement algorithms developed for BGPS, we have identified molecular cloud clumps in six 2° × 2° patches of the Galactic plane, including one in the inner Galaxy along the line of sight through the Molecular Ring and the termination of the Galactic bar and one toward the outer Galaxy. Distances have been derived for the inner Galaxy clumps and compared to Bolocam Galactic Plane

  14. The Zone of Avoidance as an X-ray absorber - the role of the galactic foreground modelling Swift XRT spectra

    Science.gov (United States)

    Racz, I. I.; Bagoly, Z.; Tóth, L. V.; Balázs, L. G.; Horvath, I.; Zahorecz, S.

    2018-05-01

    Gamma-ray bursts (GRBs) are the most powerful explosive events in the Universe. The prompt gamma emission is followed by an X-ray afterglow that is also detected for over nine hundred GRBs by the Swift BAT and XRT detectors. The X-ray afterglow spectrum bears essential information about the burst, and the surrounding interstellar medium (ISM). Since the radiation travels through the line of sight intergalactic medium and the ISM in the Milky Way, the observed emission is influenced by extragalactic and galactic components. The column density of the Galactic foreground ranges several orders of magnitudes, due to both the large scale distribution of ISM and its small scale structures. We examined the effect of local HI column density on the penetrating X-ray emission, as the first step towards a precise modeling of the measured X-ray spectra. We fitted the X-ray spectra using the Xspec software, and checked how the shape of the initially power low spectrum changes with varying input Galactic HI column density. The total absorbing HI column is a sum of the intrinsic and Galactic component. We also investigated the model results for the intrinsic component varying the Galactic foreground. We found that such variations may alter the intrinsic hydrogen column density up to twenty-five percent. We will briefly discuss its consequences.

  15. The Galactic magnetic fields

    International Nuclear Information System (INIS)

    Han Jinlin

    2006-01-01

    A good progress has been made on studies of Galactic magnetic fields in last 10 years. I describe what we want to know about the Galactic magnetic fields, and then review we current knowledge about magnetic fields in the Galactic disk, the Galactic halo and the field strengths. I also listed many unsolved problems on this area

  16. ISO-SWS spectrophotometry of galactic Wolf-Rayet stars: preliminary results.

    NARCIS (Netherlands)

    van der Hucht, K. A.; Morris, P. W.; Williams, P. M.; Setia Gunawan, D. Y. A.; Beintema, D. A.; Boxhoorn, D. R.; de Graauw, T.; Heras, A.; Kester, D. J. M.; Lahuis, F.; Leech, K. J.; Roelfsema, P. R.; Salama, A.; Valentijn, E. A.; Vandenbussche, B.

    1996-01-01

    ISO-SWS spectra of seven late-type galactic Wolf-Rayet stars are discussed. A high resolution spectrum (2.3-29.6μm, λ/{DELTA}λ=~820-1700) of the WC8 star WR11 (γ^2^ Vel) is shown and its Ne abundance is discussed. Medium resolution spectra (λ/{DELTA}λ=~250-600) of the WC8-9 stars WR48a, WR98a,

  17. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  18. Gamma rays from the interstellar medium

    International Nuclear Information System (INIS)

    Bloemen, J.B.G.M.

    1985-01-01

    This thesis describes new gamma-ray views on cosmic rays and the interstellar medium. The author describes the COS-B data base and the pre-launch and in-flight calibration data used for all analyses. Diffuse galactic gamma radiation (> 50 MeV) may be either a result of cosmic-ray-matter interactions, or of the cosmic-ray electrons with the interstellar radiation field (mainly at optical and infrared wavelengths), through the inverse-Compton process. A detailed comparison between the gamma-ray observations of the large complex of interstellar clouds in Orion and Monoceros and the CO and HI surveys of this region is given. It gives insight into the cloud penetration of cosmic rays and in the relation between CO detections and molecular hydrogen column densities. Next, the radial distribution of gamma rays in the Galaxy is studied, as well as the galactic centre (more precisely, the central 400 pc), which contains a large concentration of CO molecules. The H 2 /CO abundance and the cosmic-ray density in the galactic centre are discussed and compared to the findings for the galactic disk. In various analyses in this thesis a likelihood-ratio method is applied for parameter estimation and hypothesis testing. A general description of this method is added as an appendix. (Auth.)

  19. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    Science.gov (United States)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-01-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  20. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    Science.gov (United States)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-05-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  1. Nonlinear optical properties of Sn+ ion-implanted silica glass

    International Nuclear Information System (INIS)

    Takeda, Y.; Hioki, T.; Motohiro, T.; Noda, S.; Kurauchi, T.

    1994-01-01

    The absolute value of the third-order nonlinear optical susceptibility, vertical stroke χ (3) vertical stroke , of Sn + ion-implanted silica glass was found to be similar 10 -6 esu. This value is as large as those reported for semiconductor-doped glasses. Silica glass substrates were implanted with Sn + ions at an acceleration energy of 400 keV to a dose of 2x10 17 ions/cm 2 at room temperature. Metallic Sn microcrystallites of 4-20 nm in diameter were found to be embedded in the silica glass matrix. The average volume fraction of the Sn microcrystallites was evaluated to be 28%. vertical stroke χ (3) vertical stroke and the imaginary part of the dielectric function, Im ε, had peaks at the same wavelength of 500 nm owing to surface plasmon resonance. The peak width of vertical stroke χ (3) vertical stroke was nearly half of that of Im ε, which can be explained by an effective medium theory. ((orig.))

  2. Interstellar medium structure and content and gamma ray astronomy

    International Nuclear Information System (INIS)

    Lebrun, F.

    1982-05-01

    A general description of gamma-ray astronomy is presented with special emphasis on the study of diffuse gamma-ray emission. This is followed by a collection of reflections and observations on the structure and the gas and dust content of the local interstellar medium. Results of gamma-ray observations on the local interstellar medium are given. The last part is devoted to the whole of the galactic gamma-ray emission and its interpretation [fr

  3. The adsorption of 99mTc(Sn)-diphosphonate complexes on tri-calciumphosphate: the influence of preparation conditions, ligand-type, incubation media and adsorption conditions. The reversibility of the adsorption

    International Nuclear Information System (INIS)

    Huigen, Y.M.; Krips, H.J.; Hulleman, S.; Gelsema, W.J.; Ligny, C.L. de

    1990-01-01

    The influence of several variables on the adsorption of 99m Tc(Sn)-diphosphate complexes on tricalciumphosphate was determined. The composition of the incubation medium influenced the percentage adsorption: with Hank's balanced salt solution (a medium frequently used for bone cell cultures) and Tris buffer lower percentage adsorption was obtained than with physiological saline as the incubation medium. The influence of addition to the incubation medium of some ions and natural species, some of which occur in bone fluid, is very specific. Addition of Sn(II) or Mg(II) (a component of HBSS) reduces the amount of adsorption. Addition of Ca(II) and Al(III) had no effect. Addition of sodium-citrate and MDP to the medium and an increase of the pH of the medium decreased the percentage adsorption. The ligand that was used in the preparation of the complex mixture influences the percentage adsorption considerably. The Sn(II) concentration used during the preparation of the 99m Tc(Sn)-MDP and 99m Tc(Sn)-MHDP complexes showed no definite influence on the percentage adsorption. The pH and ligand concentration, used in the preparation, however, did effect the percentage adsorption. It was concluded that the 99m Tc(Sn)-disphosphonate mixtures are part reversibly and part irreversibly bound to tri-calcium-phosphate. (author)

  4. Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders

    International Nuclear Information System (INIS)

    Zhang Ge; Huang Kelong; Liu Suqin; Zhang Wei; Gong Benli

    2006-01-01

    Cu 2 Sb, SnSb and Sn/SnSb mesoscopic alloy powders were prepared by chemical reduction, respectively. The crystal structures and particle morphology of Cu 2 Sb, SnSb and Sn/SnSb were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrochemical performances of the Cu 2 Sb, SnSb and Sn/SnSb electrodes were investigated by galvanostatic charge and discharge cycling and electrochemical impedance spectroscopy (EIS). The results showed the first charge and discharge capacities of SnSb and Sn/SnSb were higher than Cu 2 Sb, but after 15 cycles, the charge capacity fading rates of Cu 2 Sb, Sn/SnSb and Sn/SnSb were 26.16%, 55.33% and 47.39%, respectively. Cu 2 Sb had a better cycle performance, and Sn/SnSb multiphase alloy was prior to pure SnSb due to the existence of excessive Sn in Sn/SnSb system

  5. Primordial black holes survive SN lensing constraints

    Science.gov (United States)

    García-Bellido, Juan; Clesse, Sébastien; Fleury, Pierre

    2018-06-01

    It has been claimed in [arxiv:1712.02240] that massive primordial black holes (PBH) cannot constitute all of the dark matter (DM), because their gravitational-lensing imprint on the Hubble diagram of type Ia supernovae (SN) would be incompatible with present observations. In this note, we critically review those constraints and find several caveats on the analysis. First of all, the constraints on the fraction α of PBH in matter seem to be driven by a very restrictive choice of priors on the cosmological parameters. In particular, the degeneracy between Ωm and α was ignored and thus, by fixing Ωm, transferred the constraining power of SN magnitudes to α. Furthermore, by considering more realistic physical sizes for the type-Ia supernovae, we find an effect on the SN lensing magnification distribution that leads to significantly looser constraints. Moreover, considering a wide mass spectrum of PBH, such as a lognormal distribution, further softens the constraints from SN lensing. Finally, we find that the fraction of PBH that could constitute DM today is bounded by fPBH < 1 . 09(1 . 38) , for JLA (Union 2.1) catalogs, and thus it is perfectly compatible with an all-PBH dark matter scenario in the LIGO band.

  6. THE EVOLUTION OF GAS CLOUDS FALLING IN THE MAGNETIZED GALACTIC HALO: HIGH-VELOCITY CLOUDS (HVCs) ORIGINATED IN THE GALACTIC FOUNTAIN

    International Nuclear Information System (INIS)

    Kwak, Kyujin; Shelton, Robin L.; Raley, Elizabeth A.

    2009-01-01

    In the Galactic fountain scenario, supernovae and/or stellar winds propel material into the Galactic halo. As the material cools, it condenses into clouds. By using FLASH three-dimensional magnetohydrodynamic simulations, we model and study the dynamical evolution of these gas clouds after they form and begin to fall toward the Galactic plane. In our simulations, we assume that the gas clouds form at a height of z = 5 kpc above the Galactic midplane, then begin to fall from rest. We investigate how the cloud's evolution, dynamics, and interaction with the interstellar medium (ISM) are affected by the initial mass of the cloud. We find that clouds with sufficiently large initial densities (n ≥ 0.1 H atoms cm -3 ) accelerate sufficiently and maintain sufficiently large column densities as to be observed and identified as high-velocity clouds (HVCs) even if the ISM is weakly magnetized (1.3 μG). However, the ISM can provide noticeable resistance to the motion of a low-density cloud (n ≤ 0.01 H atoms cm -3 ) thus making it more probable that a low-density cloud will attain the speed of an intermediate-velocity cloud rather than the speed of an HVC. We also investigate the effects of various possible magnetic field configurations. As expected, the ISM's resistance is greatest when the magnetic field is strong and perpendicular to the motion of the cloud. The trajectory of the cloud is guided by the magnetic field lines in cases where the magnetic field is oriented diagonal to the Galactic plane. The model cloud simulations show that the interactions between the cloud and the ISM can be understood via analogy to the shock tube problem which involves shock and rarefaction waves. We also discuss accelerated ambient gas, streamers of material ablated from the clouds, and the cloud's evolution from a sphere-shaped to a disk- or cigar-shaped object.

  7. MAJOR GALAXY MERGERS ONLY TRIGGER THE MOST LUMINOUS ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Treister, E.; Schawinski, K.; Urry, C. M.; Simmons, B. D.

    2012-01-01

    Using multiwavelength surveys of active galactic nuclei (AGNs) across a wide range of bolometric luminosities (10 43 bol (erg s –1 ) 46 ) and redshifts (0 bol -f merger relation suggests that downsizing, i.e., the general decline in AGN and star formation activity with decreasing redshift, is driven by a decline in the frequency of major mergers combined with a decrease in the availability of gas at lower redshifts.

  8. FLUORINE ABUNDANCES OF GALACTIC LOW-METALLICITY GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. N.; Zhao, G. [Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang, Beijing 100012 (China); Ludwig, H.-G.; Caffau, E.; Christlieb, N., E-mail: lhn@nao.cas.cn, E-mail: gzhao@nao.cas.cn, E-mail: hludwig@lsw.uni-heidelberg.de, E-mail: ecaffau@lsw.uni-heidelberg.de, E-mail: N.Christlieb@lsw.uni-heidelberg.de [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany)

    2013-03-01

    With abundances and 2{sigma} upper limits of fluorine (F) in seven metal-poor field giants, nucleosynthesis of stellar F at low metallicity is discussed. The measurements are derived from the HF(1-0) R9 line at 23358 A using near-infrared K-band high-resolution spectra obtained with CRIRES at the Very Large Telescope. The sample reaches lower metallicities than previous studies on F of field giants, ranging from [Fe/H] = -1.56 down to -2.13. Effects of three-dimensional model atmospheres on the derived F and O abundances are quantitatively estimated and shown to be insignificant for the program stars. The observed F yield in the form of [F/O] is compared with two sets of Galactic chemical evolution models, which quantitatively demonstrate the contribution of Type II supernova (SN II) {nu}-process and asymptotic giant branch/Wolf-Rayet stars. It is found that at this low-metallicity region, models cannot well predict the observed distribution of [F/O], while the observations are better fit by models considering an SN II {nu}-process with a neutrino energy of E {sub {nu}} = 3 Multiplication-Sign 10{sup 53} erg. Our sample contains HD 110281, a retrograde orbiting low-{alpha} halo star, showing a similar F evolution as globular clusters. This supports the theory that such halo stars are possibly accreted from dwarf galaxy progenitors of globular clusters in the halo.

  9. Galactic sprinklers

    International Nuclear Information System (INIS)

    Vandeusen, W.

    1984-01-01

    It is believed by many astronomers that gravitation is responsible for holding a strong whirlpool of hot, dense material together at the center of the Milky Way galaxy. However, the galactic-sprinkler model suggests that the whirlpool is not being held together, and that the stars, gas and dust within the spirals are being thrown outward. It is also suggested that much of the ejected material eventually returns to the galactic center, as do stars within our stellar neighborhood. The material is believed to be subjected to extreme changes in the gravitational time rate which may cause it to follow an inbound spiral that is basically similar to the outbound spiral. Radio studies also indicate that the galactic arms on either side of the galactic center move at different velocities and in different directions with respect to our location and that the whole group of stars in the vicinity of the solar system may be moving outward from the galactic center at a velocity of about 40 kps. Through the use of velocity data in kps, and distance data in light years, the radial component of the sun's trajectory can be estimated with respect to time by a parabola. The spiral trajectory of the sun can be calculated and plotted on polar coordinates by combining both the radial component and tangential component (230 kps)

  10. On the formation of voids in internal tin Nb$_{3}$Sn superconductors

    CERN Document Server

    Scheuerlein, C; Haibel, A

    2007-01-01

    In this article we describe three void growth mechanisms in Nb$_{3}$Sn strands of the internal tin design on the basis of combined synchrotron micro-tomography and x-ray diffraction measurements during in-situ heating cycles. Initially void growth is driven by a reduction of void surface area by void agglomeration. The main void volume increase is caused by density changes during the formation of Cu3Sn in the strand. Subsequent transformation of Cu-Sn intermetallics into the lower density a-bronze reduces the void volume again. Long lasting temperature ramps and isothermal holding steps can neither reduce the void volume nor improve the chemical strand homogeneity prior to the superconducting A15 phase nucleation and growth.

  11. HERSCHEL OBSERVATIONS REVEAL ANOMALOUS MOLECULAR ABUNDANCES TOWARD THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Sonnentrucker, P. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Neufeld, D. A.; Indriolo, N. [Physics and Astronomy Department, Johns Hopkins University, Baltimore, MD 21218 (United States); Gerin, M.; De Luca, M. [LERMA-LRA, UMR 8112 du CNRS, Observatoire de Paris, Ecole Normale Superieure, UPMC and UCP, 24 rue Lhomond, F-75231, Paris Cedex 05 (France); Lis, D. C. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Goicoechea, J. R., E-mail: sonnentr@stsci.edu [Centro de Astrobiologia, CSIC/INTA, E-28850, Madrid (Spain)

    2013-01-20

    We report the Herschel detections of hydrogen fluoride (HF) and para-water (p-H{sub 2}O) in gas intercepting the sight lines to two well-studied molecular clouds in the vicinity of the Sgr A complex: G-0.02-0.07 (the {sup +}50 km s{sup -1} cloud{sup )} and G-0.13-0.08 (the {sup +}20 km s{sup -1} cloud{sup )}. Toward both sight lines, HF and water absorption components are detected over a wide range of velocities covering {approx}250 km s{sup -1}. For all velocity components with V{sub LSR} > -85 km s{sup -1}, we find that the HF and water abundances are consistent with those measured toward other sight lines probing the Galactic disk gas. The velocity components with V{sub LSR} {<=} -85 km s{sup -1}, which are known to trace gas residing within {approx}200 pc of the Galactic center, however, exhibit water vapor abundances with respect to HF at least a factor three higher than those found in the Galactic disk gas. Comparison with CH data indicates that our observations are consistent with a picture where HF and a fraction of the H{sub 2}O absorption arise in diffuse molecular clouds showing Galactic disk-like abundances while the bulk of the water absorption arises in warmer (T {>=} 400 K) diffuse molecular gas for V{sub LSR} {<=} -85 km s{sup -1}. This diffuse Interstellar Medium (ISM) phase has also been recently revealed through observations of CO, HF, H{sup +}{sub 3}, and H{sub 3}O{sup +} absorption toward other sight lines probing the Galactic center inner region.

  12. Heating of the Intracluster Medium by Quasar Outflows Suparna ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    evidence of an entropy excess with respect to the level expected from gravitational heating in the centres of groups. The candidate process which has been looked into as a source for this “preheating” are strong galactic winds driven by supernovae. However Valageas & Silk (1999) showed that the energy provided by ...

  13. Morphological evolution of carbon nanofibers encapsulating SnCo alloys and its effect on growth of the solid electrolyte interphase layer.

    Science.gov (United States)

    Shin, Jungwoo; Ryu, Won-Hee; Park, Kyu-Sung; Kim, Il-Doo

    2013-08-27

    Two distinctive one-dimensional (1-D) carbon nanofibers (CNFs) encapsulating irregularly and homogeneously segregated SnCo nanoparticles were synthesized via electrospinning of polyvinylpyrrolidone (PVP) and polyacrylonitrile (PAN) polymers containing Sn-Co acetate precursors and subsequent calcination in reducing atmosphere. CNFs synthesized with PVP, which undergoes structural degradation of the polymer during carbonization processes, exhibited irregular segregation of heterogeneous alloy particles composed of SnCo, Co3Sn2, and SnO with a size distribution of 30-100 nm. Large and exposed multiphase SnCo particles in PVP-driven amorphous CNFs (SnCo/PVP-CNFs) kept decomposing liquid electrolyte and were partly detached from CNFs during cycling, leading to a capacity fading at the earlier cycles. The closer study of solid electrolyte interphase (SEI) layers formed on the CNFs reveals that the gradual growth of fiber radius due to continuous increment of SEI layer thickness led to capacity fading. In contrast, SnCo particles in PAN-driven CNFs (SnCo/PAN-CNFs) showed dramatically reduced crystallite sizes (<10 nm) of single phase SnCo nanoparticles which were entirely embedded in dense, semicrystalline, and highly conducting 1-D carbon matrix. The growth of SEI layer was limited and saturated during cycling. As a result, SnCo/PAN-CNFs showed much improved cyclability (97.9% capacity retention) and lower SEI layer thickness (86 nm) after 100 cycles compared to SnCo/PVP-CNFs (capacity retention, 71.9%; SEI layer thickness, 593 nm). This work verifies that the thermal behavior of carbon precursor is highly responsible for the growth mechanism of SEI layer accompanied with particles detachment and cyclability of alloy particle embedded CNFs.

  14. Photogenerated carriers transfer in dye-graphene-SnO2 composites for highly efficient visible-light photocatalysis.

    Science.gov (United States)

    Zhuang, Shendong; Xu, Xiaoyong; Feng, Bing; Hu, Jingguo; Pang, Yaru; Zhou, Gang; Tong, Ling; Zhou, Yuxue

    2014-01-08

    The visible-light-driven photocatalytic activities of graphene-semiconductor catalysts have recently been demonstrated, however, the transfer pathway of photogenerated carriers especially where the role of graphene still remains controversial. Here we report graphene-SnO2 aerosol nanocomposites that exhibit more superior dye adsorption capacity and photocatalytic efficiency compared with pure SnO2 quantum dots, P25 TiO2, and pure graphene aerosol under the visible light. This study examines the origin of the visible-light-driven photocatalysis, which for the first time links to the synergistic effect of the cophotosensitization of the dye and graphene to SnO2. We hope this concept and corresponding mechanism of cophotosensitization could provide an original understanding for the photocatalytic reaction process at the level of carrier transfer pathway as well as a brand new approach to design novel and versatile graphene-based composites for solar energy conversion.

  15. OT2_tvelusam_4: Probing Galactic Spiral Arm Tangencies with [CII

    Science.gov (United States)

    Velusamy, T.

    2011-09-01

    We propose to use the unique viewing geometry of the Galactic spiral arm tangents , which provide an ideal environment for studying the effects of density waves on spiral structure. We propose a well-sampled map of the[C II] 1.9 THz line emission along a 15-degree longitude region across the Norma-3kpc arm tangential, which includes the edge of the Perseus Arm. The COBE-FIRAS instrument observed the strongest [C II] and [N II] emission along these spiral arm tangencies.. The Herschel Open Time Key Project Galactic Observations of Terahertz C+ (GOT C+), also detects the strongest [CII] emission near these spiral arm tangential directions in its sparsely sampled HIFI survey of [CII] in the Galactic plane survey. The [C II] 158-micron line is the strongest infrared line emitted by the ISM and is an excellent tracer and probe of both the diffuse gases in the cold neutral medium (CNM) and the warm ionized medium (WIM). Furthermore, as demonstrated in the GOTC+ results, [C II] is an efficient tracer of the dark H2 gas in the ISM that is not traced by CO or HI observations. Thus, taking advantage of the long path lengths through the spiral arm across the tangencies, we can use the [C II] emission to trace and characterize the diffuse atomic and ionized gas as well as the diffuse H2 molecular gas in cloud transitions from HI to H2 and C+ to C and CO, throughout the ISM. The main goal of our proposal is to use the well sampled (at arcmin scale) [C II] to study these gas components of the ISM in the spiral-arm, and inter-arm regions, to constrain models of the spiral structure and to understand the influence of spiral density waves on the Galactic gas and the dynamical interaction between the different components. The proposed HIFI observations will consist of OTF 15 degree longitude scans and one 2-degree latitude scan sampled every 40arcsec across the Norma- 3kpc Perseus Spiral tangency.

  16. Cosmic ray injection spectrum at the galactic sources

    Science.gov (United States)

    Lagutin, Anatoly; Tyumentsev, Alexander; Volkov, Nikolay

    The spectra of cosmic rays measured at Earth are different from their source spectra. A key to understanding this difference, being crucial for solving the problem of cosmic-ray origin, is the determination of how cosmic-ray (CR) particles propagate through the turbulent interstellar medium (ISM). If the medium is a quasi-homogeneous the propagation process can be described by a normal diffusion model. However, during a last few decades many evidences, both from theory and observations, of the existence of multiscale structures in the Galaxy have been found. Filaments, shells, clouds are entities widely spread in the ISM. In such a highly non-homogeneous (fractal-like) ISM the normal diffusion model certainly is not kept valid. Generalization of this model leads to what is known as "anomalous diffusion". The main goal of the report is to retrieve the cosmic ray injection spectrum at the galactic sources in the framework of the anomalous diffusion (AD) model. The anomaly in this model results from large free paths ("Levy flights") of particles between galactic inhomogeneities. In order to evaluate the CR spectrum at the sources, we carried out new calculation of the CR spectra at Earth. AD equation in terms of fractional derivatives have been used to describe CR propagation from the nearby (r≤1 kpc) young (t≤ 1 Myr) and multiple old distant (r > 1 kpc) sources. The assessment of the key model parameters have been based on the results of the particles diffusion in the cosmic and laboratory plasma. We show that in the framework of the anomalous diffusion model the locally observed basic features of the cosmic rays (difference between spectral exponents of proton, He and other nuclei, "knee" problem, positron to electron ratio) can be explained if the injection spectrum at the main galactic sources of cosmic rays has spectral exponent p˜ 2.85. The authors acknowledge support from The Russian Foundation for Basic Research grant No. 14-02-31524.

  17. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    Science.gov (United States)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  18. The ties that bind? Galactic magnetic fields and ram pressure stripping

    Energy Technology Data Exchange (ETDEWEB)

    Tonnesen, Stephanie; Stone, James, E-mail: stonnes@astro.princeton.edu, E-mail: jstone@astro.princeton.edu [Department of Astrophysics, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States)

    2014-11-10

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially accelerate stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.

  19. The Ties that Bind? Galactic Magnetic Fields and Ram Pressure Stripping

    Science.gov (United States)

    Tonnesen, Stephanie; Stone, James

    2014-11-01

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially accelerate stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.

  20. THE 2012 RISE OF THE REMARKABLE TYPE IIn SN 2009ip

    International Nuclear Information System (INIS)

    Prieto, José L.; Brimacombe, J.; Drake, A. J.; Howerton, S.

    2013-01-01

    Recent observations by Mauerhan et al. have shown the unprecedented transition of the previously identified luminous blue variable (LBV) and supernova (SN) impostor SN 2009ip to a real Type IIn SN explosion. We present ∼100 optical R- and I-band photometric measurements of SN 2009ip obtained between UT 2012 September 23.6 and October 9.6, using 0.3-0.4 m aperture telescopes from the Coral Towers Observatory in Cairns, Australia. The light curves show well-defined phases, including very rapid brightening early on (0.5 mag in 6 hr observed during the night of September 24), a transition to a much slower rise between September 25 and September 28, and a plateau/peak around October 7. These changes are coincident with the reported spectroscopic changes that most likely mark the start of a strong interaction between the fast SN ejecta and a dense circumstellar medium formed during the LBV eruptions observed in recent years. In the 16-day observing period, SN 2009ip brightened by 3.7 mag from I = 17.4 mag on September 23.6 (M I ≅ –14.2) to I = 13.7 mag (M I ≅ –17.9) on October 9.6, radiating ∼3 × 10 49 erg in the optical wavelength range. As of 2012 October 9.6, SN 2009ip is more luminous than most Type IIP SN and comparable to other Type IIn SN.

  1. Simple eco-friendly synthesis of the surfactant free SnS nanocrystal toward the photoelectrochemical cell application.

    Science.gov (United States)

    Huang, Xiaoguang; Woo, Heechul; Wu, Peinian; Hong, Hyo Jin; Jung, Wan Gil; Kim, Bong-Joong; Vanel, Jean-Charles; Choi, Jin Woo

    2017-11-28

    A simple, low cost, non-toxic and eco-friendly pathway for synthesizing efficient sunlight-driven tin sulfide photocatalyst was studied. SnS nanocrystals were prepared by using mechanical method. The bulk SnS was obtained by evaporation of SnS nanocrystal solution. The synthesized samples were characterized by using XRD, SEM, TEM, UV-vis, and Raman analyses. Well crystallized SnS nanocrystals were verified and the electrochemical characterization was also performed under visible light irradiation. The SnS nanocrystals have shown remarkable photocurrent density of 7.6 mA cm -2 under 100 mW cm -2 which is about 10 times larger than that of the bulk SnS under notably stable operation conditions. Furthermore, the SnS nanocrystals presented higher stability than the bulk form. The IPCE(Incident photon to current conversion efficiency) of 9.3% at 420 nm was obtained for SnS nanocrystal photoanode which is strikingly higher than that of bulk SnS, 0.78%. This work suggests that the enhancement of reacting area by using SnS nanocrystal absorbers could give rise to the improvement of photoelectrochemical cell efficiency.

  2. Fermi and Swift as supernova alarms: Alert, localization, and diagnosis of future Galactic Type Ia explosions

    Science.gov (United States)

    Wang, Xilu; Fields, Brian D.; Lien, Amy Y.

    2017-01-01

    A Galactic SNIa event could go entirely unnoticed due to the large optical and near-IR extinction in the Milky Way plane, low radio and X-ray luminosities, and a weak neutrino signal. But the recent SN2014J confirms that Type Ia supernovae emit nuclear γ- ray lines, from the 56Ni → 56Co → 56Fe radioactive decay. The energy released in these decays powers the SNIa UVOIR light curve at times after ~1 week, leading to an exponential decline. Importantly for Swift and Fermi, these decays are accompanied by γ-ray line emission, with distinct series of lines for both the 56Ni and 56Co decays, spanning 158 keV to 2.6 MeV. These lines are squarely within the Fermi/GBM energy range, and the 56Ni 158 keV line is detectable by Swift/BAT. The Galaxy is optically thin to γ-rays, so the supernova line flux will suffer negligible extinction. Both GBM and BAT have continuous and nearly all-sky coverage. Thus GBM and BAT are ideal Galactic SNIa monitors and early warning systems. We will illustrate expected GBM and BAT light curves and spectra, based on our model for SNIa γ-ray emission and transfer. We show that the supernova signal emerges as distinct from the GBM background within days after the explosion in the SN2014J shell model. Therefore, if a Galactic SNIa were to explode, there are two possibilities of confirming and sounding the alert: 1) Swift/BAT discovers the SNIa first and localizes it within arcminutes; 2) Fermi/GBM finds the SNIa first and localizes it to within ~1 degree, using the Earth occultation technique, followed up by BAT to localize it within arcminutes. After the alert of either BAT or GBM, Swift localizes it to take spectra in optical, UV, soft and hard X-rays simultaneously with both XRT and UVOT instruments.

  3. Probing Pre-Galactic Metal Enrichment with High-Redshift Gamma-Ray Bursts

    Science.gov (United States)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-01-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature approximately greater than10(exp 4) K.We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm(exp -3). In more massive halos, corresponding to the first galaxies, the density may be larger, n approximately greater than100 cm(exp -3). The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z approximately greater than 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may

  4. COBE AND THE GALACTIC INTERSTELLAR MEDIUM: GEOMETRY OF THE SPIRAL ARMS FROM FIR COOLING LINES

    International Nuclear Information System (INIS)

    Steiman-Cameron, Thomas Y.; Wolfire, Mark; Hollenbach, David

    2010-01-01

    We present a new model for the spiral structure of the Milky Way based upon the essentially all-sky intensity maps of the [C II] 158 μm and [N II] 205 μm lines of the interstellar medium (ISM) obtained by the FIRAS instrument of the Cosmic Background Explorer (COBE), with ancillary data from the Balloon-borne Infrared Carbon Explorer, and Infrared Space Observatory. These lines are important coolants of the ISM and strong tracers of the spiral structure. The model provides the volume emissivity of these species as a function of position within the Galaxy. Two-, three-, and four-arm models are examined, using a number of spiral functional forms. Two-arm models are found to be inconsistent with the COBE/FIRAS data. A three-arm model can be constructed that reproduces the [C II] and [N II] intensity profiles along the Galactic plane. This model, however, is discounted by historical observations of the Perseus and Cygnus ( O uter ) arms. A four-arm model, with arms defined by logarithmic spiral forms, reproduce the observations extremely well. Models of the Milky Way's spiral geometry proposed from ∼1980 to the present are examined in light of the COBE data and compared with the model presented herein. The preponderance of the evidence supports the existence of four well-defined logarithmic spiral arms in the gaseous component of the ISM. We note that essentially all two-arm models proposed since the mid-1980s are based upon observations of older evolved stars. We address the question of why studies based upon observations of stellar densities yield two-arm models while models based upon observations of more traditional tracers of spiral arms, i.e., enhanced gas and dust densities, star formation, and young stellar populations, yield four-arm models.

  5. DUST IN ACTIVE GALACTIC NUCLEI: ANOMALOUS SILICATE TO OPTICAL EXTINCTION RATIOS?

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jianwei; Hao, Lei [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, Aigen, E-mail: haol@shao.ac.cn [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2014-09-01

    Dust plays a central role in the unification theory of active galactic nuclei (AGNs). However, little is known about the nature (e.g., size, composition) of the dust that forms a torus around the AGN. In this Letter, we report a systematic exploration of the optical extinction (A{sub V} ) and the silicate absorption optical depth (Δτ{sub 9.7}) of 110 type 2 AGNs. We derive A{sub V} from the Balmer decrement based on the Sloan Digital Sky Survey data, and Δτ{sub 9.7} from the Spitzer/InfraRed Spectrograph data. We find that with a mean ratio of (A{sub V} /Δτ{sub 9.7}) ≲ 5.5, the optical-to-silicate extinction ratios of these AGNs are substantially lower than that of the Galactic diffuse interstellar medium (ISM) for which A{sub V} /Δτ{sub 9.7} ≈ 18.5. We argue that the anomalously low A{sub V} /Δτ{sub 9.7} ratio could be due to the predominance of larger grains in the AGN torus compared to that in the Galactic diffuse ISM.

  6. Galactic models

    International Nuclear Information System (INIS)

    Buchler, J.R.; Gottesman, S.T.; Hunter, J.H. Jr.

    1990-01-01

    Various papers on galactic models are presented. Individual topics addressed include: observations relating to galactic mass distributions; the structure of the Galaxy; mass distribution in spiral galaxies; rotation curves of spiral galaxies in clusters; grand design, multiple arm, and flocculent spiral galaxies; observations of barred spirals; ringed galaxies; elliptical galaxies; the modal approach to models of galaxies; self-consistent models of spiral galaxies; dynamical models of spiral galaxies; N-body models. Also discussed are: two-component models of galaxies; simulations of cloudy, gaseous galactic disks; numerical experiments on the stability of hot stellar systems; instabilities of slowly rotating galaxies; spiral structure as a recurrent instability; model gas flows in selected barred spiral galaxies; bar shapes and orbital stochasticity; three-dimensional models; polar ring galaxies; dynamical models of polar rings

  7. SN Refsdal

    DEFF Research Database (Denmark)

    Kelly, P. L.; Brammer, G.; Selsing, J.

    2016-01-01

    (SNe), and we find strong evidence for a broad H-alpha P-Cygni profile in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show...... in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, SN Refsdal has a blue B-V color and a high luminosity for the assumed range of potential magnifications. If SN Refsdal can be modeled as a scaled version of SN...

  8. A COMPARISON OF FAR-IR AND H I AS REDDENING PREDICTORS AT HIGH GALACTIC LATITUDE

    International Nuclear Information System (INIS)

    Peek, J. E. G.

    2013-01-01

    Both the Galactic 21 cm line flux from neutral hydrogen (H I) in interstellar medium and the far-infrared (FIR) emission from Galactic dust grains have been used to estimate the strength of Galactic reddening of distant sources. In this work we use a collection of uniform color distant galaxies as color standards to determine whether the H I method or the FIR method is superior. We find that the two methods both produce reasonably accurate maps, but that both show significant errors as compared to the typical color of the background galaxies. We find that a mixture of the FIR and H I maps in roughly a 2-to-1 ratio is clearly superior to either map alone. We recommend that future reddening maps should use both sets of data, and that well-constructed FIR and H I maps should both be vigorously pursued.

  9. Thermoelectric Properties in the TiO2/SnO2 System

    Science.gov (United States)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  10. UNRAVELLING THE COMPLEX STRUCTURE OF AGN-DRIVEN OUTFLOWS. II. PHOTOIONIZATION AND ENERGETICS

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Woo, Jong-Hak [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr [Department of Astronomy and Center for Galaxy EVolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-12-20

    Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs); they present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph integral field unit (IFU) data of six local ( z  < 0.1) and moderate-luminosity Type 2 AGNs to study the ionization properties and energetics of AGN-driven outflows. We find strong evidence connecting the extreme kinematics of the ionized gas to the AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that 30 to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially integrated mass and kinetic energy of the gas entrained in the outflow correlate well with the AGN bolometric luminosity and results in energy conversion efficiencies between 0.01% and 1%. Intriguingly, we detect ubiquitous signs of ongoing circumnuclear star formation. Their small size, the centrally contained mass and energy, and the universally detected circumnuclear star formation cast doubts on the potency of these AGN-driven outflows as agents of galaxy-scale negative feedback.

  11. A general theory for the lifetimes of giant molecular clouds under the influence of galactic dynamics

    Science.gov (United States)

    Jeffreson, Sarah M. R.; Kruijssen, J. M. Diederik

    2018-05-01

    We propose a simple analytic theory for environmentally dependent molecular cloud lifetimes, based on the large-scale (galactic) dynamics of the interstellar medium. Within this theory, the cloud lifetime is set by the time-scales for gravitational collapse, galactic shear, spiral arm interactions, epicyclic perturbations, and cloud-cloud collisions. It is dependent on five observable quantities, accessible through measurements of the galactic rotation curve, the gas and stellar surface densities, and the gas and stellar velocity dispersions of the host galaxy. We determine how the relative importance of each dynamical mechanism varies throughout the space of observable galactic properties, and conclude that gravitational collapse and galactic shear play the greatest role in setting the cloud lifetime for the considered range of galaxy properties, while cloud-cloud collisions exert a much lesser influence. All five environmental mechanisms are nevertheless required to obtain a complete picture of cloud evolution. We apply our theory to the galaxies M31, M51, M83, and the Milky Way, and find a strong dependence of the cloud lifetime upon galactocentric radius in each case, with a typical cloud lifetime between 10 and 50 Myr. Our theory is ideally suited for systematic observational tests with the Atacama Large Millimetre/submillimetre array.

  12. Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow

    Science.gov (United States)

    Di Teodoro, Enrico M.; McClure-Griffiths, N. M.; Lockman, Felix J.; Denbo, Sara R.; Endsley, Ryan; Ford, H. Alyson; Harrington, Kevin

    2018-03-01

    We present the results of a new sensitive survey of neutral hydrogen above and below the Galactic Center with the Green Bank Telescope. The observations extend up to Galactic latitude | b| resolution of 9.‧5 and an average rms brightness temperature noise of 40 mK in a 1 {km} {{{s}}}-1 channel. The survey reveals the existence of a population of anomalous high-velocity clouds extending up to heights of about 1.5 kpc from the Galactic plane and showing no signature of Galactic rotation. These clouds have local standard of rest velocities | {V}LSR}| ≲ 360 {km} {{{s}}}-1, and assuming a Galactic Center origin, they have sizes of a few tens of parsec and neutral hydrogen masses spanning 10{--}{10}5 {M}ȯ . Accounting for selection effects, the cloud population is symmetric in longitude, latitude, and V LSR. We model the cloud kinematics in terms of an outflow expanding from the Galactic Center and find the population consistent with being material moving with radial velocity {V}{{w}}≃ 330 {km} {{{s}}}-1 distributed throughout a bicone with opening angle α > 140^\\circ . This simple model implies an outflow luminosity {L}{{w}}> 3× {10}40 erg s‑1 over the past 10 Myr, consistent with star formation feedback in the inner region of the Milky Way, with a cold gas mass-loss rate ≲ 0.1 {{M}ȯ {yr}}-1. These clouds may represent the cold gas component accelerated in the nuclear wind driven by our Galaxy, although some of the derived properties challenge current theoretical models of the entrainment process.

  13. Efficient cold outflows driven by cosmic rays in high-redshift galaxies and their global effects on the IGM

    Science.gov (United States)

    Samui, Saumyadip; Subramanian, Kandaswamy; Srianand, Raghunathan

    2018-05-01

    We present semi-analytical models of galactic outflows in high-redshift galaxies driven by both hot thermal gas and non-thermal cosmic rays. Thermal pressure alone may not sustain a large-scale outflow in low-mass galaxies (i.e. M ˜ 108 M⊙), in the presence of supernovae feedback with large mass loading. We show that inclusion of cosmic ray pressure allows outflow solutions even in these galaxies. In massive galaxies for the same energy efficiency, cosmic ray-driven winds can propagate to larger distances compared to pure thermally driven winds. On an average gas in the cosmic ray-driven winds has a lower temperature which could aid detecting it through absorption lines in the spectra of background sources. Using our constrained semi-analytical models of galaxy formation (that explains the observed ultraviolet luminosity functions of galaxies), we study the influence of cosmic ray-driven winds on the properties of the intergalactic medium (IGM) at different redshifts. In particular, we study the volume filling factor, average metallicity, cosmic ray and magnetic field energy densities for models invoking atomic cooled and molecular cooled haloes. We show that the cosmic rays in the IGM could have enough energy that can be transferred to the thermal gas in presence of magnetic fields to influence the thermal history of the IGM. The significant volume filling and resulting strength of IGM magnetic fields can also account for recent γ-ray observations of blazars.

  14. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1981-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the galactic plane due to high space velocities imparted to the pulsars at birth. The evidence for this model is described and the various factors involved in estimating the total galactic population and the galactic birthrate of pulsars are discussed. The various estimates of the galactic population which cluster around 5 x 10 5 are seen to be critically dependent upon the cut-off at low luminosities and upon the value of the mean electron density within 500 pc of the Earth. Estimates of the lifetimes of pulsars are available from both the characteristic ages and proper motion measurements and both give values of about 5 million years. The implied birthrate of one in every 10 years is barely compatible with most estimates of the galactic supernova rate. (Auth.)

  15. The high-temperature modification of LuAgSn and high-pressure high-temperature experiments on DyAgSn, HoAgSn, and YbAgSn

    Energy Technology Data Exchange (ETDEWEB)

    Heying, B.; Rodewald, U.C.; Hermes, W.; Schappacher, F.M.; Riecken, J.F.; Poettgen, R. [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Heymann, G.; Huppertz, H. [Muenchen Univ. (Germany). Dept. fuer Chemie und Biochemie; Sebastian, C.P. [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)

    2008-02-15

    The high-temperature modification of LuAgSn was obtained by arc-melting an equiatomic mixture of the elements followed by quenching the melt on a water-cooled copper crucible. HT-LuAgSn crystallizes with the NdPtSb-type structure, space group P6{sub 3}mc: a = 463.5(1), c = 723.2(1) pm, wR2 = 0.0270, 151 F{sup 2}, and 11 variables. The silver and tin atoms build up two-dimensional, puckered [Ag{sub 3}Sn{sub 3}] networks (276 pm Ag-Sn) that are charge-balanced and separated by the lutetium atoms. The Ag-Sn distances between the [Ag{sub 3}Sn{sub 3}] layers of 294 pm are much longer. Single crystals of isotypic DyAgSn (a = 468.3(1), c = 734.4(1) pm, wR2 = 0.0343, 411 F{sup 2}, and 11 variables) and HoAgSn (a = 467.2(1), c = 731.7(2) pm, wR2 = 0.0318, 330 F{sup 2}, and 11 variables) were obtained from arc-melted samples. Under high-pressure (up to 12.2 GPa) and high-temperature (up to 1470 K) conditions, no transitions to a ZrNiAl-related phase have been observed for DyAgSn, HoAgSn, and YbAgSn. HT-TmAgSn shows Curie-Weiss paramagnetism with {mu}{sub eff} = 7.53(1) {mu}{sub B}/Tm atom and {theta}P = -15.0(5) K. No magnetic ordering was evident down to 3 K. HT-LuAgSn is a Pauli paramagnet. Room-temperature {sup 119}Sn Moessbauer spectra of HT-TmAgSn and HT-LuAgSn show singlet resonances with isomer shifts of 1.78(1) and 1.72(1) mm/s, respectively. (orig.)

  16. The interaction of supernova ejecta with an ambient medium

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1983-01-01

    Plausible environments for supernovae are the interstellar medium with constant density or a circumstellar medium built up by mass loss with rho proportional to r -2 . Self-similar solutions for the interaction region between the expanding supernova gas and the ambient gas exist provided that the expanding gas has rho proportional to rsup(-n) with n > 5. The circumstellar medium case is likely to be important for the early evolution of Type II supernovae because their progenitor stars are probably red supergiants. The radio and X-ray emission observed from extragalactic supernovae may be from this interaction region. The early self-similar solutions can also be applied to the young galactic remnants. (Auth.)

  17. Trek and ECCO: Abundance measurements of ultraheavy galactic cosmic rays

    International Nuclear Information System (INIS)

    Westphal, Andrew J.

    2000-01-01

    Using the Trek detector, we have measured the abundances of the heaviest elements (with Z>70) in the galactic cosmic rays with sufficient charge resolution to resolve the even-Z elements. We find that the abundance of Pb compared to Pt is ∼3 times lower than the value expected from the most widely-held class of models of the origin of galactic cosmic ray nuclei, that is, origination in a partially ionized medium with solar-like composition. The low abundance of Pb is, however, consistent with the interstellar gas and dust model of Meyer, Drury and Ellison, and with a source enriched in r-process material, proposed by Binns et al. A high-resolution, high-statistics measurement of the abundances of the individual actinides would distinguish between these models. This is the goal of ECCO, the Extremely Heavy Cosmic-ray Composition Observer, which we plan to deploy on the International Space Station

  18. A Discovery of a Compact High Velocity Cloud-Galactic Supershell System

    Science.gov (United States)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2017-01-01

    High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  19. Neutrino-heated stars and broad-line emission from active galactic nuclei

    Science.gov (United States)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  20. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures

    Science.gov (United States)

    Timofeev, V. A.; Nikiforov, A. I.; Tuktamyshev, A. R.; Mashanov, V. I.; Loshkarev, I. D.; Bloshkin, A. A.; Gutakovskii, A. K.

    2018-04-01

    The GeSiSn, SiSn layer growth mechanisms on Si(100) were investigated and the kinetic diagrams of the morphological GeSiSn, SiSn film states in the temperature range of 150 °C-450 °C at the tin content from 0% to 35% were built. The phase diagram of the superstructural change on the surface of Sn grown on Si(100) in the annealing temperature range of 0 °C-850 °C was established. The specular beam oscillations were first obtained during the SiSn film growth from 150 °C to 300 °C at the Sn content up to 35%. The transmission electron microscopy and x-ray diffractometry data confirm the crystal perfection and the pseudomorphic GeSiSn, SiSn film state, and also the presence of smooth heterointerfaces between GeSiSn or SiSn and Si. The photoluminescence for the multilayer periodic GeSiSn/Si structures in the range of 0.6-0.8 eV was detected. The blue shift with the excitation power increase is observed suggesting the presence of a type II heterostructure. The creation of tensile strained Ge films, which are pseudomorphic to the underlying GeSn layer, is confirmed by the results of the formation and analysis of the reciprocal space map in the x-ray diffractometry. The tensile strain in the Ge films reached the value in the range of 0.86%-1.5%. The GeSn buffer layer growth in the Sn content range from 8% to 12% was studied. The band structure of heterosystems based on pseudomorphic GeSiSn, SiSn and Ge layers was calculated and the valence and conduction band subband position dependences on the Sn content were built. Based on the calculation, the Sn content range in the GeSiSn, SiSn, and GeSn layers, which corresponds to the direct bandgap GeSiSn, SiSn, and Ge material, was obtained.

  1. Reference Data for the Density, Viscosity, and Surface Tension of Liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn Eutectic Alloys

    Science.gov (United States)

    Dobosz, Alexandra; Gancarz, Tomasz

    2018-03-01

    The data for the physicochemical properties viscosity, density, and surface tension obtained by different experimental techniques have been analyzed for liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn eutectic alloys. All experimental data sets have been categorized and described by the year of publication, the technique used to obtain the data, the purity of the samples and their compositions, the quoted uncertainty, the number of data in the data set, the form of data, and the temperature range. The proposed standard deviations of liquid eutectic Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn alloys are 0.8%, 0.1%, 0.5%, 0.2%, and 0.1% for the density, 8.7%, 4.1%, 3.6%, 5.1%, and 4.0% for viscosity, and 1.0%, 0.5%, 0.3%, N/A, and 0.4% for surface tension, respectively, at a confidence level of 95%.

  2. VERITAS Galactic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Gareth

    2013-06-15

    We report on recent Galactic results and discoveries made by the VERITAS collaboration. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground-based gamma-ray observatory, located in southern Arizona, able to detect gamma rays of energies from 100 GeV up to 30 TeV. VERITAS has been fully operational since 2007 and its current sensitivity enables the detection of a 1% Crab Nebula flux at 5 sigma in under 30 hours. The observatory is well placed to view large parts of the galactic plane including its center, resulting in a strong galactic program. Objects routinely observed include Pulsars, Pulsar Wind Nebula, X-ray binaries and sources with unidentified counterparts in other wavelengths.

  3. Electrophoretic Deposition of SnO2 Nanoparticles and Its LPG Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Göktuğ Günkaya

    2015-01-01

    Full Text Available Homogenized SnO2 nanoparticles (60 nm in acetylacetone mediums, both with and without iodine, were deposited onto platinum coated alumina substrate and interdigital electrodes using the electrophoretic deposition (EPD method for gas sensor applications. Homogeneous and porous film layers were processed and analyzed at various coating times and voltages. The structure of the deposited films was characterized by a scanning electron microscopy (SEM. The gas sensing properties of the SnO2 films were investigated using liquid petroleum gas (LPG for various lower explosive limits (LEL. The results showed that porous, crack-free, and homogeneous SnO2 films were achieved for 5 and 15 sec at 100 and 150 V EPD parameters using an iodine-free acetylacetone based SnO2 suspension. The optimum sintering for the deposited SnO2 nanoparticles was observed at 500°C for 5 min. The results showed that the sensitivity of the films was increased with the operating temperature. The coated films with EPD demonstrated a better sensitivity for the 20 LEL LPG concentrations at a 450°C operating temperature. The maximum sensitivity of the SnO2 sensors at 450°C to 20 LEL LPG was 30.

  4. Microwave assisted synthesis of porous ZnO/SnS heterojunction and its application in visible light degradation of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Makama, A. B., E-mail: abmakama@hotmail.com; Salmiaton, A., E-mail: mie@upm.edu.my; Choong, T. S. Y., E-mail: csthomas@upm.edu.my; Abdullah, N., E-mail: nhafizah@upm.edu.my [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor, Serdang, UPM 43400 (Malaysia); Saion, E. B., E-mail: elias@upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, Selangor, Serdang, UPM 43400 (Malaysia)

    2016-07-06

    Porous ZnO/SnS heterojunctions were successfully synthesized via microwave-assisted heating of aqueous solutions containing different amounts of SnS precursors (SnCl{sub 2} and Na{sub 2}S) in the presence of fixed amount of ZnCO{sub 3} nanoparticles. The experimental results revealed that the heterojunctions exhibited much higher visible light-driven photocatalytic activity for the degradation of the ciprofloxacin than pure SnS nanocrystals. The photocatalytic degradation efficiency (1-C{sub t}/C{sub 0}) of the pollutant for the most active heterogeneous nanostructure is about four times more efficient than pure SnS. The enhanced photocatalytic efficiency is ascribed to the synergic effect of high photon absorption and reduction in the recombination of electrons and holes because of efficient separation and electron transfer from the SnS to ZnO nanoparticles.

  5. Insights into the Galactic Cosmic-ray Source from the TIGER Experiment

    Science.gov (United States)

    Link, Jason T.; Barbier, L. M.; Binns, W. R.; Christian, E. R.; Cummings, J. R.; Geier, S.; Israel, M. H.; Lodders, K.; Mewaldt,R. A.; Mitchell, J. W.; hide

    2009-01-01

    We report results from 50 days of data accumulated in two Antarctic flights of the Trans-Iron Galactic Element Recorder (TIGER). With a detector system composed of scintillators, Cherenkov detectors, and scintillating optical fibers, TIGER has a geometrical acceptance of 1.7 sq m sr and a charge resolution of 0.23 cu at Iron. TIGER has obtained abundance measurements of some of the rare galactic cosmic rays heavier than iron, including Zn, Ga, Ge, Se, and Sr, as well as the more abundant lighter elements (down to Si). The heavy elements have long been recognized as important probes of the nature of the galactic cosmic-ray source and accelerator. After accounting for fragmentation of cosmic-ray nuclei as they propagate through the Galaxy and the atmosphere above the detector system, the TIGER source abundances are consistent with a source that is a mixture of about 20% ejecta from massive stars and 80% interstellar medium with solar system composition. This result supports a model of cosmic-ray origin in OB associations previously inferred from ACE-CRIS data of more abundant lighter elements. These TIGER data also support a cosmic-ray acceleration model in which elements present in interstellar grains are accelerated preferentially compared with those found in interstellar gas.

  6. An asymmetric distribution of positrons in the Galactic disk revealed by γ-rays

    International Nuclear Information System (INIS)

    Weidenspointner, G.; Skinner, G.; Jean, P.; Knoedlseder, J.; Von Ballmoos, P.; Bignami, G.; Weidenspointner, G.; Diehl, R.; Strong, A.; Weidenspointner, G.; Skinner, G.; Skinner, G.; Skinner, G.; Cordier, B.; Schanne, S.; Winkler, Ch.; Bignami, G.

    2008-01-01

    Gamma-ray line radiation at 511 keV is the signature of electron positron annihilation. Such radiation has been known for 30 years to come from the general direction of the Galactic Centre, but the origin of the positrons has remained a mystery. Stellar nucleosynthesis, accreting compact objects, and even the annihilation of exotic dark-matter particles have all been suggested. Here we report a distinct asymmetry in the 511 keV line emission coming from the inner Galactic disk (∼ 10-50 degrees from the Galactic Centre). This asymmetry resembles an asymmetry in the distribution of low mass X-ray binaries with strong emission at photon energies ≥20 keV ('hard' LMXBs), indicating that they may be the dominant origin of the positrons. Although it had long been suspected that electron-positron pair plasmas may exist in X-ray binaries, it was not evident that many of the positrons could escape to lose energy and ultimately annihilate with electrons in the interstellar medium and thus lead to the emission of a narrow 511 keV line. For these models, our result implies that up to a few times 10 41 positrons escape per second from a typical hard LMXB. Positron production at this level from hard LMXBs in the Galactic bulge would reduce (and possibly eliminate) the need for more exotic explanations, such as those involving dark matter. (authors)

  7. An asymmetric distribution of positrons in the Galactic disk revealed by {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Weidenspointner, G; Skinner, G; Jean, P; Knoedlseder, J; Von Ballmoos, P; Bignami, G [UPS, CNRS, Ctr Etud Spatiale Rayonnements, Toulouse 4, (France); Weidenspointner, G; Diehl, R; Strong, A [Max Planck Inst Extraterr Phys, D-85741 Garching, (Germany); Weidenspointner, G [MPI Halbleiterlab, D-81739 Munich, (Germany); Skinner, G [NASA, CRESST, Greenbelt, MD 20771 (United States); Skinner, G [NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 (United States); Skinner, G [Univ Maryland, Dept Astron, College Pk, MD 20742 (United States); Cordier, B; Schanne, S [CEA Saclay, DSM, DAPNIA, SAp, F-91191 Gif Sur Yvette, (France); Winkler, Ch [ESA, ESTEC, SCI SA, NL-2201 AZ Noordwijk, (Netherlands); Bignami, G [IUSS, I-27100 Pavia, (Italy)

    2008-07-01

    Gamma-ray line radiation at 511 keV is the signature of electron positron annihilation. Such radiation has been known for 30 years to come from the general direction of the Galactic Centre, but the origin of the positrons has remained a mystery. Stellar nucleosynthesis, accreting compact objects, and even the annihilation of exotic dark-matter particles have all been suggested. Here we report a distinct asymmetry in the 511 keV line emission coming from the inner Galactic disk ({approx} 10-50 degrees from the Galactic Centre). This asymmetry resembles an asymmetry in the distribution of low mass X-ray binaries with strong emission at photon energies {>=}20 keV ('hard' LMXBs), indicating that they may be the dominant origin of the positrons. Although it had long been suspected that electron-positron pair plasmas may exist in X-ray binaries, it was not evident that many of the positrons could escape to lose energy and ultimately annihilate with electrons in the interstellar medium and thus lead to the emission of a narrow 511 keV line. For these models, our result implies that up to a few times 10{sup 41} positrons escape per second from a typical hard LMXB. Positron production at this level from hard LMXBs in the Galactic bulge would reduce (and possibly eliminate) the need for more exotic explanations, such as those involving dark matter. (authors)

  8. MIRIS observation of near-infrared diffuse Galactic light

    Science.gov (United States)

    Onishi, Yosuke; Sano, Kei; Matsuura, Shuji; Jeong, Woong-Seob; Pyo, Jeonghyun; Kim, Il-Jong; Seo, Hyun Jong; Han, Wonyong; Lee, DaeHee; Moon, Bongkon; Park, Wonkee; Park, Younsik; Kim, MinGyu; Matsumoto, Toshio; Matsuhara, Hideo; Nakagawa, Takao; Tsumura, Kohji; Shirahata, Mai; Arai, Toshiaki; Ienaka, Nobuyuki

    2018-06-01

    We report near-infrared (IR) observations of high Galactic latitude clouds to investigate diffuse Galactic light (DGL), which is starlight scattered by interstellar dust grains. The observations were performed at 1.1 and 1.6 μm with a wide-field camera instrument, the Multi-purpose Infra-Red Imaging System (MIRIS) onboard the Korean satellite STSAT-3. The DGL brightness is measured by correlating the near-IR images with a far-IR 100 μm map of interstellar dust thermal emission. The wide-field observation of DGL provides the most accurate DGL measurement achieved to-date. We also find a linear correlation between optical and near-IR DGL in the MBM32 field. To study interstellar dust properties in MBM32, we adopt recent dust models with and without μm-sized very large grains and predict the DGL spectra, taking into account the reddening effect of the interstellar radiation field. The result shows that the observed color of the near-IR DGL is closer to the model spectra without very large grains. This may imply that dust growth in the observed MBM32 field is not active owing to the low density of its interstellar medium.

  9. Black hole feedback in a multiphase interstellar medium

    Science.gov (United States)

    Bourne, Martin A.; Nayakshin, Sergei; Hobbs, Alexander

    2014-07-01

    Ultrafast outflows (UFOs) from supermassive black holes (SMBHs) are thought to regulate the growth of SMBHs and host galaxies, resulting in a number of observational correlations. We present high-resolution numerical simulations of the impact of a thermalized UFO on the ambient gas in the inner part of the host galaxy. Our results depend strongly on whether the gas is homogeneous or clumpy. In the former case all of the ambient gas is driven outward rapidly as expected based on commonly used energy budget arguments, while in the latter the flows of mass and energy de-couple. Carrying most of the energy, the shocked UFO escapes from the bulge via paths of least resistance, taking with it only the low-density phase of the host. Most of the mass is however in the high-density phase, and is affected by the UFO much less strongly, and may even continue to flow inwards. We suggest that the UFO energy leakage through the pores in the multiphase interstellar medium (ISM) may explain why observed SMBHs are so massive despite their overwhelmingly large energy production rates. The multiphase ISM effects reported here are probably under-resolved in cosmological simulations but may be included in prescriptions for active galactic nuclei feedback in future simulations and in semi-analytical models.

  10. Self-brazing Mechanism of Aluminum Alloy at Medium Temperature

    Directory of Open Access Journals (Sweden)

    CHENG Fang-jie

    2018-01-01

    Full Text Available ZnCl2 and SnCl2 were added to the AlF3-CsF eutectic flux, which can be used for connecting aluminum alloy sheet by self-brazing at medium temperature. The influence of the amount of ZnCl2 and SnCl2 and the size of the T-joint area on the interface microstructure and the self-brazing joint mechanical properties was investigated. The interface microstructure, chemical compositions, defects and tensile fractography of the self-brazing joints were analyzed by metallographic microscope, scanning electron microscope and energy dispersive spectroscopy. The results show that the joints are soundly bonded when both the mass fractions of ZnCl2 and SnCl2 are about 4%; the replacement reactions between Zn2+, Sn2+ of flux and Al atoms of base metal occur during brazing, then the liquid metals of Sn and Zn appear, a great degree of Zn which has high solid solution with Al spreads rapidly to the base metal; Sn is distributed along the interface forming a low melting point metal layer with Zn and Al; the brazing of joints with small area can be realized easily; there are a lot of dimples on the fracture surface and the tensile strength of the brazing joint reaches (58±5MPa.

  11. Angular Spectra of Polarized Galactic Foregrounds

    OpenAIRE

    Cho, Jung; Lazarian, A.

    2003-01-01

    It is believed that magnetic field lines are twisted and bend by turbulent motions in the Galaxy. Therefore, both Galactic synchrotron emission and thermal emission from dust reflects statistics of Galactic turbulence. Our simple model of Galactic turbulence, motivated by results of our simulations, predicts that Galactic disk and halo exhibit different angular power spectra. We show that observed angular spectra of synchrotron emission are compatible with our model. We also show that our mod...

  12. The Effect of Increasing Sn Content on High-Temperature Mechanical Deformation of an Mg-3%Cu-1%Ca Alloy

    Directory of Open Access Journals (Sweden)

    Georgios S.E. Antipas

    2013-11-01

    Full Text Available Chill casting of magnesium alloy samples with secondary alloying elements of Cu, Ca and Sn at % w.t. concentrations in the range 1–5, 0.1–5 and 0.1–3 respectively, gave rise to appreciably enhanced resistance to high-temperature creep, while maintaining good heat conductivity. The latter was considered to be driven by Cu and Mg-Cu intermetallics while it was clear that Sn mediated the high-temperature performance, mainly via networks of Mg2Sn and MgCaSn precipitates along the Mg matrix grain boundaries. It was postulated that Sn formed intermetallics by preferential substitution of Ca atoms and, thus, did not degrade the heat conductivity by retaining Cu. The % w.t. stoichiometry with the optimum combination of heat conductivity and resistance to high-temperature creep was found to be Mg-3Cu-1Ca-0.1Sn.

  13. Tracing the Chemical Evolution of Metal-rich Galactic Bulge Globular Clusters

    Science.gov (United States)

    Munoz Gonzalez, Cesar; Saviane, Ivo; Geisler, Doug; Villanova, Sandro

    2018-01-01

    We present in this poster the metallicity characterization of the four metal rich Bulge Galactic Gobular Clusters, which have controversial metallicities. We analyzed our high-resolution spectra (using UVES-580nm and GIRAFFE-HR13 setups) for a large sample of RGB/AGB targets in each cluster in order to measure their metallicity and prove or discard the iron spread hypothesis. We have also characterized chemically stars with potentially different iron content by measuring light (O, Na, Mg, Al), alpha (Si, Ca, Ti), iron–peak (V, Cr, Ni, Mn) and s and r process (Y, Zr, Ba, Eu) elements. We have identified possible channels responsible for the chemical heterogeneity of the cluster populations, like AGB or massive fast-rotating stars contamination, or SN explosion. Also, we have analyzed the origin and evolution of these bulge GCs and their connection with the bulge itself.

  14. The propagation of galactic cosmic rays

    International Nuclear Information System (INIS)

    Hall, A.N.

    1981-01-01

    Large scale (approximately 15 pc) turbulence in the interstellar medium (ISM) causes the firehose and mirror instabilities to occur. These produce small scale (approximately 10 -7 pc) magnetic irregularities, which scatter cosmic rays. We use pulsar scintillation data, and a model of the origin of these scintillations, to construct a slab model of the turbulent ISM. Then we find the amplitudes and wavelengths of the magnetic irregularities that arise, and we calculate the coefficients for the diffusion of cosmic rays along the interstellar magnetic fields. We incorporate this diffusion into our model of the turbulent ISM, and show that it can account naturally for both the lifetime of low energy cosmic rays, and the variation of their mean pathlength with energy. Our model has no galactic halo, and contains no scattering by Alfven waves. (author)

  15. Isomer shifts and chemical bonding in crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    First-principles self-consistent Local Density calculations of the electronic structure of clusters representing Sn(II) (SnO, SnF 2 , SnS, SnSe) and Sn(IV) (SnO 2 , SnF 4 ) crystalline compounds were performed. Values of the electron density at the Sn nucleus were obtained and related to measured values of the Moessbauer Isomer Shifts reported in the literature. The nuclear parameter of 119 Sn derived was ΔR/R=(1.58±0.14)x10 -4 . The chemical bonding in the solids was analysed and related to the electron densities obtained. (author)

  16. A Disturbed Galactic Duo

    Science.gov (United States)

    2011-04-01

    The galaxies in this cosmic pairing, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, display some curious features, demonstrating that each member of the duo is close enough to feel the distorting gravitational influence of the other. The gravitational tug of war has warped the spiral shape of one galaxy, NGC 3169, and fragmented the dust lanes in its companion NGC 3166. Meanwhile, a third, smaller galaxy to the lower right, NGC 3165, has a front-row seat to the gravitational twisting and pulling of its bigger neighbours. This galactic grouping, found about 70 million light-years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's arms, shining bright with big, young, blue stars, have been teased apart, and lots of luminous gas has been drawn out from its disc. In NGC 3166's case, the dust lanes that also usually outline spiral arms are in disarray. Unlike its bluer counterpart, NGC 3166 is not forming many new stars. NGC 3169 has another distinction: the faint yellow dot beaming through a veil of dark dust just to the left of and close to the galaxy's centre [1]. This flash is the leftover of a supernova detected in 2003 and known accordingly as SN 2003cg. A supernova of this

  17. Probing the Outflowing Multiphase Gas ∼1 kpc below the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Blair D.; Kim, Tae-Sun; Wakker, Bart P. [Department of astronomy, University of Wisconsin, Madison, 475 North Charter Street, Madison, WI 53706 (United States); Fox, Andrew J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Massa, Derck [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Bordoloi, Rongmon [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Jenkins, Edward B. [Princeton University Observatory, Princeton, NJ 08544 (United States); Lehner, Nicolas [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Bland-Hawthorn, Joss [Institute of Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Lockman, Felix J. [Green Bank Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Hernandez, Svea [Department of Astrophysics, Radboud University, Nijmegen, PO Box 9010, 6500 GL Nijmegen (Netherlands)

    2017-10-01

    Comparison of interstellar medium (ISM) absorption in the UV spectrum of LS 4825, a B1 Ib−II star d  = 21 ± 5 kpc from the Sun toward l  = 1.°67 and b  = −6.°63, with ISM absorption toward an aligned foreground star at d  < 7.0 ± 1.7 kpc, allows us to isolate and study gas associated with the Milky Way nuclear wind. Spectra from the Space Telescope Imaging Spectrograph show low-ionization absorption out to d  < 7 kpc (e.g., O i, C ii, Mg ii, Si ii, Fe ii, S ii) only between 0 and 40 km s{sup −1}, while absorption at d  > 7 kpc, ∼1 kpc below the Galactic plane, is complex and spans −290 to +94 km s{sup −1}. The intermediate and high ions Si iii, C iv, Si iv, and N v show extremely strong absorption with multiple components from −283 to 107 km s{sup −1}, implying that the ISM ∼1 kpc below the Galactic center has a substantial reservoir of plasma and more gas containing C iv and N v than in the Carina OB1 association at z  = 0 kpc. Abundances and physical conditions are presented for many absorption components. The high ion absorption traces cooling transition temperature plasma probably driven by the outflowing hot gas, while the extraordinarily large thermal pressure, p / k  ∼ 10{sup 5} cm{sup −3} K{sup −1}, in an absorption component at −114 km s{sup −1} probably arises from the ram pressure of the outflowing hot gas. The observations are consistent with a flow whose ionization structure in the high ions can be understood through a combination of nonequilibrium radiative cooling and turbulent mixing.

  18. A magnetic torsional wave near the Galactic Centre traced by a 'double helix' nebula.

    Science.gov (United States)

    Morris, Mark; Uchida, Keven; Do, Tuan

    2006-03-16

    The magnetic field in the central few hundred parsecs of the Milky Way has a dipolar geometry and is substantially stronger than elsewhere in the Galaxy, with estimates ranging up to a milligauss (refs 1-6). Characterization of the magnetic field at the Galactic Centre is important because it can affect the orbits of molecular clouds by exerting a drag on them, inhibit star formation, and could guide a wind of hot gas or cosmic rays away from the central region. Here we report observations of an infrared nebula having the morphology of an intertwined double helix about 100 parsecs from the Galaxy's dynamical centre, with its axis oriented perpendicular to the Galactic plane. The observed segment is about 25 parsecs in length, and contains about 1.25 full turns of each of the two continuous, helically wound strands. We interpret this feature as a torsional Alfvén wave propagating vertically away from the Galactic disk, driven by rotation of the magnetized circumnuclear gas disk. The direct connection between the circumnuclear disk and the double helix is ambiguous, but the images show a possible meandering channel that warrants further investigation.

  19. Large scale features of the hot component of the interstellar medium

    International Nuclear Information System (INIS)

    Garmire, G.P.

    1983-01-01

    The interstellar medium contains identifiable hot plasma clouds occupying up to about 35% of the volume of the local galactic disc. The temperature of these clouds is not uniform but ranges from 10 5 up to 4 x 10 6 K. Besides the high temperature which places the emission spectrum in the soft X-ray band, the implied pressure of the hot plasma compared to the cooler gas reveals the importance of this component in determining the motions and evolution of the cooler gas in the disc, as well as providing a source of hot gas which may extend above the galactic disc to form a corona. The author presents data from the A-2 soft X-ray experiment on the HEAO-1 spacecraft concerning the large scale features of this gas. These features are interpreted in terms of the late phases of supernovae expansion, multiple supernovae and the possible creation of a hot halo surrounding the region of the galactic nucleus. (Auth.)

  20. States in 118Sn from 117Sn(d,p) 118Sn at 12 MeV

    International Nuclear Information System (INIS)

    Frota-Pessoa, E.

    1983-01-01

    118 Sn energy levels up to = 5.2 MeV excitation energy are studied in the reaction 117 Sn (d,p) 118 Sn. Deuterons had a bombarding energy of 12 MeV. The protons were analized by a magnetic spectrograph. The detector was nuclear emulsion and the resolution in energy about 10 KeV. The distorted-wave analysis was used to determine l values and spectroscopic strengths. Centers of gravity and the sums of reduced spectroscopic factors are presented for the levels when it was possible to determine the S' value. 66 levels of excitation energy were found which did not appear in previous 117 Sn (d,p) reactions. 40 levels were not found previously in any reaction giving 118 Sn. The results are compared with the known ones. (Author) [pt

  1. Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine

    Science.gov (United States)

    Bai, Shouli; Liu, Chengyao; Luo, Ruixian; Chen, Aifan

    2018-04-01

    The SnO2/NiO composites were synthesized by hydrothermal followed by calcination using metal-organic framework (MOF) consisting of the ligand of p-benzene-dicarboxylic acid (PTA) and the Sn and Ni center ions as sacrificial templates. The structure and morphology of Sn/Ni-based MOF and SnO2/NiO composites were characterized by XRD, SEM, TEM, FT-IR, TG, XPS and Brunauer-Emmett-Teller analysis. Sensing experiments reveal that the SnO2/NiO composite with the molar ratio of 9:1 not only exhibits the highest response of 14.03 that is 3 times higher than pristine SnO2 to triethylamine at 70 °C, but also shows good selectivity. Such excellent performance is attributed to the MOF-driven strategy and the formation of p-n heterojunctions, because the metal ions can be highly dispersed and separated in the MOFs and can prevent the metal ions aggregation during the MOF decomposition process. The work is a novel route for synthesis of gas sensing material.

  2. Galactic vs. extragalactic origin of the peculiar transient SCP 06F6

    Science.gov (United States)

    Soker, Noam; Frankowski, Adam; Kashi, Amit

    2010-02-01

    We study four scenarios for the SCP 06F6 transient event that was announced recently. Some of these were previously briefly discussed as plausible models for SCP 06F6, in particular with the claimed detection of a z = 0.143 cosmological redshift of a Swan spectrum of a carbon rich envelope. We adopt this value of z for extragalactic scenarios. We cannot rule out any of these models, but can rank them from most to least preferred. Our favorite model is a tidal disruption of a CO white dwarf (WD) by an intermediate-mass black hole (IMBH). To account for the properties of the SCP 06F6 event, we have to assume the presence of a strong disk wind that was not included in previous numerical simulations. If the IMBH is the central BH of a galaxy, this explains the non-detection of a bright galaxy in the direction of SCP 06F6. Our second favorite scenario is a type Ia-like SN that exploded inside the dense wind of a carbon star. The carbon star is the donor star of the exploded WD. Our third favorite model is a Galactic source of an asteroid that collided with a WD. Such a scenario was discussed in the past as the source of dusty disks around WDs, but no predictions exist regarding the appearance of such an event. Our least favorite model is of a core collapse SN. The only way we can account for the properties of SCP 06F6 with a core collapse SN is if we assume the occurrence of a rare type of binary interaction.

  3. GALACTIC COSMIC RAYS IN THE LOCAL INTERSTELLAR MEDIUM: VOYAGER 1 OBSERVATIONS AND MODEL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, A. C.; Stone, E. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Heikkila, B. C.; Lal, N. [Goddard Space Flight Center. Greenbelt, MD 20771 (United States); Webber, W. R. [New Mexico State University, Las Cruces, NM 88003 (United States); Jóhannesson, G. [University of Iceland, Reykjavik (Iceland); Moskalenko, I. V.; Orlando, E.; Porter, T. A. [HEPL and KIPAC, Stanford University, Stanford, CA 94305 (United States)

    2016-11-01

    Since 2012 August Voyager 1 has been observing the local interstellar energy spectra of Galactic cosmic-ray nuclei down to 3 MeV nuc{sup -1} and electrons down to 2.7 MeV. The H and He spectra have the same energy dependence between 3 and 346 MeV nuc{sup -1}, with a broad maximum in the 10–50 MeV nuc{sup -1} range and a H/He ratio of 12.2 ± 0.9. The peak H intensity is ∼15 times that observed at 1 AU, and the observed local interstellar gradient of 3–346 MeV H is -0.009 ± 0.055% AU{sup -1}, consistent with models having no local interstellar gradient. The energy spectrum of electrons ( e {sup -} + e {sup +}) with 2.7–74 MeV is consistent with E {sup -1.30±0.05} and exceeds the H intensity at energies below ∼50 MeV. Propagation model fits to the observed spectra indicate that the energy density of cosmic-ray nuclei with >3 MeV nuc{sup -1} and electrons with >3 MeV is 0.83–1.02 eV cm{sup -3} and the ionization rate of atomic H is in the range of 1.51–1.64 × 10{sup -17} s{sup -1}. This rate is a factor >10 lower than the ionization rate in diffuse interstellar clouds, suggesting significant spatial inhomogeneity in low-energy cosmic rays or the presence of a suprathermal tail on the energy spectrum at much lower energies. The propagation model fits also provide improved estimates of the elemental abundances in the source of Galactic cosmic rays.

  4. Peering Through the Muck: Notes on the the Influence of the Galactic Interstellar Medium on Extragalactic Observations

    Science.gov (United States)

    Lockman, Felix J.

    This paper considers some effects of foreground Galactic gas on radiation received from extragalactic objects, with an emphasis on the use of the 21cm line to determine the total N(HI). In general, the opacity of the 21cm line makes it impossible to derive an accurate value of N(HI) by simply applying a formula to the observed emission, except in directions where there is very little interstellar matter. The 21cm line can be used to estimate the likelihood that there is significant molecular hydrogen in a particular direction, but carries little or no information on the amount of ionized gas, which can be a major source of foreground effects. Considerable discussion is devoted to the importance of small-scale angular structure in HI, with the conclusion that it will rarely contribute significantly to the total error compared to other factors (such as the effects of ionized gas) for extragalactic sight lines at high Galactic latitude. The direction of the Hubble/Chandra Deep Field North is used as an example of the complexities that might occur even in the absence of opacity or molecular gas.

  5. Oxidation of Pb-Sn and Pb-Sn-In alloys

    International Nuclear Information System (INIS)

    Sluzewski, D.A.; Chang, Y.A.; Marcotte, V.C.

    1990-01-01

    Air oxidized Pb-Sn and Pb-Sn-In single phase alloys have been studied with scanning Auger microscopy. Line scans across grain boundaries combined with argon ion sputter etching revealed grain boundary oxidation. In the Pb-Sn samples, tin is preferentially oxidized with the grain boundary regions having a much higher percentage of tin oxide than the bulk surface oxide. In the Pb-Sn-In alloys, both tin and indium are preferentially oxidized with the grain boundary regions being enriched with tin and indium oxides

  6. Gamma ray astronomy and the origin of galactic cosmic rays

    International Nuclear Information System (INIS)

    Gabici, Stefano

    2011-01-01

    Diffusive shock acceleration operating at expanding supernova remnant shells is by far the most popular model for the origin of galactic cosmic rays. Despite the general consensus received by the model, an unambiguous and conclusive proof of the supernova remnant hypothesis is still missing. In this context, the recent developments in gamma ray astronomy provide us with precious insights into the problem of the origin of galactic cosmic rays, since production of gamma rays is expected both during the acceleration of cosmic rays at supernova remnant shocks and during their subsequent propagation in the interstellar medium. In particular, the recent detection of a number of supernova remnants at TeV energies nicely fits with the model, but it still does not constitute a conclusive proof of it, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma ray emission. The main goal of my research is to search for an unambiguous and conclusive observational test for proving (or disproving) the idea that supernova remnants are the sources of galactic cosmic rays with energies up to (at least) the cosmic ray knee. Our present comprehension of the mechanisms of particle acceleration at shocks and of the propagation of cosmic rays in turbulent magnetic fields encourages beliefs that such a conclusive test might come from future observations of supernova remnants and of the Galaxy in the almost unexplored domain of multi-TeV gamma rays. (author)

  7. The superbubble model for Li, Be and B production and Galactic evolution

    OpenAIRE

    Parizot, Etienne; Drury, Luke

    2000-01-01

    We show that the available constraints relating to $^{6}$LiBeB Galactic evolution can be accounted for by the so-called superbubble model, according to which particles are efficiently accelerated inside superbubbles out of a mixture of supernova ejecta and ambient interstellar medium. The corresponding energy spectrum is required to be flat at low energy (in E^-1 below 500 MeV/n, say), as expected from Bykov's acceleration mechanism. The only free parameter is also found to have the value exp...

  8. Analyses of the Sn IX-Sn XII spectra in the EUV region

    International Nuclear Information System (INIS)

    Churilov, S S; Ryabtsev, A N

    2006-01-01

    The Sn IX-Sn XII spectra excited in a vacuum spark have been analysed in the 130-160 A wavelength region. The analysis was based on the energy parameter extrapolation in the isonuclear Sn VI-VIII and Sn XIII-XIV sequence. 266 spectral lines belonging to the 4d m -(4d m-1 4f+4p 5 4d m+1 ) (m=6-3) transition arrays were classified in the Sn IX-Sn XII spectra for the first time. All 18 level energies of the 4d 3 configuration and 39 level energies of the strongly interacting 4d 2 4f and 4p 5 4d 4 configurations were established in the Sn XII spectrum. The energy differences between the majority of the 4d m levels and about 40 levels of the 4d m-1 4f+4p 5 4d m+1 configurations were determined in each of the Sn IX, Sn X and Sn XI spectra (m=6-4). As a result, all intense lines were classified in the 130-140 A region relevant to the extreme ultraviolet (EUV) lithography. It was shown that the most of the intense lines in the 2% bandwidth at 135 A belong to the transitions in the Sn XI-Sn XIII spectra

  9. High-Resolution X-Ray Spectroscopy of Galactic Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Satoru Katsuda

    2014-12-01

    Full Text Available High-resolution X-ray spectroscopy of Galactic supernova remnants (SNRs, based on grating spectrometers onboard XMM-Newton and Chandra, has been revealing a variety of new astrophysical phenomena. Broadened oxygen lines for a northwestern compact knot in SN 1006 clearly show a high oxygen temperature of ~300 keV. The high temperature together with a lower electron temperature (kTe ~ 1 keV can be reasonably interpreted as temperature non-equilibration between electrons and oxygen behind a collisionless shock. An ejecta knot in the Puppis A SNR shows blueshifted line emission by ~ 1500kms-1. The line widths are fairly narrow in contrast to the SN 1006's knot; an upper limit of 0.9 eV is obtained for O VIII Lyα, which translates to an oxygen temperature of kTO < 30 keV. The low temperature suggests that the knot was heated by a reverse shock whose velocity is 4 times slower than that of a forward shock. Anomalous intensity ratios in O VII Heα lines, i.e., a stronger forbidden line than a resonance line, is found in a cloud-shock interaction region in Puppis A. The line ratio can be best explained by the charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. There are several other targets for which we plan to analyze high-quality grating data prior to the operation of the soft X-ray spectrometer onboard Astro-H.

  10. Rod-like hierarchical Sn/SnOx@C nanostructures with enhanced lithium storage properties

    Science.gov (United States)

    Yang, Juan; Chen, Sanmei; Tang, Jingjing; Tian, Hangyu; Bai, Tao; Zhou, Xiangyang

    2018-03-01

    Rod-like hierarchical Sn/SnOx@C nanostructures have been designed and synthesized via calcining resorcinol-formaldehyde (RF) resin coated Sn-based metal-organic frameworks. The rod-like hierarchical Sn/SnOx@C nanostructures are made of a great number of carbon-wrapped primary Sn/SnOx nanospheres of 100-200 nm in diameter. The as-prepared hierarchical Sn/SnOx@C nanocomposite manifests a high initial reversible capacity of 1177 mAh g-1 and remains 1001 mAh g-1 after 240 cycles at a current density of 200 mA g-1. It delivers outstanding high-rate performance with a reversible capacity of 823 mAh g-1 even at a high current density of 1000 mA g-1. The enhanced electrochemical performances of the Sn/SnOx@C electrode are mainly attributed to the synergistic effect of the unique hierarchical micro/nanostructures and the protective carbon layer.

  11. ToO Galactic Nova -- Michelle ``Quick Response''

    Science.gov (United States)

    Helton, L. Andrew; Woodward, Chick; Evans, Nye; Geballe, Tom; Spitzer Nova Team

    2006-08-01

    Stars are the engines of energy production and chemical evolution in our Universe, depositing radiative and mechanical energy into their environments and enriching the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CN) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. We propose to obtain mid-IR spectra of a new galactic CN in outburst to investigate aspects of the CN phenomenon including the in situ formation and mineralogy of nova dust and the elemental abundances resulting from thermonuclear runaway. Synoptic, high S/N Michelle spectra permit: 1) determination of the grain size distribution and mineral composition of nova dust; 2) estimation of chemical abundances of nova ejecta from coronal and other emission line spectroscopy; and 3) measurement of the density and masses of the ejecta. This Gemini `Target of Opportunity' initiative (trigger K=5- 8 mag, assuming adequate PWFS guide stars exist) complements our extensive Spitzer, Chandra, Swift, XMM-Newton CN DDT/ToO programs.

  12. Spectrophotometric determination of Sn+2 in lyophilized kit for labeling with 99mTc

    International Nuclear Information System (INIS)

    Araujo, Elaine Bortoleti; Sampel, Carolina Judith; Melo, Ivani Bortoleti; Okamoto, Miriam R.Y; Silva, Constancia P.G

    2004-01-01

    The preparation of 99 mTc labeled radiopharmaceuticals depends on the reduction of the technetium pertechnetate, commonly by stannous chloride (SnCl 2 ). The determination of the Sn +2 contents in the lyophilized preparations represents an important quality control procedure that may be applied to the process and to the final product. The objective os this work is the optimization of an spectrophotometric assay to the determination os Sn +2 contents in a citrate-stannous lyophilized kit for 99 mTc labeling. The spectrophotometric methodology employed is based in the colour development when Sn +2 reacts with sodium molybdate in the presence of potasium thiocyanate in chloridric medium. The colourfull reaction studied showed high stability after 60 minutes of the mixtures preparation. The sequence of reagents introduction in the reaction mixture was determinant to the assay. The molibdenium-stannous-tiocianate sequence produces calibration curves with good correlations (R2 ≥ 0.99). The concentrations of the molibdenium solution was also studied, in order to determine a ideal concentration for the Sn +2 range. The spectrophotometric method studied was usefull to the determination of Sn +2 content in different batches of citrate-stannous preparations. The method was fast and easy and can be applied to different stages of the production process, in order to guarantee the content of Sn +2 in the preparations (Au)

  13. Determination of a new structure type in the Sc–Fe–Ge–Sn system

    International Nuclear Information System (INIS)

    Brgoch, Jakoah; Ran, Sheng; Thimmaiah, Srinivasa; Canfield, Paul C.; Miller, Gordon J.

    2013-01-01

    Highlights: ► A new structure type with the composition Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) . ► Crystallizes in the space group Immm (No. 71, oI144). ► Sample obtained using a reactive Sn flux. ► Electronic structure calculations indicate polar intermetallic bonding network. - Abstract: A new structure type has been discovered in the system Sc–Fe–Ge–Sn by employing Sn as a flux medium. According to single crystal X-ray diffraction, the new structure has a composition of Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) and crystallizes in the space group Immm (No. 71, oI144) with lattice parameters of a = 5.230(1) Å, b = 13.467(3) Å, and c = 30.003(6) Å. The structure is composed of square anti-prismatic clusters that are condensed into zig-zag chains along the [0 1 0] direction. These chains are further condensed through a split Sn/Ge position, forming a three-dimensional network. Magnetization measurements indicate an antiferromagnetic phase transition near 240 K. Electronic structure calculations identified the most favorable bonding network in this new system. Using crystal orbital Hamilton population (COHP) curves and their integrated values (ICOHP), a polar intermetallic bonding network involving Sc–Ge as well as Fe–Sn and Fe–Ge contacts can be assigned to this new structure type.

  14. PROBING THE ROLE OF CARBON IN ULTRAVIOLET EXTINCTION ALONG GALACTIC SIGHT LINES

    Energy Technology Data Exchange (ETDEWEB)

    Parvathi, V. S.; Babu, B. R. S. [Department of Physics, University of Calicut, Kerala 673635 (India); Sofia, U. J. [Department of Physics, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016 (United States); Murthy, J., E-mail: veena.makesh@gmail.com, E-mail: brsbabu@gmail.com, E-mail: sofia@american.edu, E-mail: jmurthy@yahoo.com [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034 (India)

    2012-11-20

    We report previously undetermined interstellar gas and dust-phase carbon abundances along 15 Galactic sight lines based on archival data of the strong 1334.5323 A transition observed with the Space Telescope Imaging Spectrograph. These are combined with previously reported carbon measurements along six sight lines to produce a complete sample of interstellar C II measurements determined with the 1334 A transition. Our data set includes a variety of Galactic disk environments characterized by different extinctions and samples paths ranging over three orders of magnitude in average density of hydrogen ((n(H))). Our data support the idea that dust, specifically carbon-based grains, are processed in the neutral interstellar medium. We, however, do not find that the abundance of carbon in dust or the grain-size distribution is related to the strength of the 2175 A bump. This is surprising, given that many current models have polycyclic aromatic hydrocarbons as the bump-producing dust.

  15. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes.

    Science.gov (United States)

    Zaborowska, Justyna; Taylor, Alice; Roeder, Robert G; Murphy, Shona

    2012-01-01

    Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.

  16. Study of the strongly ionized medium in active galactic n ('Warm Absorber'): multi-wavelength modelling and plasma diagnostics in the X-ray spectral range

    International Nuclear Information System (INIS)

    Porquet, Delphine

    1999-01-01

    The so-called 'Warm Absorber' medium is observed in the central region of Active Galactic Nuclei and particularly in Seyfert l galaxies. lt is mainly characterized by O(VII) and O(VIII) absorption edges detected in the soft X-rays. Its study (modelization and observation) is an important key tool to understand Active Galactic Nuclei. The work presented here consists in modelling the Warm Absorber, and in developing X-ray spectroscopy diagnostics to constrain the physical parameters of any hot medium such as the Warm Absorber. The physical parameters of the Warm Absorber (density, temperature, ionization processes..) are difficult to determine only on the basis of present X-ray data. In particular, the value of the density cannot be derived only from the modelling of the resonance lines and of the soft X-ray absorption edges since there are almost insensitive to the density in the range of values expected for the Warm Absorber. lt is why we have developed diagnostic methods based on a multi-wavelength approach. The modelling is made with two complementary computational codes: PEGAS, and IRIS which takes into account the most accurate atomic data. With these two codes, we have modelled several types of plasma ionisation processes (photoionized plasmas and/or collisional). Results for the Warm Absorber were compared to multi-wavelength observations (mainly the optical iron coronal lines [Fe X] 6375 Angstroms, [Fe XI] 7892 Angstroms, and [Fe XIV] 5303 Angstroms). The proposed method has allowed to show that the Warm Absorber could be responsible of the emission of these lines totally or partially. All models of the Warm Absorber producing coronal line equivalent widths larger than observed were ruled out. This strongly constrains the physical parameters of the Warm Absorber, and particularly its density (n H ≥10 10 cm -3 ). The new generation of X-ray satellites (Chandra/AXAF, XMM...) will produce spectra at high spectral resolution and high sensitivity

  17. DRIVING OUTFLOWS WITH RELATIVISTIC JETS AND THE DEPENDENCE OF ACTIVE GALACTIC NUCLEUS FEEDBACK EFFICIENCY ON INTERSTELLAR MEDIUM INHOMOGENEITY

    International Nuclear Information System (INIS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2012-01-01

    We examine the detailed physics of the feedback mechanism by relativistic active galactic nucleus (AGN) jets interacting with a two-phase fractal interstellar medium (ISM) in the kpc-scale core of galaxies using 29 three-dimensional grid-based hydrodynamical simulations. The feedback efficiency, as measured by the amount of cloud dispersal generated by the jet-ISM interactions, is sensitive to the maximum size of clouds in the fractal cloud distribution but not to their volume filling factor. Feedback ceases to be efficient for Eddington ratios P jet /L edd ∼ –4 , although systems with large cloud complexes ∼> 50 pc require jets of Eddington ratio in excess of 10 –2 to disperse the clouds appreciably. Based on measurements of the bubble expansion rates in our simulations, we argue that sub-grid AGN prescriptions resulting in negative feedback in cosmological simulations without a multi-phase treatment of the ISM are good approximations if the volume filling factor of warm-phase material is less than 0.1 and the cloud complexes are smaller than ∼25 pc. We find that the acceleration of the dense embedded clouds is provided by the ram pressure of the high-velocity flow through the porous channels of the warm phase, flow that has fully entrained the shocked hot-phase gas it has swept up, and is additionally mass loaded by ablated cloud material. This mechanism transfers 10% to 40% of the jet energy to the cold and warm gas, accelerating it within a few 10 to 100 Myr to velocities that match those observed in a range of high- and low-redshift radio galaxies hosting powerful radio jets.

  18. Synthesis, characterization and photocatalytic performance of SnS nanofibers and SnSe nanofibers derived from the electrospinning-made SnO{sub 2} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li; Li, Dan; Dong, Xiangting; Ma, Qianli; Yu, Wensheng; Wang, Xinlu; Yu, Hui; Wang, Jinxian; Liu, Guixia, E-mail: dongxiangting888@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun (China)

    2017-11-15

    SnO{sub 2} nanofibers were fabricated by calcination of the electrospun PVP/SnCl{sub 4} composite nanofibers. For the first time, SnS nanofibers and SnSe nanofibers were successfully synthesized by double crucible sulfurization and selenidation methods via inheriting the morphology of SnO{sub 2} nanofibers used as precursors, respectively. X-ray diffraction (XRD) analysis shows SnS nanofibers and SnSe nanofibers are respectively pure orthorhombic phase with space group of Pbnm and Cmcm. Scanning electron microscope (SEM) observation indicates that the diameters of SnS nanofibers and SnSe nanofibers are respectively 140.54±12.80 nm and 96.52±14.17 nm under the 95 % confidence level. The photocatalytic activities of samples were studied by using rhodamine B (Rh B) as degradation agent. When SnS or SnSe nanofibers are employed as the photocatalysts, the respective degradation rates of Rh B solution under the ultraviolet light irradiation after 200 min irradiation are 92.55 % and 92.86 %. The photocatalytic mechanism and formation process of SnS and SnSe nanofibers are also provided. More importantly, this preparation technique is of universal significance to prepare other metal chalcogenides nanofibers. (author)

  19. Sn-In-Ag phase equilibria and Sn-In-(Ag)/Ag interfacial reactions

    International Nuclear Information System (INIS)

    Chen Sinnwen; Lee Wanyu; Hsu Chiaming; Yang Chingfeng; Hsu Hsinyun; Wu Hsinjay

    2011-01-01

    Research highlights: → Thermodynamic models of Sn-In and Sn-In-Ag are developed using the CALPHAD approach. → Reaction layer in the Sn-In-(Ag)/Ag couples at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. → Reactions in the Sn-20 wt%In-2.8 wt%Ag/Ag couples are faster than those in the Sn-20 wt%In/Ag couples. - Abstract: Experimental verifications of the Sn-In and Sn-In-Ag phase equilibria have been conducted. The experimental measurements of phase equilibria and thermodynamic properties are used for thermodynamic modeling by the CALPHAD approach. The calculated results are in good agreement with experimental results. Interfacial reactions in the Sn-In-(Ag)/Ag couples have been examined. Both Ag 2 In and AgIn 2 phases are formed in the Sn-51.0 wt%In/Ag couples reacted at 100 and 150 deg. C, and only the Ag 2 In phase is formed when reacted at 25, 50 and 75 deg. C. Due to the different growth rates of different reaction phases, the reaction layer at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. In the Sn-20.0 wt%In/Ag couples, the ζ phase is formed at 250 deg. C and ζ/AgIn 2 phases are formed at 125 deg. C. Compared with the Sn-20 wt%In/Ag couples, faster interfacial reactions are observed in the Sn-20.0 wt%In-2.8 wt%Ag/Ag couples, and minor Ag addition to Sn-20 wt%In solder increases the growth rates of the reaction phases.

  20. Magnetic behaviour of cerium in Ce2 Sn5 and Ce3 Sn7, surstructures of Ce Sn3

    International Nuclear Information System (INIS)

    Stunault, A.

    1988-07-01

    The compound studied, Ce 2 Sn 5 and Ce 3 Sn 7 are both orthorhombic, surstructure of cubic Ce Sn 3 . Magnetic susceptibility measurements show in both compounds an antiferromagnetic order at low temperature and magnetization shows a high anisotropy. Magnetization densities are determined by polarized neutron diffraction. The cerium site which has two Ce atoms as nearest neighbourgs carries all the magnetism in both structures. For Ce 2 Sn 5 moments are directed as the high magnetization axis and structure is modulated. Ce 3 Sn 7 presents a simple antiferromagnetic order but moment are directed as low magnetization axis. Various transitions towards a ferromagnetic order are presented. Results are interpreted by measuring the difference between energy levels of crystalline field. A model of crystalline field and isotrope exchange agrees well with Ce 3 Sn 7 , but for Ce 2 Sn 7 it is necessary to reduce the magnetic moment which is typical of the Kondo effect [fr

  1. MEASURING DETAILED CHEMICAL ABUNDANCES FROM CO-ADDED MEDIUM-RESOLUTION SPECTRA. I. TESTS USING MILKY WAY DWARF SPHEROIDAL GALAXIES AND GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Yang Lei; Peng, Eric W.; Kirby, Evan N.; Guhathakurta, Puragra; Cheng, Lucy

    2013-01-01

    The ability to measure metallicities and α-element abundances in individual red giant branch (RGB) stars using medium-resolution spectra (R ≈ 6000) is a valuable tool for deciphering the nature of Milky Way dwarf satellites and the history of the Galactic halo. Extending such studies to more distant systems like Andromeda is beyond the ability of the current generation of telescopes, but by co-adding the spectra of similar stars, we can attain the necessary signal-to-noise ratio (S/N) to make detailed abundance measurements. In this paper, we present a method to determine metallicities and α-element abundances using the co-addition of medium-resolution spectra. We test the method of spectral co-addition using high-S/N spectra of more than 1300 RGB stars from Milky Way globular clusters and dwarf spheroidal galaxies obtained with the Keck II telescope/DEIMOS spectrograph. We group similar stars using photometric criteria and compare the weighted ensemble average abundances ([Fe/H], [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) of individual stars in each group with the measurements made on the corresponding co-added spectrum. We find a high level of agreement between the two methods, which permits us to apply this co-added spectra technique to more distant RGB stars, like stars in the M31 satellite galaxies. This paper outlines our spectral co-addition and abundance measurement methodology and describes the potential biases in making these measurements.

  2. One-Pot Synthesis of Carbon-Coated SnO 2 Nanocolloids with Improved Reversible Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen

    2009-07-14

    We report a simple glucose-mediated hydrothermal method for gram-scale synthesis of nearly monodisperse hybrid SnO 2 nanoparticles. Glucose is found to play the dual role of facilitating rapid precipitation of polycrystalline SnO 2 nanocolloids and in creating a uniform, glucose-derived, carbon-rich polysaccharide (GCP) coating on the SnO 2 nanocores. The thickness of the GCP coating can be facilely manipulated by varying glucose concentration in the synthesis medium. Carbon-coated SnO 2 nanocolloids obtained after carbonization of the GCP coating exhibit significantly enhanced cycling performance for lithium storage. Specifically, we find that a capacity of ca. 440 mA h/g can be obtained after more than 100 charge/discharge cycles at a current density of 300 mA/g in hybrid SnO 2-carbon electrodes containing as much as 1/3 of their mass in the low-activity carbon shell. By reducing the SnO 2-carbon particles with H 2, we demonstrate a simple route to carbon-coated Sn nanospheres. Lithium storage properties of the latter materials are also reported. Our results suggest that large initial irreversible losses in these materials are caused not only by the initial, presumably irreversible, reduction of SnO 2 as generally perceived in the field, but also by the formation of the solid electrolyte interface (SEI). © 2009 American Chemical Society.

  3. GROWTH OF A LOCALIZED SEED MAGNETIC FIELD IN A TURBULENT MEDIUM

    International Nuclear Information System (INIS)

    Cho, Jungyeon; Yoo, Hyunju

    2012-01-01

    Turbulence dynamo deals with the amplification of a seed magnetic field in a turbulent medium and has been studied mostly for uniform or spatially homogeneous seed magnetic fields. However, some astrophysical processes (e.g., jets from active galaxies, galactic winds, or ram-pressure stripping in galaxy clusters) can provide localized seed magnetic fields. In this paper, we numerically study amplification of localized seed magnetic fields in a turbulent medium. Throughout the paper, we assume that the driving scale of turbulence is comparable to the size of the system. Our findings are as follows. First, turbulence can amplify a localized seed magnetic field very efficiently. The growth rate of magnetic energy density is as high as that for a uniform seed magnetic field. This result implies that magnetic field ejected from an astrophysical object can be a viable source of a magnetic field in a cluster. Second, the localized seed magnetic field disperses and fills the whole system very fast. If turbulence in a system (e.g., a galaxy cluster or a filament) is driven at large scales, we expect that it takes a few large-eddy turnover times for the magnetic field to fill the whole system. Third, growth and turbulence diffusion of a localized seed magnetic field are also fast in high magnetic Prandtl number turbulence. Fourth, even in decaying turbulence, a localized seed magnetic field can ultimately fill the whole system. Although the dispersal rate of the magnetic field is not fast in purely decaying turbulence, it can be enhanced by an additional forcing.

  4. A linear analytical study of Soret-driven ferrothermohaline convection in an anisotropic porous medium

    International Nuclear Information System (INIS)

    Sekar, R.; Raju, K.; Vasanthakumari, R.

    2013-01-01

    The Soret-driven ferrothermoconvective instability of multi- component fluid in an anisotropic porous medium heated from below and salted from above has been analyzed using Brinkman model for various values of anisotropic parameter. The salinity effect is contained in magnetization and density of the ferrofluid and the system is assumed to have anisotropy in the vertical direction and isotropy in the horizontal direction. A small perturbation imparted on the basic state and a linear stability analysis is used for this model for which the normal mode technique is applied. The present analysis has been carried out through both stationary as well as oscillatory modes. The vertical anisotropy tends to destabilize the system. -- Highlights: ► We examine the effect of anisotropy and magnetization of convection in Soret effect. ► The system loses its stability for critical Rayleigh number for various parameters like R s and K 1 . ► The larger temperature difference is needed to guarantee the occurring of convection. ► The Soret effect plays a dominant role for the stability of the system

  5. Characterisation of Fecal Soap Fatty Acids, Calcium Contents, Bacterial Community and Short-Chain Fatty Acids in Sprague Dawley Rats Fed with Different sn-2 Palmitic Triacylglycerols Diets.

    Science.gov (United States)

    Wan, Jianchun; Hu, Songyou; Ni, Kefeng; Chang, Guifang; Sun, Xiangjun; Yu, Liangli

    2016-01-01

    The structure of dietary triacylglycerols is thought to influence fatty acid and calcium absorption, as well as intestinal microbiota population of the host. In the present study, we investigated the impact of palmitic acid (PA) esterified at the sn-2 position on absorption of fatty acid and calcium and composition of intestinal microorganisms in rats fed high-fat diets containing either low sn-2 PA (12.1%), medium sn-2 PA (40.4%) or high sn-2 PA (56.3%), respectively. Fecal fatty acid profiles in the soaps were measured by gas chromatography (GC), while fecal calcium concentration was detected by ICP-MS. The fecal microbial composition was assessed using a 16S rRNA high-throughput sequencing technology and fecal short-chain fatty acids were detected by ion chromatograph. Dietary supplementation with a high sn-2 PA fat significantly reduced total fecal contents of fatty acids soap and calcium compared with the medium or low sn-2 PA fat groups. Diet supplementation with sn-2 PA fat did not change the entire profile of the gut microbiota community at phylum level and the difference at genera level also were minimal in the three treatment groups. However, high sn-2 PA fat diet could potentially improve total short-chain fatty acids content in the feces, suggesting that high dietary sn-2 PA fat might have a beneficial effect on host intestinal health.

  6. The Impact of Modeling Assumptions in Galactic Chemical Evolution Models

    Science.gov (United States)

    Côté, Benoit; O'Shea, Brian W.; Ritter, Christian; Herwig, Falk; Venn, Kim A.

    2017-02-01

    We use the OMEGA galactic chemical evolution code to investigate how the assumptions used for the treatment of galactic inflows and outflows impact numerical predictions. The goal is to determine how our capacity to reproduce the chemical evolution trends of a galaxy is affected by the choice of implementation used to include those physical processes. In pursuit of this goal, we experiment with three different prescriptions for galactic inflows and outflows and use OMEGA within a Markov Chain Monte Carlo code to recover the set of input parameters that best reproduces the chemical evolution of nine elements in the dwarf spheroidal galaxy Sculptor. This provides a consistent framework for comparing the best-fit solutions generated by our different models. Despite their different degrees of intended physical realism, we found that all three prescriptions can reproduce in an almost identical way the stellar abundance trends observed in Sculptor. This result supports the similar conclusions originally claimed by Romano & Starkenburg for Sculptor. While the three models have the same capacity to fit the data, the best values recovered for the parameters controlling the number of SNe Ia and the strength of galactic outflows, are substantially different and in fact mutually exclusive from one model to another. For the purpose of understanding how a galaxy evolves, we conclude that only reproducing the evolution of a limited number of elements is insufficient and can lead to misleading conclusions. More elements or additional constraints such as the Galaxy’s star-formation efficiency and the gas fraction are needed in order to break the degeneracy between the different modeling assumptions. Our results show that the successes and failures of chemical evolution models are predominantly driven by the input stellar yields, rather than by the complexity of the Galaxy model itself. Simple models such as OMEGA are therefore sufficient to test and validate stellar yields. OMEGA

  7. Gas Flows in Dual Active Galactic Nuclei

    Science.gov (United States)

    Mueller Sanchez, Francisco; Comerford, Julia M.; Davies, Richard; Treister, Ezequiel; Privon, George C.; Nevin, Becky

    2018-06-01

    Dual Active Galactic Nuclei (AGN) are the Rosetta stone to understand the role of galaxy mergers in triggering nuclear activity and regulating black hole (BH) and galaxy growth. But very little is known about the physical processes required to effectively trigger AGN activity and regulate the growth of the two BHs. The work I will present here characterizes for the first time the properties of the stars, gas (molecular, ionized, and highly-ionized) and dust in all the confirmed dual AGN at z prototypical merger system NGC 6240: vigorous star formation, two AGNs, outflowing winds of ionized gas, rippling dust and gas lanes, and tidal tails. In this galaxy, we observe for the first time a dual outflow of different species of gas: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. This shows that stellar feedback and supermassive black hole feedback can work in tandem to regulate the stellar growth of a galaxy after a merger event. These results open a new door to studies of dual AGN and AGN pairs in general, and enable dual AGN to be used, for the first time, for studies of galaxy evolution.

  8. Activity of PtSnRh/C nanoparticles for the electrooxidation of C1 and C2 alcohols

    International Nuclear Information System (INIS)

    Teran, Freddy E.; Santos, Deise M.; Ribeiro, Josimar; Kokoh, Kouakou B.

    2012-01-01

    A systematic investigation of alcohol adsorption and oxidation on binary and ternary electrocatalysts in acid medium was performed. Binary (PtRh) and ternary (PtRhSn) were prepared by the Pechini modified method on carbon Vulcan XC-72, and different nominal compositions were characterized by energy dispersive X-ray and X-ray diffraction (XRD) techniques. The XRD results showed that the Pt 80 Rh 20 /C and Pt 70 Sn 10 Rh 20 /C electrocatalysts consisted of the Pt displaced phase, suggesting the formation of a solid solution between the metals Pt/Rh and Pt/Sn. Electrochemical investigations on these different electrode materials were carried out as a function of the electrocatalyst composition, in acid medium (0.5 mol dm −3 H 2 SO 4 ), and in the absence and presence of different alcohols (methanol, ethanol and ethylene glycol). The electrochemical results obtained at room temperature have shown that the Pt 70 Sn 10 Rh 20 /C catalyst display better catalytic activity for alcohol oxidation compared with the binary catalyst. In situ reflectance infrared spectroscopy measurements have shown that the oxidation of alcohols mentioned produced CO 2 at low potentials indicating that the materials synthesized could be used as efficient anodes in the fuel cell applications. - Highlights: ► Pt-based catalysts were synthesized by thermal decomposition polymeric precursors. ► Pt 70 Sn 10 Rh 20 /C displays better catalytic activity for the oxidation of alcohols. ► The co-catalysts tin and rhodium promote the removal of CO to CO 2 at low potentials. ► Ethylene glycol is oxidizing strongly to CO 2 at low potentials. ► Pt 70 Sn 10 Rh 20 /C catalyst is an efficient anode material for a direct alcohol fuel cell.

  9. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2{theta} =40 deg, 47 deg, 67 deg and 82 deg, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2-3 nm. For Pt Sn/C and PtSnRh/C two additional peaks were observed at 2 = 34 deg and 52 deg that were identified as a SnO{sub 2} phase. Pt Sn/C (50:50) and PtSnRh/C (50:40:10) electro catalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature Pt Ru/C, Pt Sn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  10. Exploring the making of a galactic wind in the starbursting dwarf irregular galaxy IC 10 with LOFAR

    Science.gov (United States)

    Heesen, V.; Rafferty, D. A.; Horneffer, A.; Beck, R.; Basu, A.; Westcott, J.; Hindson, L.; Brinks, E.; ChyŻy, K. T.; Scaife, A. M. M.; Brüggen, M.; Heald, G.; Fletcher, A.; Horellou, C.; Tabatabaei, F. S.; Paladino, R.; Nikiel-Wroczyński, B.; Hoeft, M.; Dettmar, R.-J.

    2018-05-01

    Low-mass galaxies are subject to strong galactic outflows, in which cosmic rays may play an important role; they can be best traced with low-frequency radio continuum observations, which are less affected by spectral ageing. We present a study of the nearby starburst dwarf irregular galaxy IC 10 using observations at 140 MHz with the Low-Frequency Array (LOFAR), at 1580 MHz with the Very Large Array (VLA), and at 6200 MHz with the VLA and the 100-m Effelsberg telescope. We find that IC 10 has a low-frequency radio halo, which manifests itself as a second component (thick disc) in the minor axis profiles of the non-thermal radio continuum emission at 140 and 1580 MHz. These profiles are then fitted with 1D cosmic ray transport models for pure diffusion and advection. We find that a diffusion model fits best, with a diffusion coefficient of D = (0.4-0.8) × 1026(E/GeV)0.5 cm2 s-1, which is at least an order of magnitude smaller than estimates both from anisotropic diffusion and the diffusion length. In contrast, advection models, which cannot be ruled out due to the mild inclination, while providing poorer fits, result in advection speeds close to the escape velocity of ≈ 50 km s- 1, as expected for a cosmic ray-driven wind. Our favoured model with an accelerating wind provides a self-consistent solution, where the magnetic field is in energy equipartition with both the warm neutral and warm ionized medium with an important contribution from cosmic rays. Consequently, cosmic rays can play a vital role for the launching of galactic winds in the disc-halo interface.

  11. Determination of a new structure type in the Sc-Fe-Ge-Sn system

    Energy Technology Data Exchange (ETDEWEB)

    Brgoch, Jakoah [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ran, Sheng [Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Thimmaiah, Srinivasa [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Canfield, Paul C. [Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Miller, Gordon J., E-mail: gmiller@iastate.edu [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer A new structure type with the composition Sc{sub 4}Fe{sub 5}Ge{sub 6.10(3)}Sn{sub 1.47(2)}. Black-Right-Pointing-Pointer Crystallizes in the space group Immm (No. 71, oI144). Black-Right-Pointing-Pointer Sample obtained using a reactive Sn flux. Black-Right-Pointing-Pointer Electronic structure calculations indicate polar intermetallic bonding network. - Abstract: A new structure type has been discovered in the system Sc-Fe-Ge-Sn by employing Sn as a flux medium. According to single crystal X-ray diffraction, the new structure has a composition of Sc{sub 4}Fe{sub 5}Ge{sub 6.10(3)}Sn{sub 1.47(2)} and crystallizes in the space group Immm (No. 71, oI144) with lattice parameters of a = 5.230(1) A, b = 13.467(3) A, and c = 30.003(6) A. The structure is composed of square anti-prismatic clusters that are condensed into zig-zag chains along the [0 1 0] direction. These chains are further condensed through a split Sn/Ge position, forming a three-dimensional network. Magnetization measurements indicate an antiferromagnetic phase transition near 240 K. Electronic structure calculations identified the most favorable bonding network in this new system. Using crystal orbital Hamilton population (COHP) curves and their integrated values (ICOHP), a polar intermetallic bonding network involving Sc-Ge as well as Fe-Sn and Fe-Ge contacts can be assigned to this new structure type.

  12. Ethanol electrooxidation on Pt-Sn and Pt-Sn-W bulk alloys

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, D.M. dos; Hahn, F.; Leger, J.M.; Kokoh, K.B. [Universite de Poitiers, Poitiers Cedex (France). Centre National de la Recherche Scientifique (CNRS). Equipe Electrocatalyse; Tremiliosi-Filho, G. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2008-07-01

    Ethanol oxidation has been studied on Pt-Sn and Pt-Sn-W electrodes prepared in an arc-melting furnace. Different electrochemical techniques like cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activity of these materials. The electro-oxidation process was also investigated by in situ infrared reflectance spectroscopy in order to determine adsorbed intermediates and reaction products. Experimental results indicated that Pt-Sn and Pt-Sn-W alloys are able to oxidize ethanol mainly to acetaldehyde and acetic acid. Adsorbed CO was also detected, demonstrating the viability of splitting the C-C bond in the ethanol molecule during the oxidation process. The adsorbed CO was further oxidized to CO{sub 2}.This reaction product was clearly detected by SNIFTIRS. Pt-Sn-W catalyst showed a better electrochemical performance than Pt-Sn that, in it turn, is better than Pt-alone. (author)

  13. Core shell structured nanoparticles of Eu3+ doped SnO2 with SiO2 shell: luminescence studies

    International Nuclear Information System (INIS)

    Ningthoujam, R.S.; Sudarsan, V.; Kulshreshtha, S.K.

    2005-01-01

    Re dispersible SnO 2 nanoparticles with and without Eu 3+ doping nanoparticles were prepared at 185 deg C by the urea hydrolysis of Sn 4+ in ethylene glycol medium. X-ray diffraction and 119 Sn MAS NMR studies of these particles revealed that these nanoparticles are crystalline with Cassiterite structure having an average crystallite size of 7 nm. Undoped SnO 2 gave a emission peak centered around 470 nm characteristic of the traps present in the nanoparticles. For Eu 3+ doped samples, emission around 590 and 615 nm was observed on both direct excitation as well as indirect excitation through traps, indicating that there is an energy transfer between the traps present in the nanoparticles and Eu 3+ ions. The asymmetric ratio of luminescence (relative intensity ratio of 590 to 615 nm transitions) has been found to be 1.2. For SnO 2 :Eu(5%)-SiO 2 nanoparticles, the asymmetric ratio of luminescence change significantly indicating the formation of nanoparticles with SnO 2 :Eu(5%) core covered with SiO 2 shell. (author)

  14. Ultraviolet emission from low resistance Cu2SnS3/SnO2 and CuInS2/Sn:In2O3 nanowires

    Directory of Open Access Journals (Sweden)

    E. Karageorgou

    2014-11-01

    Full Text Available SnO2 and Sn:In2O3 nanowires were grown on Si(001, and p-n junctions were fabricated in contact with p-type Cu2S which exhibited rectifying current–voltage characteristics. Core-shell Cu2SnS3/SnO2 and CuInS2/Sn:In2O3 nanowires were obtained by depositing copper and post-growth processing under H2S between 100 and 500 °C. These consist mainly of tetragonal rutile SnO2 and cubic bixbyite In2O3. We observe photoluminescence at 3.65 eV corresponding to band edge emission from SnO2 quantum dots in the Cu2SnS3/SnO2 nanowires due to electrostatic confinement. The Cu2SnS3/SnO2 nanowires assemblies had resistances of 100 Ω similar to CuInS2/In2O3 nanowires which exhibited photoluminescence at 3.0 eV.

  15. Solar journey: The significance of our galactic environment for the heliosphere and earth

    CERN Document Server

    Frisch, Priscilla C

    2006-01-01

    Humans evolved when the Sun was in the great void of the Local Bubble. The Sun entered the present environment of interstellar clouds only during the late Quaternary. Astronomical data reveal these long and short term changes in our galactic environment. Theoretical models then tell us how these changes affect interplanetary particles, planetary magnetospheres, and the Earth itself. Cosmic rays leave an isotopic signature in the paleoclimate record that helps trace the solar journey through space. "Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth" lays the foundation for an interdisciplinary study of the influence of interstellar material on the solar system and Earth as we travel through the Milky Way Galaxy. The solar wind bubble responds dynamically to interstellar material flowing past the Sun, regulating interstellar gas, dust, and cosmic particle fluxes in the interplanetary medium and the Earth. Cones of interstellar gas and dust focused by solar gravity, the ma...

  16. THE EFFICIENCY AND WAVELENGTH DEPENDENCE OF NEAR-INFRARED INTERSTELLAR POLARIZATION TOWARD THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Hirofumi; Kurita, Mikio; Kanai, Saori; Sato, Shuji [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Nishiyama, Shogo; Nakajima, Yasushi; Tamura, Motohide; Kandori, Ryo [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8858 (Japan); Nagata, Tetsuya; Yoshikawa, Tatsuhito [Department of Astronomy, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Kato, Daisuke [Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sato, Yaeko; Suenaga, Takuya, E-mail: hattan@z.phys.nagoya-u.ac.jp, E-mail: shogo.nishiyama@nao.ac.jp [Department of Astronomical Sciences, Graduate University for Advanced Studies (Sokendai), Mitaka, Tokyo 181-8858 (Japan)

    2013-04-15

    Near-infrared polarimetric imaging observations toward the Galactic center (GC) have been carried out to examine the efficiency and wavelength dependence of interstellar polarization. A total area of about 5.7 deg{sup 2} is covered in the J, H, and K{sub S} bands. We examined the polarization efficiency, defined as the ratio of the degree of polarization to color excess. The interstellar medium between the GC and us shows a polarization efficiency lower than that in the Galactic disk by a factor of three. Moreover we investigated the spatial variation of the polarization efficiency by comparing it with that of the color excess, degree of polarization, and position angle. The spatial variations of color excess and degree of polarization depend on the Galactic latitude, while the polarization efficiency varies independently of the Galactic structure. Position angles are nearly parallel to the Galactic plane, indicating a longitudinal magnetic field configuration between the GC and us. The polarization efficiency anticorrelates with dispersions of position angles. The low polarization efficiency and its spatial variation can be explained by the differences in the magnetic field directions along the line of sight. From the lower polarization efficiency, we suggest a higher strength of a random component relative to a uniform component of the magnetic field between the GC and us. We also derived the ratios of degree of polarization p{sub H} /p{sub J} = 0.581 {+-} 0.004 and p{sub K{sub S}}/p{sub H} = 0.620 {+-} 0.002. The power-law indices of the wavelength dependence of polarization are {beta}{sub JH} = 2.08 {+-} 0.02 and {beta}{sub HK{sub S}} = 1.76 {+-} 0.01. Therefore, the wavelength dependence of interstellar polarization exhibits flattening toward longer wavelengths in the range of 1.25-2.14 {mu}m. The flattening would be caused by aligned large-size dust grains.

  17. The Gaia-ESO Survey: Lithium enrichment histories of the Galactic thick and thin disc

    Science.gov (United States)

    Fu, X.; Romano, D.; Bragaglia, A.; Mucciarelli, A.; Lind, K.; Delgado Mena, E.; Sousa, S. G.; Randich, S.; Bressan, A.; Sbordone, L.; Martell, S.; Korn, A. J.; Abia, C.; Smiljanic, R.; Jofré, P.; Pancino, E.; Tautvaišienė, G.; Tang, B.; Magrini, L.; Lanzafame, A. C.; Carraro, G.; Bensby, T.; Damiani, F.; Alfaro, E. J.; Flaccomio, E.; Morbidelli, L.; Zaggia, S.; Lardo, C.; Monaco, L.; Frasca, A.; Donati, P.; Drazdauskas, A.; Chorniy, Y.; Bayo, A.; Kordopatis, G.

    2018-02-01

    Lithium abundance in most of the warm metal-poor main sequence stars shows a constarnt plateau (A(Li) 2.2 dex) and then the upper envelope of the lithium vs. metallicity distribution increases as we approach solar metallicity. Meteorites, which carry information about the chemical composition of the interstellar medium (ISM) at the solar system formation time, show a lithium abundance A(Li) 3.26 dex. This pattern reflects the Li enrichment history of the ISM during the Galaxy lifetime. After the initial Li production in big bang nucleosynthesis, the sources of the enrichment include asymptotic giant branch (AGB) stars, low-mass red giants, novae, type II supernovae, and Galactic cosmic rays. The total amount of enriched Li is sensitive to the relative contribution of these sources. Thus different Li enrichment histories are expected in the Galactic thick and thin disc. We investigate the main sequence stars observed with UVES in Gaia-ESO Survey iDR4 catalogue and find a Li-anticorrelation independent of [Fe/H], Teff, and log(g). Since in stellar evolution different α enhancements at the same metallicity do not lead to a measurable Li abundance change, the anticorrelation indicates that more Li is produced during the Galactic thin disc phase than during the Galactic thick disc phase. We also find a correlation between the abundance of Li and s-process elements Ba and Y, and they both decrease above the solar metallicity, which can be explained in the framework of the adopted Galactic chemical evolution models. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A38

  18. Phase diagram of SnTe-CdSe cross-section of SnTe+CdSe reversible SnSe+CdTe ternary reciprocal system

    International Nuclear Information System (INIS)

    Dubrovin, I.V.; Budennaya, L.D.; Mizetskaya, I.B.; Sharkina, Eh.V.

    1986-01-01

    Phase equilibrium diagram of SnTe-CdSe cross-section of Sn, Cd long Te, Se ternary reciprocal system is investigated using the methods of differential thermal, X-ray phase, and microstructural analyses. Maximum length of solid solutions on the base of SnTe corresponds to approximately 14 mol.% at 1050 K and approximately 3 mol.% of CdSe at 670 K. Region of solid solutions on the base of CdSe corresponds to less than 1 mol.% of SnTe at room temperature. SnTe-CdSe cross-section is not a quasibinar one. Equilibrium is shifted to the left in the SnTe+CdSe reversible SnSe+CdTe reciprocal system

  19. Photonic-resonant left-handed medium

    International Nuclear Information System (INIS)

    Shen Jianqi

    2006-01-01

    A new scheme to realize simultaneously negative permittivity and permeability in a coherent atomic vapor medium (photonic-resonant material) via a coherent driving mechanism is suggested. It is verified that the atomic system coherently driven by a strong optical field will give rise to a negative refractive index in certain probe frequency ranges. One of the most remarkable features of the present scheme is such that a slab fabricated by the left-handed vapor medium is an ideal candidate for designing perfect lenses since the photonic-resonant atomic vapor cannot only exhibit an isotropic negative refractive index, but also provide a good impedance match at the air-medium interfaces

  20. Evidence for wide-spread active galactic nucleus-driven outflows in the most massive z ∼ 1-2 star-forming galaxies

    International Nuclear Information System (INIS)

    Genzel, R.; Förster Schreiber, N. M.; Rosario, D.; Lang, P.; Lutz, D.; Wisnioski, E.; Wuyts, E.; Wuyts, S.; Bandara, K.; Bender, R.; Berta, S.; Kurk, J.; Mendel, J. T.; Tacconi, L. J.; Wilman, D.; Beifiori, A.; Burkert, A.; Buschkamp, P.; Chan, J.; Brammer, G.

    2014-01-01

    In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M * /M ☉ ) ≥ 10.9) z ∼ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M * /M ☉ ) ≥ 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS 3D spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ∼450-5300 km s –1 ), with large [N II]/Hα ratios, above log(M * /M ☉ ) ∼ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ∼ 1 and ∼2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.

  1. 70 °C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Oya, N.; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-02-23

    Polycrystalline GeSn thin films are fabricated on insulating substrates at low temperatures by using Sn-induced crystallization of amorphous Ge (a-Ge). The Sn layer stacked on the a-Ge layer (100-nm thickness each) had two roles: lowering the crystallization temperature of a-Ge and composing GeSn. Slow annealing at an extremely low temperature of 70 °C allowed for a large-grained (350 nm) GeSn layer with a lattice constant of 0.590 nm, corresponding to a Sn composition exceeding 25%. The present investigation paves the way for advanced electronic optical devices integrated on a flexible plastic substrate as well as on a Si platform.

  2. Controlling the antibacterial activity of CuSn thin films by varying the contents of Sn

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yujin; Park, Juyun; Kim, Dong-Woo; Kim, Hakjun; Kang, Yong-Cheol, E-mail: yckang@pknu.ac.kr

    2016-12-15

    Highlights: • We deposit CuSn thin films on a Si substrate with various Cu/Sn ratio. • Antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time increased. • XPS was utilized to assign the chemical environment of CuSn thin films before and after antibacterial test. - Abstract: We investigated antibacterial activity of CuSn thin films against Gram positive Staphylococcus aureus (S. aureus). CuSn thin films with different Cu to Sn ratios were deposited on Si(100) by radio frequency (RF) magnetron sputtering method using Cu and Sn metal anodes. The film thickness was fixed at 200 nm by varying the sputtering time and RF power on the metal targets. The antibacterial test was conducted in various conditions such as different contact times and Cu to Sn ratios in the CuSn films. The antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time between the film and bacteria suspension increased execpt in the case of CuSn-83. The oxidation states of Cu and Sn and the chemical composition of CuSn thin films before and after the antibacterial test were investigated by X-ray photoelectron spectroscopy (XPS). When the contact time was fixed, the Cu species was further oxidized as the RF power on Cu target increased. The intensity of Sn 3d decreased with increasing Cu ratio. When the sample was fixed, the peak intensity of Sn 3d decreased as the contact time increased due to the permeation of Sn into the cell.

  3. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation

    International Nuclear Information System (INIS)

    Dias, Ricardo Rodrigues

    2009-01-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H 2 PtCl 6 .6H 2 O (Aldrich), SnCl 2 .2H 2 O (Aldrich),and RhCl 2 .XH 2 O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40 0 , 47 0 , 67 0 and 82 0 , which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34 0 and 52 0 that were identified as a SnO 2 phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  4. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    Science.gov (United States)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  5. First results from the INTEGRAL galactic plane scans

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Schonfelder, V.

    2003-01-01

    Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved mapp...... mapping of the Galactic plane in continuum and diffuse line emission. This paper describes first results obtained from the Galactic plane scans executed so far during the early phase (Dec. 2002-May 2003) of the nominal mission.......Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved...

  6. Cosmic ray acceleration by large scale galactic shocks

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Lagage, P.O.

    1987-01-01

    The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays

  7. Structure and content of the galaxy and galactic gamma rays

    International Nuclear Information System (INIS)

    1976-01-01

    The conference included papers on γ-ray pulsars, galactic diffuse flux and surveys, radio surveys of external galaxies, galactic distribution of pulsars, and galactic gamma emission. Galactic structure drawing on all branches of galactic astronomy is discussed. New and unpublished material is included

  8. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    Science.gov (United States)

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  9. Structure and content of the galaxy and galactic gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The conference included papers on ..gamma..-ray pulsars, galactic diffuse flux and surveys, radio surveys of external galaxies, galactic distribution of pulsars, and galactic gamma emission. Galactic structure drawing on all branches of galactic astronomy is discussed. New and unpublished material is included. (JFP)

  10. Ordered CoSn-type ternary phases in Co3Sn3-xGex

    DEFF Research Database (Denmark)

    Allred, Jared M.; Jia, Shuang; Bremholm, Martin

    2012-01-01

    . By taking advantage of the chemical differences between the two crystallographically inequivalent Sn sites in the structure, we observe ordered ternary phases, nominally Co3SnGe2 and Co3Sn2Ge. The electron count and unit cell configuration remain unchanged from CoSn; these observations thus help to clarify...

  11. DENSITY OF WARM IONIZED GAS NEAR THE GALACTIC CENTER: LOW RADIO FREQUENCY OBSERVATIONS

    International Nuclear Information System (INIS)

    Roy, Subhashis

    2013-01-01

    We have observed the Galactic center (GC) region at 0.154 and 0.255 GHz with the Giant Metrewave Radio Telescope. A total of 62 compact likely extragalactic (EG) sources are detected. Their scattering sizes decrease linearly with increasing angular distance from the GC up to about 1°. The apparent scattering sizes of the sources are more than an order of magnitude less than predicted earlier by the NE2001 model of Galactic electron distribution within 359.°5 e is ∼10 cm –3 , which matches the NE2001 model. This model predicts the EG sources to be resolved out from 1.4 GHz interferometric surveys. However, out of 10 EG sources expected in the region, 8 likely EG are present in the 1.4 GHz catalog. Ionized interfaces of dense molecular clouds to the ambient medium are most likely responsible for strong scattering and low radio frequency absorption. However, dense GC clouds traced by CS J = 1-0 emission are found to have a narrow distribution of ∼0.°2 across the Galactic plane. Angular distribution of most EG sources seen through the so-called Hyperstrong Scattering Region are random in b, and typically ∼7 out of 10 sources will not be seen through the dense molecular clouds, which explains why most of them are not scatter broadened at 1.4 GHz

  12. Galactic structure and gamma radiation

    International Nuclear Information System (INIS)

    Casse, Michel; Cesarsky, Catherine; Paul Jacques

    1977-01-01

    A model of spiral structure of the Galaxy is outlined from radiosynchrotron and gamma observations. The most interesting observations in the galactic context, obtained by the SAS II American satellite are concerned with the distribution of the γ photoemission at energies higher than 10 8 eV, along the galactic equator. The model proposed is in quantitative agreement with the present ideas on the spiral structure of the Galaxy, the galactic magnetic field, and the confinement of cosmic rays by the magnetic field and of the magnetic field by matter. Following the American era, the European COS-B satellite opens the European phase towards an identification of the discrete gamma radiation sources [fr

  13. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, Estela M. [Instituto de Astronomia y Fisica del Espacio (IAFE), C. C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019 (United States); Moffett, David A., E-mail: ereynoso@iafe.uba.ar, E-mail: jph@physics.rutgers.edu, E-mail: david.moffett@furman.edu [Department of Physics, Furman University, Greenville, SC 29613 (United States)

    2013-04-15

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 {+-} 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of {approx}12 rad m{sup -2} is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while

  14. ON THE RADIO POLARIZATION SIGNATURE OF EFFICIENT AND INEFFICIENT PARTICLE ACCELERATION IN SUPERNOVA REMNANT SN 1006

    International Nuclear Information System (INIS)

    Reynoso, Estela M.; Hughes, John P.; Moffett, David A.

    2013-01-01

    Radio polarization observations provide essential information on the degree of order and orientation of magnetic fields, which themselves play a key role in the particle acceleration processes that take place in supernova remnants (SNRs). Here we present a radio polarization study of SN 1006, based on combined Very Large Array and Australia Telescope Compact Array observations at 20 cm that resulted in sensitive images with an angular resolution of 10 arcsec. The fractional polarization in the two bright radio and X-ray lobes of the SNR is measured to be 0.17, while in the southeastern sector, where the radio and non-thermal X-ray emission are much weaker, the polarization fraction reaches a value of 0.6 ± 0.2, close to the theoretical limit of 0.7. We interpret this result as evidence of a disordered, turbulent magnetic field in the lobes, where particle acceleration is believed to be efficient, and a highly ordered field in the southeast, where the acceleration efficiency has been shown to be very low. Utilizing the frequency coverage of our observations, an average rotation measure of ∼12 rad m –2 is determined from the combined data set, which is then used to obtain the intrinsic direction of the magnetic field vectors. While the orientation of magnetic field vectors across the SNR shell appear to be radial, a large fraction of the magnetic vectors lie parallel to the Galactic plane. Along the highly polarized southeastern rim, the field is aligned tangent to the shock, and therefore also nearly parallel to the Galactic plane. These results strongly suggest that the ambient field surrounding SN 1006 is aligned with this direction (i.e., from northeast to southwest) and that the bright lobes are due to a polar cap geometry. Our study establishes that the most efficient particle acceleration and generation of magnetic turbulence in SN 1006 is attained for shocks in which the magnetic field direction and shock normal are quasi-parallel, while inefficient

  15. Growth of highly textured SnS on mica using an SnSe buffer layer

    International Nuclear Information System (INIS)

    Wang, S.F.; Fong, W.K.; Wang, W.; Surya, C.

    2014-01-01

    We report the growth of SnS thin films on mica substrates by molecular beam epitaxy. Excellent 2D layered structure and strong (001) texture were observed with a record low rocking curve full width at half maximum of ∼ 0.101° for the SnS(004) diffraction. An interface model is used to investigate the nucleation of SnS on mica which indicates the co-existence of six pairs of lateral growth orientations and is in excellent agreement with the experimental Φ-scan measurements indicating 12 peaks separated by 30° from each other. To control the lateral growth of the SnS epilayers we investigate the utilization of a thin SnSe buffer layer deposited on the mica substrate prior to the growth of the SnS thin film. The excellent lattice match between SnSe and mica enhances the alignment of the nucleation of SnS and suppresses the minor lateral orientations along the mica[110] direction and its orthogonal axis. Detailed low-frequency noise measurement was performed to characterize the trap density in the films and our results clearly demonstrate substantial reduction in the density of the localized states in the SnS epilayer with the use of an SnSe buffer layer. - Highlights: • A record low rocking curve FWHM for deposited SnS on mica • Investigation of the nucleation of SnS on mica using the interface model • Investigation of nucleation mechanism by phi-scan measurement • Grain boundary formation from crystallites of various nucleation orientations • Suppression of nucleation orientations using an SnSe buffer layer

  16. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Lockman, F. J. [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States); Dickey, J. M. [School of Physics and Mathematics, University of Tasmania, TAS 7001 (Australia); Gaensler, B. M.; Green, A. J., E-mail: naomi.mcclure-griffiths@csiro.au [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2013-06-10

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of {approx}14 km s{sup -1}, and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at {approx}200 km s{sup -1} in a Galactic wind.

  17. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    International Nuclear Information System (INIS)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S.; Lockman, F. J.; Dickey, J. M.; Gaensler, B. M.; Green, A. J.

    2013-01-01

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of ∼14 km s –1 , and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at ∼200 km s –1 in a Galactic wind.

  18. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40{sup 0}, 47{sup 0}, 67{sup 0} and 82{sup 0}, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34{sup 0} and 52{sup 0} that were identified as a SnO{sub 2} phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  19. Electrical and optical properties of SnEuTe and SnSrTe films

    Science.gov (United States)

    Ishida, Akihiro; Tsuchiya, Takuro; Yamada, Tomohiro; Cao, Daoshe; Takaoka, Sadao; Rahim, Mohamed; Felder, Ferdinand; Zogg, Hans

    2010-06-01

    The SnTe, Sn1-xEuxTe and Sn1-xSrxTe (x<0.06) films were prepared by hot wall epitaxy. The ternary alloy films prepared in cation rich condition had hole concentration around 1×1019 cm-3 with high mobility exceeding 2000 cm2/V s at room temperature. Optical transmission spectra were also measured in the temperature range from 100 to 400 K and compared with theoretical calculations. Optical transmission spectra of the SnTe were simulated successfully assuming bumped band edge structures. A band inversion model was proposed for the Sn1-xEuxTe and Sn1-xSrxTe systems, and the optical transmission spectra were also simulated successfully assuming the band inversion model.

  20. DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA

    Energy Technology Data Exchange (ETDEWEB)

    Acero, F.; Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Albert, A.; Baldini, L.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Brandt, T. J.; Buson, S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, Montpellier (France); Bruel, P., E-mail: isabelle.grenier@cea.fr, E-mail: casandjian@cea.fr [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2016-04-01

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4° of the Galactic Center.

  1. A Nonthermal Radio Filament Connected to the Galactic Black Hole?

    Science.gov (United States)

    Morris, Mark R.; Zhao, Jun-Hui; Goss, W. M.

    2017-12-01

    Using the Very Large Array, we have investigated a nonthermal radio filament (NTF) recently found very near the Galactic black hole and its radio counterpart, Sgr A*. While this NTF—the Sgr A West Filament (SgrAWF)—shares many characteristics with the population of NTFs occupying the central few hundred parsecs of the Galaxy, the SgrAWF has the distinction of having an orientation and sky location that suggest an intimate physical connection to Sgr A*. We present 3.3 and 5.5 cm images constructed using an innovative methodology that yields a very high dynamic range, providing an unprecedentedly clear picture of the SgrAWF. While the physical association of the SgrAWF with Sgr A* is not unambiguous, the images decidedly evoke this interesting possibility. Assuming that the SgrAWF bears a physical relationship to Sgr A*, we examine the potential implications. One is that Sgr A* is a source of relativistic particles constrained to diffuse along ordered local field lines. The relativistic particles could also be fed into the local field by a collimated outflow from Sgr A*, perhaps driven by the Poynting flux accompanying the black hole spin in the presence of a magnetic field threading the event horizon. Second, we consider the possibility that the SgrAWF is the manifestation of a low-mass-density cosmic string that has become anchored to the black hole. The simplest form of these hypotheses would predict that the filament be bi-directional, whereas the SgrAWF is only seen on one side of Sgr A*, perhaps because of the dynamics of the local medium.

  2. SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant

    Science.gov (United States)

    Huang, F.; Wang, X.-F.; Hosseinzadeh, G.; Brown, P. J.; Mo, J.; Zhang, J.-J.; Zhang, K.-C.; Zhang, T.-M.; Howell, D.-A.; Arcavi, I.; McCully, C.; Valenti, S.; Rui, L.-M.; Song, H.; Xiang, D.-F.; Li, W.-X.; Lin, H.; Wang, L.-F.

    2018-04-01

    We present extensive ultraviolet (UV) and optical photometry, as well as dense optical spectroscopy, for type II Plateau (IIP) supernova SN 2016X that exploded in the nearby (˜15 Mpc) spiral galaxy UGC 08041. The observations span the period from 2 to 180 d after the explosion; in particular, the Swift UV data probably captured the signature of shock breakout associated with the explosion of SN 2016X. It shows very strong UV emission during the first week after explosion, with a contribution of ˜20-30 per cent to the bolometric luminosity (versus ≲15 per cent for normal SNe IIP). Moreover, we found that this supernova has an unusually long rise time of about 12.6 ± 0.5 d in the R band (versus ˜7.0 d for typical SNe IIP). The optical light curves and spectral evolution are quite similar to the fast-declining type IIP object SN 2013ej, except that SN 2016X has a relatively brighter tail. Based on the evolution of photospheric temperature as inferred from the Swift data in the early phase, we derive that the progenitor of SN 2016X has a radius of about 930 ± 70 R⊙. This large-size star is expected to be a red supergiant star with an initial mass of ≳19-20 M⊙ based on the mass-radius relation of the Galactic red supergiants, and it represents one of the most largest and massive progenitors found for SNe IIP.

  3. The galactic distribution of pulsars

    International Nuclear Information System (INIS)

    Lyne, A.G.

    1982-01-01

    The galactic distribution of pulsars follows the general form of many population I objects in galactocentric radius, but has a wide distribution above and below the plane due to high space velocities imparted to the pulsars at birth. Statistical studies of the properties of large numbers of pulsars and proper motion measurements demonstrate that the effective magnetic dipole moments decay on a timescale of about 8 million years. This work provides a better knowledge of pulsar evolution and ages and shows that a birthrate of one pulsar every 20 to 50 years is required to sustain the observed galactic population of 300,000. This rate is comparable with most recent estimates of the galactic supernova rate, but requires nearly all supernovae to produce active pulsars. (orig.)

  4. Unusual Metals in Galactic Center Stars

    Science.gov (United States)

    Hensley, Kerry

    2018-03-01

    Far from the galactic suburbs where the Sun resides, a cluster of stars in the nucleus of the Milky Way orbits a supermassive black hole. Can chemical abundance measurements help us understand the formation history of the galactic center nuclear star cluster?Studying Stellar PopulationsMetallicity distributions for stars in the inner two degrees of the Milky Way (blue) and the central parsec (orange). [Do et al. 2018]While many galaxies host nuclear star clusters, most are too distant for us to study in detail; only in the Milky Way can we resolve individual stars within one parsec of a supermassive black hole. The nucleus of our galaxy is an exotic and dangerous place, and its not yet clear how these stars came to be where they are were they siphoned off from other parts of the galaxy, or did they form in place, in an environment rocked by tidal forces?Studying the chemical abundances of stars provides a way to separate distinct stellar populations and discern when and where these stars formed. Previous studies using medium-resolution spectroscopy have revealed that many stars within the central parsec of our galaxy have very high metallicities possibly higher than any other region of the Milky Way. Can high-resolution spectroscopy tell us more about this unusual population of stars?Spectral Lines on DisplayTuan Do (University of California, Los Angeles, Galactic Center Group) and collaborators performed high-resolution spectroscopic observations of two late-type giant starslocated half a parsec from the Milky Ways supermassive black hole.Comparison of the observed spectra of the two galactic center stars (black) with synthetic spectra with low (blue) and high (orange) [Sc/Fe] values. Click to enlarge. [Do et al. 2018]In order to constrain the metallicities of these stars, Do and collaborators compared the observed spectra to a grid of synthetic spectra and used a spectral synthesis technique to determine the abundances of individual elements. They found that

  5. Probing the Intergalactic Medium with Ly α and 21 cm Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Heneka, Caroline [Dark Cosmology Center, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Cooray, Asantha; Feng, Chang [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2017-10-10

    We study 21 cm and Ly α fluctuations, as well as H α , while distinguishing between Ly α emission of galactic, diffuse, and scattered intergalactic medium (IGM) origin. Cross-correlation information about the state of the IGM is obtained, testing neutral versus ionized medium cases with different tracers in a seminumerical simulation setup. In order to pave the way toward constraints on reionization history and modeling beyond power spectrum information, we explore parameter dependencies of the cross-power signal between 21 cm and Ly α , which displays a characteristic morphology and a turnover from negative to positive correlation at scales of a couple Mpc{sup −1}. In a proof of concept for the extraction of further information on the state of the IGM using different tracers, we demonstrate the use of the 21 cm and H α cross-correlation signal to determine the relative strength of galactic and IGM emission in Ly α . We conclude by showing the detectability of the 21 cm and Ly α cross-correlation signal over more than one decade in scale at high signal-to-noise ratio for upcoming probes like SKA and the proposed all-sky intensity mapping satellites SPHEREx and CDIM, while also including the Ly α damping tail and 21 cm foreground avoidance in the modeling.

  6. Activity of PtSnRh/C nanoparticles for the electrooxidation of C1 and C2 alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Teran, Freddy E. [Universite de Poitiers, IC2MP UMR CNRS 7285, ' Equipe E-lyse' , 4 rue Michel Brunet-B27, BP 633, 86022 Poitiers cedex (France); Santos, Deise M. [Departamento de Quimica, CCE-UFES, Av. Fernando Ferrari, 514, Goiabeiras-Vitoria, ES (Brazil); Ribeiro, Josimar, E-mail: josimar.ribeiro@ufes.br [Universite de Poitiers, IC2MP UMR CNRS 7285, ' Equipe E-lyse' , 4 rue Michel Brunet-B27, BP 633, 86022 Poitiers cedex (France); Departamento de Quimica, CCE-UFES, Av. Fernando Ferrari, 514, Goiabeiras-Vitoria, ES (Brazil); Kokoh, Kouakou B. [Universite de Poitiers, IC2MP UMR CNRS 7285, ' Equipe E-lyse' , 4 rue Michel Brunet-B27, BP 633, 86022 Poitiers cedex (France)

    2012-07-01

    A systematic investigation of alcohol adsorption and oxidation on binary and ternary electrocatalysts in acid medium was performed. Binary (PtRh) and ternary (PtRhSn) were prepared by the Pechini modified method on carbon Vulcan XC-72, and different nominal compositions were characterized by energy dispersive X-ray and X-ray diffraction (XRD) techniques. The XRD results showed that the Pt{sub 80}Rh{sub 20}/C and Pt{sub 70}Sn{sub 10}Rh{sub 20}/C electrocatalysts consisted of the Pt displaced phase, suggesting the formation of a solid solution between the metals Pt/Rh and Pt/Sn. Electrochemical investigations on these different electrode materials were carried out as a function of the electrocatalyst composition, in acid medium (0.5 mol dm{sup -3} H{sub 2}SO{sub 4}), and in the absence and presence of different alcohols (methanol, ethanol and ethylene glycol). The electrochemical results obtained at room temperature have shown that the Pt{sub 70}Sn{sub 10}Rh{sub 20}/C catalyst display better catalytic activity for alcohol oxidation compared with the binary catalyst. In situ reflectance infrared spectroscopy measurements have shown that the oxidation of alcohols mentioned produced CO{sub 2} at low potentials indicating that the materials synthesized could be used as efficient anodes in the fuel cell applications. - Highlights: Black-Right-Pointing-Pointer Pt-based catalysts were synthesized by thermal decomposition polymeric precursors. Black-Right-Pointing-Pointer Pt{sub 70}Sn{sub 10}Rh{sub 20}/C displays better catalytic activity for the oxidation of alcohols. Black-Right-Pointing-Pointer The co-catalysts tin and rhodium promote the removal of CO to CO{sub 2} at low potentials. Black-Right-Pointing-Pointer Ethylene glycol is oxidizing strongly to CO{sub 2} at low potentials. Black-Right-Pointing-Pointer Pt{sub 70}Sn{sub 10}Rh{sub 20}/C catalyst is an efficient anode material for a direct alcohol fuel cell.

  7. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes

    Science.gov (United States)

    Takahashi, Junichi; Nakahara, Sumio; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2004-10-01

    It has reported that a waste of an electronics substrate including lead and its compound such as 63Sn-37Pb has polluted the environment with acid rain. For that environment problem the development of lead-free solder alloys has been promoted in order to find out the substitute for Sn-Pb solders in the United States, Europe, and Japan. In a present electronics industry, typical alloys have narrowed down to Sn-Ag-Cu and Sn-Zn lead-free solder. In this study, solderability of Pb-free solder that are Sn-Ag-Cu and Sn-Zn-Bi alloy was studied on soldering using YAG (yttrium aluminum garnet) laser and diode laser. Experiments were peformed in order to determine the range of soldering parameters for obtaining an appropriate wettability based on a visual inspection. Joining strength of surface mounting chip components soldered on PCB (printed circuit board) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics of eutectic Sn-Pb alloy and under different power density were examined. As a result, solderability of Sn-Ag-Cu (Pb-free) solder paste are equivalent to that of coventional Sn-Pb solder paste, and are superior to that of Sn-Zn-Bi solder paste in the laser soldering method.

  8. SN 2009E

    DEFF Research Database (Denmark)

    Pastorello...[], A.; Pumo, M.L.; Navasardyan, H.

    2012-01-01

    . In this paper we investigate the properties of SN 2009E, which exploded in a relatively nearby spiral galaxy (NGC 4141) and that is probably the faintest 1987A-like supernova discovered so far. We also attempt to characterize this subgroup of core-collapse supernovae with the help of the literature and present...... observations which started about 2 months after the supernova explosion, highlight significant differences between SN 2009E and the prototypical SN 1987A. Modelling the data of SN 2009E allows us to constrain the explosion parameters and the properties of the progenitor star, and compare the inferred estimates...... 2009E ejected about 0.04 M⊙ of 56Ni, which is the smallest 56Ni mass in our sample of 1987A-like events. Modelling the observations with a radiation hydrodynamics code, we infer for SN 2009E a kinetic plus thermal energy of about 0.6 foe, an initial radius of ~7 × 1012 cm and an ejected mass of ~19 M...

  9. Galactic evolution of sulphur as traced by globular clusters

    Science.gov (United States)

    Kacharov, N.; Koch, A.; Caffau, E.; Sbordone, L.

    2015-05-01

    Context. Sulphur is an important volatile α element, but its role in the Galactic chemical evolution is still uncertain, and more observations constraining the sulphur abundance in stellar photospheres are required. Aims: We derive the sulphur abundances in red giant branch (RGB) stars in three Galactic halo globular clusters (GC) that cover a wide metallicity range (-2.3 noise (S/N ~ 200 per px) spectra in the region of the S I multiplet 3 at 1045 nm for 15 GC stars selected from the literature (six stars in M 4,six stars in M 22, and three stars in M 30). Multiplet 3 is better suited for S abundance derivation than the more commonly used lines of multiplet 1 at 920 nm, since its lines are not blended by telluric absorption or other stellar features at low metallicity. Results: We used spectral synthesis to derive the [S/Fe] ratio of the stars assuming local thermodynamic equilibrium (LTE). We find mean [S/Fe]LTE = 0.58 ± 0.01 ± 0.20 dex (statistical and systematic error) for M 4, [S/Fe]LTE = 0.57 ± 0.01 ± 0.19 dex for M 22, and [S/Fe]LTE = 0.55 ± 0.02 ± 0.16 dex for M 30. The negative NLTE corrections are estimated to be in the order of the systematic uncertainties. We do not detect star-to-star variations of the S abundance in any of the observed GCs, with the possible exception of two individual stars, one in M 22 and one in M 30, which appear to be highly enriched in S. Conclusions: With the tentative exception of two stars with measured high S abundances, we conclude that sulphur behaves like a typical α element in the studied Galactic GCs, showing enhanced abundances with respect to the solar value at metallicities below [Fe/H]-1.0 dex without a considerable spread. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programmes ID 091.B-0171(A).The reduced spectra and the best fit synthetic models are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http

  10. Interaction of Supernova Blast Waves with Wind-Driven Shells: Formation of "Jets", "Bullets", "Ears", Etc.

    Science.gov (United States)

    Gvaramadze, V. V.

    Most of middle-aged supernova remnants (SNRs) have a distorted and complicated appearance which cannot be explained in the framework of the Sedov-Taylor model. We consider three typical examples of such SNRs (Vela SNR, MSH15-52, G309.2-00.6) and show that their structure could be explained as a result of interaction of a supernova (SN) blast wave with the ambient medium preprocessed by the action of the SN progenitor's wind and ionized emission.

  11. Preparation, deformation, and failure of functional Al-Sn and Al-Sn-Pb nanocrystalline alloys

    Science.gov (United States)

    Noskova, N. I.; Vil'Danova, N. F.; Filippov, Yu. I.; Churbaev, R. V.; Pereturina, I. A.; Korshunov, L. G.; Korznikov, A. V.

    2006-12-01

    Changes in the structure, hardness, mechanical properties, and friction coefficient of Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb (wt %) alloys subjected to severe plastic deformation by equal-channel angular pressing (with a force of 40 tonne) and by shear at a pressure of 5 GPa have been studied. The transition into the nanocrystalline state was shown to occur at different degrees of plastic deformation. The hardness exhibits nonmonotonic variations, namely, first it increases and subsequently decreases. The friction coefficient of the Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys quenched from the melt was found to be 0.33; the friction coefficients of these alloys in the submicrocrystalline state (after equal-channel angular pressing) equal 0.24, 0.32, and 0.35, respectively. The effect of disintegration into nano-sized powders was found to occur in the Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys after severe plastic deformation to ɛ = 6.4 and subsequent short-time holding.

  12. Study of neutron-deficient Sn isotopes

    International Nuclear Information System (INIS)

    Auger, G.

    1982-05-01

    The formation of neutron deficient nuclei by heavy ion reactions is investigated. The experimental technique is presented, and the results obtained concerning Sn et In isotopes reported: first excited states of 106 Sn, high spin states in 107 Sn and 107 In; Yrast levels of 106 Sn, 107 Sn, 108 Sn; study of neutron deficient Sn and In isotopes formed by the desintegration of the compound nucleus 112 Xe. All these results are discussed [fr

  13. Electrochemical properties of Ti-Ni-Sn materials predicted by {sup 119}Sn Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ladam, A., E-mail: alix.ladam@univ-montp2.fr; Aldon, L.; Lippens, P.-E.; Olivier-Fourcade, J.; Jumas, J.-C. [Université de Montpellier, Institut Charles Gerhardt, UMR 5253 CNRS (France); Cenac-Morthe, C. [CNES, Service DCT/TV/El (France)

    2016-12-15

    The electrochemical activity of TiNiSn, TiNi {sub 2}Sn and Ti {sub 6}Sn {sub 5} compounds considered as negative electrode materials for Li-ion batteries has been predicted from the isomer shift- Hume-Rothery electronic density correlation diagram. The ternary compounds were obtained from solid-state reactions and Ti {sub 6}Sn {sub 5} by ball milling. The {sup 119}Sn Mössbauer parameters were experimentally determined and used to evaluate the Hume-Rothery electronic density [e {sub av}]. The values of [e {sub av}] are in the region of Li-rich Li-Sn alloys for Ti {sub 6}Sn {sub 5} and outside this region for the ternary compounds, suggesting that the former compound is electrochemically active but not the two latter ones. Electrochemical tests were performed for these different materials confirming this prediction. The close values of [e {sub av}] for Ti {sub 6}Sn {sub 5} and Li-rich Li-Sn alloys indicate that the observed good capacity retention could be related to small changes in the global structures during cycling.

  14. Theoretical study of electronic structures and spectroscopic properties of Ga 3Sn, GaSn 3, and their ions

    Science.gov (United States)

    Zhu, Xiaolei

    2007-01-01

    Ground and excited states of mixed gallium stannide tetramers (Ga 3Sn, Ga 3Sn +, Ga 3Sn -, GaSn 3, GaSn 3+, and GaSn 3-) are investigated employing the complete active space self-consistent-field (CASSCF), density function theory (DFT), and the coupled-cluster single and double substitution (including triple excitations) (CCSD(T)) methods. The ground states of Ga 3Sn, Ga 3Sn +, and Ga 3Sn - are found to be the 2A 1, 3B 1, and 1A 1 states in C2v symmetry with a planar quadrilateral geometry, respectively. The ground states of GaSn 3 and GaSn 3- is predicted to be the 2A 1 and 1A 1 states in C2v point group with a planar quadrilateral structure, respectively, while the ground state of GaSn 3+ is the 1A 1 state with ideal triangular pyramid C3v geometry. Equilibrium geometries, vibrational frequencies, binding energies, electron affinities, ionization energies, and other properties of Ga 3Sn and GaSn 3 are computed and discussed. The anion photoelectron spectra of Ga 3Sn - and GaSn 3- are also predicted. It is interesting to find that the amount of charge transfer between Ga and Sn 2 atoms in the 1A 1 state of GaSn 3+ greatly increases upon electron ionization from the 2A 1 state of GaSn 3, which may be caused by large geometry change. On the other hand, the results of the low-lying states of Ga 3Sn and GaSn 3 are compared with those of Ga 3Si and GaSi 3.

  15. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts

    Directory of Open Access Journals (Sweden)

    Nur Hidayati

    2016-03-01

    Full Text Available Even though platinum is known as an active electro-catalyst for ethanol oxidation at low temperatures (< 100 oC, choosing the electrode material for ethanol electro-oxidation is a crucial issue. It is due to its property which easily poisoned by a strong adsorbed species such as CO. PtSn-based electro-catalysts have been identified as better catalysts for ethanol electro-oxidation. The third material is supposed to improved binary catalysts performance. This work presents a study of the ethanol electro-oxidation on carbon supported Pt-Sn and Pt-Sn-Ni catalysts. These catalysts were prepared by alcohol reduction. Nano-particles with diameters between 2.5-5.0 nm were obtained. The peak of (220 crystalline face centred cubic (fcc Pt phase for PtSn and PtSnNi alloys was repositioned due to the presence of Sn and/or Ni in the alloy. Furthermore, the modification of Pt with Sn and SnNi improved ethanol and CO electro-oxidation. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 1st February 2016; Accepted: 1st February 2016 How to Cite: Hidayati, N., Scott, K. (2016. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 10-20. (doi:10.9767/bcrec.11.1.394.10-20 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.394.10-20

  16. Systematic corrosion investigation of various Cu-Sn alloys electrodeposited on mild steel in acidic solution: Dependence of alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Suerme, Yavuz, E-mail: ysurme@nigde.edu.t [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey); Guerten, A. Ali [Department of Chemistry, Faculty of Science and Art, Osmaniye Korkut Ata University, 80000 Osmaniye (Turkey); Bayol, Emel; Ersoy, Ersay [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey)

    2009-10-19

    Copper-tin alloy films were galvanostatically electrodeposited on the mild steel (MS) by combining the different amount of Cu and Sn electrolytes at a constant temperature (55 deg. C) and pH (3.5). Alloy films were characterized by using the energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and micrographing techniques. Corrosion behaviours were evaluated with electrochemical impedance spectrometry (EIS) and electrochemical polarization measurements. Time gradient of electrolysis process was adjusted to obtain same thickness of investigated alloys on MS. The systematic corrosion investigation of various Cu{sub x}-Sn{sub 100-x} (x = 0-100) alloy depositions on MS substrate were carried out in 0.1 M sulphuric acid medium. Results indicate that the corrosion resistance of the alloy coatings depended on the alloy composition, and the corrosion resistance increased at Cu-Sn alloy deposits in proportion to Sn ratio.

  17. CONSTRUÇÕES BINOMINAIS DO TIPO SN1 DE SN2

    Directory of Open Access Journals (Sweden)

    Karen Sampaio Braga Alonso

    2017-04-01

    Full Text Available Este artigo tem por objetivo investigar a flutuação de sentido quantidade-qualidade licenciada pelo uso de construtos binominais do tipo SN1 de SN2, como xícara de chá, no Português do Brasil.A pesquisa é baseada na perspectiva teórica da Linguística Funcional Centrada no Uso (BYBEE, 2010; BARLOW E KEMMER, 2000; TOMASELLO, 2003, TRAUGOTT, 2008 e busca descrever as propriedades morfossintáticas, semântico-pragmáticas e cognitivas dos usos das construções que favorecem uma leitura ora qualitativa ora quantitativa, no que se refere à relação entre SN1 e SN2.

  18. Interpretation of astrophysical neutrinos observed by IceCube experiment by setting Galactic and extra-Galactic spectral components

    CERN Document Server

    Marinelli, Antonio; Grasso, Dario; Urbano, Alfredo; Valli, Mauro

    2016-01-01

    The last IceCube catalog of High Energy Starting Events (HESE) obtained with a livetime of 1347 days comprises 54 neutrino events equally-distributed between the three families with energies between 25 TeV and few PeVs. Considering the homogeneous flavors distribution (1:1:1) and the spectral features of these neutrinos the IceCube collaboration claims the astrophysical origin of these events with more than $5\\sigma$. The spatial distribution of cited events does not show a clear correlation with known astrophysical accelerators leaving opened both the Galactic and the extra-Galactic origin interpretations. Here, we compute the neutrino diffuse emission of our Galaxy on the basis of a recently proposed phenomenological model characterized by radially-dependent cosmic-ray (CR) transport properties. We show that the astrophysical spectrum measured by IceCube experiment can be well explained adding to the diffuse Galactic neutrino flux (obtained with this new model) a extra-Galactic component derived from the as...

  19. SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae

    Science.gov (United States)

    Bullivant, Christopher; Smith, Nathan; Williams, G. Grant; Mauerhan, Jon C.; Andrews, Jennifer E.; Fong, Wen-Fai; Bilinski, Christopher; Kilpatrick, Charles D.; Milne, Peter A.; Fox, Ori D.; Cenko, S. Bradley; Filippenko, Alexei V.; Zheng, WeiKang; Kelly, Patrick L.; Clubb, Kelsey I.

    2018-05-01

    We present photometry and spectroscopy of SN 2013fs and SN 2013fr in the first ˜100 d post-explosion. Both objects showed transient, relatively narrow H α emission lines characteristic of SNe IIn, but later resembled normal SNe II-P or SNe II-L, indicative of fleeting interaction with circumstellar material (CSM). SN 2013fs was discovered within 8 h of explosion; one of the earliest SNe discovered thus far. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SN IIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNe II-P and SNe IIn. It requires dense CSM within 6.5 × 1014 cm of the progenitor, from a phase of advanced pre-SN mass loss beginning shortly before explosion. Spectropolarimetry of SN 2013fs shows little continuum polarization (˜0.5 per cent, consistent with zero), but noticeable line polarization during the plateau phase. SN 2013fr morphed from an SN IIn at early times to an SN II-L. After the first epoch, its narrow lines probably arose from host-galaxy emission, but the bright, narrow H α emission at early times may be intrinsic to the SN. As for SN 2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNe IIn and SNe II-L. It is a low-velocity SN II-L like SN 2009kr, but more luminous. SN 2013fr also developed an infrared excess at later times, due to warm CSM dust that requires a more sustained phase of strong pre-SN mass loss.

  20. Impurity contamination effects on the interaction of Li and Sn Films on W (poly)

    Science.gov (United States)

    Fasoranti, Oluseyi; Koel, Bruce

    2016-10-01

    Plasma-solid interactions under fusion divertor conditions lead to continuous material erosion and may result in performance degradation of the plasma-facing components. Liquid metals such as Li and Sn may help to circumvent this issue due to their ability for self-recovery and heat-flux management. This has driven interest in understanding plasma-liquid metal interactions. We have shown in our lab that surface science experiments can examine discrete aspects of plasma-surface interactions by enabling clean and controlled deposition of metal films. We will review our recent results on the thermal stability of ultrathin Li and Sn films on a polycrystalline W surface using surface diagnostic methods such as Temperature Programmed Desorption, Auger Electron Spectroscopy, and Ion Scattering Spectroscopy. These studies examine Li-W and Sn-W interfaces and investigate the impact of impurities. We will discuss relevant issues such as the differences in oxygen uptake between solid and liquid lithium films and the effects of post-oxidation, as well as pre-adsorbed surface oxygen and carbon, on the thermal stability of these films. We plan to present additional studies of deuterium ion uptake and retention on Li and Sn films. Support was provided through U.S. Department of Energy, Office of Science/Fusion Energy Sciences under Award Number DE-SC0012890.

  1. Giant Radio Halos in Galaxy Clusters as Probes of Particle ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Giant radio halos in galaxy clusters probe mechanisms of particle acceleration connected with cluster merger events. Shocks and turbulence are driven in the inter-galactic medium (IGM) during clusters mergers and may have a deep impact on the non-thermal properties of galaxy clusters. Models of ...

  2. The Effects of the Local Environment on Active Galactic Nuclei

    Science.gov (United States)

    Manzer, L. H.; De Robertis, M. M.

    2014-06-01

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2 universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging systems, unlike star-forming galaxies. These results provide some indication that the local environment does play a role in initiating activity in galactic nuclei, but it is by no means simple or straightforward.

  3. SnO and SnO·CoO nanocomposite as high capacity anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Das, B., E-mail: bijoy822000@gmail.com; Reddy, M.V.; Chowdari, B.V.R, E-mail: phychowd@nus.edu.sg

    2016-02-15

    Highlights: • The preparation methods are simple, low cost and can be scaled up for large production. • SnO is cheap, non-toxic and eco-friendly. • SnO shows high reversible capacity (Theoretical reversible capacity: 875 mA h g{sup −1}). • We showed high reversible capacity and columbic efficiency for SnO and SnO based composites. • We addressed the capacity degradation by introducing secondary phase (CoO and CNT etc.) - Abstract: We prepared SnO nanoparticles (SnO–S) and SnO·CoO nanocomposites (SnO·CoO–B) as anodes for lithium ion batteries (LIBs) by chemical and ball-milling approaches, respectively. They are characterized by X-ray diffraction and TEM techniques. The Li- storage performance are evaluated by galvanostatic cycling and cyclic voltammetry. The SnO–S and SnO·CoO–B showed improved cycling performance due to their finite particle size (i.e. nano-size) and presence of secondary phase (CoO). Better cycling stability is noticed for SnO·CoO–B with the expense of their reversible capacity. Also, addition of carbon nanotubes (CNT) to SnO–S further improved the cycling performance of SnO–S. When cycled at 60 mA g{sup −1}, the first-cycle reversible capacities of 635, 590 and 460 (±10) mA h g{sup −1} are noticed for SnO–S, SnO@CNT and SnO·CoO–B, respectively. The capacity fading observed are 3.7 and 1.8 mA h g{sup −1} per cycle for SnO–S and SnO@CNT, respectively; whereas 1–1.2 mA h g{sup −1} per cycle for SnO·CoO–B. All the samples show high coulombic efficiency, 96–98% in the range of 5–50 cycles.

  4. The galactic distribution of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Hidayat, B.; Supelli, K.; Hucht, K.A. van der

    1982-01-01

    On the basis of the most recent compilation of narrow-band photometry and absolute visual magnitudes of Wolf-Rayet stars, and adopting a normal interstellar extinction law in all directions, the galactic distribution of 132 of the 159 known galactic WR stars is presented and discussed. The spiral structure is found to be more clearly pronounced than in earlier studies. Furthermore the authors find an indication of two spiral arms at r=4 and 6 kpc. There appears to be an asymmetry of the z-distribution of single stars with respect to galactic longitude. The location of the WC8.5 and WC9 stars between 4.5 and 9 kpc from the galactic center is discussed in the context of Maeder's red supergiant to WR star scenario. (Auth.)

  5. A Near-infrared RR Lyrae Census along the Southern Galactic Plane: The Milky Way’s Stellar Fossil Brought to Light

    Science.gov (United States)

    Dékány, István; Hajdu, Gergely; Grebel, Eva K.; Catelan, Márcio; Elorrieta, Felipe; Eyheramendy, Susana; Majaess, Daniel; Jordán, Andrés

    2018-04-01

    RR Lyrae stars (RRLs) are tracers of the Milky Way’s fossil record, holding valuable information on its formation and early evolution. Owing to the high interstellar extinction endemic to the Galactic plane, distant RRLs lying at low Galactic latitudes have been elusive. We attained a census of 1892 high-confidence RRLs by exploiting the near-infrared photometric database of the VVV survey’s disk footprint spanning ∼70° of Galactic longitude, using a machine-learned classifier. Novel data-driven methods were employed to accurately characterize their spatial distribution using sparsely sampled multi-band photometry. The RRL metallicity distribution function (MDF) was derived from their K s -band light-curve parameters using machine-learning methods. The MDF shows remarkable structural similarities to both the spectroscopic MDF of red clump giants and the MDF of bulge RRLs. We model the MDF with a multi-component density distribution and find that the number density of stars associated with the different model components systematically changes with both the Galactocentric radius and vertical distance from the Galactic plane, equivalent to weak metallicity gradients. Based on the consistency with results from the ARGOS survey, three MDF modes are attributed to the old disk populations, while the most metal-poor RRLs are probably halo interlopers. We propose that the dominant [Fe/H] component with a mean of ‑1 dex might correspond to the outskirts of an ancient Galactic spheroid or classical bulge component residing in the central Milky Way. The physical origins of the RRLs in this study need to be verified by kinematical information.

  6. Sn powder as reducing agents and SnO2 precursors for the synthesis of SnO2-reduced graphene oxide hybrid nanoparticles.

    Science.gov (United States)

    Chen, Mingxi; Zhang, Congcong; Li, Lingzhi; Liu, Yu; Li, Xichuan; Xu, Xiaoyang; Xia, Fengling; Wang, Wei; Gao, Jianping

    2013-12-26

    A facile approach to prepare SnO2/rGO (reduced graphene oxide) hybrid nanoparticles by a direct redox reaction between graphene oxide (GO) and tin powder was developed. Since no acid was used, it is an environmentally friendly green method. The SnO2/rGO hybrid nanoparticles were characterized by ultraviolet-visible spectroscopy, Raman spectroscopy, thermogravimetric analysis, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The microstructure of the SnO2/rGO was observed with scanning electron microscopy and transmission electron microscopy. The tin powder efficiently reduced GO to rGO, and the Sn was transformed to SnO2 nanoparticles (∼45 nm) that were evenly distributed on the rGO sheets. The SnO2/rGO hybrid nanoparticles were then coated on an interdigital electrode to fabricate a humidity sensor, which have an especially good linear impedance response from 11% to 85% relative humidity.

  7. Behavior of Sn atoms in GeSn thin films during thermal annealing: Ex-situ and in-situ observations

    Science.gov (United States)

    Takase, Ryohei; Ishimaru, Manabu; Uchida, Noriyuki; Maeda, Tatsuro; Sato, Kazuhisa; Lieten, Ruben R.; Locquet, Jean-Pierre

    2016-12-01

    Thermally induced crystallization processes for amorphous GeSn thin films with Sn concentrations beyond the solubility limit of the bulk crystal Ge-Sn binary system have been examined by X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, and (scanning) transmission electron microscopy. We paid special attention to the behavior of Sn before and after recrystallization. In the as-deposited specimens, Sn atoms were homogeneously distributed in an amorphous matrix. Prior to crystallization, an amorphous-to-amorphous phase transformation associated with the rearrangement of Sn atoms was observed during heat treatment; this transformation is reversible with respect to temperature. Remarkable recrystallization occurred at temperatures above 400 °C, and Sn atoms were ejected from the crystallized GeSn matrix. The segregation of Sn became more pronounced with increasing annealing temperature, and the ejected Sn existed as a liquid phase. It was found that the molten Sn remains as a supercooled liquid below the eutectic temperature of the Ge-Sn binary system during the cooling process, and finally, β-Sn precipitates were formed at ambient temperature.

  8. A facile inexpensive route for SnS thin film solar cells with SnS{sub 2} buffer

    Energy Technology Data Exchange (ETDEWEB)

    Gedi, Sreedevi [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Minna Reddy, Vasudeva Reddy, E-mail: drmvasudr9@gmail.com [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Pejjai, Babu [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Jeon, Chan-Wook [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Park, Chinho, E-mail: chpark@ynu.ac.kr [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Ramakrishna Reddy, K.T., E-mail: ktrkreddy@gmail.com [Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India)

    2016-05-30

    Graphical abstract: PYS spectra of SnS/SnS{sub 2} interface and the related band diagram. - Highlights: • A low cost SnS solar cell is developed using chemical bath deposition. • We found E{sub I} & χ of SnS (5.3 eV & 4.0 eV) and SnS{sub 2} (6.9 eV & 4.1 eV) films from PYS. • Band offsets of 0.1 eV (E{sub c}) and 1.6 eV (E{sub v}) are estimated for SnS/SnS{sub 2} junction. • SnS based solar cell showed a conversion efficiency of 0.51%. - Abstract: Environment-friendly SnS based thin film solar cells with SnS{sub 2} as buffer layer were successfully fabricated from a facile inexpensive route, chemical bath deposition (CBD). Layer studies revealed that as-grown SnS and SnS{sub 2} films were polycrystalline; (1 1 1)/(0 0 1) peaks as the preferred orientation; 1.3 eV/2.8 eV as optical band gaps; and showed homogeneous microstructure with densely packed grains respectively. Ionization energy and electron affinity values were found by applying photoemission yield spectroscopy (PYS) to the CBD deposited SnS and SnS{sub 2} films for the first time. These values obtained as 5.3 eV and 4.0 eV for SnS films; 6.9 eV and 4.1 eV for SnS{sub 2} films. The band alignment of SnS/SnS{sub 2} junction showed TYPE-II heterostructure. The estimated conduction and valance band offsets were 0.1 eV and 1.6 eV respectively. The current density–voltage (J–V) measurements of the cell showed open circuit voltage (V{sub oc}) of 0.12 V, short circuit current density (J{sub sc}) of 10.87 mA cm{sup −2}, fill factor (FF) of 39% and conversion efficiency of 0.51%.

  9. Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-08-10

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edge absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.

  10. The 7SK snRNP associates with the little elongation complex to promote snRNA gene expression.

    Science.gov (United States)

    Egloff, Sylvain; Vitali, Patrice; Tellier, Michael; Raffel, Raoul; Murphy, Shona; Kiss, Tamás

    2017-04-03

    The 7SK small nuclear RNP (snRNP), composed of the 7SK small nuclear RNA (snRNA), MePCE, and Larp7, regulates the mRNA elongation capacity of RNA polymerase II (RNAPII) through controlling the nuclear activity of positive transcription elongation factor b (P-TEFb). Here, we demonstrate that the human 7SK snRNP also functions as a canonical transcription factor that, in collaboration with the little elongation complex (LEC) comprising ELL, Ice1, Ice2, and ZC3H8, promotes transcription of RNAPII-specific spliceosomal snRNA and small nucleolar RNA (snoRNA) genes. The 7SK snRNA specifically associates with a fraction of RNAPII hyperphosphorylated at Ser5 and Ser7, which is a hallmark of RNAPII engaged in snRNA synthesis. Chromatin immunoprecipitation (ChIP) and chromatin isolation by RNA purification (ChIRP) experiments revealed enrichments for all components of the 7SK snRNP on RNAPII-specific sn/snoRNA genes. Depletion of 7SK snRNA or Larp7 disrupts LEC integrity, inhibits RNAPII recruitment to RNAPII-specific sn/snoRNA genes, and reduces nascent snRNA and snoRNA synthesis. Thus, through controlling both mRNA elongation and sn/snoRNA synthesis, the 7SK snRNP is a key regulator of nuclear RNA production by RNAPII. © 2017 The Authors.

  11. Facile in situ solvothermal method to synthesize MWCNT/SnIn4S8 composites with enhanced visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Ding, Chaoying; Tian, Li; Liu, Bo; Liang, Qian; Li, Zhongyu; Xu, Song; Liu, Qiaoli; Lu, Dayong

    2015-01-01

    Highlights: • MWCNT/SnIn 4 S 8 composites were facilely fabricated via in situ solvothermal method. • MWCNT/SnIn 4 S 8 composites exhibited significantly enhanced visible-light activity. • MWCNT/SnIn 4 S 8 composites showed remarkable visible light photocatalytic activity. • MWCNT/SnIn 4 S 8 composites exhibited excellent photo-stability. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: Superior photocatalytic activity could be achieved by multi-walled carbon nanotube (MWCNT) incorporated in the porous assembly of marigold-like SnIn 4 S 8 heterostructures synthesized by a flexible in-situ solvothermal method. The as-prepared MWCNT/SnIn 4 S 8 composites were well-characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic properties of the as-prepared samples were tested by photo-degradation of aqueous malachite green (MG) under the irradiation of visible light. It was found that the MWCNT/SnIn 4 S 8 composites showed enhanced visible light photocatalytic activity for dye degradation, and an optimum photocatalytic activity was observed over 3.0 wt.% MWCNT incorporated SnIn 4 S 8 composites. The superior photocatalytic activity of MWCNT/SnIn 4 S 8 composites could be ascribed to the existence of MWCNT which could serve as a good electron acceptor, mediator as well as the co-catalyst for dye degradation. The synergistic effect between SnIn 4 S 8 and MWCNT in the composites facilitated the interfacial charge transfer driven by the excitation of SnIn 4 S 8 under visible-light irradiation. Furthermore, a possible mechanism for the photocatalytic degradation of MWCNT/SnIn 4 S 8 composites was also discussed

  12. Refractive and diffractive scattering in the interstellar medium

    International Nuclear Information System (INIS)

    Cordes, J.M.; Pidwerbetsky, A.; Lovelace, R.V.E.

    1986-01-01

    Radio wave propagation through electron-density fluctuations in the ISM is studied. Observable propagation effects are explored using a one-dimensional thin-screen model for the turbulent medium. Diffraction caused by stochastic small-scale irregularities is combined with refraction from deterministic large-scale irregularities. Some of the effects are illustrated with numerical simulations of the wave propagation. Multiple imaging is considered, delineating the possible effects and discussing their extensions to two-dimensional screens and extended three-dimensional media. The case where refraction as well as diffraction is caused by a stochastic medium with a spectrum of a given form is considered. The magnitudes of observable effects is estimated for representative spectra that may be relevant to the ISM. The importance of the various effects for timing and scintillation observations of pulsars, VLBI observations of galactic and extragalactic radio sources, and for variability measurements of extragalactic sources is assessed. 47 references

  13. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jounghun [Astronomy Program, Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747 (Korea, Republic of); Zhao, Gong-Bo [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China); Li, Baojiu [Institute of Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Koyama, Kazuya, E-mail: jounghun@astro.snu.ac.kr [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  14. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Directory of Open Access Journals (Sweden)

    Yee Mei Leong

    2016-06-01

    Full Text Available Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag content solder SAC105 (Sn-1.0Ag-0.5Cu because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al addition (0.1–0.5 wt.% to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface.

  15. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Science.gov (United States)

    Leong, Yee Mei; Haseeb, A.S.M.A.

    2016-01-01

    Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag) content solder SAC105 (Sn-1.0Ag-0.5Cu) because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al) addition (0.1–0.5 wt.%) to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC) after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface. PMID:28773645

  16. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.

    Science.gov (United States)

    Zhang, D C; Yang, S; Wei, M; Mao, Y F; Tan, C G; Lin, J G

    2012-09-01

    Ti-7.5Nb-4Mo-xSn (x=0-4at%) alloys were developed as the biomedical materials. The effect of the Sn content on the microstructure and superelasticity of the alloys was investigated. It is found that Sn is a strong stabilizer of the β phase, which is effective in suppressing the formation of α″ and ω phases in the alloys. Moreover, the Sn addition has a significant impact on the mechanical properties of the alloys. With the increase of Sn addition, the yield stress of the alloys increase, but their elastic modulus, the fracture strength and the ductility decrease, and the deformation mode of the alloys changes from (322) twining to α″ transformation and then to slip. The Ti-7.5Nb-4Mo-1Sn and Ti-7.5Nb-4Mo-3Sn alloys exhibit a good superelasticity with a high σ(SIM) due to the relatively high athermal ω phases containing or the solution hardening at room temperature. Under the maximum strain of 5%, Ti-7.5Nb-4Mo-3Sn (at%) alloy exhibits higher super elastic stability than that of Ti-7.5Nb-4Mo-1Sn alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The distances of the Galactic Novae

    Science.gov (United States)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  18. Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics

    Science.gov (United States)

    Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag

    2018-05-01

    Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS2) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS2 thin film by annealing at 450 °C for 1 h in H2S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 105 and 104 cm‑1 in the visible region, respectively. In addition, SnS and SnS2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS2 thin films exhibited on–off drain current ratios of 8.8 and 2.1 × 103 and mobilities of 0.21 and 0.014 cm2 V‑1 s‑1, respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS2 thin films were 6.0 × 1016 and 8.7 × 1013 cm‑3, respectively, in this experiment.

  19. MEASURING X-RAY VARIABILITY IN FAINT/SPARSELY SAMPLED ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Allevato, V. [Department of Physics, University of Helsinki, Gustaf Haellstroemin katu 2a, FI-00014 Helsinki (Finland); Paolillo, M. [Department of Physical Sciences, University Federico II, via Cinthia 6, I-80126 Naples (Italy); Papadakis, I. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, 71003 Heraklion (Greece); Pinto, C. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584-CA Utrecht (Netherlands)

    2013-07-01

    We study the statistical properties of the normalized excess variance of variability process characterized by a ''red-noise'' power spectral density (PSD), as in the case of active galactic nuclei (AGNs). We perform Monte Carlo simulations of light curves, assuming both a continuous and a sparse sampling pattern and various signal-to-noise ratios (S/Ns). We show that the normalized excess variance is a biased estimate of the variance even in the case of continuously sampled light curves. The bias depends on the PSD slope and on the sampling pattern, but not on the S/N. We provide a simple formula to account for the bias, which yields unbiased estimates with an accuracy better than 15%. We show that the normalized excess variance estimates based on single light curves (especially for sparse sampling and S/N < 3) are highly uncertain (even if corrected for bias) and we propose instead the use of an ''ensemble estimate'', based on multiple light curves of the same object, or on the use of light curves of many objects. These estimates have symmetric distributions, known errors, and can also be corrected for biases. We use our results to estimate the ability to measure the intrinsic source variability in current data, and show that they could also be useful in the planning of the observing strategy of future surveys such as those provided by X-ray missions studying distant and/or faint AGN populations and, more in general, in the estimation of the variability amplitude of sources that will result from future surveys such as Pan-STARRS and LSST.

  20. Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations

    Science.gov (United States)

    Schneider, Evan Elizabeth

    This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps

  1. ULTRAVIOLET EXTINCTION AT HIGH GALACTIC LATITUDES

    Energy Technology Data Exchange (ETDEWEB)

    Peek, J. E. G.; Schiminovich, David, E-mail: jegpeek@gmail.com [Department of Astronomy, Columbia University, New York, NY (United States)

    2013-07-01

    In order to study the properties and effects of high Galactic latitude dust, we present an analysis of 373,303 galaxies selected from the Galaxy Evolution Explorer All-Sky Survey and Wide-field Infrared Explorer All-Sky Data Release. By examining the variation in aggregate ultraviolet colors and number density of these galaxies, we measure the extinction curve at high latitude. We additionally consider a population of spectroscopically selected galaxies from the Sloan Digital Sky Survey to measure extinction in the optical. We find that dust at high latitude is neither quantitatively nor qualitatively consistent with standard reddening laws. Extinction in the FUV and NUV is {approx}10% and {approx}35% higher than expected, with significant variation across the sky. We find that no single R{sub V} parameter fits both the optical and ultraviolet extinction at high latitude, and that while both show detectable variation across the sky, these variations are not related. We propose that the overall trends we detect likely stem from an increase in very small silicate grains in the interstellar medium.

  2. ULTRAVIOLET EXTINCTION AT HIGH GALACTIC LATITUDES

    International Nuclear Information System (INIS)

    Peek, J. E. G.; Schiminovich, David

    2013-01-01

    In order to study the properties and effects of high Galactic latitude dust, we present an analysis of 373,303 galaxies selected from the Galaxy Evolution Explorer All-Sky Survey and Wide-field Infrared Explorer All-Sky Data Release. By examining the variation in aggregate ultraviolet colors and number density of these galaxies, we measure the extinction curve at high latitude. We additionally consider a population of spectroscopically selected galaxies from the Sloan Digital Sky Survey to measure extinction in the optical. We find that dust at high latitude is neither quantitatively nor qualitatively consistent with standard reddening laws. Extinction in the FUV and NUV is ∼10% and ∼35% higher than expected, with significant variation across the sky. We find that no single R V parameter fits both the optical and ultraviolet extinction at high latitude, and that while both show detectable variation across the sky, these variations are not related. We propose that the overall trends we detect likely stem from an increase in very small silicate grains in the interstellar medium.

  3. Rational design of Sn/SnO{sub 2}/porous carbon nanocomposites as anode materials for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaojia [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Center for Advanced Energy Materials and Devices, Xi’an University of Technology, Xi’an 710048 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071 (China); Fan, Linlin; Yu, Zhuxin; Yan, Bo; Xiong, Dongbin; Song, Xiaosheng; Li, Shiyu [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Adair, Keegan R. [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Sun, Xueliang, E-mail: xsun9@uwo.ca [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2017-08-01

    Highlights: • Sn/SnO{sub 2}/porous carbon nanocomposites are rationally designed via a facile strategy. • The porous carbon mitigates the volume change and poor conductivity of Sn/SnO{sub 2}. • The nanocomposites exhibit the enhanced sodium storage performance. - Abstract: Sodium-ion batteries (SIBs) have successfully attracted considerable attention for application in energy storage, and have been proposed as an alternative to lithium ion batteries (LIBs) due to the abundance of sodium resources and low price. Sn has been deemed as a promising anode material in SIBs which holds high theoretical specific capacity of 845 mAh g{sup −1}. In this work we design nanocomposite materials consisting of porous carbon (PC) with SnO{sub 2} and Sn (Sn/SnO{sub 2}/PC) via a facile reflux method. Served as an anode material for SIBs, the Sn/SnO{sub 2}/PC nanocomposite delivers the primary discharge and charge capacities of 1148.1 and 303.0 mAh g{sup −1}, respectively. Meanwhile, it can preserve the discharge capacity approximately of 265.4 mAh g{sup −1} after 50 cycles, which is much higher than those of SnO{sub 2}/PC (138.5 mAh g{sup −1}) and PC (92.2 mAh g{sup −1}). Furthermore, the Sn/SnO{sub 2}/PC nanocomposite possesses better cycling stability with 77.8% capacity retention compared to that of SnO{sub 2}/PC (61.88%) over 50 cycles. Obviously, the Sn/SnO{sub 2}/PC composite with excellent electrochemical performance shows the great possibility of application in SIBs.

  4. The Galactic Club or Galactic Cliques? Exploring the limits of interstellar hegemony and the Zoo Hypothesis

    Science.gov (United States)

    Forgan, Duncan H.

    2017-10-01

    The Zoo solution to Fermi's Paradox proposes that extraterrestrial intelligences (ETIs) have agreed to not contact the Earth. The strength of this solution depends on the ability for ETIs to come to agreement, and establish/police treaties as part of a so-called `Galactic Club'. These activities are principally limited by the causal connectivity of a civilization to its neighbours at its inception, i.e. whether it comes to prominence being aware of other ETIs and any treaties or agreements in place. If even one civilization is not causally connected to the other members of a treaty, then they are free to operate beyond it and contact the Earth if wished, which makes the Zoo solution `soft'. We should therefore consider how likely this scenario is, as this will give us a sense of the Zoo solution's softness, or general validity. We implement a simple toy model of ETIs arising in a Galactic Habitable Zone, and calculate the properties of the groups of culturally connected civilizations established therein. We show that for most choices of civilization parameters, the number of culturally connected groups is >1, meaning that the Galaxy is composed of multiple Galactic Cliques rather than a single Galactic Club. We find in our models for a single Galactic Club to establish interstellar hegemony, the number of civilizations must be relatively large, the mean civilization lifetime must be several millions of years, and the inter-arrival time between civilizations must be a few million years or less.

  5. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.

    Science.gov (United States)

    Xu, Wangwang; Xie, Zhiqiang; Cui, Xiaodan; Zhao, Kangning; Zhang, Lei; Dietrich, Grant; Dooley, Kerry M; Wang, Ying

    2015-10-14

    Complex hierarchical structures have received tremendous attention due to their superior properties over their constitute components. In this study, hierarchical graphene-encapsulated hollow SnO2@SnS2 nanostructures are successfully prepared by in situ sulfuration on the backbones of hollow SnO2 spheres via a simple hydrothermal method followed by a solvothermal surface modification. The as-prepared hierarchical SnO2@SnS2@rGO nanocomposite can be used as anode material in lithium ion batteries, exhibiting excellent cyclability with a capacity of 583 mAh/g after 100 electrochemical cycles at a specific current of 200 mA/g. This material shows a very low capacity fading of only 0.273% per cycle from the second to the 100th cycle, lower than the capacity degradation of bare SnO2 hollow spheres (0.830%) and single SnS2 nanosheets (0.393%). Even after being cycled at a range of specific currents varied from 100 mA/g to 2000 mA/g, hierarchical SnO2@SnS2@rGO nanocomposites maintain a reversible capacity of 664 mAh/g, which is much higher than single SnS2 nanosheets (374 mAh/g) and bare SnO2 hollow spheres (177 mAh/g). Such significantly improved electrochemical performance can be attributed to the unique hierarchical hollow structure, which not only effectively alleviates the stress resulting from the lithiation/delithiation process and maintaining structural stability during cycling but also reduces aggregation and facilitates ion transport. This work thus demonstrates the great potential of hierarchical SnO2@SnS2@rGO nanocomposites for applications as a high-performance anode material in next-generation lithium ion battery technology.

  6. Galactic Habitable Zone and Astrobiological Complexity

    Science.gov (United States)

    Vukotic, B.

    2012-12-01

    This is a short thesis description and for the sake of brevity most things are left out. For more details, those interested are further directed to the thesis related papers in this article reference list. Thesis itself is available at the University of Belgrade library "Svetozar Markovic" (Serbian version only). In this thesis we study the astrobiological history of the Galactic habitable zone through the means of numerical modeling. First group of simulations are unidimensional (time-axis) toy models examine the influence of global regulation mechanisms (gamma-ray bursts and supernovae) on temporal evolution of Galactic astrobiological complexity. It is shown that under the assumption of global regulation classical anti SETI arguments can be undermined. Second group of simulations are more complex bidimensional probabilistic cellular automata models of the Galactic thin disk. They confirm the findings of the toy models and give some insights into the spatial clustering of astrobiological complexity. As a new emerging multidisciplinary science the basic concepts of astrobiology are poorly understood and although all the simulations present here do not include some basic physics (such as Galactic kinematics and dynamics), the input parameters are somewhat arbitrary and could use a future refinement (such as the boundaries of the Galactic habitable zone). This is the cause for low weight and high uncertainty in the output results of the simulations. However, the probabilistic cellular automata has shown as a highly adaptable modeling platform that can simulate various class of astrobiological models with great ease.

  7. In situ 119Sn Moessbauer spectroscopy used to study lithium insertion in c-Mg2Sn

    International Nuclear Information System (INIS)

    Aldon, L.; Ionica, C. M.; Lippens, P. E.; Larcher, D.; Tarascon, J.-M.; Olivier-Fourcade, J.; Jumas, J.-C.

    2006-01-01

    The electrochemical reactions of Li with c-Mg 2 Sn have been investigated by in situ Moessbauer spectroscopy of 119 Sn and X-ray diffraction. The lithiation transforms initially c-Mg 2 Sn part into Li x Mg 2 Sn alloy (x 2 MgSn ternary alloy. In situ Moessbauer spectroscopy provides valuable information on local environment of tin and swelling behavior and cracking of the particles during discharge and charge processes.

  8. Extragalactic Background Light and energy spectra of Active Galactic Nuclei 3c454.3 and 1739+522 with high red shifts

    Energy Technology Data Exchange (ETDEWEB)

    Sinitsyna, V.G.; Malyshko, A.A.; Musin, F.I.; Nikolsky, S.I.; Sinitsyna, V.Y. [P.N.Lebedev Physical Institute, Leninsky prospect 53, Moscow, 119991 (Russian Federation)

    2009-12-15

    The cosmological processes, connecting the physics of matter in active galactic nuclei will be observed in the energy spectrum of electro-magnetic radiation. The understanding of mechanisms in active galactic nuclei requires the detection of a large sample of very high energy gamma-ray objects at varying redshifts. The redshifts of very high energy gamma-ray sources observed by SHALON range from z=0.0179 to z=1.375. During the period 1992-2008, SHALON has been used for observing the metagalactic sources NGC1275 (z=0.0183), SN2006gy (z=0.019), Mkn421 (z=0.031), Mkn501 (z=0.034), Mkn180 (z=0.046), OJ 287 (z=0.306), 3c454.3 (z=0.895), 1739+522 (z=1.375). The most distant object 1739+522 (with redshift z=1.375), seen at TeV energies, is also the most powerful. Thus, modern gamma-astronomical observations put forward the question: what mechanisms might be responsible for the currently observed gamma-ray fluxes from remote metagalactic sources? Observations of distant metagalactic sources have shown that the Universe is more transparent to very high energy gamma-rays than previously believed.

  9. Extragalactic Background Light and energy spectra of Active Galactic Nuclei 3c454.3 and 1739+522 with high red shifts

    International Nuclear Information System (INIS)

    Sinitsyna, V.G.; Malyshko, A.A.; Musin, F.I.; Nikolsky, S.I.; Sinitsyna, V.Y.

    2009-01-01

    The cosmological processes, connecting the physics of matter in active galactic nuclei will be observed in the energy spectrum of electro-magnetic radiation. The understanding of mechanisms in active galactic nuclei requires the detection of a large sample of very high energy gamma-ray objects at varying redshifts. The redshifts of very high energy gamma-ray sources observed by SHALON range from z=0.0179 to z=1.375. During the period 1992-2008, SHALON has been used for observing the metagalactic sources NGC1275 (z=0.0183), SN2006gy (z=0.019), Mkn421 (z=0.031), Mkn501 (z=0.034), Mkn180 (z=0.046), OJ 287 (z=0.306), 3c454.3 (z=0.895), 1739+522 (z=1.375). The most distant object 1739+522 (with redshift z=1.375), seen at TeV energies, is also the most powerful. Thus, modern gamma-astronomical observations put forward the question: what mechanisms might be responsible for the currently observed gamma-ray fluxes from remote metagalactic sources? Observations of distant metagalactic sources have shown that the Universe is more transparent to very high energy gamma-rays than previously believed.

  10. Enhanced photodegradation activity of methyl orange over Ag2CrO4/SnS2 composites under visible light irradiation

    International Nuclear Information System (INIS)

    Luo, Jin; Zhou, Xiaosong; Ma, Lin; Xu, Xuyao; Wu, Jingxia; Liang, Huiping

    2016-01-01

    Highlights: • Novel visible-light-driven Ag 2 CrO 4 /SnS 2 composites are synthesized. • Ag 2 CrO 4 /SnS 2 exhibits higher photocatalytic activity than pure Ag 2 CrO 4 and SnS 2 . • Ag 2 CrO 4 /SnS 2 exhibits excellent stability for the photodegradation of MO. • The possible photocatalytic mechanism was discussed in detail. - Abstract: Novel Ag 2 CrO 4 /SnS 2 composites were prepared by a simple chemical precipitation method and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The visible light photocatalytic tests showed that the Ag 2 CrO 4 /SnS 2 composites enhanced photocatalytic activities for the photodegradation of methyl orange (MO) under visible light irradiation (λ > 420 nm), and the optimum rate constant of Ag 2 CrO 4 /SnS 2 at a weight content of 1.0% Ag 2 CrO 4 for the degradation of MO was 2.2 and 1.5 times larger than that of pure Ag 2 CrO 4 and SnS 2 , respectively. The improved activity could be attributed to high separation efficiency of photogenerated electrons-hole pairs on the interface of Ag 2 CrO 4 and SnS 2 , which arised from the synergistic effect between Ag 2 CrO 4 and SnS 2 . Moreover, the possible photocatalytic mechanism with superoxide radical anions and holes species as the main reactive species in photocatalysis process was proposed on the basis of experimental results.

  11. Galactic Outflows, Star Formation Histories, and Timescales in Starburst Dwarf Galaxies from STARBIRDS

    Science.gov (United States)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Heilman, Taryn N.; Mitchell, Noah P.; Kelley, Tyler

    2018-03-01

    Winds are predicted to be ubiquitous in low-mass, actively star-forming galaxies. Observationally, winds have been detected in relatively few local dwarf galaxies, with even fewer constraints placed on their timescales. Here, we compare galactic outflows traced by diffuse, soft X-ray emission from Chandra Space Telescope archival observations to the star formation histories derived from Hubble Space Telescope imaging of the resolved stellar populations in six starburst dwarfs. We constrain the longevity of a wind to have an upper limit of 25 Myr based on galaxies whose starburst activity has already declined, although a larger sample is needed to confirm this result. We find an average 16% efficiency for converting the mechanical energy of stellar feedback to thermal, soft X-ray emission on the 25 Myr timescale, somewhat higher than simulations predict. The outflows have likely been sustained for timescales comparable to the duration of the starbursts (i.e., 100's Myr), after taking into account the time for the development and cessation of the wind. The wind timescales imply that material is driven to larger distances in the circumgalactic medium than estimated by assuming short, 5-10 Myr starburst durations, and that less material is recycled back to the host galaxy on short timescales. In the detected outflows, the expelled hot gas shows various morphologies which are not consistent with a simple biconical outflow structure. The sample and analysis are part of a larger program, the STARBurst IRregular Dwarf Survey (STARBIRDS), aimed at understanding the lifecycle and impact of starburst activity in low-mass systems.

  12. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Hamers, Adrian S. [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States); Perets, Hagai B., E-mail: hamers@ias.edu [Technion—Israel Institute of Technology, Haifa 32000 (Israel)

    2017-09-10

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to the SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.

  13. The infrared medium-deep survey. II. How to trigger radio AGNs? Hints from their environments

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Kim, Jae-Woo; Lee, Seong-Kook; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Yongjung; Kim, Ji Hoon; Kim, Duho; Park, Won-Kee; Taak, Yoon Chan; Yoon, Yongmin [CEOU—Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Chapman, Scott [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Pak, Soojong [School of Space Research, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Edge, Alastair, E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics, University of Durham, South Road, Durham, DH1 3LE (United Kingdom)

    2014-12-10

    Activity at the centers of galaxies, during which the central supermassive black hole is accreting material, is nowadays accepted to be rather ubiquitous and most probably a phase of every galaxy's evolution. It has been suggested that galactic mergers and interactions may be the culprits behind the triggering of nuclear activity. We use near-infrared data from the new Infrared Medium-Deep Survey and the Deep eXtragalactic Survey of the VIMOS-SA22 field and radio data at 1.4 GHz from the FIRST survey and a deep Very Large Array survey to study the environments of radio active galactic nuclei (AGNs) over an area of ∼25 deg{sup 2} and down to a radio flux limit of 0.1 mJy and a J-band magnitude of 23 mag AB. Radio AGNs are predominantly found in environments similar to those of control galaxies at similar redshift, J-band magnitude, and (M{sub u} – M{sub r} ) rest-frame color. However, a subpopulation of radio AGNs is found in environments up to 100 times denser than their control sources. We thus preclude merging as the dominant triggering mechanism of radio AGNs. By fitting the broadband spectral energy distribution of radio AGNs in the least and most dense environments, we find that those in the least dense environments show higher radio-loudness, higher star formation efficiencies, and higher accretion rates, typical of the so-called high-excitation radio AGNs. These differences tend to disappear at z > 1. We interpret our results in terms of a different triggering mechanism for these sources that is driven by mass loss through winds of young stars created during the observed ongoing star formation.

  14. Galactic binaries with eLISA

    OpenAIRE

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch...

  15. Stable and metastable equilibria in PbSe + SnI2=SnSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Demidova, E.D.

    2003-01-01

    T-x-y phase diagrams of the PbSe + SnI 2 =SnSe + PbI 2 mutual system (stable states) are plotted for the first time. It is shown that melt, solid solutions on the base of components of the mutual system and phase on the base of Sn 2 SeI 4 take part in phase equilibria. Transformations in the PbSe + SnI 2 =SnSe + PbI 2 mutual system leading to crystallization of metastable polytype modifications of lead iodides and metastable ternary compound forming in PbSe-PbI 2 system are investigated for the first time [ru

  16. Band Alignments, Valence Bands, and Core Levels in the Tin Sulfides SnS, SnS2, and Sn2S3: Experiment and Theory

    OpenAIRE

    Whittles, TJ; Burton, LA; Skelton, JM; Walsh, A; Veal, TD; Dhanak, VR

    2016-01-01

    Tin sulfide solar cells show relatively poor efficiencies despite attractive photovoltaic properties, and there is difficulty in identifying separate phases, which are also known to form during Cu2ZnSnS4 depositions. We present X-ray photoemission spectroscopy (XPS) and inverse photoemission spectroscopy measurements of single crystal SnS, SnS2, and Sn2S3, with electronic-structure calculations from density functional theory (DFT). Differences in the XPS spectra of the three phases, including...

  17. Comparative study of SnS recrystallization in molten CdI{sub 2}, SnCl{sub 2}and KI

    Energy Technology Data Exchange (ETDEWEB)

    Timmo, Kristi; Kauk-Kuusik, Marit; Pilvet, Maris; Mikli, Valdek; Kaerber, Erki; Raadik, Taavi; Leinemann, Inga; Altosaar, Mare; Raudoja, Jaan [Department of Materials Science, Tallinn University of Technology, Tallinn (Estonia)

    2016-01-15

    In the present study, the recrystallization of polycrystalline SnS in different molten salts CdI{sub 2}, SnCl{sub 2} and KI as flux materials are presented. The recrystallization and growth of polycrystalline material in molten salts produces unique SnS monograin powders usable in monograin layer solar cells. XRD and Raman analysis revealed that single phase SnS powder can be obtained in KI at 740 C and in SnCl{sub 2} at 500 C. Long time heating of SnS in molten CdI{sub 2} was accompanied by chemical interaction between SnS and CdI{sub 2} that resulted in a mixture of CdS and Sn{sub 2}S{sub 3} crystals. SEM images showed that morphology of crystals can be controlled by the nature of the flux materials: needle-like Sn{sub 2}S{sub 3} together with round edged crystals of CdS in CdI{sub 2}, flat crystals of SnS with smooth surfaces in SnCl{sub 2} and well-formed SnS crystals with rounded edges in KI had been formed. The temperatures of phase transitions and/or the interactions of SnS and flux materials were determined by differential thermal analysis. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. PROTEUS-SN User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States); Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, Changho [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-16

    PROTEUS-SN is a three-dimensional, highly scalable, high-fidelity neutron transport code developed at Argonne National Laboratory. The code is applicable to all spectrum reactor transport calculations, particularly those in which a high degree of fidelity is needed either to represent spatial detail or to resolve solution gradients. PROTEUS-SN solves the second order formulation of the transport equation using the continuous Galerkin finite element method in space, the discrete ordinates approximation in angle, and the multigroup approximation in energy. PROTEUS-SN’s parallel methodology permits the efficient decomposition of the problem by both space and angle, permitting large problems to run efficiently on hundreds of thousands of cores. PROTEUS-SN can also be used in serial or on smaller compute clusters (10’s to 100’s of cores) for smaller homogenized problems, although it is generally more computationally expensive than traditional homogenized methodology codes. PROTEUS-SN has been used to model partially homogenized systems, where regions of interest are represented explicitly and other regions are homogenized to reduce the problem size and required computational resources. PROTEUS-SN solves forward and adjoint eigenvalue problems and permits both neutron upscattering and downscattering. An adiabatic kinetics option has recently been included for performing simple time-dependent calculations in addition to standard steady state calculations. PROTEUS-SN handles void and reflective boundary conditions. Multigroup cross sections can be generated externally using the MC2-3 fast reactor multigroup cross section generation code or internally using the cross section application programming interface (API) which can treat the subgroup or resonance table libraries. PROTEUS-SN is written in Fortran 90 and also includes C preprocessor definitions. The code links against the PETSc, METIS, HDF5, and MPICH libraries. It optionally links against the MOAB library and

  19. CO Spectral Line Energy Distributions in Galactic Sources: Empirical Interpretation of Extragalactic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Indriolo, Nick; Bergin, E. A. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Goicoechea, J. R.; Cernicharo, J. [Grupo de Astrofísica Molecular, Instituto de Ciencia de Materiales de Madrid (CSIC) E-28049 Madrid (Spain); Gerin, M.; Gusdorf, A. [LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, F-75005, Paris (France); Lis, D. C. [LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, F-75014, Paris (France); Schilke, P., E-mail: nindriolo@stsci.edu [I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany)

    2017-02-10

    The relative populations in rotational transitions of CO can be useful for inferring gas conditions and excitation mechanisms at work in the interstellar medium. We present CO emission lines from rotational transitions observed with Herschel /HIFI in the star-forming cores Orion S, Orion KL, Sgr B2(M), and W49N. Integrated line fluxes from these observations are combined with those from Herschel /PACS observations of the same sources to construct CO spectral line energy distributions (SLEDs) from 5≤ J{sub u} ≤ 48. These CO SLEDs are compared to those reported in other galaxies, with the intention of empirically determining which mechanisms dominate excitation in such systems. We find that CO SLEDs in Galactic star-forming cores cannot be used to reproduce those observed in other galaxies, although the discrepancies arise primarily as a result of beam filling factors. The much larger regions sampled by the Herschel beams at distances of several megaparsecs contain significant amounts of cooler gas, which dominate the extragalactic CO SLEDs, in contrast to observations of Galactic star-forming regions, which are focused specifically on cores containing primarily hot molecular gas.

  20. GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.

    2018-01-01

    We have investigated the low temperature epitaxy of high Sn content GeSn alloys in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition tool from Applied Materials. Gaseous digermane (Ge2H6) and liquid tin tetrachloride (SnCl4) were used as the Ge and Sn precursors, respectively. The impact of temperature (in the 300-350 °C range), Ge2H6 and SnCl4 mass-flows on the GeSn growth kinetics at 100 Torr has been thoroughly explored. Be it at 300 °C or 325 °C, a linear GeSn growth rate increase together with a sub-linear Sn concentration increase occurred as the SnCl4 mass-flow increased, irrespective of the Ge2H6 mass flow (fixed or varying). The Sn atoms seemed to catalyze H desorption from the surface, resulting in higher GeSn growth rates for high SnCl4 mass-flows (in the 4-21 nm min-1 range). The evolution of the Sn content x with the F (SnCl4) 2 ·/F (Ge2H6) mass-flow ratio was fitted by x2/(1 - x) = n ·F (SnCl4) 2 ·/F (Ge2H6), with n = 0.25 (325 °C) and 0.60 (300 °C). We have otherwise studied the impact of temperature, in the 300-350 °C range, on the GeSn growth kinetics. The GeSn growth rate exponentially increased with the temperature, from 15 up to 32 nm min-1. The associated activation energy was low, i.e. Ea = 10 kcal mol-1. Meanwhile, the Sn content decreased linearly as the growth temperature increased, from 15% at 300 °C down to 6% at 350 °C.

  1. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    Energy Technology Data Exchange (ETDEWEB)

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Johnston, S. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL (United Kingdom); Bhat, N. D. R. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), 44 Rosehill Street, Redfern, NSW 2016 (Australia); Burgay, M.; Possenti, A.; Tiburzi, C. [INAF—Osservatorio Astronomico di Cagliari, Via della Scienza, I-09047 Selargius (Italy); Burke-Spolaor, S. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91104 (United States); Champion, D.; Ng, C. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Levin, L., E-mail: epetroff@astro.swin.edu.au [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); and others

    2014-07-10

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° Galactic models—must be included to ease the discrepancy between the detection rates at high and low Galactic latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts.

  2. AN ABSENCE OF FAST RADIO BURSTS AT INTERMEDIATE GALACTIC LATITUDES

    International Nuclear Information System (INIS)

    Petroff, E.; Van Straten, W.; Bailes, M.; Barr, E. D.; Coster, P.; Flynn, C.; Keane, E. F.; Johnston, S.; Bates, S. D.; Keith, M. J.; Kramer, M.; Stappers, B. W.; Bhat, N. D. R.; Burgay, M.; Possenti, A.; Tiburzi, C.; Burke-Spolaor, S.; Champion, D.; Ng, C.; Levin, L.

    2014-01-01

    Fast radio bursts (FRBs) are an emerging class of bright, highly dispersed radio pulses. Recent work by Thornton et al. has revealed a population of FRBs in the High Time Resolution Universe (HTRU) survey at high Galactic latitudes. A variety of progenitors have been proposed, including cataclysmic events at cosmological distances, Galactic flare stars, and terrestrial radio frequency interference. Here we report on a search for FRBs at intermediate Galactic latitudes (–15° Galactic models—must be included to ease the discrepancy between the detection rates at high and low Galactic latitudes. A revised rate estimate or another strong and heretofore unknown selection effect in Galactic latitude would provide closer agreement between the surveys' detection rates. The dearth of detections at low Galactic latitude disfavors a Galactic origin for these bursts

  3. HPLC method for determination of SN-38 content and SN-38 entrapment efficiency in a novel liposome-based formulation, LE-SN38.

    Science.gov (United States)

    Xuan, Tong; Zhang, J Allen; Ahmad, Imran

    2006-05-03

    A simple HPLC method was developed for quantification of SN-38, 7-ethyl-10-hydroxycamptothecin, in a novel liposome-based formulation (LE-SN38). The chromatographic separation was achieved on an Agilent Zorbax SB-C18 (4.6 mmx250 mm, 5 microm) analytical column using a mobile phase consisting of a mixture of NaH2PO4 (pH 3.1, 25 mM) and acetonitrile (50:50, v/v). SN-38 was detected at UV wavelength of 265 nm and quantitatively determined using an external calibration method. The limit of detection (LOD) and limit of quantitation (LOQ) were found to be 0.05 and 0.25 microg/mL, respectively. The individual spike recovery of SN-38 ranged from 100 to 101%. The percent of relative standard deviation (%R.S.D.) of intra-day and inter-day analyses were less than 1.6%. The method validation results confirmed that the method is specific, linear, accurate, precise, robust and sensitive for its intended use. The current method was successfully applied to the determination of SN-38 content and drug entrapment efficiency in liposome-based formulation, LE-SN38 during early stage formulation development.

  4. Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium

    Science.gov (United States)

    Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio

    2016-01-01

    We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  5. In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation.

    Science.gov (United States)

    Cheong, Jun Young; Chang, Joon Ha; Kim, Sung Joo; Kim, Chanhoon; Seo, Hyeon Kook; Shin, Jae Won; Yuk, Jong Min; Lee, Jeong Yong; Kim, Il-Doo

    2017-12-01

    We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion.

  6. Observation of galactic far-infrared ray

    International Nuclear Information System (INIS)

    Maihara, Toshinori; Oda, Naoki; Okuda, Haruyuki; Sugiyama, Takuya; Sakai, Kiyomi.

    1978-01-01

    Galactic far-infrared was observed to study the spatial distribution of interstellar dust. Far-infrared is emitted by interstellar dust distributing throughout the galactic plane. The observation of far-infrared is very important to study the overall structure of the galaxy, that is the structure of the galactic arm and gas distribution. The balloon experiment was conducted on May 25, 1978. The detector was a germanium bolometer cooled by liquid helium. The size of the detector is 1.6 mm in diameter. The geometrical factor was 4 x 10 3 cm 2 sr. The result showed that the longitude distribution of far-infrared at 150 μm correlated with H 166 α recombination line. This indicates that the observed far-infrared is emitted by interstellar dust heated by photons of Lyman continuum. (Yoshimori, M.)

  7. Imprint of Galactic dynamics on Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2006-01-01

    A connection between climate and the Solar system's motion perpendicular to the Galactic plane during the last 200 Myr years is studied. An imprint of galactic dynamics is found in a long-term record of the Earth's climate that is consistent with variations in the Solar system oscillation around...

  8. The SINS/zC-SINF survey of z ∼ 2 galaxy kinematics: Evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Förster Schreiber, N. M.; Genzel, R.; Kurk, J. D.; Lutz, D.; Tacconi, L. J.; Wuyts, S.; Bandara, K.; Buschkamp, P.; Davies, R.; Eisenhauer, F.; Lang, P. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Newman, S. F. [Department of Astronomy, Hearst Field Annex, University of California, Berkeley, CA 94720 (United States); Burkert, A. [Universitäts-Sternwarte, Ludwig-Maximilians-Universität, Scheinerstrasse 1, D-81679 München (Germany); Carollo, C. M.; Lilly, S. J. [Institute for Astronomy, Department of Physics, Eidgenössische Technische Hochschule, 8093-CH Zürich (Switzerland); Cresci, G. [Istituto Nazionale di Astrofisica—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Daddi, E. [CEA Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Hicks, E. K. S. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195-1580 (United States); Mainieri, V. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Mancini, C. [Istituto Nazionale di Astrofisica—Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2014-05-20

    We report the detection of ubiquitous powerful nuclear outflows in massive (≥10{sup 11} M {sub ☉}) z ∼ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ∼ 1500 km s{sup –1}, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ∼60 M {sub ☉} yr{sup –1} and mass loading of ∼3. At larger radii, a weaker broad component is detected but with lower FWHM ∼485 km s{sup –1} and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth.

  9. Ultraviolet Detection of the Binary Companion to the Type IIb SN 2001ig

    Science.gov (United States)

    Ryder, Stuart D.; Van Dyk, Schuyler D.; Fox, Ori D.; Zapartas, Emmanouil; de Mink, Selma E.; Smith, Nathan; Brunsden, Emily; Azalee Bostroem, K.; Filippenko, Alexei V.; Shivvers, Isaac; Zheng, WeiKang

    2018-03-01

    We present HST/WFC3 ultraviolet imaging in the F275W and F336W bands of the Type IIb SN 2001ig at an age of more than 14 years. A clear point source is detected at the site of the explosion, with m F275W = 25.39 ± 0.10 and m F336W = 25.88 ± 0.13 mag. Despite weak constraints on both the distance to the host galaxy NGC 7424 and the line-of-sight reddening to the supernova, this source matches the characteristics of an early B-type main-sequence star with 19,000 GMOS optical spectrum at an age of 6 years reveals a narrow He II λ4686 emission line, indicative of continuing interaction with a dense circumstellar medium at large radii from the progenitor. We review our findings on SN 2001ig in the context of binary evolution channels for stripped-envelope supernovae. Owing to the uncrowded nature of its environment in the ultraviolet, this study of SN 2001ig represents one of the cleanest detections to date of a surviving binary companion to a Type IIb supernova.

  10. The interstellar medium in galaxies - An overview

    Science.gov (United States)

    Knapp, G. R.

    1990-01-01

    Recent observational developments on the subject of the interstellar medium in galaxies are summarized, with emphasis placed on global properties. The properties and distribution of the ISM in the solar neighborhood and in the Galactic plane are examined and a number of results from the most important observational probes (HI, CO, and infrared) are described. A recent development is the observation of the ISM in galaxies of all morphological types, early to late. These developments are summarized and the properties of different types of galaxies are compared to one another. The origin of radio galaxies, the effect of environment, and the prospects for direct observations of ISM evolution in galaxies are discussed.

  11. Lithium insertion mechanism in SnS2

    International Nuclear Information System (INIS)

    Lefebvre-Devos, I.; Olivier-Fourcade, J.; Jumas, J.C.; Lavela, P.

    2000-01-01

    We study lithium insertion in SnS 2 by means of 119 Sn Moessbauer spectroscopy, x-ray absorption spectroscopy at Sn L I,III , and S K edges, and theoretical electronic structures (calculated in the density-functional theory framework). An insertion mechanism is derived according to the Li amount. It shows the influence of the SnS 2 -layered structure on the Sn reduction, particularly the possibility of an intermediate oxidation state between Sn IV and Sn II , which is not observed during Li insertion in three-dimensional sulfides

  12. Dynamics and evolution of galactic nuclei (princeton series in astrophysics)

    CERN Document Server

    Merritt, David

    2013-01-01

    Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the las...

  13. Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries

    Science.gov (United States)

    Wang, Huijun; Jiang, Xinya; Chai, Yaqin; Yang, Xia; Yuan, Ruo

    2018-03-01

    As lithium ion batteries (LIBs) anode, SnO2 suffers fast capacity fading due to its large volume expansion during discharge/charge process. To overcome the problem, sandwich-like C@SnO2/Sn/void@C hollow spheres (referred as C@SnO2/Sn/void@C HSs) are prepared by in-situ polymerization and carbonization, using hollow SnO2 as self-template and dopamine as carbon source. The C@SnO2/Sn/void@C HSs possesses the merits of hollow and core/void/shell structure, so that they can accommodate the volume change under discharge/charge process, shorten the transmission distance of Li ions, own more contact area for the electrolyte. Thanks to these advantages, C@SnO2/Sn/void@C HSs display excellent electrochemical performance as anode materials for LIBs, which deliver a high capacity of 786.7 mAh g-1 at the current density of 0.5 A g-1 after 60 cycles. The simple synthesis method for C@SnO2/Sn/void@C HSs with special structure will provide a promising method for preparing other anode materials for LIBs.

  14. Hot gas metallicity and the history of supernova activity in elliptical galaxies

    International Nuclear Information System (INIS)

    Loewenstein, M.; Mathews, W.G.

    1991-01-01

    Calculations of the dynamical evolution of the hot interstellar medium (ISM) in a massive elliptical galaxy are described, with a variety of past variations of the SN rate being assumed. The investigation focuses on iron enrichment in the ISM. The equivalent widths of the 6.7-keV iron line are calculated as a function of redshift and of galactic projected radius. The present-day interstellar gas in elliptical galaxies contains a fossil record of past SN activity that can be determined from measurements of iron line equivalent widths at several projected radii in the galaxy. It is proposed that the ISM iron abundance is likely to be quite inhomogeneous. The hydrogen-free ejecta of type Ia SN also result in pronounced ISM abundance inhomogeneities that probably eventually cool and move in pressure equilibrium with the local ISM flow velocity. The 6.7-keV iron line emission is greater if the iron is confined to ionized regions of pure iron. 25 refs

  15. Galactic synchrotron emission from WIMPs at radio frequencies

    International Nuclear Information System (INIS)

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10 −26 cm 3 s −1 , and masses M DM ∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined

  16. Planck 2013 results. XIII. Galactic CO emission

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    2014-01-01

    Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensi...

  17. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  18. A MISSING-LINK IN THE SUPERNOVA–GRB CONNECTION: THE CASE OF SN 2012ap

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborti, Sayan; Soderberg, Alicia; Kamble, Atish; Margutti, Raffaella; Milisavljevic, Dan; Dittmann, Jason [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chomiuk, Laura [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Yadav, Naveen; Ray, Alak [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005 (India); Hurley, Kevin [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720 (United States); Bietenholz, Michael [Department of Physics and Astronomy, York University, 4700 Keele St., M3J 1P3 Ontario (Canada); Brunthaler, Andreas [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Pian, Elena [Scuola Normale Superiore, Piazza Dei Cavalieri 7—I-56126 Pisa (Italy); Mazzali, Paolo [Liverpool John Moores University, IC2, 146 Brownlow Hill, Liverpool (United Kingdom); Fransson, Claes [Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Bartel, Norbert [Hartebeesthoek Radio Astronomy Observatory, PO Box 443, Krugersdrop, 1740 (South Africa); Hamuy, Mario [Departamento de Astronoma, Universidad de Chile (Chile); Levesque, Emily [University of Colorado, C327A, Boulder, CO 80309 (United States); MacFadyen, Andrew, E-mail: schakraborti@fas.harvard.edu [New York University, 4 Washington Place, New York, NY 10003 (United States); and others

    2015-06-01

    Gamma-ray bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly, usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However, supernovae with heavy ejecta can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for a few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. However, the ejecta from SN 2009bb was baryon loaded and in nearly free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than one-sixth of the fluence from GRB 980425. This shows for the first time that central engines in SNe Ic, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs.

  19. A MISSING-LINK IN THE SUPERNOVA–GRB CONNECTION: THE CASE OF SN 2012ap

    International Nuclear Information System (INIS)

    Chakraborti, Sayan; Soderberg, Alicia; Kamble, Atish; Margutti, Raffaella; Milisavljevic, Dan; Dittmann, Jason; Chomiuk, Laura; Yadav, Naveen; Ray, Alak; Hurley, Kevin; Bietenholz, Michael; Brunthaler, Andreas; Pignata, Giuliano; Pian, Elena; Mazzali, Paolo; Fransson, Claes; Bartel, Norbert; Hamuy, Mario; Levesque, Emily; MacFadyen, Andrew

    2015-01-01

    Gamma-ray bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly, usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However, supernovae with heavy ejecta can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for a few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. However, the ejecta from SN 2009bb was baryon loaded and in nearly free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than one-sixth of the fluence from GRB 980425. This shows for the first time that central engines in SNe Ic, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs

  20. Microstructural investigation and SnO nanodefects in spray-pyrolyzed SnO2 thin films

    DEFF Research Database (Denmark)

    Thanachayanont, Chanchana; Yordsri, Visittapong; Boothroyd, Chris

    2011-01-01

    Spray pyrolysis is one of the most cost-effective methods to prepare SnO2 films due to its ability to deposit large uniform area, low fabrication cost, simplicity and low deposition temperature. Conventionally, scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) are routinely used...... diffraction (CBED). It was found that large grain-size vertically-aligned columnar SnO2 grains were formed after a few layers of small grain-size randomly oriented SnO2 grains. Moreover, CBED showed the presence of SnO nanodefects that had not been reported before and could not be detected by SEM or XRD....

  1. Fluid sensitive nanoscale switching with quantum levitation controlled by $\\alpha$-Sn/$\\beta$-Sn phase transition

    OpenAIRE

    Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas

    2018-01-01

    We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α−Sn to metallic β−Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α−Sn and β−Sn, giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening l...

  2. ISM chemical abundances in two intermediate-velocity clouds in the line of sight to SN 1987A

    Science.gov (United States)

    Morgan, Siobahn; Bohm-Vitense, Erika

    1988-01-01

    The earliest IUE high-resolution spectra of SN 1987A have been studied and reveal the presence of several clouds in the line of sight to the LMC. In particular, there are two clouds with radial velocities of about 130 km/s and about 180 km/s. These clouds' velocities are between those of Galactic clouds at 0-80 km/s and those of LMC gas at about 270 km/s. Chemical-abundance determinations may help to determine the origin and location of these clouds. Curve-of-growth analysis and 21-cm observations show that they may be underabundant in heavy elements by about a factor of 2 as compared to solar abundances. No depletion indicative of grain formation can be seen.

  3. Constraints on Galactic populations from the unidentified EGRET sources

    International Nuclear Information System (INIS)

    Siegal-Gaskins, Jennifer M.; Pavlidou, Vasiliki; Brown, Carolyn; Olinto, Angela V.; Fields, Brian D.

    2007-01-01

    A significant fraction of the sources in the third EGRET catalog have not yet been identified with a low-energy counterpart. We evaluate the plausibility of a Galactic population accounting for some or all of the unidentified EGRET sources by making the simple assumption that galaxies similar to the Milky Way host comparable populations of gamma-ray emitters. Rather than focusing on the properties of a specific candidate emitter, we constrain the abundance and spatial distribution of proposed Galactic populations. We find that it is highly improbable that the unidentified EGRET sources contain more than a handful of members of a Galactic halo population, but that current observations are consistent with all of these sources being Galactic objects if they reside entirely in the disk and bulge. We discuss the additional constraints and new insights into the nature of Galactic gamma-ray emitting populations that GLAST is expected to provide

  4. Production of {sup 44}Ti in neutrino-driven aspherical supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Shin-ichiro [Kumamoto National College of Technology, 2659-2 Suya, Goshi 861-1102 (Japan); Ono, Masaomi; Hashimoto, Masa-aki [Department of Physics, School of Sciences, Kyushu University, Fukuoka 810-8560 (Japan); Kotake, Kei [National Astronomical Observatory Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2014-05-02

    We examine the synthesis of {sup 44}Ti in a neutrino-driven aspherical supernova (SN), focusing on reaction rates related to {sup 44}Ti and rotation of a progenitor. We have performed 2D hydrodynamic simulations of SN of a 15M{sub ⊙} progenitor, whose angular velocity is manually set to be a cylindrical distribution and have followed explosive nucleosynthesis in the ejecta. We find that the faster rates of {sup 40}Ca(α,γ){sup 44}Ti and the slower rate of {sup 44}Ti(α,p){sup 47}V lead to more massive ejection of {sup 44}Ti and {sup 56}Ni and larger ratios <{sup 44}Ti/{sup 56}Ni>. Faster rotation also results in more massive ejection of {sup 44}Ti and {sup 56}Ni. Ratios <{sup 44}Ti/{sup 56}Ni> are however independent from rotation. Large masses of {sup 44}Ti and large ratios observed in SN 1987A and Cas A (> 1O{sup −4}M{sub ⊙} and 1-2 respectively) are not realized in all the models.

  5. Possible existence of wormholes in the galactic halo region

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Kuhfittig, P.K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Islam, Nasarul [Danga High Madrasah, Department of Mathematics, Kolkata, West Bengal (India)

    2014-02-15

    Two observational results, the density profile from simulations performed in the ΛCDM scenario and the observed flat galactic rotation curves, are taken as input with the aim of showing that the galactic halo possesses some of the characteristics needed to support traversable wormholes. This result should be sufficient to provide an incentive for scientists to seek observational evidence for wormholes in the galactic halo region. (orig.)

  6. Electrocatalytic oxidation of ethylene glycol at palladium-bimetallic nanocatalysts (PdSn and PdNi) supported on sulfonate-functionalised multi-walled carbon nanotubes

    CSIR Research Space (South Africa)

    Ramulifho, T

    2013-04-01

    Full Text Available Electrocatalytic oxidation of ethylene glycol (EG) in alkaline medium using nano-scaled palladium-based bimetallic catalysts (PdM, where M = Ni and Sn) supported on sulfonated multi-walled carbon nanotubes (SF-MWCNTs) is compared. The bimetallic...

  7. 99mTc bone scanning agents preparation and chemical analysis of Tc(Sn)pyrophosphate, Tc(Sn)MDP and Tc(Sn)HMDP

    International Nuclear Information System (INIS)

    Kroesbergen, J.

    1986-01-01

    This thesis describes a comparison of the preparation, composition and properties of three bone scanning agents: 99m Tc(Sn)pyrophosphate, 99m Tc(Sn)MDP and 99m Tc(Sn)HMDP. This study has been performed for two reasons: First to investigate the preparation and composition of the radiopharmaceuticals as a function of experimental conditions. Together with previously reported results for 99m Tc(Sn)EHDP, obtained in a similar way, this enables to use well-defined preparations of the bone scanning agents. Secondly to gain an insight in the mechanism in which the agents behave 'in vivo'. Because the 'in vivo' process is too complicated to study directly, it seemed more appropriate to perform 'in vitro' investigations as simplifications of the 'in vivo' situation. 304 refs.; 26 figs.; 31 tabs

  8. Luminescence studies on Sb3+ co-doped Y2Sn2O7: Tb nanoparticles

    International Nuclear Information System (INIS)

    Nigam, Sandeep; Sudarsan, V.; Vatsa, R.K.

    2008-01-01

    Pyrochlore-type oxides (A 2 B 2 O 7 ) have emerged as important host matrices for lanthanide doped luminescent materials due to their good thermal stability. Due to the higher symmetry around the A and B cations in the lattice lanthanide ions like Eu 3+ and Tb 3+ when incorporated at the A or B sites give very poor luminescence. One way to circumvent this problem is to incorporate ions like Sb 3+ or Bi 3+ in the lattice so that the lattice get distorted and luminescent intensity from the lanthanide ions increases. The present study deals with the synthesis and characterisation of Sb 3+ co-doped Y 2 Sn 2 O 7 :Tb nanoparticles prepared by the hydrolysis of Y 3+ , Sn 4+ , Tb 3+ and Sb 3+ in ethylene glycol medium followed by heating at 700 deg C for 4 hours. From XRD studies it is confirmed that as prepared sample is amorphous and heat treatment at 700 deg C results in the formation of highly crystalline Y 2 Sn 2 O 7 phase having pyrochlore structure

  9. Time evolution of tunneling in a thermal medium: Environment-driven excited tunneling

    International Nuclear Information System (INIS)

    Matsumoto, Sh.; Yoshimura, M.

    2004-01-01

    Time evolution of tunneling phenomena proceeding in a thermal medium is studied using a standard model of environmental interaction. A semiclassical probability formula for the particle motion in a metastable state of a one-dimensional system put in a thermal medium is combined with the formula of the quantum penetration factor through a potential barrier to derive the tunneling rate in the medium. The effect of environment, its influence on time evolution in particular, is clarified in our real-time formalism. A nonlinear resonance effect is shown to enhance the tunneling rate at finite times of order 2/η, with η the friction coefficient unless η is too small. In the linear approximation this effect has relevance to the parametric resonance. This effect enhances the possibility of early termination of the cosmological phase transition much prior to the typical Hubble time

  10. SnSAG5 is an alternative surface antigen of Sarcocystis neurona strains that is mutually exclusive to SnSAG1.

    Science.gov (United States)

    Crowdus, Carolyn A; Marsh, Antoinette E; Saville, Willliam J; Lindsay, David S; Dubey, J P; Granstrom, David E; Howe, Daniel K

    2008-11-25

    Sarcocystis neurona is an obligate intracellular parasite that causes equine protozoal myeloencephalitis (EPM). Previous work has identified a gene family of paralogous surface antigens in S. neurona called SnSAGs. These surface proteins are immunogenic in their host animals, and are therefore candidate molecules for development of diagnostics and vaccines. However, SnSAG diversity exists in strains of S. neurona, including the absence of the major surface antigen gene SnSAG1. Instead, sequence for an alternative SnSAG has been revealed in two of the SnSAG1-deficient strains. Herein, we present data characterizing this new surface protein, which we have designated SnSAG5. The results indicated that the protein encoded by the SnSAG5 sequence is indeed a surface-associated molecule that has characteristics consistent with the other SAGs identified in S. neurona and related parasites. Importantly, Western blot analyses of a collection of S. neurona strains demonstrated that 6 of 13 parasite isolates express SnSAG5 as a dominant surface protein instead of SnSAG1. Conversely, SnSAG5 was not detected in SnSAG1-positive strains. One strain, which was isolated from the brain of a sea otter, did not express either SnSAG1 or SnSAG5. Genetic analysis with SnSAG5-specific primers confirmed the presence of the SnSAG5 gene in Western blot-positive strains, while also suggesting the presence of a novel SnSAG sequence in the SnSAG1-deficient, SnSAG5-deficient otter isolate. The findings provide further indication of S. neurona strain diversity, which has implications for diagnostic testing and development of vaccines against EPM as well as the population biology of Sarcocystis cycling in the opossum definitive host.

  11. Electronic and magnetic properties of rare earth-Sn3 compounds for 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sanchez, J.P.; Friedt, J.M.; Shenoy, G.K.; Percheron, A.; Achard, J.C.

    1975-01-01

    The electronic and magnetic properties of RESn 3 compounds (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Yb) have been investigated using the 23.8keV Moessbauer resonance of 119 Sn. The isomer shifts and quadrupole interactions are nearly the same in all compounds. The transferred magnetic fields and their orientation with respect to the principal electric field gradient axis at various Sn sites in the magnetically ordered state of RESn 3 (RE=Pr, Nd, Sm, Eu, Gd) have been utilized to get information about the magnetic structure. An evaluation of the transferred fields in PrSn 3 and NdSn 3 shows that the spin density at the Sn nucleus is nearly the same in both compounds [fr

  12. The tin-rich copper lithium stannides: Li3Cu6Sn4 and Li2CuSn2

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Flandorfer, Hans; Effenberger, Herta S.

    2015-01-01

    The Sn rich ternary intermetallic compounds Li 3 Cu 6 Sn 4 (CSD-427097) and Li 2 CuSn 2 (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li 3 Cu 6 Sn 4 crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe 6 Ge 6 (a = 5.095(2) Aa, c = 9.524(3) Aa; wR 2 = 0.059; 239 unique F 2 -values, 17 free variables). Li 3 Cu 6 Sn 4 is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li 2 CuSn 2 (space group I4 1 /amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR 2 = 0.033; 213 unique F 2 -values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  13. SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P. L.; Filippenko, A. V.; Graham, M. L. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Brammer, G.; Strolger, L.-G.; Riess, A. G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Selsing, J.; Hjorth, J.; Christensen, L. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Foley, R. J. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801 (United States); Rodney, S. A. [Department of Physics and Astronomy, University of South Carolina, 712 Main St., Columbia, SC 29208 (United States); Treu, T. [University of California, Los Angeles, CA 90095 (United States); Steidel, C. C.; Strom, A.; Zitrin, A. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Schmidt, K. B.; McCully, C. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Bradač, M. [University of California, Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Jha, S. W. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Graur, O., E-mail: pkelly@astro.berkeley.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); and others

    2016-11-10

    We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in fall 2014. The HST light curve of SN Refsdal has a shape consistent with the distinctive, slowly rising light curves of SN 1987A-like SNe, and we find strong evidence for a broad H α P-Cygni profile and Na I D absorption in the HST grism spectrum at the redshift ( z = 1.49) of the spiral host galaxy. SNe IIn, largely powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong H α and Na I D absorption. From the grism spectrum, we measure an H α expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the H α emission of the WFC3 and X-shooter spectra, separated by ∼2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, photometry of SN Refsdal favors bluer B - V and V - R colors and one of the largest luminosities for the assumed range of potential magnifications. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material. Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3 ± 0.1 dex and <8.4 dex, respectively) near the explosion site.

  14. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation; Preparacao de eletrocatalisadores PtSnCu/C e PtSn/C e ativacao por processos de dealloying para aplicacao na oxidacao eletroquuimica do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Crisafulli, Rudy

    2013-06-01

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H{sub 2}PtCl{sub 6}.6H{sub 2}O, SnCl{sub 2}.2H{sub 2}O and CuCl{sub 2}.2H{sub 2}O as metal sources, NaBH{sub 4} and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of <=2 nm to 3 nm and after dealloying there were no significant variations in sizes. The energy dispersive Xray analysis of the as-synthesized electrocatalysts showed a Pt:Sn and Pt:Sn:Cu atomic ratios similar to the nominal values. After chemical and electrochemical dealloying of the electrocatalysts the ranged Pt:Sn and Pt:Sn:Cu atomic ratios showed that Cu and Sn atoms were removed. However, chemical dealloying process proved to be more efficient for removing Cu and electrochemical dealloying for removing Sn. The line scan energy dispersive X-ray analysis showed that acid and electrochemical treatments were efficient to dealloying Cu and/or Sn superficial atoms of

  15. Galactic synchrotron emission from WIMPs at radio frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, Istituto Nazionale di Fisica Nucleare, via P. Giuria 1, I-10125 Torino (Italy); Lineros, Roberto A.; Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@ific.uv.es [IFIC, CSIC-Universidad de Valencia, Ed. Institutos, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10{sup −26} cm{sup 3} s{sup −1}, and masses M{sub DM}∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined.

  16. CAN ULTRAHIGH-ENERGY COSMIC RAYS COME FROM GAMMA-RAY BURSTS? COSMIC RAYS BELOW THE ANKLE AND GALACTIC GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Eichler, David; Pohl, Martin

    2011-01-01

    The maximum cosmic-ray energy achievable by acceleration by a relativistic blast wave is derived. It is shown that forward shocks from long gamma-ray bursts (GRBs) in the interstellar medium accelerate protons to large enough energies, and have a sufficient energy budget, to produce the Galactic cosmic-ray component just below the ankle at 4 x 10 18 eV, as per an earlier suggestion. It is further argued that, were extragalactic long GRBs responsible for the component above the ankle as well, the occasional Galactic GRB within the solar circle would contribute more than the observational limits on the outward flux from the solar circle, unless an avoidance scenario, such as intermittency and/or beaming, allows the present-day local flux to be less than 10 -3 of the average. Difficulties with these avoidance scenarios are noted.

  17. Polarographic determination of Sn (II) and total Sn in PYRO and MDP radiopharmaceutical kits

    International Nuclear Information System (INIS)

    Sebastian, Maria V.A.; Lugon, Marcelo Di M.V.; Silva, Jose L. da; Fukumori, Neuza T.O.; Pereira, Nilda P.S. de; Silva, Constancia P.G. da; Matsuda, Margareth M.N.

    2007-01-01

    A sensitive, alternative method to atom absorption spectrometry, fluorimetry or potentiometry for the evaluation of tin(II) ions (0.1- 10 mg) and total tin in radiopharmaceutical kits was investigated. Differential pulse polarography was chosen. The supporting electrolyte was H 2 SO 4 3 mol L -1 and HCl 3 mol L -1 solution. The potential was swept from -250 to -800 mV vs Ag/AgCl/saturated KCl, using a dropping mercury electrode with 1 s drop time, 50 mV s -1 scan rate, -50 mV pulse amplitude, 40 ms pulse time and 10 mV step amplitude. Pure nitrogen was used to deaerate the polarographic cell solution for 5 min, before and after each sample introduction. Oxidation of Sn(II) was made in the same sample vial by adding H 2 O 2 (hydrogen peroxide) 10 mol L -1 , at 37 deg C, in order to quantify the total Sn. The calibration curve for Sn(II) and Sn(IV) was obtained in the concentration range of 0-10 ppm from a 1000 ppm standard solution. The detection limit of Sn(II) is 0.5 ppm and for Sn(IV) is 0.6 ppm. Differential pulse polarography was performed in the pyrophosphate (PYRO) and methylenediphosphonic acid (MDP) radiopharmaceutical kits, containing 2 mg and 1 mg of SnCl 2 .2H 2 O per vial, respectively. The described method for determination of stannous ion (Sn(II)), is selective, reproducible and adequate to be used in the quality control of lyophilized reagents and it shall be performed for other cold kits produced at IPEN. (author)

  18. The effects of the local environment on active galactic nuclei

    International Nuclear Information System (INIS)

    Manzer, L. H.; De Robertis, M. M.

    2014-01-01

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2 ≤ N ≤ 20) with redshifts between 0.01 and 0.20 are from the Sloan Digital Sky Survey. We first investigate the completeness of our data set and find, though biases are a concern particularly at higher redshift, that our data provide a fair representation of the local universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging systems

  19. The effects of the local environment on active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Manzer, L. H.; De Robertis, M. M., E-mail: liannemanzer@gmail.com, E-mail: mmdr@yorku.ca [Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 (Canada)

    2014-06-20

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2 ≤ N ≤ 20) with redshifts between 0.01 and 0.20 are from the Sloan Digital Sky Survey. We first investigate the completeness of our data set and find, though biases are a concern particularly at higher redshift, that our data provide a fair representation of the local universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging systems

  20. Quasars and galactic evolution

    CERN Document Server

    Woltjer, L

    1978-01-01

    The evolution of quasars is discussed. It is noted that substantial clustering may be present at faint magnitudes. The relationship between quasar evolution and galactic evolution is considered. (4 refs).

  1. Internal friction behavior of liquid Bi-Sn alloys

    International Nuclear Information System (INIS)

    Wu Aiqing; Guo Lijun; Liu Changsong; Jia Erguang; Zhu Zhengang

    2005-01-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480 - bar Cand another at about 830 - bar C. Only a single internal-friction peak at about 830 - bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids

  2. Internal friction behavior of liquid Bi-Sn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu Aiqing [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Guo Lijun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Liu Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Jia Erguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Zhu Zhengang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)]. E-mail: zgzhu@issp.ac.cn

    2005-12-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480{sup -}bar Cand another at about 830{sup -}bar C. Only a single internal-friction peak at about 830{sup -}bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids.

  3. Distribution of medium-chain FA in different lipid classes after administration of specific structured TAG in rats

    DEFF Research Database (Denmark)

    Mu, Huiling; Høy, Carl-Erik

    2002-01-01

    Structured TAG (STAG) containing medium-chain FA (MCFA) in the sn-1,3 positions and essential FA in the sn-2 position were synthesized by lipase-catalyzed acidolysis. In our previous studies we found that part of the MCFA from STAG could be absorbed in the small intestine; however, it was unclear...... how they were absorbed. In order to get a better understanding of the metabolism of STAG to improve future design and application of STAG, in the present study lymph lipids collected after feeding STAG were fractionated into different classes and the FA composition of each lipid class was studied...

  4. Phase Equilibria of the Ternary Sn-Pb-Co System at 250°C and Interfacial Reactions of Co with Sn-Pb Alloys

    Science.gov (United States)

    Wang, Chao-hong; Kuo, Chun-yi; Yang, Nian-cih

    2015-11-01

    The isothermal section of the ternary Sn-Pb-Co system at 250°C was experimentally determined through a series of the equilibrated Sn-Pb-Co alloys of various compositions. The equilibrium phases were identified on the basis of compositional analysis. For the Sn-Co intermetallic compounds (IMCs), CoSn3, CoSn2, CoSn and Co3Sn2, the Pb solubility was very limited. There exist five tie-triangle regions. The Co-Pb system involves one monotectic reaction, so the phase separation of liquid alloys near the Co-Pb side occurred prior to solidification. The immiscibility field was also determined. Additionally, interfacial reactions between Co and Sn-Pb alloys were conducted. The reaction phase for the Sn-48 at.%Pb and Sn-58 at.%Pb at 250°C was CoSn3 and CoSn2, respectively. Both of them were simultaneously formed in the Sn-53 at.%Pb/Co. The formed IMCs were closely associated to the phase equilibria relationship of the liquid-CoSn3-CoSn2 tie-triangle. Furthermore, with increasing temperatures, the phase formed in equilibrium with Sn-37 wt.%Pb was found to transit from CoSn3 to CoSn2 at 275°C. We propose a simple method of examining the phase transition temperature in the interfacial reactions to determine the boundaries of the liquid-CoSn3-CoSn2 tie-triangles at different temperatures.

  5. Cu-SnO2 nanostructures obtained via galvanic replacement control as high performance anodes for lithium-ion storage

    Science.gov (United States)

    Nguyen, Tuan Loi; Park, Duckshin; Hur, Jaehyun; Son, Hyung Bin; Park, Min Sang; Lee, Seung Geol; Kim, Ji Hyeon; Kim, Il Tae

    2018-01-01

    SnO2 has been considered as a promising anode material for lithium ion batteries (LIBs) because of its high theoretical capacity (782 mAh g-1). However, the reaction between lithium ions and Sn causes a large volume change, resulting in the pulverization of the anode, a loss of contact with the current collector, and a deterioration in electrochemical performance. Several strategies have been proposed to mitigate the drastic volume changes to extend the cyclic life of SnO2 materials. Herein, novel composites consisting of Cu and SnO2 were developed via the galvanic replacement reaction. The reaction was carried out at 180 °C for different durations and triethylene glycol was used as the medium solvent. The structure, morphology, and composition of the composites were analyzed by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The reaction time affected the particle size, which in turn affected the reaction kinetics. Furthermore, the novel nanostructures contained an inactive metal phase (Cu), which acted both as the buffer space against the volume change of Sn during the alloying reaction and as the electron conductor, resulting in a lower impedance of the composites. When evaluated as potential anodes for LIBs, the composite electrodes displayed extraordinary electrochemical performance with a high capacity and Coulombic efficiency, an excellent cycling stability, and a superior rate capability compared to a Sn electrode.

  6. ANALYSIS OF WMAP 7 YEAR TEMPERATURE DATA: ASTROPHYSICS OF THE GALACTIC HAZE

    Energy Technology Data Exchange (ETDEWEB)

    Pietrobon, Davide; Gorski, Krzysztof M.; Bartlett, James; Colombo, Loris P. L.; Jewell, Jeffrey B.; Pagano, Luca; Rocha, Graca; Lawrence, Charles R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Banday, A. J. [Universie de Toulouse, UPS-OMP, IRAP, Toulouse (France); Dobler, Gregory [Kavli Institute for Theoretical Physics, University of California, Santa Barbara Kohn Hall, Santa Barbara, CA 93106 (United States); Hildebrandt, Sergi R. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Eriksen, Hans Kristian [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway); Saha, Rajib, E-mail: davide.pietrobon@jpl.nasa.gov [Physics Department, Indian Institute of Science Education and Research Bhopal, Bhopal, MP 462023 (India)

    2012-08-10

    We perform a joint analysis of the cosmic microwave background (CMB) and Galactic emission from the WMAP 7 year temperature data. Using the Commander code, based on Gibbs sampling, we simultaneously derive the CMB and Galactic components on scales larger than 1 Degree-Sign with improved sensitivity over previous work. We conduct a detailed study of the low-frequency Galactic foreground, focusing on the 'microwave haze' emission around the Galactic center. We demonstrate improved performance in quantifying the diffuse Galactic emission when including Haslam 408 MHz data and when jointly modeling the spinning and thermal dust emission. We examine whether the hypothetical Galactic haze can be explained by a spatial variation of the synchrotron spectral index, and find that the excess of emission around the Galactic center is stable with respect to variations of the foreground model. Our results demonstrate that the new Galactic foreground component-the microwave haze-is indeed present.

  7. STRESS a SN survey at ESO

    Science.gov (United States)

    Botticella, M. T.

    We performed the Southern inTermediate Redshift ESO Supernova Search (STRESS), a survey specifically designed to measure the rate of both SNe Ia and CC SNe, in order to obtain a direct comparison of the high redshift and local rates and to investigate the dependence of the rates on specific galaxy properties, most notably their colour. We found that the type Ia SN rate, at mean redshift z = 0.3, is 0.22+0.10+0.16-0.08-0.14 h270 SNu, while the CC SN rate, at z = 0.21, is 0.82+0.31+0.300.24-0.26 h270 SNu. The quoted errors are the statistical and systematic uncertainties. With respect to the local value, the CC SN rate at z = 0.2 is higher by a factor of ˜ 2, whereas the type Ia SN rate remains almost constant. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. Finally we exploited the link between SFH and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations.

  8. The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis

    Science.gov (United States)

    Gioia, I. M.; Maccacaro, T.; Schild, R. E.; Wolter, A.; Stocke, J. T.

    1990-01-01

    This paper presents the results of the analysis of the X-ray data and the optical identification for the Einstein Observatory Extended Medium-Sensitivity Survey (EMSS). The survey consists of 835 serendipitous sources detected at or above 4 times the rms level in 1435 imaging proportional counter fields with centers located away from the Galactic plane. Their limiting sensitivities are about (5-300) x 10 to the -14th ergs/sq cm sec in the 0.3-3.5-keV energy band. A total area of 778 square deg of the high-Galactic-latitude sky has been covered. The data have been analyzed using the REV1 processing system, which takes into account the nonuniformities of the detector. The resulting EMSS catalog of X-ray sources is a flux-limited and homogeneous sample of astronomical objects that can be used for statistical studies.

  9. Metallic Winds in Dwarf Galaxies

    International Nuclear Information System (INIS)

    Robles-Valdez, F.; Rodríguez-González, A.; Hernández-Martínez, L.; Esquivel, A.

    2017-01-01

    We present results from models of galactic winds driven by energy injected from nuclear (at the galactic center) and non-nuclear starbursts. The total energy of the starburst is provided by very massive young stellar clusters, which can push the galactic interstellar medium and produce an important outflow. Such outflow can be a well or partially mixed wind, or a highly metallic wind. We have performed adiabatic 3D N -Body/Smooth Particle Hydrodynamics simulations of galactic winds using the gadget-2 code. The numerical models cover a wide range of parameters, varying the galaxy concentration index, gas fraction of the galactic disk, and radial distance of the starburst. We show that an off-center starburst in dwarf galaxies is the most effective mechanism to produce a significant loss of metals (material from the starburst itself). At the same time, a non-nuclear starburst produces a high efficiency of metal loss, in spite of having a moderate to low mass loss rate.

  10. Rapid ionization of the environment of SN 1987A

    International Nuclear Information System (INIS)

    Raga, A.C.

    1987-01-01

    It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star. 9 references

  11. Rapid ionization of the environment of SN 1987A

    Science.gov (United States)

    Raga, A. C.

    1987-01-01

    It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star.

  12. Sn whiskers removed by energy photo flashing

    International Nuclear Information System (INIS)

    Jiang, N.; Yang, M.; Novak, J.; Igor, P.; Osterman, M.

    2012-01-01

    Highlights: ► Sn whiskers were sintered by intense light flashing (Photosintering). ► Photosintering can effectively eliminate Sn whiskers. ► Photosintering would not damage electronic devices. ► Photosintering is a very promising approach to improve Sn-based electronic surface termination. - Abstract: Sn whiskers have been known to be the major issue resulting in electronic circuit shorts. In this study, we present a novel energy photo flashing approach (photosintering) to shorten and eliminate Sn whiskers. It has been found that photosintering is very effective to modify and remove Sn whiskers; only a sub-millisecond duration photosintering can amazingly get rid of over 90 vol.% of Sn whiskers. Moreover, this photosintering approach has also been proved to cause no damages to electronic devices, suggesting it is a potentially promising way to improve Sn-based electronic surface termination.

  13. Li2SnO3 derived secondary Li-Sn alloy electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, D.W.; Zhang, S.Q.; Jin, Y.; Yi, T.H.; Xie, S.; Chen, C.H.

    2006-01-01

    As a possible high-capacity Li-ion battery anode material, Li 2 SnO 3 was prepared via a solid-state reaction route and a sol-gel route, separately. Its electrochemical performance was tested in coin-type cells with metallic Li as the counter electrode. The results show that the sol-gel derived Li 2 SnO 3 has uniform nano-sized particles (200-300 nm) and can deliver a better reversible capacity (380 mAh/g after 50 cycles in the voltage window of 0-1 V) than that from the solid-state reaction route. The characterizations by means of galvanostatic cycling, cyclic voltammetry and ex situ X-ray diffraction indicate that the electrochemical process of the Li 2 SnO 3 lithiation proceeds with an initial structural reduction of the composite oxide into Sn-metal and Li 2 O followed by a reversible Li-Sn alloy formation in the Li 2 O matrix. Due to the buffer role of the Li 2 O matrix, the reversibility of the secondary Li-Sn alloy electrode is largely secured

  14. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration

    Science.gov (United States)

    Wang, Wenhui; Shi, Liang; Lan, Danni; Li, Quan

    2018-02-01

    Flower-like SnS nanostructures are obtained by a simple solvothermal method for anode applications in Na-ion batteries. We show experimental evidence of progressive Sn agglomeration and crystalline Na2S enrichment at the end of de-sodiation process of the SnS electrode, both of which contribute to the capacity decay of the electrode upon repeated cycles. By replacing the commonly adopted acetylene black conductive additive with multi-wall carbon nanotubes (MWCNT), the cycle stability of the SnS electrode is largely improved, which correlates well with the observed suppression of both Sn agglomeration and Na2S enrichment at the end of de-sodiation cycle. A full cell is assembled with the SnS/MWCNT anode and the P2-Na2/3Ni1/3Mn1/2Ti1/6O2 cathode. An initial energy density of 262 Wh/kg (normalized to the total mass of cathode and anode) is demonstrated for the full cell, which retains 71% of the first discharge capacity after 40 cycles.

  15. Preparation of catalysts PtSb{sub 2}O{sub 5}.SnO{sub 2} supported on carbon and ATO using the alcohol reduction method for electrochemical oxidation of ethanol; Preparacao de eletrocatalisadores PtSb{sub 2}O{sub 5}.SnO{sub 2} suportados em carbono e ATO pelo metodo da reducao por alcool para oxidacao eletroquimica do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, Jamil Mahmoud Said

    2013-06-01

    Pt Sn/C-ATO electrocatalysts with different Pt:Sn atomic ratios (90:10, 70:30 and 50:50) were prepared in a single step by an alcohol-reduction process using H{sub 2}PtCl{sub 6}.6H{sub 2}O and SnCl{sub 2}.2H{sub 2}O as metal sources and ethylene glycol as solvent and reducing agent and a physical mixture of carbon Vulcan XC72 (85 wt%) and Sb{sub 2}O{sub 5}.SnO{sub 2} (15 wt%) as support (C-ATO). The obtained materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The catalytic activity for ethanol electro-oxidation in acid medium was investigated by cyclic voltammetry and chronoamperometry and in single direct ethanol fuel cell (DEFC). XRD analyses showed that Pt(FCC), SnO{sub 2}, carbon and ATO phases coexist in the obtained materials. The electrochemical studies showed that PtSn/C-ATO electrocatalysts were more active for ethanol electro-oxidation than PtSn/C electrocatalyst. The experiments at 100 deg C on a single DEFC showed that the power density of the cell using Pt Sn/C-ATO (90:10) was nearly 100% higher than the one obtained using Pt Sn/C (50:50). FTIR measurements showed that the addition of ATO to Pt Sn/C favors the formation of acetic acid as a product while for PtSn/C acetaldehyde was the principal product formed. (author)

  16. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale

    Directory of Open Access Journals (Sweden)

    Jianmei Wang

    2017-09-01

    Full Text Available To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  17. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale.

    Science.gov (United States)

    Wang, Jianmei; Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong

    2017-09-25

    To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  18. On the Possibility of Fast Radio Bursts from Inside Supernovae: The Case of SN 1986J

    Science.gov (United States)

    Bietenholz, Michael F.; Bartel, Norbert

    2017-12-01

    We discuss the possibility of obtaining fast radio bursts (FRBs) from the interior of supernovae, in particular SN 1986J. Young neutron stars are involved in many of the possible scenarios for the origin of FRBs, and it has been suggested that the high dispersion measures observed in FRBs might be produced by the ionized material in the ejecta of associated supernovae. Using VLA and VLBI measurements of the Type IIn SN 1986J, which has a central compact component not seen in other supernovae, we can directly observe for the first time radio signals, which originate in the interior of a young (∼30 year old) supernova. We show that at an age of 30 years, any FRB signal at ∼1 GHz would still be largely absorbed by the ejecta. By the time the ejecta have expanded so that a 1 GHz signal would be visible, the internal dispersion measure due to the SN ejecta would be below the values typically seen for FRBs. The high dispersion measures seen for the FRBs detected so far could of course be due to propagation through the intergalactic medium provided that the FRBs are at distances much larger than that of SN 1986J, which is 10 Mpc. We conclude that if FRBs originate in Type II SNe/SNRs, they would likely not become visible until 60 ∼ 200 years after the SN explosion.

  19. Electronic structure and isomer shifts of Sn halides

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1988-01-01

    The all-electron first-principles Discrete Variational method was employed to study the electronic structure of SnF 4 , SnCl 4 , SnBr 4 and SnI 4 . Values of the electronic density at the Sn nucleus were derived and related to 119 Sn Isomer Shifts to obtain the nuclear constant Δ 2 >. Differences in values of ρ(o) area discussed in terms of the chemical bonding between Sn and halogen atoms. (author) [pt

  20. 195Pt and 119Sn Knight shifts of U3Pt3Sn4

    International Nuclear Information System (INIS)

    Kojima, K.; Takabatake, T.; Harada, A.; Hihara, T.

    1995-01-01

    The 195 Pt and 119 Sn Knight shifts in U 3 Pt 3 Sn 4 have been measured in the temperature range 4.2-298K. They exhibit Curie-Weiss like behaviors above about 50K and remain constant below about 10K. This suggests that the deviation of χ(T) from the modified Curie-Weiss law is an intrinsic property of U 3 Pt 3 Sn 4 . ((orig.))

  1. Confinement and Isotropization of Galactic Cosmic Rays by Molecular-Cloud Magnetic Mirrors When Turbulent Scattering Is Weak

    International Nuclear Information System (INIS)

    Chandran, Benjamin D. G.

    2000-01-01

    Theoretical studies of magnetohydrodynamic (MHD) turbulence and observations of solar wind fluctuations suggest that MHD turbulence in the interstellar medium is anisotropic at small scales, with smooth variations along the background magnetic field and sharp variations perpendicular to the background field. Turbulence with this anisotropy is inefficient at scattering cosmic rays, and thus the scattering rate ν may be smaller than has been traditionally assumed in diffusion models of Galactic cosmic-ray propagation, at least for cosmic-ray energies E above 1011-1012 eV at which self-confinement is not possible. In this paper, it is shown that Galactic cosmic rays can be effectively confined through magnetic reflection by molecular clouds, even when turbulent scattering is weak. Elmegreen's quasi-fractal model of molecular-cloud structure is used to argue that a typical magnetic field line passes through a molecular cloud complex once every ∼300 pc. Once inside the complex, the field line will in most cases be focused into one or more dense clumps in which the magnetic field can be much stronger than the average field in the intercloud medium (ICM). Cosmic rays following field lines into cloud complexes are most often magnetically reflected back into the ICM, since strong-field regions act as magnetic mirrors. For a broad range of cosmic-ray energies, a cosmic ray initially following some particular field line separates from that field line sufficiently slowly that the cosmic ray can be trapped between neighboring cloud complexes for long periods of time. The suppression of cosmic-ray diffusion due to magnetic trapping is calculated in this paper with the use of phenomenological arguments, asymptotic analysis, and Monte Carlo particle simulations. Formulas for the coefficient of diffusion perpendicular to the Galactic disk are derived for several different parameter regimes within the E-ν plane. In one of these parameter regimes in which scattering is weak, it

  2. The galactic contribution to IceCube's astrophysical neutrino flux

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Peter B. [Niels Bohr International Academy, University of Copenhagen, The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen (Denmark); Marfatia, Danny [Department of Physics and Astronomy, University of Hawaii at Manoa, 2505 Correa Rd., Honolulu, HI 96822 (United States); Weiler, Thomas J., E-mail: peterbd1@gmail.com, E-mail: dmarf8@hawaii.edu, E-mail: tom.weiler@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235 (United States)

    2017-08-01

    High energy neutrinos have been detected by IceCube, but their origin remains a mystery. Determining the sources of this flux is a crucial first step towards multi-messenger studies. In this work we systematically compare two classes of sources with the data: galactic and extragalactic. We assume that the neutrino sources are distributed according to a class of Galactic models. We build a likelihood function on an event by event basis including energy, event topology, absorption, and direction information. We present the probability that each high energy event with deposited energy E {sub dep}>60 TeV in the HESE sample is Galactic, extragalactic, or background. For Galactic models considered the Galactic fraction of the astrophysical flux has a best fit value of 1.3% and is <9.5% at 90% CL. A zero Galactic flux is allowed at <1σ.

  3. Solid Liquid Interdiffusion Bonding of (Pb, Sn)Te Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer

    Science.gov (United States)

    Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.

    2014-12-01

    A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.

  4. α-Sn and β-Sn precipitates in annealed epitaxial Si0.95Sn0.05

    DEFF Research Database (Denmark)

    Fyhn, M.F.; Chevallier, J.; Larsen, A.N.

    1999-01-01

    -Sn and beta-Sn crystallites. The presence of alpha-Sn at temperatures far above the bulk alpha beta transition temperature is explained by interface and pressure effects; the latter is likely to be due to the difference in thermal expansion of the precipitates and the matrix.......-temperature molecular-beam epitaxy on Si (001) and relaxed Si1-xGex substrates. Two different phases of solid Sn were identified in the annealed layers: the semiconductor phase, alpha-Sn, and the metallic phase beta-Sn The precipitates were found to consist of either only beta-Sn or to contain crystallites of both...... solid Sn phases. The orientations, the sizes and the relative number densities of the alpha-Sn and beta-Sn crystallites were investigated. in situ heating and cooling experiments were performed in the transmission electron microscope to study the melting and solidification characteristics of the alpha...

  5. Preparation of catalysts PtSb2O5.SnO2 supported on carbon and ATO using the alcohol reduction method for electrochemical oxidation of ethanol

    International Nuclear Information System (INIS)

    Ayoub, Jamil Mahmoud Said

    2013-01-01

    Pt Sn/C-ATO electrocatalysts with different Pt:Sn atomic ratios (90:10, 70:30 and 50:50) were prepared in a single step by an alcohol-reduction process using H 2 PtCl 6 .6H 2 O and SnCl 2 .2H 2 O as metal sources and ethylene glycol as solvent and reducing agent and a physical mixture of carbon Vulcan XC72 (85 wt%) and Sb 2 O 5 .SnO 2 (15 wt%) as support (C-ATO). The obtained materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The catalytic activity for ethanol electro-oxidation in acid medium was investigated by cyclic voltammetry and chronoamperometry and in single direct ethanol fuel cell (DEFC). XRD analyses showed that Pt(FCC), SnO 2 , carbon and ATO phases coexist in the obtained materials. The electrochemical studies showed that PtSn/C-ATO electrocatalysts were more active for ethanol electro-oxidation than PtSn/C electrocatalyst. The experiments at 100 deg C on a single DEFC showed that the power density of the cell using Pt Sn/C-ATO (90:10) was nearly 100% higher than the one obtained using Pt Sn/C (50:50). FTIR measurements showed that the addition of ATO to Pt Sn/C favors the formation of acetic acid as a product while for PtSn/C acetaldehyde was the principal product formed. (author)

  6. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation

    International Nuclear Information System (INIS)

    Crisafulli, Rudy

    2013-01-01

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H 2 PtCl 6 .6H 2 O, SnCl 2 .2H 2 O and CuCl 2 .2H 2 O as metal sources, NaBH 4 and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of PtSnCu/C (50:40:10) AR/ED > PtSnCu/C (50:10:40) BR/CD. PtSn/C (50:50) BR/CD, PtSnCu/C (50:10:40) BR/CD, PtSnCu/C (50:40:10) AR/CD electrocatalysts and Pt/C BASF, PtSn/C (75:25) BASF commercial electrocatalysts were tested in single Direct Ethanol Fuel Cell. The results showed the following performance for ethanol electro-oxidation: PtSn/C (50:50) BR/CD > PtSnCu/C (50:40:10) AR/CD > PtSnCu/C > PtSn/C (75:25) BASF > PtSnCu/C (50:10:40) BR/CD > Pt/C BASF. (author)

  7. Anomalous temperature behavior of Sn impurities

    International Nuclear Information System (INIS)

    Haskel, D.; Shechter, H.; Stern, E.A.; Newville, M.; Yacoby, Y.

    1993-01-01

    Sn impurities in Pb and Ag hosts have been investigated by Moessbauer effect and in Pb by x-ray-absorption fine-structure (XAFS) studies. The Sn atoms are dissolved up to at least 2 at. % in Pb and up to at least 8 at. % in Ag for the temperature ranges investigated. The concentration limit for Sn-Sn interactions is 1 at. % for Pb and 2 at. % for Ag as determined experimentally by lowering the Sn concentration until no appreciable change occurs in the Moessbauer effect. XAFS measurements verify that the Sn impurities in Pb are dissolved and predominantly at substitutional sites. For both hosts the temperature dependence of the spectral intensities of isolated Sn impurities below a temperature T 0 is as expected for vibrating about a lattice site. Above T 0 the Moessbauer spectral intensity exhibits a greatly increased rate of drop-off with temperature without appreciable broadening. This drop-off is too steep to be explained by ordinary anharmonic effects and can be explained by a liquidlike rapid hopping of the Sn, localized about a lattice site. Higher-entropy-density regions of radii somewhat more than an atomic spacing surround such impurities, and can act as nucleation sites for three-dimensional melting

  8. Comparison of two self-assembled macromolecular prodrug micelles with different conjugate positions of SN38 for enhancing antitumor activity

    Directory of Open Access Journals (Sweden)

    Liu Y

    2015-03-01

    Full Text Available Yi Liu,1 Hongyu Piao,1 Ying Gao,1 Caihong Xu,2 Ye Tian,1 Lihong Wang,1 Jinwen Liu,1 Bo Tang,1 Meijuan Zou,1 Gang Cheng1 1Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People’s Republic of China; 2Department of Food Science, Shenyang Normal University, Shenyang, Liaoning Province, People’s Republic of China Abstract: 7-Ethyl-10-hydroxycamptothecin (SN38, an active metabolite of irinotecan (CPT-11, is a remarkably potent antitumor agent. The clinical application of SN38 has been extremely restricted by its insolubility in water. In this study, we successfully synthesized two macromolecular prodrugs of SN38 with different conjugate positions (chitosan-(C10-OHSN38 and chitosan-(C20-OHSN38 to improve the water solubility and antitumor activity of SN38. These prodrugs can self-assemble into micelles in aqueous medium. The particle size, morphology, zeta potential, and in vitro drug release of SN38 and its derivatives, as well as their cytotoxicity, pharmacokinetics, and in vivo antitumor activity in a xenograft BALB/c mouse model were studied. In vitro, chitosan-(C10-OHSN38 (CS-(10sSN38 and chitosan-(C20-OHSN38 (CS-(20sSN38 were 13.3- and 25.9-fold more potent than CPT-11 in the murine colon adenocarcinoma cell line CT26, respectively. The area under the curve (AUC0–24 of SN38 after intravenously administering CS-(10sSN38 and CS-(20sSN38 to Sprague Dawley rats was greatly improved when compared with CPT-11 (both P<0.01. A larger AUC0–24 of CS-(20sSN38 was observed when compared to CS-(10sSN38 (P<0.05. Both of the novel self-assembled chitosan-SN38 prodrugs demonstrated superior anticancer activity to CPT-11 in the CT26 xenograft BALB/c mouse model. We have also investigated the differences between these macromolecular prodrug micelles with regards to enhancing the antitumor activity of SN38. CS-(20sSN38 exhibited better in vivo antitumor activity than CS-(10sSN38 at a dose of 2.5 mg/kg (P<0

  9. Effect of Sn Composition in Ge1- x Sn x Layers Grown by Using Rapid Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Kil, Yeon-Ho; Kang, Sukill; Jeong, Tae Soo; Shim, Kyu-Hwan; Kim, Dae-Jung; Choi, Yong-Dae; Kim, Mi Joung; Kim, Taek Sung

    2018-05-01

    The Ge1- x Sn x layers were grown by using rapid thermal chemical-vapor deposition (RTCVD) on boron-doped p-type Si (100) substrates with Sn compositions up to x = 0.83%. In order to obtain effect of the Sn composition on the structural and the optical characteristics, we utilized highresolution X-ray diffraction (HR-XRD), etch pit density (EPD), atomic force microscopy (AFM), Raman spectroscopy, and photocurrent (PC) spectra. The Sn compositions in the Ge1- x Sn x layers were found to be of x = 0.00%, 0.51%, 0.65%, and 0.83%. The root-mean-square (RMS) of the surface roughness of the Ge1- x Sn x layer increased from 2.02 nm to 3.40 nm as the Sn composition was increased from 0.51% to 0.83%, and EPD was on the order of 108 cm-2. The Raman spectra consist of only one strong peak near 300 cm-1, which is assigned to the Ge-Ge LO peaks and the Raman peaks shift to the wave number with increasing Sn composition. Photocurrent spectra show near energy band gap peaks and their peak energies decrease with increasing Sn composition due to band-gap bowing in the Ge1- x Sn x layer. An increase in the band gap bowing parameter was observed with increasing Sn composition.

  10. Synthesis, Characterization, and Photocatalytic Activity of Zn-Doped SnO2/Zn2SnO4 Coupled Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tiekun Jia

    2014-01-01

    Full Text Available Zn-doped SnO2/Zn2SnO4 nanocomposites were prepared via a two-step hydrothermal synthesis method. The as-prepared samples were characterized by X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, UV-vis diffuse reflection spectroscopy, and adsorption-desorption isotherms. The results of FESEM and TEM showed that the as-prepared Zn-doped SnO2/Zn2SnO4 nanocomposites are composed of numerous nanoparticles with the size ranging from 20 nm to 50 nm. The specific surface area of the as-prepared Zn-doped SnO2/Zn2SnO4 nanocomposites is estimated to be 71.53 m2/g by the Brunauer-Emmett-Teller (BET method. The photocatalytic activity was evaluated by the degradation of methylene blue (MB, and the resulting showed that Zn-doped SnO2/Zn2SnO4 nanocomposites exhibited excellent photocatalytic activity due to their higher specific surface area and surface charge carrier transfer.

  11. The recruitment of the U5 snRNP to nascent transcripts requires internal loop 1 of U5 snRNA.

    Science.gov (United States)

    Kim, Rebecca; Paschedag, Joshua; Novikova, Natalya; Bellini, Michel

    2012-12-01

    In this study, we take advantage of the high spatial resolution offered by the nucleus and lampbrush chromosomes of the amphibian oocyte to investigate the mechanisms that regulate the intranuclear trafficking of the U5 snRNP and its recruitment to nascent transcripts. We monitor the fate of newly assembled fluorescent U5 snRNP in Xenopus oocytes depleted of U4 and/or U6 snRNAs and demonstrate that the U4/U6.U5 tri-snRNP is not required for the association of U5 snRNP with Cajal bodies, splicing speckles, and nascent transcripts. In addition, using a mutational analysis, we show that a non-functional U5 snRNP can associate with nascent transcripts, and we further characterize internal loop structure 1 of U5 snRNA as a critical element for licensing U5 snRNP to target both nascent transcripts and splicing speckles. Collectively, our data support the model where the recruitment of snRNPs onto pre-mRNAs is independent of spliceosome assembly and suggest that U5 snRNP may promote the association of the U4/U6.U5 tri-snRNP with nascent transcripts.

  12. MEGA - A next generation mission in Medium Energy Gamma-Ray Astronomy

    International Nuclear Information System (INIS)

    Kanbach, Gottfried

    2001-01-01

    A Medium Energy Gamma-Ray Astronomy (MEGA) detector is being developed and proposed for a small satellite mission. MEGA intends to improve the sensitivity at medium γ-ray energies (0.4-50 MeV) by at least an order of magnitude with respect to past instruments. Its large field of view will be especially important for the discovery of transient sources and for conducting all-sky surveys. Key science objectives for MEGA are the investigation of cosmic high-energy accelerators and of nucleosynthesis sites with γ-ray lines. The large-scale structure of the galactic and cosmic diffuse background is another important goal for this mission. MEGA records and images γ-ray events by completely tracking Compton and pair creation interactions in a stack of double sided Si-strip track detectors and 3-D resolving CsI calorimeters

  13. Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: a knowledge base for fluxless solder bonding applications

    DEFF Research Database (Denmark)

    Kuhmann, Jochen Friedrich; Preuss, A.; Adolphi, B.

    1998-01-01

    : (1) SnPb; (2) InSn; (3) AuSn. The studies of the oxidation kinetics show that the growth of the native oxide, which covers the solder surfaces from the start of all soldering operations is self-limiting. The rate of oxidation on the molten, metallic solder surfaces is significantly reduced...... and reduction kinetics, are applied to flip-chip (FC) bonding experiments in vacuum with and without the injection of H2. Wetting in vacuum is excellent but the self-alignment during flip-chip soldering is restricted. The desired, perfectly self-aligned FC-bonds have been only achieved, using evaporated...

  14. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    International Nuclear Information System (INIS)

    Corsi, A.; Palliyaguru, N. T.; Cenko, S. B.; Singer, L. P.; Kutyrev, A.; Kasliwal, M. M.; Kulkarni, S. R.; Blagorodnova, N.; Kupfer, T.; Vedantham, H.; Quimby, R.; Frail, D. A.; Goldstein, A. M.; Connaughton, V.; Perley, D. A.; Copperwheat, C. M.; Piascik, A. S.; Steele, I. A.; Fremling, C.; Taddia, F.

    2017-01-01

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  15. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A.; Palliyaguru, N. T. [Department of Physics and Astronomy, Texas Tech University, Box 1051, Lubbock, TX 79409-1051 (United States); Cenko, S. B.; Singer, L. P.; Kutyrev, A. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kasliwal, M. M.; Kulkarni, S. R.; Blagorodnova, N.; Kupfer, T.; Vedantham, H. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Quimby, R. [Department of Astronomy/Mount Laguna Observatory, San Diego State University, San Diego, CA 92182 (United States); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Goldstein, A. M.; Connaughton, V. [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Perley, D. A.; Copperwheat, C. M.; Piascik, A. S.; Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Fremling, C.; Taddia, F., E-mail: alessandra.corsi@ttu.edu [Oskar Klein Centre, Department of Astronomy, Stockholm University, Albanova University Centre, SE-106 91 Stockholm (Sweden); and others

    2017-09-20

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  16. Planck Intermediate Results. IX. Detection of the Galactic haze with Planck

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    Using precise full-sky observations from Planck, and applying several methods of component separation, we identify and characterize the emission from the Galactic "haze" at microwave wavelengths. The haze is a distinct component of diffuse Galactic emission, roughly centered on the Galactic centre...

  17. Formaldehyde in the Galactic Centre

    International Nuclear Information System (INIS)

    Cohen, R.J.; Few, R.W.

    1981-01-01

    Formaldehyde 6-cm absorption in the direction of the Galactic Centre has been surveyed using the Jodrell Bank MK II radio telescope (beam-width 10 x 9 arcmin). The observations sample the region - 2 0 = 0 and - 0 0 .5 = 0 .5, with a velocity range of 620 km s -1 , a velocity resolution of 2.1 km s -1 and an rms noise level of approximately 0.03 K. The data are presented as contour maps showing line temperature as a function of latitude and velocity (b-V maps) and as a function of longitude and velocity (l-V maps). Similar maps of the line-to-continuum ratio are also presented. The radial distribution of formaldehyde (H 2 CO) in the Galactic Centre region is derived using two different kinematic models which give similar results. Formaldehyde is strongly concentrated in the Galactic Centre in a layer of latitude extent approximately 0 0 .5 and longitude extent approximately 4 0 which contains one quarter of all the H 2 CO in the Galaxy. The distribution is centred on l approximately 1 0 . The individual H 2 CO features are described in detail. (author)

  18. Evolution of hot galactic flows

    International Nuclear Information System (INIS)

    Loewenstein, M.; Mathews, W.G.

    1987-01-01

    The time-dependent equations describing galactic flows, including detailed models for the evolving source terms, are integrated over a Hubble time for two elliptical galaxies with total masses of 3.1 x 10 to the 12th and 8.3 x 10 to the 12th solar masses, 90 percent of which resides in extended, nonluminous halos. The standard supernova rate of Tammann and a rate 4 times smaller are considered for each galaxy model. The combination of the extended gravitational potential of the dark halo and the time-dependent source terms generally lead to the development of massive, quasi-hydrostatic, nearly isothermal distributions of gas at about 10 to the 7th K with cooling inflows inside their galactic cores. For the less massive galaxy with the higher supernova rate, however, a low-luminosity supersonic galactic wind develops. The effects of a lowered metal abundance, thermal conduction, and the absence of a massive halo are explored separately for one of the present models. The X-ray luminosities of the hot gas in the models with dark halos and the lower supernova rate are in good agreement with Einstein observations of early-type galaxies. 42 references

  19. Zn{sub 2}SnO{sub 4}-SnO{sub 2} heterojunction nanocomposites for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Bihui; Luo Lijuan; Xiao Ting; Hu Xiaoyan [Institute of Nano-science and Technology, Central China Normal University, Wuhan, 430079 (China); Lu Lu; Wang, Jianbo [Department of Physics, Wuhan University, Wuhan 430072 (China); Tang Yiwen, E-mail: ywtang@phy.ccnu.edu.cn [Institute of Nano-science and Technology, Central China Normal University, Wuhan, 430079 (China)

    2011-02-03

    Graphical abstract: Display Omitted Research highlights: > The ZTO-SnO{sub 2} based DSSC shows superior photovoltaic performance than single phase ZTO or Pm-ZTO-SnO{sub 2} (physical mixture of ZTO and SnO{sub 2} nanoparticles having the same ZTO/SnO{sub 2} composition) based DSSC. > The obvious improvement in the photovoltaic performance is mainly ascribed to the efficient injected electrons transfer between the two materials via heterojunctions and consequent suppress the recombination. - Abstract: Zn{sub 2}SnO{sub 4}-SnO{sub 2} heterojunction nanocomposites (ZTO-SnO{sub 2}) with high mass amount of ZTO were synthesized by a two-step technique. The route involves firstly the synthesis of monodispersed ZnSn(OH){sub 6} nanocubes with a 50-60 nm edge length as precursors by simple coprecipitation of Na{sub 2}SnO{sub 3}.3H{sub 2}O and ZnCl{sub 2} aqueous solution, assisted by ultrasonic treatment and then followed by calcination of the precursors at 800 deg. C under N{sub 2} atmosphere. The as-synthesized nanoparticles were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Heterojunction between ZTO and SnO{sub 2} nanoparticle was confirmed by the electron energy loss spectroscopy (EELS) elemental mapping and high-resolution TEM (HRTEM). The photovoltaic performance of the ZTO-SnO{sub 2} based DSSC was examined by measuring the J-V curves both in dark and under illumination. The results show that the ZTO-SnO{sub 2} based DSSC exhibits superior photovoltaic performance as compared to the single phase ZTO based DSSCs. Under illumination of AM 1.5 simulated sunlight (100 mW/cm{sup 2}), the open circuit voltage of the cell based on ZTO-SnO{sub 2} is 706 mV, the short-current density is 2.85 mA/cm{sup 2}, and the efficiency is 1.29% which is increased by 43% from 0.90% to 1.29% compared with pure ZTO. The formation of the heterojunctions between ZTO and SnO{sub 2} nanoparticles is believed to reduce

  20. Physical properties of some Sn-based melts

    Directory of Open Access Journals (Sweden)

    Ilinykh N.

    2011-05-01

    Full Text Available The physical properties (viscosity, density, electroresistivity and magnetic susceptibility of pure tin, copper, silver, some binary (Sn - Ag, Sn - Cu, Sn - Bi, Sn - Zn and ternary (Sn-Ag-Cu, Sn-BiAg, Sn-Bi-Zn alloys with near eutectic compositions are investigated in wide temperature ranges. The irreversible decrease of viscosity in pure tin melt is discovered at 820 °С during heating. The similar anomaly with the following hysteresis of dynamic viscosity was fixed for binary and ternary alloys but at higher temperatures – 900 °С and 950 °С respectively. For all the systems it was shown that the alloys with eutectic compositions differ significantly in their electric and magnetic properties from hypo- and hypereutectic ones. Qualitative and quantitative metallographic analysis for Sn-3.8wt.%Ag-0.7wt.%Cu samples, heated low and above characteristic temperatures, showed the influence of melt overheating on crystallization kinetics.

  1. Spiral arms and a supernova-dominated interstellar medium

    International Nuclear Information System (INIS)

    Brand, P.W.J.L.; Heathcote, S.R.

    1982-01-01

    Models of the interstellar medium (ISM) utilizing the large energy output of supernovae to determine the average kinematical properties of the gas, are subjected to an imposed (spiral) density wave. The consequent appearance of the ISM is considered. In particular the McKee-Ostriker model with cloud evaporation is used, but it is shown that the overall appearance of the galaxy model does not change significantly if a modification of Cox's mechanism, with no cloud evaporation, is incorporated. It is found that a spiral density wave shock can only be self-sustaining if quite restrictive conditions are imposed on the values of the galactic supernova rate and the mean interstellar gas density. (author)

  2. Identification of a jet-driven supernova remnant in the Small Magellanic Cloud: Possible evidence for the enhancement of bipolar explosions at low metallicity

    International Nuclear Information System (INIS)

    Lopez, Laura A.; Castro, Daniel; Slane, Patrick O.; Ramirez-Ruiz, Enrico; Badenes, Carles

    2014-01-01

    Recent evidence has suggested that the supernova remnant (SNR) 0104–72.3 in the Small Magellanic Cloud (SMC) may be the result of a 'prompt' Type Ia SN on the basis of enhanced iron abundances and its association with a star-forming region. In this paper, we present evidence that SNR 0104–72.3 arose from a jet-driven bipolar core-collapse (CC) SN. Specifically, we use serendipitous Chandra data of SNR 0104–72.3 taken because of its proximity to the calibration source SNR E0102–72.3. We analyze 56 Advanced CCD Imaging Spectrometer (ACIS) observations of SNR 0104–72.3 to produce imaging and spectra with an effective exposure of 528.6 ks. We demonstrate that SNR 0104–72.3 is highly elliptical relative to other nearby young SNRs, suggesting a CC SN origin. Furthermore, we compare ejecta abundances derived from spectral fits to nucleosynthetic yields of Type Ia and CC SNe, and we find that the iron, neon, and silicon abundances are consistent with either a spherical CC SN of a 18-20 M ☉ progenitor or an aspherical CC SN of a 25 M ☉ progenitor. We show that the star formation history at the site of SNR 0104–72.3 is also consistent with a CC origin. Given the bipolar morphology of the SNR, we favor the aspherical CC SN scenario. This result may suggest jet-driven SNe occur frequently in the low-metallicity environment of the SMC, consistent with the observational and theoretical work on broad-line Type Ic SNe and long-duration gamma-ray bursts.

  3. Spliceosomal small nuclear RNAs of Tetrahymena thermophila and some possible snRNA-snRNA base-pairing interactions

    DEFF Research Database (Denmark)

    Orum, H; Nielsen, Henrik; Engberg, J

    1991-01-01

    We have identified and characterized the full set of spliceosomal small nuclear RNAs (snRNAs; U1, U2, U4, U5 and U6) from the ciliated protozoan Tetrahymena thermophila. With the exception of U4 snRNA, the sizes of the T. thermophila snRNAs are closely similar to their metazoan homologues. The T....... thermophila snRNAs all have unique 5' ends, which start with an adenine residue. In contrast, with the exception of U6, their 3' ends show some size heterogeneity. The primary sequences of the T. thermophila snRNAs contain the sequence motifs shown, or proposed, to be of functional importance in other...

  4. The interfacial free energy of solid Sn on the boundary interface with liquid Cd-Sn eutectic solution

    International Nuclear Information System (INIS)

    Saatci, B; Cimen, S; Pamuk, H; Guenduez, M

    2007-01-01

    Equilibrated grain boundary groove shapes for solid Sn in equilibrium with Cd-Sn liquid were directly observed after annealing a sample at the eutectic temperature for about 8 days. The thermal conductivities of the solid phase, K S , and the liquid phase, K L , for the groove shapes were measured. From the observed groove shapes, the Gibbs-Thomson coefficients were obtained with a numerical method, using the measured G, K S and K L values. The solid-liquid interfacial energy of solid Sn in equilibrium with Cd-Sn liquid was determined from the Gibbs-Thomson equation. The grain boundary energy for solid Sn was also calculated from the observed groove shapes

  5. Microstructural evolution and tensile properties of Sn-Ag-Cu mixed with Sn-Pb solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengjiang [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States); O' Keefe, Matthew [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)], E-mail: mjokeefe@mst.edu; Brinkmeyer, Brandon [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)

    2009-05-27

    The effect of incorporating eutectic Sn-Pb solder with Sn-3.0Ag-0.5Cu (SAC) Pb-free solder on the microstructure and tensile properties of the mixed alloys was investigated. Alloys containing 100, 75, 50, 25, 20, 15, 10, 5 and 0 wt% SAC, with the balance being Sn-37Pb eutectic solder alloy, were prepared and characterized. Optical and scanning electron microscopy were used to analyze the microstructures while 'mini-tensile' test specimens were fabricated and tested to determine mechanical properties at the mm length scale, more closely matching that of the solder joints. Microstructural analysis indicated that a Pb-rich phase formed and was uniformly distributed at the boundary between the Sn-rich grains or between the Sn-rich and the intermetallic compounds in the solder. Tensile results showed that mixing of the alloys resulted in an increase in both the yield and the ultimate tensile strength compared to the original solders, with the 50% SAC-50% Sn-Pb mixture having the highest measured strength. Initial investigations indicate the formation and distribution of a Pb-rich phase in the mixed solder alloys as the source of the strengthening mechanism.

  6. α-Eleostearic acid-containing triglycerides for a continuous assay to determine lipase sn-1 and sn-3 regio-preference.

    Science.gov (United States)

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Queneau, Yves; Abousalham, Abdelkarim

    2017-08-01

    Lipases are essentially described as sn-1 and sn-3 regio-selective. Actually few methods are available to measure this lipase regio-selectivity, moreover they require chiral chromatography analysis or specific derivations which are discontinuous and time consuming. In this study we describe a new, convenient, sensitive and continuous spectrophotometric method to screen lipases regio-selectivity using synthetic triglycerides (TG) containing α-eleostearic acid (9Z, 11E, 13E-octadecatrienoic acid) either at the sn-1 position [1-α-eleostearoyl-2,3-octadecyl-sn-glycerol (sn-EOO)] or at the sn-3 position [1,2-octadecyl-3-α-eleostearoyl-sn-glycerol (sn-OOE)] and coated onto the wells of microtiter plates. A non-hydrolysable ether bond, with a non UV-absorbing alkyl chain, was introduced at the other sn positions to prevent acyl chain migration during TG synthesis or lipolysis. The synthesis of TG containing α-eleostearic acid was performed from S-glycidol in six steps to obtain sn-EOO and in five steps to sn-OOE. The α-eleostearic acid conjugated triene constitutes an intrinsic chromophore and, consequently, confers the strong UV absorption properties of this free fatty acid as well as of the TG harboring it. The lipase activity on coated sn-EOO or sn-OOE was measured by the increase in the absorbance at 272nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. Human and porcine pancreatic lipases, guinea pig pancreatic lipase related protein 2, Thermomyces lanuginosus lipase, Candida antarctica lipase A and Candida antarctica lipase B were all used to validate the assay. This continuous high-throughput screening method could determine directly without any processes after lipolysis the regio-selectivity of various lipases. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C

    Energy Technology Data Exchange (ETDEWEB)

    Margutti, Raffaella [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Kamble, A.; Milisavljevic, D.; Drout, M.; Chakraborti, S.; Kirshner, R.; Parrent, J. T.; Patnaude, D.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Zapartas, E.; De Mink, S. E. [Anton Pannenkoek Institute for Astronomy, University of Amsterdam, 1090 GE Amsterdam (Netherlands); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701 (United States); Risaliti, G. [INAF-Arcetri Astrophysical Observatory, Largo E. Fermi 5, I-50125 Firenze (Italy); Zauderer, B. A. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bietenholz, M. [Department of Physics and Astronomy, York University, Toronto, ON M3J 1P3 (Canada); Cantiello, M. [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Fong, W. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Grefenstette, B. [Cahill Center for Astrophysics, 1216 E. California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Guidorzi, C. [University of Ferrara, Department of Physics and Earth Sciences, via Saragat 1, I-44122 Ferrara (Italy); and others

    2017-02-01

    We present multi-wavelength observations of SN 2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays ∼40 keV. SN 2014C shows ordinary explosion parameters ( E {sub k} ∼ 1.8 × 10{sup 51} erg and M {sub ej} ∼ 1.7 M{sub ⊙}). However, over an ∼1 year timescale, SN 2014C evolved from an ordinary hydrogen-poor supernova into a strongly interacting, hydrogen-rich supernova, violating the traditional classification scheme of type-I versus type-II SNe. Signatures of the SN shock interaction with a dense medium are observed across the spectrum, from radio to hard X-rays, and revealed the presence of a massive shell of ∼1 M {sub ⊙} of hydrogen-rich material at ∼6 × 10{sup 16} cm. The shell was ejected by the progenitor star in the decades to centuries before collapse. This result challenges current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last nuclear burning stages as potential triggers of the highly time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN 2014C-like signatures in ∼10% of SNe. This fraction is reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution if the ejected material can survive in the close environment for 10{sup 3}–10{sup 4} years. Alternatively, nuclear burning instabilities extending to core C-burning might play a critical role.

  8. Far infrared observations of the galactic center

    International Nuclear Information System (INIS)

    Gatley, I.

    1977-01-01

    Maps of a region 10' in diameter around the galactic center made simultaneously in three wavelength bands at 30 μm, 50 μm, and 100 μm with approximately 1' resolution are presented, and the distribution of far infrared luminosity and color temperature across this region is derived. The position of highest far infrared surface brightness coincides with the peak of the late-type stellar distribution and with the H II region Sgr A West. The high spatial and temperature resolution of the data is used to identify features of the far infrared maps with known sources of near infrared, radio continuum, and molecular emission. The emission mechanism and energy sources for the far infrared radiation are anslyzed qualitatively, and it is concluded that all of the observed far infrared radiation from the galactic center region can be attributed to thermal emission from dust heated both by the late-type stars and by the ultraviolet sources which ionize the H II regions. A self-consistent model for the far infrared emission from the galactic center region is presented. It is found that the visual extinction across the central 10 pc of the galaxy is only about 3 magnitudes, and that the dust density is fairly uniform in this region. An upper limit of 10 7 L/sub mass/ is set on the luminosity of any presently unidentified source of 0.1 to 1 μm radiation at the galactic center. Additional maps in the vicinity of the source Sgr B2 and observations of Sgr C bring the total number of H II regions within 1 0 of the galactic center studied by the present experiment to nine. The far infrared luminosity, color temperature and optical depth of these regions and the ratio of infrared flux to radio continuum flux lie in the range characteristic of spiral arm H II regions. The far infrared results are therefore consistent with the data that the galactic center H II regions are ionized by luminous, early type stars

  9. A VERSATILE FAMILY OF GALACTIC WIND MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, Chad; Zweibel, Ellen G. [Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706 (United States); D’Onghia, Elena, E-mail: bustard@wisc.edu [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

    2016-03-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass, and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses, we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass loading and high energy loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier and Clegg model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from 1–1000 M{sub ⊙} yr{sup −1} assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity versus SFR trend, further suggesting an inverse relationship between mass loading and SFR as explored in advanced numerical simulations.

  10. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V., E-mail: dfsilva@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO{sub 2} phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  11. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    International Nuclear Information System (INIS)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V.

    2009-01-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO 2 phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  12. Production of Sn/SnO2/MWCNT composites by plasma oxidation after thermal evaporation from pure Sn targets onto buckypapers.

    Science.gov (United States)

    Alaf, M; Gultekin, D; Akbulut, H

    2012-12-01

    In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).

  13. The galactic interstellar medium

    CERN Document Server

    Burton, WB; Genzel, R

    1992-01-01

    This volume contains the papers of three extended lectures addressing advanced topics in astronomy and astrophysics. The topics discussed include the most recent observational data on interstellar matter outside our galaxy and the physics and chemistry of molecular clouds.

  14. Measuring Detailed Chemical Abundances from Co-added Medium-resolution Spectra. I. Tests Using Milky Way Dwarf Spheroidal Galaxies and Globular Clusters

    Science.gov (United States)

    Yang, Lei; Kirby, Evan N.; Guhathakurta, Puragra; Peng, Eric W.; Cheng, Lucy

    2013-05-01

    The ability to measure metallicities and α-element abundances in individual red giant branch (RGB) stars using medium-resolution spectra (R ≈ 6000) is a valuable tool for deciphering the nature of Milky Way dwarf satellites and the history of the Galactic halo. Extending such studies to more distant systems like Andromeda is beyond the ability of the current generation of telescopes, but by co-adding the spectra of similar stars, we can attain the necessary signal-to-noise ratio (S/N) to make detailed abundance measurements. In this paper, we present a method to determine metallicities and α-element abundances using the co-addition of medium-resolution spectra. We test the method of spectral co-addition using high-S/N spectra of more than 1300 RGB stars from Milky Way globular clusters and dwarf spheroidal galaxies obtained with the Keck II telescope/DEIMOS spectrograph. We group similar stars using photometric criteria and compare the weighted ensemble average abundances ([Fe/H], [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) of individual stars in each group with the measurements made on the corresponding co-added spectrum. We find a high level of agreement between the two methods, which permits us to apply this co-added spectra technique to more distant RGB stars, like stars in the M31 satellite galaxies. This paper outlines our spectral co-addition and abundance measurement methodology and describes the potential biases in making these measurements. Data herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  15. Properties of second phase (BaSnO3, Sn) added-YBCO thick films

    International Nuclear Information System (INIS)

    Ban, E.; Matsuoka, Y.

    1997-01-01

    The improvement of the critical current density J c of YBCO thick films has been attempted by adding BaSnO 3 powder and ultrafine Sn particles, whose diameter is about 2 μm and 7 x 10 -2 μm, respectively. It was found that the addition of a small amount of these particles was effective for the enhancement of J c of thick films prepared by a liquid-phase processing method. The 1 wt.% BaSnO 3 films fired at T s =1040-1060 C and the 3 wt.% Sn films (T s =1030-1060 C) showed J c values (77 K, 0 T) of about 2.1-2.4 x 10 3 Acm -2 and 3.1-3.5 x 10 3 Acm -2 , respectively, as compared to 2.0 x 10 3 Acm -2 for the undoped films. (orig.)

  16. Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh

    Science.gov (United States)

    Jerkstrand, A.; Ergon, M.; Smartt, S. J.; Fransson, C.; Sollerman, J.; Taubenberger, S.; Bersten, M.; Spyromilio, J.

    2015-01-01

    We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modelling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modelling of the [O I] λλ6300, 6364 lines constrains the progenitors of these three SNe to the MZAMS = 12-16 M⊙ range (ejected oxygen masses 0.3-0.9 M⊙), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from MZAMS ≳ 17 M⊙ progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low-to-moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of 0.02-0.14 M⊙ is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO burning gives strong [N II] λλ6548, 6583 emission lines that dominate over Hα emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable Hα emission or absorption after ~150 days, and nebular phase emission seen around 6550 Å is in many cases likely caused by [N II] λλ6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated. Significant line blocking in the metal core remains for several hundred days, which affects the emergent spectrum. These radiative transfer effects lead to early-time blueshifts of the emission line peaks, which gradually

  17. GOT C+: Galactic Plane Survey of the 1.9 THz [CII] Line

    Science.gov (United States)

    Langer, William

    2012-01-01

    The ionized carbon [CII] 1.9 THz fine structure line is a major gas coolant in the interstellar medium (ISM) and controls the thermal conditions in diffuse gas clouds and Photodissociation Regions (PDRs). The [CII] line is also an important tracer of the atomic gas and atomic to molecular transition in diffuse clouds throughout the Galaxy. I will review some of the results from the recently completed Galactic Observations of Terahertz C+ (GOT C+) survey. This Herschel Open Time Key Project is a sparse, but uniform volume sample survey of [CII] line emission throughout the Galactic disk using the HIFI heterodyne receiver. HIFI observations, with their high spectral resolution, isolate and locate individual clouds in the Galaxy and provide excitation information on the gas. I will present [CII] position-velocity maps that reveal the distribution and motion of the clouds in the inner Galaxy and discuss results on the physical properties of the gas using spectral observations of [CII] and ancillary HI and 12CO, 13CO, and C18O J=1-0 data. The [CII] emission is also a useful tracer of the "Dark H2 Gas", and I will discuss its distribution in a sample of interstellar clouds. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  18. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo; Anjum, Dalaver H.; Wang, Qingxiao; Abou-Hamad, Edy; Emsley, Lyndon; Dong, Hailin; Laveille, Paco; Li, Lidong; Samal, Akshaya Kumar; Basset, Jean-Marie

    2014-01-01

    Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as

  19. Exploring the Milky Way halo with SDSS-II SN survey RR Lyrae stars

    Science.gov (United States)

    De Lee, Nathan

    This thesis details the creation of a large catalog of RR Lyrae stars, their lightcurves, and their associated photometric and kinematic parameters. This catalog contains 421 RR Lyrae stars with 305 RRab and 116 RRc. Of these, 241 stars have stellar spectra taken with either the Blanco 4m RC spectrograph or the SDSS/SEGUE survey, and in some cases taken by both. From these spectra and photometric methods derived from them, an analysis is conducted of the RR lyrae's distribution, metallicity, kinematics, and photometric properties within the halo. All of these RR Lyrae originate from the SDSS-II Supernova Survey. The SDSS-II SN Survey covers a 2.5 degree equatorial stripe ranging from -60 to +60 degrees in RA. This corresponds to relatively high southern galactic latitudes in the anti-center direction. The full catalog ranges from g 0 magnitude 13 to 20 which covers a distance of 3 to 95 kpc from the sun. Using this sample, we explore the Oosterhoff dichotomy through the D log P method as a function of | Z | distance from the plane. This results in a clear division of the RRab stars into OoI and OoII groups at lower | Z |, but the population becomes dominated by OoI stars at higher | Z |. The idea of a dual halo is explored primarily in the context of radial velocity distributions as a function of | Z |. In particular, V gsr , the radial velocity in the galactic standard of rest, is used as a proxy for V [straight phi] , the cylindrical rotational velocity. This is then compared against a single halo model galaxy, which results in very similar V gsr histograms for both at low to medium | Z |. However, at high | Z | there is a clear separation into two distinct velocity groups for the data without a corresponding separation in the model, suggesting that at least a two-component model for the halo is necessary. The final part of the analysis involves [Fe/H] measurements from both spectra and photometric relations cut in both | Z | and radial velocity. In this case

  20. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    Science.gov (United States)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  1. Electronic structure and electric fields gradients of crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    The electronic structures of clusters representing crystalline compounds of Sn(II) and Sn(IV) were investigated, employing the first-principles Discrete Variational method and Local Density theory. Densities of states and related parameters were obtained and compared with experimental measurements and with results from band structure calculations. Effects of cluster size and of cluster truncated bonds are discussed. Electric field gradients at the Sn nucleus were calculated; results are analysed in terms of charge distribution and chemical bonding in the crystals. (author)

  2. On the Time Variation of Dust Extinction and Gas Absorption for Type Ia Supernovae Observed Through Non-uniform Interstellar Medium

    Science.gov (United States)

    Huang, Xiaosheng; Aldering, Gregory; Biederman, Moriah; Herger, Brendan

    2018-01-01

    For Type Ia supernovae (SNe Ia) observed through a non-uniform interstellar medium (ISM) in its host galaxy, we investigate whether the non-uniformity can cause observable time variations in dust extinction and in gas absorption due to the expansion of the SN photosphere with time. We show that, owing to the steep spectral index of the ISM density power spectrum, sizable density fluctuation amplitudes at the length scale of typical ISM structures (>~ 10 pc) will translate to much smaller fluctuations on the scales of a SN photosphere. Therefore the typical amplitude of time variation due to non-uniform ISM, of absorption equivalent widths and of extinction, would be small. As a result, we conclude that non-uniform ISM density should not impact cosmology measurements based on SNe Ia. We apply our predictions based on the ISM density power law power spectrum to the observations of two highly reddened SNe Ia, SN 2012cu and SN 2014J.

  3. On the Time Variation of Dust Extinction and Gas Absorption for Type Ia Supernovae Observed through a Nonuniform Interstellar Medium

    Science.gov (United States)

    Huang, X.; Aldering, G.; Biederman, M.; Herger, B.

    2017-11-01

    For Type Ia supernovae (SNe Ia) observed through a nonuniform interstellar medium (ISM) in its host galaxy, we investigate whether the nonuniformity can cause observable time variations in dust extinction and in gas absorption due to the expansion of the SN photosphere with time. We show that, owing to the steep spectral index of the ISM density power spectrum, sizable density fluctuation amplitudes at the length scale of typical ISM structures (≳ 10 {pc}) will translate to much smaller fluctuations on the scales of an SN photosphere. Therefore, the typical amplitude of time variation due to a nonuniform ISM, of absorption equivalent widths, and of extinction, would be small. As a result, we conclude that nonuniform ISM density should not impact cosmology measurements based on SNe Ia. We apply our predictions based on the ISM density power-law power spectrum to the observations of two highly reddened SNe Ia, SN 2012cu and SN 2014J.

  4. Synthesis of Pt{sub 75}Sn{sub 25}/SnO{sub 2}/CNT nanoscaled electrode: Low onset potential of ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Tabet-Aoul, Amel [Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications (EMT), 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S2 (Canada); Mohamedi, Mohamed, E-mail: mohamedi@emt.inrs.ca [Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications (EMT), 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S2 (Canada)

    2013-03-15

    Highlights: ► A pulsed laser synthesis is used for the deposition of Pt, SnO{sub 2} and PtSn alloy thin films onto carbon nanotubes. ► These nanoscaled materials were characterized by FESEM, TEM, XRD and XPS. ► Enhanced electrocatalytic properties toward ethanol oxidation. -- Abstract: With the objective of lowering the potential oxidation of ethanol at PtSn nanocatalyst, we present the synthesis of free-standing catalyst layer comprising a current collector/carbon nanotubes (catalyst support)/SnO{sub 2}/Pt{sub 75}Sn{sub 25} (catalyst) nanostructured layers, each layer constructed upon the one below it. The CNTs are grown by chemical vapor deposition (CVD), whereas SnO{sub 2} and Pt{sub 75}Sn{sub 25} are synthesized by pulsed laser deposition and cross-beam laser deposition, respectively. FESEM revealed that Pt{sub 75}Sn{sub 25} nanoparticles assemble into cauliflower-like arrangement. TEM and HR-TEM showed that the Pt{sub 75}Sn{sub 25} layer thickness is of ca. 25 nm with a particle mean diameter of 4.3 nm. It was found that addition of SnO{sub 2} to Pt{sub 75}Sn{sub 25} promotes significantly the oxidation of ethanol at Pt{sub 75}Sn{sub 25} nanoparticles relative to a carbon nanotubes support. Indeed, the electrooxidation of ethanol at CNTs/SnO{sub 2}/Pt{sub 75}Sn{sub 25} electrode starts at about 100 mV negative with respect to that at CNT/Pt{sub 75}Sn{sub 25}. This decreased overpotential required to oxidize ethanol is very significant and has profound implications to developing high performing anodes for direct ethanol fuel cells technology.

  5. Massive stars dying alone: Extremely remote environments of SN2009ip and SN2010jp

    Science.gov (United States)

    Smith, Nathan

    2014-10-01

    We propose an imaging study of the astonishingly remote environments of two recent supernovae (SNe): SN2009ip and SN2010jp. Both were unusual Type IIn explosions that crashed into dense circumstellar material (CSM) ejected by the star shortly before explosion. The favored progenitors of these SNe are very massive luminous blue variable (LBV) stars. In fact, SN2009ip presents an extraordinay case where the LBV-like progenitor was actually detected directly in archival HST data, and where we obtained spectra and photometry for numerous pre-SN eruptions. No other SN has this treasure trove of detailed information about the progenitor (not even SN1987A). SN2010jp represents a possible collapsar-powered event, since it showed evidence of a fast bipolar jet in spectra and a low 56Ni mass; this would be an analog of the black-hole forming explosions that cause gamma ray bursts, but where the relativistic jet is damped by a residual H envelope on the star. In both cases, the only viable models for these SNe involve extremely massive (initial masses of 40-100 Msun) progenitor stars. This seems at odds with their extremely remote environments in the far outskirts of their host galaxies, with no detected evidence for an underlying massive star population in ground-based data (nor in the single shallow WFPC2/F606W image of SN2009ip). Here we propose deep UV HST images to search for any mid/late O-type stars nearby, deep red images to detect any red supergiants, and an H-alpha image to search for any evidence of ongoing star formation in the vicinity. These observations will place important and demanding constraints on the initial masses and ages of these progenitors.

  6. XMM-Newton Survey of Local O VII Absorption Lines in the Spectra of Galactic X-Ray Sources

    Science.gov (United States)

    Luo, Yang; Fang, Taotao; Ma, Renyi

    2018-04-01

    The detection of highly ionized metal absorption lines in the X-ray spectra of the Galactic X-ray binaries (XRBs) implies the distribution of hot gas along the sightline toward the background sources. However, the origin of this hot gas is still unclear: it can arise in the hot interstellar medium (ISM), or is intrinsic to the XRBs. In this paper, we present an XMM-Newton survey of the O VII absorption lines in the spectra of Galactic XRBs. A total of 33 XRBs were selected, with 29 low-mass XRBs and 4 high-mass XRBs. At a more than 3σ threshold, O VII absorption line was detected in 16 targets, among which 4 were newly discovered in this work. The average line equivalent width is centered around ∼20 mÅ. Additionally, we do not find strong correlations between the O VII EWs and the Galactic neutral absorption N H, the Galactic coordinates, or the distance of background targets. Such non-correlation may suggest contamination of the circumstellar material, or a lack of constraints on the line Doppler-b parameter. We also find that regardless of the direction of the XRBs, the O VII absorption lines are always detected when the flux of the background XRBs reaches a certain level, suggesting a uniform distribution of this hot gas. We estimate a ratio of 0.004–0.4 between the hot and neutral phases of the ISM. This is the second paper in the series following Fang et al. (2015), in which we focused on the local O VII absorption lines detected in the background AGN spectra. Detailed modeling of the hot ISM distribution will be investigated in a future paper.

  7. PROGENITOR-EXPLOSION CONNECTION AND REMNANT BIRTH MASSES FOR NEUTRINO-DRIVEN SUPERNOVAE OF IRON-CORE PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Ugliano, Marcella; Janka, Hans-Thomas; Marek, Andreas [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Arcones, Almudena [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstr. 2, D-64289 Darmstadt (Germany)

    2012-09-20

    We perform hydrodynamic supernova (SN) simulations in spherical symmetry for over 100 single stars of solar metallicity to explore the progenitor-explosion and progenitor-remnant connections established by the neutrino-driven mechanism. We use an approximative treatment of neutrino transport and replace the high-density interior of the neutron star (NS) by an inner boundary condition based on an analytic proto-NS core-cooling model, whose free parameters are chosen such that explosion energy, nickel production, and energy release by the compact remnant of progenitors around 20 M{sub Sun} are compatible with SN 1987A. Thus, we are able to simulate the accretion phase, initiation of the explosion, subsequent neutrino-driven wind phase for 15-20 s, and the further evolution of the blast wave for hours to days until fallback is completed. Our results challenge long-standing paradigms. We find that remnant mass, launch time, and properties of the explosion depend strongly on the stellar structure and exhibit large variability even in narrow intervals of the progenitors' zero-age main-sequence mass. While all progenitors with masses below {approx}15 M{sub Sun} yield NSs, black hole (BH) as well as NS formation is possible for more massive stars, where partial loss of the hydrogen envelope leads to weak reverse shocks and weak fallback. Our NS baryonic masses of {approx}1.2-2.0 M{sub Sun} and BH masses >6 M{sub Sun} are compatible with a possible lack of low-mass BHs in the empirical distribution. Neutrino heating accounts for SN energies between some 10{sup 50} erg and {approx}2 Multiplication-Sign 10{sup 51} erg but can hardly explain more energetic explosions and nickel masses higher than 0.1-0.2 M{sub Sun }. These seem to require an alternative SN mechanism.

  8. Geometrically Thick Obscuration by Radiation-driven Outflow from Magnetized Tori of Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-Ho [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2017-07-01

    Near-Eddington radiation from active galactic nuclei (AGNs) has significant dynamical influence on the surrounding dusty gas, plausibly furnishing AGNs with geometrically thick obscuration. We investigate this paradigm with radiative magnetohydrodynamics simulations. The simulations solve the magnetohydrodynamics equations simultaneously with the infrared (IR) and ultraviolet (UV) radiative transfer (RT) equations; no approximate closure is used for RT. We find that our torus, when given a suitable sub-Keplerian angular momentum profile, spontaneously evolves toward a state in which its opening angle, density distribution, and flow pattern change only slowly. This “steady” state lasts for as long as there is gas resupply toward the inner edge. The torus is best described as a midplane inflow and a high-latitude outflow. The outflow is launched from the torus inner edge by UV radiation and expands in solid angle as it ascends; IR radiation continues to drive the wide-angle outflow outside the central hole. The dusty outflow obscures the central source in soft X-rays, the IR, and the UV over three-quarters of solid angle, and each decade in column density covers roughly equal solid angle around the central source; these obscuration properties are similar to what observations imply.

  9. Electrical and microstructural properties of microwave sintered SnO{sub 2}-based varistors

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, P.S.; Oliveira, M.M.; Vasconcelos, J.S.; Rangel, J.H.G., E-mail: periclesft@ifma.edu.br, E-mail: marcelo@ifma.edu.br, E-mail: jomar@ifma.edu.br, E-mail: hiltonrangel@ifma.edu.br [IFMA-DAQ- PPGEM, S. Luis, MA (Brazil); Longo, E., E-mail: elson@iq.unesp.br [CMDMC, LIEC, Instituto de Quimica, UNESP, Araraquara, SP (Brazil); Sousa, V.C. de, E-mail: vania.sousa@ufrgs.br [DEMAT, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS (Brazil)

    2012-04-15

    An investigation was made of the microstructural and electrical properties of SnO{sub 2} -based varistors microwave sintered at 1200 deg C, applying a heating rate of 120 deg C/min and treatment times of 10, 20, 30, 40, 50 and 60 min. The system used in this study was (98.95-X)%SnO{sub 2}.1.0%CoO.0.05%Cr{sub 2}O{sub 3}.X%Ta{sub 2}O{sub 5}, where X corresponds to 0.05 and 0.065 mol%. Sintering was carried out in a domestic microwave oven (2.45 GHz) fitted for lab use. Silicon carbide was placed in a refractory vessel to form a heating chamber surrounding the sample holder. The pellets were examined by scanning electron microscopy, X-ray diffractometry, direct current measurements and impedance spectroscopy. The parameters of density, medium grain size, coefficient of nonlinearity, breakdown electrical field, leakage current, and height and width of the potential barrier were analyzed. (author)

  10. Cytoplasmic assembly of snRNP particles from stored proteins and newly transcribed snRNA's in L929 mouse fibroblasts

    International Nuclear Information System (INIS)

    Sauterer, R.A.; Feeney, R.J.; Zieve, G.W.

    1988-01-01

    Newly synthesized snRNAs appear transiently in the cytoplasm where they assemble into ribonucleoprotein particles, the snRNP particles, before returning permanently to the interphase nucleus. In this report, bona fide cytoplasmic fractions, prepared by cell enucleation, are used for a quantitative analysis of snRNP assembly in growing mouse fibroblasts. The half-lives and abundances of the snRNP precursors in the cytoplasm and the rates of snRNP assembly are calculated in L929 cells. With the exception of U6, the major snRNAs are stable RNA species; U1 is almost totally stable while U2 has a half-life of about two cell cycles. In contrast, the majority of newly synthesized U6 decays with a half-life of about 15 h. The relative abundances of the newly synthesized snRNA species U1, U2, U3, U4 and U6 in the cytoplasm are determined by Northern hybridization using cloned probes and are approximately 2% of their nuclear abundance. The half-lives of the two major snRNA precursors in the cytoplasm (U1 and U2) are approximately 20 min as determined by labeling to steady state. The relative abundance of the snRNP B protein in the cytoplasm is determined by Western blotting with the Sm class of autoantibodies and is approximately 25% of the nuclear abundance. Kinetic studies, using the Sm antiserum to immunoprecipitate the methionine-labeled snRNP proteins, suggest that the B protein has a half-life of 90 to 120 min in the cytoplasm. These data are discussed and suggest that there is a large pool of more stable snRNP proteins in the cytoplasm available for assembly with the less abundant but more rapidly turning-over snRNAs

  11. The influence of Sn Additions on the Thermoelectric and Transport Properties of FeSb2Te-based Ternary Skutterudites

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Jiří; Plecháček, T.; Drašar, Č.; Kucek, V.; Laufek, František; Černošková, E.; Beneš, L.; Vlček, Milan

    2016-01-01

    Roč. 45, č. 6 (2016), s. 2904-2913 ISSN 0361-5235 R&D Projects: GA ČR(CZ) GA13-33056S Institutional support: RVO:61389013 ; RVO:68378271 Keywords : effective medium theory * FeSb2Te * Sn - addition Subject RIV: CA - Inorganic Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.579, year: 2016

  12. Platinum nanoparticles embedded in layer-by-layer films from SnO{sub 2}/polyallylamine for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Barretto, Caroline B.; Parreira, Renato L.T.; Goncalves, Rogeria R.; Huguenin, Fritz [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, 14040-901 Ribeirao Preto SP (Brazil); de Azevedo, Dayse C. [NovoCell Energy Systems S.A., 13478-722 Americana SP (Brazil)

    2008-10-15

    Self-assembled films from SnO{sub 2} and polyallylamine (PAH) were deposited on gold via ionic attraction by the layer-by-layer (LbL) method. The modified electrodes were immersed into a H{sub 2}PtCl{sub 6} solution, a current of 100 {mu}A was applied, and different electrodeposition times were used. The SnO{sub 2}/PAH layers served as templates to yield metallic platinum with different particle sizes. The scanning tunnel microscopy images show that the particle size increases as a function of electrodeposition time. The potentiodynamic profile of the electrodes changes as a function of the electrodeposition time in 0.5 mol L{sup -1} H{sub 2}SO{sub 4}, at a sweeping rate of 50 mV s{sup -1}. Oxygen-like species are formed at less positive potentials for the Pt-SnO{sub 2}/PAH film in the case of the smallest platinum particles. Electrochemical impedance spectroscopy measurements in acid medium at 0.7 V show that the charge transfer resistance normalized by the exposed platinum area is 750 times greater for platinum electrode (300 k{omega} cm{sup 2}) compared with the Pt-SnO{sub 2}/PAH film with 1 min of electrodeposition (0.4 k{omega} cm{sup 2}). According to the Langmuir-Hinshelwood bifunctional mechanism, the high degree of coverage with oxygen-like species on the platinum nanoparticles is responsible for the electrocatalytic activity of the Pt-SnO{sub 2}/PAH concerning ethanol electrooxidation. With these features, this Pt-SnO{sub 2}/PAH film may be grown on a proton exchange membrane (PEM) in direct ethanol fuel cells (DEFC). (author)

  13. The formation of α-phase SnS nanorods by PVP assisted polyol synthesis: Phase stability, micro structure, thermal stability and defects induced energy band transitions

    Energy Technology Data Exchange (ETDEWEB)

    Baby, Benjamin Hudson; Mohan, D. Bharathi, E-mail: d.bharathimohan@gmail.com

    2017-05-01

    We report the formation of single phase of SnS nanostructure through PVP assisted polyol synthesis by varying the source concentration ratio (Sn:S) from 1:1M to 1:12M. The effect of PVP concentration and reaction medium towards the preparation of SnS nanostructure is systematically studied through confocal Raman spectrometer, X-ray diffraction, thermogravimetry analysis, scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis–NIR absorption and fluorescence spectrophotometers. The surface morphology of SnS nanostructure changes from nanorods to spherical shape with increasing PVP concentration from 0.15M to 0.5M. Raman analysis corroborates that Raman active modes of different phases of Sn-S are highly active when Raman excitation energy is slightly greater than the energy band gap of the material. The presence of intrinsic defects and large number of grain boundaries resulted in an improved thermal stability of 20 °C during the phase transition of α-SnS. Band gap calculation from tauc plot showed the direct band gap of 1.5 eV which is attributed to the single phase of SnS, could directly meet the requirement of an absorber layer in thin film solar cells. Finally, we proposed an energy band diagram for as synthesized single phase SnS nanostructure based on the experimental results obtained from optical studies showing the energy transitions attributed to band edge transition and also due to the presence of intrinsic defects. - Highlights: • PVP stabilizes the orthorhombic (α) phase of SnS. • Optical band gap of P type SnS tuned by PVP for photovoltaic applications. • The formation of Sn rich SnS phase is investigated through XPS analysis. • Intrinsic defects enhance the thermal stability of α-SnS. • The feasibility of energy transition liable to point defects is discussed.

  14. The galactic X-ray sources

    International Nuclear Information System (INIS)

    Gursky, H.; Schreier, E.

    1975-01-01

    The current observational evidence on galactic X-ray sources is presented both from an astrophysical and astronomical point of view. The distributional properties of the sources, where they appear in the Galaxy, and certain average characteristics are discussed. In this way, certain properties of the X-ray sources can be deduced which are not apparent in the study of single objects. The properties of individual X-ray sources are then described. The hope is that more can be learnt about neutron stars and black holes, their physical properties, their origin and evolution, and their influence on other galactic phenomena. Thus attention is paid to those elements of data which appear to have the most bearing on these questions. (Auth.)

  15. Polymer-SnO2 composite membranes

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal; Skou, Eivind Morten

    . This work utilizes the latter approach and makes use of particles of tin dioxide (SnO2). Polymer-SnO2 composite membranes were successfully prepared using an ion-exchange method. SnO2 was incorporated into membranes by ion-exchange in solutions of SnCl2 ∙ 2 H2O in methanol, followed by oxidation to SnO2...... in air. The content of SnO2 proved controllable by adjusting the concentration of the ion-exchange solution. The prepared nanocomposite membranes were characterized by powder XRD, 119Sn MAS NMR, electrochemical impedance spectroscopy, water uptake and tensile stress-strain measurements. For Nafion 117...

  16. Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    Science.gov (United States)

    Vayner, Andrey; Wright, Shelley A.; Murray, Norman; Armus, Lee; Larkin, James E.; Mieda, Etsuko

    2017-12-01

    We present high angular resolution multiwavelength data of the 3C 298 radio-loud quasar host galaxy (z = 1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph (IFS) with adaptive optics, the Atacama Large Millimeter/submillimeter Array (ALMA), the Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ, [O III], Hα, [N II], and [S II], as well as in the molecular lines CO (J = 3‑2) and (J = 5‑4). Along the path of the relativistic jets of 3C 298, we detect conical outflows in ionized gas emission with velocities of up to 1700 {km} {{{s}}}-1 and an outflow rate of 450–1500 {M}ȯ {{yr}}-1 extended over 12 kpc. Near the spatial center of the conical outflow, CO (J = 3‑2) emission shows a molecular gas disk with a rotational velocity of ±150 {km} {{{s}}}-1 and total molecular mass ({M}{{{H}}2}) of 6.6+/- 0.36× {10}9 {M}ȯ . On the blueshifted side of the molecular disk, we observe broad extended emission that is due to a molecular outflow with a rate of 2300 {M}ȯ {{yr}}-1 and depletion timescale of 3 Myr. We detect no narrow Hα emission in the outflow regions, suggesting a limit on star formation of 0.3 {M}ȯ {{yr}}-1 {{kpc}}-2. Quasar-driven winds are evacuating the molecular gas reservoir, thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is {10}9.37{--9.56} {M}ȯ , and we determine a dynamical bulge mass of {M}{bulge}=1{--}1.7× {10}10\\tfrac{R}{1.6 {kpc}} {M}ȯ . The bulge mass of 3C 298 lies 2–2.5 orders of magnitude below the expected value from the local galactic bulge—supermassive black hole mass ({M}{bulge}{--}{M}{BH}) relationship. A second galactic disk observed in nebular emission is offset from the quasar by 9 kpc, suggesting that the system is an intermediate-stage merger. These results show that galactic-scale negative feedback is occurring early in the merger

  17. Evolution of an electron-positron plasma produced by induced gravitational collapse in binary-driven hypernovae

    Directory of Open Access Journals (Sweden)

    Melon Fuksman J. D.

    2018-01-01

    Full Text Available The binary-driven hypernova (BdHN model has been introduced in the past years, to explain a subfamily of gamma-ray bursts (GRBs with energies Eiso ≥ 1052 erg associated with type Ic supernovae. Such BdHNe have as progenitor a tight binary system composed of a carbon-oxigen (CO core and a neutron star undergoing an induced gravitational collapse to a black hole, triggered by the CO core explosion as a supernova (SN. This collapse produces an optically-thick e+e- plasma, which expands and impacts onto the SN ejecta. This process is here considered as a candidate for the production of X-ray flares, which are frequently observed following the prompt emission of GRBs. In this work we follow the evolution of the e+e- plasma as it interacts with the SN ejecta, by solving the equations of relativistic hydrodynamics numerically. Our results are compatible with the Lorentz factors estimated for the sources that produce the flares, of typically Γ ≲ 4.

  18. Models of mass segregation at the Galactic Centre

    International Nuclear Information System (INIS)

    Freitag, Marc; Amaro-Seoane, Pau; Kalogera, Vassiliki

    2006-01-01

    We study the process of mass segregation through 2-body relaxation in galactic nuclei with a central massive black hole (MBH). This study has bearing on a variety of astrophysical questions, from the distribution of X-ray binaries at the Galactic centre, to tidal disruptions of main- sequence and giant stars, to inspirals of compact objects into the MBH, an important category of events for the future space borne gravitational wave interferometer LISA. In relatively small galactic nuclei, typical hosts of MBHs with masses in the range 10 4 - 10 7 M o-dot , the relaxation induces the formation of a steep density cusp around the MBH and strong mass segregation. Using a spherical stellar dynamical Monte-Carlo code, we simulate the long-term relaxational evolution of galactic nucleus models with a spectrum of stellar masses. Our focus is the concentration of stellar black holes to the immediate vicinity of the MBH. Special attention is given to models developed to match the conditions in the Milky Way nucleus

  19. Radiation pressure in galactic disks: stability, turbulence, and winds in the single-scattering limit

    Science.gov (United States)

    Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.

    2018-04-01

    The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically-thick limit relevant to the densest ultra-luminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called "single-scattering" limit, where the system is optically-thick to the incident starlight, but optically-thin to the re-radiated infrared. In this paper we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01 - 0.1 of the midplane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5 - 2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming disks, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.

  20. Improvements in the critical current densities of Nb3Sn by solid solution additions of Sn in Nb

    International Nuclear Information System (INIS)

    Luhman, T.; Suenaga, M.

    1975-01-01

    The effectiveness of solid solution additions of Sn to Nb in improving the superconducting properties of diffusion processed Nb 3 Sn conductors was examined. It was found that an increase in the superconducting critical current density, Jc, as function of layer thickness (d) may be obtained for thick Nb 3 Sn layers by solid solution additions of Sn in Nb. A large increase in J/sub c/ (d) is also achieved by increasing the Sn content in the bronze matrix material. In addition to uses of this material in magnet fabrications a potential application of these improved J/sub c/(d) values may lie in the use of Nb 3 Sn in power transmission lines. Here, a high superconducting critical current density is necessary throughout the material to carry the increased current during fault conditions. The magnetic field dependence of J/sub c/ is a function of alloy content but the alloying changes studied here do not increase the high field critical current capability of Nb 3 Sn. (auth)

  1. The angular clustering of WISE-selected active galactic nuclei: Different halos for obscured and unobscured active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E. [Instituto de Ciencias Astronómicas, de la Tierra, y del Espacio (ICATE), 5400 San Juan (Argentina); Yan, Lin [Infrared Processing and Analysis Center, Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Assef, R. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-07-01

    We calculate the angular correlation function for a sample of ∼170,000 active galactic nuclei (AGNs) extracted from the Wide-field Infrared Survey Explorer (WISE) catalog, selected to have red mid-IR colors (W1 – W2 > 0.8) and 4.6 μm flux densities brighter than 0.14 mJy). The sample is expected to be >90% reliable at identifying AGNs and to have a mean redshift of (z) = 1.1. In total, the angular clustering of WISE AGNs is roughly similar to that of optical AGNs. We cross-match these objects with the photometric Sloan Digital Sky Survey catalog and distinguish obscured sources with r – W2 > 6 from bluer, unobscured AGNs. Obscured sources present a higher clustering signal than unobscured sources. Since the host galaxy morphologies of obscured AGNs are not typical red sequence elliptical galaxies and show disks in many cases, it is unlikely that the increased clustering strength of the obscured population is driven by a host galaxy segregation bias. By using relatively complete redshift distributions from the COSMOS survey, we find that obscured sources at (z) ∼ 0.9 have a bias of b = 2.9 ± 0.6 and are hosted in dark matter halos with a typical mass of log (M/M {sub ☉} h {sup –1}) ∼ 13.5. In contrast, unobscured AGNs at (z) ∼ 1.1 have a bias of b = 1.6 ± 0.6 and inhabit halos of log (M/M {sub ☉} h {sup –1}) ∼ 12.4. These findings suggest that obscured AGNs inhabit denser environments than unobscured AGNs, and they are difficult to reconcile with the simplest AGN unification models, where obscuration is driven solely by orientation.

  2. Production of superconducting Nb3Sn wire using Nb or Nb(Ti) and Sn(Ga) solid solution powders

    International Nuclear Information System (INIS)

    Thieme, C.L.H.; Foner, S.

    1991-01-01

    This paper reports on superconducting Nb 3 Sn wire produced by the powder metallurgy method using Nb or Nb-2.9 at% Ti powder in combination with Sn-x at% Ga powders (x = 3, 4.2, 6.2 and 9.0). Ga additions to the Sn caused considerable solid solution hardening which improved its workability. It made the Nb-Sn(Ga) powder combinations convenient for swaging and extensive wire drawing. Anneals at 950 degrees C produced wires with an overall J c of 10 4 A/cm 2 at 21.9 T for wires with both Ti in the Nb and 6.2 at% Ga in the Sn. Comparison of this wire with the best Nb(Ti)-Cu-internal Sn(Ti) shows a higher J c per A15 areas, especially in fields of 22T and above

  3. The chemical evolution of the Galactic Bulge seen through micro-lensing events

    Directory of Open Access Journals (Sweden)

    Lucatello S.

    2012-02-01

    Full Text Available Galactic bulges are central to understanding galaxy formation and evolution. Here we report on recent studies using micro-lensing events to obtain spectra of high resolution and moderately high signal-to-noise ratios of dwarf stars in the Galactic bulge. Normally this is not feasible for the faint turn-off stars in the Galactic bulge, but micro-lensing offers this possibility. Elemental abundance trends in the Galactic bulge as traced by dwarf stars are very similar to those seen for dwarf stars in the solar neighbourhood. We discuss the implications of the ages and metallicity distribution function derived for the micro-lensed dwarf stars in the Galactic bulge.

  4. Oscillating neutrinos from the Galactic center

    International Nuclear Information System (INIS)

    Crocker, R.M.; Volkas, R.R.; Melia, F.

    1999-11-01

    It has recently been demonstrated that the γ-ray emission spectrum of the EGRET-identified, central Galactic source 2EG J1746-2852 can be well fitted by positing that these photons are generated by the decay of π 0, s produced in p-p scattering at or near an energizing shock. Such scattering also produces charged pions which decay leptonically. The ratio of γ-rays to neutrinos generated by the central Galactic source may be accurately determined and a well-defined and potentially-measurable high energy neutrino flux at Earth is unavoidable. An opportunity, therefore, to detect neutrino oscillations over an unprecedented scale is offered by this source. In this paper we assess the prospects for such an observation with the generation of neutrino Cerenkov telescopes now in the planning stage. We determine that the next generation of detectors may find an oscillation signature in the Galactic Center (GC) signal, but that such an observation will probably not further constrain the oscillation parameter space mapped out by current atmospheric, solar, reactor and accelerator neutrino oscillation experiments

  5. Kinetics of plasma oxidation of germanium-tin (GeSn)

    Science.gov (United States)

    Wang, Wei; Lei, Dian; Dong, Yuan; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Tok, Eng-Soon; Yeo, Yee-Chia

    2017-12-01

    The kinetics of plasma oxidation of GeSn at low temperature is investigated. The oxidation process is described by a power-law model where the oxidation rate decreases rapidly from the initial oxidation rate with increasing time. The oxidation rate of GeSn is higher than that of pure Ge, which can be explained by the higher chemical reaction rate at the GeSn-oxide/GeSn interface. In addition, the Sn atoms at the interface region exchange positions with the underlying Ge atoms during oxidation, leading to a SnO2-rich oxide near the interface. The bandgap of GeSn oxide is extracted to be 5.1 ± 0.2 eV by XPS, and the valence band offset at the GeSn-oxide/GeSn heterojunction is found to be 3.7 ± 0.2 eV. Controlled annealing experiments demonstrate that the GeSn oxide is stable with respect to annealing temperatures up to 400 °C. However, after annealing at 450 °C, the GeO2 is converted to GeO, and desorbs from the GeSn-oxide/GeSn, leaving behind Sn oxide.

  6. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  7. DO22-(Cu,Ni)3Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    International Nuclear Information System (INIS)

    Liu Lilin; Huang, Haiyou; Fu Ran; Liu Deming; Zhang Tongyi

    2009-01-01

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO 22 -(Cu,Ni) 3 Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO 22 -(Cu,Ni) 3 Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO 22 -(Cu,Ni) 3 Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO 22 -(Cu,Ni) 3 Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO 22 IMC and fcc Cu crystals in comparison with that between the equilibrium DO 3 IMC and fcc Cu crystals.

  8. Liquidus Projection and Isothermal Section of the Sb-Se-Sn System

    Science.gov (United States)

    Chang, Jui-shen; Chen, Sinn-wen

    2017-12-01

    Sb-Se-Sn ternary alloys are promising chalcogenide materials. The liquidus projection and 673.2 K (400 °C) isothermal section of the Sb-Se-Sn ternary system are determined. Numerous Sb-Se-Sn alloys are prepared, and their primary solidification phases are examined. In addition to the three terminal phases, (Sb), (Se) and (Sn), there are Sb2Sn3, SbSn, SnSe, SnSe2, Sb2Se3, Sn2Sb9Se9, and SnSb2Se4 phases. In addition, there are two miscibility gaps along the Sb-Se and Se-Sn and sides. There are ten invariant reactions in the Sb-Se-Sn ternary system, and seven of them are experimentally determined in this study. The lowest reaction temperature of determined invariant reaction is L + SbSn = (Sn) + SnSe at 515.4 K ± 5 K (242.2 °C ± 5 °C). There are nine tie-triangles, which are Liquid + SbSn + SnSe, SbSn + SnSe + (Sb), SnSe + (Sb) + Sn2Sb9Se9, (Sb) + Sb2Se3 + Sn2Sb9Se9, SnSe + Sn2Sb9Se9 + SnSb2Se4, Sb2Se3 + Sn2Sb9Se9 + SnSb2Se4, SnSe + SnSe2 + SnSb2Se4, SnSe2 + SnSb2Se4 + Sb2Se3, and SnSe2 + Sb2Se3 + Liquid in the 673.2 K (400 °C) isothermal section of the Sb-Se-Sn ternary system.

  9. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; hide

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  10. 0(gs)+ -->2(1)+ transition strengths in 106Sn and 108Sn.

    Science.gov (United States)

    Ekström, A; Cederkäll, J; Fahlander, C; Hjorth-Jensen, M; Ames, F; Butler, P A; Davinson, T; Eberth, J; Fincke, F; Görgen, A; Górska, M; Habs, D; Hurst, A M; Huyse, M; Ivanov, O; Iwanicki, J; Kester, O; Köster, U; Marsh, B A; Mierzejewski, J; Reiter, P; Scheit, H; Schwalm, D; Siem, S; Sletten, G; Stefanescu, I; Tveten, G M; Van de Walle, J; Van Duppen, P; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Zielińska, M

    2008-07-04

    The reduced transition probabilities, B(E2; 0(gs)+ -->2(1)+), have been measured in the radioactive isotopes (108,106)Sn using subbarrier Coulomb excitation at the REX-ISOLDE facility at CERN. Deexcitation gamma rays were detected by the highly segmented MINIBALL Ge-detector array. The results, B(E2;0(gs)+ -->2(1)+)=0.222(19)e2b2 for 108Sn and B(E2; 0(gs)+-->2(1)+)=0.195(39)e2b2 for 106Sn were determined relative to a stable 58Ni target. The resulting B(E2) values are approximately 30% larger than shell-model predictions and deviate from the generalized seniority model. This experimental result may point towards a weakening of the N=Z=50 shell closure.

  11. Highly Sensitive Nanostructured SnO2 Thin Films For Hydrogen Sensing

    Science.gov (United States)

    Patil, L. A.; Shinde, M. D.; Bari, A. R.; Deo, V. V.

    2010-10-01

    Nanostructured SnO2 thin films were prepared by ultrasonic spray pyrolysis technique. Aqueous solution (0.05 M) of SnCl4ṡ5H2O in double distilled water was chosen as the starting solution for the preparation of the films. The stock solution was delivered to nozzle with constant and uniform flow rate of 70 ml/h by Syringe pump SK5001. Sono-tek spray nozzle, driven by ultrasonic frequency of 120 kHz, converts the solution into fine spray. The aerosol produced by nozzle was sprayed on glass substrate heated at 150 °C. The sensing performance of the films was tested for various gases such as LPG, hydrogen, ethanol, carbon dioxide and ammonia. The sensor (30 min) showed high gas response (S = 3040 at 350 °C) on exposure of 1000 ppm of hydrogen and high selectivity against other gases. Its response time was short (2 s) and recovery was also fast (12 s). To understand reasons behind this uncommon gas sensing performance of the films, their structural, microstructural, and optical properties were studied using X-ray diffraction, electron microscopy (SEM and TEM) respectively. The results are interpreted

  12. The age of the galactic disk

    International Nuclear Information System (INIS)

    Sandage, A.

    1988-07-01

    The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk, permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc

  13. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    International Nuclear Information System (INIS)

    Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; Voss, T.; Schulze, J.; Kirbs, A.; Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Koetschau, I.; Schock, H.-W.

    2009-01-01

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu 2 ZnSnS 4 based thin film solar cells. A kesterite based solar cell (size 0.5 cm 2 ) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu 2 SnS 3 and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu 3 Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu 6 Sn 5 and Sn phases were detected. The formation mechanism of Cu 2 SnS 3 involves the binary sulphides Cu 2-x S and SnS 2 in the absence of the binary precursor phase Cu 6 Sn 5 . The presence of Cu 6 Sn 5 leads to a preferred formation of Cu 2 SnS 3 via the reaction educts Cu 2-x S and SnS 2 in the presence of a SnS 2 (Cu 4 SnS 6 ) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase

  14. Conversion of gas into stars in the Galactic center

    Science.gov (United States)

    Longmore, S. N.

    2014-05-01

    The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.

  15. Prediction of the diffuse far-infrared flux from the galactic plane

    International Nuclear Information System (INIS)

    Fazio, G.G.; Stecker, F.W.

    1976-01-01

    A basic model and simple numerical relations useful for future far-infrared studies of the Galaxy are presented. Making use of recent CO and other galactic surveys, we then predict the diffuse far-infrared flux distribution from the galactic plane as a function of galactic longitude l for 4degree< or =l< or =90degree and the far-infrared emissivity as a function of galactocentric distance. Future measurements of the galactic far-infrared flux would yield valuable information on the physical properties and distribution of dust and molecular clouds in the Galaxy, particulary the inner region

  16. Impact of Neutrino Flavor Oscillations on the Neutrino-driven Wind Nucleosynthesis of an Electron-capture Supernova

    Science.gov (United States)

    Pllumbi, Else; Tamborra, Irene; Wanajo, Shinya; Janka, Hans-Thomas; Hüdepohl, Lorenz

    2015-08-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 {M}⊙ electron-capture supernova (SN), whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations between both active and active-sterile flavors. We also take into account the α-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution that depend in a subtle way on the relative radial positions of the sterile Mikheyev-Smirnov-Wolfenstein resonances, on collective flavor transformations, and on the formation of α particles. For the adopted SN progenitor, we find that neutrino oscillations, also to a sterile state with eV mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron-rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state-dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, and α-effect.

  17. The Mont Blanc neutrinos from SN 1987A: Could they have been monochromatic (8 MeV) tachyons with m2 = - 0.38 keV2?

    Science.gov (United States)

    Ehrlich, Robert

    2018-05-01

    According to conventional wisdom the 5 h early Mont Blanc burst probably was not associated with SN 1987A, but if it was genuine, some exotic physics explanation had to be responsible. Here we consider one truly exotic explanation, namely faster-than-light neutrinos having mν2 = - 0.38 keV2. It is shown that the Mont Blanc burst is consistent with the distinctive signature of that explanation i.e., an 8 MeV antineutrino line from SN 1987A. It is further shown that a model of core collapse supernovae involving dark matter particles of mass 8 MeV would in fact yield an 8 MeV antineutrino line. Moreover, that dark matter model predicts 8 MeV ν ,νbar and e+e- pairs from the galactic center, a place where one would expect large amounts of dark matter to collect. The resulting e+ would create γ - rays from the galactic center, and a fit to MeV γ - ray data yields the model's dark matter mass, as well as the calculated source temperature and angular size. These good fits give indirect experimental support for the existence of an 8 MeV antineutrino line from SN 1987A. More direct support comes from the spectrum of N ∼ 1000 events recorded by the Kamiokande-II detector on the day of SN 1987A, which appear to show an 8 MeV line atop the detector background. This νbar line, if genuine, has been well-hidden for 30 years because it occurs very close to the peak of the background. This fact might ordinarily justify extreme skepticism. In the present case, however, a more positive view is called for based on (a) the very high statistical significance of the result (30σ), (b) the use of a detector background independent of the SN 1987A data using a later K-II data set, and (c) the observation of an excess above the background spectrum whose central energy and width both agree with that of an 8 MeV νbar line broadened by 25% resolution. Most importantly, the last observation is in accord with the prior prediction of an 8 MeV νbar line based on the Mont Blanc data, and

  18. All Small Nuclear RNAs (snRNAs) of the [U4/U6.U5] Tri-snRNP Localize to Nucleoli; Identification of the Nucleolar Localization Element of U6 snRNA

    Science.gov (United States)

    Gerbi, Susan A.; Lange, Thilo Sascha

    2002-01-01

    Previously, we showed that spliceosomal U6 small nuclear RNA (snRNA) transiently passes through the nucleolus. Herein, we report that all individual snRNAs of the [U4/U6.U5] tri-snRNP localize to nucleoli, demonstrated by fluorescence microscopy of nucleolar preparations after injection of fluorescein-labeled snRNA into Xenopus oocyte nuclei. Nucleolar localization of U6 is independent from [U4/U6] snRNP formation since sites of direct interaction of U6 snRNA with U4 snRNA are not nucleolar localization elements. Among all regions in U6, the only one required for nucleolar localization is its 3′ end, which associates with the La protein and subsequently during maturation of U6 is bound by Lsm proteins. This 3′-nucleolar localization element of U6 is both essential and sufficient for nucleolar localization and also required for localization to Cajal bodies. Conversion of the 3′ hydroxyl of U6 snRNA to a 3′ phosphate prevents association with the La protein but does not affect U6 localization to nucleoli or Cajal bodies. PMID:12221120

  19. P-type SnO thin films and SnO/ZnO heterostructures for all-oxide electronic and optoelectronic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Kachirayil J. [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Department of Physics, Govt. Victoria College, University of Calicut, Palakkad 678 001 (India); Venkata Subbaiah, Y.P. [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Department of Physics, Yogi Vemana University, Kadapa, Andhra Pradesh 516003 (India); Tian, Kun [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States)

    2016-04-30

    Tin monoxide (SnO) is considered as one of the most important p-type oxides available to date. Thin films of SnO have been reported to possess both an indirect bandgap (~ 0.7 eV) and a direct bandgap (~ 2.8 eV) with quite high hole mobility (~ 7 cm{sup 2}/Vs) values. Moreover, the hole density in these films can be tuned from 10{sup 15}–10{sup 19} cm{sup −3} just by controlling the thin film deposition parameters. Because of the above attributes, SnO thin films offer great potential for fabricating modern electronic and optoelectronic devices. In this article, we are reviewing the most recent developments in this field and also presenting some of our own results on SnO thin films grown by pulsed laser deposition technique. We have also proposed a p–n heterostructure comprising of p-type SnO and n-type ZnO which can pave way for realizing next-generation, all-oxide transparent electronic devices. - Highlights: • We reviewed recent developments on p-type SnO thin film research. • Discussed the optical and electrical properties of SnO thin films • Bipolar conduction in SnO is discussed. • Optoelectronic properties of SnO–ZnO composite system are discussed. • Proposed SnO–ZnO heterojunction band structure.

  20. Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering

    Science.gov (United States)

    Janicek, Petr; Niang, Kham M.; Mistrik, Jan; Palka, Karel; Flewitt, Andrew J.

    2017-11-01

    ZnO:Sn thin films were deposited onto thermally oxidized silicon substrates using a remote plasma reactive sputtering. Their optical constants (refractive index n and extinction coefficient k) were determined from ellipsometric data recorded over a wide spectral range (0.05-6 eV). Parametrization of ZnO:Sn complex dielectric permittivity consists of a parameterized semiconductor oscillator function describing the short wavelength absorption edge, a Drude oscillator describing free carrier absorption in near-infrared part of spectra and a Lorentz oscillator describing the long wavelength absorption edge and intra-band absorption in the ultra-violet part of the spectra. Using a Mott-Davis model, the increase in local disorder with increasing Sn doping is quantified from the short wavelength absorption edge onset. Using the Wemple-DiDomenico single oscillator model for the transparent part of the optical constants spectra, an increase in the centroid distance of the valence and conduction bands with increasing Sn doping is shown and only slight increase in intensity of the inter-band optical transition due to Sn doping occurs. The Drude model applied in the near-infrared part of the spectra revealed the free carrier concentration and mobility of ZnO:Sn. Results show that the range of transparency of prepared ZnO:Sn layers is not dramatically affected by Sn doping whereas electrical conductivity could be controlled by Sn doping. Refractive index in the transparent part is comparable with amorphous Indium Gallium Zinc Oxide allowing utilization of prepared ZnO:Sn layers as an indium-free alternative.

  1. FROM GALACTIC TO EXTRAGALACTIC JETS: A REVIEW

    Directory of Open Access Journals (Sweden)

    James H. Beall

    2013-12-01

    Full Text Available An analysis of the data that have recently become available from observing campaigns, including VLA, VLBA, and satellite instruments, shows some remarkable similarities and significant differences in the data from some epochs of galactic microquasars, including GRS 1915+105, the concurrent radio and X-ray data [3] on Centaurus A (NGC 5128, 3C120 [35], and 3C454.3 as reported by Bonning et al. [16], which showed the first results from the Fermi Space Telescope for the concurrent variability at optical, UV, IR, and g-ray variability of that source. In combination with observations from microquasars and quasars from the MOJAVE Collaboration [32], these data provide time-dependent evolutions of radio data at mas (i.e., parsec for AGNs, and Astronomical Unit scales for microquasars. These sources all show a remarkable richness of patterns of variability for astrophysical jets across the entire electromagnetic spectrum. It is likely that these patterns of variability arise from the complex structures through which the jets propagate, but it is also possible that the jets constitution, initial energy, and collimation have significant observational consequences. On the other hand, Ulrich et al. [42] suggest that this picture is complicated for radio-quiet AGN by the presence of significant emission from accretion disks in those sources. Consistent with the jet-ambient-medium hypothesis, the observed concurrent radio and X-ray variability of Centaurus A [3] could have been caused by the launch of a jet element from Cen A’s central source and that jet’s interaction with the interstellar medium in the core region of that galaxy.

  2. Crystal structure of R.E. NiSn and R.E. PdSn equiatomic compounds

    International Nuclear Information System (INIS)

    Dwight, A.E.

    1983-03-01

    Call constants and volume per formula weight are tabulated for RE NiSn (RE = La to Lu, Y) and RE PdSn (RE = Nd to Ho). The unit cell constants are also plotted versus ionic radius of the RE; trends are noted

  3. A new class of galactic discrete gamma ray sources: Chaotic winds of massive stars

    Science.gov (United States)

    Chen, Wan; White, Richard L.

    1992-01-01

    We propose a new class of galactic discrete gamma-ray sources, the chaotic, high mass-loss-rate winds from luminous early-type stars. Early-type stellar winds are highly unstable due to intrinsic line-driven instabilities, and so are permeated by numerous strong shocks. These shocks can accelerate a small fraction of thermal electrons and ions to relativistic energies via the first-order Fermi mechanism. A power-law-like photon spectrum extending from keV to above 10 MeV energies is produced by inverse Compton scattering of the extremely abundant stellar UV photons by the relativistic electrons. In addition, a typical pi(sup 0)-decay gamma-ray spectrum is generated by proton-ion interactions in the densest part of the winds.

  4. Massive stellar content of some Galactic supershells

    Science.gov (United States)

    Kaltcheva, Nadejda; Golev, Valeri

    2015-08-01

    The giant Galactic H II regions provide a unique opportunity to study the OB-star influence on the surrounding interstellar matter. In this contribution, several multi-wavelength surveys (Wisconsin H-α Mapper Northern Sky Survey, Southern H-α Sky Survey Atlas, MSX Mid-IR Galactic Plane Survey, WISE All-Sky Data Release, CO survey of the Milky Way, and the Southern Galactic Plane HI Survey) are combined with available intermediate-band uvbyβ photometry to attempt a precise spatial correlation between the OB-stars and the neutral and ionized material. Our study is focused on the H I supershell GSH 305+01-24 in Centaurus, the Car OB2 supershell, the Cygnus star-forming complex and the GSH 224-01+24 shell toward the GMN 39/Seagull nebula region. We refine the massive stellar content of these star-forming fields and study the energetics of its interaction with the shells’ material.

  5. THE INNER GALACTIC BULGE: EVIDENCE FOR A NUCLEAR BAR?

    International Nuclear Information System (INIS)

    Gerhard, Ortwin; Martinez-Valpuesta, Inma

    2012-01-01

    Recent data from the VVV survey have strengthened evidence for a structural change in the Galactic bulge inward of |l| ≤ 4°. Here we show with an N-body barred galaxy simulation that a boxy bulge formed through the bar and buckling instabilities effortlessly matches measured bulge longitude profiles for red clump stars. The same simulation snapshot was earlier used to clarify the apparent boxy bulge—long bar dichotomy, for the same orientation and scaling. The change in the slope of the model longitude profiles in the inner few degrees is caused by a transition from highly elongated to more nearly axisymmetric isodensity contours in the inner boxy bulge. This transition is confined to a few degrees from the Galactic plane; thus the change of slope is predicted to disappear at higher Galactic latitudes. We also show that the nuclear star count map derived from this simulation snapshot displays a longitudinal asymmetry similar to that observed in the Two Micron All Sky Survey (2MASS) data, but is less flattened to the Galactic plane than the 2MASS map. These results support the interpretation that the Galactic bulge originated from disk evolution and question the evidence advanced from star count data for the existence of a secondary nuclear bar in the Milky Way.

  6. Synthesis and fundamental properties of stable Ph(3)SnSiH(3) and Ph(3)SnGeH(3) hydrides: model compounds for the design of Si-Ge-Sn photonic alloys.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John

    2009-07-06

    The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

  7. Is dark matter visible by galactic gamma rays?

    Indian Academy of Sciences (India)

    The EGRET excess in the diffuse galactic gamma ray data above 1 GeV shows all features expected from dark matter WIMP annihilation: (a) It is present and has the same spectrum in all sky directions, not just in the galactic plane. (b) The intensity of the excess shows the 1/2 profile expected for a flat rotation curve outside ...

  8. Is dark matter visible by galactic gamma rays?

    Indian Academy of Sciences (India)

    Abstract. The EGRET excess in the diffuse galactic gamma ray data above 1 GeV shows all features expected from dark matter WIMP annihilation: (a) It is present and has the same spectrum in all sky directions, not just in the galactic plane. (b) The intensity of the excess shows the 1/r2 profile expected for a flat rotation ...

  9. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.

    1979-01-01

    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  10. The COS-AGN survey: Revealing the nature of circum-galactic gas around hosts of active galactic nuclei

    Science.gov (United States)

    Berg, Trystyn A. M.; Ellison, Sara L.; Tumlinson, Jason; Oppenheimer, Benjamin D.; Horton, Ryan; Bordoloi, Rongmon; Schaye, Joop

    2018-04-01

    Active galactic nuclei (AGN) are thought to play a critical role in shaping galaxies, but their effect on the circumgalactic medium (CGM) is not well studied. We present results from the COS-AGN survey: 19 quasar sightlines that probe the CGM of 20 optically-selected AGN host galaxies with impact parameters 80 frame equivalent widths EW≥124 mÅ) whilst many of the metal ions are not detected in individual sightlines. A sightline-by-sightline comparison between COS-AGN and the control sample yields no significant difference in EW distribution. However, stacked spectra of the COS-AGN and control samples show significant (>3σ) enhancements in the EW of both Siiii And Lyα at impact parameters >164 kpc by a factor of +0.45 ± 0.05 dex and >+0.75 dex respectively. The lack of detections of both high-ionization species near the AGN and strong kinematic offsets between the absorption systemic galaxy redshifts indicates that neither the AGN's ionization nor its outflows are the origin of these differences. Instead, we suggest the observed differences could result from either AGN hosts residing in haloes with intrinsically distinct gas properties, or that their CGM has been affected by a previous event, such as a starburst, which may also have fuelled the nuclear activity.

  11. Lanthanide ions doped Y2Sn2O7 nano-particles: low temperature synthesis and photoluminescence study

    International Nuclear Information System (INIS)

    Nigam, Sandeep; Sudarsan, V.; Vatsa, R.K.

    2008-01-01

    During the past decade, pyrochlore-type oxides (A 2 B 2 O 7 ) have emerged as important host matrices for lanthanide doped luminescent materials due to their higher thermal stability. Up to now, conventional solid-state reaction is the most commonly used synthetic method for preparation, of rare-earth pyrochlore oxides. This synthesis route employs a solid-state reaction of metal-oxide with appropriate rare-earth oxides at high temperature (>1200 deg C) for a long time (several days). However, in present work, Y 2 Sn 2 O 7 nanoparticles co-doped with lanthanide ions Tb 3+ and Ce 3+ were prepared based on the urea hydrolysis of Y 3+ , Sn 4+ , and Ln 3+ in ethylene glycol medium at 150 deg C followed by heating at 500, 700 and 900 deg C

  12. Synthesis of structured triacylglycerols containing medium-chain and long-chain fatty acids by interesterification with a stereoespecific lipase from Mucor miehei.

    Directory of Open Access Journals (Sweden)

    Nieto, Susana

    1999-06-01

    Full Text Available The preparation of structured triacylglycerols sn-1, sn-3 dilauryl, sn-2 eicosapentaenoyl glycerol and sn-1, sn-3 dilauryl, sn-2 docosahexaenoyl glycerol by enzymatic interesterification under restricted water availability is described. Laurie acid, one of the substrates for interesterification, was obtained by the controlled hydrolysis of coconut oil by a non-specific lipase obtained from Candida cylindracea. The fatty acid was separated from the hydrolysis products by silverresin column chromatography and converted to methyl ester, sn-2 Eicosapentaenoyl glycerol and sn-2 docosahexaenoyl glycerol were prepared by the hydrolysis of fish oil by the sn-1, sn-3 stereospecific immobilized lipase Lipozyme IM-20 obtained from Mucor miehei as described in the accompanying paper. The interesterification was carried out in a water jacketed glass reactor and the triacylglycerol products were separated and recovered through aluminum oxide column chromatography The interesterification procedure described allows to obtain In laboratory scale structured triacylglycerols containing medium-chain fatty acids at the sn-1 and sn-3 positions and long-chain polyunsaturated fatty acid from marine origin at the sn-2 glycerol position.

    Se describe la preparación de triacilgliceroles estructurados sn-1, sn-3 dilauril, sn-2 ecosapentaenoil glicerol y sn-1, sn-3 diiauril, sn-2 docosahexaenoil glicerol por interesterificación enzimática bajo disponibilidad de agua reducida. Acido láurico, uno de los sustratos para la interesterificación, se obtuvo mediante hidrólisis controlada del aceite de coco por una lipasa no-específica obtenida de Candida cylindracea. Los ácidos grasos se separaron de los productos de hidrólisis mediante cromatografía en columna de resina de plata y convertidos en sus esteres metílicos, sn-2 Eicosapentaenoil glicerol y sn-2 docosahexaenoil glicerol se prepararon mediante hidrólisis de aceite de pescado por la sn-1, sn

  13. Identify and Quantify the Mechanistic Sources of Sensor Performance Variation Between Individual Sensors SN1 and SN2

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baldwin, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathews, Royce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullen, Crystal A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Posakony, Gerald J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prowant, Matthew S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hartman, Trenton S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-08-06

    This Technical Letter Report satisfies the M3AR-14PN2301022 milestone, and is focused on identifying and quantifying the mechanistic sources of sensor performance variation between individual 22-element, linear phased-array sensor prototypes, SN1 and SN2. This effort constitutes an iterative evolution that supports the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor inspection system. The scope of the work for this portion of the PNNL effort conducted in FY14 includes performing a comparative evaluation and assessment of the performance characteristics of the SN1 and SN2 22 element PA-UT probes manufactured at PNNL. Key transducer performance parameters, such as sound field dimensions, resolution capabilities, frequency response, and bandwidth are used as a metric for the comparative evaluation and assessment of the SN1 and SN2 engineering test units.

  14. THE EDGE OF THE YOUNG GALACTIC DISK

    International Nuclear Information System (INIS)

    Carraro, Giovanni; Vazquez, Ruben A.; Costa, Edgardo; Perren, Gabriel; Moitinho, Andre

    2010-01-01

    In this work, we report and discuss the detection of two distant diffuse stellar groups in the third Galactic quadrant. They are composed of young stars, with spectral types ranging from late O to late B, and lie at galactocentric distances between 15 and 20 kpc. These groups are located in the area of two cataloged open clusters (VdB-Hagen 04 and Ruprecht 30), projected toward the Vela-Puppis constellations, and within the core of the Canis Major overdensity. Their reddening and distances have been estimated by analyzing their color-color and color-magnitude diagrams, derived from deep UBV photometry. The existence of young star aggregates at such extreme distances from the Galactic center challenges the commonly accepted scenario in which the Galactic disk has a sharp cutoff at about 14 kpc from the Galactic center and indicates that it extends to much greater distances (as also supported by the recent detection of CO molecular complexes well beyond this distance). While the groups we find in the area of Ruprecht 30 are compatible with the Orion and Norma-Cygnus spiral arms, respectively, the distant group we identify in the region of VdB-Hagen 04 lies in the external regions of the Norma-Cygnus arm, at a galactocentric distance (∼20 kpc) where no young stars have been detected so far in the optical.

  15. Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics.

    Science.gov (United States)

    Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Luo, Xiaomin; Li, Jiayin; Xu, Zhanwei; Yang, Jun

    2017-12-07

    The Sn-C bonding content between the SnO 2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO 2 @CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO 2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO 2 . The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO 2 @CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.

  16. Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation.

    Science.gov (United States)

    Yao, Jiandong; Zheng, Zhaoqiang; Yang, Guowei

    2018-02-08

    Solar energy-driven water evaporation lays a solid foundation for important photothermal applications such as sterilization, seawater desalination, and electricity generation. Due to the strong light-matter coupling, broad absorption wavelength range, and prominent quantum confinement effect, layered tin monoselenide (SnSe) holds a great potential to effectively harness solar irradiation and convert it to heat energy. In this study, SnSe is successfully deposited on a centimeter-scale nickel foam using a facile one-step pulsed-laser deposition approach. Importantly, the maximum evaporation rate of SnSe-coated nickel foam (SnSe@NF) reaches 0.85 kg m -2 h -1 , which is even 21% larger than that obtained with the commercial super blue coating (0.7 kg m -2 h -1 ) under the same condition. A systematic analysis reveals that its good photothermal conversion capability is attributed to the synergetic effect of multi-scattering-induced light trapping and the optimal trade-off between light absorption and phonon emission. Finally, the SnSe@NF device is further used for seawater evaporation, demonstrating a comparable evaporation rate (0.8 kg m -2 h -1 ) to that of fresh water and good stability over many cycles of usage. In summary, the current contribution depicts a facile one-step scenario for the economical and efficient solar-enabled SnSe@NF evaporation devices. More importantly, an in-depth analysis of the photothermal conversion mechanism underneath the layered materials depicts a fundamental paradigm for the design and application of photothermal devices based on them in the future.

  17. Nano-grain SnO{sub 2} electrodes for high conversion efficiency SnO{sub 2}-DSSC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Hoon; Shin, Yu-Ju [Department of Chemistry, the Catholic University of Korea, Bucheon, Gyeonggi-do 422-743 (Korea, Republic of); Park, Nam-Gyu [School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2011-01-15

    The nano-grain ZnO/SnO{sub 2} composite electrode was prepared by adding 5 w% of the 200-250 nm ZnO particles to the 5 nm SnO{sub 2} colloid in the presence of hydroxypropylcellulose (M.W.=80,000). The nano-grain SnO{sub 2} electrode was obtained by removing the ZnO particles from the composite electrode using acetic acid. The FE-SEM micrographs revealed that both electrodes consisted of interconnected nano-grains that were ca. 800 nm in size, and the large pores between the grains furnished the wide electrolyte diffusion channels within the electrodes. The photovoltaic properties of the nano-grain electrodes were investigated by measuring the I-V behaviors, the IPCE spectra and the ac-impedance spectra. The nano-grain electrodes exhibited remarkably improved conversion efficiencies of 3.96% for the composite and 2.98% for the SnO{sub 2} electrode compared to the value of 1.66% for the usual nano-particle SnO{sub 2} electrode. The improvement conversion efficiencies were mainly attributed to the formation of nano-grains, which facilitated the electron diffusion within the grains. The improved electrolyte diffusion as well as the light-scattering effects enhanced the photovoltaic performance of the SnO{sub 2} electrode. (author)

  18. Galactic warps and the shape of heavy halos

    International Nuclear Information System (INIS)

    Sparke, L.S.

    1984-01-01

    The outer disks of many spiral galaxies are bent away from the plane of the inner disk; the abundance of these warps suggests that they are long-lived. Isolated galactic disks have long been thought to have no discrete modes of vertical oscillation under their own gravity, and so to be incapable of sustaining persistent warps. However, the visible disk contains only a fraction of the galactic mass; an invisible galactic halo makes up the rest. This paper presents an investigation of vertical warping modes in self-gravitating disks, in the imposed potential due to an axisymmetric unseen massive halo. If the halo matter is distributed so that the free precession rate of a test particle decreases with radius near the edge of the disk, then the disk has a discrete mode of vibration; oblate halos which become rapidly more flattened at large radii, and uniformly prolate halos, satisfy this requirement. Otherwise, the disk has no discrete modes and so cannot maintain a long-lived warp, unless the edge is sharply truncated. Computed mode shapes which resemble the observed warps can be found for halo masses consistent with those inferred from galactic rotation curves

  19. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Energy Technology Data Exchange (ETDEWEB)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James [Department of Electrical Engineering, University of Delaware, 140 Evans Hall, Newark, Delaware 19716 (United States); Adam, Thomas [College of Nanoscale Science and Engineering, SUNY, Albany, New York 12203 (United States); Kim, Yihwan; Huang, Yi-Chiau [Applied Materials, Sunnyvale, California 94085 (United States); Reznicek, Alexander [IBM Research at Albany Nanotech, Albany, New York 12203 (United States)

    2016-03-07

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl{sub 4} precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  20. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    International Nuclear Information System (INIS)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander

    2016-01-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl 4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  1. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Science.gov (United States)

    Hart, John; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James

    2016-03-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  2. Electrodeposition of nanostructured Sn-Zn coatings

    Science.gov (United States)

    Salhi, Y.; Cherrouf, S.; Cherkaoui, M.; Abdelouahdi, K.

    2016-03-01

    The electrodeposition of Sn-Zn coating at ambient temperature was investigated. The bath consists of metal salts SnCl2·2H2O and ZnSO4·7H2O and sodium citrate (NaC6H5Na3O7·2H2O) as complexing agent. To prevent precipitation, the pH is fixed at 5. Reducing tin and zinc through Sncit2- and ZnHcit- complex respectively is confirmed by the presence of two cathodic peaks on the voltammogram. The kinetic of tin (II) reduction process is limited by the SnCit2- dissociation. The SEM and TEM observations have showed that the coating consists of a uniform Sn-Zn layer composed of fine grains on which tin aggregates grow up. XRD revealed peaks corresponding to the hexagonal Zn phase and the tetragonal β-Sn phase.

  3. Phase Equilibria of Sn-Co-Cu Ternary System

    Science.gov (United States)

    Chen, Yu-Kai; Hsu, Chia-Ming; Chen, Sinn-Wen; Chen, Chih-Ming; Huang, Yu-Chih

    2012-10-01

    Sn-Co-Cu ternary alloys are promising lead-free solders, and isothermal sections of Sn-Co-Cu phase equilibria are fundamentally important for the alloys' development and applications. Sn-Co-Cu ternary alloys were prepared and equilibrated at 523 K, 1073 K, and 1273 K (250 °C, 800 °C, and 1000 °C), and the equilibrium phases were experimentally determined. In addition to the terminal solid solutions and binary intermetallic compounds, a new ternary compound, Sn3Co2Cu8, was found. The solubilities of Cu in the α-CoSn3 and CoSn2 phases at 523 K (250 °C) are 4.2 and 1.6 at. pct, respectively, while the Cu solubility in the α-Co3Sn2 phase is as high as 20.0 at. pct. The Cu solubility increases with temperature and is around 30.0 at. pct in the β-Co3Sn2 at 1073 K (800 °C). The Co solubility in the η-Cu6Sn5 phase is also significant and is 15.5 at. pct at 523 K (250 °C).

  4. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    Science.gov (United States)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  5. Peculiarities of component interaction in {Gd, Er}-V-Sn Ternary systems at 870 K and crystal structure of RV6Sn6 stannides

    International Nuclear Information System (INIS)

    Romaka, L.; Stadnyk, Yu.; Romaka, V.V.; Demchenko, P.; Stadnyshyn, M.; Konyk, M.

    2011-01-01

    Highlights: → {Gd, Er}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV 6 Sn 6 . → Isostructural RV 6 Sn 6 compounds were also found with Y, Dy, Ho, Tm, and Lu. → The crystal structure of RV 6 Sn 6 compounds was determined by powder diffraction method. → Structural analysis showed that RV 6 Sn 6 compounds (R = Gd, Dy-Tm, Lu) are disordered; YV 6 Sn 6 is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV 6 Sn 6 (SmMn 6 Sn 6 -type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn 6 Sn 6 -type were also found with Dy, Ho, Tm, and Lu, while YV 6 Sn 6 compound crystallizes in HfFe 6 Ge 6 structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  6. Dominant effect of high anisotropy in β-Sn grain on electromigration-induced failure mechanism in Sn-3.0Ag-0.5Cu interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M.L., E-mail: huang@dlut.edu.cn; Zhao, J.F.; Zhang, Z.J.; Zhao, N.

    2016-09-05

    The effect of high diffusivity anisotropy in β-Sn grain on electromigration behavior of micro-bumps was clearly demonstrated using Sn-3.0Ag-0.5Cu solder interconnects with only two β-Sn grains. The orientation of β-Sn grain (θ is defined as the angle between the c-axis of β-Sn grain and the electron flow direction) is becoming the most crucial factor to dominate the different electromigration-induced failure modes: 1) the excessive dissolution of the cathode Cu, blocking at the grain boundary and massive precipitation of columnar Cu{sub 6}Sn{sub 5} intermetallic compounds (IMCs) in the small angle θ β-Sn grain occur when electrons flow from a small angle θ β-Sn grain to a large one; 2) void formation and propagation occur at the cathode IMC/solder interface and no Cu{sub 6}Sn{sub 5} IMCs precipitate within the large angle θ β-Sn grain when electrons flow in the opposite direction. The EM-induced failure mechanism of the two β-Sn grain solder interconnects is well explained in viewpoint of atomic diffusion flux in β-Sn. - Highlights: • High anisotropy in β-Sn dominates different electromigration-induced failure mode. • Excessive dissolution of cathode Cu occurs if electrons flow in forward direction. • Voids initiate and propagate at cathode if electrons flow in reverse direction. • Failure modes are well explained in viewpoint of atomic diffusion flux in β-Sn.

  7. Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio

    International Nuclear Information System (INIS)

    Jiang, L.; Colmenares, L.; Jusys, Z.; Sun, G.Q.; Behm, R.J.

    2007-01-01

    Novel carbon supported Pt/SnO x /C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO ad stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO x /C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO x /C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO x /C catalysts, acetic acid and acetaldehyde represent dominant products, CO 2 formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol -1 ), but are lower than on Pt/C (32 kJ mol -1 ). The somewhat better performance of the Pt/SnO x /C catalysts compared to alloyed PtSn x /C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies

  8. Stellar dynamics and galactic evolution

    International Nuclear Information System (INIS)

    Gilmore, G.; Kuijken, K.; Wyse, R.F.G.

    1989-01-01

    Solar neighbourhood observations have the unique capability of providing detailed study of the consequences of the early evolution of the Galaxy. Important examples of this capability include determination of the distribution of luminous and unseen mass in the Galaxy, and deduction of the rate of star formation and chemical evolution in the proto-Galaxy. We describe a new method to determine the distribution of mass in the Galactic disk. We reinvestigate determinations of the local volume mass density (the Oort limit) and show there to be serious internal inconsistencies in the available data. The most likely value for the local volume mass density, based on old stars and with kinematic models consistent with the age structure of the local disk is ∼ 0.1 solar mass pc -3 , though this value is still poorly determined. Thus, there is no significant evidence for any missing mass associated with the Galactic disk. We also reinvestigate observational data on the chemical abundances and kinematics of old stars in the Galaxy. The (Intermediate Population II) thick disk stars are most likely as old as the globular clusters, and kinematically distinct from the old disk. This favours models of thick disk origin involving a discrete disruptive event, such as the accretion of a satellite of the Galaxy early in the evolution of the Galactic disk. (author)

  9. Elusive active galactic nuclei

    Science.gov (United States)

    Maiolino, R.; Comastri, A.; Gilli, R.; Nagar, N. M.; Bianchi, S.; Böker, T.; Colbert, E.; Krabbe, A.; Marconi, A.; Matt, G.; Salvati, M.

    2003-10-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically `elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive active galactic nuclei (AGN) in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 1024 cm-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical narrow-line region. Elusive AGN may contribute significantly to the 30-keV bump of the X-ray background.

  10. The galactic population of white dwarfs

    International Nuclear Information System (INIS)

    Napiwotzki, Ralf

    2009-01-01

    The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial- mass- function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of Galactic structure. This model will be used to estimate the space densities of thin disc, thick disc and halo white dwarfs and their contribution to the baryonic mass budget of the Milky Way. One result of this investigation is that white dwarfs of the halo population contribute a large fraction of the Galactic white dwarf number count, but they are not responsible for the lion's share of stellar mass in the Milky Way. Another important result is the substantial contribution of the - often neglected - population of thick disc white dwarfs. Misclassification of thick disc white dwarfs is responsible for overestimates of the halo population in previous investigations.

  11. Galactic chemical evolution: perspectives and prospects

    International Nuclear Information System (INIS)

    Trimble, V.

    1987-01-01

    The first modern, quantitative models of galactic chemical evolution appeared exactly 20 years ago in the PhD dissertation of the late Beatrice M. Tinsley. Such models represent a synthesis of the behavior of the 10 11 or more stars that form over the 10 10 year age of a galaxy like their Milky Way and are vital both for understanding how and why galaxies have the luminosities, colors, and chemical compositions they see now and for interpreting observations of distant galaxies to answer cosmological questions about the size, age, density, inhomogeneities, and geometry of the universe. Since my last status report on the subject, some issues have become much clearer (the distinctness of nucleosynthesis in Type I, low mass, supernovae, from that in Type II's that make pulsars; the importance of galaxy mergers and interactions in triggering bursts of star formation), while others have remained puzzling (the sites of the r and p processes) or newly-surfaced (the nucleosynthetic contributions of pre-galactic massive objects; the nature and roll of dark matter in galaxies). The talk will touch briefly on the past, present, and future of galactic evolution studies

  12. Effect of Nb on the Growth Behavior of Co3Sn2 Phase in Undercooled Co-Sn Melts

    Science.gov (United States)

    Kang, Jilong; Xu, Wanqiang; Wei, Xiuxun; Ferry, Michael; Li, Jinfu

    2016-12-01

    The growth behavior of the primary β-Co3Sn2 phase in (Co67Sn33)100- x Nb x ( x = 0, 0.5, 0.8, 1.0) hypereutectic alloys at different melt undercoolings was investigated systematically. The growth pattern of the β-Co3Sn2 phase at low undercooling changes with the Nb content from fractal seaweed ( x = 0, 0.5) into dendrite ( x = 0.8) and then returns to fractal seaweed ( x = 1.0) as a response to the changes in interface energy anisotropy and interface kinetic anisotropy. As undercooling increases, the dendritic growth of the β-Co3Sn2 phase in (Co67Sn33)99.2Nb0.8 alloy gives way to fractal seaweed growth at an undercooling of 32 K (-241 °C). At larger undercooling, the fractal seaweed growth is further replaced by compact seaweed growth, which occurred in the other three alloys investigated. The growth velocity of the β-Co3Sn2 phase slightly increases at low and intermediate undercooling but clearly decreases at larger undercooling due to the Nb addition. The growth velocity sharply increases as the growth pattern of the Co3Sn2 phase transits from fractal seaweed into compact seaweed.

  13. High field-effect mobility at the (Sr,Ba)SnO{sub 3}/BaSnO{sub 3} interface

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Kohei, E-mail: kfujiwara@imr.tohoku.ac.jp; Nishihara, Kazuki; Shiogai, Junichi; Tsukazaki, Atsushi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-08-15

    A perovskite oxide, BaSnO{sub 3}, has been classified as one of transparent conducting materials with high electron mobility, and its application for field-effect transistors has been the focus of recent research. Here we report transistor operation in BaSnO{sub 3}-based heterostructures with atomically smooth surfaces, fabricated on SrTiO{sub 3} substrates by the (Sr,Ba)SnO{sub 3} buffer technique. Indeed, modulation of band profiles at the channel interfaces with the insertion of wide bandgap (Sr,Ba)SnO{sub 3} as a barrier layer results in a significant improvement of field-effect mobility, implying effective carrier doping at the regulated heterointerface. These results provide an important step towards realization of high-performance BaSnO{sub 3}-based field-effect transistors.

  14. Zr-Sn-Nb alloys. Preliminary studies

    International Nuclear Information System (INIS)

    Danon, C.A.; Arias, D.E.

    1993-01-01

    Studies of the Zr-Sn-Nb diagram have been started, focussing on the Zr-rich corner, near the composition of Zirlo commercial alloy, Zr-1Sn-1Nb, and with Fe and O contents usual in nuclear grade materials. Three alloys were melted, namely Zr-4Sn-2.4Nb (A), Zr-1Sn-3Nb (B) and Zr-2.1Sn-1Nb (C). α/β transformation temperatures were measured through the variation of electrical resistivity(p) vs temperature (T). Values of 560 deg C, 670 deg C and 750 deg C were measured for the α→α+β reaction and 980 deg C, 910 deg C and 1000 deg C for the α+β→β reaction, for the A, B and C alloys, respectively in that order. Some samples were submitted to heat treatments (62 and 216 hours at 825 deg C, 120 hours at 875 deg C). Optical and scanning electronic microscopy of those samples confirmed our resistivity results. (Author)

  15. Changes of electronic structure of SnTe due to high concentration of Sn vacancies

    International Nuclear Information System (INIS)

    Masek, J.; Nuzhnyj, D.N.

    1997-01-01

    Non-stoichiometric Sn 1-y Te is a strongly degenerated n-type semiconductor. This is important for understanding unusual features of magnetic behaviour of Sn 1-x Gd x Te where the relative positions of the Fermi energy and the atomic d-level of Gd govern the exchange coupling.The influence of the Sn vacancies on the band structure cannot be neglect if their concentration reaches a few atomic percent. We address this problem by using a tight-binding coherent potential approach and show that although the character of the bands remains unchanged, they are modified so that ε d can come out above the heavy-hole band. (author)

  16. Simulated Galactic methanol maser distribution to constrain Milky Way parameters

    Science.gov (United States)

    Quiroga-Nuñez, L. H.; van Langevelde, H. J.; Reid, M. J.; Green, J. A.

    2017-08-01

    Context. Using trigonometric parallaxes and proper motions of masers associated with massive young stars, the Bar and Spiral Structure Legacy (BeSSeL) survey has reported the most accurate values of the Galactic parameters so far. The determination of these parameters with high accuracy has a widespread impact on Galactic and extragalactic measurements. Aims: This research is aimed at establishing the confidence with which such parameters can be determined. This is relevant for the data published in the context of the BeSSeL survey collaboration, but also for future observations, in particular from the southern hemisphere. In addition, some astrophysical properties of the masers can be constrained, notably the luminosity function. Methods: We have simulated the population of maser-bearing young stars associated with Galactic spiral structure, generating several samples and comparing them with the observed samples used in the BeSSeL survey. Consequently, we checked the determination of Galactic parameters for observational biases introduced by the sample selection. Results: Galactic parameters obtained by the BeSSeL survey do not seem to be biased by the sample selection used. In fact, the published error estimates appear to be conservative for most of the parameters. We show that future BeSSeL data and future observations with southern arrays will improve the Galactic parameters estimates and smoothly reduce their mutual correlation. Moreover, by modeling future parallax data with larger distance values and, thus, greater relative uncertainties for a larger numbers of sources, we found that parallax-distance biasing is an important issue. Hence, using fractional parallax uncertainty in the weighting of the motion data is imperative. Finally, the luminosity function for 6.7 GHz methanol masers was determined, allowing us to estimate the number of Galactic methanol masers.

  17. The Galactic 511 keV line: analysis and interpretation of Integral observations

    International Nuclear Information System (INIS)

    Lonjou, V.

    2005-09-01

    Ever since the discovery of the 511 keV annihilation line emission from the galactic center region in the late seventies, the origin of galactic positrons has been the topic of a vivid scientific debate. It is also one of the prime scientific objectives of the imaging spectrometer SPI on board ESA's INTEGRAL observatory. In this thesis first a description of the most important SPI sub-system is given - the detector plane. Procedures for detector energy calibration and detector degradation analysis are developed. The determination of instrumental background models, a crucial aspect of data analysis, is elaborated. These background models are then applied to deriving sky maps and spectra of unprecedented quality of the Galactic positron annihilation radiation. The emission is centered on the galactic center with a spatial resolution of 8 degrees (FWHM), a second spatial component appears clearly: the galactic disc. The ray energy has been measured with unprecedented accuracy: 511.0 ± 0.03 keV for a full width at half maximum (FWHM) of 2.07 ± 0.1 keV. The total galactic flux ranges from 1.09 to 2.43 10 -3 ph.cm -2 .s -1 including uncertainties on spatial distribution. Finally, the implications of these observations for the production of positrons by various Galactic populations are discussed

  18. Diffusion Driven Combustion Waves in Porous Media

    Science.gov (United States)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  19. Noise Budget and Interstellar Medium Mitigation Advances in the NANOGrav Pulsar Timing Array

    Science.gov (United States)

    Dolch, T.; NANOGrav Collaboration; Chatterjee, S.; Cordes, J. M.; Demorest, P. B.; Ellis, J. A.; Jones, M. L.; Lam, M. T.; Lazio, T. J. W.; Levin, L.; McLaughlin, M. A.; Palliyaguru, N. T.; Stinebring, D. R.

    2018-02-01

    Gravitational wave (GW) detection with pulsar timing arrays (PTAs) requires accurate noise characterization. The noise of our Galactic-scale GW detector has been systematically evaluated by the Noise Budget and Interstellar Medium Mitigation working groups within the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. Intrinsically, individual radio millisecond pulsars (MSPs) used by NANOGrav can have some degree of achromatic red spin noise, as well as white noise due to pulse phase jitter. Along any given line-of-sight, the ionized interstellar medium contributes chromatic noise through dispersion measure (DM) variations, interstellar scintillation, and scattering. These effects contain both red and white components. In the future, with wideband receivers, the effects of frequency-dependent DM will become important. Having anticipated and measured these diverse sources of detector noise, the NANOGrav PTA remains well-poised to detect low-frequency GWs.

  20. Galactic cosmic-ray intensity to a heliocentric distance of 18 AU

    International Nuclear Information System (INIS)

    Van Allen, J.A.

    1980-01-01

    An updated report is given of observations of galactic cosmic-ray intensity to heliocentric radial distance of 8.6 and 18.4 AU with Pioneer 11 and Pioneer 10, respectively. Solar activity via the magnetic structure of the interplanetary medium continues to modulate the intensity out to the greatest distance reached thus far. During the 7 year period 1972 March to 1979 March, the galactic cosmic-ray intensity E/sub p/>80 MeV as measured by detectors on Pioneers 10 and 11 exhibited aperiodic temporal variations by about a factor of 2 and on a time scale of the order of a year and quasi-persistent cyclic variations of 26 day period and amplitude a few percent. The former are attributed to overall changes in the magnetic field structure of the heliosphere, the latter to fast-slow solar wind streams in and near the ecliptic plane and not to toward-away magnetic field sectors. The apparent heliographic latitude dependence of intensity is 0( +- 1.5)% per 10 0 in the latitude range +7 0 .7 to +15. 0 8, though it is possible that radially dependent temporal variations over the large difference in the heliocentric radial distances of the two spacecraft may make this result of limited significance. For protons of energy E/sub p/>80 MeV, there is a fairly consistent heliocentric radial gradient of +2.1( +- 0.3)% per AU integral intensity until 1978 April--May, at which time a substantial disruption of the distribution of cosmic rays in the heliosphere occurred