WorldWideScience

Sample records for medium channel couette

  1. Surface roughness effects on turbulent Couette flow

    Science.gov (United States)

    Lee, Young Mo; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  2. Heat transfer in a Couette flow with part of the space between the plates filled with porous medium

    International Nuclear Information System (INIS)

    Carrocci, L.R.; Liu, C.Y.; Ismail, K.A.R.

    1982-01-01

    The effect of various parameters in the temperature profile is shown under boundary conditions for the Couette flow between infinite plates with part of the space filled with porous medium. The parameters observed are: pressure gradient, permeability, the non-dimensional product PE (Prandtl number x Eckert number), the relation between the thermal conductibility coefficient between porous region and pure fluid, and finally the non-dimensional product PR (Prandtl number x Reynolds number). (E.G.) [pt

  3. Characterisation of minimal-span plane Couette turbulence with pressure gradients

    Science.gov (United States)

    Sekimoto, Atsushi; Atkinson, Callum; Soria, Julio

    2018-04-01

    The turbulence statistics and dynamics in the spanwise-minimal plane Couette flow with pressure gradients, so-called, Couette-Poiseuille (C-P) flow, are investigated using direct numerical simulation. The large-scale motion is limited in the spanwise box dimension as in the minimal-span channel turbulence of Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704). The effect of the top wall, where normal pressure-driven Poiseuille flow is realised, is distinguished from the events on the bottom wall, where the pressure gradient results in mild or almost-zero wall-shear stress. A proper scaling of turbulence statistics in minimal-span C-P flows is presented. Also the ‘shear-less’ wall-bounded turbulence, where the Corrsin shear parameter is very weak compared to normal wall-bounded turbulence, represents local separation, which is also observed as spanwise streaks of reversed flow in full-size plane C-P turbulence. The local separation is a multi-scale event, which grows up to the order of the channel height even in the minimal-span geometry.

  4. Numerical Study on Couette Flow in Nanostructured Channel using Molecular-continuum Hybrid Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjin; Jeong, Myunggeun; Ha, Man Yeong [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-06-15

    A molecular-continuum hybrid method was developed to simulate microscale and nanoscale fluids where continuum fluidic cannot be used to predict Couette flow. Molecular dynamics simulation is used near the solid surface where the flow cannot be predicted by continuum fluidic, and Navier-Stokes equations are used in the other regions. Numerical simulation of Couette flow was performed using the hybrid method to investigate the effect of solid-liquid interaction and surface roughness in a nanochannel. It was found that the solid-liquid interaction and surface roughness influence the boundary condition. When the surface energy is low, slippage occurs near the solid surface, and the magnitude of slippage decreases with increase in surface energy. When the surface energy is high, a locking boundary condition is formed. The roughness disturbs slippage near the solid surface and promotes the locking boundary condition.

  5. A spherical Taylor-Couette dynamo

    Science.gov (United States)

    Marcotte, Florence; Gissinger, Christophe

    2016-04-01

    We present a new scenario for magnetic field amplification in the planetary interiors where an electrically conducting fluid is confined in a differentially rotating, spherical shell (spherical Couette flow) with thin aspect-ratio. When the angular momentum sufficiently decreases outwards, a primary hydrodynamic instability is widely known to develop in the equatorial region, characterized by pairs of counter-rotating, axisymmetric toroidal vortices (Taylor vortices) similar to those observed in cylindrical Couette flow. We characterize the subcritical dynamo bifurcation due to this spherical Taylor-Couette flow and study its evolution as the flow successively breaks into wavy and turbulent Taylor vortices for increasing Reynolds number. We show that the critical magnetic Reynolds number seems to reach a constant value as the Reynolds number is gradually increased. The role of global rotation on the dynamo threshold and the implications for planetary interiors are finally discussed.

  6. Lattice Boltzmann simulation of shear-induced particle migration in plane Couette-Poiseuille flow: Local ordering of suspension

    Science.gov (United States)

    Chun, Byoungjin; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun

    2017-12-01

    The shear-induced migration of concentrated non-Brownian monodisperse suspensions in combined plane Couette-Poiseuille (C-P) flows is studied using a lattice Boltzmann simulation. The simulations are mainly performed for a particle volume fraction of ϕbulk = 0.4 and H/a = 44.3, 23.3, where H and a denote the channel height and radius of suspended particles, respectively. The simulation method is validated in two simple flows, plane Poiseuille and plane Couette flows. In the Poiseuille flow, particles migrate to the mid-plane of the channel where the local concentration is close to the limit of random-close-packing, and a random structure is also observed at the plane. In the Couette flow, the particle distribution remains in the initial uniform distribution. In the combined C-P flows, the behaviors of migration are categorized into three groups, namely, Poiseuille-dominant, Couette-dominant, and intermediate regimes, based on the value of a characteristic force, G, where G denotes the relative magnitude of the body force (P) against the wall-driving force (C). With respect to the Poiseuille-dominant regime, the location of the maximum concentration is shifted from the mid-plane to the lower wall moving in the same direction as the external body force, when G decreases. With respect to the Couette-dominant regime, the behavior is similar to that of a simple shear flow with the exception that a slightly higher concentration of particles is observed near the lower wall. However, with respect to the intermediate value of G, several layers of highly ordered particles are unexpectedly observed near the lower wall where the plane of maximum concentration is located. The locally ordered structure is mainly due to the lateral migration of particles and wall confinement. The suspended particles migrate toward a vanishingly small shear rate at the wall, and they are consequently layered into highly ordered two-dimensional structures at the high local volume fraction.

  7. Large-scale structures in turbulent Couette flow

    Science.gov (United States)

    Kim, Jung Hoon; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulation of fully developed turbulent Couette flow is performed with a large computational domain in the streamwise and spanwise directions (40 πh and 6 πh) to investigate streamwise-scale growth mechanism of the streamwise velocity fluctuating structures in the core region, where h is the channel half height. It is shown that long streamwise-scale structures (> 3 h) are highly energetic and they contribute to more than 80% of the turbulent kinetic energy and Reynolds shear stress, compared to previous studies in canonical Poiseuille flows. Instantaneous and statistical analysis show that negative-u' structures on the bottom wall in the Couette flow continuously grow in the streamwise direction due to mean shear, and they penetrate to the opposite moving wall. The geometric center of the log layer is observed in the centerline with a dominant outer peak in streamwise spectrum, and the maximum streamwise extent for structure is found in the centerline, similar to previous observation in turbulent Poiseuille flows at high Reynolds number. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure in the centerline. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  8. Letter: The link between the Reynolds shear stress and the large structures of turbulent Couette-Poiseuille flow

    Science.gov (United States)

    Gandía-Barberá, Sergio; Hoyas, Sergio; Oberlack, Martin; Kraheberger, Stefanie

    2018-04-01

    The length and width of the long and wide structures appearing in turbulent Couette flows are studied by means of a new dataset of direct numerical simulation covering a stepped transition from pure Couette flow to pure Poiseuille one, at Reτ ≈ 130, based on the stationary wall. The existence of these structures is linked to the averaged Reynolds stress, u v ¯ : as soon as in any part of the channel u v ¯ changes its sign, the structures disappear. The length and width of the rolls are found to be, approximately, 50h and 2.5h, respectively. For this Reynolds number, simulations with a domain shorter than 100h cannot properly describe the behaviour of the longest structures of the flow.

  9. PREFACE: The 15th International Couette-Taylor Worskhop

    Science.gov (United States)

    Mutabazi, Innocent; Crumeyrolle, Olivier

    2008-07-01

    The 15th International Couette-Taylor Worskhop (ICTW15) was held in Le Havre, France from 9-12 July 2007. This regular international conference started in 1979 in Leeds, UK when the research interest in simple models of fluid flows was revitalized by systematic investigation of Rayleigh-Bénard convection and the Couette-Taylor flow. These two flow systems are good prototypes for the study of the transition to chaos and turbulence in closed flows. The workshop themes have been expanded from the original Couette-Taylor flow to include other centrifugal instabilities (Dean, Görtler, Taylor-Dean), spherical Couette flows, thermal convection instabilities, MHD, nonlinear dynamics and chaos, transition to turbulence, development of numerical and experimental techniques. The impressive longevity of the ICTW is due to the close interaction and fertile exchanges between international research groups from different disciplines: Physics and Astrophysics, Applied Mathematics, Mechanical Engineering, Chemical Engineering. The present workshop was attended by 100 participants, the program included over 83 contributions with 4 plenary lectures, 68 oral communications and 17 posters. The topics include, besides the classical Couette-Taylor flows, the centrifugal flows with longitudinal vortices, the shear flows, the thermal convection in curved geometries, the spherical Couette-Taylor flow, the geophysical flows, the magneto-hydrodynamic effects including the dynamo effect, the complex flows (viscoelasticity, immiscible fluids, bubbles and migration). Selected papers have been processed through the peer review system and are published in this issue of the Journal of Physics: Conference Series. The Workshop has been sponsored by Le Havre University, the Region Council of Haute-Normandie, Le Havre City Council, CNRS (ST2I, GdR-DYCOEC), and the European Space Agency through GEOFLOW program. The French Ministry of Defense (DGA), the Ministry of Foreign Affairs, the Ministry of

  10. Spontaneous electrorheological effect in nematic liquid crystals under Taylor-Couette flow configuration

    Science.gov (United States)

    Dhar, Jayabrata; Chakraborty, Suman

    2017-09-01

    Electrorheological (ER) characteristics of Nematic Liquid Crystals (NLCs) have been a topic of immense interest in the field of soft matter physics owing to its rheological modulation capabilities. Here we explore the augmentation in rheological characteristics of the nematic fluid confined within the annular region of the concentric cylindrical space with an Electrical Double Layer (EDL) induced at the fluid-substrate interface due to certain physico-chemical interactions. Using a Taylor-Couette flow configuration associated with an EDL induced at the inner cylinder wall, we show that a spontaneous electrorheological effect is generated owing to the intrinsic director anisotropy and structural order of complex nematic fluids. We seek to find the enhancement in torque transfer capability due to the inherent electrorheological nature of the nematic medium, apart from exploiting the innate nature of such homogeneous media to remain free of coagulation, a fact which makes it an excellent candidate for the applications in microfluidic environment. Our analysis reveals that with stronger induced charge density within the EDL, the apparent viscosity enhances, which, in turn, augments torque transfer across the concentric cylinder. The velocity profile tends to flatten in comparison to the classical circular Couette flow in annular geometry as one increases the surface charge density. We further observe a more pronounced ER effect for the nematic medium having larger electrical permittivity anisotropy. Besides the torque transfer qualifications, we also explore the distinct scenarios, wherein the same NLC medium exhibits shear thinning and shear thickening characteristics. The present configuration of the efficient torque transfer mechanism may be proficiently downscaled to micro-level and is relevant in the fabrication of micro-clutch and micro-dampers.

  11. Circulation in a Short Cylindrical Couette System

    Energy Technology Data Exchange (ETDEWEB)

    Akira Kageyama; Hantao Ji; Jeremy Goodman

    2003-07-08

    In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we explore Couette flows having height comparable to the gap between cylinders, centrifugally stable rotation, and high Reynolds number. Experiments in water are compared with numerical simulations. The flow is very different from that of an ideal, infinitely long Couette system. Simulations show that endcaps co-rotating with the outer cylinder drive a strong poloidal circulation that redistributes angular momentum. Predicted toroidal flow profiles agree well with experimental measurements. Spin-down times scale with Reynolds number as expected for laminar Ekman circulation; extrapolation from two-dimensional simulations at Re less than or equal to 3200 agrees remarkably well with experiment at Re approximately equal to 106. This suggests that turbulence does not dominate the effective viscosity. Further detailed numerical studies reveal a strong radially inward flow near both endcaps. After turning vertically along the inner cylinder, these flows converge at the midplane and depart the boundary in a radial jet. To minimize this circulation in the MRI experiment, endcaps consisting of multiple, differentially rotating rings are proposed. Simulations predict that an adequate approximation to the ideal Couette profile can be obtained with a few rings.

  12. Circulation in a Short Cylindrical Couette System

    International Nuclear Information System (INIS)

    Akira Kageyama; Hantao Ji; Jeremy Goodman

    2003-01-01

    In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we explore Couette flows having height comparable to the gap between cylinders, centrifugally stable rotation, and high Reynolds number. Experiments in water are compared with numerical simulations. The flow is very different from that of an ideal, infinitely long Couette system. Simulations show that endcaps co-rotating with the outer cylinder drive a strong poloidal circulation that redistributes angular momentum. Predicted toroidal flow profiles agree well with experimental measurements. Spin-down times scale with Reynolds number as expected for laminar Ekman circulation; extrapolation from two-dimensional simulations at Re less than or equal to 3200 agrees remarkably well with experiment at Re approximately equal to 106. This suggests that turbulence does not dominate the effective viscosity. Further detailed numerical studies reveal a strong radially inward flow near both endcaps. After turning vertically along the inner cylinder, these flows converge at the midplane and depart the boundary in a radial jet. To minimize this circulation in the MRI experiment, endcaps consisting of multiple, differentially rotating rings are proposed. Simulations predict that an adequate approximation to the ideal Couette profile can be obtained with a few rings

  13. Some Features of the Plane Couette Flow

    National Research Council Canada - National Science Library

    Skovorodko, Petr

    2000-01-01

    In the previous paper 1 it was found, in particular, that in the transition regime of the plane Couette flow the values of total energy flux and shear stress may exceed the corresponding free molecular values...

  14. Homogeneous-heterogeneous reactions in curved channel with porous medium

    Science.gov (United States)

    Hayat, T.; Ayub, Sadia; Alsaedi, A.

    2018-06-01

    Purpose of the present investigation is to examine the peristaltic flow through porous medium in a curved conduit. Problem is modeled for incompressible electrically conducting Ellis fluid. Influence of porous medium is tackled via modified Darcy's law. The considered model utilizes homogeneous-heterogeneous reactions with equal diffusivities for reactant and autocatalysis. Constitutive equations are formulated in the presence of viscous dissipation. Channel walls are compliant in nature. Governing equations are modeled and simplified under the assumptions of small Reynolds number and large wavelength. Graphical results for velocity, temperature, heat transfer coefficient and homogeneous-heterogeneous reaction parameters are examined for the emerging parameters entering into the problem. Results reveal an activation in both homogenous-heterogenous reaction effect and heat transfer rate with increasing curvature of the channel.

  15. Instabilities with polyacrylamide solution in small and large aspect ratios Taylor-Couette systems

    International Nuclear Information System (INIS)

    Smieszek, M; Egbers, C; Crumeyrolle, O; Mutabazi, I

    2008-01-01

    We have investigated the stability of viscoelastic polyacrylamide solution in Taylor-Couette system with different aspect ratios. The first instability modes observed in a Taylor-Couette system with Γ = 10 were TVF and WVF, as for Newtonian fluid. At higher Taylor numbers moving vortices occur, a wavy mode with non-stationary vortex size. In the Taylor-Couette system with Γ = 45.9 we note a coexistence of various instability modes. In addition to TVF, counterpropagating waves developed at the transition from the base state flow. At higher Taylor number values Taylor vortices of different sizes occurred. Reduced amplitude Wavy vortex flow has also been observed.

  16. Surface roughness effects on heat transfer in Couette flow

    International Nuclear Information System (INIS)

    Elia, G.G.

    1981-01-01

    A cell theory for viscous flow with rough surfaces is applied to two basic illustrative heat transfer problems which occur in Couette flow. Couette flow between one adiabatic surface and one isothermal surface exhibits roughness effects on the adiabatic wall temperature. Two types of rough cell adiabatic surfaces are studied: (1) perfectly insulating (the temperature gradient vanishes at the boundary of each cell); (2) average insulating (each cell may gain or lose heat but the total heat flow at the wall is zero). The results for the roughness on a surface in motion are postulated to occur because of fluid entrainment in the asperities on the moving surface. The symmetry of the roughness effects on thermal-viscous dissipation is discussed in detail. Explicit effects of the roughness on each surface, including combinations of roughness values, are presented to enable the case where the two surfaces may be from different materials to be studied. The fluid bulk temperature rise is also calculated for Couette flow with two ideal adiabatic surfaces. The effect of roughness on thermal-viscous dissipation concurs with the viscous hydrodynamic effect. The results are illustrated by an application to lubrication. (Auth.)

  17. Enhanced mixing in two-phase Taylor-Couette flows

    International Nuclear Information System (INIS)

    Dherbecourt, Diane

    2015-01-01

    In the scope of the nuclear fuel reprocessing, Taylor-Couette flows between two concentric cylinders (the inner one in rotation and the outer one at rest) are used at laboratory scale to study the performances of new liquid/liquid extraction processes. Separation performances are strongly related to the mixing efficiency, the quantification of the latter is therefore of prime importance. A previous Ph.D. work has related the mixing properties to the hydrodynamics parameters in single-phase flow, using both experimental and numerical investigations. The Reynolds number, flow state and vortices height (axial wavelength) impacts were thus highlighted. This Ph.D. work extends the previous study to two-phase configurations. For experimental simplification, and to avoid droplets coalescence or breakage, spherical solid particles of PMMA from 800 μm to 1500 μm diameter are used to model rigid droplets. These beads are suspended in an aqueous solution of dimethyl sulfoxide (DMSO) and potassium Thiocyanate (KSCN). The experimental setup uses coupled Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) to access simultaneously the hydrodynamic and the mixing properties. Although the two phases are carefully chosen to match in density and refractive index, these precautions are not sufficient to ensure a good measurement quality, and a second PLIF channel is added to increase the precision of the mixing quantification. The classical PLIF channel monitors the evolution of Rhodamine WT concentration, while the additional PLIF channel is used to map a Fluorescein dye, which is homogeneously concentrated inside the gap. This way, a dynamic mask of the bead positions can be created and used to correct the Rhodamine WT raw images. Thanks to this experimental setup, a parametric study of the particles size and concentration is achieved. A double effect of the dispersed phase is evidenced. On one hand, the particles affect the flow hydrodynamic properties

  18. computational study of Couette flow between parallel plates for steady and unsteady cases

    International Nuclear Information System (INIS)

    Rihan, Y.

    2008-01-01

    Couette flow between parallel plates is a classical problem that has important applications in various industrial processing. In this investigation an analytical solution was obtained to predict the steady and unsteady Couette flow between parallel plates. One of the plates was stationary and the other plate moved with constant velocity. The governing partial differential equations were solved numerically using Crank-Nicolson implicit method to represent the flow behavior of the fluid

  19. The spectral link in mean-velocity profile of turbulent plane-Couette flows

    Science.gov (United States)

    Zhang, Dongrong; Gioia, Gustavo; Chakraborty, Pinaki

    2015-03-01

    In turbulent pipe and plane-Couette flows, the mean-velocity profile (MVP) represents the distribution of local mean (i.e., time-averaged) velocity on the cross section of a flow. The spectral theory of MVP in pipe flows (Gioia et al., PRL, 2010) furnishes a long-surmised link between the MVP and turbulent energy spectrum. This missing spectral link enables new physical insights into an imperfectly understood phenomenon (the MVP) by building on the well-known structure of the energy spectrum. Here we extend this theory to plane-Couette flows. Similar to pipe flows, our analysis allows us to express the MVP as a functional of the spectrum, and to relate each feature of the MVP relates to a specific spectral range: the buffer layer to the dissipative range, the log layer to the inertial range, and the wake (or the lack thereof) to the energetic range. We contrast pipe and plane-Couette flows in light of the theory.

  20. Diffusion in Poiseuille and Couette flows of binary mixtures of incompressible newtonian fluids

    International Nuclear Information System (INIS)

    Caetano Filho, E.; Qassim, R.Y.

    1981-07-01

    Using the continuum theory of binary mixtures of incompressible Newtonian fluids, Poiseuille and Couette flows are studied with a view to determining whether diffusion occurs in such flows. It is shown that diffusion is absent in the Couette case. However, in Poiseuille flow there are significant differences between the velocities of the species comprising the mixture. This result is in broad agreement with that of Mills for similar mixtures of nonuniform composition. (Author) [pt

  1. Steady hydromagnetic Couette flow in a rotating system with ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... Couette flow of class-II of a viscous incompressible electrically conducting fluid in a rotating system ... Heat transfer characteristics of the flow are considered taking viscous and ...

  2. A Molecular Dynamics Simulation of the Turbulent Couette Minimal Flow Unit

    Science.gov (United States)

    Smith, Edward

    2016-11-01

    What happens to turbulent motions below the Kolmogorov length scale? In order to explore this question, a 300 million molecule Molecular Dynamics (MD) simulation is presented for the minimal Couette channel in which turbulence can be sustained. The regeneration cycle and turbulent statistics show excellent agreement to continuum based computational fluid dynamics (CFD) at Re=400. As MD requires only Newton's laws and a form of inter-molecular potential, it captures a much greater range of phenomena without requiring the assumptions of Newton's law of viscosity, thermodynamic equilibrium, fluid isotropy or the limitation of grid resolution. The fundamental nature of MD means it is uniquely placed to explore the nature of turbulent transport. A number of unique insights from MD are presented, including energy budgets, sub-grid turbulent energy spectra, probability density functions, Lagrangian statistics and fluid wall interactions. EPSRC Post Doctoral Prize Fellowship.

  3. Frictional Torque Reduction in Taylor-Couette Flows with Riblet-Textured Rotors

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth

    2017-11-01

    Inspired by the riblets on the denticles of fast swimming shark species, periodic surface microtextures of different shapes have been studied under laminar and turbulent flow conditions to understand their drag reduction mechanism and to offer guides for designing optimized low-friction bio-inspired surfaces. Various reports over the past four decades have suggested that riblet surfaces can reduce the frictional drag force in high Reynolds number laminar and turbulent flow regimes. Here, we investigate the effect of streamwise riblets on torque reduction in steady flow between concentric cylinders, known as Taylor-Couette Flow. Using 3D printed riblet-textured rotors and a custom-built Taylor-Couette cell which can be mounted on a rheometer we measure the torque on the inner rotor as a function of three different dimensionless parameters; the Reynolds number of the flow, the sharpness of the riblets, and the size of the riblets with respect to the scale of the Taylor-Couette cell. Our experimental results in the laminar viscous flow regime show a reduction in torque up to 10% over a wide range of Reynolds numbers, that is a non-monotonic function of the aspect ratio and independent of Re. However, after transition to the Taylor vortex regime, the modification in torque becomes a function of the Reynolds number, while remaining a non-monotonic function of the aspect ratio. Using finite volume modelling of the geometry we discuss the changes in the Taylor-Couette flow in presence of the riblets compared to the case of smooth rotors and the resulting torque reduction as a function of the parameter space defined above.

  4. Time-Dependent Natural Convection Couette Flow of Heat ...

    African Journals Online (AJOL)

    Time-Dependent Natural Convection Couette Flow of Heat Generating/Absorbing Fluid between Vertical Parallel Plates Filled With Porous Material. ... The numerical simulation conducted for some saturated liquids reveled that at t ≥ Pr the steady and unsteady state velocities (as well as the temperature of the fluid) ...

  5. Quantitative investigation of the transition process in Taylor-Couette flow

    International Nuclear Information System (INIS)

    Tu, Xin Cheng; Kim, Hyoung Bum Kim; Liu, Dong

    2013-01-01

    The transition process from circular Couette flow to Taylor vortex flow regime was experimentally investigated by measuring the instantaneous velocity vector fields at the annular gap flow region between two concentric cylinders. The proper orthogonal decomposition method, vorticity calculation, and frequency analysis were applied in order to analyze the instantaneous velocity fields to identify the flow characteristics during the transition process. From the results, the kinetic energy and corresponding reconstructed velocity fields were able to detect the onset of the transition process and the alternation of the flow structure. The intermittency and oscillation of the vortex flows during the transition process were also revealed from the analysis of the instantaneous velocity fields. The results can be a measure of identifying the critical Reynolds number of the Taylor-Couette flow from a velocity measurement method.

  6. Tuning strain of granular matter by basal assisted Couette shear

    Directory of Open Access Journals (Sweden)

    Zhao Yiqiu

    2017-01-01

    Full Text Available We present a novel Couette shear apparatus capable of generating programmable azimuthal strain inside 2D granular matter under Couette shear. The apparatus consists of 21 independently movable concentric rings and two boundary wheels with frictional racks. This makes it possible to quasistatically shear the granular matter not only from the boundaries but also from the bottom. We show that, by specifying the collective motion of wheels and rings, the apparatus successfully generates the desired strain profile inside the sample granular system, which is composed of about 2000 photoelastic disks. The motion and stress of each particle is captured by an imaging system utilizing reflective photoelasticimetry. This apparatus provides a novel method to investigate shear jamming properties of granular matter with different interior strain profiles and unlimited strain amplitudes.

  7. Lattice Boltzmann Simulation of Collision between 2D Circular Particles Suspension in Couette Flow

    Directory of Open Access Journals (Sweden)

    Li-Zhong Huang

    2013-01-01

    Full Text Available Collision between 2D circular particles suspension in Couette flow is simulated by using multiple-relaxation-time based lattice Boltzmann and direct forcing/fictitious domain method in this paper. The patterns of particle collisions are simulated and analyzed in detail by changing the velocity of top and bottom walls in the Couette flow. It can be seen from the simulation results that, while the velocity is large enough, the number of collisions between particles will change little as this velocity varies.

  8. Traveling waves in a magnetized Taylor-Couette flow

    International Nuclear Information System (INIS)

    Liu Wei; Ji Hantao; Goodman, Jeremy

    2007-01-01

    We investigate numerically a traveling wave pattern observed in experimental magnetized Taylor-Couette flow at low magnetic Reynolds number. By accurately modeling viscous and magnetic boundaries in all directions, we reproduce the experimentally measured wave patterns and their amplitudes. Contrary to previous claims, the waves are shown to be transiently amplified disturbances launched by viscous boundary layers, rather than globally unstable magnetorotational modes

  9. On the CFD Analysis of a Stratified Taylor-Couette System Dedicated to the Fabrication of Nanosensors

    Directory of Open Access Journals (Sweden)

    Duccio Griffini

    2017-02-01

    Full Text Available Since the pioneering work of Taylor, the analysis of flow regimes of incompressible, viscous fluids contained in circular Couette systems with independently rotating cylinders have charmed many researchers. The characteristics of such kind of flows have been considered for some industrial applications. Recently, Taylor-Couette flows found an innovative application in the production of optical fiber nanotips, to be used in molecular biology and medical diagnostic fields. Starting from the activity of Barucci et al., the present work concerns the numerical analysis of a Taylor-Couette system composed by two coaxial counter-rotating cylinders with low aspect ratio and radius ratio, filled with three stratified fluids. An accurate analysis of the flow regimes is performed, considering both the variation of inner and outer rotational speed and the reduction of fiber radius due to etching process. The large variety of individuated flow configurations provides useful information about the possible use of the Taylor-Couette system in a wide range of engineering applications. For the present case, the final objective is to provide accurate information to manufacturers of fiber nanotips about the expected flow regimes, thus helping them in the setup of the control process that will be used to generate high-quality products.

  10. Parametric modulation in the Taylor-Couette ferrofluid flow

    International Nuclear Information System (INIS)

    Singh, Jitender; Bajaj, Renu

    2008-01-01

    A parametric instability of the Taylor-Couette ferrofluid flow excited by a periodically oscillating magnetic field, has been investigated numerically. The Floquet analysis has been employed. It has been found that the modulation of the applied magnetic field affects the stability of the basic flow. The instability response has been found to be synchronous with respect to the frequency of periodically oscillating magnetic field.

  11. Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Tsang, C.F.

    1990-01-01

    Recent interest in the evaluation of contaminant transport in bedrock aquifers and in the performance assessment of geologic nuclear waste repositories has motivated many studies of fluid flow and tracer transport in fractured rocks. Until recently, numerical modeling of fluid flow in the fractured medium commonly makes the assumption that each fracture may be idealized as a pair of parallel plates separated by a constant distance which represents the aperture of the fracture. More recent theoretical work has taken into account that the aperture in a real rock fracture in fact takes on a range of values. Evidence that flow in fractures tends to coalesce in preferred paths has been found in the field. Current studies of flow channeling in a fracture as a result of the variable apertures may also be applicable to flow and transport in a strongly heterogenous porous medium. This report includes the methodology used to study the flow channelling and tracer transport in a single fracture consisting of variable apertures. Relevant parameters that control flow channeling are then identified and the relationship of results to the general problem of flow in a heterogenous porous medium are discussed

  12. Life stages of wall-bounded decay of Taylor-Couette turbulence

    NARCIS (Netherlands)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Arza, Vamsi Spandan; Verzicco, Roberto; Lohse, Detlef

    2017-01-01

    The decay of Taylor-Couette turbulence, i.e., the flow between two coaxial and independently rotating cylinders, is numerically studied by instantaneously stopping the forcing from an initially statistically stationary flow field at a Reynolds number of Re=3.5×104. The effect of wall friction is

  13. Influence of viscous dissipation and radiation on MHD Couette flow ...

    African Journals Online (AJOL)

    The overall analysis of the study of these parameters in various degrees show an increase in the velocity profile of the fluid, while radiation parameter decreases the temperature profile; viscous dissipation and Reynolds number increase the temperature profile of the fluid. Key word: Couette flow, viscous dissipation, ...

  14. ACTIVITY THEORY APPLIED AT CHANNEL EXPANSIONS IN SMALL AND MEDIUM ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Siw Lundqvist

    2017-06-01

    Full Text Available Today’s commonly carried out channel expansions of commerce could be both costly and problematic to manage. Especially for small and medium-sized enterprises (SMEs that often suffer from a lack of digital competence, time and monetary resources in generally. Still, these transitions would be necessary to carry out because of customer demands and expectations concerning 24/7 availability, and access to digital commerce alternatives. Scarce resources are important reasons to search for how to carry out channel expansions with minimized problems. Activity theory (AT focuses on the whole in order to detect problems that hinder successful outcomes. Hence, this theory was applied to prior findings, from a project about SME’s channel expansions, highlighting several problems that could appear during these activities. Implications for research foremost involve issues connected to the use of AT; implications for practice particularly concern if and how AT could be used to support channel broadening activities.

  15. Mixing and axial dispersion in Taylor-Couette flow: experimental and numerical study

    International Nuclear Information System (INIS)

    Nemri, M.

    2013-01-01

    Taylor-Couette flows between two concentric cylinders have great potential applications in chemical engineering. They are particularly convenient for two-phase small scale devices enabling solvent extraction operations. An experimental device was designed with this idea in mind. It consists of two concentric cylinders with the inner one rotating and the outer one fixed. Taylor-Couette flows take place in the annular gap between them, and are known to evolve towards turbulence through a sequence of successive instabilities. Macroscopic quantities, such as axial dispersion and mixing index, are extremely sensitive to these flow structures, which may lead to flawed modelling of the coupling between hydrodynamics and mass transfer. This particular point has been studied both experimentally and numerically. The flow and mixing have been characterized by means of flow visualization and simultaneous PIV (Particle Imaging Velocimetry) and PLIF (Planar Laser Induced Fluorescence) measurements. PLIF visualizations showed clear evidences of different transport mechanisms including 'intra-vortex mixing' and 'inter-vortex mixing'. Under WVF and MWVF regimes, intra-vortex mixing is controlled by chaotic advection, due to the 3D nature of the flow, while inter-vortex transport occurs due to the presence of waves between neighboring vortices. The combination of these two mechanisms results in enhanced axial dispersion. We showed that hysteresis may occur between consecutive regimes depending on flow history and this may have a significant effect on mixing for a given Reynolds number. The axial dispersion coefficient Dx evolution along the successive flow states was investigated thanks to dye Residence Time Distribution measurements (RTD) and particle tracking (DNS). Both experimental and numerical results have confirmed the significant effect of the flow structure and history on axial dispersion. Our study confirmed that the commonly used 1-parameter chemical engineering models (e

  16. Couette flow of a hydro-magnetic electrically conducting fluid with ...

    African Journals Online (AJOL)

    Numerical solution of the problem of Couette flow of a hydromagnetic electrically conducting fluid has been obtained where the temperature of the fluid is assumed to vary exponentially. Results obtained for the flow velocity, temperature, skin friction and rate of heat transfer indicate that the temperature is higher when the ...

  17. Prospects for observing the magnetorotational instability in the plasma Couette experiment

    Science.gov (United States)

    Flanagan, K.; Clark, M.; Collins, C.; Cooper, C. M.; Khalzov, I. V.; Wallace, J.; Forest, C. B.

    2015-08-01

    Many astrophysical disks, such as protoplanetary disks, are in a regime where non-ideal, plasma-specific magnetohydrodynamic (MHD) effects can significantly influence the behaviour of the magnetorotational instability (MRI). The possibility of studying these effects in the plasma Couette experiment (PCX) is discussed. An incompressible, dissipative global stability analysis is developed to include plasma-specific two-fluid effects and neutral collisions, which are inherently absent in analyses of Taylor-Couette flows (TCFs) in liquid metal experiments. It is shown that with boundary driven flows, a ion-neutral collision drag body force significantly affects the azimuthal velocity profile, thus limiting the flows to regime where the MRI is not present. Electrically driven flow (EDF) is proposed as an alternative body force flow drive in which the MRI can destabilize at more easily achievable plasma parameters. Scenarios for reaching MRI relevant parameter space and necessary hardware upgrades are described.

  18. Hall effects on hydromagnetic Couette flow of Class-II in a rotating ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... Couette flow of class-II of a viscous, incompressible and electrically conducting fluid with ... Numerical solution of energy equation and numerical values of rate of heat transfer at ...

  19. Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow.

    Science.gov (United States)

    Szklarski, Jacek; Rüdiger, Günther

    2007-12-01

    We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical magnetohydrodynamic (MHD) Taylor-Couette flow at the finite aspect ratio HD=10 . The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed with Hartmann number Ha approximately 10 , and the rotation rates correspond to Reynolds numbers of order 10(2)-10(3). We show that the end plates introduce, besides the well-known Ekman circulation, similar magnetic effects which arise for infinite, rotating plates, horizontally unbounded by any walls. In particular, there exists the Hartmann current, which penetrates the fluid, turns in the radial direction, and together with the applied magnetic field gives rise to a force. Consequently, the flow can be compared with a Taylor-Dean flow driven by an azimuthal pressure gradient. We analyze the stability of such flows and show that the currents induced by the plates can give rise to instability for the considered parameters. When designing a MHD Taylor-Couette experiment, special care must be taken concerning the vertical magnetic boundaries so that they do not significantly alter the rotational profile.

  20. Pinch instabilities in Taylor-Couette flow.

    Science.gov (United States)

    Shalybkov, Dima

    2006-01-01

    The linear stability of the dissipative Taylor-Couette flow with an azimuthal magnetic field is considered. Unlike ideal flows, the magnetic field is a fixed function of a radius with two parameters only: a ratio of inner to outer cylinder radii, eta, and a ratio of the magnetic field values on outer and inner cylinders, muB. The magnetic field with 0rotation. The unstable modes are located into some interval of the axial wave numbers for the flow stable without magnetic field. The interval length is zero for a critical Hartmann number and increases with an increasing Hartmann number. The critical Hartmann numbers and length of the unstable axial wave number intervals are the same for every rotation law. There are the critical Hartmann numbers for m=0 sausage and m=1 kink modes only. The sausage mode is the most unstable mode close to Ha=0 point and the kink mode is the most unstable mode close to the critical Hartmann number. The transition from the sausage instability to the kink instability depends on the Prandtl number Pm and this happens close to one-half of the critical Hartmann number for Pm=1 and close to the critical Hartmann number for Pm=10(-5). The critical Hartmann numbers are smaller for kink modes. The flow stability does not depend on magnetic Prandtl numbers for m=0 mode. The same is true for critical Hartmann numbers for both m=0 and m=1 modes. The typical value of the magnetic field destabilizing the liquid metal Taylor-Couette flow is approximately 10(2) G.

  1. Mode transition in bubbly Taylor-Couette flow measured by PTV

    International Nuclear Information System (INIS)

    Yoshida, K; Tasaka, Y; Murai, Y; Takeda, T

    2009-01-01

    The drag acting to the inner cylinder in Taylor-Couette flow system can be reduced by bubble injection. In this research, relationship between drag reduction and change of vortical structure in a Taylor-Couette flow is investigated by Particle Tracking Velocimetry (PTV). The velocity vector field in the r-z cross section and the bubble concentration in the front view (z-θ plane) are measured. This paper describes the change of vortical structures with bubbles, and the mode transition that is sensitively affected by the bubbles is discussed. The bubbles accumulate in the three parts relative to vortex position by the interaction between bubbles and vortices. The status of bubble's distribution is different depending on position. This difference affects mode transition as its trigger significantly. The presence of bubbles affects the transition from toroidal mode to spiral mode but does not induce the transition from spiral mode to toroidal mode. Further we found that Taylor vortex bifurcates and a pair of vortices coalesces when the flow switches between spiral mode and toroidal mode.

  2. Bifurcating fronts for the Taylor-Couette problem in infinite cylinders

    Science.gov (United States)

    Hărăguş-Courcelle, M.; Schneider, G.

    We show the existence of bifurcating fronts for the weakly unstable Taylor-Couette problem in an infinite cylinder. These fronts connect a stationary bifurcating pattern, here the Taylor vortices, with the trivial ground state, here the Couette flow. In order to show the existence result we improve a method which was already used in establishing the existence of bifurcating fronts for the Swift-Hohenberg equation by Collet and Eckmann, 1986, and by Eckmann and Wayne, 1991. The existence proof is based on spatial dynamics and center manifold theory. One of the difficulties in applying center manifold theory comes from an infinite number of eigenvalues on the imaginary axis for vanishing bifurcation parameter. But nevertheless, a finite dimensional reduction is possible, since the eigenvalues leave the imaginary axis with different velocities, if the bifurcation parameter is increased. In contrast to previous work we have to use normalform methods and a non-standard cut-off function to obtain a center manifold which is large enough to contain the bifurcating fronts.

  3. Numerical analyses of a Couette-Taylor flow in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Tagawa, T; Kaneda, M

    2005-01-01

    An axisymmetric Couette-Taylor flow of liquid metal in the presence of a magnetic field has been numerically studied. An inner cylinder of a coaxial container is rotating at a constant angular velocity whereas the outer cylindrical wall is at rest. An axial or a toroidal magnetic field is applied to this configuration to investigate the influence of such magnetic fields on the liquid metal Couette-Taylor flow. The toroidal magnetic field can be produced with a straight wire along the central axis in which electric current passes. The governing equations of mass conservation, momentum, Ohm's law and conservation of electric charge for an axisymmetric cylindrical coordinate system have been numerically solved with a finite difference method using the HSMAC algorithm. In the numerical analyses, since the Joule heating and the induced magnetic field are neglected, the system parameters are the Hartmann number and the Reynolds number. The numerical results reveal significant difference in the Couette-Taylor flow depending on whether the applied magnetic field is axial or toroidal as well as on the Hartmann and Reynolds numbers. The axial magnetic field damps out the secondary flow efficiently and velocity gradient in the direction of the magnetic field tends to diminish while the toroidal magnetic field does not have such an efficient damping

  4. Inertial migration of particles in Taylor-Couette flows

    Science.gov (United States)

    Majji, Madhu V.; Morris, Jeffrey F.

    2018-03-01

    An experimental study of inertial migration of neutrally buoyant particles in the circular Couette flow (CCF), Taylor vortex flow (TVF) and wavy vortex flow (WVF) is reported. This work considers a concentric cylinder Taylor-Couette device with a stationary outer cylinder and rotating inner cylinder. The device has a radius ratio of η = ri/ro = 0.877, where ri and ro are the inner and outer radii of the flow annulus. The ratio of the annular width between the cylinders (δ = ro - ri) and the particle diameter (dp) is α = δ/dp = 20. For η = 0.877, the flow of a Newtonian fluid undergoes transitions from CCF to TVF and TVF to WVF at Reynolds numbers Re = 120 and 151, respectively, and for the dilute suspensions studied here, these critical Reynolds numbers are almost unchanged. In CCF, particles were observed to migrate, due to the competition between the shear gradient of the flow and the wall interactions, to an equilibrium location near the middle of the annulus with an offset toward the inner cylinder. In TVF, the vortex motion causes the particles to be exposed to the shear gradient and wall interactions in a different manner, resulting in a circular equilibrium region in each vortex. The radius of this circular region grows with increase in Re. In WVF, the azimuthal waviness results in fairly well-distributed particles across the annulus.

  5. Compressibility and rarefaction effects on entropy and entropy generation in micro/nano Couette flow using DSMC

    International Nuclear Information System (INIS)

    Ejtehadi, Omid; Esfahani, Javad Abolfazli; Roohi, Ehsan

    2012-01-01

    In the present work, compressible flow of argon gas in the famous problem of Couette flow in micro/nano-scale is considered and numerically analyzed using the direct simulation Monte Carlo (DSMC) method. The effects of compressibility and rarefaction on entropy and entropy generation in terms of viscous dissipation and thermal diffusion are studied in a wide range of Mach and Knudsen numbers and the observed physics are discussed. In this regard, we computed entropy by using its kinetic theory formulation in a microscopic way while the entropy generation distribution is achieved by applying a semi-microscopic approach and thoroughly free from equilibrium assumptions. The results of our simulations demonstrated that the entropy profiles are in accordance with the temperature profiles. It is also illustrated that the increase of Mach number will result in non-uniform entropy profiles with increase in the vicinity of the central regions of the channel. Moreover, generation of entropy in all regions of the domain stages clear growth. By contrast, increasing the Knudsen number has inverse effects such as: uniform entropy profiles and a falling off in entropy generation amount throughout the channel.

  6. Study of the influence of diffusion on the flow velocity, for binary mixtures in Poiseuille and Couette flows

    International Nuclear Information System (INIS)

    Caetano Filho, E.

    1981-05-01

    The influence of diffusion on the flow of binary mixtures of incompressible fluids in POISEUILLE and COUETTE flows, is studied. The constitutive equations sugested by SAMPAIO and WILLIAMS and by STRUMINSKII for the constituent stress tensor and for the diffusive force are used. Results show that diffusion does not influence the flow in the case of planar and circular COUETTE flows. On the other hand, diffusion does play an important part in planar and circular POISEUILLE flows. (Author) [pt

  7. The Weakly Nonlinear Magnetorotational Instability in a Global, Cylindrical Taylor–Couette Flow

    Energy Technology Data Exchange (ETDEWEB)

    Clark, S. E. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu [Department of Physics and Astronomy, Bates College, Lewiston, ME 04240 (United States)

    2017-05-20

    We conduct a global, weakly nonlinear analysis of the magnetorotational instability (MRI) in a Taylor–Couette flow. This is a multiscale, perturbative treatment of the nonideal, axisymmetric MRI near threshold, subject to realistic radial boundary conditions and cylindrical geometry. We analyze both the standard MRI, initialized by a constant vertical background magnetic field, and the helical MRI, with an azimuthal background field component. This is the first weakly nonlinear analysis of the MRI in a global Taylor–Couette geometry, as well as the first weakly nonlinear analysis of the helical MRI. We find that the evolution of the amplitude of the standard MRI is described by a real Ginzburg–Landau equation (GLE), whereas the amplitude of the helical MRI takes the form of a complex GLE. This suggests that the saturated state of the helical MRI may itself be unstable on long spatial and temporal scales.

  8. Nonlinear stability, bifurcation and resonance in granular plane Couette flow

    Science.gov (United States)

    Shukla, Priyanka; Alam, Meheboob

    2010-11-01

    A weakly nonlinear stability theory is developed to understand the effect of nonlinearities on various linear instability modes as well as to unveil the underlying bifurcation scenario in a two-dimensional granular plane Couette flow. The relevant order parameter equation, the Landau-Stuart equation, for the most unstable two-dimensional disturbance has been derived using the amplitude expansion method of our previous work on the shear-banding instability.ootnotetextShukla and Alam, Phys. Rev. Lett. 103, 068001 (2009). Shukla and Alam, J. Fluid Mech. (2010, accepted). Two types of bifurcations, Hopf and pitchfork, that result from travelling and stationary linear instabilities, respectively, are analysed using the first Landau coefficient. It is shown that the subcritical instability can appear in the linearly stable regime. The present bifurcation theory shows that the flow is subcritically unstable to disturbances of long wave-lengths (kx˜0) in the dilute limit, and both the supercritical and subcritical states are possible at moderate densities for the dominant stationary and traveling instabilities for which kx=O(1). We show that the granular plane Couette flow is prone to a plethora of resonances.ootnotetextShukla and Alam, J. Fluid Mech. (submitted, 2010)

  9. Generalized Couette flow of a third-grade fluid with slip. The exact solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ellahi, Rahmat [IIUI, Islamabad (Pakistan). Dept. of Mathematics; Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Mathematics; Mahomed, Fazal Mahmood [Univ. of the Witwatersrand, Wits (South Africa). Centre for Differential Equations, Continuum, Mechanics and Applications

    2010-12-15

    The present note investigates the influence of slip on the generalized Couette flows of a third-grade fluid. Two flow problems are considered. The resulting equations and the boundary conditions are nonlinear. Analytical solutions of the governing nonlinear problems are found in closed form. (orig.)

  10. The Ekman-Hartmann layer in MHD Taylor-Couette flow

    OpenAIRE

    Szklarski, Jacek; Rüdiger, Günther

    2007-01-01

    We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical MHD Taylor-Couette flow at the finite aspect ratio $H/D=10$. The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed $\\Ha \\approx 10$, the rotation rates correspond to $\\Rey$ of order $10^2-10^3$. We show that the end-plates introduce, besides the well known Ekman circulati...

  11. Taylor-Couette fluid flow with force oscillation in the inner-cylinder using the immersed boundary method

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Jonatas Emmanuel; Lourenco, Marcos Antonio de Souza; Padilla, Elie Luis Martinez; Silveira Neto, Aristeu da [Federal University of Uberlandia , MG (Brazil)], e-mails: lourenco@mecanica.ufu.br, epadilla@mecanica.ufu.br, aristeus@mecanica.ufu.br; Leibsohn, Andre Martins [CENPES/Petrobras, Rio de Janeiro, RJ (Brazil)], e-mail: aleibsohn@petrobras.com

    2010-07-01

    As new challenges arise in the exploration of deep and ultra-deep water oil fields by PETROBRAS more knowledge and research are needed, so that tools could be developed to assist in the critical operations and make things practicable. In the context of the drilling process, the complexity of the fluid flow inside the riser is associated with the nature of the non-Newtonian flow, immersed solid particles, variable eccentricity and the superimposed traveling azimuthal waves on the inflow and outflow boundaries of the Taylor vortices. This work presents the numerical three-dimensional results of the following simplified fluid flows: Taylor-Couette, Taylor-Couette with varying imposed eccentricity and Taylor-Couette with forced oscillation in the inner cylinder. Using the Navier-Stokes equations, a finite volume method discretization with second order accuracy in both time and space was utilized to simulate the Newtonian, single-phase incompressible fluid flow in the three cases. The circular walls of the inner and outer cylinders are represented by the immersed boundary method, with the direct multi-forcing model. The determined results allow to evidence the flow structures in the three cases in a very qualitative way, even so in the presence of the inner cylinder oscillation. (author)

  12. Taylor-Couette flow stability with toroidal magnetic field

    International Nuclear Information System (INIS)

    Shalybkov, D

    2005-01-01

    The linear stability of the dissipative Taylor-Couette flow with imposed azimuthal magnetic field is considered. Unlike to ideal flow, the magnetic field is fixed function of radius with two parameters only: a ratio of inner to outer cylinder radii and a ratio of the magnetic field values on outer and inner cylinders. The magnetic field with boundary values ratio greater than zero and smaller than inverse radii ratio always stabilizes the flow and called stable magnetic field below. The current free magnetic field is the stable magnetic field. The unstable magnetic field destabilizes every flow if the magnetic field (or Hartmann number) exceeds some critical value. This instability survives even without rotation (for zero Reynolds number). For the stable without the magnetic field flow, the unstable modes are located into some interval of the vertical wave numbers. The interval length is zero for critical Hartmann number and increases with increasing Hartmann number. The critical Hartmann numbers and the length of the unstable vertical wave numbers interval is the same for every rotation law. There are the critical Hartmann numbers for m = 0 sausage and m = 1 kink modes only. The critical Hartmann numbers are smaller for kink mode and this mode is the most unstable mode like to the pinch instability case. The flow stability do not depend on the magnetic Prandtl number for m = 0 mode. The same is true for critical Hartmann numbers for m = 0 and m = 1 modes. The typical value of the magnetic field destabilizing the liquid metal Taylor-Couette flow is order of 100 Gauss

  13. Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow

    Science.gov (United States)

    Cagney, Neil; Balabani, Stavroula

    2017-11-01

    Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.

  14. Couette-Poiseuille flow experiment with zero mean advection velocity: Subcritical transition to turbulence

    Science.gov (United States)

    Klotz, L.; Lemoult, G.; Frontczak, I.; Tuckerman, L. S.; Wesfreid, J. E.

    2017-04-01

    We present an experimental setup that creates a shear flow with zero mean advection velocity achieved by counterbalancing the nonzero streamwise pressure gradient by moving boundaries, which generates plane Couette-Poiseuille flow. We obtain experimental results in the transitional regime for this flow. Using flow visualization, we characterize the subcritical transition to turbulence in Couette-Poiseuille flow and show the existence of turbulent spots generated by a permanent perturbation. Due to the zero mean advection velocity of the base profile, these turbulent structures are nearly stationary. We distinguish two regions of the turbulent spot: the active turbulent core, which is characterized by waviness of the streaks similar to traveling waves, and the surrounding region, which includes in addition the weak undisturbed streaks and oblique waves at the laminar-turbulent interface. We also study the dependence of the size of these two regions on Reynolds number. Finally, we show that the traveling waves move in the downstream (Poiseuille) direction.

  15. Disentangling the origins of torque enhancement through wall roughness in Taylor-Couette turbulence

    NARCIS (Netherlands)

    Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef

    2017-01-01

    Direct numerical simulations (DNS) are performed to analyse the global transport properties of turbulent Taylor-Couette flow with inner rough wall up to Taylor number Ta = 1010. The dimensionless torque Nuω shows an effective scaling of Nuω ∝ Ta0.42±0.01, which is steeper than the ultimate regime

  16. Theory of current instability experiments in magnetic Taylor-Couette flows

    OpenAIRE

    Ruediger, G.; Schultz, M.; Shalybkov, D.; Hollerbach, R.

    2006-01-01

    We consider the linear stability of dissipative MHD Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10-5, approaching realistic liquid-metal values. The magnetic field destabilizes the flow, except for radial profiles of B$_\\phi$(R) close to the current-free solution. The profile with B$_{in}$=B$_{out}$ (the most un...

  17. Fluid Dynamics And Mass Transfer In Two-Fluid Taylor-Couette Flow

    International Nuclear Information System (INIS)

    Baier, G.; Graham, M.D.

    1998-01-01

    The Taylor-Couette instability of a single liquid phase can be used to enhance mass transfer processes such as filtration and membrane separations. We consider here the possibility of using this instability to enhance interphase transport in a two-fluid systems, with a view toward improved liquid-liquid extractions for biotechnology applications. We investigate the centrifugal instability of a pair of radially stratified immiscible liquids in the annular gap between concentric, corotating cylinders: two-fluid Taylor-Couette flow. Experiments show that a two-layer flow with a well-defined interface and Taylor vortices in each phase can be obtained. The experimental results are in good agreement with predictions of inviscid arguments based on a two-phase extension of Rayleigh's criterion, as well as with detailed linear stability calculations. For a given geometry, the most stable configuration occurs for fluids of roughly (exactly in the inviscid limit) equal dynamic viscosities. A number of preliminary mass transfer experiments have also been performed, in the presence of axial counterflow. The onset of Taylor vortices coincides with a clear decrease in the extent of axial dispersion and an increase in the rate of interphase transport, thus suggesting that this flow geometry may provide an effective means for countercurrent chromatographic separations

  18. Theory of current-driven instability experiments in magnetic Taylor-Couette flows.

    Science.gov (United States)

    Rüdiger, Günther; Schultz, Manfred; Shalybkov, Dima; Hollerbach, Rainer

    2007-11-01

    We consider the linear stability of dissipative magnetic Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10(-5) , approaching realistic liquid-metal values. The magnetic field destabilizes the flow, except for radial profiles of B(phi)(R) close to the current-free solution. The profile with B(in)=B(out) (the most uniform field) is considered in detail. For weak fields the Taylor-Couette flow is stabilized, until for moderately strong fields the m=1 azimuthal mode dramatically destabilizes the flow again so that a maximum value for the critical Reynolds number exists. For sufficiently strong fields (as measured by the Hartmann number) the toroidal field is always unstable, even for the nonrotating case with Re=0 . The electric currents needed to generate the required toroidal fields in laboratory experiments are a few kA if liquid sodium is used, somewhat more if gallium is used. Weaker currents are needed for wider gaps, so a wide-gap apparatus could succeed even with gallium. The critical Reynolds numbers are only somewhat larger than the nonmagnetic values; hence such experiments would work with only modest rotation rates.

  19. Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment

    International Nuclear Information System (INIS)

    Nornberg, M. D.; Ji, H.; Schartman, E.; Roach, A.; Goodman, J.

    2010-01-01

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

  20. Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment.

    Science.gov (United States)

    Nornberg, M D; Ji, H; Schartman, E; Roach, A; Goodman, J

    2010-02-19

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

  1. High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment: A Prelude to an α-Ω Dynamo

    International Nuclear Information System (INIS)

    Colgate, Stirling A.; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Cebastian; Klein, Brianna; Schendel, Paul; Scharle, Cletus; McKinney, Travis; Ginanni, Rocky; Bentley, Ian; Mickey, Timothy; Ferrel, Regnar; Li, Hui; Pariev, Vladimir; Finn, John

    2011-01-01

    The Ω phase of the liquid sodium α-Ω dynamo experiment at New Mexico Institute of Mining and Technology in cooperation with Los Alamos National Laboratory has demonstrated a high toroidal field B φ that is ≅8xB r , where B r is the radial component of an applied poloidal magnetic field. This enhanced toroidal field is produced by the rotational shear in stable Couette flow within liquid sodium at a magnetic Reynolds number Rm≅120. Small turbulence in stable Taylor-Couette flow is caused by Ekman flow at the end walls, which causes an estimated turbulence energy fraction of (δv/v) 2 ∼10 -3 .

  2. Onset of secondary flow in the modulated Taylor-Couette system

    International Nuclear Information System (INIS)

    Wu, X.; Swift, J.B.

    1989-01-01

    The critical Reynolds number for the linear instability of primary flow is calculated for a Taylor-Couette system in which the rotation rate of either cylinder is modulated sinusoidally in time. The method used is based on that of Hall [J. Fluid Mech. 67, 29 (1975)] and is restricted to small amplitudes of modulation but allows for a finite gap. For the case of outer-cylinder modulation, we find that the critical Reynolds number is larger than that for the unmodulated system, while, if the inner cylinder is modulated, it is smaller

  3. Plane Couette flow in the presence of a strong centrifugal field

    International Nuclear Information System (INIS)

    Johnson, E.A.

    1982-05-01

    The Pomraning problem of plane Couette flow in a strong centrifugal field is studied by several methods: a half-range polynomial expansion of the linearized BGK equation; the Liu-Lees method; and a new matching approximation constructed to give the correct solution in the free-molecule limit. The matching approximation, which appears valid for strong enough centrifugal field, predicts major differences from hydrodynamic behaviour, and suggests ways in which the lack of convergence of one method studied may be corrected. (author)

  4. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, Sarah; Rojas, Ruben; Perevalov, Artur; Lathrop, Daniel; Ide, Kayo; Schaeffer, Nathanael

    2017-11-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108 . In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  5. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    Science.gov (United States)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  6. Transition to magnetorotational turbulence in Taylor–Couette flow with imposed azimuthal magnetic field

    International Nuclear Information System (INIS)

    A Guseva; Avila, M; Willis, A P; Hollerbach, R

    2015-01-01

    The magnetorotational instability (MRI) is thought to be a powerful source of turbulence and momentum transport in astrophysical accretion discs, but obtaining observational evidence of its operation is challenging. Recently, laboratory experiments of Taylor–Couette flow with externally imposed axial and azimuthal magnetic fields have revealed the kinematic and dynamic properties of the MRI close to the instability onset. While good agreement was found with linear stability analyses, little is known about the transition to turbulence and transport properties of the MRI. We here report on a numerical investigation of the MRI with an imposed azimuthal magnetic field. We show that the laminar Taylor–Couette flow becomes unstable to a wave rotating in the azimuthal direction and standing in the axial direction via a supercritical Hopf bifurcation. Subsequently, the flow features a catastrophic transition to spatio-temporal defects which is mediated by a subcritical subharmonic Hopf bifurcation. Our results are in qualitative agreement with the PROMISE experiment and dramatically extend their realizable parameter range. We find that as the Reynolds number increases defects accumulate and grow into turbulence, yet the momentum transport scales weakly. (paper)

  7. Characterization of the two-phase Taylor Couette flow

    International Nuclear Information System (INIS)

    Mehel A; Gabillet B; Djeridi H

    2005-01-01

    The focus of the present study concerns the effects of a dispersed phase on the structure of a quasi periodic Couette Taylor flow. The two phase flow patterns are investigated experimentally for the Taylor number Ta=780. Small bubbles (0.035 times as small as the gap) are generated by agitation of the upper free surface. Larger bubbles (0.15 times as small as the gap) are produced by injection at the bottom of the apparatus associated with a pressure drop. Void fraction, bubble size and velocity are measured, as well as the azimuthal and axial velocity components of the liquid. A premature transition to turbulence is pointed out and discussed according to the bubble size and their localization in the gap. (authors)

  8. Effects of couple stresses on MHD Couette flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Aranake, R.N.

    1978-01-01

    An exact analysis of the effects of the couple stresses on the MHD Couette flow of an electrically conducting, viscous incompressible fluid is carried out. Closed form solutions are derived for the velocity, the current density, the skin-friction at the lower plate, the force to move the upper plate, and the coefficient of mass flux for (i) A→infinity, and (ii) 2M/A 1, where a is the couple stress parameter and M is the Hartmann number. These are shown graphically followed by a discussion. During the course of discussion the effects of A are quantitatively compared with those in the ordinary case. It is observed that in the presence of a magnetic field the skin friction is affected by the couple stresses. (Auth.)

  9. Entropy Generation in a Rotating Couette Flow with Suction/Injection

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-05-01

    Full Text Available The present paper is concerned with an analytical study of entropy generation in viscous incompressible Couette flow with suction/injection in a rotating frame of reference. One of the plate is held at rest and the other one moves with an uniform velocity.The flow induced by the moving plate. An exact solution of governing equations has been obtained in closed form. The entropy generation number and the Bejan number are also obtained. The influences of each of the governing parameters on velocity, temperature, entropy generation and Bejan number are discussed with the help of graphs.

  10. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions

    Science.gov (United States)

    Zeeshan, A.; Shehzad, N.; Ellahi, R.

    2018-03-01

    The motivation of the current article is to explore the energy activation in MHD radiative Couette-Poiseuille flow nanofluid in horizontal channel with convective boundary conditions. The mathematical model of Buongiorno [1] effectively describes the current flow analysis. Additionally, the impact of chemical reaction is also taken in account. The governing flow equations are simplified with the help of boundary layer approximations. Non-linear coupled equations for momentum, energy and mass transfer are tackled with analytical (HAM) technique. The influence of dimensionless convergence parameter like Brownian motion parameter, radiation parameter, buoyancy ratio parameter, dimensionless activation energy, thermophoresis parameter, temperature difference parameter, dimensionless reaction rate, Schmidt number, Brinkman number, Biot number and convection diffusion parameter on velocity, temperature and concentration profiles are discussed graphically and in tabular form. From the results, it is elaborate that the nanoparticle concentration is directly proportional to the chemical reaction with activation energy and the performance of Brownian motion on nanoparticle concentration gives reverse pattern to that of thermophoresis parameter.

  11. Momentum balance and stresses in a suspension of spherical particles in a plane Couette flow

    Science.gov (United States)

    Rahmani, Mona; Hammouti, Abdelkader; Wachs, Anthony

    2018-04-01

    Non-Brownian suspension of monodisperse spherical particles, with volume fractions ranging between ϕ = 0.05 and 0.38 and particle Reynolds numbers ranging between Rep = 0.002 and 20, in plane Couette shear flows is investigated using three-dimensional particle-resolved numerical simulations. We examine the effects of volume fraction and particle Reynolds number on the macroscopic and microscopic stresses in the fluid phase. The effective viscosity of the suspension is in a good agreement with the previous empirical and experimental studies. At Rep = 20, however, the effective viscosity increases significantly compared to the lower particle Reynolds number simulations in the Stokes flow regime. Examining the stresses over the depth of the Couette gap reveals that this increase in wall shear stresses at high particle Reynolds numbers is mainly due to the significantly higher particle phase stress contributions. Next, we examine the momentum balance in the fluid and particle phase for different regimes to assess the significance of particle/particle interaction and fluid and particle inertia. At the highest particle Reynolds number and volume fraction, the particle inertia plays a dominant role in the momentum balance and the fluid inertia is non-negligible, while the short-lived contact forces are negligible compared to these effects. For all other regimes, the fluid inertia is negligible, but the particle inertia and contact forces are important in the momentum balance. Reynolds stresses originated from velocity fluctuations do not contribute significantly to the suspension stresses in any of the regimes we have studied, while the reduction in the shear-induced particle rotation can be a reason for higher wall shear stress at Rep = 20. Finally, we study the kinematics of particles, including their velocity fluctuations, rotation, and diffusion over the depth of the Couette gap. The particle diffusion coefficients in the cross flow direction exhibit an abrupt

  12. Experimental investigation of liquid-liquid system drop size distribution in Taylor-Couette flow and its application in the CFD simulation

    Science.gov (United States)

    Farzad, Reza; Puttinger, Stefan; Pirker, Stefan; Schneiderbauer, Simon

    Liquid-liquid systems are widely used in the several industries such as food, pharmaceutical, cosmetic, chemical and petroleum. Drop size distribution (DSD) plays a key role as it strongly affects the overall mass and heat transfer in the liquid-liquid systems. To understand the underlying mechanisms single drop breakup experiments have been done by several researchers in the Taylor-Couette flow; however, most of those studies concentrate on the laminar flow regime and therefore, there is no sufficient amount of data in the case of in turbulent flows. The well-defined pattern of the Taylor-Couette flow enables the possibility to investigate DSD as a function of the local fluid dynamic properties, such as shear rate, which is in contrast to more complex devices such as stirred tank reactors. This paper deals with the experimental investigation of liquid-liquid DSD in Taylor-Couette flow. From high speed camera images we found a simple correlation for the Sauter mean diameter as a function of the local shear employing image processing. It is shown that this correlation holds for different oil-in-water emulsions. Finally, this empirical correlation for the DSD is used as an input data for a CFD simulation to compute the local breakup of individual droplets in a stirred tank reactor.

  13. Production of structured soy-based meat analogues using simple shear and heat in a Couette Cell

    NARCIS (Netherlands)

    Krintiras, G.A.; Gobel, T.W.; Goot, van der A.J.; Stefanidis, G.D.

    2015-01-01

    A Couette Cell device was employed to provide proof of concept for the production of structured meat analogues by application of simple shear flow and heat to a 31 wt% Soy Protein Isolate (SPI)–Wheat Gluten (WG) dispersion. Three relevant process parameters (temperature, time and rotation rate) were

  14. Irreversibility analysis of hydromagnetic flow of couple stress fluid with radiative heat in a channel filled with a porous medium

    Directory of Open Access Journals (Sweden)

    A.S. Eegunjobi

    Full Text Available Numerical analysis of the intrinsic irreversibility of a mixed convection hydromagnetic flow of an electrically conducting couple stress fluid through upright channel filled with a saturated porous medium and radiative heat transfer was carried out. The thermodynamics first and second laws were employed to examine the problem. We obtained the dimensionless nonlinear differential equations and solves numerically with shooting procedure joined with a fourth order Runge-Kutta-Fehlberg integration scheme. The temperature and velocity obtained, used to analyse the entropy generation rate together with some various physical parameters of the flow. Our results are presented graphically and talk over. Keywords: MHD channel flow, Couple stress fluid, Porous medium, Thermal radiation, Entropy generation, Injection/suction

  15. Semi-Numerical Studies of the Three-Meter Spherical Couette Experiment Utilizing Data Assimilation

    Science.gov (United States)

    Burnett, S. C.; Rojas, R.; Perevalov, A.; Lathrop, D. P.

    2017-12-01

    The model of the Earth's magnetic field has been investigated in recent years through experiments and numerical models. At the University of Maryland, experimental studies are implemented in a three-meter spherical Couette device filled with liquid sodium. The inner and outer spheres of this apparatus mimic the planet's inner core and core-mantle boundary, respectively. These experiments incorporate high velocity flows with Reynolds numbers 108. In spherical Couette geometry, the numerical scheme applied to this work features finite difference methods in the radial direction and pseudospectral spherical harmonic transforms elsewhere [Schaeffer, N. G3 (2013)]. Adding to the numerical model, data assimilation integrates the experimental outer-layer magnetic field measurements. This semi-numerical model can then be compared to the experimental results as well as forecasting magnetic field changes. Data assimilation makes it possible to get estimates of internal motions of the three-meter experiment that would otherwise be intrusive or impossible to obtain in experiments or too computationally expensive with a purely numerical code. If we can provide accurate models of the three-meter device, it is possible to attempt to model the geomagnetic field. We gratefully acknowledge the support of NSF Grant No. EAR1417148 & DGE1322106.

  16. The mechanism by which nonlinearity sustains turbulence in plane Couette flow

    Science.gov (United States)

    Nikolaidis, M.-A.; Farrell, B. F.; Ioannou, P. J.

    2018-04-01

    Turbulence in wall-bounded shear flow results from a synergistic interaction between linear non-normality and nonlinearity in which non-normal growth of a subset of perturbations configured to transfer energy from the externally forced component of the turbulent state to the perturbation component maintains the perturbation energy, while the subset of energy-transferring perturbations is replenished by nonlinearity. Although it is accepted that both linear non-normality mediated energy transfer from the forced component of the mean flow and nonlinear interactions among perturbations are required to maintain the turbulent state, the detailed physical mechanism by which these processes interact in maintaining turbulence has not been determined. In this work a statistical state dynamics based analysis is performed on turbulent Couette flow at R = 600 and a comparison to DNS is used to demonstrate that the perturbation component in Couette flow turbulence is replenished by a non-normality mediated parametric growth process in which the fluctuating streamwise mean flow has been adjusted to marginal Lyapunov stability. It is further shown that the alternative mechanism in which the subspace of non-normally growing perturbations is maintained directly by perturbation-perturbation nonlinearity does not contribute to maintaining the turbulent state. This work identifies parametric interaction between the fluctuating streamwise mean flow and the streamwise varying perturbations to be the mechanism of the nonlinear interaction maintaining the perturbation component of the turbulent state, and identifies the associated Lyapunov vectors with positive energetics as the structures of the perturbation subspace supporting the turbulence.

  17. Irregular wall roughness in turbulent Taylor-Couette flow

    Science.gov (United States)

    Berghout, Pieter; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef; Stevens, Richard

    2017-11-01

    Many wall bounded flows in nature, engineering and transport are affected by surface roughness. Often, this has adverse effects, e.g. drag increase leading to higher energy costs. A major difficulty is the infinite number of roughness geometries, which makes it impossible to systematically investigate all possibilities. Here we present Direct Numerical Simulations (DNS) of turbulent Taylor-Couette flow. We focus on the transitionally rough regime, in which both viscous and pressure forces contribute to the total wall stress. We investigate the effect of the mean roughness height and the effective slope on the roughness function, ΔU+ . Also, we present simulations of varying Ta (Re) numbers for a constant mean roughness height (kmean+). Alongside, we show the behavior of the large scale structures (e.g. plume ejection, Taylor rolls) and flow structures in the vicinity of the wall.

  18. Large-eddy simulation of open channel flow with surface cooling

    International Nuclear Information System (INIS)

    Walker, R.; Tejada-Martínez, A.E.; Martinat, G.; Grosch, C.E.

    2014-01-01

    Highlights: • Open channel flow comparable to a shallow tidal ocean flow is simulated using LES. • Unstable stratification is imposed by a constant surface cooling flux. • Full-depth, convection-driven, rotating supercells develop when cooling is applied. • Strengthening of cells occurs corresponding to an increasing of the Rayleigh number. - Abstract: Results are presented from large-eddy simulations of an unstably stratified open channel flow, driven by a uniform pressure gradient and with zero surface shear stress and a no-slip lower boundary. The unstable stratification is applied by a constant cooling flux at the surface and an adiabatic bottom wall, with a constant source term present to ensure the temperature reaches a statistically steady state. The structure of the turbulence and the turbulence statistics are analyzed with respect to the Rayleigh number (Ra τ ) representative of the surface buoyancy relative to shear. The impact of the surface cooling-induced buoyancy on mean and root mean square of velocity and temperature, budgets of turbulent kinetic energy (and components), Reynolds shear stress and vertical turbulent heat flux will be investigated. Additionally, colormaps of velocity fluctuations will aid the visualization of turbulent structures on both vertical and horizontal planes in the flow. Under neutrally stratified conditions the flow is characterized by weak, full-depth, streamwise cells similar to but less coherent than Couette cells in plane Couette flow. Increased Ra τ and thus increased buoyancy effects due to surface cooling lead to full-depth convection cells of significantly greater spanwise size and coherence, thus termed convective supercells. Full-depth convective cell structures of this magnitude are seen for the first time in this open channel domain, and may have important implications for turbulence analysis in a comparable tidally-driven ocean boundary layer. As such, these results motivate further study of the

  19. Shear-stress-induced structural arrangement of water molecules in nanoscale Couette flow with slipping at wall boundary

    International Nuclear Information System (INIS)

    Lin, Jau-Wen

    2014-01-01

    This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied

  20. Couette flow regimes with heat transfer in rarefied gas

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, A. A., E-mail: alabr54@mail.ru; Butkovskii, A. V., E-mail: albutkov@mail.ru [Zhukovski Central Aerohydrodynamics Institute (Russian Federation)

    2013-06-15

    Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.

  1. Hall effects on MHD flow of heat generating/absorbing fluid through porous medium in a rotating parallel plate channel

    Science.gov (United States)

    Swarnalathamma, B. V.; Krishna, M. Veera

    2017-07-01

    We studied heat transfer on MHD convective flow of viscous electrically conducting heat generating/absorbing fluid through porous medium in a rotating channel under uniform transverse magnetic field normal to the channel and taking Hall current. The flow is governed by the Brinkman's model. The diagnostic solutions for the velocity and temperature are obtained by perturbation technique and computationally discussed with respect to flow parameters through the graphs. The skin friction and Nusselt number are also evaluated and computationally discussed with reference to pertinent parameters in detail.

  2. Activation of Mechanosensitive Transient Receptor Potential/Piezo Channels in Odontoblasts Generates Action Potentials in Cocultured Isolectin B4-negative Medium-sized Trigeminal Ganglion Neurons.

    Science.gov (United States)

    Sato, Masaki; Ogura, Kazuhiro; Kimura, Maki; Nishi, Koichi; Ando, Masayuki; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2018-04-27

    Various stimuli to the dentin surface elicit dentinal pain by inducing dentinal fluid movement causing cellular deformation in odontoblasts. Although odontoblasts detect deformation by the activation of mechanosensitive ionic channels, it is still unclear whether odontoblasts are capable of establishing neurotransmission with myelinated A delta (Aδ) neurons. Additionally, it is still unclear whether these neurons evoke action potentials by neurotransmitters from odontoblasts to mediate sensory transduction in dentin. Thus, we investigated evoked inward currents and evoked action potentials form trigeminal ganglion (TG) neurons after odontoblast mechanical stimulation. We used patch clamp recordings to identify electrophysiological properties and record evoked responses in TG neurons. We classified TG cells into small-sized and medium-sized neurons. In both types of neurons, we observed voltage-dependent inward currents. The currents from medium-sized neurons showed fast inactivation kinetics. When mechanical stimuli were applied to odontoblasts, evoked inward currents were recorded from medium-sized neurons. Antagonists for the ionotropic adenosine triphosphate receptor (P2X 3 ), transient receptor potential channel subfamilies, and Piezo1 channel significantly inhibited these inward currents. Mechanical stimulation to odontoblasts also generated action potentials in the isolectin B 4 -negative medium-sized neurons. Action potentials in these isolectin B 4 -negative medium-sized neurons showed a short duration. Overall, electrophysiological properties of neurons indicate that the TG neurons with recorded evoked responses after odontoblast mechanical stimulation were myelinated Aδ neurons. Odontoblasts established neurotransmission with myelinated Aδ neurons via P2X 3 receptor activation. The results also indicated that mechanosensitive TRP/Piezo1 channels were functionally expressed in odontoblasts. The activation of P2X 3 receptors induced an action potential

  3. Unsteady MHD blood flow through porous medium in a parallel plate channel

    Science.gov (United States)

    Latha, R.; Rushi Kumar, B.

    2017-11-01

    In this study, we have analyzed heat and mass transfer effects on unsteady blood flow through parallel plate channel in a saturated porous medium in the presence of a transverse magnetic field with thermal radiation. The governing higher order nonlinear PDE’S are converted to dimensionless equations using dimensionless variables. The dimensionless equations are then solved analytically using boundary conditions by choosing the axial flow transport and the fields of concentration and temperature apart from the normal velocity as a function of y and t. The effects of different pertinent parameters appeared in this model viz thermal radiation, Prandtl number, Heat source parameter, Hartmann number, Permeability parameter, Decay parameter on axial flow transport and the normal velocity are analyzed in detail.

  4. Unmixing demonstration with a twist: A photochromic Taylor-Couette device

    Science.gov (United States)

    Fonda, Enrico; Sreenivasan, Katepalli R.

    2017-10-01

    10.1119/1.4996901.1 This article describes an updated version of the famous Taylor-Couette flow reversibility demonstration. The viscous fluid confined between two concentric cylinders is forced to move by the rotating inner cylinder and visualized through the transparent outer cylinder. After a few rotations, a colored blob of fluid appears well mixed. Yet, after reversing the motion for the same number of turns, the blob reappears in the original location as if the fluid has just been unmixed. The use of household supplies makes the device inexpensive and easy to build without specific technical skills. The device can be used for demonstrations in fluid dynamics courses and outreach activities to discuss the concepts of viscosity, creeping flows, the absence of inertia, and time-reversibility.

  5. Mixed convective thermally radiative micro nanofluid flow in a stretchable channel with porous medium and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk; Shahzad, S. A.; Meraj, M. A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M. K. [Department of CASPAM, Bahauddin Zakariya University, Multan 63000 (Pakistan); Raza, J. [School of Quantitative Sciences, Universiti Utara Malaysia, 06010, Sintok, Kedah (Malaysia)

    2016-03-15

    A numerical study is carried out for two dimensional steady incompressible mixed convective flow of electrically conductive micro nanofluid in a stretchable channel. The flow is generated due to the stretching walls of the channel immersed in a porous medium. The magnetic field is applied perpendicular to the walls. The impact of radiation, viscous dissipation, thermophoretic and Brownian motion of nanoparticles appear in the energy equation. A numerical technique based on Runge-Kutta-Fehlberg fourth-fifth order (RFK45) method is used to express the solutions of velocity, microrotation, temperature and concentration fields. The dimensionless physical parameters are discussed both in tabular and graphical forms. The results are also found in a good agreement with previously published literature work.

  6. Bubble behavior in a vertical Taylor-Couette flow

    International Nuclear Information System (INIS)

    Murai, Y; Oiwa, H; Takeda, Y

    2005-01-01

    Bubble distributions organized in a vertical Taylor-Couette flow are experimentally investigated. Modification of shear stress due to bubbles is measured with a torque sensor installed on the rotating inner cylinder. The wall shear stress decreases as bubbles are injected in all the tested range of Re from 600 to 4500. The drag reduction ratio per void fraction measured in the present experiment, which indicates net gain of the drag reduction, has been evaluated. The gain was more than unity for Re 4000. The maximum gain achieved was around 10 at Re = 600, at which point the bubbles dispersed widely on the inner cylinder surface and effectively restrict momentum exchange of fluid between the two walls. The expansion of Taylor vortices in the vertical direction by the presence of bubbles was confirmed by flow visualization including particle tracking velocimetry. Such bubble behaviours interacting with Taylor vortices are discussed in detail in this paper

  7. Understanding the evolution of channeling and fracturing in porous medium due to fluid flow.

    Science.gov (United States)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Daniel, Guillaume; Langliné, Olivier; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2017-04-01

    Fluid induced brittle deformation of porous medium is a phenomenon commonly present in everyday life. From an espresso machine to volcanoes, from food industry to construction, it is possible to see traces of this phenomenon. In this work, analogue models are developed in a linear geometry, with confinement and at low porosity to study the instabilities that occur during fast motion of fluid in dense porous materials: fracturing, fingering, and channeling. We study these complex fluid/solid mechanical systems - in a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary - using two monitoring techniques: optical imaging using a high speed camera (1000 fps), high frequency resolution accelerometers and piezoelectrical sensors. Additionally, we develop physical models rendering for the fluid mechanics in the channels and the propagation of microseismic waves around the fracture. We then compare a numerical resolution of this physical system with the observed experimental system. In the analysis phase, we compute the power spectrum of the acoustic signal in time windows of 5 ms, recorded by shock accelerometers Brüel & Kjaer 4374 (Frq. Range 1 Hz - 26 kHz) with 1 MHz sampling rate. The evolution of the power spectrum is compared with the optical recordings. These peaks on the spectrum are strongly influenced by the size and branching of the channels, compaction of the medium, vibration of air in the pores and the fundamental frequency of the plate. Furthermore, the number of these stick-slip events, similar to the data obtained in hydraulic fracturing operations, follows a Modified Omori Law decay with an exponent p value around 0.5. An analytical model of overpressure diffusion predicting p = 0.5 and two other free parameters of the Omori Law (prefactor and origin time) is developed. The spatial density of the seismic events, and the time of end of formation of the channels can also be predicted using this developed model. Different

  8. Second Law Analysis for a Variable Viscosity Reactive Couette Flow under Arrhenius Kinetics

    Directory of Open Access Journals (Sweden)

    N. S. Kobo

    2010-01-01

    Full Text Available This study investigates the inherent irreversibility associated with the Couette flow of a reacting variable viscosity combustible material under Arrhenius kinetics. The nonlinear equations of momentum and energy governing the flow system are solved both analytically using a perturbation method and numerically using the standard Newton Raphson shooting method along with a fourth-order Runge Kutta integration algorithm to obtain the velocity and temperature distributions which essentially expedite to obtain expressions for volumetric entropy generation numbers, irreversibility distribution ratio, and the Bejan number in the flow field.

  9. Nonlinear transport processes and fluid dynamics: Cylindrical Couette flow of Lennard-Jones fluids

    International Nuclear Information System (INIS)

    Khayat, R.E.; Eu, B.C.

    1988-01-01

    In this paper we report on calculations of flow profiles for cylindrical Couette flow of a Lennard-Jones fluid. The flow is subjected to a temperature gradient and thermoviscous effects are taken into consideration. We apply the generalized fluid dynamic equations which are provided by the modified moment method for the Boltzmann equation reported previously. The results of calculations are in good agreement with the Monte Carlo direct simulation method by K. Nanbu [Phys. Fluids 27, 2632 (1984)] for most of Knudsen numbers for which the simulation data are available

  10. Surfactants and the Rayleigh-Taylor instability of Couette type flows

    Science.gov (United States)

    Frenkel, A. L.; Halpern, D.; Schweiger, A. S.

    2011-11-01

    We study the Rayleigh-Taylor instability of slow Couette- type flows in the presence of insoluble surfactants. It is known that with zero gravity, the surfactant makes the flow unstable to longwave disturbances in certain regions of the parameter space; while in other parametric regions, it reinforces the flow stability (Frenkel and Halpern 2002). Here, we show that in the latter parametric sectors, and when the (gravity) Bond number Bo is below a certain threshold value, the Rayleigh-Taylor instability is completely stabilized for a finite interval of Ma, the (surfactant) Marangoni number: MaL Ma2. For Ma Ma2, and also for MaL Ma2 as functions of the Bond number. We note that (for an interval of the Bond number) there are two distinct criticalities with nonzero (and distinct) critical wavenumbers.

  11. Lagoon Sediment Dynamics: A Coupled Model to Study a Medium-Term Silting of Tidal Channels

    Directory of Open Access Journals (Sweden)

    Marco Petti

    2018-04-01

    Full Text Available The silting of tidal channels is a natural process that affects several shallow lagoons and makes it difficult to navigate, requiring regular maintenance interventions. This phenomenon is the result of the complex non-linear interaction between tidal currents and wave motion. In this work, the morphodynamic evolution of the Marano and Grado lagoon is investigated by means of a two-dimensional horizontal (2DH morphological-hydrodynamic and a spectral coupled model. An innovative procedure to reproduce the overall bathymetric changes in the medium term and, in particular, the volumes deposited inside channels, is presented. An average year with a sequence of winds and tides acting over that time was reconstructed, carrying out cross correlation techniques and spectral analyses of measured data. The predicted morphological evolution matches the annual dredged volumes in the lagoon critical branches and shows the distribution of erosion and deposition of cohesive sediments according to spatially variable values of critical shear stress.

  12. Mobile radio channel as a complex medium

    DEFF Research Database (Denmark)

    Matic, Dusan; Prasad, Ramjee; Kalluri, Dikshitulu K.

    2001-01-01

    physical phenomena, their implications on the transmitted signal, and how the radio channels are modelled. Special attention is given to the small-scale effects, such as multipath, and Rayleigh and Rice distributions of received signal, as these dominate in the case of indoor communication systems.......Optical fibres have almost unlimited capacity, but can not the address the users desire for mobility and ubiquitous access. The synergy of these two worlds can be seen in the direction of the Radio-over-Fibre. This paper presents to the reader an introduction for the mobile radio channel - basic...

  13. Stochastic characteristics and Second Law violations of atomic fluids in Couette flow

    Science.gov (United States)

    Raghavan, Bharath V.; Karimi, Pouyan; Ostoja-Starzewski, Martin

    2018-04-01

    Using Non-equilibrium Molecular Dynamics (NEMD) simulations, we study the statistical properties of an atomic fluid undergoing planar Couette flow, in which particles interact via a Lennard-Jones potential. We draw a connection between local density contrast and temporal fluctuations in the shear stress, which arise naturally through the equivalence between the dissipation function and entropy production according to the fluctuation theorem. We focus on the shear stress and the spatio-temporal density fluctuations and study the autocorrelations and spectral densities of the shear stress. The bispectral density of the shear stress is used to measure the degree of departure from a Gaussian model and the degree of nonlinearity induced in the system owing to the applied strain rate. More evidence is provided by the probability density function of the shear stress. We use the Information Theory to account for the departure from Gaussian statistics and to develop a more general probability distribution function that captures this broad range of effects. By accounting for negative shear stress increments, we show how this distribution preserves the violations of the Second Law of Thermodynamics observed in planar Couette flow of atomic fluids, and also how it captures the non-Gaussian nature of the system by allowing for non-zero higher moments. We also demonstrate how the temperature affects the band-width of the shear-stress and how the density affects its Power Spectral Density, thus determining the conditions under which the shear-stress acts is a narrow-band or wide-band random process. We show that changes in the statistical characteristics of the parameters of interest occur at a critical strain rate at which an ordering transition occurs in the fluid causing shear thinning and affecting its stability. A critical strain rate of this kind is also predicted by the Loose-Hess stability criterion.

  14. Superhydrophobic and polymer drag reduction in turbulent Taylor-Couette flow

    Science.gov (United States)

    Rajappan, Anoop; McKinley, Gareth H.

    2017-11-01

    We use a custom-built Taylor-Couette apparatus (radius ratio η = 0.75) to study frictional drag reduction by dilute polymer solutions and superhydrophobic (SH) surfaces in turbulent flows for 15000 analysis. We also investigate drag reduction by dilute polymer solutions, and show that natural biopolymers from plant mucilage can be an inexpensive and effective alternative to synthetic polymers in drag reduction applications, approaching the same maximum drag reduction asymptote. Finally we explore combinations of the two methods - one arising from wall slip and the other due to changes in turbulence dynamics in the bulk flow - and find that the two effects are not additive; interestingly, the effectiveness of polymer drag reduction is drastically reduced in the presence of an SH coating on the wall. This study was financially supported by the Office of Naval Research (ONR) through Contract No. 3002453814.

  15. Laser Induced Fluorescence Diagnostic for the Plasma Couette Experiment

    Science.gov (United States)

    Katz, Noam; Skiff, Fred; Collins, Cami; Weisberg, Dave; Wallace, John; Clark, Mike; Garot, Kristine; Forest, Cary

    2010-11-01

    The Plasma Couette Experiment (PCX) at U. Wisconsin-Madison consists of a rotating high-beta plasma and is well-suited to the study of flow-driven, astrophysically-relevant plasma phenomena. PCX confinement relies on alternating rings of 1kG permanent magnets and the rotation is driven by electrode rings, interspersed between the magnets, which provide an azimuthal ExB. I will discuss the development of a laser-induced fluorescence diagnostic (LIF) to characterize the ion distribution function of argon plasmas in PCX. The LIF system--which will be scanned radially--will be used to calibrate internal Mach probes, as well as to measure the time-resolved velocity profile, ion temperature and density non-perturbatively. These diagnostics will be applied to study the magneto-rotational instability in a plasma, as well as the buoyancy instability thought to be involved in producing the solar magnetic field. This work is supported by NSF and DOE.

  16. Protein fiber linear dichroism for structure determination and kinetics in a low-volume, low-wavelength couette flow cell.

    Science.gov (United States)

    Dafforn, Timothy R; Rajendra, Jacindra; Halsall, David J; Serpell, Louise C; Rodger, Alison

    2004-01-01

    High-resolution structure determination of soluble globular proteins relies heavily on x-ray crystallography techniques. Such an approach is often ineffective for investigations into the structure of fibrous proteins as these proteins generally do not crystallize. Thus investigations into fibrous protein structure have relied on less direct methods such as x-ray fiber diffraction and circular dichroism. Ultraviolet linear dichroism has the potential to provide additional information on the structure of such biomolecular systems. However, existing systems are not optimized for the requirements of fibrous proteins. We have designed and built a low-volume (200 microL), low-wavelength (down to 180 nm), low-pathlength (100 microm), high-alignment flow-alignment system (couette) to perform ultraviolet linear dichroism studies on the fibers formed by a range of biomolecules. The apparatus has been tested using a number of proteins for which longer wavelength linear dichroism spectra had already been measured. The new couette cell has also been used to obtain data on two medically important protein fibers, the all-beta-sheet amyloid fibers of the Alzheimer's derived protein Abeta and the long-chain assemblies of alpha1-antitrypsin polymers.

  17. Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow

    Science.gov (United States)

    Alam, Meheboob; Arakeri, V. H.; Nott, P. R.; Goddard, J. D.; Herrmann, H. J.

    2005-01-01

    Linear stability theory and bifurcation analysis are used to investigate the role of gravity in shear-band formation in granular Couette flow, considering a kinetic-theory rheological model. We show that the only possible state, at low shear rates, corresponds to a "plug" near the bottom wall, in which the particles are densely packed and the shear rate is close to zero, and a uniformly sheared dilute region above it. The origin of such plugged states is shown to be tied to the spontaneous symmetry-breaking instabilities of the gravity-free uniform shear flow, leading to the formation of ordered bands of alternating dilute and dense regions in the transverse direction, via an infinite hierarchy of pitchfork bifurcations. Gravity plays the role of an "imperfection", thus destroying the "perfect" bifurcation structure of uniform shear. The present bifurcation problem admits universal unfolding of pitchfork bifurcations which subsequently leads to the formation of a sequence of a countably infinite number of "isolas", with the solution structures being a modulated version of their gravity-free counterpart. While the solution with a plug near the bottom wall looks remarkably similar to the shear-banding phenomenon in dense slow granular Couette flows, a "floating" plug near the top wall is also a solution of these equations at high shear rates. A two-dimensional linear stability analysis suggests that these floating plugged states are unstable to long-wave travelling disturbances.The unique solution having a bottom plug can also be unstable to long waves, but remains stable at sufficiently low shear rates. The implications and realizability of the present results are discussed in the light of shear-cell experiments under "microgravity" conditions.

  18. Turbulent pattern formation in plane Couette flow: modelling and investigation of mechanisms

    International Nuclear Information System (INIS)

    Rolland, Joran; Manneville, Paul

    2011-01-01

    In the transitional range of Reynolds number, plane Couette flow exhibits oblique turbulent bands. We focus on a Kelvin-Helmholtz instability occurring in the intermediate area between turbulent and laminar flow. The instability is characterised by means of Direct Numerical Simulations (DNS): a short wavelength instability, localised and advected in the spanwise direction. The coherent background flow on which the instability develops is extracted from DNS data, and an analytical formulation for the background flow is proposed. Linear stability analysis is performed to investigate its main mechanisms and its convective or absolute nature, depending on the location in the flow. Both DNS and linear stability analysis indicate that the instability takes place in a confined area 'inside' turbulent streaks. This proceeding sums up the results from an article in preparation (Rolland, 2011).

  19. Magnetic Fields in the Interstellar Medium

    Science.gov (United States)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  20. Low-Reynolds number flow of a viscous fluid in a channel partially filled with a porous medium

    International Nuclear Information System (INIS)

    Deng, C.; Martinez, D.M.

    2003-01-01

    Steady flow inside a rectangular channel with wall suction and partially filled with a porous material is examined. We solve the Navier-Stokes equations in the clear fluid region of the channel and the Brinkman extended Darcy's law in the porous material. The stress jump conditions outlined by Ochoa-Tapia and Whitaker are employed at the interface between these two regions. Ochoa-Tapia and Whitaker's conditions contain an empirical constant β which is unknown a priori. In this work we propose a method to estimate β. To do so, we solve for the flow field using two different approaches. In the first approach, the flow is assumed to be of similarity form and a new asymmetric solution is reported; β is retained in this formulation. In the second approach, we re-pose the equations of motion over the entire domain by considering the porous medium as a sink-term (which can be turned on and off); β is not required in this formulation. We estimate the value of β by comparing the resulting flow fields. (author)

  1. Vortex formation in Taylor-Couette flow with weakly spatial modulation

    International Nuclear Information System (INIS)

    Li, Z.; Khayat, R.E.

    2002-01-01

    The onset of the vortex structure in axisymmetric Taylor-Couette flow with spatially modulated cylinders is examined. The modulation amplitude is assumed to be small for a regular perturbation solution to be sought at small to moderate Taylor numbers. It is found that the presence of a weak modulation of the outer or inner cylinders leads unavoidably to the emergence of steady vortex flow even for a vanishingly small Taylor number. This situation is reminiscent of the onset of an imperfect bifurcation. The vortex structure of the forced TVF is found to have same periodicity when only one cylinder is modulated or the two modulations are commensurate for the Taylor number measured. The vortex structure is quasi-periodic when the two modulations are incommensurate. For a certain Taylor number, there exists a critical wavelength for the presence of the strongest vortex flow when the modulation is in the form of sinusoidal. This critical wavelength tends to the critical value predicted by the linear stability analysis when Ta approaches the supercritical value. (author)

  2. Numerical investigations of passive scalar transport in Taylor-Couette flows: Counter-rotation effect

    Science.gov (United States)

    Ouazib, Nabila; Salhi, Yacine; Si-Ahmed, El-Khider; Legrand, Jack; Degrez, G.

    2017-07-01

    Numerical methods for solving convection-diffusion-reaction (CDR) scalar transport equation in three-dimensional flow are used in the present investigation. The flow is confined between two concentric cylinders both the inner cylinder and the outer one are allowed to rotate. Direct numerical simulations (DNS) have been achieved to study the effects of the gravitational and the centrifugal potentials on the stability of incompressible Taylor-Couette flow. The Navier-Stokes equations and the uncoupled convection-diffusion-reaction equation are solved using a spectral development in one direction combined together with a finite element discretization in the two remaining directions. The complexity of the patterns is highlighted. Since, it increases as the rotation rates of the cylinders increase. In addition, the effect of the counter-rotation of the cylinders on the mass transfer is pointed out.

  3. Isomorph invariance of Couette shear flows simulated by the SLLOD equations of motion

    DEFF Research Database (Denmark)

    Separdar, Leila; Bailey, Nicholas; Schrøder, Thomas

    2013-01-01

    fluctuations of virial and potential energy. Such systems have good isomorphs (curves in the thermodynamic phase diagram along which structural, dynamical, and some thermodynamic quantities are invariant when expressed in reduced units). The SLLOD equations of motion were used to simulate Couette shear flows......Non-equilibrium molecular dynamics simulations were performed to study the thermodynamic, structural, and dynamical properties of the single-component Lennard-Jones and the Kob-Andersen binary Lennard-Jones liquids. Both systems are known to have strong correlations between equilibrium thermal...... of the two systems. We show analytically that these equations are isomorph invariant provided the reduced strain rate is fixed along the isomorph. Since isomorph invariance is generally only approximate, a range of strain rates were simulated to test for the predicted invariance, covering both the linear...

  4. Pions in the nuclear medium

    International Nuclear Information System (INIS)

    Chanfray, G.

    1996-07-01

    We discuss various aspects of pion physics in the nuclear medium. We first study s-wave pion-nucleus interaction in connection with chiral symmetry restoration and quark condensate in the nuclear medium. We then address the question of p-wave pion-nucleus interaction and collective pionic modes in nuclei and draw the consequences for in medium ππ correlations especially in the scalar-isoscalar channel. We finally discuss the modification of the rho meson mass spectrum at finite density and/or temperature in connection with relativistic heavy ion collisions

  5. Development of a miniature Taylor-Couette extractor column for nuclear solvent extraction

    International Nuclear Information System (INIS)

    Shekhar Kumar; Sivakumar, D.; Bijendra Kumar; Kamachi Mudali, U.; Natarajan, R.

    2012-01-01

    Miniature annular centrifugal contactors are nearly perfect for shielded hot-cell applications during flowsheet evaluation but these contactors require complex maintenance of electrical drive-motors during radioactive experiments. To reduce the number of electrical drives in the shielded cell, an indigenous design of miniature Taylor Couette (TC) mixing based countercurrent differential extraction column has been developed. In this paper, results of mass transfer experiments for an indigenously developed TC column with 30% TBP/aqueous nitric acid solutions are reported. The developed device worked perfectly in counter-current differential mode and demonstrated equivalence to multiple-extraction stages while working with a single electrical drive. The developed TC unit demonstrated operation with a reduced efficiency without flooding even in absence of rotor rotation. This observation is a vital step towards designing of robust contactors, which do not flood during temporary power failure or failure of drive mechanism. (author)

  6. Poiseuille, thermal transpiration and Couette flows of a rarefied gas between plane parallel walls with nonuniform surface properties in the transverse direction and their reciprocity relations

    Science.gov (United States)

    Doi, Toshiyuki

    2018-04-01

    Slow flows of a rarefied gas between two plane parallel walls with nonuniform surface properties are studied based on kinetic theory. It is assumed that one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary whose accommodation coefficient varies periodically in the direction perpendicular to the flow. The time-independent Poiseuille, thermal transpiration and Couette flows are considered. The flow behavior is numerically studied based on the linearized Bhatnagar-Gross-Krook-Welander model of the Boltzmann equation. The flow field, the mass and heat flow rates in the gas, and the tangential force acting on the wall surface are studied over a wide range of the gas rarefaction degree and the parameters characterizing the distribution of the accommodation coefficient. The locally convex velocity distribution is observed in Couette flow of a highly rarefied gas, similarly to Poiseuille flow and thermal transpiration. The reciprocity relations are numerically confirmed over a wide range of the flow parameters.

  7. Medium Access Control for Opportunistic Concurrent Transmissions under Shadowing Channels

    Directory of Open Access Journals (Sweden)

    Seung Min Hur

    2009-06-01

    Full Text Available We study the problem of how to alleviate the exposed terminal effect in multihop wireless networks in the presence of log-normal shadowing channels. Assuming node location information, we propose an extension of the IEEE 802.11 MAC protocol that schedules concurrent transmissions in the presence of log-normal shadowing, thus mitigating the exposed terminal problem and improving network throughput and delay performance. We observe considerable improvements in throughput and delay achieved over the IEEE 802.11 MAC under various network topologies and channel conditions in ns-2 simulations, which justify the importance of considering channel randomness in MAC protocol design for multihop wireless networks.

  8. Medium Access Control for Opportunistic Concurrent Transmissions under Shadowing Channels.

    Science.gov (United States)

    Son, In Keun; Mao, Shiwen; Hur, Seung Min

    2009-01-01

    We study the problem of how to alleviate the exposed terminal effect in multi-hop wireless networks in the presence of log-normal shadowing channels. Assuming node location information, we propose an extension of the IEEE 802.11 MAC protocol that sched-ules concurrent transmissions in the presence of log-normal shadowing, thus mitigating the exposed terminal problem and improving network throughput and delay performance. We observe considerable improvements in throughput and delay achieved over the IEEE 802.11 MAC under various network topologies and channel conditions in ns-2 simulations, which justify the importance of considering channel randomness in MAC protocol design for multi-hop wireless networks.

  9. Experimental Studies of Acoustics in a Spherical Couette Flow

    Science.gov (United States)

    Gowen, Savannah; Adams, Matthew; Stone, Douglas; Lathrop, Daniel

    2016-11-01

    The Earth, like many other astrophysical bodies, contains turbulent flows of conducting fluid which are able to sustain magnetic field. To investigate the hydromagnetic flow in the Earth's outer core, we have created an experiment which generates flows in liquid sodium. However, measuring these flows remains a challenge because liquid sodium is opaque. One possible solution is the use of acoustic waves. Our group has previously used acoustic wave measurements in air to infer azimuthal velocity profiles, but measurements attempted in liquid sodium remain challenging. In the current experiments we measure acoustic modes and their mode splittings in both air and water in a spherical Couette device. The device is comprised of a hollow 30-cm outer sphere which contains a smaller 10-cm rotating inner sphere to drive flow in the fluid in between. We use water because it has material properties that are similar to those of sodium, but is more convenient and less hazardous. Modes are excited and measured using a speaker and microphones. Measured acoustic modes and their mode splittings correspond well with the predicted frequencies in air. However, water modes are more challenging. Further investigation is needed to understand acoustic measurements in the higher density media.

  10. Three-dimensional fluctuating Couette flow through the porous plates with heat transfer

    Directory of Open Access Journals (Sweden)

    M. Guria

    2006-06-01

    Full Text Available Unsteady Couette flow of a viscous incompressible fluid between two horizontal porous flat plates is considered. The stationary plate is subjected to a periodic suction and the plate in uniform motion is subjected to uniform injection. Approximate solutions have been obtained for the velocity and the temperature fields, skin friction by using perturbation technique. The heat transfer characteristic has also been studied on taking viscous dissipation into account. It is found that the main flow velocity decreases with increase in frequency parameter. On the other hand, the magnitude of the cross-flow velocity increases with increase in frequency parameter. It is seen that the amplitude of the shear stress due to main flow decreases while that due to cross-flow increases with increase in frequency parameter. It is also seen that the tangent of phase shifts both due to the main and cross-flows decrease with increase in frequency parameter. It is observed that the temperature increases with increase in frequency parameter.

  11. Effect of Substrate Friction in a Two-Dimensional Granular Couette Shearing Cell

    Science.gov (United States)

    Templeman, Chris; Garg, Shila

    2001-03-01

    An investigation of the effect of substrate friction on the kinematics of rigid granular material in a two-dimensional granular Couette shearing cell was conducted. Cylindrical disks resting on a substrate were packed between a stationary outer ring and a rotating inner wheel. Previous work reports the velocity and particle rotation rates as a function of packing fraction and shearing rates [1]. The authors report the existence of a stick-slip condition of the disks in contact with the shearing wheel. The focus of our study is to investigate the impact of the substrate friction on the stick-slip condition as well as the kinematics of the system in general. [1] C.T. Veje, Daniel W. Howell, and R.P Behringer, Phys. Rev. E 59, 739 (1999). This research was partially supported by the Copeland Fund, administered by The College of Wooster. C.T. received support from NASA GRC LERCIP internship program.

  12. Thermal treatment of starch slurry in Couette-Taylor flow apparatus

    Directory of Open Access Journals (Sweden)

    Hubacz Robert

    2017-09-01

    Full Text Available In this paper, thermal processing of starch slurry in a Couette-Taylor flow (CTF apparatus was investigated. Gelatinized starch dispersion, after treatment in the CTF apparatus, was characterized using such parameters like starch granule diameters (or average diameter, starch granule swelling degree (quantifying the amount of water absorbed by starch granules and concentration of dissolved starch. These parameters were affected mostly by the process temperature, although the impact of the axial flow or rotor rotation on them was also observed. Moreover, the analysis of results showed a relatively good correlation between these parameters, as well as, between those parameter and apparent viscosity of gelatinized starch dispersion. Meanwhile, the increase in the value of the apparent viscosity and in shear-tinning behaviour of dispersion was associated with the progress of starch processing in the CTF apparatus. Finally, the CTF apparatuses of different geometries were compared using numerical simulation of the process. The results of the simulation indicated that the apparatus scaling-up without increasing the width of the gap between cylinders results in higher mechanical energy consumption per unit of processed starch slurry.

  13. Ultrasonic velocity profiling rheometry based on a widened circular Couette flow

    International Nuclear Information System (INIS)

    Shiratori, Takahisa; Tasaka, Yuji; Oishi, Yoshihiko; Murai, Yuichi

    2015-01-01

    We propose a new rheometry for characterizing the rheological properties of fluids. The technique produces flow curves, which represent the relationship between the fluid shear rate and shear stress. Flow curves are obtained by measuring the circumferential velocity distribution of tested fluids in a circular Couette system, using an ultrasonic velocity profiling technique. By adopting a widened gap of concentric cylinders, a designed range of the shear rate is obtained so that velocity profile measurement along a single line directly acquires flow curves. To reduce the effect of ultrasonic noise on resultant flow curves, several fitting functions and variable transforms are examined to best approximate the velocity profile without introducing a priori rheological models. Silicone oil, polyacrylamide solution, and yogurt were used to evaluate the applicability of this technique. These substances are purposely targeted as examples of Newtonian fluids, shear thinning fluids, and opaque fluids with unknown rheological properties, respectively. We find that fourth-order Chebyshev polynomials provide the most accurate representation of flow curves in the context of model-free rheometry enabled by ultrasonic velocity profiling. (paper)

  14. Medium- and long-term consequences of pollution on labor supply: evidence from Indonesia

    Directory of Open Access Journals (Sweden)

    Younoh Kim

    2017-04-01

    Full Text Available Abstract We use a natural experiment in Indonesia to study the medium- and long-term effects of air pollution on labor supply. We find that exposure to air pollution reduces hours worked and while the medium-term effects are larger in magnitude, some effects do persist in the long term. More interestingly, we are able to provide some insight regarding the underlying channels that contribute to the reduced labor supply. Own health seems to be the only responsible channel in the long term, while in the medium term, a different channel based on dependent caregiving is the most important. JEL Classification: J22, Q53

  15. Experimental investigation of thermal processes in the multi-ring Couette system with counter rotation of cylinders

    Science.gov (United States)

    Mamonov, V. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2016-01-01

    The effect of parameters of the multi-ring Couette system with counter rotating coaxial cylinders on the process of thermal energy release in a viscous liquid filling this system is considered with regard to the problem of determining the possibility of creating the high-performance wind heat generator. The multi-cylinder rotor design allows directly conversion of the mechanical power of a device consisting of two "rotor" wind turbines with a common axis normal to the air flow into the thermal energy in a wide range of rotational speed of the cylinders. Experimental results on the measurement of thermal power released in the pilot heat generator at different relative angular speeds of cylinder rotation are presented.

  16. Development of a Couette-Taylor flow device with active minimization of secondary circulation

    International Nuclear Information System (INIS)

    Schartman, Ethan

    2009-01-01

    A novel Taylor-Couette experiment has been developed to produce rotating shear flows for the study of hydrodynamic and magnetohydrodynamic instabilities which are believed to drive angular momentum transport in astrophysical accretion disks. High speed, concentric, corotating cylinders generate the flow where the height of the cylinders is twice the radial gap width. Ekman pumping is controlled and minimized by splitting the vertical boundaries into pairs of nested, differentially rotating rings. The end rings and cylinders comprise four independently driven rotating components which provide exibility in developing flow profiles. The working fluids of the experiment are water, a water-glycerol mix, or a liquid gallium alloy. The mechanical complexity of the apparatus and large dynamic pressures generated by high speed operation with the gallium alloy presented unique challenges. The mechanical implementation of the experiment and some representative results obtained with Laser Doppler Velocimetry in water are discussed

  17. Development of a Couette-Taylor flow device with active minimization of secondary circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ethan Schartman

    2009-01-27

    A novel Taylor-Couette experiment has been developed to produce rotating shear ows for the study of hydrodynamic and magnetohydrodynamic instabilities which are believed to drive angular momentum transport in astrophysical accretion disks. High speed, concentric, corotating cylinders generate the flow where the height of the cylinders is twice the radial gap width. Ekman pumping is controlled and minimized by splitting the vertical boundaries into pairs of nested, differentially rotating rings. The end rings and cylinders comprise four independently driven rotating components which provide exibility in developing flow profiles. The working fluids of the experiment are water, a water-glycerol mix, or a liquid gallium alloy. The mechanical complexity of the apparatus and large dynamic pressures generated by high speed operation with the gallium alloy presented unique challenges. The mechanical implementation of the experiment and some representative results obtained with Laser Doppler Velocimetry in water are discussed.

  18. Velocity and thermal slip effects on MHD third order blood flow in an irregular channel though a porous medium with homogeneous/ heterogeneous reactions

    Science.gov (United States)

    Gnaneswara Reddy, M.

    2017-09-01

    This communication presents the transportation of third order hydromagnetic fluid with thermal radiation by peristalsis through an irregular channel configuration filled a porous medium under the low Reynolds number and large wavelength approximations. Joule heating, Hall current and homogeneous-heterogeneous reactions effects are considered in the energy and species equations. The Second-order velocity and energy slip restrictions are invoked. Final dimensionless governing transport equations along the boundary restrictions are resolved numerically with the help of NDsolve in Mathematica package. Impact of involved sundry parameters on the non-dimensional axial velocity, fluid temperature and concentration characteristics have been analyzed via plots and tables. It is manifest that an increasing porosity parameter leads to maximum velocity in the core part of the channel. Fluid velocity boosts near the walls of the channel where as the reverse effect in the central part of the channel for higher values of first order slip. Larger values of thermal radiation parameter R reduce the fluid temperature field. Also, an increase in heterogeneous reaction parameter Ks magnifies the concentration profile. The present study has the crucial application of thermal therapy in biomedical engineering.

  19. Experimental investigation of torque scaling and coherent structures in turbulent Taylor–Couette flow

    International Nuclear Information System (INIS)

    Tokgoz, S; Elsinga, G E; Delfos, R; Westerweel, J

    2011-01-01

    The effect of flow structures to the torque values of fully turbulent Taylor-Couette flow was experimentally studied using tomographic PIV. The measurements were performed for various relative cylinder rotation speeds and Reynolds numbers, based on a study of Ravelet et al. (2010). We confirmed that the flow structures are strongly influenced by the rotation number. Our analyses using time-averaged mean flow showed the presence of Taylor vortices for the two smallest rotation numbers that were studied. Increasing the rotation number initially resulted in the shape deformation of the Taylor vortices. Further increment towards only outer cylinder rotation, showed transition to the dominance of the small scale vortices and absence of Taylor vortex-like structures. We compared the transition of the flow structures with the curves of dimensionless torque. Sudden changes of the flow structures confirmed the presence of transition points on the torque curve, where the dominance of small and large scale vortical structures on the mean flow interchanges.

  20. Measurements of particle dynamics in slow, dense granular Couette flow

    Science.gov (United States)

    Mueth, Daniel M.

    2003-01-01

    Experimental measurements of particle dynamics on the lower surface of a three-dimensional (3D) Couette cell containing monodisperse spheres are reported. The average radial density and velocity profiles are similar to those previously measured within the bulk and on the lower surface of the 3D cell filled with mustard seeds. Observations of the evolution of particle velocities over time reveal distinct motion events, intervals where previously stationary particles move for a short duration before jamming again. The cross correlation between the velocities of two particles at a given distance r from the moving wall reveals a characteristic length scale over which the particles are correlated. The autocorrelation of a single particle’s velocity reveals a characteristic time scale τ, which decreases with increasing distance from the inner moving wall. This may be attributed to the increasing rarity at which the discrete motion events occur and the reduced duration of those events at large r. The relationship between the rms azimuthal velocity fluctuations, δvθ(r), and average shear rate, γ˙(r), was found to be δvθ∝γ˙α with α=0.52±0.04. These observations are compared with other recent experiments and with the modified hydrodynamic model recently introduced by Bocquet et al.

  1. Two pion mediated scalar isoscalar NN interaction in the nuclear medium

    International Nuclear Information System (INIS)

    Kaskulov, Murat M.; Oset, E.; Vacas, M.J. Vicente

    2006-01-01

    We study the modification of the nucleon-nucleon interaction in a nuclear medium in the scalar isoscalar channel, mediated by the exchange of two correlated (σ channel) or uncorrelated pions. For this purpose we use a standard approach for the renormalization of pions in nuclei. The corrections obtained for the NN interaction in the medium in this channel are of the order of 20% of the free one in average, and the consideration of short-range correlations plays an important role in providing these moderate changes. Yet, the corrections are sizable enough to suggest further studies of the stability and properties of nuclear matter

  2. Generalized Couette Poiseuille flow with boundary mass transfer

    Science.gov (United States)

    Marques, F.; Sanchez, J.; Weidman, P. D.

    1998-11-01

    A generalized similarity formulation extending the work of Terrill (1967) for Couette Poiseuille flow in the annulus between concentric cylinders of infinite extent is given. Boundary conditions compatible with the formulation allow a study of the effects of inner and outer cylinder transpiration, rotation, translation, stretching and twisting, in addition to that of an externally imposed constant axial pressure gradient. The problem is governed by [eta], the ratio of inner to outer radii, a Poiseuille number, and nine Reynolds numbers. Single-cylinder and planar problems can be recovered in the limits [eta][rightward arrow]0 and [eta][rightward arrow]1, respectively. Two coupled primary nonlinear equations govern the meridional motion generated by uniform mass flux through the porous walls and the azimuthal motion generated by torsional movement of the cylinders; subsidiary equations linearly slaved to the primary flow govern the effects of cylinder translation, cylinder rotation, and an external pressure gradient. Steady solutions of the primary equations for uniform source/sink flow of strength F through the inner cylinder are reported for 0[less-than-or-eq, slant][eta][less-than-or-eq, slant]1. Asymptotic results corroborating the numerical solutions are found in different limiting cases. For F0 is more complex in that unique solutions are found at low Reynolds numbers, a region of triple solutions exists at moderate Reynolds numbers, and a two-cell solution prevails at large Reynolds numbers. The subsidiary linear equations are solved at [eta]=0.5 to exhibit the effects of cylinder translation, rotation, and an axial pressure gradient on the source/sink flows.

  3. Drag Measurements over Embedded Cavities in a Low Reynolds Number Couette Flow

    Science.gov (United States)

    Gilmer, Caleb; Lang, Amy; Jones, Robert

    2010-11-01

    Recent research has revealed that thin-walled, embedded cavities in low Reynolds number flow have the potential to reduce the net viscous drag force acting on the surface. This reduction is due to the formation of embedded vortices allowing the outer flow to pass over the surface via a roller bearing effect. It is also hypothesized that the scales found on butterfly wings may act in a similar manner to cause a net increase in flying efficiency. In this experimental study, rectangular embedded cavities were designed as a means of successfully reducing the net drag across surfaces in a low Reynolds number flow. A Couette flow was generated via a rotating conveyor belt immersed in a tank of high viscosity mineral oil above which the plates with embedded cavities were placed. Drag induced on the plate models was measured using a force gauge and compared directly to measurements acquired over a flat plate. Various cavity aspect ratios and gap heights were tested in order to determine the conditions under which the greatest drag reductions occurred.

  4. Experimental investigation of rotation resistance moment energy spectra in multicylindrical circular Couette system with independently rotating cylinders

    Directory of Open Access Journals (Sweden)

    Serov Anatoly

    2017-01-01

    Full Text Available The torque of the rotational resistance in the Ku-Etta multi-cylinder system rotating in the direction towards each other is measured. The experiments were carried out for three values of the kinematic viscosity of the working fluid that fills the multicylinder system: water at a temperature of 24 °C (viscosity 0.9 cSt, an aqueous solution of glycerol at 20 °C and 41 °C (2.5 cSt and 5.2 cSt. An attempt is made to investigate the features of a viscous flow in the multicolor Couette flow system from the analysis of the energy spectra of the moment of resistance to rotation of cylinders.

  5. Uniform, stable supply of medium for in vitro cell culture using a robust chamber

    Science.gov (United States)

    Wei, Juan; Liu, Chong; Jiang, Yang; Liu, Tao; Chen, Li; Liu, Bo; Li, Jingmin

    2018-06-01

    A uniform, stable supply of medium is important for in vitro cell culture. In this paper, a microfluidic device is presented for culturing cells inside a robust chamber with continuous perfusion of medium. The device consists of a main channel, two bifurcated channels and a culture chamber. The culture chamber connects to the bifurcated channels via multiple paths, and distributes symmetrically on the main channel, to improve the efficiency of medium exchange. Furthermore, regular polygonal chambers with various numbers of edges have been designed, to study the effects of chamber shape on flow fields. The finite element method has been employed to predict the effects of multiple paths on the uniformity and stability of flow fields in the culture chamber. Particle tracking technology has been used to evaluate the flow fields in the chambers, and PC-12 cells have been cultured using the microfluidic device, to test its validity. The results of simulation and experiment indicate that the microfluidic design could provide a continuous interstitial-like flow microenvironment, with a relatively stable and uniform supply of medium.

  6. Laboratory Experiments on Meandering Meltwater Channels

    Science.gov (United States)

    Fernandez, R.; Berens, J.; Parker, G.; Stark, C. P.

    2017-12-01

    Meandering channels of all scales and flowing over a wide variety of media have common planform patterns. Although the analogy in planform suggests there is a common underlying framework, the constitutive relations driving planform evolution through vertical incision/deposition and lateral migration differ from medium to medium. The driving processes in alluvial and mixed bedrock-alluvial meandering channels have been studied substantially over the last decades. However, this is not the case for meandering channels in other media such as ice or soluble rock. Here we present results from experiments conducted at the Ven Te Chow Hydrosystems Laboratory of the University of Illinois at Urbana-Champaign on meltwater meandering channels. A rivulet is carved into an ice block and water is allowed to flow at a constant discharge. Planform evolution is analyzed with time lapse imaging and complemented with rubber molds of the channel once the experiment is over. These molds give us the full 3D structure of the meandering, including incisional overhang. Vertical incision rates are measured throughout the run by taking elevations along the channel, and these measurements are complemented with analysis from the molds. We show examples of meandering of intense amplitude with deep overhangs. Features resembling scroll bars document cyclically punctuated melting. We report on lateral migration rates, incision rates, sinuosity, channel depths, channel widths, reach averaged velocities, bend wavelengths and amplitudes and compare them to values reported in the literature for alluvial rivers.

  7. Macro-Micro Simulation for Polymer Crystallization in Couette Flow

    Directory of Open Access Journals (Sweden)

    Chunlei Ruan

    2017-12-01

    Full Text Available Polymer crystallization in manufacturing is a process where quiescent crystallization and flow-induced crystallization coexists, and heat/mass transfer on a macroscopic level interacts with crystal morphology evolution on a microscopic level. Previous numerical studies on polymer crystallization are mostly concentrated at a single scale; they only calculate macroscale parameters, e.g., temperature and relative crystallinity, or they only predict microstructure details, e.g., crystal morphology and mean size of crystals. The multi-scale numerical works that overcome these disadvantages are unfortunately based on quiescent crystallization, in which flow effects are neglected. The objective of this work is to build up a macro-micro model and a macro-micro algorithm to consider both the thermal and flow effects on the crystallization. Our macro-micro model couples two parts: mass and heat transfer of polymeric flow at the macroscopic level, and nucleation and growth of spherulites and shish-kebabs at the microscopic level. Our macro-micro algorithm is a hybrid finite volume/Monte Carlo method, in which the finite volume method is used at the macroscopic level to calculate the flow and temperature fields, while the Monte Carlo method is used at the microscopic level to capture the development of spherulites and shish-kebabs. The macro-micro model and the macro-micro algorithm are applied to simulate polymer crystallization in Couette flow. The effects of shear rate, shear time, and wall temperature on the crystal morphology and crystallization kinetics are also discussed.

  8. Axisymmetrical separator for separating particulate matter from a fluid carrying medium

    Science.gov (United States)

    Linhardt, Hans D.

    1984-09-04

    A separator for separating particles carried in a fluid carrying medium is disclosed. The separator includes an elongated duct and associated openings incorporated in a solid body. The duct is axisymmetrical relative to its longitudinal axis, and includes a curved wall portion having a curved cross-section taken along the longitudinal axis. An axisymmetrical opening located downstream of the curved wall portion leads from the duct into an axisymmetrical channel which is substantially radially disposed relative to the longitudinal axis. Continuation of the duct downstream of the opening is a discharge portion which is substantially colinear with the longitudinal axis. In operation, a substantial majority of the fluid carrying medium leaves the duct radially through the opening and channel in a state substantially free of particles. A remaining small portion of the fluid carrying medium and a substantial majority of the particles are channelled into the discharge portion by centrifugal forces arising due to travel of the particles along the curved walls. For industrial scale separation of particles from a fluid carrying medium, such as for the clean-up of stack gases, an array of several hundred to several thousand of the separators is provided.

  9. Hydrodynamic instabilities and concentration polarization coupled by osmotic pressure in a Taylor-Couette cell

    Science.gov (United States)

    Martinand, Denis; Tilton, Nils

    2016-11-01

    This study addresses analytically and numerically the coupling between hydrodynamic instabilities and osmotic pressure driven by concentration polarization. The configuration consists of a Taylor-Couette cell filled with a Newtonian fluid carrying a passive scalar. Whereas the concentric inner and outer cylinders are membranes permeable to the solvent, they totally reject the scalar. As a radial in- or outflow of solvent is imposed through both cylinders, a concentration boundary layer develops on the cylinder where the solvent exits, until an equilibrium steady state is reached. In addition, the rotation of the inner cylinder is used to drive centrifugal instabilities in the form of toroidal vortices, which interact with the concentration boundary layer. By means of the osmotic pressure, concentration polarization is found to promote or hinder the hydrodynamic instabilities, depending on capacity of the vortices and diffusion to increase the concentration field at the membrane. The results obtained by analytical stability analysis agree with dedicated Direct Numerical Simulations.

  10. Impurity in a granular gas under nonlinear Couette flow

    International Nuclear Information System (INIS)

    Vega Reyes, Francisco; Garzó, Vicente; Santos, Andrés

    2008-01-01

    We study in this work the transport properties of an impurity immersed in a granular gas under stationary nonlinear Couette flow. The starting point is a kinetic model for low-density granular mixtures recently proposed by the authors (Vega Reyes et al 2007 Phys. Rev. E 75 061306). Two routes have been considered. First, a hydrodynamic or normal solution is found by exploiting a formal mapping between the kinetic equations for the gas particles and for the impurity. We show that the transport properties of the impurity are characterized by the ratio between the temperatures of the impurity and gas particles and by five generalized transport coefficients: three related to the momentum flux (a nonlinear shear viscosity and two normal stress differences) and two related to the heat flux (a nonlinear thermal conductivity and a cross-coefficient measuring a component of the heat flux orthogonal to the thermal gradient). Second, by means of a Monte Carlo simulation method we numerically solve the kinetic equations and show that our hydrodynamic solution is valid in the bulk of the fluid when realistic boundary conditions are used. Furthermore, the hydrodynamic solution applies to arbitrarily (inside the continuum regime) large values of the shear rate, of the inelasticity, and of the rest of the parameters of the system. Preliminary simulation results of the true Boltzmann description show the reliability of the nonlinear hydrodynamic solution of the kinetic model. This shows again the validity of a hydrodynamic description for granular flows, even under extreme conditions, beyond the Navier–Stokes domain

  11. DISTRIBUTION CHANNELS AND THEIR ROLES IN THE ENTERPRISE

    OpenAIRE

    W³adys³aw Pêka³a; Piotr Szopa

    2012-01-01

    The paper discusses the distribution channels, their structural and functional classification and the importance of intermediaries in the flow of goods between the manufacturer and purchaser. Pointed to the rapidly growing share of electronic distribution channels and the conditions of their market dominance in the medium term.

  12. Cultivation of the photosynthesis microorganism in a Taylor-Couette Vortex Flow with a small aspect ratio

    Science.gov (United States)

    Kawai, H.; Yasui, S.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    This study focuses on the dynamics of the Taylor-Couette Vortex Flow (TVF) in a photo-bioreactor in which CO2 is changed to O2 with high efficiency by the photosynthesis ability of micro algae. Stirring by means of a screw propeller is generally used for a simple agitation. However, the problem is that there exists a very high shearing flow region just near the propeller, which causes the destruction of the alga cell by the shearing force. In contrast, the TVF mixing is expected to reduce such a local and random shearing force because of their column of steady and orderly vortices. In this study, the relationship between the microorganism growth rate and the flow structures in dilute suspensions of a TVF is investigated and the flow characteristics are measured by using an ultrasonic velocity profiler with a small aspect ratio of 3.

  13. Cultivation of the photosynthesis microorganism in a Taylor-Couette Vortex Flow with a small aspect ratio

    International Nuclear Information System (INIS)

    Kawai, H; Yasui, S; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    This study focuses on the dynamics of the Taylor-Couette Vortex Flow (TVF) in a photo-bioreactor in which CO 2 is changed to O 2 with high efficiency by the photosynthesis ability of micro algae. Stirring by means of a screw propeller is generally used for a simple agitation. However, the problem is that there exists a very high shearing flow region just near the propeller, which causes the destruction of the alga cell by the shearing force. In contrast, the TVF mixing is expected to reduce such a local and random shearing force because of their column of steady and orderly vortices. In this study, the relationship between the microorganism growth rate and the flow structures in dilute suspensions of a TVF is investigated and the flow characteristics are measured by using an ultrasonic velocity profiler with a small aspect ratio of 3.

  14. Asymptotic theory of neutral stability of the Couette flow of a vibrationally excited gas

    Science.gov (United States)

    Grigor'ev, Yu. N.; Ershov, I. V.

    2017-01-01

    An asymptotic theory of the neutral stability curve for a supersonic plane Couette flow of a vibrationally excited gas is developed. The initial mathematical model consists of equations of two-temperature viscous gas dynamics, which are used to derive a spectral problem for a linear system of eighth-order ordinary differential equations within the framework of the classical linear stability theory. Unified transformations of the system for all shear flows are performed in accordance with the classical Lin scheme. The problem is reduced to an algebraic secular equation with separation into the "inviscid" and "viscous" parts, which is solved numerically. It is shown that the thus-calculated neutral stability curves agree well with the previously obtained results of the direct numerical solution of the original spectral problem. In particular, the critical Reynolds number increases with excitation enhancement, and the neutral stability curve is shifted toward the domain of higher wave numbers. This is also confirmed by means of solving an asymptotic equation for the critical Reynolds number at the Mach number M ≤ 4.

  15. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    Science.gov (United States)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  16. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Electrodynamic energy harvester for electrical transformer's temperature monitoring system ... Numerical investigation into entropy generation in a transient generalized Couette ... Weighted-noise threshold based channel estimation for OFDM systems ... Partial index replicated and distributed scheme for full-text search on ...

  17. Electron angular distribution axial channeling

    International Nuclear Information System (INIS)

    Khokonov, A.Kh.; Khokonov, M.Kh.

    1989-01-01

    Angular distributions of ultra-relativistic electrons are calculated in the assumption about presence of statistical equilibrium. Analysis is based on numerical solution of Fokker-Planck type kinetic equation. It is shown that in contrast to case of amorphous medium, the multiple scattering at axial channeling of negative particles results in self-focusing of the initial beam particles and due to it number of electrons moving at an angles to the chain, which are smaller, than critical angle of channeling, may increase by several times as compared to the initial one

  18. Dechanneling function for relativistic axially channeled electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru

  19. Stability and instability of hydromagnetic Taylor-Couette flows

    Science.gov (United States)

    Rüdiger, Günther; Gellert, Marcus; Hollerbach, Rainer; Schultz, Manfred; Stefani, Frank

    2018-04-01

    Decades ago S. Lundquist, S. Chandrasekhar, P. H. Roberts and R. J. Tayler first posed questions about the stability of Taylor-Couette flows of conducting material under the influence of large-scale magnetic fields. These and many new questions can now be answered numerically where the nonlinear simulations even provide the instability-induced values of several transport coefficients. The cylindrical containers are axially unbounded and penetrated by magnetic background fields with axial and/or azimuthal components. The influence of the magnetic Prandtl number Pm on the onset of the instabilities is shown to be substantial. The potential flow subject to axial fields becomes unstable against axisymmetric perturbations for a certain supercritical value of the averaged Reynolds number Rm bar =√{ Re ṡ Rm } (with Re the Reynolds number of rotation, Rm its magnetic Reynolds number). Rotation profiles as flat as the quasi-Keplerian rotation law scale similarly but only for Pm ≫ 1 while for Pm ≪ 1 the instability instead sets in for supercritical Rm at an optimal value of the magnetic field. Among the considered instabilities of azimuthal fields, those of the Chandrasekhar-type, where the background field and the background flow have identical radial profiles, are particularly interesting. They are unstable against nonaxisymmetric perturbations if at least one of the diffusivities is non-zero. For Pm ≪ 1 the onset of the instability scales with Re while it scales with Rm bar for Pm ≫ 1. Even superrotation can be destabilized by azimuthal and current-free magnetic fields; this recently discovered nonaxisymmetric instability is of a double-diffusive character, thus excluding Pm = 1. It scales with Re for Pm → 0 and with Rm for Pm → ∞. The presented results allow the construction of several new experiments with liquid metals as the conducting fluid. Some of them are described here and their results will be discussed together with relevant diversifications of

  20. Light channeling in medium with periodical change in a refractive index

    International Nuclear Information System (INIS)

    Konstantinov, O.V.; Shmulevich, I.A.

    1982-01-01

    It is shown that light field localization in regions with an increased value of refractive index occurs during light propagation along layers of a volume phase lattice. The effect is analogous to fast electron channeling in monocrystals. The localization is investigated both numeri. cally and by means of an approximated analytical solution of the wave equation representing the generalization of the Raman-Nut known solution (there is no localization within the framework of the Raman-Nut approximation). The localization is effective only in case when light wave length lambda is considerably lesser than lattice spacing d, namely lambda 1 /2, where u 1 - the amplitude of sine modulation of the refractory index. Existence of strong focusing at a distance f=d/4√u 1 is predicted. Common channeling mode arises at distances exceeding f

  1. Performance Evaluation of TDMA Medium Access Control Protocol in Cognitive Wireless Networks

    Directory of Open Access Journals (Sweden)

    Muhammed Enes Bayrakdar

    2017-02-01

    Full Text Available Cognitive radio paradigm has been revealed as a new communication technology that shares channels in wireless networks. Channel assignment is a crucial issue in the field of cognitive wireless networks because of the spectrum scarcity. In this work, we have evaluated the performance of TDMA medium access control protocol. In our simulation scenarios, primary users and secondary users utilize TDMA as a medium access control protocol. We have designed a network environment in Riverbed simulation software that consists of primary users, secondary users, and base stations. In our system model, secondary users sense the spectrum and inform the base station about empty channels. Then, the base station decides accordingly which secondary user may utilize the empty channel. Energy detection technique is employed as a spectrum sensing technique because it is the best when information about signal of primary user is acquired. Besides, different number of users is selected in simulation scenarios in order to obtain accurate delay and throughput results. Comparing analytical model with simulation results, we have shown that performance analysis of our system model is consistent and accurate.

  2. An experimental study of the connection between the hydrodynamic and phase-transition descriptions of the Couette-Taylor instability

    International Nuclear Information System (INIS)

    Berland, T.; Joessang, T.; Feder, J.

    1986-04-01

    The laser doppler velocimetry technique has been used to measure the radial flow velocity in the Taylor vortex flow at several Taylor numbers close to and above the critical value. The first four harmonics of the flow field have been analyzed using a model described by Davey. The analysis demonstrates that the amplitude of the first harmonic of the super-critical flow field can be regarded as the ''order parameter'' of the transition from the laminar Couette flow to the Taylor vortex flow. This transition is described by a generalized Landau theory for classical second order mean-field phase transitions. The analysis of the results of carefully performed experiments not only confirms the findings of earlier experimental work, but in addition all the significant parameters of the full Davey model for this hydrodynamic instability are determied

  3. Experimental Study on Momentum Transfer of Surface Texture in Taylor-Couette Flow

    Science.gov (United States)

    Xue, Yabo; Yao, Zhenqiang; Cheng, De

    2017-05-01

    The behavior of Taylor-Couette (TC) flow has been extensively studied. However, no suitable torque prediction models exist for high-capacity fluid machinery. The Eckhardt-Grossmann-Lohse (EGL) theory, derived based on the Navier-Stokes equations, is proposed to model torque behavior. This theory suggests that surfaces are the significant energy transfer interfaces between cylinders and annular flow. This study mainly focuses on the effects of surface texture on momentum transfer behavior through global torque measurement. First, a power-law torque behavior model is built to reveal the relationship between dimensionless torque and the Taylor number based on the EGL theory. Second, TC flow apparatus is designed and built based on the CNC machine tool to verify the torque behavior model. Third, four surface texture films are tested to check the effects of surface texture on momentum transfer. A stereo microscope and three-dimensional topography instrument are employed to analyze surface morphology. Global torque behavior is measured by rotating a multi component dynamometer, and the effects of surface texture on the annular flow behavior are observed via images obtained using a high-speed camera. Finally, torque behaviors under four different surface conditions are fitted and compared. The experimental results indicate that surface textures have a remarkable influence on torque behavior, and that the peak roughness of surface texture enhances the momentum transfer by strengthening the fluctuation in the TC flow.

  4. Non-linear dynamics and alternating 'flip' solutions in ferrofluidic Taylor-Couette flow

    Science.gov (United States)

    Altmeyer, Sebastian

    2018-04-01

    This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined between two concentric independently rotating cylinders. We detected alternating 'flip' solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion.

  5. K- nuclear potentials from in-medium chirally motivated models

    International Nuclear Information System (INIS)

    Cieply, A.; Gazda, D.; Mares, J.; Friedman, E.; Gal, A.

    2011-01-01

    A self-consistent scheme for constructing K - nuclear optical potentials from subthreshold in-medium KN s-wave scattering amplitudes is presented and applied to analysis of kaonic atoms data and to calculations of K - quasibound nuclear states. The amplitudes are taken from a chirally motivated meson-baryon coupled-channel model, both at the Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms potentials are characterized by a real part -Re V K - chiral =85±5 MeV at nuclear matter density, in contrast to half this depth obtained in some derivations based on in-medium KN threshold amplitudes. The moderate agreement with data is much improved by adding complex ρ- and ρ 2 -dependent phenomenological terms, found to be dominated by ρ 2 contributions that could represent KNN→YN absorption and dispersion, outside the scope of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The effects of p-wave interactions are studied and found secondary to those of the dominant s-wave contributions. The in-medium dynamics of the coupled-channel model is discussed and systematic studies of K - quasibound nuclear states are presented.

  6. Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows

    Science.gov (United States)

    Pereira, Anselmo S.; Mompean, Gilmar; Thompson, Roney L.; Soares, Edson J.

    2017-11-01

    In the present paper, we investigate the polymer-turbulence interaction by discriminating between the mechanical responses of this system to three different subdomains: elliptical, parabolic, and hyperbolic, corresponding to regions where the magnitude of vorticity is greater than, equal to, or less than the magnitude of the rate of strain, respectively, in accordance with the Q-criterion. Recently, it was recognized that hyperbolic structures play a crucial role in the drag reduction phenomenon of viscoelastic turbulent flows, thanks to the observation that hyperbolic structures, as well as vortical ones, are weakened by the action of polymers in turbulent flows in a process that can be referred to as flow parabolization. We employ direct numerical simulations of a viscoelastic finite extensible nonlinear elastic model with the Peterlin approximation to examine the transient evolution and statistically steady regimes of a plane Couette flow that has been perturbed from a laminar flow at an initial time and developed a turbulent regime as a result of this perturbation. We have found that even more activity is located within the confines of the hyperbolic structures than in the elliptical ones, which highlights the importance of considering the role of hyperbolic structures in the drag reduction mechanism.

  7. Charmed hadrons in nuclear medium

    International Nuclear Information System (INIS)

    Tolos, L.; Gamermann, D.; Molina, R.; Nieves, J.; Oset, E.; Garcia-Recio, C.; Ramos, A.

    2010-01-01

    We study the properties of charmed hadrons in dense matter within a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner. We analyze the behaviour in this dense environment of dynamically-generated baryonic resonances as well as the open-charm meson spectral functions. We discuss the implications of the in-medium properties of open-charm mesons on the D s0 (2317) and the predicted X(3700) scalar resonances. (authors)

  8. New distribution channels for advertising through computer games and mobile devices.

    OpenAIRE

    Sivagnanasuntharam, Sivasathees

    2008-01-01

    The development in advertising industry has lately gone from open advertising through few, major distribution channels to a hidden and targeting advertising integrated into everyday life. Advertisers grow increasingly unhappy with the value delivered by the traditional mediums. They turn to alternative distribution channels in order to increase the success rate of advertising campaigns. Channels seen as unattractively with little purchasing power previously are attracting advertisers attenti...

  9. Acid solution is a suitable medium for introducing QX-314 into nociceptors through TRPV1 channels to produce sensory-specific analgesic effects.

    Directory of Open Access Journals (Sweden)

    He Liu

    sciatic nerve selectively blocked the sensory but not the motor functions in naïve and CCI mice. CONCLUSIONS/SIGNIFICANCE: Acid solution is a suitable medium for introducing QX-314 into nociceptors through TRPV1 channels to produce a sensory-specific analgesic effect.

  10. Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes

    Science.gov (United States)

    Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.

    2001-01-01

    Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.

  11. Pannexin-1 channels in epilepsy.

    Science.gov (United States)

    Aquilino, Mark S; Whyte-Fagundes, Paige; Zoidl, Georg; Carlen, Peter L

    2017-09-05

    Pannexin-1 (Panx1) expression is raised in several animal seizure models and in resected human epileptic brain tissue, suggesting relevance to epilepsy. Multiple factors that are characteristic of seizures are thought to regulate Panx1 channel opening, including elevated levels of extracellular K + . Panx1, when open, 1) releases ATP, glutamate, and other metabolites into the extracellular medium, and 2) may depolarize the membrane due to a channel reversal potential around 0mV. Resultant ATP release from stimulated Panx1 can activate purinergic receptors, including P2X7 receptors. Glutamate and other signaling molecules released by Panx1 opening may have both excitatory and inhibitory actions on seizure generation. This review examines the critical and complex roles of Panx1 channels in epilepsy, which could provide a basis for future therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  13. Characterising the structure of quasi-periodic mixing events in stratified turbulent Taylor-Couette flow

    Science.gov (United States)

    Singh, Kanwar Nain; Partridge, Jamie; Dalziel, Stuart; Caulfield, C. P.; Mathematical Underpinnings of Stratified Turbulence (MUST) Team

    2017-11-01

    We present results from experiments conducted to study mixing in a two-layer stably-stratified turbulent Taylor-Couette flow. It has previously been observed that there is a quasi-periodic mixing event located at the interface separating the layers. We observe, through conductivity probe measurements, that the power of the mixing event in the frequency spectrum of the density data at the interface is higher when measured near the inner cylinder than in the middle of the annular gap. This is consistent with Oglethorpe's (2014) hypothesis that the mixing structure is triggered near the inner cylinder, and then advects and decays or disperses radially. We also observe that at Ri =g/'Ro (RiΩi)2 7 , where Ri, Ro are the inner and outer cylinder radius, respectively, g ' the reduced gravity characterising the density jump between the layers and Ωi is the rotation rate of the inner cylinder, the power drops significantly at all radial locations, which is reminiscent of the onset of the enhanced flux regime as observed by Oglethorpe et al. (2013). We perform experiments to characterise the spatial extent and dynamics of this mixing structure using particle image velocimetry (PIV) giving further insights into this important mixing process. EPSRC programme Grant EP/K034529/1 & SGPC-CCT Scholarship.

  14. Hopping control channel MAC protocol for opportunistic spectrum access networks

    Institute of Scientific and Technical Information of China (English)

    FU Jing-tuan; JI Hong; MAO Xu

    2010-01-01

    Opportunistic spectrum access (OSA) is considered as a promising approach to mitigate spectrum scarcity by allowing unlicensed users to exploit spectrum opportunities in licensed frequency bands. Derived from the existing channel-hopping multiple access (CHMA) protocol,we introduce a hopping control channel medium access control (MAC) protocol in the context of OSA networks. In our proposed protocol,all nodes in the network follow a common channel-hopping sequence; every frequency channel can be used as control channel and data channel. Considering primary users' occupancy of the channel,we use a primary user (PU) detection model to calculate the channel availability for unlicensed users' access. Then,a discrete Markov chain analytical model is applied to describe the channel states and deduce the system throughput. Through simulation,we present numerical results to demonstrate the throughput performance of our protocol and thus validate our work.

  15. Regeneration of near-wall turbulence structures

    Science.gov (United States)

    Hamilton, James M.; Kim, John J.; Waleffe, Fabian A.

    1993-01-01

    An examination of the regeneration mechanisms of near-wall turbulence and an attempt to investigate the critical Reynolds number conjecture of Waleffe & Kim is presented. The basis is an extension of the 'minimal channel' approach of Jimenez and Moin which emphasizes the near-wall region and further reduces the complexity of the turbulent flow. Reduction of the flow Reynolds number to the minimum value which will allow turbulence to be sustained has the effect of reducing the ratio of the largest scales to the smallest scales or, equivalently, of causing the near-wall region to fill more of the area between the channel walls. In addition, since each wall may have an active near-wall region, half of the channel is always somewhat redundant. If a plane Couette flow is instead chosen as the base flow, this redundancy is eliminated: the mean shear of a plane Couette flow has a single sign, and at low Reynolds numbers, the two wall regions share a single set of structures. A minimal flow with these modifications possesses, by construction, the strongest constraints which allow sustained turbulence, producing a greatly simplified flow in which the regeneration process can be examined.

  16. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; Perrier, Jean-François

    2004-01-01

    Small-conductance calcium-activated potassium channels (SK) are responsible for the medium afterhyperpolarisation (mAHP) following action potentials in neurons. Here we tested the ability of serotonin (5-HT) to modulate the activity of SK channels by coexpressing 5-HT1A receptors with different...

  17. Monetary Channels in Brazil through the Lens of a Semi-Structural Model

    OpenAIRE

    André Minella; Nelson F. Souza-Sobrinho

    2009-01-01

    We develop and estimate a medium-size, semi-structural model for Brazil's economy during the inflation targeting period. The model captures key features of the economy, and allows us to investigate the transmission mechanisms of monetary policy. We decompose the monetary channels into household interest rate, firm interest rate, and exchange rate channels. We find that the household interest rate channel plays the most important role in explaining output dynamics after a monetary policy shock...

  18. Journal of the Nigerian Association of Mathematical Physics

    African Journals Online (AJOL)

    Unsteady Viscous Flow Past an Impulsively Started Porous Vertical Surface with ... On Ionization and Porosity in MHD Couette Flow of a Two-Component .... Heat Transfer to Pulsatile Slip Flow in a Porous Channel Filled With Porous Media ... By Country · List All Titles · Free To Read Titles This Journal is Open Access.

  19. Torque scaling in small-gap Taylor-Couette flow with smooth or grooved wall

    Science.gov (United States)

    Zhu, Bihai; Ji, Zengqi; Lou, Zhengkun; Qian, Pengcheng

    2018-03-01

    The torque in the Taylor-Couette flow for radius ratios η ≥0.97 , with smooth or grooved wall static outer cylinders, is studied experimentally, with the Reynolds number of the inner cylinder reaching up to Rei=2 ×105 , corresponding to the Taylor number up to Ta =5 ×1010 . The grooves are perpendicular to the mean flow, and similar to the structure of a submersible motor stator. It is found that the dimensionless torque G , at a given Rei and η , is significantly greater for grooved cases than smooth cases. We compare our experimental torques for the smooth cases to the fit proposed by Wendt [F. Wendt, Ing.-Arch. 4, 577 (1993), 10.1007/BF02084936] and the fit proposed by Bilgen and Boulos [E. Bilgen and R. Boulos, J Fluids Eng. 95, 122 (1973), 10.1115/1.3446944], which shows both fits are outside their range for small gaps. Furthermore, an additional dimensionless torque (angular velocity flux) N uω in the smooth cases exhibits an effective scaling of N uω˜T a0.39 in the ultimate regime, which occurs at a lower Taylor number, Ta ≈3.5 ×107 , than the well-explored η =0.714 case (at Ta ≈3 ×108 ). The same effective scaling exponent, 0.39, is also evident in the grooved cases, but for η =0.97 and 0.985, there is a peak before this exponent appears.

  20. An optical channel modeling of a single mode fiber

    Science.gov (United States)

    Nabavi, Neda; Liu, Peng; Hall, Trevor James

    2018-05-01

    The evaluation of the optical channel model that accurately describes the single mode fibre as a coherent transmission medium is reviewed through analytical, numerical and experimental analysis. We used the numerical modelling of the optical transmission medium and experimental measurements to determine the polarization drift as a function of time for a fixed length of fibre. The probability distribution of the birefringence vector was derived, which is associated to the 'Poole' equation. The theory and experimental evidence that has been disclosed in the literature in the context of polarization mode dispersion - Stokes & Jones formulations and solutions for key statistics by integration of stochastic differential equations has been investigated. Besides in-depth definition of the single-mode fibre-optic channel, the modelling which concerns an ensemble of fibres each with a different instance of environmental perturbation has been analysed.

  1. Measurements of wall shear stress in a planar turbulent Couette flow with porous walls

    Science.gov (United States)

    Beuther, Paul

    2013-11-01

    Measurements of drag on a moving web in a multi-span festoon show a stronger than expected dependency on the porosity of the web. The experiments suggest a wall shear stress 3-4 times larger than non-porous webs or historical Couette flow data for solid walls. Previous DNS studies by Jimenez et al. (JFM Vol 442) of boundary layers with passive porous surfaces predict a much smaller increase in wall shear stress for a porous wall of only 40%. Other DNS studies by Quadrio et al. (JFM Vol 576) of porous walls with periodic transpiration do show a large increase in drag under certain periodic conditions of modest amplitude. Although those results are aligned in magnitude with this study, the exact reason for the observed high drag for porous webs in this present study is not understood because there was no external disturbance applied to the web. It can be hypothesized that natural flutter of the web results in a similar mechanism shown in the periodic DNS study, but when the natural flutter was reduced by increasing web tension, there was only a small decrease of the drag. A key difference in this study is that because of the multiple parallel spans in a festoon, any transpiration in one layer must act in the opposite manner on the adjacent span.

  2. Simulation of water flow in fractured porous medium by using discretized virtual internal bond

    Science.gov (United States)

    Peng, Shujun; Zhang, Zhennan; Li, Chunfang; He, Guofu; Miao, Guoqing

    2017-12-01

    The discretized virtual internal bond (DVIB) is adopted to simulate the water flow in fractured porous medium. The intact porous medium is permeable because it contains numerous micro cracks and pores. These micro discontinuities construct a fluid channel network. The representative volume of this fluid channel network is modeled as a lattice bond cell with finite number of bonds in statistical sense. Each bond serves as a fluid channel. In fractured porous medium, many bond cells are cut by macro fractures. The conductivity of the fracture facet in a bond cell is taken over by the bonds parallel to the flow direction. The equivalent permeability and volumetric storage coefficient of a micro bond are calibrated based on the ideal bond cell conception, which makes it unnecessary to consider the detailed geometry of a specific element. Such parameter calibration method is flexible and applicable to any type of element. The accuracy check results suggest this method has a satisfying accuracy in both the steady and transient flow simulation. To simulate the massive fractures in rockmass, the bond cells intersected by fracture are assigned aperture values, which are assumed random numbers following a certain distribution law. By this method, any number of fractures can be implicitly incorporated into the background mesh, avoiding the setup of fracture element and mesh modification. The fracture aperture heterogeneity is well represented by this means. The simulation examples suggest that the present method is a feasible, simple and efficient approach to the numerical simulation of water flow in fractured porous medium.

  3. Unsteady hydromagnetic Couette flow within a porous channel with ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology. Vol. ... long parallel porous plates, taking Hall current into account, in the presence of a transverse ..... modified Hartmann boundary layer and the decaying oscillations excited by the ...... On flow of electrically conducting fluid over a flat plate in the presence of a ...

  4. Digital channels diminish SME barriers: the case of the UK

    OpenAIRE

    Stankovska, Ivana; Josimovski, Saso; Edwards, Christopher

    2016-01-01

    This article investigates the usage of digital channels by UK small- and medium-sized enterprises (SMEs) and assesses the impact caused on their strategic marketing position. The research is based on statistical analysis of 66 surveyed SMEs in the context of the digital era. Despite indications from the relevant literature about the reluctance of SMEs to adopt advances in technological communication, the research reported indicates a high level of usage of digital channels, ...

  5. The Study of Application System for Small and Medium CTI Based on Voice Card

    Directory of Open Access Journals (Sweden)

    Zhong Dong

    2016-01-01

    Full Text Available With the rapid development of computer telecommunications integration (CTI technology, the development of application system for small and medium CTI are updated constantly, but the study of application system for small and medium CTI, we are lack of a stability and unified model. In this paper, the author analyzes the unified structure platform of application system for small and medium CTI based on voice card. Meanwhile, the author introduces a suitable software architecture model and general procedural framework for application system for small and medium CTI based on voice card by using the idea of hierarchical design, which shows the versatility of the architecture. It provided an efficient channel for the development of small and medium CTI.

  6. [Study of changes in Chinese herbal medicine distribution channel].

    Science.gov (United States)

    Lv, Hua; Yang, Guang; Huang, Lu-Qi

    2014-07-01

    Distribution channel of Chinese herbal medicines has been changing. From Han to Ming Dynasty, Chinese herbal medicine were mainly trafficked to urban by dealers or farmers; From the Ming Dynasty to the foundation of new China, distribution channels are primarily intermediated with township "bazaar" and national distribution center with fixed place and regularly trading hours. In the planned economy period, the state-owned herbal medicine company was the sole medium with monopoly nature. From the mid1980s to the end of last century, planned economy and market economy have been co-existing. Stepping into 21st century, producing area highlighted in the distribution channels. Presence or absence and rise or fall of different types of distribution market went throughout the changing process of distribution channels, which became an important clue. Changes were motivated by economical consideration of channel subject, which originated from commodity characteristic and social environment changes.

  7. Structural, micro-structural and kinematic analyses of channel flow in the Karmostaj salt diapir in the Zagros foreland folded belt, Fars province, Iran

    Science.gov (United States)

    Sarkarinejad, Khalil; Sarshar, Maryam Asadi; Adineh, Sadegh

    2018-02-01

    One of the main characteristic of the Zagros foreland fold-and-thrust belt and the Zagros foreland folded belt are wide distributions of surface extrusion from the Hormuz salt diapirs. This study examines the structure and kinematic of channel flow in the Karmostaj salt diapir in the southwestern part of the Zagros foreland folded belt. This diapir has reached the surface as a result of the channel flow mechanism and has extruded in the southern limb of the Kuh-Gach anticline which is an asymmetric décollement fold with convergence to the south. Structural and microstructural studies and quantitative finite strain (Rs) and kinematic vorticity number (Wk) analyses were carried out within this salt diapir and its namakier. This was in order to investigate the structural evolution in the salt diapiric system, the characteristics and mechanism of the salt flow and the distribution of flow regimes within the salt diapir and interaction of regional tectonics and salt diaprism. The extruded salt has developed a flow foliation sub-parallel to the remnant bedding recorded by different colors, a variety of internal folds including symmetrical and asymmetrical folds and interference fold patterns, shear zones, and boudins. These structures were used to analyze mechanisms and history of diapiric flow and extrusion. The microstructures, reveal various deformation mechanisms in various parts of salt diapir. The measurements of finite strain show that Rs values in the margin of salt diapir are higher than within its namakier which is consistent with the results of structural studies. Mean kinematic vorticity number (Wm) measured in steady state deformation of diapir and namakier is Wm = 0.45-0.48 ± 0.13. The estimated mean finite deformation (Wm) values indicate that 67.8% pure shear and 32.2% simple shear deformation were involved; the implications of which are discussed. The vorticity of flow indicates that in the early stage of growth, Poiseuille flow was the dominate

  8. Tidal River Elbe - a sediment budget for the grain size fraction of medium sand

    Science.gov (United States)

    Winterscheid, Axel

    2016-04-01

    Human interventions have a historic and ongoing impact on estuarine sediment budgets across many estuaries worldwide. An early inference was the construction of embankments resulting in a constant loss of intertidal flats. Additionally, settlement activities and large scale land use changes in the upstream catchment areas had also an effect on sediment inflow rates. Today, the navigation channels in estuaries have been deepened for larger and more efficient vessels to reach a well-developed infrastructure of harbors and industrial areas often located far inland. In the past few years and just within the North-East Atlantic, the total annual amount of dredged sediments dumped at sea varied from 80 to 130 million tons (OSPAR Commission). In most estuaries across Europe the resulting human impact on the sediment fluxes and morphodynamics is significant. A good understanding of estuarine processes is essential for determining useful and meaningful measures to mitigate negative effects and to improve the current situation. Maintenance dredging and its environmental effects are therefore in the focus of public attention. Against this background, it is the aim of the presentation to identify and therefore to separate the particular effect that maintenance dredging has on sediment fluxes and budgets in the estuarine environment. Case study is the Tidal River Elbe in Germany, and here we set the focus on the grain size fraction of medium sand. In the past, river engineering measures forced the natural dynamics to form a concentrated stream flow along a fixed channel, except at a number of locations where side channels still exist. In addition to that, the main channel was deepened several times. The last deepening was in 1999/2000. The most significant deepening, however, took place from 1957 to 1962. Until then, an erosion-stable layer of marine clay (in German called "Klei") formed a flat bottom along most sections of the main channel. After removal of this layer of

  9. Modeling and characterization of different channels based on human body communication.

    Science.gov (United States)

    Jingzhen Li; Zedong Nie; Yuhang Liu; Lei Wang

    2017-07-01

    Human body communication (HBC), which uses the human body as a transmission medium for electrical signals, provides a prospective communication solution for body sensor networks (BSNs). In this paper, an inhomogeneous model which includes the tissue layers of skin, fat, and muscle is proposed to study the propagation characteristics of different HBC channels. Specifically, the HBC channels, namely, the on-body to on-body (OB-OB)channel, on-body to in-body (OB-IB) channel, in-body to on-body (IB-OB) channel, and in-body to in-body (IB-IB)channel, are studied over different frequencies (from 1MHz to 100MHz) through numerical simulations with finite-difference time-domain (FDTD) method. The results show that the gain of OB-IB channel and IB-OB channel is almost the same. The gain of IB-IB channel is greater than other channels in the frequency range 1MHz to 70MHz. In addition, the gain of all channels is associated with the channel length and communication frequency. The simulations are verified by experimental measurements in a porcine tissue sample. The results show that the simulations are in agreement with the measurements.

  10. C-DAM: CONTENTION BASED DISTRIBUTED RESERVATION PROTOCOL ALLOCATION ALGORITHM FOR WIMEDIA MEDIUM ACCESS CONTROL

    Directory of Open Access Journals (Sweden)

    UMADEVI K. S.

    2017-07-01

    Full Text Available WiMedia Medium Access Control (MAC provides high rate data transfer for wireless networking thereby enables construction of high speed home networks. It facilitates data communication between the nodes through two modes namely: i Distributed Reservation Protocol (DRP for isochronous traffic and ii Prioritized Contention Access (PCA for asynchronous traffic. PCA mode enables medium access using CSMA/CA similar to IEEE 802.11e. In the presence of DRP, the throughput of PCA saturates when there is an increase in the number of devices accessing PCA channel. Researchers suggest that the better utilization of medium resolves many issues in an effective way. To demonstrate the effective utilization of the medium, Contention Based Distributed Reservation Protocol Allocation Algorithm for WiMedia Medium Access Control is proposed for reserving Medium Access Slots under DRP in the presence of PCA. The proposed algorithm provides a better medium access, reduces energy consumption and enhances the throughput when compared to the existing methodologies.

  11. Integrated multi-channel vehicle-vehicle and vehicle-roadside communications for ITS

    Science.gov (United States)

    2008-12-01

    This research describes a medium access control (MAC) protocol to Enable multi-channel operation for dedicated short-range communication (DSRC). In particular, we focus on the challenge of supporting potentially high-bandwidth commercial or infotainm...

  12. Unsteady MHD Heat Transfer in Couette Flow of Water at 4°C in a Rotating System with Ramped Temperature via Finite Element Method

    Directory of Open Access Journals (Sweden)

    Reddy G.J.

    2017-02-01

    Full Text Available An unsteady magnetohydromagnetic natural convection on the Couette flow of electrically conducting water at 4°C (Pr = 11.40 in a rotating system has been considered. A Finite Element Method (FEM was employed to find the numerical solutions of the dimensionless governing coupled boundary layer partial differential equations. The primary velocity, secondary velocity and temperature of water at 4°C as well as shear stresses and rate of heat transfer have been obtained for both ramped temperature and isothermal plates. The results are independent of the mesh (grid size and the present numerical solutions through the Finite Element Method (FEM are in good agreement with the existing analytical solutions by the Laplace Transform Technique (LTT. These are shown in tabular and graphical forms.

  13. Medium-sized aperture camera for Earth observation

    Science.gov (United States)

    Kim, Eugene D.; Choi, Young-Wan; Kang, Myung-Seok; Kim, Ee-Eul; Yang, Ho-Soon; Rasheed, Ad. Aziz Ad.; Arshad, Ahmad Sabirin

    2017-11-01

    Satrec Initiative and ATSB have been developing a medium-sized aperture camera (MAC) for an earth observation payload on a small satellite. Developed as a push-broom type high-resolution camera, the camera has one panchromatic and four multispectral channels. The panchromatic channel has 2.5m, and multispectral channels have 5m of ground sampling distances at a nominal altitude of 685km. The 300mm-aperture Cassegrain telescope contains two aspheric mirrors and two spherical correction lenses. With a philosophy of building a simple and cost-effective camera, the mirrors incorporate no light-weighting, and the linear CCDs are mounted on a single PCB with no beam splitters. MAC is the main payload of RazakSAT to be launched in 2005. RazakSAT is a 180kg satellite including MAC, designed to provide high-resolution imagery of 20km swath width on a near equatorial orbit (NEqO). The mission objective is to demonstrate the capability of a high-resolution remote sensing satellite system on a near equatorial orbit. This paper describes the overview of the MAC and RarakSAT programmes, and presents the current development status of MAC focusing on key optical aspects of Qualification Model.

  14. Statistical State Dynamics Based Study of the Role of Nonlinearity in the Maintenance of Turbulence in Couette Flow

    Science.gov (United States)

    Farrell, Brian; Ioannou, Petros; Nikolaidis, Marios-Andreas

    2017-11-01

    While linear non-normality underlies the mechanism of energy transfer from the externally driven flow to the perturbation field, nonlinearity is also known to play an essential role in sustaining turbulence. We report a study based on the statistical state dynamics of Couette flow turbulence with the goal of better understanding the role of nonlinearity in sustaining turbulence. The statistical state dynamics implementations used are ensemble closures at second order in a cumulant expansion of the Navier-Stokes equations in which the averaging operator is the streamwise mean. Two fundamentally non-normal mechanisms potentially contributing to maintaining the second cumulant are identified. These are essentially parametric perturbation growth arising from interaction of the perturbations with the fluctuating mean flow and transient growth of perturbations arising from nonlinear interaction between components of the perturbation field. By the method of selectively including these mechanisms parametric growth is found to maintain the perturbation field in the turbulent state while the more commonly invoked mechanism associated with transient growth of perturbations arising from scattering by nonlinear interaction is found to suppress perturbation variance. Funded by ERC Coturb Madrid Summer Program and NSF AGS-1246929.

  15. Medium modified two-body scattering amplitude from proton-nucleus total cross-sections

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    Recently (R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 145 (1998) 277; R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, NASA-TP-1998-208438), we have extracted nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. Here, we investigate the ratio of real to imaginary part of the two-body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate total proton-nucleus cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2001 Elsevier Science B.V. All rights reserved.

  16. Lattice NRQCD study on in-medium bottomonium spectra using a novel Bayesian reconstruction approach

    Science.gov (United States)

    Kim, Seyong; Petreczky, Peter; Rothkopf, Alexander

    2016-01-01

    We present recent results on the in-medium modification of S- and P-wave bottomonium states around the deconfinement transition. Our study uses lattice QCD with Nf = 2 + 1 light quark flavors to describe the non-perturbative thermal QCD medium between 140MeV Bayesian prescription, which provides higher accuracy than the Maximum Entropy Method. Based on a systematic comparison of interacting and free spectral functions we conclude that the ground states of both the S-wave (ϒ) and P-wave (χb1) channel survive up to T = 249MeV. Stringent upper limits on the size of the in-medium modification of bottomonium masses and widths are provided.

  17. Spatial channel theory: A technique for determining the directional flow of radiation through reactor systems

    International Nuclear Information System (INIS)

    Williams, M.L.; Engle, W.W.

    1977-01-01

    A method is introduced for determining streaming paths through a non-multiplying medium. The concepts of a ''response continuum'' and a pseudo-particle called a contribution are developed to describe the spatial channels through which response flows from a source to a detector. An example application of channel theory to complex shield analysis is cited

  18. Investigation of thermal energy transport from an anisotropic central heating element to the adjacent channels: A multipoint flux approximation

    KAUST Repository

    Salama, Amgad; Sun, Shuyu; El-Amin, Mohamed

    2015-01-01

    anisotropy of the heating element and/or the encompassing plates on thermal energy transport to the fluid passing through the two channels. When the medium is anisotropic with respect to thermal conductivity; energy transport to the neighboring channels

  19. Improved upper bounds on energy dissipation rates in plane Couette flow with boundary injection and suction

    Science.gov (United States)

    Lee, Harry; Wen, Baole; Doering, Charles

    2017-11-01

    The rate of viscous energy dissipation ɛ in incompressible Newtonian planar Couette flow (a horizontal shear layer) imposed with uniform boundary injection and suction is studied numerically. Specifically, fluid is steadily injected through the top plate with a constant rate at a constant angle of injection, and the same amount of fluid is sucked out vertically through the bottom plate at the same rate. This set-up leads to two control parameters, namely the angle of injection, θ, and the Reynolds number of the horizontal shear flow, Re . We numerically implement the `background field' variational problem formulated by Constantin and Doering with a one-dimensional unidirectional background field ϕ(z) , where z aligns with the distance between the plates. Computation is carried out at various levels of Re with θ = 0 , 0 .1° ,1° and 2°, respectively. The computed upper bounds on ɛ scale like Re0 as Re > 20 , 000 for each fixed θ, this agrees with Kolmogorov's hypothesis on isotropic turbulence. The outcome provides new upper bounds to ɛ among any solution to the underlying Navier-Stokes equations, and they are sharper than the analytical bounds presented in Doering et al. (2000). This research was partially supported by the NSF Award DMS-1515161, and the University of Michigan's Rackham Graduate Student Research Grant.

  20. Investigation of the pressure drop inside a rectangular channel with a built-in U-shaped tube bundle heat exchanger

    Directory of Open Access Journals (Sweden)

    Xi-yue Liu

    2017-01-01

    Full Text Available A simplified approach which utilizes an isotropic porous medium model has been widely adopted for modeling the flow through a compact heat exchanger. With respect to situations where the compact heat exchangers are partially installed inside a channel, such as the application of recuperators in an intercooled recuperative engine, the use of an isotropic porous medium model needs to be carefully assessed because the flow passing through the heat exchanger is very complicated. For this purpose, in this study the isotropic porous medium model is assessed together with specific pressure–velocity relationships for flow field modeling inside a rectangular channel with a built-in double-U-shaped tube bundle heat exchanger. Firstly, experiments were conducted using models to investigate the relationship between the pressure drop and the inlet velocity for a specific heat exchanger with different installation angles inside a rectangular channel. Secondly, a series of numerical computations were carried out using the isotropic porous medium model and the pressure–velocity relationship was then modified by introducing correction coefficients empirically. Finally, a three-dimensional (3-D direct computation was made using a computational fluid dynamics (CFD method for the comparison of detailed flow fields. The results suggest that the isotropic porous medium model is capable of making precise pressure drop predictions given the reasonable pressure–velocity relationship but is unable to precisely simulate the detailed flow features.

  1. MHD convective flow through porous medium in a horizontal channel with insulated and impermeable bottom wall in the presence of viscous dissipation and Joule heating

    Directory of Open Access Journals (Sweden)

    K.V.S. Raju

    2014-06-01

    Full Text Available This paper deals with a steady MHD forced convective flow of a viscous fluid of finite depth in a saturated porous medium over a fixed horizontal channel with thermally insulated and impermeable bottom wall in the presence of viscous dissipation and joule heating. The governing equations are solved in the closed form and the exact solutions are obtained for velocity and temperature distributions when the temperatures on the fixed bottom and on the free surface are prescribed. The expressions for flow rate, mean velocity, temperature, mean temperature, mean mixed temperature in the flow region and the Nusselt number on the free surface have been obtained. The cases of large and small values of porosity coefficients have been obtained as limiting cases. Further, the cases of small depth (shallow fluid and large depth (deep fluid are also discussed. The results are presented and discussed with the help of graphs.

  2. Heat transfer in circular ring channel under reflooding conditions

    International Nuclear Information System (INIS)

    Blaha, V.; Nikonov, S.P.

    1981-01-01

    The method and equipment are described for flooding experiments in a ring-shaped channel with an unheated external wall. The values measured during the experiment are given of tube wall temperature, the power input of the heating rod, the temperature of the flooding medium, the flow, the temperature of the envelope, pressure gradient in the measured section, pressure in the storage tank and temperature in the upper chamber. The dependence is shown of the coefficient of heat transfer on the temperature gradient between the wall and the medium which may be degasified water, CO 2 saturated water of N 2 saturated water. (J.B.)

  3. Distributed Fair Auto Rate Medium Access Control for IEEE 802.11 Based WLANs

    Science.gov (United States)

    Zhu, Yanfeng; Niu, Zhisheng

    Much research has shown that a carefully designed auto rate medium access control can utilize the underlying physical multi-rate capability to exploit the time-variation of the channel. In this paper, we develop a simple analytical model to elucidate the rule that maximizes the throughput of RTS/CTS based multi-rate wireless local area networks. Based on the discovered rule, we propose two distributed fair auto rate medium access control schemes called FARM and FARM+ from the view-point of throughput fairness and time-share fairness, respectively. With the proposed schemes, after receiving a RTS frame, the receiver selectively returns the CTS frame to inform the transmitter the maximum feasible rate probed by the signal-to-noise ratio of the received RTS frame. The key feature of the proposed schemes is that they are capable of maintaining throughput/time-share fairness in asymmetric situation where the distribution of SNR varies with stations. Extensive simulation results show that the proposed schemes outperform the existing throughput/time-share fair auto rate schemes in time-varying channel conditions.

  4. Hemolysis in a laminar flow-through Couette shearing device: an experimental study.

    Science.gov (United States)

    Boehning, Fiete; Mejia, Tzahiry; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2014-09-01

    Reducing hemolysis has been one of the major goals of rotary blood pump development and in the investigational phase, the capability of hemolysis estimation for areas of elevated shear stresses is valuable. The degree of hemolysis is determined by the amplitude of shear stress and the exposure time, but to date, the exact hemolytic behavior at elevated shear stresses and potential thresholds for subcritical shear exposure remain vague. This study provides experimental hemolysis data for a set of shear stresses and exposure times to allow better estimations of hemolysis for blood exposed to elevated shearing. Heparinized porcine blood with a hematocrit of 40% was mechanically damaged in a flow-through laminar Couette shear flow at a temperature of 23°C. Four levels of shear stress, 24, 592, 702, and 842 Pa, were replicated at two exposure times, 54 and 873 ms. For the calculation of the shear stresses, an apparent viscosity of 5 mPas was used, which was verified in an additional measurement of the blood viscosity. The hemolysis measurements were repeated four times, whereby all conditions were measured once within the same day and with blood from the same source. Samples were taken at the inlet and outlet of the shear region and an increase in plasma-free hemoglobin was measured. An index of hemolysis (IH) was thereby calculated giving the ratio of free to total hemoglobin. The results are compared with data from previously published studies using a similar shearing device. Hemolysis was found to increase exponentially with shear stress, but high standard deviations existed at measurements with elevated IH. At short exposure times, the IH remained low at under 0.5% for all shear stress levels. For high exposure times, the IH increased from 0.84% at 592 Pa up to 3.57% at the highest shear stress level. Hemolysis was significant for shear stresses above ∼600 Pa at the high exposure time of 873 ms. Copyright © 2014 International Center for Artificial

  5. Cognitive radio networks medium access control for coexistence of wireless systems

    CERN Document Server

    Bian, Kaigui; Gao, Bo

    2014-01-01

    This book gives a comprehensive overview of the medium access control (MAC) principles in cognitive radio networks, with a specific focus on how such MAC principles enable different wireless systems to coexist in the same spectrum band and carry out spectrum sharing.  From algorithm design to the latest developments in the standards and spectrum policy, readers will benefit from leading-edge knowledge of how cognitive radio systems coexist and share spectrum resources.  Coverage includes cognitive radio rendezvous, spectrum sharing, channel allocation, coexistence in TV white space, and coexistence of heterogeneous wireless systems.   • Provides a comprehensive reference on medium access control (MAC)-related problems in the design of cognitive radio systems and networks; • Includes detailed analysis of various coexistence problems related to medium access control in cognitive radio networks; • Reveals novel techniques for addressing the challenges of coexistence protocol design at a higher level ...

  6. Mixed convection flow and heat transfer in a vertical wavy channel ...

    African Journals Online (AJOL)

    Mixed convection flow and heat transfer in a vertical wavy channel filled with porous and fluid layers is studied analytically. The flow in the porous medium is modeled using Darcy-Brinkman equation. The coupled non-linear partial differential equations describing the conservation of mass, momentum and energy are solved ...

  7. PERFORMANCE ANALYSIS OF PILOT BASED CHANNEL ESTIMATION TECHNIQUES IN MB OFDM SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2011-12-01

    Full Text Available Ultra wideband (UWB communication is mainly used for short range of communication in wireless personal area networks. Orthogonal Frequency Division Multiplexing (OFDM is being used as a key physical layer technology for Fourth Generation (4G wireless communication. OFDM based communication gives high spectral efficiency and mitigates Inter-symbol Interference (ISI in a wireless medium. In this paper the IEEE 802.15.3a based Multiband OFDM (MB OFDM system is considered. The pilot based channel estimation techniques are considered to analyze the performance of MB OFDM systems over Liner Time Invariant (LTI Channel models. In this paper, pilot based Least Square (LS and Least Minimum Mean Square Error (LMMSE channel estimation technique has been considered for UWB OFDM system. In the proposed method, the estimated Channel Impulse Responses (CIRs are filtered in the time domain for the consideration of the channel delay spread. Also the performance of proposed system has been analyzed for different modulation techniques for various pilot density patterns.

  8. Slick (Kcnt2 Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia

    Directory of Open Access Journals (Sweden)

    Danielle L Tomasello

    2017-09-01

    Full Text Available The Slick (Kcnt2 sodium-activated potassium (K Na channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs, we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene–related peptide (CGRP-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs, and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.

  9. An IEEE 802.3 Compatible Real Time Medium Access Control with Length-based Priority

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new medium access control method is proposed over the predominant Ethernet broadcast channel. Taking advantages of intrinsic variable length characteristic of standard Ethernet frame, message-oriented dynamic priority mechanism is established. Prioritized medium access control operates under a so-called block mode in event of collisions.High priority messages have a chance to preempt block status incurred by low priority ones. By this means, the new MAC provides a conditional deterministic real time performance beyond a statistical one. Experiments demonstrate effectiveness and attractiveness of the proposed scheme. Moreover, this new MAC is completely compatible with IEEE802.3.

  10. Cl- channels of the gastric parietal cell that are active at low pH.

    Science.gov (United States)

    Cuppoletti, J; Baker, A M; Malinowska, D H

    1993-06-01

    HCl secretion across mammalian gastric parietal cell apical membrane may involve Cl- channels. H(+)-K(+)-ATPase-containing membranes isolated from gastric mucosa of histamine-stimulated rabbits were fused to planar lipid bilayers. Channels were recorded with symmetric 800 mM CsCl solutions, pH 7.4. A linear current-voltage (I-V) relationship was obtained, and conductance was 28 +/- 1 pS at 800 mM CsCl. Conductance was 6.9 +/- 2 pS at 150 mM CsCl. Reversal potential was +22 mV with a fivefold cis-trans CsCl concentration gradient, indicating that the channel was anion selective with a discrimination ratio of 6:1 for Cl- over Cs+. Anion selectivity of the channel was I- > Cl- > or = Br- > NO3-, and gluconate was impermeant. Channels obtained at pH 7.4 persisted when pH of medium bathing the trans side of the bilayer (pHtrans) was reduced to pH 3, without a change in conductance, linearity of I-V relationship, or ion selectivity. In contrast, asymmetric reduction of pH of medium bathing the cis side of the bilayer from 7.4 to 3 always resulted in loss of channel activity. At pH 7.4, open probability (Po) of the channel was voltage dependent, i.e., predominantly open at +80 mV but mainly closed at -80 mV. In contrast, with low pHtrans, channel Po at -80 mV was increased 3.5-fold. The Cl- channel was Ca2+ indifferent. In absence of ionophores, ion selectivity for support of H(+)-K(+)-ATPase activity and H+ transport was consistent with that exhibited by the channel and could be limited by substitution with NO3-, whereas maximal H(+)-K(+)-ATPase activity was indifferent to anion present, demonstrating that anion transport can be rate limiting. Cl- channels with similar characteristics (conductance, linear I-V relationship, and ion selectivity) were also present in H(+)-K(+)-ATPase-containing vesicles isolated from resting (cimetidine-treated) gastric mucosa, exhibiting at -80 mV a pH-independent approximately 3.5-fold lower Po than stimulated vesicle channels. At -80 m

  11. MATHEMATICAL MODEL NON-ISOTHERMAL FLOW HIGHLY VISCOUS MEDIA CHANNELS MATRIX EXTRUDER

    Directory of Open Access Journals (Sweden)

    A. S. Sidorenko

    2015-01-01

    Full Text Available We consider a one-dimensional steady flow of highly viscous medium in a cylindrical channel with Dissipation and dependence of the viscosity on the temperature. It is assumed that a relatively small intervals of temperature variation of the dynamic viscosity with a sufficient degree of accuracy can be assumed to be linear. The model was based on the equations of hydrodynamics and the heat transfer fluid. In the task channel wall temperature is assumed constant. An approximate solution of the problem, according to which the distribution of velocity, pressure and temperature is sought in the form of an expansion in powers of the dimensionless transverse coordinates. A special case, when the ratio of the velocity distribution, pressure and temperature is allowed to restrict the number of terms in the expansion as follows: for speed - the first 3 to the pressure - the first two for the temperature - the first 5. The expressions to determine the temperature profile of the medium in the channel and characterization dissipative heating. To simulate the process of heat transfer highly viscous media developed a program for personal electronic computers. The calculation was performed using experimental research data melt flow grain mixture of buckwheat and soybeans for the load speed of 0.08 mm / s. The method of computer simulation carried out checks on the adequacy of the solutions to the real process of heat transfer. Analysis of the results indicates that for small values of the length of the channel influence dissipation function appears mainly at the wall. By increasing the reduced length of this phenomenon applies to all section of the channel. At high temperature profile along the channel length is determined entirely by dissipation. In the case of heat transfer due to frictional heat only, the form of curves of temperature distribution is a consequence of the interaction effects of heating due to viscous shear effects cooling by conduction. The

  12. ATP-modulated K+ channels sensitive to antidiabetic sulfonylureas are present in adenohypophysis and are involved in growth hormone release.

    OpenAIRE

    Bernardi, H; De Weille, J R; Epelbaum, J; Mourre, C; Amoroso, S; Slama, A; Fosset, M; Lazdunski, M

    1993-01-01

    The adenohypophysis contains high-affinity binding sites for antidiabetic sulfonylureas that are specific blockers of ATP-sensitive K+ channels. The binding protein has a M(r) of 145,000 +/- 5000. The presence of ATP-sensitive K+ channels (26 pS) has been demonstrated by electrophysiological techniques. Intracellular perfusion of adenohypophysis cells with an ATP-free medium to activate ATP-sensitive K+ channels induces a large hyperpolarization (approximately 30 mV) that is antagonized by an...

  13. The low- and medium-energetic K-p-interaction

    International Nuclear Information System (INIS)

    Thaler, J.

    1983-01-01

    In this paper we present results from an analysis of low- and medium-energetic K - N-scattering data with a separable energy-dependent potential model. The S-waves of the K - N-system are treated as an inelastic single-channel problem and a form of the potential is used, which is well suited to describe resonant scattering. In this model we calculate Coulomb and mass difference corrections to scattering data and the strong interaction effect in the ground state of kaonic hydrogen. It is argued, that the discrepancy between experimental bound state data and scattering lengths cannot be solved by Coulomb corrections. (Author)

  14. Heat Transfer to Pulsatile Slip Flow in a Porous Channel Filled With ...

    African Journals Online (AJOL)

    This paper investigate the effect of slip on the hydromagnetic pulsatile flow through a porous channel filled with saturated porous medium with time dependent boundary condition on the heated wall. Based on the pulsatile flow nature, the dimensionless flow governing equations are resolved to harmonic and non-harmonic ...

  15. Heat transfer to MHD oscillatory dusty fluid flow in a channel filled ...

    Indian Academy of Sciences (India)

    In this paper, we examine the combined effects of thermal radiation, buoyancy force and magnetic field on oscillatory flow of a conducting optically thin dusty fluid through a vertical channel filled with a saturated porous medium. The governing partial differential equations are obtained and solved analytically by variable ...

  16. Evaluation of coherence interference in optical wireless communication through multiscattering channels.

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-05-10

    Optical wireless communication has been the subject of much research in recent years because of the increasing interest in laser satellite-ground links and urban optical wireless communication. The major sources of performance degradation have been identified as the spatial, angular, and temporal spread of the propagating beam when the propagation channel is multiscattering, resulting in reduced power reception and intersignal interference, as well as turbulence-induced scintillations and noise due to receiver circuitry and background illumination. However, coherence effects due to multipath interference caused by a scattering propagation channel do not appear to have been treated in detail in the scientific literature. We attempt a theoretical analysis of coherence interference in optical wireless communication through scattering channels and try to quantify the resultant performance degradation for different media. We conclude that coherence interference is discernible in optical wireless communication through scattering channels and is highly dependent on the microscopic nature of the propagation medium.

  17. Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel

    International Nuclear Information System (INIS)

    Siu, Sam; Wu, Wenhao; Zhi Ding; Ji, Qing; Song, Gangbing

    2014-01-01

    In this paper, we explore the characteristics of a concrete block as a communication medium with piezoelectric transducers. Lead zirconate titanate (PZT) is a piezoceramic material used in smart materials intended for structural health monitoring (SHM). Additionally, a PZT based smart aggregate (SA) is capable of implementing stress wave communications which is utilized for investigating the properties of an SA based concrete channel. Our experiments characterize single-input single-output and multiple-input multiple-output (MIMO) concrete channels in order to determine the potential capacity limits of SAs for stress wave communication. We first provide estimates and validate the concrete channel response. Followed by a theoretical upper bound for data rate capacity of our two channels, demonstrating a near-twofold increase in channel capacity by utilizing multiple transceivers to form an MIMO system. Our channel modeling techniques and results are also helpful to researchers using SAs with regards to SHM, energy harvesting and stress wave communications. (paper)

  18. Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks

    OpenAIRE

    Razaque, Abdul; Elleithy, Khaled M.

    2014-01-01

    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols,...

  19. Quasi-two-dimensional nonlinear evolution of helical magnetorotational instability in a magnetized Taylor-Couette flow

    Science.gov (United States)

    Mamatsashvili, G.; Stefani, F.; Guseva, A.; Avila, M.

    2018-01-01

    Magnetorotational instability (MRI) is one of the fundamental processes in astrophysics, driving angular momentum transport and mass accretion in a wide variety of cosmic objects. Despite much theoretical/numerical and experimental efforts over the last decades, its saturation mechanism and amplitude, which sets the angular momentum transport rate, remains not well understood, especially in the limit of high resistivity, or small magnetic Prandtl numbers typical to interiors (dead zones) of protoplanetary disks, liquid cores of planets and liquid metals in laboratory. Using direct numerical simulations, in this paper we investigate the nonlinear development and saturation properties of the helical magnetorotational instability (HMRI)—a relative of the standard MRI—in a magnetized Taylor-Couette flow at very low magnetic Prandtl number (correspondingly at low magnetic Reynolds number) relevant to liquid metals. For simplicity, the ratio of azimuthal field to axial field is kept fixed. From the linear theory of HMRI, it is known that the Elsasser number, or interaction parameter determines its growth rate and plays a special role in the dynamics. We show that this parameter is also important in the nonlinear problem. By increasing its value, a sudden transition from weakly nonlinear, where the system is slightly above the linear stability threshold, to strongly nonlinear, or turbulent regime occurs. We calculate the azimuthal and axial energy spectra corresponding to these two regimes and show that they differ qualitatively. Remarkably, the nonlinear state remains in all cases nearly axisymmetric suggesting that this HMRI-driven turbulence is quasi two-dimensional in nature. Although the contribution of non-axisymmetric modes increases moderately with the Elsasser number, their total energy remains much smaller than that of the axisymmetric ones.

  20. Influence of the elastic deformation of a foam on its mobility in channels of linearly varying width.

    Science.gov (United States)

    Dollet, Benjamin; Jones, Siân A; Méheust, Yves; Cantat, Isabelle

    2014-08-01

    We study foam flow in an elementary model porous medium consisting of a convergent and a divergent channel positioned side by side and possessing a fixed joint porosity. Configurations of converging or diverging channels are ubiquitous at the pore scale in porous media, as all channels linking pores possess a converging and diverging part. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels, which modulate foam-wall friction and strongly impact the flux distribution. We measure, as well as quantitatively predict, the ratio of the fluxes in the two channels as a function of the channel widths by modeling pressure drops of both viscous and capillary origins. This study reveals the crucial importance of boundary-induced bubble deformation on the mobility of a flowing foam, resulting in particular in flow irreversibility.

  1. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  2. 128 Channel PCI-based data acquisition system for MDSplus

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, Xavier E-mail: xavier.llobet@epfl.ch; Duval, Basil P. E-mail: basil.duval@epfl.ch

    2002-06-01

    With the increasing demand for analogue channel acquisition on the TCV tokamak, a new PCI based acquisition has been specified, designed, built and installed into our MDSplus acquisition environment. The design criteria were to not only improve the cost/channel, as compared to our conventional hub based acquisition (CAMAC), but to provide some distributed processing power to avoid the associated acquisition server saturation, both in terms of CPU and network bandwidth. These units were initially intended to satisfy the requirements of general variable rate acquisition from a variety of sources, and many channel acquisition from modern multi-channel diagnostics. Hosted by a i386-Linux PC in a crate with four available PCI slots, each single-PCI slot 32-channel digitiser features sampling frequencies up to 200 kHz, and 64 MB of memory, providing 1 Msample of 16-bit data per channel. The local hard disk is used for immediate local storage of all the acquired data from the selected channels into a local MDSplus database. The host is then accessed as a MDS/IP server that provides, on demand, down-sampled and software filtered traces. The local hard disk capacity is used for medium to long-term storage and availability of the full data set with optional mirror technology to guard against hard disk failure. We have thus obtained a general solution for high resolution, multi-channel routine acquisition using the multi-platform MDSplus environment, in which different software and hardware architectures are intelligently linked across a standard TCP/IP network. The implementation presented here uses ONLY standard components of the MDSplus environment.

  3. 128 Channel PCI-based data acquisition system for MDSplus

    International Nuclear Information System (INIS)

    Llobet, Xavier; Duval, Basil P.

    2002-01-01

    With the increasing demand for analogue channel acquisition on the TCV tokamak, a new PCI based acquisition has been specified, designed, built and installed into our MDSplus acquisition environment. The design criteria were to not only improve the cost/channel, as compared to our conventional hub based acquisition (CAMAC), but to provide some distributed processing power to avoid the associated acquisition server saturation, both in terms of CPU and network bandwidth. These units were initially intended to satisfy the requirements of general variable rate acquisition from a variety of sources, and many channel acquisition from modern multi-channel diagnostics. Hosted by a i386-Linux PC in a crate with four available PCI slots, each single-PCI slot 32-channel digitiser features sampling frequencies up to 200 kHz, and 64 MB of memory, providing 1 Msample of 16-bit data per channel. The local hard disk is used for immediate local storage of all the acquired data from the selected channels into a local MDSplus database. The host is then accessed as a MDS/IP server that provides, on demand, down-sampled and software filtered traces. The local hard disk capacity is used for medium to long-term storage and availability of the full data set with optional mirror technology to guard against hard disk failure. We have thus obtained a general solution for high resolution, multi-channel routine acquisition using the multi-platform MDSplus environment, in which different software and hardware architectures are intelligently linked across a standard TCP/IP network. The implementation presented here uses ONLY standard components of the MDSplus environment

  4. Directional Medium Access Control (MAC Protocols in Wireless Ad Hoc and Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    David Tung Chong Wong

    2015-06-01

    Full Text Available This survey paper presents the state-of-the-art directional medium access control (MAC protocols in wireless ad hoc and sensor networks (WAHSNs. The key benefits of directional antennas over omni-directional antennas are longer communication range, less multipath interference, more spatial reuse, more secure communications, higher throughput and reduced latency. However, directional antennas lead to single-/multi-channel directional hidden/exposed terminals, deafness and neighborhood, head-of-line blocking, and MAC-layer capture which need to be overcome. Addressing these problems and benefits for directional antennas to MAC protocols leads to many classes of directional MAC protocols in WAHSNs. These classes of directional MAC protocols presented in this survey paper include single-channel, multi-channel, cooperative and cognitive directional MACs. Single-channel directional MAC protocols can be classified as contention-based or non-contention-based or hybrid-based, while multi-channel directional MAC protocols commonly use a common control channel for control packets/tones and one or more data channels for directional data transmissions. Cooperative directional MAC protocols improve throughput in WAHSNs via directional multi-rate/single-relay/multiple-relay/two frequency channels/polarization, while cognitive directional MAC protocols leverage on conventional directional MAC protocols with new twists to address dynamic spectrum access. All of these directional MAC protocols are the pillars for the design of future directional MAC protocols in WAHSNs.

  5. Inter-satellite calibration of FengYun 3 medium energy electron fluxes with POES electron measurements

    Science.gov (United States)

    Zhang, Yang; Ni, Binbin; Xiang, Zheng; Zhang, Xianguo; Zhang, Xiaoxin; Gu, Xudong; Fu, Song; Cao, Xing; Zou, Zhengyang

    2018-05-01

    We perform an L-shell dependent inter-satellite calibration of FengYun 3 medium energy electron measurements with POES measurements based on rough orbital conjunctions within 5 min × 0.1 L × 0.5 MLT. By comparing electron flux data between the U.S. Polar Orbiting Environmental Satellites (POES) and Chinese sun-synchronous satellites including FY-3B and FY-3C for a whole year of 2014, we attempt to remove less reliable data and evaluate systematic uncertainties associated with the FY-3B and FY-3C datasets, expecting to quantify the inter-satellite calibration factors for the 150-350 keV energy channel at L = 2-7. Compared to the POES data, the FY-3B and FY-3C data generally exhibit a similar trend of electron flux variations but more or less underestimate them within a factor of 5 for the medium electron energy 150-350 keV channel. Good consistency in the flux conjunctions after the inter-calibration procedures gives us certain confidence to generalize our method to calibrate electron flux measurements from various satellite instruments.

  6. Enhancing Sensing and Channel Access in Cognitive Radio Networks

    KAUST Repository

    Hamza, Doha R.

    2014-06-18

    Cognitive radio technology is a promising technology to solve the wireless spectrum scarcity problem by intelligently allowing secondary, or unlicensed, users access to the primary, licensed, users\\' frequency bands. Cognitive technology involves two main tasks: 1) sensing the wireless medium to assess the presence of the primary users and 2) designing secondary spectrum access techniques that maximize the secondary users\\' benefits while maintaining the primary users\\' privileged status. On the spectrum sensing side, we make two contributions. First, we maximize a utility function representing the secondary throughput while constraining the collision probability with the primary below a certain value. We optimize therein the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order for wideband primary channels. Second, we design a cooperative spectrum sensing technique termed sensing with equal gain combining whereby cognitive radios simultaneously transmit their sensing results to the fusion center over multipath fading reporting channels. The proposed scheme is shown to outperform orthogonal reporting systems in terms of achievable secondary throughput and to be robust against phase and synchronization errors. On the spectrum access side, we make four contributions. First, we design a secondary scheduling scheme with the goal of minimizing the secondary queueing delay under constraints on the average secondary transmit power and the maximum tolerable primary outage probability. Second, we design another secondary scheduling scheme based on the spectrum sensing results and the primary automatic repeat request feedback. The optimal medium access probabilities are obtained via maximizing the secondary throughput subject to constraints that guarantee quality of service parameters for the primary. Third, we propose a three-message superposition coding scheme to maximize the secondary throughput without

  7. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium

    Directory of Open Access Journals (Sweden)

    Q. Hussain

    2018-06-01

    Full Text Available The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study. Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters. Keywords: Nonlinear thermal radiation, Variable viscosity, Porous medium, Soret and Dufour effects, Peristalsis

  8. Numerical simulation of turbulent Taylor-Couette flow between conducting cylinders in an axial magnetic field at low magnetic Reynolds number

    Science.gov (United States)

    Leng, Xueyuan; Kolesnikov, Yurii B.; Krasnov, Dmitry; Li, Benwen

    2018-01-01

    The effect of an axial homogeneous magnetic field on the turbulence in the Taylor-Couette flow confined between two infinitely long conducting cylinders is studied by the direct numerical simulation using a periodic boundary condition in the axial direction. The inner cylinder is rotating, and the outer one is fixed. We consider the case when the magnetic Reynolds number Rem ≪ 1, i.e., the influence of the induced magnetic field on the flow is negligible that is typical for industry and laboratory study of liquid metals. Relevance of the present study is based on the similarity of flow characteristics at moderate and high magnetic field for the cases with periodic and end-wall conditions at the large flow aspect ratio, as proven in the earlier studies. Two sets of Reynolds numbers 4000 and 8000 with several Hartmann numbers varying from 0 to 120 are employed. The results show that the mean radial induced electrical current, resulting from the interaction of axial magnetic field with the mean flow, leads to the transformation of the mean flow and the modification of the turbulent structure. The effect of turbulence suppression is dominating at a strong magnetic field, but before reaching the complete laminarization, we capture the appearance of the hairpin-like structures in the flow.

  9. Combined Hybrid DFE and CCK Remodulator for Medium-Range Single-Carrier Underwater Acoustic Communications

    Directory of Open Access Journals (Sweden)

    Xialin Jiang

    2017-01-01

    Full Text Available Advanced modulation and channel equalization techniques are essential for improving the performance of medium-range single-carrier underwater acoustic communications. In this paper, an enhanced detection scheme, hybrid time-frequency domain decision feedback equalizer (DFE combined with complementary code keying (CCK remodulator, is presented. CCK modulation technique provides strong tolerance to intersymbol interference caused by multipath propagation in underwater acoustic channels. The conventional hybrid DFE, using a frequency domain feedforward filter and a time domain feedback filter, provides good performance along with low computational complexity. The error propagation in the feedback filter, caused by feedbacking wrong decisions prior to CCK demodulation, may lead to great performance degradation. In our proposed scheme, with the help of CCK coding gain, more accurate remodulated CCK chips can be used as feedback. The proposed detection scheme is tested by the practical ocean experiments. The experimental results show that the proposed detection scheme ensures robust communications over 10-kilometre underwater acoustic channels with the data rate at 5 Kbits/s in 3 kHz of channel bandwidth.

  10. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria.

    Science.gov (United States)

    Omairi-Nasser, Amin; Haselkorn, Robert; Austin, Jotham

    2014-07-01

    Cyanobacteria, formerly called blue-green algae, are abundant bacteria that carry out green plant photosynthesis, fixing CO2 and generating O2. Many species can also fix N2 when reduced nitrogen sources are scarce. Many studies imply the existence of intracellular communicating channels in filamentous cyanobacteria, in particular, the nitrogen-fixing species. In a species such as Anabaena, growth in nitrogen-depleted medium, in which ∼10% of the cells differentiate into anaerobic factories for nitrogen fixation (heterocysts), requires the transport of amino acids from heterocysts to vegetative cells, and reciprocally, the transport of sugar from vegetative cells to heterocysts. Convincing physical evidence for such channels has been slim. Using improved preservation of structure by high-pressure rapid freezing of samples for electron microscopy, coupled with high-resolution 3D tomography, it has been possible to visualize and measure the dimensions of channels that breach the peptidoglycan between vegetative cells and between heterocysts and vegetative cells. The channels appear to be straight tubes, 21 nm long and 14 nm in diameter for the latter and 12 nm long and 12 nm in diameter for the former.-Omairi-Nasser, A., Haselkorn, R., Austin, J. II. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria. © FASEB.

  11. Doppler-shift estimation of flat underwater channel using data-aided least-square approach

    Directory of Open Access Journals (Sweden)

    Weiqiang Pan

    2015-03-01

    Full Text Available In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.

  12. Doppler-shift estimation of flat underwater channel using data-aided least-square approach

    Science.gov (United States)

    Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing

    2015-06-01

    In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.

  13. Changes in the morphology of drainage channels of the hydrographic basin of Cadena stream, Santa Maria / RS

    Directory of Open Access Journals (Sweden)

    Edson Luis de Almeida Oliveira

    2006-06-01

    deepening or straightening of a channel which may be associated with considerable bank erosion which locally enlarges the width of a channel and it affects urban areas causing hazards. Moreover, the erosion increment may work its way up the tributaries as a series of knick points in response to urban’s stream changes. The analyses of the antropic intervention on the tributaries of Cadena stream divided the basins into low, medium and high intervention levels.

  14. Modeling of Hydrodynamics of a Highly Concentrated Granular Medium on the Basis of a Power-Law

    Directory of Open Access Journals (Sweden)

    Shvab Alexander

    2016-01-01

    Full Text Available The paper deals with the movement of the granular medium at a high concentration on the basis of the “power” of the liquid. Based on the original partial slip boundary conditions on the walls of protection obtained with experimental and numerical data to flow in the channel at a flow obstacle.

  15. A decentralized scheduling algorithm for time synchronized channel hopping

    Directory of Open Access Journals (Sweden)

    Andrew Tinka

    2011-09-01

    Full Text Available Time Synchronized Channel Hopping (TSCH is an existing Medium Access Control scheme which enables robust communication through channel hopping and high data rates through synchronization. It is based on a time-slotted architecture, and its correct functioning depends on a schedule which is typically computed by a central node. This paper presents, to our knowledge, the first scheduling algorithm for TSCH networks which both is distributed and which copes with mobile nodes. Two variations on scheduling algorithms are presented. Aloha-based scheduling allocates one channel for broadcasting advertisements for new neighbors. Reservation- based scheduling augments Aloha-based scheduling with a dedicated timeslot for targeted advertisements based on gossip information. A mobile ad hoc motorized sensor network with frequent connectivity changes is studied, and the performance of the two proposed algorithms is assessed. This performance analysis uses both simulation results and the results of a field deployment of floating wireless sensors in an estuarial canal environment. Reservation-based scheduling performs significantly better than Aloha-based scheduling, suggesting that the improved network reactivity is worth the increased algorithmic complexity and resource consumption.

  16. CNTF-ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through upregulating L-type calcium channel activity.

    Science.gov (United States)

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-09-01

    A specialized culture medium termed ciliary neurotrophic factor-treated astrocyte-conditioned medium (CNTF-ACM) allows investigators to assess the peripheral effects of CNTF-induced activated astrocytes upon cultured neurons. CNTF-ACM has been shown to upregulate neuronal L-type calcium channel current activity, which has been previously linked to changes in mitochondrial respiration and oxidative stress. Therefore, the aim of this study was to evaluate CNTF-ACM's effects upon mitochondrial respiration and oxidative stress in rat cortical neurons. Cortical neurons, CNTF-ACM, and untreated control astrocyte-conditioned medium (UC-ACM) were prepared from neonatal Sprague-Dawley rat cortical tissue. Neurons were cultured in either CNTF-ACM or UC-ACM for a 48-h period. Changes in the following parameters before and after treatment with the L-type calcium channel blocker isradipine were assessed: (i) intracellular calcium levels, (ii) mitochondrial membrane potential (ΔΨm), (iii) oxygen consumption rate (OCR) and adenosine triphosphate (ATP) formation, (iv) intracellular nitric oxide (NO) levels, (v) mitochondrial reactive oxygen species (ROS) production, and (vi) susceptibility to the mitochondrial complex I toxin rotenone. CNTF-ACM neurons displayed the following significant changes relative to UC-ACM neurons: (i) increased intracellular calcium levels (p ACM (p ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through elevating L-type calcium channel activity.

  17. Radiation heat transfer within an open-cycle MHD generator channel

    Science.gov (United States)

    Delil, A. A. M.

    1983-05-01

    Radiation heat transfer in an MHD generator was modeled using the Sparrow and Cess model for radiation in an emitting, absorbing and scattering medium. The resulting general equations can be considerably reduced by introducing simplifying approximations for the channel and MHD gas properties. The simplifications lead to an engineering model, which is very useful for one-dimensional channel flow approximation. The model can estimate thermo-optical MHD gas properties, which can be substituted in the energy equation. The model considers the contribution of solid particles in the MHD gas to radiation heat transfer, considerable in coal-fired closed cycle MHD generators. The modeling is applicable also for other types of flow at elevated temperatures, where radiation heat transfer is an important quantity.

  18. On the stability of the interface between dense plasma and liquid under electrical pulse discharge in liquid medium

    International Nuclear Information System (INIS)

    Starchyk, P.D.; Porytskyy, P.V.

    2005-01-01

    It is shown that the most important influence on the plasma of electrical pulse discharges in liquid have the processes in a zone of its contact with condensed medium. The investigations of growth of corrugations are conducted which arise on an interface between both the plasma channels of electrical pulse discharges and limiting it liquid. It is shown that the growth of perturbations caused by Rayleigh-Taylor instability are nonlinearly saturated. It is established the interconnection between both the pointed perturbations and the parameters of a dense plasma of discharge channel

  19. Communication systems, transceivers, and methods for generating data based on channel characteristics

    Science.gov (United States)

    Forman, Michael A; Young, Derek

    2012-09-18

    Examples of methods for generating data based on a communications channel are described. In one such example, a processing unit may generate a first vector representation based in part on at least two characteristics of a communications channel. A constellation having at least two dimensions may be addressed with the first vector representation to identify a first symbol associated with the first vector representation. The constellation represents a plurality of regions, each region associated with a respective symbol. The symbol may be used to generate data, which may stored in an electronic storage medium and used as a cryptographic key or a spreading code or hopping sequence in a modulation technique.

  20. Coping with Asymmetric Channel Losses in CSMA/CA

    DEFF Research Database (Denmark)

    Paramanathan, Achuthan; Roetter, Daniel Enrique Lucani; Fitzek, Frank

    2013-01-01

    Inspired by the discrepancy between past theoretical analysis and real measurements for high-load scenarios for intersession network coding, we pinpoint and analyze the source of this discrepancy in wireless networks implementing a CSMA/CA medium access scheme. Our analysis shows that CSMA/CA is ......) confirm the sensitivity of the CSMA/CA scheme in real implementations, and (ii) shows that our adaptive protocol provides a simple, yet potent mechanism to cope with asymmetric channel losses and ultimately to enhance end-to-end throughput in high-load scenarios....

  1. A Vertical Channel Model of Molecular Communication based on Alcohol Molecules

    Directory of Open Access Journals (Sweden)

    Pengfei Lu

    2016-05-01

    Full Text Available The study of Molecular Communication(MC is more and more prevalence, and channel model of MC plays an important role in the MC System. Since different propagation environment and modulation techniques produce different channel model, most of the research about MC are in horizontal direction,but in nature the communications between nano machines are in short range and some of the information transportation are in the vertical direction, such as transpiration of plants, biological pump in ocean, and blood transportation from heart to brain. Therefore, this paper we propose a vertical channel model which nano-machines communicate with each other in the vertical direction based on pure diffusion. We rst propose a vertical molecular communication model, we mainly considered the gravity as the factor, though the channel model is also affected by other main factors, such as the ow of the medium, the distance between the transmitter and the receiver, the delay or sensitivity of the transmitter and the receiver. Secondly, we set up a test-bed for this vertical channel model, in order to verify the difference between the theory result and the experiment data. At last, we use the data we get from the experiment and the non-linear least squares method to get the parameters to make our channel model more accurate.

  2. Dual plane problems for creeping flow of power-law incompressible medium

    Directory of Open Access Journals (Sweden)

    Dmitriy S. Petukhov

    2016-09-01

    Full Text Available In this paper, we consider the class of solutions for a creeping plane flow of incompressible medium with power-law rheology, which are written in the form of the product of arbitrary power of the radial coordinate by arbitrary function of the angular coordinate of the polar coordinate system covering the plane. This class of solutions represents the asymptotics of fields in the vicinity of singular points in the domain occupied by the examined medium. We have ascertained the duality of two problems for a plane with wedge-shaped notch, at which boundaries in one of the problems the vector components of the surface force vanish, while in the other—the vanishing components are the vector components of velocity, We have investigated the asymptotics and eigensolutions of the dual nonlinear eigenvalue problems in relation to the rheological exponent and opening angle of the notch for the branch associated with the eigenvalue of the Hutchinson–Rice–Rosengren problem learned from the problem of stress distribution over a notched plane for a power law medium. In the context of the dual problem we have determined the velocity distribution in the flow of power-law medium at the vertex of a rigid wedge, We have also found another two eigenvalues, one of which was determined by V. V. Sokolovsky for the problem of power-law fluid flow in a convergent channel.

  3. Mitochondria from rat uterine smooth muscle possess ATP-sensitive potassium channel

    Directory of Open Access Journals (Sweden)

    Olga B. Vadzyuk

    2018-03-01

    Full Text Available The objective of this study was to detect ATP-sensitive K+ uptake in rat uterine smooth muscle mitochondria and to determine possible effects of its activation on mitochondrial physiology. By means of fluorescent technique with usage of K+-sensitive fluorescent probe PBFI (potassium-binding benzofuran isophthalate we showed that accumulation of K ions in isolated mitochondria from rat myometrium is sensitive to effectors of KATP-channel (ATP-sensitive K+-channel – ATP, diazoxide, glibenclamide and 5HD (5-hydroxydecanoate. Our data demonstrates that K+ uptake in isolated myometrium mitochondria results in a slight decrease in membrane potential, enhancement of generation of ROS (reactive oxygen species and mitochondrial swelling. Particularly, the addition of ATP into incubation medium led to a decrease in mitochondrial swelling and ROS production, and an increase in membrane potential. These effects were eliminated by diazoxide. If blockers of KATP-channel were added along with diazoxide, the effects of diazoxide were removed. So, we postulate the existence of KATP-channels in rat uterus mitochondria and assume that their functioning may regulate physiological conditions of mitochondria, such as matrix volume, ROS generation and polarization of mitochondrial membrane. Keywords: ATP-sensitive potassium channel, Diazoxide, 5-hydroxydecanoate, Myometrium, Mitochondria, Mitochondrial swelling, Mitochondrial membrane potential, ROS

  4. Lattice NRQCD study on in-medium bottomonium spectra using a novel Bayesian reconstruction approach

    International Nuclear Information System (INIS)

    Kim, Seyong; Petreczky, Peter; Rothkopf, Alexander

    2016-01-01

    We present recent results on the in-medium modification of S- and P-wave bottomonium states around the deconfinement transition. Our study uses lattice QCD with N f = 2 + 1 light quark flavors to describe the non-perturbative thermal QCD medium between 140MeV < T < 249MeV and deploys lattice regularized non-relativistic QCD (NRQCD) effective field theory to capture the physics of heavy quark bound states immersed therein. The spectral functions of the 3 S 1 (ϒ) and 3 P 1 (χ b1 ) bottomonium states are extracted from Euclidean time Monte Carlo simulations using a novel Bayesian prescription, which provides higher accuracy than the Maximum Entropy Method. Based on a systematic comparison of interacting and free spectral functions we conclude that the ground states of both the S-wave (ϒ) and P-wave (χ b1 ) channel survive up to T = 249MeV. Stringent upper limits on the size of the in-medium modification of bottomonium masses and widths are provided

  5. Bridging aero-fracture evolution with the characteristics of the acoustic emissions in a porous medium

    Directory of Open Access Journals (Sweden)

    Semih eTurkaya

    2015-09-01

    Full Text Available The characterization and understanding of rock deformation processes due to fluid flow is a challenging problem with numerous applications. The signature of this problem can be found in Earth Science and Physics, notably with applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, landslides with hydrological control, volcanic eruptions, or in industrial applications such as hydraulic-fracturing, steam-assisted gravity drainage, CO₂ sequestration operations or soil remediation. Here we investigate the link between the visual deformation and the mechanical wave signals generated due to fluid injection into porous media. In a rectangular Hele-Shaw Cell, side air injection causes burst movement and compaction of grains along with channeling (creation of high permeability channels empty of grains. During the initial compaction and emergence of the main channel, the hydraulic fracturing in the medium generates a large non-impulsive low frequency signal in the frequency range 100 Hz - 10 kHz. When the channel network is established, the relaxation of the surrounding medium causes impulsive aftershock-like events, with high frequency (above 10 kHz acoustic emissions, the rate of which follows an Omori Law. These signals and observations are comparable to seismicity induced by fluid injection. Compared to the data obtained during hydraulic fracturing operations, low frequency seismicity with evolving spectral characteristics have also been observed. An Omori-like decay of microearthquake rates is also often observed after injection shut-in, with a similar exponent p≃0.5 as observed here, where the decay rate of aftershock follows a scaling law dN/dt ∝(t-t₀-p . The physical basis for this modified Omori law is explained by pore pressure diffusion affecting the stress relaxation.

  6. Subtracted Dispersion Relations for In-medium Meson Correlators in QCD Sum Rules

    Energy Technology Data Exchange (ETDEWEB)

    Florkowski, W; Broniowski, W [The H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)

    1999-01-01

    We analyze subtracted dispersion relations for meson correlators at finite baryon density and temperature. Such relations are needed for QCD sum rules. We point out that importance of scattering terms, as well as finite, well-defined subtraction constants. Both are necessary for consistency, in particular for the equality of the longitudinal and transverse correlators in the limit of the vanishing three-momentum of mesons relative to the medium. We present detailed calculations in various mesonic channels of the Fermi gas of nucleons. (author)

  7. A Novel Spectrally Efficient Asynchronous Multi-Channel MAC Using a Half-Duplex Transceiver for Wireless Networks

    Directory of Open Access Journals (Sweden)

    Abdullah Devendiran

    2018-01-01

    Full Text Available Multi-channel medium access control (MAC protocols maximize network performance by enabling concurrent wireless transmissions over non-interfering channels. Despite physical layer advancements, the underlying IEEE 802.11 MAC standard cannot fully exploit features and support high-performance applications. In this work, we propose the novel spectrally efficient asynchronous multi-channel MAC (SA-MMAC protocol for wireless networks using a single half-duplex transceiver. A full-duplex mode of operation on data channels reduces the signaling overhead and boosts the spectrum efficiency. A revamped contention mechanism of IEEE 802.11 addresses the multi-channel hidden terminal problem, and a jamming signal from the receiver addresses the collisions in control signals. Furthermore, the control channel is used for data transmissions to increase the bandwidth utilization but under a restricted half-duplex mode to avoid causing a bottleneck situation. The simulator is tested for correctness. The results suggest that the protocol can work well on 3, 4, or 12 concurrent channels with high node density, providing about 12.5 times more throughput than IEEE 802.11 and 18% to 95% more throughput than its multi-channel variants under saturated traffic conditions.

  8. Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor

    International Nuclear Information System (INIS)

    Na, Jonggeol; Jung, Ikhwan; Kshetrimayum, Krishnadash S.; Park, Seongho; Park, Chansaem; Han, Chonghun

    2014-01-01

    Driven by both environmental and economic reasons, the development of small to medium scale GTL(gas-to-liquid) process for offshore applications and for utilizing other stranded or associated gas has recently been studied increasingly. Microchannel GTL reactors have been preferred over the conventional GTL reactors for such applications, due to its compactness, and additional advantages of small heat and mass transfer distance desired for high heat transfer performance and reactor conversion. In this work, multi-microchannel reactor was simulated by using commercial CFD code, ANSYS FLUENT, to study the geometric effect of the microchannels on the heat transfer phenomena. A heat generation curve was first calculated by modeling a Fischer-Tropsch reaction in a single-microchannel reactor model using Matlab-ASPEN integration platform. The calculated heat generation curve was implemented to the CFD model. Four design variables based on the microchannel geometry namely coolant channel width, coolant channel height, coolant channel to process channel distance, and coolant channel to coolant channel distance, were selected for calculating three dependent variables namely, heat flux, maximum temperature of coolant channel, and maximum temperature of process channel. The simulation results were visualized to understand the effects of the design variables on the dependent variables. Heat flux and maximum temperature of cooling channel and process channel were found to be increasing when coolant channel width and height were decreased. Coolant channel to process channel distance was found to have no effect on the heat transfer phenomena. Finally, total heat flux was found to be increasing and maximum coolant channel temperature to be decreasing when coolant channel to coolant channel distance was decreased. Using the qualitative trend revealed from the present study, an appropriate process channel and coolant channel geometry along with the distance between the adjacent

  9. Large Eddy Simulation of turbulent flows in compound channels with a finite element code

    International Nuclear Information System (INIS)

    Xavier, C.M.; Petry, A.P.; Moeller, S.V.

    2011-01-01

    This paper presents the numerical investigation of the developing flow in a compound channel formed by a rectangular main channel and a gap in one of the sidewalls. A three dimensional Large Eddy Simulation computational code with the classic Smagorinsky model is introduced, where the transient flow is modeled through the conservation equations of mass and momentum of a quasi-incompressible, isothermal continuous medium. Finite Element Method, Taylor-Galerkin scheme and linear hexahedrical elements are applied. Numerical results of velocity profile show the development of a shear layer in agreement with experimental results obtained with Pitot tube and hot wires. (author)

  10. Two-photon activation of endogenous store-operated calcium channels without optogenetics

    Science.gov (United States)

    Cheng, Pan; Tang, Wanyi; He, Hao

    2018-02-01

    Store-operated calcium (SOC) channels, regulated by intracellular Ca2+ store, are the essential pathway of calcium signaling and participate in a wide variety of cellular activities such as gene expression, secretion and immune response1. However, our understanding and regulation of SOC channels are mainly based on pharmacological methods. Considering the unique advantages of optical control, optogenetic control of SOC channels has been developed2. However, the process of genetic engineering to express exogenous light-sensitive protein is complicated, which arouses concerns about ethic difficulties in some research of animal and applications in human. In this report, we demonstrate rapid, robust and reproducible two-photon activation of endogenous SOC channels by femtosecond laser without optogenetics. We present that the short-duration two-photon scanning on subcellular microregion induces slow Ca2+ influx from extracellular medium, which can be eliminated by removing extracellular Ca2+. Block of SOC channels using various pharmacological inhibitors or knockdown of SOC channels by RNA interference reduce the probability of two-photon activated Ca2+ influx. On the contrary, overexpression of SOC channels can increase the probability of Ca2+ influx by two-photon scanning. These results collectively indicate Ca2+ influx through two-photon activated SOC channels. Different from classical pathway of SOC entry activated by Ca2+ store depletion, STIM1, the sensor protein of Ca2+ level in endoplasmic reticulum, does not show any aggregation or migration in this two-photon activated Ca2+ influx, which rules out the possibility of intracellular Ca2+ store depletion. Thereby, we propose this all-optical method of two-photon activation of SOC channels is of great potential to be widely applied in the research of cell calcium signaling and related biological research.

  11. Identification of new deep sea sinuous channels in the eastern Arabian Sea.

    Science.gov (United States)

    Mishra, Ravi; Pandey, D K; Ramesh, Prerna; Clift, Peter D

    2016-01-01

    Deep sea channel systems are recognized in most submarine fans worldwide as well as in the geological record. The Indus Fan is the second largest modern submarine fan, having a well-developed active canyon and deep sea channel system. Previous studies from the upper Indus Fan have reported several active channel systems. In the present study, deep sea channel systems were identified within the middle Indus Fan using high resolution multibeam bathymetric data. Prominent morphological features within the survey block include the Raman Seamount and Laxmi Ridge. The origin of the newly discovered channels in the middle fan has been inferred using medium resolution satellite bathymetry data. Interpretation of new data shows that the highly sinuous deep sea channel systems also extend to the east of Laxmi Ridge, as well as to the west of Laxmi Ridge, as previously reported. A decrease in sinuosity southward can be attributed to the morphological constraints imposed by the elevated features. These findings have significance in determining the pathways for active sediment transport systems, as well as their source characterization. The geometry suggests a series of punctuated avulsion events leading to the present array of disconnected channels. Such channels have affected the Laxmi Basin since the Pliocene and are responsible for reworking older fan sediments, resulting in loss of the original erosional signature supplied from the river mouth. This implies that distal fan sediments have experienced significant signal shredding and may not represent the erosion and weathering conditions within the onshore basin at the time of sedimentation.

  12. A porous medium model for predicting the duct wall temperature of sodium fast reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yiqi, E-mail: yyu@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Merzari, Elia; Obabko, Aleksandr [Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Thomas, Justin [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2015-12-15

    Highlights: • The proposed models are 400 times less computationally expensive than CFD simulations. • The proposed models show good duct wall temperature agreement with CFD simulations. • The paper provides an efficient tool for coupled radial core expansion calculation. - Abstract: Porous medium models have been established for predicting duct wall temperature of sodium fast reactor rod bundle assembly, which is much less computationally expensive than conventional CFD simulations that explicitly represent the wire-wrap and fuel pin geometry. Three porous medium models are proposed in this paper. Porous medium model 1 takes the whole assembly as one porous medium of uniform characteristics in the conventional approach. Porous medium model 2 distinguishes the pins along the assembly's edge from those in the interior with two distinct regions, each with a distinct porosity, resistance, and volumetric heat source. This accounts for the different fuel-to-coolant volume ratio in the two regions, which is important for predicting the temperature of the assembly's exterior duct wall. In Porous medium model 3, a precise resistance distribution was employed to define the characteristic of the porous medium. The results show that both porous medium model 2 and 3 can capture the average duct wall temperature well. Furthermore, the local duct wall variations due to different sub-channel patterns in bare rod bundles are well captured by porous medium model 3, although the wire effect on the duct wall temperature in wire wrap rod bundle has not been fully reproduced yet.

  13. Commencement of the Couette flow in the Oldroyd liquid with heat sources and in the presence of a uniform transverse magnetic field

    International Nuclear Information System (INIS)

    Biswal, S.; Pattnaik, B.K.

    1996-01-01

    Commencement of the Couette flow in Oldroyd liquid has been studied in the presence of a uniform transverse magnetic field with heat sources/sinks. Constitutive equations of motion and energy have been formulated and solved with the aid of Galerkin technique. Expressions for velocity, temperature, skin frictions and rates of heat transfer are obtained. With Fortran language, the values of velocity, temperature, shear-stresses at the lower and upper plates and the rates of heat transfer at the plates have been evaluated after necessary computations. The results have been shown by graphs and tables for different values of various parameters like R, R c , P m , t, n, P r , E and S. Velocity and temperature distribution are shown by graphs while the values of shear-stresses and Nusselts numbers at the plates are entered in tables. It is observed that the flow is sensitive to the interactions of heat source/sink, elasticity of the fluid and the imposed magnetic field strength. The amount of heat energy propagated during this process of non-Newtonian flow varies appreciably with R, S and P r . The heat absorbing sink or the heat generating source influences the temperature field to a great extent. (author)

  14. Heat transfer and pressure drop in rectangular channels with crossing fins (a Review)

    Science.gov (United States)

    Sokolov, N. P.; Polishchuk, V. G.; Andreev, K. D.; Rassokhin, V. A.; Zabelin, N. A.

    2015-06-01

    Channels with crossing finning find wide use in the cooling paths of high-temperature gas turbine blade systems. At different times, different institutions carried out experimental investigations of heat transfer and pressure drop in channels with coplanar finning of opposite walls for obtaining semiempirical dependences of Nusselt criteria (dimensionless heat-transfer coefficients) and pressure drop coefficients on the operating Reynolds number and relative geometrical parameters (or their complexes). The shape of experimental channels, the conditions of experiments, and the used variables were selected so that they would be most suited for solving particular practical tasks. Therefore, the results obtained in processing the experimental data have large scatter and limited use. This article considers the results from experimental investigations of different authors. In comparing the results, additional calculations were carried out for bringing the mathematical correlations to the form of dependences from the same variables. Generalization of the results is carried out. In the final analysis, universal correlations are obtained for determining the pressure drop coefficients and Nusselt number values for the flow of working medium in channels with coplanar finning.

  15. Study on calculation model of onset of nucleate boiling in narrow channels

    International Nuclear Information System (INIS)

    Zhang Ming; Zhou Tao; Sheng Cheng; Fu Tao; Xiao Zejun

    2011-01-01

    In the reactor engineering, narrow channels was used widely for its high power density, exceptional heat transfer and actual engineering requirements. The point of Onset of Nucleate Boiling (ONB) is the key point of boiling heat transfer in narrow channels. The point of ONB can directly influence the following flow and heat transfer characteristics in the reactor. Due to the special structure and complexity flow, the point of ONB in narrow channels are effected by many factors, which characteristics are not understood completely yet. Using B and R model, Su Shun-yu model, Pan Liang-ming model and Yang Rui-chang model, the heat flux of onset of nucleate boiling is compared and analyzed by taking water as the medium . And then the relationships of the heat flux with pressure, mass flow and wall temperature are obtained. Based on the differences of each model, the mechanisms for the main influence factors are suggested. (authors)

  16. Channelling and electromagnetic radiation of channelling particles

    International Nuclear Information System (INIS)

    Kalashnikov, N.

    1983-01-01

    A brief description is presented of the channelling of charged particles between atoms in the crystal lattice. The specificities are discussed of the transverse motion of channelling particles as are the origin and properties of quasi-characteristic radiation of channelling particles which accompany transfers from one band of permissible energies of the transverse motion of channelling particles to the other. (B.S.)

  17. Evolution of a Diffusion Channel in an Inhomogeneous Electric Field of the KrF-Laser Pump Discharge

    Science.gov (United States)

    Yampol'skaya, S. A.; Yastremsky, A. G.; Panchenko, Yu. N.; Puchikin, A. V.; Bobrovnikov, S. M.

    2018-01-01

    The results of studying the 2D-simulation of evolution of a diffusion channel in the KrF-laser pump discharge initiated by the pin on the cathode surface are presented. It is shown that during the pump pulse, the inhomogeneity passes successively through three stages: a plasma spot on the cathode surface, a diffuse channel, and a high-conductivity channel. From the analysis of the dynamics of spatial distribution of spontaneous emission on the B0-X transition of the KrF molecule in such a discharge, it is obtained that the channel can work as an amplifying medium while the volumetric form of its glow is maintained. Despite the contraction of the channel into a narrow cord at the end of the pump pulse, the distribution of the radiation energy over the entire pulse has the shape of a torch with the width at the anode of 0.6 cm.

  18. An integrative time-varying frequency detection and channel sounding method for dynamic plasma sheath

    Science.gov (United States)

    Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming

    2018-01-01

    The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.

  19. CANDU 6 - the highly successful medium sized reactor

    International Nuclear Information System (INIS)

    Hedges, K. R.; Allen, P. J.; Hopwood, J. M.

    2000-01-01

    The CANDU 6 Pressurized Heavy Water Reactor system, featuring horizontal fuel channels and heavy water moderator continues to evolve, supported by AECL's strong commitment to comprehensive R and D programs. The initial CANDU 6 design started in the 1970's. The first plants went into service in 1983, and the latest version of the plant is under construction in China. With each plant the technology has evolved giving the dual advantages of proveness and modern technology. CANDU 6 delivers important advantages of the CANDU system with benefit to small and medium-sized grids. This technology has been successfully adopted by, and localized to varying extents in, each of the CANDU 6 markets. For example, all CANDU owners obtain their fuel from domestic suppliers. Progressive CANDU development continues at AECL to enhance this medium size product CANDU 6. There are three key CANDU development strategic thrusts: improved economics, fuel cycle flexibility, and enhanced safety. The CANDU 6 product is also enhanced by incorporating improvements and advanced features that will be arising from our CANDU Technology R and D programs in areas such as heavy water and tritium, control and instrumentation, fuel and fuel cycles, systems and equipment and safety and constructability. (author)

  20. Novel transcripts of the estrogen receptor α gene in channel catfish

    Science.gov (United States)

    Patino, Reynaldo; Xia, Zhenfang; Gale, William L.; Wu, Chunfa; Maule, Alec G.; Chang, Xiaotian

    2000-01-01

    Complementary DNA libraries from liver and ovary of an immature female channel catfish were screened with a homologous ERα cDNA probe. The hepatic library yielded two new channel catfish ER cDNAs that encode N-terminal ERα variants of different sizes. Relative to the catfish ERα (medium size; 581 residues) previously reported, these new cDNAs encode Long-ERα (36 residues longer) and Short-ERα (389 residues shorter). The 5′-end of Long-ERα cDNA is identical to that of Medium-ERα but has an additional 503-bp segment with an upstream, in-frame translation-start codon. Recombinant Long-ERα binds estrogen with high affinity (Kd = 3.4 nM), similar to that previously reported for Medium-ERα but lower than reported for catfish ERβ. Short-ERα cDNA encodes a protein that lacks most of the receptor protein and does not bind estrogen. Northern hybridization confirmed the existence of multiple hepatic ERα RNAs that include the size range of the ERα cDNAs obtained from the libraries as well as additional sizes. Using primers for RT-PCR that target locations internal to the protein-coding sequence, we also established the presence of several ERα cDNA variants with in-frame insertions in the ligand-binding and DNA-binding domains and in-frame or out-of-frame deletions in the ligand-binding domain. These internal variants showed patterns of expression that differed between the ovary and liver. Further, the ovarian library yielded a full-length, ERα antisense cDNA containing a poly(A) signal and tail. A limited survey of histological preparations from juvenile catfish by in situ hybridization using directionally synthesized cRNA probes also suggested the expression of ERα antisense RNA in a tissue-specific manner. In conclusion, channel catfish seemingly have three broad classes of ERα mRNA variants: those encoding N-terminal truncated variants, those encoding internal variants (including C-terminal truncated variants), and antisense mRNA. The sense variants may

  1. Surface viscosity effects on the motion of self-propelling boat in a channel

    Science.gov (United States)

    Aliperio, M. G.; Nolan Confesor, Mark

    2015-06-01

    Self-propelled droplets have been conceived as simple chemical toy models to mimic motile biological samples such as bacteria. The motion of these droplets is believe to be due to the surface tension gradient in the boundary of the droplet. We performed experiments to look at the effect of varying the medium viscosity to the speed of a circular boat that was soaked in Pentanol. We found that the boats undergo oscillatory type of motion inside a channel. Moreover we found the maximum speed of the boat is independent on the viscosity of the medium. On the other a time scale describing the width of the velocity profile of the boat was found to increase with increasing viscosity.

  2. Medium-Based Design: Extending a Medium to Create an Exploratory Learning Environment

    Science.gov (United States)

    Rick, Jochen; Lamberty, K. K.

    2005-01-01

    This article introduces "medium-based" design -- an approach to creating "exploratory learning environments" using the method of "extending a medium". First, the characteristics of exploratory learning environments and medium-based design are described and grounded in related work. Particular attention is given to "extending a medium" --…

  3. Measurement channel of neutron flow based on software

    International Nuclear Information System (INIS)

    Rivero G, T.; Benitez R, J. S.

    2008-01-01

    The measurement of the thermal power in nuclear reactors is based mainly on the measurement of the neutron flow. The presence of these in the reactor core is associated to neutrons released by the fission reaction of the uranium-235. Once moderate, these neutrons are precursors of new fissions. This process it is known like chain reaction. Thus, the power to which works a nuclear reactor, he is proportional to the number of produced fissions and as these depend on released neutrons, also the power is proportional to the number of present neutrons. The measurement of the thermal power in a reactor is realized with called instruments nuclear channels. To low power (level source), these channels measure the individual counts of detected neutrons, whereas to a medium and high power, they measure the electrical current or fluctuation of the same one that generate the fission neutrons in ionization chambers especially designed to detect neutrons. For the case of TRIGA reactors, the measurement channels of neutron flow use discreet digital electronic technology makes some decades already. Recently new technological tools have arisen that allow developing new versions of nuclear channels of simple form and compacts. The present work consists of the development of a nuclear channel for TRIGA reactors based on the use of the correlated signal of a fission chamber for ample interval. This new measurement channel uses a data acquisition card of high speed and the data processing by software that to the being installed in a computer is created a virtual instrument, with what spreads in real time, in graphic and understandable form for the operator, the power indication to which it operates the nuclear reactor. This system when being based on software, offers a major versatility to realize changes in the signal processing and power monitoring algorithms. The experimental tests of neutronic power measurement show a reliable performance through seven decades of power, with a

  4. On the Geometric Modeling of the Uplink Channel in a Cellular System

    Directory of Open Access Journals (Sweden)

    K. B. Baltzis

    2008-01-01

    Full Text Available To meet the challenges of present and future wireless communications realistic propagation models that consider both spatial and temporal channel characteristics are used. However, the complexity of the complete characterization of the wireless medium has pointed out the importance of approximate but simple approaches. The geometrically based methods are typical examples of low–complexity but adequate solutions. Geometric modeling idealizes the aforementioned wireless propagation environment via a geometric abstraction of the spatial relationships among the transmitter, the receiver, and the scatterers. The paper tries to present an efficient way to simulate mobile channels using geometrical–based stochastic scattering models. In parallel with an overview of the most commonly used propagation models, the basic principles of the method as well the main assumptions made are presented. The study is focused on three well–known proposals used for the description of the Angle–of –Arrival and Time–of–Arrival statistics of the incoming multipaths in the uplink of a cellular communication system. In order to demonstrate the characteristics of these models illustrative examples are given. The physical mechanism and motivations behind them are also included providing us with a better understanding of the physical insight of the propagation medium.

  5. New insights on the voltage dependence of the KCa3.1 channel block by internal TBA.

    Science.gov (United States)

    Banderali, Umberto; Klein, Hélène; Garneau, Line; Simoes, Manuel; Parent, Lucie; Sauvé, Rémy

    2004-10-01

    We present in this work a structural model of the open IKCa (KCa3.1) channel derived by homology modeling from the MthK channel structure, and used this model to compute the transmembrane potential profile along the channel pore. This analysis showed that the selectivity filter and the region extending from the channel inner cavity to the internal medium should respectively account for 81% and 16% of the transmembrane potential difference. We found however that the voltage dependence of the IKCa block by the quaternary ammonium ion TBA applied internally is compatible with an apparent electrical distance delta of 0.49 +/- 0.02 (n = 6) for negative potentials. To reconcile this observation with the electrostatic potential profile predicted for the channel pore, we modeled the IKCa block by TBA assuming that the voltage dependence of the block is governed by both the difference in potential between the channel cavity and the internal medium, and the potential profile along the selectivity filter region through an effect on the filter ion occupancy states. The resulting model predicts that delta should be voltage dependent, being larger at negative than positive potentials. The model also indicates that raising the internal K+ concentration should decrease the value of delta measured at negative potentials independently of the external K+ concentration, whereas raising the external K+ concentration should minimally affect delta for concentrations >50 mM. All these predictions are born out by our current experimental results. Finally, we found that the substitutions V275C and V275A increased the voltage sensitivity of the TBA block, suggesting that TBA could move further into the pore, thus leading to stronger interactions between TBA and the ions in the selectivity filter. Globally, these results support a model whereby the voltage dependence of the TBA block in IKCa is mainly governed by the voltage dependence of the ion occupancy states of the selectivity filter.

  6. IDMA-Based MAC Protocol for Satellite Networks with Consideration on Channel Quality

    Directory of Open Access Journals (Sweden)

    Gongliang Liu

    2014-01-01

    Full Text Available In order to overcome the shortcomings of existing medium access control (MAC protocols based on TDMA or CDMA in satellite networks, interleave division multiple access (IDMA technique is introduced into satellite communication networks. Therefore, a novel wide-band IDMA MAC protocol based on channel quality is proposed in this paper, consisting of a dynamic power allocation algorithm, a rate adaptation algorithm, and a call admission control (CAC scheme. Firstly, the power allocation algorithm combining the technique of IDMA SINR-evolution and channel quality prediction is developed to guarantee high power efficiency even in terrible channel conditions. Secondly, the effective rate adaptation algorithm, based on accurate channel information per timeslot and by the means of rate degradation, can be realized. What is more, based on channel quality prediction, the CAC scheme, combining the new power allocation algorithm, rate scheduling, and buffering strategies together, is proposed for the emerging IDMA systems, which can support a variety of traffic types, and offering quality of service (QoS requirements corresponding to different priority levels. Simulation results show that the new wide-band IDMA MAC protocol can make accurate estimation of available resource considering the effect of multiuser detection (MUD and QoS requirements of multimedia traffic, leading to low outage probability as well as high overall system throughput.

  7. 'That proves my point': How mediums reconstrue disconfirmation in medium-sitter interactions.

    Science.gov (United States)

    Enoksen, Anette Einan; Dickerson, Paul

    2018-04-01

    Previous research has examined how the talk of mediums attends to the epistemological status of their readings. Such work has identified that mediums frequently use question-framed propositions that are typically confirmed by the sitter, thereby conferring epistemological status on the medium. This study seeks to investigate what happens when the sitter disconfirms the propositions of the medium. The study focuses on the ways in which such disconfirmation can be responded to such that it is reconstrued as evidence of the psychic nature of the medium's reading. Televised demonstrations of psychic readings involving British and US mediums and their sitters are analysed. The results suggest that mediums rework disconfirmation as proof in several ways: first, by emphasizing the different access that sitter and medium have to knowledge (e.g., about the future); second, as evidence that the medium has access to the actual voice of the deceased (and may therefore mishear what the deceased has said to them); and third, as revealing an important truth that has hitherto been concealed from the sitter. The implications of these findings are considered for cases where speakers bring different and potentially competing, epistemological resources to an interaction. © 2018 The British Psychological Society.

  8. An Effective Channel Allocation Scheme to Reduce Co-Channel and Adjacent Channel Interference for WMN Backhaul

    International Nuclear Information System (INIS)

    Abbasi, S.; Ismaili, I.A.; Khuhawar, F.Y.

    2016-01-01

    Two folded work presents channel allocation scheme sustaining channel orthogonality and channel spacing to reduce CCI (Co-Channel Interference) and ACI (Adjacent Channel Interference) for inter flow of an intra-flow link. Proposed scheme as a part of radio resource allocation is applied on infrastructure based backhaul of wireless mesh network using directional antennas. The proposed approach is applied separately on 2.4 and 5GHz bands. Interference of connectivity graph is modelled by strongly connected directed graph and greedy algorithms are used for channel allocation. We have used OPNET Modeller suite to simulate network models for this research. The proposed arrangement reduces the channel interference and increases system throughput. In this research, the influence of channel is computed in terms of network throughput and delay. (author)

  9. Investigation of the Klinkenberg effect in a micro/nanoporous medium by direct simulation Monte Carlo method

    Science.gov (United States)

    Yang, Guang; Weigand, Bernhard

    2018-04-01

    The pressure-driven gas transport characteristics through a porous medium consisting of arrays of discrete elements is investigated by using the direct simulation Monte Carlo (DSMC) method. Different porous structures are considered, accounting for both two- and three-dimensional arrangements of basic microscale and nanoscale elements. The pore scale flow patterns in the porous medium are obtained, and the Knudsen diffusion in the pores is studied in detail for slip and transition flow regimes. A new effective pore size of the porous medium is defined, which is a function of the porosity, the tortuosity, the contraction factor, and the intrinsic permeability of the porous medium. It is found that the Klinkenberg effect in different porous structures can be fully described by the Knudsen number characterized by the effective pore size. The accuracies of some widely used Klinkenberg correlations are evaluated by the present DSMC results. It is also found that the available correlations for apparent permeability, most of which are derived from simple pipe or channel flows, can still be applicative for more complex porous media flows, by using the effective pore size defined in this study.

  10. Peristaltic Flow of Carreau Fluid in a Rectangular Duct through a Porous Medium

    Directory of Open Access Journals (Sweden)

    R. Ellahi

    2012-01-01

    Full Text Available We have examined the peristaltic flow of Carreau fluid in a rectangular channel through a porous medium. The governing equations of motion are simplified by applying the long wavelength and low Reynolds number approximations. The reduced highly nonlinear partial differential equations are solved jointly by homotopy perturbation and Eigen function expansion methods. The expression for pressure rise is computed numerically by evaluating the numerical integration. The physical features of pertinent parameters have been discussed by plotting graphs of velocity, pressure rise, pressure gradient, and stream functions.

  11. Ion channel activity of membrane vesicles released from sea urchin sperm during the acrosome reaction

    International Nuclear Information System (INIS)

    Schulz, Joseph R.; Vega-Beltran, Jose L. de la; Beltran, Carmen; Vacquier, Victor D.; Darszon, Alberto

    2004-01-01

    The sperm acrosome reaction (AR) involves ion channel activation. In sea urchin sperm, the AR requires Ca 2+ and Na + influx and K + and H + efflux. During the AR, the plasma membrane fuses with the acrosomal vesicle membrane forming hybrid membrane vesicles that are released from sperm into the medium. This paper reports the isolation and preliminary characterization of these acrosome reaction vesicles (ARVs), using synaptosome-associated protein of 25 kDa (SNAP-25) as a marker. Isolated ARVs have a unique protein composition. The exocytosis regulatory proteins vesicle-associated membrane protein and SNAP-25 are inside ARVs, as judged by protease protection experiments, and membrane associated based on Triton X-114 partitioning. ARVs fused with planar bilayers display three main types of single channel activity. The most frequently recorded channel is cationic, weakly voltage dependent and has a low open probability that increases with negative potentials. This channel is activated by cAMP, blocked by Ba 2+ , and has a PK + /PNa + selectivity of 4.5. ARVs represent a novel membrane preparation suitable to deepen our understanding of ion channel activity in the AR and during fertilization

  12. Fast hydrodynamic model for medium- and long-term dispersion in seawater in the English Channel and southern North Sea, qualitative and quantitative validation by radionuclide tracers

    Science.gov (United States)

    du Bois, P. Bailly; Dumas, F.

    The database for medium- and long-term model validation using 125Sb released by the La Hague reprocessing plant includes 1400 measurements performed between 1987 and 1994 in the English Channel and the North Sea and data for each release since 1982. Antimony-125 has a conservative behaviour in water masses over a period of several years. These data can be used qualitatively and quantitatively to compare the measured concentrations with the calculated ones and quantities of tracers. Tritium measurements are also available for model calibration. A two-dimensional hydrodynamic model has been developed to allow repetitive long-term simulations. This model uses a database of residual tidal currents calculated using the Lagrangian barycentric method [Salomon, J.C., Guéguéniat, P., Orbi, A., Baron, Y., 1988. A Lagrangian model for long-term tidally induced transport and mixing. Verification by artificial radionuclide concentrations. In: Guary, J.C., Guéguéniat, P., Pentreath, R.J. (Eds.), Radionuclides: A Tool for Oceanography, Cherbourg 1-5 June, 1987. Elsevier Applied Science Publishers, London, New York, pp. 384-394]. The area covered by the model includes the English Channel, the southern North Sea and the Irish Sea with a mesh size of 1 km. The main adjustment parameters of this model are the sources of wind data used and the calculation method for evaluating wind stress at the sea surface. With these parameters, the fluxes of radionuclides and water masses in the English Channel and the North Sea were balanced for the whole period of field measurements (1987-1994). The correlation factor between individual measurements in seawater and calculation results is 0.88 with an average error of ±54%, the error attributable to the measurement process being 15% on average. The mean flux through the Dover Strait is 126,000 m 3 s -1, close from the one obtained from previous studies [Salomon, J.C., Breton, M., Guéguéniat, P. 1993. Computed residual flow through the Dover

  13. Entropy generation in Poiseuille flow through a channel partially filled with a porous material

    Directory of Open Access Journals (Sweden)

    Kumar Vikas

    2015-01-01

    Full Text Available In the present paper, a theoretical analysis of entropy generation due to fully developed flow and heat transfer through a parallel plate channel partially filled with a porous medium under the effect of transverse magnetic field and radiation is presented. Both horizontal plates of the channel are kept at constant and equal temperature. An exact solution of governing equation for both porous and clear fluid regions has been obtained in closed form. The entropy generation number and the Bejan number are also calculated. The effects of various parameters such as magnetic field parameter, radiation parameter, Brinkman number, permeability parameter, ratios of viscosities and thermal conductivities are examined on velocity, temperature, entropy generation rate.

  14. Channel access schemes and fiber optic configurations for integrated-services local area networks. Ph.D. Thesis

    Science.gov (United States)

    Nassehi, M. Mehdi

    1987-01-01

    Local Area Networks are in common use for data communications and have enjoyed great success. Recently, there is a growing interest in using a single network to support many applications in addition to traditional data traffic. These additional applications introduce new requirements in terms of volume of traffic and real-time delivery of data which are not met by existing networks. To satisfy these requirements, a high-bandwidth tranmission medium, such as fiber optics, and a distributed channel access scheme for the efficient sharing of the bandwidth among the various applications are needed. As far as the throughput-delay requirements of the various application are concerned, a network structure along with a distributed channel access are proposed which incorporate appropriate scheduling policies for the transmission of outstanding messages on the network. A dynamic scheduling policy was devised which outperforms all existing policies in terms of minimizing the expected cost per message. A broadcast mechanism was devised for the efficient dissemination of all relevant information. Fiber optic technology is considered for the high-bandwidth transmisison medium.

  15. Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow

    Science.gov (United States)

    Colbourne, A. A.; Blythe, T. W.; Barua, R.; Lovett, S.; Mitchell, J.; Sederman, A. J.; Gladden, L. F.

    2018-01-01

    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1 H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter > 200 μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument.

  16. Soft component of channeled electron radiation in silicon crystals

    International Nuclear Information System (INIS)

    Vnukov, I.E.; Kalinin, B.N.; Kiryakov, A.A.; Naumenko, G.A.; Padalko, D.V.; Potylitsyn, A.P.

    2001-01-01

    Radiation spectrum and orientation dependences of photon yield with the energy much lower than characteristic radiation energy during channeling were measured using a crystal-diffraction spectrometer. For electron drop along axis radiation intensity in the spectral range 30 ≤ ω ≤ 360 keV exceeds by nearly an order the intensity of Bremsstrahlung. The shape of radiation spectrum does not coincide with Bremsstrahlung spectrum. Radiation intensity increases gradually with photons energy growth. Bremsstrahlung spectrum from a disoriented crystalline target is described in a satisfactory manner by the currently used theory with phenomenological account of the medium polarization [ru

  17. Thermal performance of Al{sub 2}O{sub 3} in water - ethylene glycol nanofluid mixture as cooling medium in mini channel

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Irnie Azlin; Mohamed, Wan Ahmad Najmi Wan; Mamat, Aman Mohd Ihsan; Sainan, Khairul Imran; Talib, Siti Fatimah Abu [Alternative Energy Research Centre (AERC), Faculty of Mechanical Engineering, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2015-08-28

    Continuous need for an optimum conversion efficiency of a Proton Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Nanofluids as an innovative heat transfer fluid solution are expected to be a promising candidate for alternative coolant in mini channel cooling plate of PEMFC. In this work, heat transfer performance of low concentration of 0.1, 0.3 and 0.5 % Al{sub 2}O{sub 3} in water: Ethylene glycol (EG) mixtures of 100:0 and 50:50 nanofluids have been studied and compared against its base fluids at Re number ranging from 10 to 100. A steady, laminar and incompressible flow with constant heat flux is assumed in the channel of 140mm × 200mm. It was found that nanofluids have performed better than the base fluid but the demerit is on the pumping power due to the higher pressure drop across mini channel geometry as expected.

  18. Hydrodynamics and Connectivity of Channelized Floodplains: Insights from the Meandering East Fork White River, Indiana, USA

    Science.gov (United States)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2017-12-01

    High resolution topography reveals that meandering river floodplains in Indiana commonly have networks of channels. These floodplain channel networks are most prevalent in agricultural, low-gradient, wide floodplains. It appears that these networks are formed when floodplain channels connect oxbows to each other and the main river channel. Collectively, the channels in the floodplain create an interconnected network of pathways that convey water beginning at flows less than bankfull, and as stage increases, more of the floodplain becomes dissected by floodplain channels. In this work, we quantify the hydrodynamics and connectivity of the flow on the floodplain and in the main channel of the East Fork White River near Seymour, Indiana, USA. We constructed a two-dimensional numerical model using HECRAS of the river-floodplain system from LiDAR data and from main-channel river bathymetry to elucidate the behaviour of these floodplain channels across a range of flows. Model calibration and verification data included stage from a USGS gage, high-water marks at a high and medium flow, and an aerial photograph of inundation in the floodplain channels. The numerical model simulated flow depth and velocity, which was used to quantify connectivity of the floodplain channels, exchange between the main channel and floodplain channels, and residence time of water on the floodplain. Model simulations suggest that the floodplain channels convey roughly 50% of the total flow at what is typically considered "bankfull" flow. Overall, we present a process-based approach for analyzing complex floodplain-river systems where an individual floodplain-river system can be distilled down to a set of characteristic curves. Notably, we map the East Fork White River system to exchange-residence time space and argue that this characterization forms the basis for thinking about morphologic evolution (e.g., sediment deposition and erosion) and biogeochemistry (e.g., nitrate removal) in floodplain

  19. Linear stability analysis and nonlinear simulation of the channeling effect on viscous fingering instability in miscible displacement

    Science.gov (United States)

    Shahnazari, M. R.; Maleka Ashtiani, I.; Saberi, A.

    2018-03-01

    In this paper, the effect of channeling on viscous fingering instability of miscible displacement in porous media is studied. In fact, channeling is introduced as a solution to stabilize the viscous fingering instability. In this solution, narrow channels were placed next to the walls, and by considering an exponential function to model the channeling effect, a heterogeneous media is assumed. In linear stability analysis, the governing equations are transferred to Fourier space, and by introducing a novel numerical method, the transferred equations are analyzed. The growth rate based on the wave number diagram has been drawn up in three sections of the medium. It is found that the flow becomes more stable at the center and unstable along the walls when the permeability ratio is increased. Also when the permeability ratio is approximately equal to one, the channeling has no significant effect. In nonlinear simulations, by using stream function and vortices, new equations have been rewritten and it is shown that channeling has a profound effect on the growth of the fingers and mechanisms. In addition to the superposition of velocity vectors and concentration contours, the development of instability is investigated using the mixing length and sweep efficiency diagram. The results show that although channeling reduces instability, it increases the displacement process time.

  20. Axial Couette-Poiseuille flow of power-law viscoplastic fluids in concentric annuli

    Czech Academy of Sciences Publication Activity Database

    Filip, Petr; David, Jiří

    2003-01-01

    Roč. 40, 3/4 (2003), s. 111-119 ISSN 0920-4105 R&D Projects: GA AV ČR IAA2060004 Institutional research plan: CEZ:AV0Z2060917 Keywords : boreholes * channel geometry * viscoplastic materials Subject RIV: BK - Fluid Dynamics Impact factor: 0.570, year: 2003

  1. Citizens and service channels: channel choice and channel management implications

    NARCIS (Netherlands)

    Pieterson, Willem Jan

    2010-01-01

    The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost reduction for governmental agencies. However,

  2. Channel modeling, signal processing and coding for perpendicular magnetic recording

    Science.gov (United States)

    Wu, Zheng

    With the increasing areal density in magnetic recording systems, perpendicular recording has replaced longitudinal recording to overcome the superparamagnetic limit. Studies on perpendicular recording channels including aspects of channel modeling, signal processing and coding techniques are presented in this dissertation. To optimize a high density perpendicular magnetic recording system, one needs to know the tradeoffs between various components of the system including the read/write transducers, the magnetic medium, and the read channel. We extend the work by Chaichanavong on the parameter optimization for systems via design curves. Different signal processing and coding techniques are studied. Information-theoretic tools are utilized to determine the acceptable region for the channel parameters when optimal detection and linear coding techniques are used. Our results show that a considerable gain can be achieved by the optimal detection and coding techniques. The read-write process in perpendicular magnetic recording channels includes a number of nonlinear effects. Nonlinear transition shift (NLTS) is one of them. The signal distortion induced by NLTS can be reduced by write precompensation during data recording. We numerically evaluate the effect of NLTS on the read-back signal and examine the effectiveness of several write precompensation schemes in combating NLTS in a channel characterized by both transition jitter noise and additive white Gaussian electronics noise. We also present an analytical method to estimate the bit-error-rate and use it to help determine the optimal write precompensation values in multi-level precompensation schemes. We propose a mean-adjusted pattern-dependent noise predictive (PDNP) detection algorithm for use on the channel with NLTS. We show that this detector can offer significant improvements in bit-error-rate (BER) compared to conventional Viterbi and PDNP detectors. Moreover, the system performance can be further improved by

  3. Direct observation and theory of trajectory-dependent electronic energy losses in medium-energy ion scattering.

    Science.gov (United States)

    Hentz, A; Parkinson, G S; Quinn, P D; Muñoz-Márquez, M A; Woodruff, D P; Grande, P L; Schiwietz, G; Bailey, P; Noakes, T C Q

    2009-03-06

    The energy spectrum associated with scattering of 100 keV H+ ions from the outermost few atomic layers of Cu(111) in different scattering geometries provides direct evidence of trajectory-dependent electronic energy loss. Theoretical simulations, combining standard Monte Carlo calculations of the elastic scattering trajectories with coupled-channel calculations to describe inner-shell ionization and excitation as a function of impact parameter, reproduce the effects well and provide a means for far more complete analysis of medium-energy ion scattering data.

  4. Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability.

    Science.gov (United States)

    Pedrozo, Zully; Criollo, Alfredo; Battiprolu, Pavan K; Morales, Cyndi R; Contreras-Ferrat, Ariel; Fernández, Carolina; Jiang, Nan; Luo, Xiang; Caplan, Michael J; Somlo, Stefan; Rothermel, Beverly A; Gillette, Thomas G; Lavandero, Sergio; Hill, Joseph A

    2015-06-16

    L-type calcium channel activity is critical to afterload-induced hypertrophic growth of the heart. However, the mechanisms governing mechanical stress-induced activation of L-type calcium channel activity are obscure. Polycystin-1 (PC-1) is a G protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. We subjected neonatal rat ventricular myocytes to mechanical stretch by exposing them to hypo-osmotic medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on L-type calcium channel activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Overexpression of a C-terminal fragment of PC-1 was sufficient to trigger neonatal rat ventricular myocyte hypertrophy. Exposing neonatal rat ventricular myocytes to hypo-osmotic medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 knockout) and subjected them to mechanical stress in vivo (transverse aortic constriction). At baseline, PC-1 knockout mice manifested decreased cardiac function relative to littermate controls, and α1C L-type calcium channel protein levels were significantly lower in PC-1 knockout hearts. Whereas control mice manifested robust transverse aortic constriction-induced increases in cardiac mass, PC-1 knockout mice showed no significant growth. Likewise, transverse aortic constriction-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals PC-1 is a cardiomyocyte mechanosensor that is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein. © 2015 American Heart Association, Inc.

  5. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  6. Channel-aware multi-user uplink transmission scheme for SIMO-OFDM systems

    Institute of Scientific and Technical Information of China (English)

    PAN ChengKang; CAI YueMing; XU YouYun

    2009-01-01

    The problem of medium access control (MAC) in wireless single-Input multiple-output-orthogonal frequency division multiplexing (SIMO-OFOM) systems is addressed.Traditional random access protocols have low overheads and inferior performance.Centralized methods have superior performance and high overheads.To achieve the tradeoff between overhead and performance,we propose a channelaware uplink transmission (CaUT) scheme for SIMO-OFDM systems.In CaUT,users transmit requestto-send (RTS) at some subcarriers whose channel gains are above a predetermined threshold.Using the channel state information provided by RTS,access point performs user selection with receive beamforming to decide which users can access and then broadcasts the selection results via clear-to-send (CTS) to users.We present a distributed power control scheme by using a simple fixed modulation mode.We optimize the modulation order and channel gain thresholds to maximize the separable packets subject to the bit-error-rate (BER) and temporal fairness requirements and the Individual average transmit power constraints.The performance of CaUT scheme is analyzed analytically and evaluated by simulations.Simulation results show that CaUT can achieve more significant throughput performance than traditional random access protocols.

  7. Exact Outage Probability of Dual-Hop CSI-Assisted AF Relaying Over Nakagami-m Fading Channels

    KAUST Repository

    Xia, Minghua

    2012-10-01

    In this correspondence, considering dual-hop channel state information (CSI)-assisted amplify-and-forward (AF) relaying over Nakagami- m fading channels, the cumulative distribution function (CDF) of the end-to-end signal-to-noise ratio (SNR) is derived. In particular, when the fading shape factors m1 and m2 at consecutive hops take non-integer values, the bivariate H-function and G -function are exploited to obtain an exact analytical expression for the CDF. The obtained CDF is then applied to evaluate the outage performance of the system under study. The analytical results of outage probability coincide exactly with Monte-Carlo simulation results and outperform the previously reported upper bounds in the low and medium SNR regions.

  8. Micropropagation of Alstroemeria in liquid medium using slow release of medium components

    NARCIS (Netherlands)

    Klerk, de G.J.M.; Brugge, ter J.

    2010-01-01

    Alstroemeria rhizomes were micropropagated on semi-solid medium (AM) and in liquid medium (LM). In LM, growth was much enhanced (ca. 70%). Adequate gas exchange was crucial. This was obtained by agitation and in static medium by a sufficient large contact area of the explant and the gaseous

  9. Transient mixed convection in a channel with an open cavity filled with porous media

    International Nuclear Information System (INIS)

    Buonomo, B; Cresci, G; Manca, O; Mesolella, P; Nardini, S

    2012-01-01

    In this work transient mixed convection in a porous medium in a horizontal channel with a open cavity below is studied numerically. The cavity presents a heated wall at uniform heat flux and the other walls of the cavity and the channel are assumed adiabatic. Air flows through the horizontal channel. The heated wall of the cavity experiences a uniform heat flux in such a way that the forced flow is perpendicular to the motion due to natural convection. The study is carried out employing Brinkman-Forchheimer-extended Darcy model and two energy equations due to the local thermal non-equilibrium assumption. The flow in the channel is assumed to be two-dimensional, laminar, incompressible. Boussinesq approximation is considered. The thermophysical properties of the fluid are evaluated at the ambient temperature. The results for stream function and temperature distribution given at different times are obtained. Wall temperature value are given and also, the velocity and temperature profiles in several sections of the cavity are presented. In addition, the Nusselt number, both local and average, is presented along with the temporal variations of the average Nusselt number.

  10. Centralized Routing and Scheduling Using Multi-Channel System Single Transceiver in 802.16d

    Science.gov (United States)

    Al-Hemyari, A.; Noordin, N. K.; Ng, Chee Kyun; Ismail, A.; Khatun, S.

    This paper proposes a cross-layer optimized strategy that reduces the effect of interferences from neighboring nodes within a mesh networks. This cross-layer design relies on the routing information in network layer and the scheduling table in medium access control (MAC) layer. A proposed routing algorithm in network layer is exploited to find the best route for all subscriber stations (SS). Also, a proposed centralized scheduling algorithm in MAC layer is exploited to assign a time slot for each possible node transmission. The cross-layer optimized strategy is using multi-channel single transceiver and single channel single transceiver systems for WiMAX mesh networks (WMNs). Each node in WMN has a transceiver that can be tuned to any available channel for eliminating the secondary interference. Among the considered parameters in the performance analysis are interference from the neighboring nodes, hop count to the base station (BS), number of children per node, slot reuse, load balancing, quality of services (QoS), and node identifier (ID). Results show that the proposed algorithms significantly improve the system performance in terms of length of scheduling, channel utilization ratio (CUR), system throughput, and average end to end transmission delay.

  11. [Synopsis about the hypothesis of "information channel" of channel-collateral system].

    Science.gov (United States)

    Chang, Xi-Lang

    2008-10-01

    The author of the present paper founded a theorem about the "incompleteness of single channel structure" (nerve, blood vessel, lymphatic, interspace, aperture, etc.) through quantitative and qualitative analysis about the economic information channel in the human body, which eliminates the probability of single channel structure in the information channel of channel (meridian)-collateral system. After comprehensive analysis on the current researches, the author puts forward a neodoxy, i.e., the body "information channel" structure of the channel-collateral system, mainly follows the distribution regularity of systemic statistics, and is not a single specific entity; various layers of the information channel in the main stems of the channel-collaterals are composed of optimized structure tissues. Hence, the structure of this information channel of channel-collateral system is an overall-optimized, sequential and compatible systemic structure. From this neodoxy, the author brings forward a working principle of channel-collaterals, which is supported theoretically by bio-auxology. The longitudinal distribution of the main stems of meridian-collaterals is considered to result from that in the process of the animal evolution, in the animals moving forward, the microscopic complicated movement of intracorporeal information and energy molecules is related to the forward macroscopic and non-uniform movement of organism in trans-measure. Its impulse and kinetic momentum forms a main vector in the longitudinal direction of the body (the direction of the main stem of channel-collaterals). In order to adapt to and utilize natural regularities, the main stems of the channel-collaterals gradually differentiate and evolve in the living organism, forming a whole system. The "hypothesis of biological origin of channel-collateral system" and "that of information channel of the channel-collaterals in the body" constitute a relatively complete theoretical system framework.

  12. Amphotericin B channels in phospholipid membrane-coated nanoporous silicon surfaces: implications for photovoltaic driving of ions across membranes.

    Science.gov (United States)

    Yilma, Solomon; Liu, Nangou; Samoylov, Alexander; Lo, Ting; Brinker, C Jeffrey; Vodyanoy, Vitaly

    2007-03-15

    The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.

  13. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  14. Evaluating the impact of a wide range of vegetation densities on river channel pattern

    Science.gov (United States)

    Pattison, Ian; Roucou, Ron

    2016-04-01

    develop a simple conceptual model to explain the observations along the wide range of vegetation densities investigated. At low plant densities, each plant acted independently and caused flow separation and convergence around each plant, similar to in the Coulthard (2005] experiment. At medium densities, individual plants start to interact together with narrow channels developing longitudinally between vegetative bars. Finally at very high densities, there was both lateral and longitudinal interaction between plants meaning that flow was diverted around them forming wandering, meandering channels. In summary, the relationship between vegetation density and channel braiding is more complex than previous thought, taking a parabolic shape, with maximum braiding occurring at medium vegetation densities.

  15. Nuclear medium effects on the K{sup Macron Low-Asterisk} meson

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura, E-mail: tolos@ice.csic.es [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autonoma de Barcelona, Facultat de Ciencies, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Molina, Raquel; Oset, Eulogio [Instituto de Fisica Corpuscular (centro mixto CSIC-UV), Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Ramos, Angels [Departament d' Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)

    2012-05-01

    The K{sup Macron Low-Asterisk} meson in dense matter is analyzed by means of a unitary approach in coupled channels based on the local hidden gauge formalism. The K{sup Macron Low-Asterisk} self-energy and the corresponding K{sup Macron Low-Asterisk} spectral function in the nuclear medium are obtained. We observe that the K{sup Macron Low-Asterisk} develops a width in matter up to five times bigger than in free space. We also estimate the transparency ratio of the {gamma}A{yields}K{sup +}K{sup Low-Asterisk -}A{sup Prime} reaction. This ratio is an excellent tool to detect experimentally modifications of the K{sup Macron Low-Asterisk} meson in dense matter.

  16. Influence of slip velocity in Herschel-Bulkley fluid flow between parallel plates - A mathematical study

    International Nuclear Information System (INIS)

    Sankar, D. S.; Lee, U Sik

    2016-01-01

    This theoretical study investigates three types of basic flows of viscous incompressible Herschel-Bulkley fluid such as (i) plane Couette flow, (ii) Poiseuille flow and (iii) generalized Couette flow with slip velocity at the boundary. The analytic solutions to the nonlinear boundary value problems have been obtained. The effects of various physical parameters on the velocity, flow rate, wall shear stress and frictional resistance to flow are analyzed through appropriate graphs. It is observed that in plane Poiseuille flow and generalized Couette flow, the velocity and flow rate of the fluid increase considerably with the increase of the slip parameter, power law index, pressure gradient. The fluid velocity is significantly higher in plane Poiseuille flow than in plane Couette flow. The wall shear stress and frictional resistance to flow decrease considerably with the increase of the power law index and increase significantly with the increase of the yield stress of the fluid. The wall shear stress and frictional resistance to flow are considerably higher in plane Poiseuille flow than in generalized Couette flow.

  17. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China

    Science.gov (United States)

    Xian, Benzhong; Wang, Junhui; Gong, Chenglin; Yin, Yu; Chao, Chuzhi; Liu, Jianping; Zhang, Guodong; Yan, Qi

    2018-06-01

    Subaquatic channels are known as active conduits for the delivery of terrigenous sediments into related marine and lacustrine basins, as well as important targets for hydrocarbon exploration. Compared to submarine channels, lacustrine subaqueous channels created by hyperpycnal flows are understudied. Using well-exposed outcrops collected from three different locations in the southern Ordos Basin, central China, morphologies and architecture of a channelized hyperpycnal system were studied and classified. Six facies associations represent sedimentary processes from strong erosion by bedload dominated hyperpycnal flows, to transitional deposition jointly controlled by bedload and suspended-load dominated hyperpycnal flows, finally to deposition from suspended-load dominated hyperpycnal flows. On the basis of channel morphologies, infilling sediments and sedimentary processes, the documented channels can be classified into four main categories, which are erosional, bedload dominated, suspended-load dominated, and depositional channels. In very proximal and very distal locations, erosional channels and depositional channels serve as two end-members, while in middle areas, bedload-dominated channels and suspended-load dominated channels are transitional types. Erosional channels, as a response to strong erosion from bedload dominated hyperpycnal flows on upper slope, were mainly filled by mud interbedded with thin sand beds. As flow energy decreases, bedload dominated channels develop on middle slopes, which are characterized mainly by under- to balanced sediment infillings with cross-bedded sandstones and/or minor massive sandstones. Compared to bedload dominated channels, suspended-load dominated channels mainly develop in deeper water, and were filled mainly by massive or planar-laminated sandstones. Depositional channels, as a response to suspended-load dominated hyperpycnal flows in deep-water areas, are characterized by thin-medium bed classical turbidites with

  18. Diffraction by a grating made of a uniaxial dielectric-magnetic medium exhibiting negative refraction

    Energy Technology Data Exchange (ETDEWEB)

    Depine, Ricardo A [Grupo de Electromagnetismo Aplicado, Departamento de FIsica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Lakhtakia, Akhlesh [CATMAS-Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States); Department of Physics, Imperial College, London SW7 2BZ (United Kingdom)

    2005-08-01

    Diffraction of linearly polarized plane electromagnetic waves at the periodically corrugated boundary of vacuum and a linear, homogeneous, uniaxial, dielectric-magnetic medium is formulated as a boundary-value problem and solved using the Rayleigh method. The focus is on situations where the diffracted fields maintain the same polarization state as the s- or p-polarized incident plane wave. Attention is paid to two classes of diffracting media: those with negative definite permittivity and permeability tensors, and those with indefinite permittivity and permeability tensors. For the situations investigated, whereas the dispersion equations in the diffracting medium turn out to be elliptic for the first class of diffracting media, they are hyperbolic for the second class. Examples are reported with the first class of diffracting media of instances when the grating acts either as a positively refracting interface or as a negatively refracting interface. For the second class of diffracting media, hyperbolic dispersion equations imply the possibility of an infinite number of refraction channels.

  19. Diffraction by a grating made of a uniaxial dielectric-magnetic medium exhibiting negative refraction

    International Nuclear Information System (INIS)

    Depine, Ricardo A; Lakhtakia, Akhlesh

    2005-01-01

    Diffraction of linearly polarized plane electromagnetic waves at the periodically corrugated boundary of vacuum and a linear, homogeneous, uniaxial, dielectric-magnetic medium is formulated as a boundary-value problem and solved using the Rayleigh method. The focus is on situations where the diffracted fields maintain the same polarization state as the s- or p-polarized incident plane wave. Attention is paid to two classes of diffracting media: those with negative definite permittivity and permeability tensors, and those with indefinite permittivity and permeability tensors. For the situations investigated, whereas the dispersion equations in the diffracting medium turn out to be elliptic for the first class of diffracting media, they are hyperbolic for the second class. Examples are reported with the first class of diffracting media of instances when the grating acts either as a positively refracting interface or as a negatively refracting interface. For the second class of diffracting media, hyperbolic dispersion equations imply the possibility of an infinite number of refraction channels

  20. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  1. Channel characteristics and coordination in three-echelon dual-channel supply chain

    Science.gov (United States)

    Saha, Subrata

    2016-02-01

    We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.

  2. Reprocessing of multi-channel seismic-reflection data collected in the Chukchi Sea

    Science.gov (United States)

    Agena, W.F.; Lee, M.W.; Hart, P.E.

    2001-01-01

    Contained on this set of two CD-ROMs are stacked and migrated multi-channel seismic-reflection data for 44 lines recorded in the Chukchi Sea, northern Alaska, by the United States Geological Survey in 1977, 1978, and 1980. All data were reprocessed by the USGS in 2000 using updated methods. The resulting final data have both increased temporal and spatial resolution thus providing improved interpretability. An added benefit of these CD-ROMs is that they are a more stable, long-term archival medium for the data.

  3. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    Directory of Open Access Journals (Sweden)

    E. Kheradpezhouh

    2016-04-01

    Full Text Available Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2 channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E-1,7-bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione, a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.

  4. A mother cell-to-forespore channel: current understanding and future challenges.

    Science.gov (United States)

    Crawshaw, Adam D; Serrano, Mónica; Stanley, Will A; Henriques, Adriano O; Salgado, Paula S

    2014-09-01

    Formation of endospores allows some bacteria to survive extreme nutrient limitation. The resulting dormant cell, the spore, persists in the environment and is highly resistant to physical and chemical stresses. During spore formation, cells divide asymmetrically and the mother cell engulfs the developing spore, encasing it within a double membrane and isolating it from the medium. Communication between mother cell and isolated forespore involves a specialised connection system that allows nurturing of the forespore and continued macromolecular synthesis, required to finalise spore maturation. Here, we review current understanding of this feeding channel formed by a forespore protein, SpoIIQ, and a mother cell protein, SpoIIIAH, in the model organism Bacillus subtilis and the important human pathogen Clostridium difficile. We also analyse the presence of this channel across endospore-forming bacteria and highlight the main questions still remaining. © 2014 The Authors FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  5. MONETARY TRANSMISSION CHANNELS IN ROMANIA – THE CREDIT CHANNEL

    Directory of Open Access Journals (Sweden)

    Magdalena RĂDULESCU

    2009-12-01

    Full Text Available The theoretical – intuitive analysis applied to the segment of monetary transmission evidences the fact that forming the traditional monetary impulses transmission channels are in a starting phase due to the long financial non – intermediary process which Romanian economy had known. In these conditions, the exchange rate channel, and also NBR currency purchases was, for a long time, an important way through which monetary authorities actions influenced macro economical behaviors. But starting with 2000, it is observed a credit channel reactivation and, especially, interest rate channel. Anyhow, the credit channel continues to be undermined by the existence of liquidity surplus within the system, by the phenomena of substitution of national currency credit with currency credits, and also moral hazardous displays. Albeit some of these phenomena also affect the interest rate channel, its role in sending monetary policy impulses is in a continuous progress. Apparently, it acts by way of nominal interest rates, their real level seeming less relevant. Once with remaking the two traditional channels, the companies and households balance is configured and consolidated, which shall potentate in the future the efficiency of the monetary policy. This paper analyses the credit channel in Romania, through an unrestricted VAR analysis.. It shows the responses of exchange rate, inflation rate, GDP, interest rate, imports and exports to a shock on non-governmental credit

  6. ZnO-channel thin-film transistors: Channel mobility

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    2004-01-01

    ZnO-channel thin-film transistor (TFT) test structures are fabricated using a bottom-gate structure on thermally oxidized Si; ZnO is deposited via RF sputtering from an oxide target, with an unheated substrate. Electrical characteristics are evaluated, with particular attention given to the extraction and interpretation of transistor channel mobility. ZnO-channel TFT mobility exhibits severe deviation from that assumed by ideal TFT models; mobility extraction methodology must accordingly be recast so as to provide useful insight into device operation. Two mobility metrics, μ avg and μ inc , are developed and proposed as relevant tools in the characterization of nonideal TFTs. These mobility metrics are employed to characterize the ZnO-channel TFTs reported herein; values for μ inc as high as 25 cm2/V s are measured, comprising a substantial increase in ZnO-channel TFT mobility as compared to previously reported performance for such devices

  7. Driving advertising into mobile mediums : Study of consumer attitudes towards mobile advertising and of factors affecting on them

    OpenAIRE

    Pietz, Michal; Storbacka, Lauri

    2007-01-01

    The high penetration rate of mobile phones along with the recent technological development has created a whole new marketing medium named mobile advertising filled with possibilities for the advertisers. Earlier studies have although indicated the success of this new advertising channel to depend on user acceptance of receiving mobile ads. Wherefore a study of consumer attitudes towards mobile advertising can be considered necessary in order to create a lucrative business. Even though this to...

  8. Disguising quantum channels by mixing and channel distance trade-off

    International Nuclear Information System (INIS)

    Fung, Chi-Hang Fred; Chau, H F

    2014-01-01

    We consider the reverse problem of the distinguishability of two quantum channels, which we call the disguising problem. Given two quantum channels, the goal here is to make the two channels identical by mixing with some other channels with minimal mixing probabilities. This quantifies how much one channel can disguise as the other. In addition, the possibility to trade-off between the two mixing probabilities allows one channel to be more preserved (less mixed) at the expense of the other. We derive lower- and upper-bounds of the trade-off curve and apply them to a few example channels. Optimal trade-off is obtained in one example. We relate the disguising problem and the distinguishability problem by showing that the former can lower and upper bound the diamond norm. We also show that the disguising problem gives an upper-bound on the key generation rate in quantum cryptography. (paper)

  9. Bistability of heat transfer of a viscous liquid under conditions of flow channel

    International Nuclear Information System (INIS)

    Melkikh, A.V.; Seleznev, V.D.

    2001-01-01

    The heat exchange model for a viscous liquid flowing under the pressure drop effect in a tube, surrounded by the medium with a lower temperature, is considered. It is shown that the system bistable behavior is possible by availability of the liquid viscosity exponential dependence on the temperature and by negligible dissipative heat release. The transitions between cold and hot flows in this case should proceed by a jump. The liquid and channel parameters, whereby the bistability may be observed, are determined [ru

  10. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Kramer Gerhard

    2009-01-01

    Full Text Available Abstract This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom ( are derived for the degraded case with one receiver. Schemes to achieve the for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable is given for the general case.

  11. ATP Release Channels

    Directory of Open Access Journals (Sweden)

    Akiyuki Taruno

    2018-03-01

    Full Text Available Adenosine triphosphate (ATP has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma membrane, conductive ATP release from the cytosol into the extracellular space is possible through ATP-permeable channels. Such channels must possess two minimum qualifications for ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium homeostasis modulator 1 (CALHM1, volume-regulated anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR anion channels, and maxi-anion channels (MACs. Recently, major breakthroughs have been made in the field by molecular identification of CALHM1 as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of these five groups of ATP-release channels are summarized, along with a discussion on the future implications of understanding these channels.

  12. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  13. TNF-α promotes cell survival through stimulation of K+ channel and NFκB activity in corneal epithelial cells

    International Nuclear Information System (INIS)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-01-01

    Tumor necrosis factor (TNF-α) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-α also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-α stimulation induced activation of a voltage-gated K + channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-α on downstream events included NFκB nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-α induced increases in p21 expression resulting in partial cell cycle attenuation in the G 1 phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-α-induced K + channel activity effectively prevented NFκB nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-α. In conclusion, TNF-α promotes survival of HCE cells through sequential stimulation of K + channel and NFκB activities. This response to TNF-α is dependent on stimulating K + channel activity because following suppression of K + channel activity TNF-α failed to activate NFκB nuclear translocation and binding to nuclear DNA

  14. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium

    Science.gov (United States)

    Hussain, Q.; Latif, T.; Alvi, N.; Asghar, S.

    2018-06-01

    The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study). Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters.

  15. Effect of nucleon and hadron structure changes in-medium and its impact on observables

    Energy Technology Data Exchange (ETDEWEB)

    K. Saito; K. Tsushima; A.W. Thomas

    2005-07-05

    We study the effect of hadron structure changes in a nuclear medium using the quark-meson coupling (QMC) model. The QMC model is based on a mean field description of non-overlapping nucleon (or baryon) bags bound by the self-consistent exchange of scalar and vector mesons in the isoscalar and isovector channels. The model is extended to investigate the properties of finite nuclei, in which, using the Born-Oppenheimer approximation to describe the interacting quark-meson system, one can derive the effective equation of motion for the nucleon (or baryon), as well as the self-consistent equations for the meson mean fields.

  16. Study of elastic scattering between heavy ions. Reaction channel influence

    International Nuclear Information System (INIS)

    Doubre, Hubert.

    1978-01-01

    The role of absorption on the behavior of heavy ion angular distributions and excitaton functions has been investigated on light and medium mass systems. Comparison between 20 Ne+ 12 C and 16 O+ 16 O systems which lead to the same compound nucleus, shows that it originates from the direct channels strongly coupled to the entrance channel. Structures in the excitation functions occur for almost all the light systems and it is shown that the damping observed for heavier systems such as 40 Ca+ 40 Ca, essentially results on the predominance of Coulomb effects which hide the nuclear structure effects. Thus no valuable information on the details of S-matrix can be extracted for such an heavy system. A coherent description of the elastic scattering, based on a splitting of the scattering amplitude into two components, the modulus of each component varying smoothly as a function of energy and angle. The interference between these sub-amplitudes give rise to interference effects in angular distributions and excitation functions. The study of the main reaction channels of the 40 Ca+ 40 Ca system - i.e. deep inelastic reactions and fusion - also shows that the closed-shell nature of the interacting nuclei does not play any role in these processes due to the excitation processes in the first stage of the reactions which destroy the specific structure of the nuclei [fr

  17. Joint source/channel coding of scalable video over noisy channels

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, G.; Zakhor, A. [Department of Electrical Engineering and Computer Sciences University of California Berkeley, California94720 (United States)

    1997-01-01

    We propose an optimal bit allocation strategy for a joint source/channel video codec over noisy channel when the channel state is assumed to be known. Our approach is to partition source and channel coding bits in such a way that the expected distortion is minimized. The particular source coding algorithm we use is rate scalable and is based on 3D subband coding with multi-rate quantization. We show that using this strategy, transmission of video over very noisy channels still renders acceptable visual quality, and outperforms schemes that use equal error protection only. The flexibility of the algorithm also permits the bit allocation to be selected optimally when the channel state is in the form of a probability distribution instead of a deterministic state. {copyright} {ital 1997 American Institute of Physics.}

  18. Influence of water-soluble channeling agents on the release of diclofenac sodium from Irvingia malayana wax matrix tablets.

    Science.gov (United States)

    Yotsawimonwat, Songwut; Charumanee, Suporn; Kaewvichit, Sayam; Sirithunyalug, Jakkapan; Sirisa-Ard, Panee; Piyamongkol, Sirivipa; Siangwong, Kulthawat

    2017-05-01

    Irvingia malayana wax (IW) is majorly composed of esters of medium chain fatty acids. Its melting point is low and closed to the body temperature. This study aimed at investigating the potential of IW as a matrix-forming agent and evaluate the effect of soluble channeling agents on the release of diclofenac sodium (DS) from IW matrix tablets. The preformulation study by infrared spectroscopy and differential scanning calorimetry showed no incompatibility between IW and DS or soluble channeling agents, namely PEG 4000, PEG 6000 and lactose. IW retarded the release of DS from the matrix tablets more efficiently than carnauba wax due to its greater hydrophobicity and its ability to become partial molten wax at 37° C. Factors affecting the release of DS from IW matrix were drug concentrations, and types and concentrations of channeling agents. The release of DS significantly improved when DS concentration reached approximately 33%. The fast dissolving channeling agent, lactose, could enhance the drug release rate more effectively than PEG 4000 and PEG 6000, respectively. The linear relationship between the DS release rate and the concentration of the chosen channeling agent, PEG 6000, was found (r 2 =0.9866).

  19. [Computation of the K+, Na+ and Cl- fluxes through plasma membrane of animal cell with Na+/K+ pump, NKCC, NC cotransporters, and ionic channels with and without non-Goldman rectification in K+ channels. Norma and apoptosis].

    Science.gov (United States)

    Rubashkin, A A; Iurinskaia, V E; Vereninov, A A

    2010-01-01

    The balance of K+, Na+ and Cl- fluxes through cell membrane with the Na+/K+ pump, ion channels and NKCC and NC cotransporters is considered. It is shown that all unidirectional K+, Na+ and Cl- fluxes through cell membrane, permeability coefficients of ion channels and membrane potential can be computed for balanced ion distribution between cell and the medium if K+, Na+ and Cl- concentration in cell water and three fluxes are known: total Cl- flux, total K+ influx and ouabain-inhibitable "pump" component of the K+ influx. Changes in the mortovalent ion balance in lymphoid cells U937 induced to apoptosis by 1 microM staurosporine are analyzed as an example. It is found that the apoptotic shift in ion and water balance in studied cells is caused by a decrease in the pump activity which is accompanied by a decrease in the integral permeability of Na+ channels without significant increase in K+ and Cl- channel permeabilities. Computation shows that only a small part of the total fluxes of K+, Na+ and Cl- accounts for the fluxes via NKCC and NC cotransporters. Therefore, cotransport fluxes can not be studied using inhibitors.

  20. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Shlomo Shamai (Shitz

    2009-01-01

    Full Text Available This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom (s.d.o.f. are derived for the degraded case with one receiver. Schemes to achieve the s.d.o.f. for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable s.d.o.f. is given for the general case.

  1. Hall Currents and Heat Transfer Effects on Peristaltic Transport in a Vertical Asymmetric Channel through a Porous Medium

    Directory of Open Access Journals (Sweden)

    E. Abo-Eldahab

    2012-01-01

    a porous medium are investigated theoretically and graphically under assumptions of low Reynolds number and long wavelength. The flow is investigated in a wave frame of reference moving with the velocity of the wave. Analytical solutions have been obtained for temperature, axial velocity, stream function, pressure gradient, and shear stresses. The trapping phenomenon is discussed. Graphical results are sketched for various embedded parameters and interpreted.

  2. Direct Numerical Simulation of Turbulent Couette-Poiseuille Flow With Zero Skin Friction

    Science.gov (United States)

    Coleman, Gary N.; Spalart, Philippe R.

    2015-01-01

    The near-wall scaling of mean velocity U(yw) is addressed for the case of zero skin friction on one wall of a fully turbulent channel flow. The present DNS results can be added to the evidence in support of the conjecture that U is proportional to the square root of yw in the region just above the wall at which the mean shear dU=dy = 0.

  3. Benefits and challenges of using social media in marketing strategy:investigating small- and medium-sized companies in the Oulu region

    OpenAIRE

    Orajärvi, P. (Paavo)

    2016-01-01

    Abstract This thesis explains what social media marketing is as a phenomenon and what kind of roles it can fill in a company’s overall marketing strategies. The thesis also provides very practical information on how small/medium-sized companies can use social media channels in their daily marketing activities. This has been achieved through a literature review on the topic supported by an empirical multi-case study. The mot...

  4. Ultra-fast secure communication with complex systems in classical channels (Conference Presentation)

    KAUST Repository

    Mazzone, Valerio

    2017-04-28

    Developing secure communications is a research area of growing interest. During the past years, several cryptographic schemes have been developed, with Quantum cryptography being a promising scheme due to the use of quantum effects, which make very difficult for an eavesdropper to intercept the communication. However, practical quantum key distribution methods have encountered several limitations; current experimental realizations, in fact, fail to scale up on long distances, as well as in providing unconditional security and speed comparable to classical optical communications channels. Here we propose a new, low cost and ultra-fast cryptographic system based on a fully classical optical channel. Our cryptographic scheme exploits the complex synchronization of two different random systems (one on the side of the sender and another on the side of the receiver) to realize a “physical” one paid system. The random medium is created by an optical chip fabricated through electron beam lithography on a Silicon On Insulator (SOI) substrate. We present experiments with ps lasers and commercial fibers, showing the ultrafast distribution of a random key between two users (Alice and Bob), with absolute no possibility for a passive/active eavesdropper to intercept the communication. Remarkably, this system enables the same security of quantum cryptography, but with the use of a classical communication channel. Our system exploits a unique synchronization that exists between two different random systems, and at such is extremely versatile and can enable safe communications among different users in standards telecommunications channels.

  5. Quantum Channels With Memory

    International Nuclear Information System (INIS)

    Rybar, T.

    2012-01-01

    Quantum memory channels represent a very general, yet simple and comprehensible model for causal processes. As such they have attracted considerable research interest, mostly aimed on their transfer capabilities and structure properties. Most notably it was shown that memory channels can be implemented via physically naturally motivated collision models. We also define the concept of repeatable channels and show that only unital channels can be implemented repeat ably with pure memory channels. In the special case of qubit channels we also show that every unital qubit channel has a repeatable implementation. We also briefly explore the possibilities of stroboscopical simulation of channels and show that all random unitary channels can be stroboscopically simulated. Particularly in qubit case, all indivisible qubit channels are also random unitary, hence for qubit all indivisible channels can be stroboscopically simulated. Memory channels also naturally capture the framework of correlated experiments. We develop methods to gather and interpret data obtained in such setting and in detail examine the two qubit case. We also show that for control unitary interactions the measured data will never contradict a simple unitary evolution. Thus no memory effects can be spotted then. (author)

  6. Mimicking multi-channel scattering with single-channel approaches

    OpenAIRE

    Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2009-01-01

    The collision of two atoms is an intrinsic multi-channel (MC) problem as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold 6Li and 87Rb atoms in the ground state and in the ...

  7. Carrier frequency offset estimation for an acoustic-electric channel using 16 QAM modulation

    Science.gov (United States)

    Cunningham, Michael T.; Anderson, Leonard A.; Wilt, Kyle R.; Chakraborty, Soumya; Saulnier, Gary J.; Scarton, Henry A.

    2016-05-01

    Acoustic-electric channels can be used to send data through metallic barriers, enabling communications where electromagnetic signals are ineffective. This paper considers an acoustic-electric channel that is formed by mounting piezoelectric transducers on metallic barriers that are separated by a thin water layer. The transducers are coupled to the barriers using epoxy and the barriers are positioned to axially-align the PZTs, maximizing energy transfer efficiency. The electrical signals are converted by the transmitting transducers into acoustic waves, which propagate through the elastic walls and water medium to the receiving transducers. The reverberation of the acoustic signals in these channels can produce multipath distortion with a significant delay spread that introduces inter-symbol interference (ISI) into the received signal. While the multipath effects can be severe, the channel does not change rapidly which makes equalization easier. Here we implement a 16-QAM system on this channel, including a method for obtaining accurate carrier frequency offset (CFO) estimates in the presence of the quasi-static multipath propagation. A raised-power approach is considered but found to suffer from excessive data noise resulting from the ISI. An alternative approach that utilizes a pilot tone burst at the start of a data packet is used for CFO estimation and found to be effective. The autocorrelation method is used to estimate the frequency of the received burst. A real-time prototype of the 16 QAM system that uses a Texas Instruments MSP430 microcontroller-based transmitter and a personal computer-based receiver is presented along with performance results.

  8. Fine Channel Networks

    Science.gov (United States)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  9. Theoretical examination of the slot channel waveguide configured in a cylindrically symmetric dielectric ring profile

    Science.gov (United States)

    Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed

    2014-10-01

    It has recently been experimentally demonstrated that slot channel waveguides, configured in cylindrical space, can support high azimuthal order modes similar to whispering-gallery modes. This paper presents a mode solver based on Maxwell's vector wave equation for the electric field cast into an eigenvalue problem using a Fourier-Bessel basis function space. The modal frequencies and field profiles of the high azimuthal order slot-channel-whispering-gallery (SCWG) modes are computed for a set of nanometer spaced silicon rings supported by oxide. The computations show, that in addition to the traditionally observed, lowest order mode, the structure may support higher order SCWG modes. We complete the analysis by computing structures response as an ambient medium index of refraction sensor which achieves over 400 nm per RIU sensitivity.

  10. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume...... but are also essential for a number of physiological processes such as proliferation, controlled cell death, migration and endocrinology. The thesis have been focusing on two Channels, namely the swelling activated Cl- channel (ICl, swell) and the transient receptor potential Vanilloid (TRPV4) channel. I: Cl......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...

  11. Substituted 4-phenyl-2-aminoimidazoles and 4-phenyl-4,5-dihydro-2-aminoimidazoles as voltage-gated sodium channel modulators.

    Science.gov (United States)

    Zidar, Nace; Jakopin, Žiga; Madge, David J; Chan, Fiona; Tytgat, Jan; Peigneur, Steve; Dolenc, Marija Sollner; Tomašić, Tihomir; Ilaš, Janez; Mašič, Lucija Peterlin; Kikelj, Danijel

    2014-03-03

    Voltage-gated sodium channels play an integral part in neurotransmission and their dysfunction is frequently a cause of various neurological disorders. On the basis of the structure of marine alkaloid clathrodin, twenty eight new analogs were designed, synthesized and tested for their ability to block human NaV1.3, NaV1.4 and NaV1.7 channels, as well as for their selectivity against human cardiac isoform NaV1.5, using automated patch clamp electrophysiological assay. Several compounds exhibited promising activities on different NaV channel isoforms in the medium micromolar range and some of the compounds showed also moderate isoform selectivities. The most promising results were obtained for the NaV1.3 channel, for which four compounds were found to possess IC₅₀ values lower than 15 μM. All of the active compounds bind to the open-inactivated states of the channels and therefore act as state-dependent modulators. The obtained results validate the approach of using natural products driven chemistry for drug discovery starting points and represent a good foundation for future design of selective NaV modulators. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. A channel profile analyser

    International Nuclear Information System (INIS)

    Gobbur, S.G.

    1983-01-01

    It is well understood that due to the wide band noise present in a nuclear analog-to-digital converter, events at the boundaries of adjacent channels are shared. It is a difficult and laborious process to exactly find out the shape of the channels at the boundaries. A simple scheme has been developed for the direct display of channel shape of any type of ADC on a cathode ray oscilliscope display. This has been accomplished by sequentially incrementing the reference voltage of a precision pulse generator by a fraction of a channel and storing ADC data in alternative memory locations of a multichannel pulse height analyser. Alternative channels are needed due to the sharing at the boundaries of channels. In the flat region of the profile alternate memory locations are channels with zero counts and channels with the full scale counts. At the boundaries all memory locations will have counts. The shape of this is a direct display of the channel boundaries. (orig.)

  13. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  14. Tracer transfer in consolidated porous medium and fractured porous medium: experimentations and modelling

    International Nuclear Information System (INIS)

    Dalla Costa, C.

    2007-07-01

    We try to identify and model physical and chemical mechanisms governing the water flow and the solute transport in fractured consolidated porous medium. An original experimental device was built. The 'cube' consists of an idealized fractured medium reproduced by piling up consolidated porous cubes of 5 cm edge. Meanwhile, columns of the homogeneous consolidated porous medium are studied. The same anionic tracing technique is used in both cases. Using a system analysis approach, we inject concentration pulses in the device to obtain breakthrough curves. After identifying the mass balance and the residence time, we fit the CD and the MIM models to the experimental data. The MIM model is able to reproduce experimental curves of the homogeneous consolidated porous medium better than the CD model. The mobile water fraction is in accordance with the porous medium geometry. The study of the flow rate influence highlights an interference dispersion regime. It was not possible to highlight the observation length influence in this case. On the contrary, we highlight the effect of the observation scale on the fractured and porous medium, comparing the results obtained on a small 'cube' and a big 'cube'. The CD model is not satisfactory in this case. Even if the MIM model can fit the experimental breakthrough curves, it was not possible to obtain unique parameters for the set of experiments. (author)

  15. Advanced applications of ion channeling for the study of imperfections in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M L [North Carolina Univ., Chapel Hill, NC (United States)

    1997-03-01

    A review will be given of the applications of medium energy ion channeling for the studies of imperfections in the near-surface regions of crystals. The following topics will be discussed: (1.) epitaxial layers, including elemental depositions of a few monolayers, strained-layer superlattices, and compound layers; (2.) lattice defects, including ion damage in diamond, dislocation networks in Si, and anomalous lattice vibrations in high temperature superconductors; (3.) lattice sites of solute atoms, including substitutional sites in compounds (LiNbO{sub 3} and GaP), and interstitial sites produced by association with point defects. (author)

  16. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs

    Directory of Open Access Journals (Sweden)

    Sanggil Yeoum

    2017-05-01

    Full Text Available Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs. While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.

  17. Surface channeling

    International Nuclear Information System (INIS)

    Sizmann, R.; Varelas, C.

    1976-01-01

    There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)

  18. The Interstellar Medium

    CERN Document Server

    Lequeux, James

    2005-01-01

    Describing interstellar matter in our galaxy in all of its various forms, this book also considers the physical and chemical processes that are occurring within this matter. The first seven chapters present the various components making up the interstellar matter and detail the ways that we are able to study them. The following seven chapters are devoted to the physical, chemical and dynamical processes that control the behaviour of interstellar matter. These include the instabilities and cloud collapse processes that lead to the formation of stars. The last chapter summarizes the transformations that can occur between the different phases of the interstellar medium. Emphasizing methods over results, "The Interstellar Medium" is written for graduate students, for young astronomers, and also for any researchers who have developed an interest in the interstellar medium.

  19. Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan; Heine, Ruben A.; Ickes, Brian

    2016-01-01

    In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.

  20. An information-guided channel-hopping scheme for block-fading channels with estimation errors

    KAUST Repository

    Yang, Yuli

    2010-12-01

    Information-guided channel-hopping technique employing multiple transmit antennas was previously proposed for supporting high data rate transmission over fading channels. This scheme achieves higher data rates than some mature schemes, such as the well-known cyclic transmit antenna selection and space-time block coding, by exploiting the independence character of multiple channels, which effectively results in having an additional information transmitting channel. Moreover, maximum likelihood decoding may be performed by simply decoupling the signals conveyed by the different mapping methods. In this paper, we investigate the achievable spectral efficiency of this scheme in the case of having channel estimation errors, with optimum pilot overhead for minimum meansquare error channel estimation, when transmitting over blockfading channels. Our numerical results further substantiate the robustness of the presented scheme, even with imperfect channel state information. ©2010 IEEE.

  1. Nonlinear Algorithms for Channel Equalization and Map Symbol Detection.

    Science.gov (United States)

    Giridhar, K.

    The transfer of information through a communication medium invariably results in various kinds of distortion to the transmitted signal. In this dissertation, a feed -forward neural network-based equalizer, and a family of maximum a posteriori (MAP) symbol detectors are proposed for signal recovery in the presence of intersymbol interference (ISI) and additive white Gaussian noise. The proposed neural network-based equalizer employs a novel bit-mapping strategy to handle multilevel data signals in an equivalent bipolar representation. It uses a training procedure to learn the channel characteristics, and at the end of training, the multilevel symbols are recovered from the corresponding inverse bit-mapping. When the channel characteristics are unknown and no training sequences are available, blind estimation of the channel (or its inverse) and simultaneous data recovery is required. Convergence properties of several existing Bussgang-type blind equalization algorithms are studied through computer simulations, and a unique gain independent approach is used to obtain a fair comparison of their rates of convergence. Although simple to implement, the slow convergence of these Bussgang-type blind equalizers make them unsuitable for many high data-rate applications. Rapidly converging blind algorithms based on the principle of MAP symbol-by -symbol detection are proposed, which adaptively estimate the channel impulse response (CIR) and simultaneously decode the received data sequence. Assuming a linear and Gaussian measurement model, the near-optimal blind MAP symbol detector (MAPSD) consists of a parallel bank of conditional Kalman channel estimators, where the conditioning is done on each possible data subsequence that can convolve with the CIR. This algorithm is also extended to the recovery of convolutionally encoded waveforms in the presence of ISI. Since the complexity of the MAPSD algorithm increases exponentially with the length of the assumed CIR, a suboptimal

  2. Concept medium programme

    DEFF Research Database (Denmark)

    Bjerrum, Peter

    2005-01-01

    The present essay is an attempt to determine the architectural project of the 21st century in relation to a modern conception of space as the medium of architecture, and of sociality as its program......The present essay is an attempt to determine the architectural project of the 21st century in relation to a modern conception of space as the medium of architecture, and of sociality as its program...

  3. Rab11-dependent Recycling of the Human Ether-a-go-go-related Gene (hERG) Channel*

    Science.gov (United States)

    Chen, Jeffery; Guo, Jun; Yang, Tonghua; Li, Wentao; Lamothe, Shawn M.; Kang, Yudi; Szendrey, John A.; Zhang, Shetuan

    2015-01-01

    The human ether-a-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel (IKr). A reduction in the hERG current causes long QT syndrome, which predisposes affected individuals to ventricular arrhythmias and sudden death. We reported previously that hERG channels in the plasma membrane undergo vigorous internalization under low K+ conditions. In the present study, we addressed whether hERG internalization occurs under normal K+ conditions and whether/how internalized channels are recycled back to the plasma membrane. Using patch clamp, Western blot, and confocal imaging analyses, we demonstrated that internalized hERG channels can effectively recycle back to the plasma membrane. Low K+-enhanced hERG internalization is accompanied by an increased rate of hERG recovery in the plasma membrane upon reculture following proteinase K-mediated clearance of cell-surface proteins. The increased recovery rate is not due to enhanced protein synthesis, as hERG mRNA expression was not altered by low K+ exposure, and the increased recovery was observed in the presence of the protein biosynthesis inhibitor cycloheximide. GTPase Rab11, but not Rab4, is involved in the recycling of hERG channels. Interfering with Rab11 function not only delayed hERG recovery in cells after exposure to low K+ medium but also decreased hERG expression and function in cells under normal culture conditions. We concluded that the recycling pathway plays an important role in the homeostasis of plasma membrane-bound hERG channels. PMID:26152716

  4. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    Science.gov (United States)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  5. Stability of time dependent and spatially varying flows; Proceedings of the Symposium, Hampton, VA, Aug. 19-23, 1985

    International Nuclear Information System (INIS)

    Dwoyer, D.L.; Hussaini, M.Y.

    1987-01-01

    Papers are presented on the application of stability theory to laminar flow control, secondary instabilities in boundary layers, a Floquet analysis of secondary instability in shear flows, and the generation of Tollmien-Schlichting waves by long wavelength free stream disturbances. Also considered are numerical experiments on boundary-layer receptivity, short-scale inviscid instabilities in the flow past surface-mounted obstacles, wave phenomena in a high Reynolds number compressible boundary layer, and instability of time-periodic flows. Other topics include high frequency Rayleigh instability of Stokes layers, stability and resonance in grooved-channel flows, finite length Taylor Couette flow, and vortical structures in the breakdown stage of transition

  6. Potassium channels in brain mitochondria.

    Science.gov (United States)

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  7. Channel allocation and rate adaptation for relayed transmission over correlated fading channels

    KAUST Repository

    Hwang, Kyusung

    2009-09-01

    We consider, in this paper, channel allocation and rate adaptation scheme for relayed transmission over correlated fading channels via cross-layer design. Specifically, jointly considering the data link layer buffer occupancy and channel quality at both the source and relay nodes, we develop an optimal channel allocation and rate adaptation policy for a dual-hop relayed transmission. As such the overall transmit power for the relayed system is minimized while a target packet dropping rate (PDR) due to buffer over flows is guaranteed. In order to find such an optimal policy, the channel allocation and rate adaptation transmission framework is formulated as a constraint Markov decision process (CMDP). The PDR performance of the optimal policy is compared with that of two conventional suboptimal schemes, namely the channel quality based and the buffer occupancy based channel allocation schemes. Numerical results show that for a given power budget, the optimal scheme requires significantly less power than the conventional schemes in order to maintain a target PDR. ©2009 IEEE.

  8. A multispectral study of an extratropical cyclone with Nimbus 3 medium resolution infrared radiometer data

    Science.gov (United States)

    Holub, R.; Shenk, W. E.

    1973-01-01

    Four registered channels (0.2 to 4, 6.5 to 7, 10 to 11, and 20 to 23 microns) of the Nimbus 3 Medium Resolution Infrared Radiometer (MRIR) were used to study 24-hr changes in the structure of an extratropical cyclone during a 6-day period in May 1969. Use of a stereographic-horizon map projection insured that the storm was mapped with a single perspective throughout the series and allowed the convenient preparation of 24-hr difference maps of the infrared radiation fields. Single-channel and multispectral analysis techniques were employed to establish the positions and vertical slopes of jetstreams, large cloud systems, and major features of middle and upper tropospheric circulation. Use of these techniques plus the difference maps and continuity of observation allowed the early detection of secondary cyclones developing within the circulation of the primary cyclone. An automated, multispectral cloud-type identification technique was developed, and comparisons that were made with conventional ship reports and with high-resolution visual data from the image dissector camera system showed good agreement.

  9. Heat transfer and hydraulic resistance in steam-water mixture flow with large void fractions in an annular channel

    International Nuclear Information System (INIS)

    Dzarasov, Yu.I.

    1976-01-01

    Results of studies for a vapour-water dispersive-ring flow in the heated tore channel are presented. The work area has been a vertical tore channel with external and internal cross-section diameters equal to 12 and 6 mm, respectively, and with the internal heated wall of 1000 mm and 2500 mm long, respectively. The medium moves upward with the pressure 35 and 70 bar. Local heat emission factors α as a function of the channel height have been determined with measuring wall-flow temperature difference at the outlet cross-section. It has been noted that in addition to dependence of the α factor from heat emission q, the factor is also greatly affected by the mass speed and steam content X with the growth of which α increases. The model of the flow explaining the effect of X upon α has been proposed. It has been found that convective heat emission under boiling of the vapour-water mixture in the channels is determined not only by the flow rate but by the amount of liquid in the flow and particular, by the amount of liquid setting at the heating surface

  10. Tattoo: a multifaceted medium of communication

    Directory of Open Access Journals (Sweden)

    Christian Wymann

    2010-11-01

    Full Text Available This article suggests the systems theoretical distinction of form/medium as a useful tool for distinguishing social phenomena that might look as if they stem from the same process. This is shown to be the case for the tattoo and tattooing. The tattoo is conceived as a medium of communication through which different forms of communication emerge. Tattooing is one of these forms of communication that shapes the medium in a particular way. The current article sheds a special light on its intricate, communicational constellation, for which the concept of parallax is suggested. Law, medicine and cosmetics as other forms of communication use the medium of tattoo in their own way as well. The form/medium distinction allows us to grasp these different forms of communication, while it shows that they share the tattoo as medium. The article’s ultimate goal is to illustrate that the tattoo figures as a multifaceted medium of communication.

  11. Statistical state dynamics-based analysis of the physical mechanisms sustaining and regulating turbulence in Couette flow

    Science.gov (United States)

    Farrell, Brian F.; Ioannou, Petros J.

    2017-08-01

    This paper describes a study of the self-sustaining process in wall turbulence. The study is based on a second order statistical state dynamics model of Couette flow in which the state variables are the streamwise mean flow (first cumulant) and perturbation covariance (second cumulant). This statistical state dynamics model is closed by either setting the third cumulant to zero or by replacing it with a stochastic parametrization. Statistical state dynamics models with this form are referred to as S3T models. S3T models have been shown to self-sustain turbulence with a mean flow and second order perturbation structure similar to that obtained by direct numerical simulation of the equations of motion. The use of a statistical state dynamics model to study the physical mechanisms underlying turbulence has important advantages over the traditional approach of studying the dynamics of individual realizations of turbulence. One advantage is that the analytical structure of S3T statistical state dynamics models isolates the interaction between the mean flow and the perturbation components of the turbulence. Isolation of the interaction between these components reveals how this interaction underlies both the maintenance of the turbulence variance by transfer of energy from the externally driven flow to the perturbation components as well as the enforcement of the observed statistical mean turbulent state by feedback regulation between the mean and perturbation fields. Another advantage of studying turbulence using statistical state dynamics models of S3T form is that the analytical structure of S3T turbulence can be completely characterized. For example, the perturbation component of turbulence in the S3T system is demonstrably maintained by a parametric perturbation growth mechanism in which fluctuation of the mean flow maintains the perturbation field which in turn maintains the mean flow fluctuations in a synergistic interaction. Furthermore, the equilibrium

  12. On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation

    KAUST Repository

    Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2014-01-01

    We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter's estimate of the main channel. On the other hand, the eavesdropper's receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter's estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.

  13. Light focusing through a multiple scattering medium: ab initio computer simulation

    Science.gov (United States)

    Danko, Oleksandr; Danko, Volodymyr; Kovalenko, Andrey

    2018-01-01

    The present study considers ab initio computer simulation of the light focusing through a complex scattering medium. The focusing is performed by shaping the incident light beam in order to obtain a small focused spot on the opposite side of the scattering layer. MSTM software (Auburn University) is used to simulate the propagation of an arbitrary monochromatic Gaussian beam and obtain 2D distribution of the optical field in the selected plane of the investigated volume. Based on the set of incident and scattered fields, the pair of right and left eigen bases and corresponding singular values were calculated. The pair of right and left eigen modes together with the corresponding singular value constitute the transmittance eigen channel of the disordered media. Thus, the scattering process is described in three steps: 1) initial field decomposition in the right eigen basis; 2) scaling of decomposition coefficients for the corresponding singular values; 3) assembling of the scattered field as the composition of the weighted left eigen modes. Basis fields are represented as a linear combination of the original Gaussian beams and scattered fields. It was demonstrated that 60 independent control channels provide focusing the light into a spot with the minimal radius of approximately 0.4 μm at half maximum. The intensity enhancement in the focal plane was equal to 68 that coincided with theoretical prediction.

  14. KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction.

    Science.gov (United States)

    Padula, Audrey E; Griffin, William C; Lopez, Marcelo F; Nimitvilai, Sudarat; Cannady, Reginald; McGuier, Natalie S; Chesler, Elissa J; Miles, Michael F; Williams, Robert W; Randall, Patrick K; Woodward, John J; Becker, Howard C; Mulholland, Patrick J

    2015-07-01

    Small-conductance Ca(2+)-activated K(+) (KCa2) channels control neuronal excitability and synaptic plasticity, and have been implicated in substance abuse. However, it is unknown if genes that encode KCa2 channels (KCNN1-3) influence alcohol and drug addiction. In the present study, an integrative functional genomics approach shows that genetic datasets for alcohol, nicotine, and illicit drugs contain the family of KCNN genes. Alcohol preference and dependence QTLs contain KCNN2 and KCNN3, and Kcnn3 transcript levels in the nucleus accumbens (NAc) of genetically diverse BXD strains of mice predicted voluntary alcohol consumption. Transcript levels of Kcnn3 in the NAc negatively correlated with alcohol intake levels in BXD strains, and alcohol dependence enhanced the strength of this association. Microinjections of the KCa2 channel inhibitor apamin into the NAc increased alcohol intake in control C57BL/6J mice, while spontaneous seizures developed in alcohol-dependent mice following apamin injection. Consistent with this finding, alcohol dependence enhanced the intrinsic excitability of medium spiny neurons in the NAc core and reduced the function and protein expression of KCa2 channels in the NAc. Altogether, these data implicate the family of KCNN genes in alcohol, nicotine, and drug addiction, and identify KCNN3 as a mediator of voluntary and excessive alcohol consumption. KCa2.3 channels represent a promising novel target in the pharmacogenetic treatment of alcohol and drug addiction.

  15. Experimental study for flow regime of downward air-water two-phase flow in a vertical narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. H.; Yun, B. J.; Jeong, J. H. [Pusan National University, Geunjeong-gu, Busan (Korea, Republic of)

    2015-05-15

    Studies were mostly about flow in upward flow in medium size circular tube. Although there are great differences between upward and downward flow, studies on vertical upward flow are much more active than those on vertical downward flow in a channel. In addition, due to the increase of surface forces and friction pressure drop, the pattern of gas-liquid two-phase flow bounded to the gap of inside the rectangular channel is different from that in a tube. The downward flow in a rectangular channel is universally applicable to cool the plate type nuclear fuel in research reactor. The sub-channel of the plate type nuclear fuel is designed with a few millimeters. Downward air-water two-phase flow in vertical rectangular channel was experimentally observed. The depth, width, and length of the rectangular channel is 2.35 mm, 66.7 mm, and 780 mm, respectively. The test section consists of transparent acrylic plates confined within a stainless steel frame. The flow patterns of the downward flow in high liquid velocity appeared to be similar to those observed in previous studies with upward flow. In downward flow, the transition lines for bubbly-slug and slug-churn flow shift to left in the flow regime map constructed with abscissa of the superficial gas velocity and ordinate of the superficial liquid velocity. The flow patterns observed with downward flow at low liquid velocity are different from those with upward flow.

  16. A linearization of quantum channels

    Science.gov (United States)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  17. Channel Characteristics and Transmission Performance for Various Channel Configurations at 60 GHz

    Directory of Open Access Journals (Sweden)

    Yang Haibing

    2007-01-01

    Full Text Available Extensive measurements are conducted in room environments at 60 GHz to analyze the channel characteristics for various channel configurations. Channel parameters retrieved from measurements are presented and analyzed based on generic channel models. Particularly, a simple single-cluster model is applied for the parameter retrieval and performance evaluation. By this model, power delay profiles are simply described by a -factor, a root-mean-squared delay spread, and a shape parameter. The considered channels are configured with the combination of omnidirectional, fan-beam, and pencil-beam antennas at transmitter and receiver sides. Both line-of-sight (LOS and non-LOS (NLOS channels are considered. Further, to evaluate the transmission performance, we analyze the link budget in the considered environments, then design and simulate an OFDM system with a data rate of 2 Gbps to compare the bit-error-rate (BER performance by using the measured and modeled channels. Both coded and uncoded OFDM systems are simulated. It is observed that the BER performance agrees well for the measured and modeled channels. In addition, directive configurations can provide sufficient link margins and BER performance for high data rate communications. To increase the coverage and performance in the NLOS area, it is preferable to apply directive antennas.

  18. Channel Characteristics and Transmission Performance for Various Channel Configurations at 60 GHz

    Directory of Open Access Journals (Sweden)

    Haibing Yang

    2007-05-01

    Full Text Available Extensive measurements are conducted in room environments at 60 GHz to analyze the channel characteristics for various channel configurations. Channel parameters retrieved from measurements are presented and analyzed based on generic channel models. Particularly, a simple single-cluster model is applied for the parameter retrieval and performance evaluation. By this model, power delay profiles are simply described by a K-factor, a root-mean-squared delay spread, and a shape parameter. The considered channels are configured with the combination of omnidirectional, fan-beam, and pencil-beam antennas at transmitter and receiver sides. Both line-of-sight (LOS and non-LOS (NLOS channels are considered. Further, to evaluate the transmission performance, we analyze the link budget in the considered environments, then design and simulate an OFDM system with a data rate of 2 Gbps to compare the bit-error-rate (BER performance by using the measured and modeled channels. Both coded and uncoded OFDM systems are simulated. It is observed that the BER performance agrees well for the measured and modeled channels. In addition, directive configurations can provide sufficient link margins and BER performance for high data rate communications. To increase the coverage and performance in the NLOS area, it is preferable to apply directive antennas.

  19. Volume of the space of qubit-qubit channels and state transformations under random quantum channels

    OpenAIRE

    Lovas, Attila; Andai, Attila

    2017-01-01

    The simplest building blocks for quantum computations are the qubit-qubit quantum channels. In this paper, we analyze the structure of these channels via their Choi representation. The restriction of a quantum channel to the space of classical states (i.e. probability distributions) is called the underlying classical channel. The structure of quantum channels over a fixed classical channel is studied, the volume of general and unital qubit channels with respect to the Lebesgue measure is comp...

  20. Whether and How to Select Inertia and Acceleration of Discrete Particle Swarm Optimization Algorithm: A Study on Channel Assignment

    Directory of Open Access Journals (Sweden)

    Min Jin

    2014-01-01

    Full Text Available There is recently a great deal of interest and excitement in understanding the role of inertia and acceleration in the motion equation of discrete particle swarm optimization (DPSO algorithms. It still remains unknown whether the inertia section should be abandoned and how to select the appropriate acceleration in order for DPSO to show the best convergence performance. Adopting channel assignment as a case study, this paper systematically conducts experimental filtering research on this issue. Compared with other channel assignment schemes, the proposed scheme and the selection of inertia and acceleration are verified to have the advantage to channel assignment in three respects of convergence rate, convergence speed, and the independency of the quality of initial solution. Furthermore, the experimental result implies that DSPO might have the best convergence performance when its motion equation includes an inertia section in a less medium weight, a bigger acceleration coefficient for global-search optimum, and a smaller acceleration coefficient for individual-search optimum.

  1. Successive composition of two laser channels upon excitation of He-Ar-Xe (2.03 μm) and Ar-Xe (1.73 μm) mixtures by uranium fission fragments

    International Nuclear Information System (INIS)

    Pikulev, A A; Tsvetkov, V M; Sosnin, P V; Sinyanskii, A A

    2009-01-01

    The operation efficiency of the scheme with successive composition of two laser channels upon excitation of the active medium by uranium-235 fission fragments is studied experimentally and numerically. For the He:Ar:Xe = 380:380:1 mixture (at a pressure of 1 atm and the lasing wavelength λ = 2.03 μm) the maximum lasing power of a double channel (1 kW) is almost twice that of a single channel (540 W). Calculations show that in the case of ideal composition (without losses on mirrors) the lasing power of the double channel can be increased to 1.2 kW. For the Ar:Xe = 380:1 mixture (the pressure is 0.5 atm, λ = 1.73 μm) the maximum lasing power of the double channel (620 W) is slightly above that of the single channel (520 W), which is caused by the losses on aluminum mirrors employed for channel doubling and by a negative effect of optical inhomogeneities. In the case of ideal composition, the lasing power can be increased to 830 W. (lasers)

  2. Channel-mediated and carrier-mediated uptake of K+ into cultured ovine oligodendrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hertz, L.; Soliven, B.; Hertz, E.; Szuchet, S.; Nelson, D.J. (Univ. of Saskatchewan, Saskatoon (Canada))

    1990-01-01

    Uptake of radioactive K+ by mature ovine oligodendrocytes (OLGs) maintained in primary culture was measured under steady-state conditions, i.e., in cells maintained in a normal tissue culture medium (5.4 mM K+), and in cells after depletion of intracellular K+ to less than 15% of its normal value by pre-incubation in K(+)-free medium. The latter value is dominated by an active, carrier-mediated uptake (although it may include some diffusional uptake), whereas the former, in addition to active uptake, also reflects passive K+ diffusion through ion selective channels and possible self-exchange between extracellular and intracellular K+, which may be carrier-mediated. The total uptake rate was 144 +/- 10 nmol/min/mg protein, and the uptake after K+ depletion was 60 +/- 2 nmol/min/mg protein, much lower rates than previously observed in astrocytes. The uptake into K(+)-depleted cells was inhibited by about 80% in the presence of ouabain (1 mM) and about 30% in the presence of furosemide (2 mM). Activators of protein kinase C (phorbol esters) and cAMP-dependent protein kinase (forskolin) have been shown to alter the myelinogenic metabolism as well as outward K+ current in cultured OLGs. The present study demonstrates that K+ homeostasis in OLGs is modulated through similar second messenger pathways. Active uptake was inhibited by about 60% in the presence of active phorbol esters (100 nM) but was not affected by forskolin (100 nM). Forskolin likewise had no effect on total uptake, whereas phorbol esters caused a much larger inhibition than expected from their effect on carrier-mediated uptake alone, suggesting that channel-mediated uptake was also reduced.

  3. Performance Analysis of Iterative Channel Estimation and Multiuser Detection in Multipath DS-CDMA Channels

    Science.gov (United States)

    Li, Husheng; Betz, Sharon M.; Poor, H. Vincent

    2007-05-01

    This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.

  4. Spectrum sharing in cognitive radio networks medium access control protocol based approach

    CERN Document Server

    Pandit, Shweta

    2017-01-01

    This book discusses the use of the spectrum sharing techniques in cognitive radio technology, in order to address the problem of spectrum scarcity for future wireless communications. The authors describe a cognitive radio medium access control (MAC) protocol, with which throughput maximization has been achieved. The discussion also includes use of this MAC protocol for imperfect sensing scenarios and its effect on the performance of cognitive radio systems. The authors also discuss how energy efficiency has been maximized in this system, by applying a simple algorithm for optimizing the transmit power of the cognitive user. The study about the channel fading in the cognitive user and licensed user and power adaption policy in this scenario under peak transmit power and interference power constraint is also present in this book.

  5. Closed-channel culture system for efficient and reproducible differentiation of human pluripotent stem cells into islet cells

    International Nuclear Information System (INIS)

    Hirano, Kunio; Konagaya, Shuhei; Turner, Alexander; Noda, Yuichiro; Kitamura, Shigeru; Kotera, Hidetoshi; Iwata, Hiroo

    2017-01-01

    Human pluripotent stem cells (hPSCs) are thought to be a promising cell-source solution for regenerative medicine due to their indefinite proliferative potential and ability to differentiate to functional somatic cells. However, issues remain with regard to achieving reproducible differentiation of cells with the required functionality for realizing human transplantation therapies and with regard to reducing the potential for bacterial or fungal contamination. To meet these needs, we have developed a closed-channel culture device and corresponding control system. Uniformly-sized spheroidal hPSCs aggregates were formed inside wells within a closed-channel and maintained continuously throughout the culture process. Functional islet-like endocrine cell aggregates were reproducibly induced following a 30-day differentiation protocol. Our system shows an easily scalable, novel method for inducing PSC differentiation with both purity and functionality. - Highlights: • A simple, closed-channel-based, semi-automatic culture system is proposed. • Uniform cell aggregate formation and culture is realized in microwell structure. • Functional islet cells are successfully induced following 30-plus-day protocol. • System requires no daily medium replacement and reduces contamination risk.

  6. On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation

    KAUST Repository

    Rezki, Zouheir

    2014-12-01

    We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter\\'s estimate of the main channel. On the other hand, the eavesdropper\\'s receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter\\'s estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.

  7. Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks

    Science.gov (United States)

    Razaque, Abdul; Elleithy, Khaled M.

    2014-01-01

    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi

  8. Energy-efficient boarder node medium access control protocol for wireless sensor networks.

    Science.gov (United States)

    Razaque, Abdul; Elleithy, Khaled M

    2014-03-12

    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi

  9. Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Abdul Razaque

    2014-03-01

    Full Text Available This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC for wireless sensor networks (WSNs, which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN, which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS, which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS, which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi

  10. Channel electron multipliers

    International Nuclear Information System (INIS)

    Seidman, A.; Avrahami, Z.; Sheinfux, B.; Grinberg, J.

    1976-01-01

    A channel electron multiplier is described having a tubular wall coated with a secondary-electron emitting material and including an electric field for accelerating the electrons, the electric field comprising a plurality of low-resistive conductive rings each alternating with a high-resistive insulating ring. The thickness of the low-resistive rings is many times larger than that of the high-resistive rings, being in the order of tens of microns for the low-resistive rings and at least one order of magnitude lower for the high-resistive rings; and the diameter of the channel tubular walls is also many times larger than the thickness of the high-resistive rings. Both single-channel and multiple-channel electron multipliers are described. A very important advantage, particularly in making multiple-channel multipliers, is the simplicity of the procedure that may be used in constructing such multipliers. Other operational advantages are described

  11. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  12. Learning intrinsic excitability in medium spiny neurons [v2; ref status: indexed, http://f1000r.es/30b

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    2014-02-01

    Full Text Available We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function. We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal modulation on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how modulation and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP. The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic modulation determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.

  13. Effect of propionyl-L-carnitine on L-type calcium channels in human heart sarcolemma

    International Nuclear Information System (INIS)

    Bevilacqua, M.; Vago, T.; Norbiato, G.

    1991-01-01

    Propionyl-L-carnitine (PC) protects perfused rat hearts against damage by ischemia-reperfusion. Activation of L-type calcium channel play a role on ischemia-reperfusion damage. Therefore, we studied the effect of PC on some properties of L-type calcium channels in an in vitro preparation from human myocardium sarcolemma (from patients with idiopathic dilated cardiomyopathy). Binding of the L-type calcium channel blockers isradipine [ 3 H]-PN 200-110 (PN) to plasma membrane preparations revealed a single population of binding sites (total number: Bmax = 213 +/- 34 fM/mg protein and affinity: Kd = 152 +/- 19 nM; n = 6). The characteristics of these binding sites were evaluated in the presence and in the absence of Ca 2+ and of calcium blockers (D-888, a verapamillike drug, and diltiazem). Incubation in a Ca 2+ -containing buffer increased the affinity of PN binding sites. Binding sites for PN were modulated by organic calcium channel blockers; in competition isotherms at 37 degree C, D-888 (desmethoxyverapamil) decreased the PN binding, whereas diltiazem increased it. These results strongly suggest that the site labelled by PN is the voltage-operated calcium channel of the human myocardium. The addition of PC (1 mM) to plasma membranes labelled with PN at 37 degree C decreased the affinity of the binding; this effect was counteracted by the addition of Ca 2+ to the medium. This result was consistent with a competition between Ca 2+ and PC. The effect of PC incubation at 4 degree C was the opposite; at this temperature PC increased the affinity of the binding sites and the effect was obscured by Ca 2+

  14. Coherifying quantum channels

    Science.gov (United States)

    Korzekwa, Kamil; Czachórski, Stanisław; Puchała, Zbigniew; Życzkowski, Karol

    2018-04-01

    Is it always possible to explain random stochastic transitions between states of a finite-dimensional system as arising from the deterministic quantum evolution of the system? If not, then what is the minimal amount of randomness required by quantum theory to explain a given stochastic process? Here, we address this problem by studying possible coherifications of a quantum channel Φ, i.e., we look for channels {{{Φ }}}{ \\mathcal C } that induce the same classical transitions T, but are ‘more coherent’. To quantify the coherence of a channel Φ we measure the coherence of the corresponding Jamiołkowski state J Φ. We show that the classical transition matrix T can be coherified to reversible unitary dynamics if and only if T is unistochastic. Otherwise the Jamiołkowski state {J}{{Φ }}{ \\mathcal C } of the optimally coherified channel is mixed, and the dynamics must necessarily be irreversible. To assess the extent to which an optimal process {{{Φ }}}{ \\mathcal C } is indeterministic we find explicit bounds on the entropy and purity of {J}{{Φ }}{ \\mathcal C }, and relate the latter to the unitarity of {{{Φ }}}{ \\mathcal C }. We also find optimal coherifications for several classes of channels, including all one-qubit channels. Finally, we provide a non-optimal coherification procedure that works for an arbitrary channel Φ and reduces its rank (the minimal number of required Kraus operators) from {d}2 to d.

  15. The Extended-Window Channel Estimator for Iterative Channel-and-Symbol Estimation

    Directory of Open Access Journals (Sweden)

    Barry John R

    2005-01-01

    Full Text Available The application of the expectation-maximization (EM algorithm to channel estimation results in a well-known iterative channel-and-symbol estimator (ICSE. The EM-ICSE iterates between a symbol estimator based on the forward-backward recursion (BCJR equalizer and a channel estimator, and may provide approximate maximum-likelihood blind or semiblind channel estimates. Nevertheless, the EM-ICSE has high complexity, and it is prone to misconvergence. In this paper, we propose the extended-window (EW estimator, a novel channel estimator for ICSE that can be used with any soft-output symbol estimator. Therefore, the symbol estimator may be chosen according to performance or complexity specifications. We show that the EW-ICSE, an ICSE that uses the EW estimator and the BCJR equalizer, is less complex and less susceptible to misconvergence than the EM-ICSE. Simulation results reveal that the EW-ICSE may converge faster than the EM-ICSE.

  16. Channel identification machines.

    Science.gov (United States)

    Lazar, Aurel A; Slutskiy, Yevgeniy B

    2012-01-01

    We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s) onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS) with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.

  17. Channel Identification Machines

    Directory of Open Access Journals (Sweden)

    Aurel A. Lazar

    2012-01-01

    Full Text Available We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.

  18. CHANNEL ESTIMATION TECHNIQUE

    DEFF Research Database (Denmark)

    2015-01-01

    A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over the communicat......A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over...... the communication channel. The method further includes determining a sequence of second coefficient estimates of the communication channel based on a decomposition of the first coefficient estimates in a dictionary matrix and a sparse vector of the second coefficient estimates, the dictionary matrix including...... filter characteristics of at least one known transceiver filter arranged in the communication channel....

  19. Assessing the performance of multi-purpose channel management measures at increasing scales

    Science.gov (United States)

    Wilkinson, Mark; Addy, Steve

    2016-04-01

    In addition to hydroclimatic drivers, sediment deposition from high energy river systems can reduce channel conveyance capacity and lead to significant increases in flood risk. There is an increasing recognition that we need to work with the interplay of natural hydrological and morphological processes in order to attenuate flood flows and manage sediment (both coarse and fine). This typically includes both catchment (e.g. woodland planting, wetlands) and river (e.g. wood placement, floodplain reconnection) restoration approaches. The aim of this work was to assess at which scales channel management measures (notably wood placement and flood embankment removal) are most appropriate for flood and sediment management in high energy upland river systems. We present research findings from two densely instrumented research sites in Scotland which regularly experience flood events and have associated coarse sediment problems. We assessed the performance of a range of novel trial measures for three different scales: wooded flow restrictors and gully tree planting at the small scale (transport to optimise performance. At the large scale, well designed flood embankment lowering can improve connectivity to the floodplain during low to medium return period events. However, ancillary works to stabilise the bank failed thus emphasising the importance of letting natural processes readjust channel morphology and hydrological connections to the floodplain. Although these trial measures demonstrated limited effects, this may be in part owing to restrictions in the range of hydroclimatological conditions during the study period and further work is needed to assess the performance under more extreme conditions. This work will contribute to refining guidance for managing channel coarse sediment problems in the future which in turn could help mitigate flooding using natural approaches.

  20. Research on Cost Information Sharing and Channel Choice in a Dual-Channel Supply Chain

    Directory of Open Access Journals (Sweden)

    Huihui Liu

    2016-01-01

    Full Text Available Many studies examine information sharing in an uncertain demand environment in a supply chain. However there is little literature on cost information sharing in a dual-channel structure consisting of a retail channel and a direct sales channel. Assuming that the retail sale cost and direct sale cost are random variables with a general distribution, the paper investigates the retailer’s choice on cost information sharing in a Bertrand competition model. Based on the equilibrium outcome of information sharing, the manufacturer’s channel choice is discussed in detail. Our paper provides several interesting conclusions. In both single- and dual-channel structures, the retailer has little motivation to share its private cost information which is verified to be valuable for the manufacturer. When the cost correlation between the two channels increases, our analyses show that the manufacturer’s profit improves. However, when channel choice is involved, the value of information could play a different role. The paper finds that a dual-channel structure can benefit the manufacturer only when the cost correlation is sufficiently low. In addition, if the cost correlation is weak, the cost fluctuation will bring out the advantage of a dual-channel structure and adding a new direct channel will help in risk pooling.

  1. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?

    Directory of Open Access Journals (Sweden)

    Darryl W Hondorp

    Full Text Available Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove

  2. Dynamic Cognitive Self-Organized TDMA for Medium Access Control in Real-Time Vehicle to Vehicle Communications

    Directory of Open Access Journals (Sweden)

    Mario Manzano

    2013-01-01

    Full Text Available The emergence of intelligent transport systems has brought out a new set of requirements on wireless communication. To cope with these requirements, several proposals are currently under discussion. In this highly mobile environment, the design of a prompt, efficient, flexible, and reliable medium access control, able to cover the specific constraints of the named real-time communications applications, is still unsolved. This paper presents the original proposal integrating Non-Cooperative Cognitive Time Division Multiple Access (NCC-TDMA based on Cognitive Radio (CR techniques to obtain a mechanism which complies with the requirements of real-time communications. Though the proposed MAC uses a slotted channel, it can be adapted to operate on the physical layer of different standards. The authors’ analysis considers the IEEE WAVE and 802.11p as the standards of reference. The mechanism also offers other advantages, such as avoiding signalling and the adaptation capacity to channel conditions and interferences. The solution is applied to the problem of units merging a convoy. Comparison results between NCC-TDMA and Slotted-Aloha are included.

  3. Voltage-Gated Calcium Channels

    Science.gov (United States)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  4. Application of Fourier-Bessel technique for computing Eigen-states in a Bragg cylindrical space slot channel waveguide

    Science.gov (United States)

    Jafari, Seyed Hamed; Gauthier, Robert C.

    2015-02-01

    Maxwell's wave equations can be solved using different techniques in order to extract optical properties of a variety of dielectric structures. For structures that contain an extended axis which serve for the reference for cylindrical symmetry, we have shown that an expansion of the fields and inverse of the relative dielectric profile using a simplified and complete set of basis functions of Fourier-Bessel terms provide access to an eigenvalue formulation from which the eigen-states can be computed. We review the steps used to convert Maxwell's equation into an eigenvalue formulation, and then proceed to discuss several applications of the technique. For cylindrically symmetric structures, the computational technique provides a significantly reduced matrix order to be populated. New target structure for the presentation consists of cylindrical space slot channel waveguide in which the channel extends in azimuthal (ϕ) direction. The channel is provided by considering the etching of external side walls of "Bragg fiber". The configuration is similar to a structure that can support whispering-gallery modes, except that the modes highest field locations are within the ambient medium of the channel. Optical properties of this structure can be best examined through ?? field component which is discontinuous by ratio of relative dielectric constants when passing air-Bragg interfaces. The ability to select Bragg dielectric properties and to introduce non-uniformities in Bragg plane spacing provides access to tuning slot channel waveguide properties and design several novel configurations.

  5. Evaluation channel performance in multichannel environments

    NARCIS (Netherlands)

    Gensler, S.; Dekimpe, M.; Skiera, B.

    2007-01-01

    Evaluating channel performance is crucial for actively managing multiple sales channels, and requires understanding the customers' channel preferences. Two key components of channel performance are (i) the existing customers' intrinsic loyalty to a particular channel and (ii) the channel's ability

  6. Channel Choice: A Literature Review

    DEFF Research Database (Denmark)

    Østergaard Madsen, Christian; Kræmmergaard, Pernille

    2015-01-01

    The channel choice branch of e-government studies citizens’ and businesses’ choice of channels for interacting with government, and how government organizations can integrate channels and migrate users towards the most cost-efficient channels. In spite of the valuable contributions offered...

  7. 27 CFR 19.914 - Medium plants.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Medium plants. 19.914... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits For Fuel Use Permits § 19.914 Medium plants. Any person wishing to establish a medium plant shall make application for and obtain in...

  8. Reconfigurable virtual electrowetting channels.

    Science.gov (United States)

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  9. In-medium P-wave quarkonium from the complex lattice QCD potential

    International Nuclear Information System (INIS)

    Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander

    2016-01-01

    We extend our lattice QCD potential based study http://dx.doi.org/10.1007/JHEP12(2015)101 of the in-medium properties of heavy quark bound states to P-wave bottomonium and charmonium. Similar to the behavior found in the S-wave channel their spectra show a characteristic broadening, as well as mass shifts to lower energy with increasing temperature. In contrast to the S-wave states, finite angular momentum leads to the survival of spectral peaks even at temperatures, where the continuum threshold reaches below the bound state remnant mass. We elaborate on the ensuing challenges in defining quarkonium dissolution and present estimates of melting temperatures for the spin averaged χ b and χ c states. As an application to heavy-ion collisions we further estimate the contribution of feed down to S-wave quarkonium through the P-wave states after freezeout.

  10. In-medium P-wave quarkonium from the complex lattice QCD potential

    Energy Technology Data Exchange (ETDEWEB)

    Burnier, Yannis [Institute of Theoretical Physics, EPFL,CH-1015 Lausanne (Switzerland); Kaczmarek, Olaf [Fakultät für Physik, Universität Bielefeld,D-33615 Bielefeld (Germany); Rothkopf, Alexander [Institute for Theoretical Physics, Heidelberg University,Philosophenweg 16, 69120 Heidelberg (Germany)

    2016-10-07

    We extend our lattice QCD potential based study http://dx.doi.org/10.1007/JHEP12(2015)101 of the in-medium properties of heavy quark bound states to P-wave bottomonium and charmonium. Similar to the behavior found in the S-wave channel their spectra show a characteristic broadening, as well as mass shifts to lower energy with increasing temperature. In contrast to the S-wave states, finite angular momentum leads to the survival of spectral peaks even at temperatures, where the continuum threshold reaches below the bound state remnant mass. We elaborate on the ensuing challenges in defining quarkonium dissolution and present estimates of melting temperatures for the spin averaged χ{sub b} and χ{sub c} states. As an application to heavy-ion collisions we further estimate the contribution of feed down to S-wave quarkonium through the P-wave states after freezeout.

  11. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  12. STUDY ON THE EFFECTIVENESS OF EMARKETING ON MICRO, SMALL AND MEDIUM ENTERPRISES (MSMES) IN B2B MARKET OF BANGALORE DISTRICT

    OpenAIRE

    Dr. Y. Nagaraju; Anil Kumar Kottani

    2018-01-01

    This paper on e-marketing effectiveness on Micro, Small and Medium Enterprises basically deals with the analysis through a study on the importance of e-marketing tools for MSMEs primarily focusing on level of e-marketing usage in MSMEs, its benefits or advantages as well as the factors influencing the use of e-marketing by MSMEs. Available material on the effectiveness or impact of using this powerful channel of e-marketing and its tools in the marketing activities of MSMEs have been studie...

  13. Evaluation of Insulin Medium or Chondrogenic Medium on Proliferation and Chondrogenesis of ATDC5 Cells

    OpenAIRE

    Yao, Yongchang; Zhai, Zhichen; Wang, Yingjun

    2014-01-01

    Background. The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM) was used to induce chondrogenesis while chondrogenic medium (CM), which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs), was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM) on chondrogenesis of ATDC5 cells. Methods. ATDC5 cells were, respectively, cultured ...

  14. Modeling research in low-medium temperature geothermal field, Tianjin

    Institute of Scientific and Technical Information of China (English)

    WANG; Kun(王坤); LI; Chunhua(李春华)

    2002-01-01

    The geothermal reservoir in Tianjin can be divided into two parts: the upper one is the porous medium reservoir in the Tertiary system; the lower one includes the basement reservoir in Lower Paleozoic and Middle-Upper Proterozoic. Hot springs are exposed in the northern mountain and confined geothermal water is imbedded in the southern plain. The geothermal reservoir is incised by several fractures. In recent years, TDS of the geothermal water have gone up along with the production rate increasing, along the eastern fracture zone (Cangdong Fracture and West Baitangkou Fracture). This means that the northern fracture system is the main seepage channel of the deep circulation geothermal water, and the reservoir has good connection in a certain area and definite direction. The isotopic research about hydrogen and carbon chronology indicates that the main recharge period of geothermal water is the Holocene Epoch, the pluvial and chilly period of 20 kaBP. The karst conduits in weathered carbonate rocks of the Proterozoic and Lower Paleozoic and the northeast regional fracture system are the main feeding channels of Tianjin geothermal water. Since the Holocene epoch, the geothermal water stayed at a sealed warm period. The tracer test in WR45 doublet system shows that the tracer test is a very effective measure for understanding the reservoir's transport nature and predicting the cooling time and transport velocity during the reinjection. 3-D numerical simulation shows that if the reinjection well keeps a suitable distance from the production well, reinjection will be a highly effective measure to extract more thermal energy from the rock matrix. The cooling of the production well will not be a problem.

  15. Preservation of meandering river channels in uniformly aggrading channel belts

    NARCIS (Netherlands)

    Lageweg, W.I. van de; Schuurman, F.; Cohen, K.M.; Dijk, W.M. van; Shimizu, Y.; Kleinhans, M.G.

    2016-01-01

    Channel belt deposits from meandering river systems commonly display an internal architecture of stacked depositional features with scoured basal contacts due to channel and bedform migration across a range of scales. Recognition and correct interpretation of these bounding surfaces is essential to

  16. Multi-channel service retailing: The effects of channel performance satisfaction on behavioral intentions.

    NARCIS (Netherlands)

    Birgelen, van M.; Jong, de A.; Ruyter, de J.C.

    2006-01-01

    Abstract The number of channels that retailers can use interchangeably to provide customer service has increased. We report on a study of clients of a large retail bank that investigates the channel performance satisfaction–behavioral intentions relationship when the traditional service channel

  17. Channel Planform Dynamics Monitoring and Channel Stability Assessment in Two Sediment-Rich Rivers in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Kuo

    2017-01-01

    Full Text Available Recurrent flood events induced by typhoons are powerful agents to modify channel morphology in Taiwan’s rivers. Frequent channel migrations reflect highly sensitive valley floors and increase the risk to infrastructure and residents along rivers. Therefore, monitoring channel planforms is essential for analyzing channel stability as well as improving river management. This study analyzed annual channel changes along two sediment-rich rivers, the Zhuoshui River and the Gaoping River, from 2008 to 2015 based on satellite images of FORMOSAT-2. Channel areas were digitized from mid-catchment to river mouth (~90 km. Channel stability for reaches was assessed through analyzing the changes of river indices including braid index, active channel width, and channel activity. In general, the valley width plays a key role in braided degree, active channel width, and channel activity. These indices increase as the valley width expands whereas the braid index decreases slightly close to the river mouth due to the change of river types. This downstream pattern in the Zhuoshui River was interrupted by hydraulic construction which resulted in limited changes downstream from the weir, due to the lack of water and sediment supply. A 200-year flood, Typhoon Morakot in 2009, induced significant changes in the two rivers. The highly active landscape in Taiwan results in very sensitive channels compared to other regions. An integrated Sensitivity Index was proposed for identifying unstable reaches, which could be a useful reference for river authorities when making priorities in river regulation strategy. This study shows that satellite image monitoring coupled with river indices analysis could be an effective tool to evaluate spatial and temporal changes in channel stability in highly dynamic river systems.

  18. Direct measurements of the lifetime of medium-heavy hypernuclei

    Science.gov (United States)

    Qiu, X.; Tang, L.; Chen, C.; Margaryan, A.; Wood, S. A.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Badui, R.; Baturin, P.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, X.; Chiba, A.; Christy, M. E.; Dalton, M. M.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fenker, H.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Gogami, T.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed V.; Jones, M.; Kanda, H.; Kaneta, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Markowitz, P.; Marikyan, G.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Yamamoto, T.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.; HKS (JLab E02-017) Collaboration

    2018-05-01

    The lifetime of a Λ particle embedded in a nucleus (hypernucleus) decreases from that of free Λ decay mainly due to the opening of the ΛN → NN weak decay channel. However, it is generally believed that the lifetime of a hypernucleus attains a constant value (saturation) for medium to heavy hypernuclear masses, yet this hypothesis has been difficult to verify. This paper presents a direct measurement of the lifetime of medium-heavy hypernuclei that were hyper-fragments produced by fission or break-up from heavy hypernuclei initially produced with a 2.34 GeV photon-beam incident on thin Fe, Cu, Ag, and Bi target foils. For each event, fragments were detected in coincident pairs by a low-pressure multi-wire proportional chamber system. The lifetime was extracted from decay time spectrum formed by the difference of the time zeros between the pairs. The measured lifetime from each target is actually a statistical average over a range of mass with mean about 1/2 of the target mass and appears to be a constant of about 200 ps. Although this result cannot exclude unexpected shorter or longer lifetimes for some specific hypernuclei or hypernuclear states, it shows that a systematic decrease in lifetime as hypernuclear mass increases is not a general feature for hypernuclei with mean mass up to A ≈ 130. On the other hand, the success of this experiment and its technique shows that the time delayed fissions observed and used by all the lifetime measurements done so far on heavy hypernuclei could likely have originated from hyper-fragments lighter than the assumed masses.

  19. Distribution Channels Conflict and Management

    OpenAIRE

    Kiran, Dr Vasanth; Majumdar, Dr Mousumi; Kishore, Dr Krishna

    2012-01-01

    Relationships in distribution channels tend to be long-term oriented and members of the channel rely on each other to jointly realize their goals by serving buyers. Despite the channels focus on serving buyers, conflicts often arise between channel members because of each members self-interest. When conflicts arise, the perceptions of a channel member based on normative, rational/instrumental, or emotional reasoning will influence relational norms like trust and commitment that characterize t...

  20. Surface pH changes suggest a role for H+/OH- channels in salinity response of Chara australis.

    Science.gov (United States)

    Absolonova, Marketa; Beilby, Mary J; Sommer, Aniela; Hoepflinger, Marion C; Foissner, Ilse

    2018-05-01

    To understand salt stress, the full impact of salinity on plant cell physiology has to be resolved. Electrical measurements suggest that salinity inhibits the proton pump and opens putative H + /OH - channels all over the cell surface of salt sensitive Chara australis (Beilby and Al Khazaaly 2009; Al Khazaaly and Beilby 2012). The channels open transiently at first, causing a characteristic noise in membrane potential difference (PD), and after longer exposure remain open with a typical current-voltage (I/V) profile, both abolished by the addition of 1 mM ZnCl 2 , the main known blocker of animal H + channels. The cells were imaged with confocal microscopy, using fluorescein isothiocyanate (FITC) coupled to dextran 70 to illuminate the pH changes outside the cell wall in artificial fresh water (AFW) and in saline medium. In the early saline exposure, we observed alkaline patches (bright fluorescent spots) appearing transiently in random spatial distribution. After longer exposure, some of the spots became fixed in space. Saline also abolished or diminished the pH banding pattern observed in the untreated control cells. ZnCl 2 suppressed the alkaline spot formation in saline and the pH banding pattern in AFW. The osmotic component of the saline stress did not produce transient bright spots or affect banding. The displacement of H + from the cell wall charges, the H + /OH - channel conductance/density, and self-organization are discussed. No homologies to animal H + channels were found. Salinity activation of the H + /OH - channels might contribute to saline response in roots of land plants and leaves of aquatic angiosperms.

  1. Progress in the development of global medium-energy nucleon-nucleus optical model potentials

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    Two existing global medium-energy nucleon-nucleus phenomenological optical model potentials are described and compared with experiment and with each other. The first of these employs a Dirac approach (second-order reduction) that is global in projectile energy and projectile isospin and applies to the target nucleus 208 Pb. The second of these employs a relativistic equivalent to the Schroedinger equation (including relativistic kinematics) that is global in projectile energy, projectile isospin, and target (Z,A). Finally, current work is described and the influence of the nuclear bound state problem (treated in relativistic mean field theory) on the Dirac scattering problem is mentioned. Spherical target nuclei are treated in the present work and strongly-collective target nuclei (rotational and vibrational) requiring coupled-channels approaches will be treated in a future paper. (author)

  2. Quantum communication under channel uncertainty

    International Nuclear Information System (INIS)

    Noetzel, Janis Christian Gregor

    2012-01-01

    This work contains results concerning transmission of entanglement and subspaces as well as generation of entanglement in the limit of arbitrary many uses of compound- and arbitrarily varying quantum channels (CQC, AVQC). In both cases, the channel is described by a set of memoryless channels. Only forward communication between one sender and one receiver is allowed. A code is said to be ''good'' only, if it is ''good'' for every channel out of the set. Both settings describe a scenario, in which sender and receiver have only limited channel knowledge. For different amounts of information about the channel available to sender or receiver, coding theorems are proven for the CQC. For the AVQC, both deterministic and randomised coding schemes are considered. Coding theorems are proven, as well as a quantum analogue of the Ahlswede-dichotomy. The connection to zero-error capacities of stationary memoryless quantum channels is investigated. The notion of symmetrisability is defined and used for both classes of channels.

  3. Electrophysiological characterisation of KCNQ channel modulators

    DEFF Research Database (Denmark)

    Schrøder, R.L

    Potassium (K+) ion channels are ubiquitously expressed in mammalian cells, and each channel serves a precise physiological role due to its specific biophysical characteristics and expression pattern. A few K+ channels are targets for certain drugs, and in this thesis it is suggested that the KCNQ K......+ channels may be targets for neuroprotective, anti-epileptic and anti-nociceptive compounds. The importance of these channels is underscored by the fact that four out of five KCNQ channel subtypes are involved in severe human diseases. However, the pharmacology of the KCNQ channels is yet poorly understood...... as these channels were identified only recently. Therefore, there is a need for understanding the biophysical behavior and pharmacology of these ion channels. KCNQ channels belong to the group of voltage-activated K+ channels. The subfamily consists of KCNQ1-5, which is primarily expressed in the CNS, heart, ear...

  4. Optical recording medium

    International Nuclear Information System (INIS)

    Andriech, A.; Bivol, V.; Tridukh, G.; Tsiuleanu, D.

    2002-01-01

    The invention relates of the micro- and optoelectronics, computer engineering ,in particular, to tjhe optical information media and may be used in hilography. Summary of the invention consists in that the optical image recording medium, containing a dielectric substrates, onto one surface of which there are placed in series a transparent electricity conducting layer, a photo sensitive recording layer of chalcogenic glass and a thin film electrode of aluminium, is provided with an optically transparent protective layer, applied into the thin film electrode. The result of the invention consists in excluding the dependence of chemical processes course into the medium upon environmental conditions

  5. Statistical calculation of complete events in medium-energy nuclear collisions

    International Nuclear Information System (INIS)

    Randrup, J.

    1984-01-01

    Several heavy-ion accelerators throughout the world are presently able to deliver beams of heavy nuclei with kinetic energies in the range from tens to hundreds of MeV per nucleon, the so-called medium or intermediate energy range. At such energies a large number of final channels are open, each consisting of many nuclear fragments. The disassembly of the collision system is expected to be a very complicated process and a detailed dynamical description is beyond their present capability. However, by virtue of the complexity of the process, statistical considerations may be useful. A statistical description of the disassembly yields the least biased expectations about the outcome of a collision process and provides a meaningful reference against which more specific dynamical models, as well as the data, can be discussed. This lecture presents the essential tools for formulating a statistical model for the nuclear disassembly process. The authors consider the quick disassembly (explosion) of a hot nuclear system, a so-called source, into multifragment final states, which complete according to their statistical weight. First some useful notation is introduced. Then the expressions for exclusive and inclusive distributions are given and the factorization of an exclusive distribution into inclusive ones is carried out. In turn, the grand canonical approximation for one-fragment inclusive distributions is introduced. Finally, it is outlined how to generate a statistical sample of complete final states. On this basis, a model for statistical simulation of complete events in medium-energy nuclear collisions has been developed

  6. Eight channel fast scalar

    Energy Technology Data Exchange (ETDEWEB)

    Waddoup, W D; Stubbs, R J [Durham Univ. (UK)

    1977-11-01

    An eight channel 64-bit scaler has been constructed with a static CMOS memory. Scaling frequencies are independently variable, at each channel, as are the number of bits/channel. The scaler, when used in conjunction with a multichannel charge to time converter results in a very flexible, gated multichannel ADC.

  7. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    Science.gov (United States)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  8. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  9. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes.

    Science.gov (United States)

    Zhang, Xiao-Dong; Coulibaly, Zana A; Chen, Wei Chun; Ledford, Hannah A; Lee, Jeong Han; Sirish, Padmini; Dai, Gu; Jian, Zhong; Chuang, Frank; Brust-Mascher, Ingrid; Yamoah, Ebenezer N; Chen-Izu, Ye; Izu, Leighton T; Chiamvimonvat, Nipavan

    2018-03-16

    Small-conductance Ca 2+ -activated K + (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca 2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca 2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca 2+ microdomains necessary for SK channel activation. SK currents coupled with Ca 2+ influx via L-type Ca 2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca 2+ store, suggesting that LTCCs provide the immediate Ca 2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca v 1.2 Ca 2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca v 1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca 2+ signaling.

  10. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    Science.gov (United States)

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  11. New Channels, New Possibilities

    DEFF Research Database (Denmark)

    Pieterson, Willem; Ebbers, Wolfgang; Østergaard Madsen, Christian

    2017-01-01

    In this contribution we discuss the characteristics of what we call the fourth generation of public sector service channels: social robots. Based on a review of relevant literature we discuss their characteristics and place into multi-channel models of service delivery. We argue that social robots......-channel models of service delivery. This is especially relevant given the current lack of evaluations of such models, the broad range of channels available, and their different stages of deployment at governments around the world. Nevertheless, social robots offer an potentially very relevant addition...

  12. Collaborative Manufacturing for Small-Medium Enterprises

    Science.gov (United States)

    Irianto, D.

    2016-02-01

    Manufacturing systems involve decisions concerning production processes, capacity, planning, and control. In a MTO manufacturing systems, strategic decisions concerning fulfilment of customer requirement, manufacturing cost, and due date of delivery are the most important. In order to accelerate the decision making process, research on decision making structure when receiving order and sequencing activities under limited capacity is required. An effective decision making process is typically required by small-medium components and tools maker as supporting industries to large industries. On one side, metal small-medium enterprises are expected to produce parts, components or tools (i.e. jigs, fixture, mold, and dies) with high precision, low cost, and exact delivery time. On the other side, a metal small- medium enterprise may have weak bargaining position due to aspects such as low production capacity, limited budget for material procurement, and limited high precision machine and equipment. Instead of receiving order exclusively, a small-medium enterprise can collaborate with other small-medium enterprise in order to fulfill requirements high quality, low manufacturing cost, and just in time delivery. Small-medium enterprises can share their best capabilities to form effective supporting industries. Independent body such as community service at university can take a role as a collaboration manager. The Laboratory of Production Systems at Bandung Institute of Technology has implemented shared manufacturing systems for small-medium enterprise collaboration.

  13. A Novel Secure Transmission Scheme in MIMO Two-Way Relay Channels with Physical Layer Approach

    Directory of Open Access Journals (Sweden)

    Qiao Liu

    2017-01-01

    Full Text Available Security issue has been considered as one of the most pivotal aspects for the fifth-generation mobile network (5G due to the increasing demands of security service as well as the growing occurrence of security threat. In this paper, instead of focusing on the security architecture in the upper layer, we investigate the secure transmission for a basic channel model in a heterogeneous network, that is, two-way relay channels. By exploiting the properties of the transmission medium in the physical layer, we propose a novel secure scheme for the aforementioned channel mode. With precoding design, the proposed scheme is able to achieve a high transmission efficiency as well as security. Two different approaches have been introduced: information theoretical approach and physical layer encryption approach. We show that our scheme is secure under three different adversarial models: (1 untrusted relay attack model, (2 trusted relay with eavesdropper attack model, and (3 untrusted relay with eavesdroppers attack model. We also derive the secrecy capacity of the two different approaches under the three attacks. Finally, we conduct three simulations of our proposed scheme. The simulation results agree with the theoretical analysis illustrating that our proposed scheme could achieve a better performance than the existing schemes.

  14. Properties of the nuclear medium

    International Nuclear Information System (INIS)

    Baldo, M; Burgio, G F

    2012-01-01

    We review our knowledge on the properties of the nuclear medium that have been studied, over many years, on the basis of many-body theory, laboratory experiments and astrophysical observations. Throughout the presentation particular emphasis is placed on the possible relationship and links between the nuclear medium and the structure of nuclei, including the limitations of such an approach. First we consider the realm of phenomenological laboratory data and astrophysical observations and the hints they can give on the characteristics that the nuclear medium should possess. The analysis is based on phenomenological models, that however have a strong basis on physical intuition and an impressive success. More microscopic models are also considered, and it is shown that they are able to give invaluable information on the nuclear medium, in particular on its equation of state. The interplay between laboratory experiments and astrophysical observations is particularly stressed, and it is shown how their complementarity enormously enriches our insights into the structure of the nuclear medium. We then introduce the nucleon–nucleon interaction and the microscopic many-body theory of nuclear matter, with a critical discussion about the different approaches and their results. The Landau–Fermi liquid theory is introduced and briefly discussed, and it is shown how fruitful it can be in discussing the macroscopic and low-energy properties of the nuclear medium. As an illustrative example, we discuss neutron matter at very low density, and it is shown how it can be treated within the many-body theory. The general bulk properties of the nuclear medium are reviewed to indicate at which stage of our knowledge we stand, taking into account the most recent developments both in theory and experiments. A section is dedicated to the pairing problem. The connection with nuclear structure is then discussed, on the basis of the energy density functional method. The possibility of

  15. Ion channelling in diamond

    International Nuclear Information System (INIS)

    Derry, T.E.

    1978-06-01

    Diamond is one of the most extreme cases from a channelling point of view, having the smallest thermal vibration amplitude and the lowest atomic number of commonly-encountered crystals. These are the two parameters most important for determining channelling behaviour. It is of consiberable interest therefore to see how well the theories explaining and predicting the channeling properties of other substance, succeed with diamond. Natural diamond, although the best available form for these experiments, is rather variable in its physical properties. Part of the project was devoted to considering and solving the problem of obtaining reproducible results representative of the ideal crystal. Channelling studies were performed on several good crystals, using the Rutherford backscattering method. Critical angles for proton channelling were measured for incident energies from 0.6 to 4.5 MeV, in the three most open axes and three most open planes of the diamond structure, and for α-particle channelling at 0.7 and 1.0 MeV (He + ) in the same axes and planes. For 1.0 MeV protons, the crystal temperature was varied from 20 degrees Celsius to 700 degrees Celsius. The results are presented as curves of backscattered yield versus angle in the region of each axis or plane, and summarised in the form of tables and graphs. Generally the critical angles, axial minimum yields, and temperature dependence are well predicted by the accepted theories. The most valuable overall conclusion is that the mean thermal vibration amplitude of the atoms in a crytical determines the critical approach distance to the channel walls at which an ion can remain channelled, even when this distance is much smaller than the Thomas-Fermi screening distance of the atomic potential, as is the case in diamond. A brief study was made of the radiation damage caused by α-particle bombardment, via its effect on the channelling phenomenon. It was possible to hold damage down to negligible levels during the

  16. Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias?

    Directory of Open Access Journals (Sweden)

    Elise Balse

    2017-10-01

    Full Text Available The shape of the cardiac action potential (AP is determined by the contributions of numerous ion channels. Any dysfunction in the proper function or expression of these ion channels can result in a change in effective refractory period (ERP and lead to arrhythmia. The processes underlying the correct targeting of ion channels to the plasma membrane are complex, and have not been fully characterized in cardiac myocytes. Emerging evidence highlights ion channel trafficking as a potential causative factor in certain acquired and inherited arrhythmias, and therapies which target trafficking as opposed to pore block are starting to receive attention. In this review we present the current evidence for the mechanisms which underlie precise control of cardiac ion channel trafficking and targeting.

  17. σ and ρ meson strength distributions from in medium corrected ππ correlations and the nuclear equation of state

    International Nuclear Information System (INIS)

    Chanfray, G.; Aouissat, Z.; Schuck, P.; Norenberg, W.

    1990-01-01

    The most important part of the intermediate range nucleon-nucleon attraction is attributed to the exchange of non interacting as well as interaction two pions in the I = J = O channel. The corresponding 2π exchange potential, or part of it, is often simulated by a sigma-meson exchange with mass of about 600 MeV, which is then used as a basic input to nuclear matter calculation. This may give in particular a justification to the popular σ-ψ model. However a number of question remains concerning the microscopic nature of such an effective sigma meson. The point the authors want to emphasize in this paper concerns the possible modification of the sigma in the medium since they think that it is made out of pions whose propagations are strongly altered by the medium. However also the ρ-meson may undergo similar in medium corrections which possibly are related to recent experimental findings. The authors discuss, with a very simple model, the problem of pion propagation and pion-pion interaction in the medium and the occurrence of highly collective pion-delta modes (pionic branch, pisobar, quasi pion) in agreement with experimental data. They also should have some very important consequences on the dynamics of relativistic heavy collision. The authors address the very important question of the nuclear matter equation of state where collective pionic effects are included to reconstruct an effective sigma exchange whose mass and coupling constant are density dependent

  18. RANS Modeling of Stably Stratified Turbulent Boundary Layer Flows in OpenFOAM®

    Directory of Open Access Journals (Sweden)

    Wilson Jordan M.

    2015-01-01

    Full Text Available Quantifying mixing processes relating to the transport of heat, momentum, and scalar quantities of stably stratified turbulent geophysical flows remains a substantial task. In a stably stratified flow, such as the stable atmospheric boundary layer (SABL, buoyancy forces have a significant impact on the flow characteristics. This study investigates constant and stability-dependent turbulent Prandtl number (Prt formulations linking the turbulent viscosity (νt and diffusivity (κt for modeling applications of boundary layer flows. Numerical simulations of plane Couette flow and pressure-driven channel flow are performed using the Reynolds-averaged Navier-Stokes (RANS framework with the standard k-ε turbulence model. Results are compared with DNS data to evaluate model efficacy for predicting mean velocity and density fields. In channel flow simulations, a Prandtl number formulation for wall-bounded flows is introduced to alleviate overmixing of the mean density field. This research reveals that appropriate specification of Prt can improve predictions of stably stratified turbulent boundary layer flows.

  19. Evaluation of multidrug efflux pump inhibitors by a new method using microfluidic channels.

    Directory of Open Access Journals (Sweden)

    Yoshimi Matsumoto

    Full Text Available Fluorescein-di-β-D-galactopyranoside (FDG, a fluorogenic compound, is hydrolyzed by β-galactosidase in the cytoplasm of Escherichia coli to produce a fluorescent dye, fluorescein. We found that both FDG and fluorescein were substrates of efflux pumps, and have developed a new method to evaluate efflux-inhibitory activities in E. coli using FDG and a microfluidic channel device. We used E. coli MG1655 wild-type, ΔacrB (ΔB, ΔtolC (ΔC and ΔacrBΔtolC (ΔBC harboring plasmids carrying the mexAB-oprM (pABM or mexXY-oprM (pXYM genes of Pseudomonas aeruginosa. Two inhibitors, MexB-specific pyridopyrimidine (D13-9001 and non-specific Phe-Arg-β-naphthylamide (PAβN were evaluated. The effects of inhibitors on pumps were observed using the microfluidic channel device under a fluorescence microscope. AcrAB-TolC and analogous pumps effectively prevented FDG influx in wild-type cells, resulting in no fluorescence. In contrast, ΔB or ΔC easily imported and hydrolyzed FDG to fluorescein, which was exported by residual pumps in ΔB. Consequently, fluorescent medium in ΔB and fluorescent cells of ΔC and ΔBC were observed in the microfluidic channels. D13-9001 substantially increased fluorescent cell number in ΔBC/pABM but not in ΔBC/pXYM. PAβN increased medium fluorescence in all strains, especially in the pump deletion mutants, and caused fluorescein accumulation to disappear in ΔC. The checkerboard method revealed that D13-9001 acts synergistically with aztreonam, ciprofloxacin, and erythromycin only against the MexAB-OprM producer (ΔBC/pABM, and PAβN acts synergistically, especially with erythromycin, in all strains including the pump deletion mutants. The results obtained from PAβN were similar to the results from membrane permeabilizer, polymyxin B or polymyxin B nonapeptide by concentration. The new method clarified that D13-9001 specifically inhibited MexAB-OprM in contrast to PAβN, which appeared to be a substrate of the pumps and

  20. Customer Responses to Channel Migration Strategies Toward the E-channel

    NARCIS (Netherlands)

    Trampe, Debra; Konus, Umut; Verhoef, Peter C.

    2014-01-01

    Many firms stimulate customers to use the E-channel for services, which provokes various consumer responses to such limits on their freedom of choice. In a study on bank customers, we examine the extent of customer reactance in response to various E-channel migration strategies, the potential of

  1. Multi-rate control over AWGN channels via analog joint source-channel coding

    KAUST Repository

    Khina, Anatoly; Pettersson, Gustav M.; Kostina, Victoria; Hassibi, Babak

    2017-01-01

    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition.

  2. Multi-rate control over AWGN channels via analog joint source-channel coding

    KAUST Repository

    Khina, Anatoly

    2017-01-05

    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel\\'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition.

  3. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    Science.gov (United States)

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  4. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  5. Quantum communication under channel uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Noetzel, Janis Christian Gregor

    2012-09-06

    This work contains results concerning transmission of entanglement and subspaces as well as generation of entanglement in the limit of arbitrary many uses of compound- and arbitrarily varying quantum channels (CQC, AVQC). In both cases, the channel is described by a set of memoryless channels. Only forward communication between one sender and one receiver is allowed. A code is said to be ''good'' only, if it is ''good'' for every channel out of the set. Both settings describe a scenario, in which sender and receiver have only limited channel knowledge. For different amounts of information about the channel available to sender or receiver, coding theorems are proven for the CQC. For the AVQC, both deterministic and randomised coding schemes are considered. Coding theorems are proven, as well as a quantum analogue of the Ahlswede-dichotomy. The connection to zero-error capacities of stationary memoryless quantum channels is investigated. The notion of symmetrisability is defined and used for both classes of channels.

  6. Characterizing ligand-gated ion channel receptors with genetically encoded Ca2++ sensors.

    Directory of Open Access Journals (Sweden)

    John G Yamauchi

    2011-01-01

    Full Text Available We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC by developing sensor cells stably expressing a Ca(2+ permeable LGIC and a genetically encoded Förster (or fluorescence resonance energy transfer (FRET-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT(3A serotonin receptors and a chimera of human α7/mouse 5-HT(3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.

  7. XPM-induced degradation of multilevel phase modulated channel caused by neighboring NRZ modulated channels

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Schiellerup, G.; Peucheret, Christophe

    2008-01-01

    The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty.......The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty....

  8. BIFIDUM-MEDIUM FOR ISOLATION AND CULTIVATION OF BIFIDOBACTERIA

    Directory of Open Access Journals (Sweden)

    L. V. Domotenko

    2014-01-01

    Full Text Available The comparative evaluation of Bifidum-medium quality (the nutrient medium for cultivation and selection bifidobacteria, dry and Blaurock medium has been performed. It was shown that Bifidum-medium supports the typical growth of the main types of bifidobacteria: Bifidobacterium bifidum, B. breve, B. adolescentis, B. infantis, B. longum. The comparable results for the efficacy and the activity accumulation of acid were obtained in the study of probiotic «bifidumbacterin » using both media. In studies of faecal material the medium concentration of bifidobacteria was found 8.15 lg CFU/g on Bifidum-medium and 6.68 lg CFU/g on Blaurock medium.

  9. On the secrecy capacity of the wiretap channel with imperfect main channel estimation

    KAUST Repository

    Rezki, Zouheir

    2014-10-01

    We study the secrecy capacity of fast fading channels under imperfect main channel (between the transmitter and the legitimate receiver) estimation at the transmitter. Lower and upper bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate follows from a standard wiretap code in which a simple on-off power control is employed along with a Gaussian input. The upper bound is obtained using an appropriate correlation scheme of the main and eavesdropper channels and is the best known upper bound so far. The upper and lower bounds coincide with recently derived ones in case of perfect main CSI. Furthermore, the upper bound is tight in case of no main CSI, where the secrecy capacity is equal to zero. Asymptotic analysis at high and low signal-to-noise ratio (SNR) is also given. At high SNR, we show that the capacity is bounded by providing upper and lower bounds that depend on the channel estimation error. At low SNR, however, we prove that the secrecy capacity is asymptotically equal to the capacity of the main channel as if there were no secrecy constraint. Numerical results are provided for i.i.d. Rayleigh fading channels.

  10. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  11. Channel Estimation in DCT-Based OFDM

    Science.gov (United States)

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic. PMID:24757439

  12. A new simple model for composite fading channels: Second order statistics and channel capacity

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, we introduce the most general composite fading distribution to model the envelope and the power of the received signal in such fading channels as millimeter wave (60 GHz or above) fading channels and free-space optical channels, which

  13. CANDU channel flow verification

    International Nuclear Information System (INIS)

    Mazalu, N.; Negut, Gh.

    1997-01-01

    The purpose of this evaluation was to obtain accurate information on each channel flow that enables us to assess precisely the level of reactor thermal power and, for reasons of safety, to establish which channel is boiling. In order to assess the channel flow parameters, computer simulations were done with the NUCIRC code and the results were checked by measurements. The complete channel flow measurements were made in the zero power cold condition. In hot conditions there were made flow measurements using the Shut Down System 1 (SDS 1) flow devices from 0.1 % F.P. up to 100 % F.P. The NUCIRC prediction for CANDU channel flows and the measurements by Ultrasonic Flow Meter at zero power cold conditions and SDS 1 flow channel measurements at different reactor power levels showed an acceptable agreement. The 100 % F.P. average errors for channel flow of R, shows that suitable NUCIRC flow assessment can be made. So, it can be done a fair prediction of the reactor power distribution. NUCIRC can predict accurately the onset of boiling and helps to warn at the possible power instabilities at high powers or it can detect the flow blockages. The thermal hydraulic analyst has in NUCIRC a suitable tool to do accurate predictions for the thermal hydraulic parameters for different steady state power levels which subsequently leads to an optimal CANDU reactor operation. (authors)

  14. Energy efficient rateless codes for high speed data transfer over free space optical channels

    Science.gov (United States)

    Prakash, Geetha; Kulkarni, Muralidhar; Acharya, U. S.

    2015-03-01

    Terrestrial Free Space Optical (FSO) links transmit information by using the atmosphere (free space) as a medium. In this paper, we have investigated the use of Luby Transform (LT) codes as a means to mitigate the effects of data corruption induced by imperfect channel which usually takes the form of lost or corrupted packets. LT codes, which are a class of Fountain codes, can be used independent of the channel rate and as many code words as required can be generated to recover all the message bits irrespective of the channel performance. Achieving error free high data rates with limited energy resources is possible with FSO systems if error correction codes with minimal overheads on the power can be used. We also employ a combination of Binary Phase Shift Keying (BPSK) with provision for modification of threshold and optimized LT codes with belief propagation for decoding. These techniques provide additional protection even under strong turbulence regimes. Automatic Repeat Request (ARQ) is another method of improving link reliability. Performance of ARQ is limited by the number of retransmissions and the corresponding time delay. We prove through theoretical computations and simulations that LT codes consume less energy per bit. We validate the feasibility of using energy efficient LT codes over ARQ for FSO links to be used in optical wireless sensor networks within the eye safety limits.

  15. Simulation of a Narrowband Power Line Communications System over Medium Voltage

    Directory of Open Access Journals (Sweden)

    Nikolaos Chiotellis

    2016-03-01

    Full Text Available Narrowband Power Line Communications (NB-PLCs are investigated as an alternative option for transferring low rate smart grid (SG data via Medium Voltage (MV power lines. In this framework, two variants of orthogonal frequency division multiplexing are examined, namely Filtered-OFDM (F-OFDM and Wavelet-OFDM (W-OFDM, in an attempt to determine which of them is capable of transmitting low rate SG data to greater distances over non-branched MV power lines. The reach of NB-PLC signals via MV power lines is estimated, taking into account the transfer function of the relevant PLC channels and noise mechanisms as well as the specific features of the two modulation options under consideration. Simulations show that NB-PLC transmission constitutes a technically feasible and economically affordable option for exchanging low rate data with remote SG nodes dispersed over the MV grid. Moreover, simulations show that F-OFDM allows low rate data transmission to considerably greater distances compared to W-OFDM.

  16. Channel Simulation in Quantum Metrology

    Directory of Open Access Journals (Sweden)

    Laurenza Riccardo

    2018-04-01

    Full Text Available In this review we discuss how channel simulation can be used to simplify the most general protocols of quantum parameter estimation, where unlimited entanglement and adaptive joint operations may be employed. Whenever the unknown parameter encoded in a quantum channel is completely transferred in an environmental program state simulating the channel, the optimal adaptive estimation cannot beat the standard quantum limit. In this setting, we elucidate the crucial role of quantum teleportation as a primitive operation which allows one to completely reduce adaptive protocols over suitable teleportation-covariant channels and derive matching upper and lower bounds for parameter estimation. For these channels,wemay express the quantum Cramér Rao bound directly in terms of their Choi matrices. Our review considers both discrete- and continuous-variable systems, also presenting some new results for bosonic Gaussian channels using an alternative sub-optimal simulation. It is an open problem to design simulations for quantum channels that achieve the Heisenberg limit.

  17. Effect of communication channels on success rate of entrepreneurial SMEs in the agricultural sector (a case study

    Directory of Open Access Journals (Sweden)

    Z. Khoshnodifar

    2016-01-01

    Full Text Available The present research aimed at investigating the effect of communication channels on the economic success of early profitable and entrepreneur small and medium enterprises in the agricultural sector. It was an applied research in which the descriptive-survey method was used. The research sample included 356 founders of entrepreneur small and medium enterprises (at the time of conducting the research in the Markazi province, Iran, among which 100 founders were selected according to the Cochran formulation using the stratified random sampling method. A questionnaire was used as the research tool and its validity was confirmed as the face validity by a group of teachers and experts. The questionnaire’s reliability was calculated using Cronbach’s alpha (α = 0.82. The results indicated that the information seeking facilities of most of the entrepreneurs were seen at a good level (53 persons, 53% and acquiring information from other businesses and consulting contacts with the neighbors and relatives, product sellers and promoting factors were listed as the highest priorities of the respondents, respectively. Also, there was a meaningful relationship between rate of using information and communication resources with the variables namely age, duration of operation on the job, number of people operating the business and number using loans. The results of regression analysis indicated that seven communication channels, promoters, other producers, product sellers, group visit, training films, creditors, radio and TV in the order of significance have defined 78.4% of the dependent variable changes.

  18. Effect of channel-protein interaction on translocation of a protein-like chain through a finite channel

    International Nuclear Information System (INIS)

    Sun Ting-Ting; Ma Hai-Zhu; Jiang Zhou-Ting

    2012-01-01

    We study the translocation of a protein-like chain through a finite cylindrical channel using the pruned-enriched Rosenbluth method (PERM) and the modified orientation-dependent monomer-monomer interaction (ODI) model. Attractive channels (in cp = −2.0, −1.0, −0.5), repulsive channels (in cp = 0.5, 1.0, 2.0), and a neutral channel (in cp = 0) are discussed. The results of the chain dimension and the energy show that Z 0 = 1.0 is an important case to distinguish the types of the channels. For the strong attractive channel, more contacts form during the process of translocation. It is also found that an external force is needed to drive the chain outside of the channel with the strong attraction. While for the neutral, the repulsive, and the weak attractive channels, the translocation is spontaneous. (interdisciplinary physics and related areas of science and technology)

  19. Radar channel balancing with commutation

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  20. Photonic-resonant left-handed medium

    International Nuclear Information System (INIS)

    Shen Jianqi

    2006-01-01

    A new scheme to realize simultaneously negative permittivity and permeability in a coherent atomic vapor medium (photonic-resonant material) via a coherent driving mechanism is suggested. It is verified that the atomic system coherently driven by a strong optical field will give rise to a negative refractive index in certain probe frequency ranges. One of the most remarkable features of the present scheme is such that a slab fabricated by the left-handed vapor medium is an ideal candidate for designing perfect lenses since the photonic-resonant atomic vapor cannot only exhibit an isotropic negative refractive index, but also provide a good impedance match at the air-medium interfaces

  1. DYNAMIC DEFORMATION THE VISCOELASTIC TWOCOMPONENT MEDIUM

    Directory of Open Access Journals (Sweden)

    V. S. Polenov

    2015-01-01

    Full Text Available Summary. In the article are scope harmonious warping of the two-component medium, one component which are represent viscoelastic medium, hereditary properties which are described by the kernel aftereffect Abel integral-differential ratio BoltzmannVolterr, while second – compressible liquid. Do a study one-dimensional case. Use motion equation of two-component medium at movement. Look determination system these equalization in the form of damped wave. Introduce dimensionless coefficient. Combined equations happen to homogeneous system with complex factor relatively waves amplitude in viscoelastic component and in fluid. As a result opening system determinant receive biquadratic equation. Elastic operator express through kernel aftereffect Abel for space Fourier. With the help transformation and symbol series biquadratic equation reduce to quadratic equation. Come to the conclusion that in two-component viscoelastic medium exist two mode sonic waves. As a result solution of quadratic equation be found description advance of waves sonic in viscoelastic two-component medium, which physical-mechanical properties represent complex parameter. Velocity determination advance of sonic waves, attenuation coefficient, mechanical loss tangent, depending on characteristic porous medium and circular frequency formulas receive. Graph dependences of description advance of waves sonic from the temperature logarithm and with the fractional parameter γ are constructed.

  2. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  3. Non-dimensional characterization of the friction stir/spot welding process using a simple Couette flow model part I: Constant property Bingham plastic solution

    International Nuclear Information System (INIS)

    Buck, Gregory A.; Langerman, Michael

    2004-01-01

    A simplified model for the material flow created during a friction stir/spot welding process has been developed using a boundary driven cylindrical Couette flow model with a specified heat flux at the inner cylinder for a Bingham plastic material. Non-dimensionalization of the constant property governing equations identified three parameters that influence the velocity and temperature fields. Analytic solutions to these equations are presented and some representative results from a parametric study (parameters chosen and varied over ranges expected for the welding of a wide variety of metals) are discussed. The results also provide an expression for the critical radius (location of vanishing material velocity) as functions of the relevant non-dimensional parameters. A final study was conducted in which values for the non-dimensional heat flux parameter were chosen to produce peak dimensional temperatures on the order of 80% of the melting temperature for a typical 2000 series aluminum. Under these conditions it was discovered that the ratio of the maximum rate of shear work within the material (viscous dissipation) to the rate of energy input at the boundary due to frictional heating, ranged from about 0.0005% for the lowest pin tool rotation rate, to about 1.3% for the highest tool rotation rate studied. Curve fits to previous Gleeble data taken for a number of aluminum alloys provide reasonable justification for the Bingham plastic constitutive model, and although these fits indicate a strong temperature dependence for critical flow stress and viscosity, this work provides a simple tool for more sophisticated model validation. Part II of this study will present numerical solutions for velocity and temperature fields resulting from the non-linear coupling of the momentum and energy equations created by temperature dependent transport properties

  4. Direct channel problems and phenomena

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1975-01-01

    Direct channel problems and phenomena are considered covering the need for precision hadron spectroscopy, the data base for precision hadron spectroscopy, some relations between direct-channel and cross-channel effects, and spin rotation phenomena

  5. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  6. An FPGA-Based Adaptable 200 MHz Bandwidth Channel Sounder for Wireless Communication Channel Characterisation

    Directory of Open Access Journals (Sweden)

    David L. Ndzi

    2011-01-01

    Full Text Available This paper describes the development of a fast adaptable FPGA-based wideband channel sounder with signal bandwidths of up to 200 MHz and channel sampling rates up to 5.4 kHz. The application of FPGA allows the user to vary the number of real-time channel response averages, channel sampling interval, and duration of measurement. The waveform, bandwidth, and frequency resolution of the sounder can be adapted for any channel under investigation. The design approach and technology used has led to a reduction in size and weight by more than 60%. This makes the sounder ideal for mobile time-variant wireless communication channels studies. Averaging allows processing gains of up to 30 dB to be achieved for measurement in weak signal conditions. The technique applied also improves reliability, reduces power consumption, and has shifted sounder design complexity from hardware to software. Test results show that the sounder can detect very small-scale variations in channels.

  7. Kv4 channels underlie the subthreshold-operating A-type K+-current in nociceptive dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Thanawath R Na Phuket

    2009-07-01

    Full Text Available The dorsal root ganglion (DRG contains heterogeneous populations of sensory neurons including primary nociceptive neurons and C-fibers implicated in pain signaling.  Recent studies have demonstrated DRG hyperexcitability associated with downregulation of A-type K+ channels; however, the molecular correlate of the corresponding A-type K+ current (IA has remained hypothetical.  Kv4 channels may underlie the IA in DRG neurons.  We combined electrophysiology, molecular biology (whole-tissue and single-cell RT-PCR and immunohistochemistry to investigate the molecular basis of the IA in acutely dissociated DRG neurons from 7-8 day-old rats.  Whole-cell recordings demonstrate a robust tetraethylammonium-resistant (20 mM and 4-aminopyridine-sensitive (5 mM IA.  Matching Kv4 channel properties, activation and inactivation of this IA occur in the subthreshold range of membrane potentials and the rate of recovery from inactivation is rapid and voltage-dependent.  Among Kv4 transcripts, the DRG expresses significant levels of Kv4.1 and Kv4.3 mRNAs.  Also, single small-medium diameter DRG neurons (~30 mm exhibit correlated frequent expression of mRNAs encoding Kv4.1 and Nav1.8, a known nociceptor marker.  In contrast, the expressions of Kv1.4 and Kv4.2 mRNAs at the whole-tissue and single-cell levels are relatively low and infrequent.  Kv4 protein expression in nociceptive DRG neurons was confirmed by immunohistochemistry, which demonstrates colocalization of Kv4.3 and Nav1.8, and negligible expression of Kv4.2.  Furthermore, specific dominant-negative suppression and overexpression strategies confirmed the contribution of Kv4 channels to IA in DRG neurons.  Contrasting the expression patterns of Kv4 channels in the central and peripheral nervous systems, we discuss possible functional roles of these channels in primary sensory neurons.

  8. Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization.

    Science.gov (United States)

    Marco, Iñigo; Feyerabend, Frank; Willumeit-Römer, Regine; Van der Biest, Omer

    2016-05-01

    This work studies the in vitro degradation of Mg alloys for bioabsorbable implant applications under near physiological conditions. For this purpose, the degradation behaviour of Mg alloys in Dulbecco's modified eagle medium (DMEM) which is a commonly used cell culture medium is analysed. Unfortunately, DMEM can be contaminated by microorganisms, acidifying the medium and accelerating the Mg degradation process by dissolution of protective degradation layers, such as (Mgx,Cay)(PO4)z. In this paper the influence of sterilization by applying UV-C radiation and antibiotics (penicillin/streptomycin) is analysed with two implant material candidates: Mg-Gd and Mg-Ag alloys; and pure magnesium as well as Mg-4Y-3RE as a reference. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Choice of Scottish Gaelic-Medium and Welsh-Medium Education at the Primary and Secondary School Stages: Parent and Pupil Perspectives

    Science.gov (United States)

    O'Hanlon, Fiona

    2015-01-01

    Results are presented of a comparative study of the reasons for parental choice of Scottish Gaelic-medium and Welsh-medium primary education in the year 2000 and of the reasons for pupils' decisions to continue with Gaelic or Welsh-medium education at secondary school in 2007. Parents in both contexts cited the quality of Celtic-medium education…

  10. Moderate resolution thermal mapping of mars: The channel terrain around the Chryse basin

    International Nuclear Information System (INIS)

    Christensen, P.R.; Kieffer, H.H.

    1979-01-01

    Moderate resolution (approx.30 km) thermal inertia estimates have been made for several regions in the northern hemosphere of Mars. Examples of these maps are presented here for the region O 0 -45 0 N, O 0 -90 0 W. The thermal inertia of Kasei Vallis is found to be significantly higher than that of the surrounding terrain. The assumption of a uniform grain size surface gives maximum diameters of 1.0 mm inside and 0.05mm outside Kasei Vallis for the surface materials. high inertia regions are well correlated with low albedo (Aapprox.0.14) regions. Three large channels in the Oxia Palus quandrangle also have high inertia floors. There is some indication that the thermal inertia increases toward the mouth of one of these channels. The Chryse and Acidalia basins have uniform high inertia surfaces with no decrease in inertia as distance increases from the major channels. There are numerous craters in the region which have high inertia-low albedo features on the crater floor. This correlation has been observed for many other craters on Mars, both from Mariner 9 and Viking data. A possible explanation is the accumulation of coarse-grained, windblown material within the craters. Average grain sizes of these materials range from 0.5 to 1.1. mm, corresponding to medium to coarse sand. The Viking 1 landing site is located in the lowest inertia region within the area studied which met the latitude and elevation capabilities of that vehicle

  11. Medium Modifications of Hadrons in Photon Induced Reactions

    International Nuclear Information System (INIS)

    Schadmand, S.

    2004-01-01

    Indications for in-medium modifications of hadron properties are reported from photoabsorption and meson production experiments. Strong medium modifications are observed in inclusive photoabsorption experiments and theoretical models investigate the in-medium dynamics of baryon resonances and their coupling to mesons. Recent experiments study the in-medium behavior of scalar and vector mesons where theoretical models expect in-medium modifications of the meson spectral functions that might be connected to partial restoration of chiral symmetry

  12. The KATP channel in migraine pathophysiology

    DEFF Research Database (Denmark)

    Al-Karagholi, Mohammad Al-Mahdi; Hansen, Jakob Møller; Severinsen, Johanne

    2017-01-01

    BACKGROUND: To review the distribution and function of KATP channels, describe the use of KATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. DISCUSSION: KATP channels are widely present in the trigeminovascular system and play...... an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic KATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that KATP channel opening may cause headache, possibly due to vascular mechanisms. Whether KATP...... channel openers can provoke migraine in migraine sufferers is not known. CONCLUSION: We suggest that KATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target....

  13. Six-channel adaptive fibre-optic interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Romashko, R V; Bezruk, M N; Kamshilin, A A; Kulchin, Yurii N

    2012-06-30

    We have proposed and analysed a scheme for the multiplexing of orthogonal dynamic holograms in photorefractive crystals which ensures almost zero cross talk between the holographic channels upon phase demodulation. A six-channel adaptive fibre-optic interferometer was built, and the detection limit for small phase fluctuations in the channels of the interferometer was determined to be 2.1 Multiplication-Sign 10{sup -8} rad W{sup 1/2} Hz{sup -1/2}. The channel multiplexing capacity of the interferometer was estimated. The formation of 70 channels such that their optical fields completely overlap in the crystal reduces the relative detection limit in the working channel by just 10 %. We found conditions under which the maximum cross talk between the channels was within the intrinsic noise level in the channels (-47 dB).

  14. Intercalibration between HIRS/2 and HIRS/3 channel 12 based on physical considerations

    Science.gov (United States)

    Gierens, Klaus; Eleftheratos, Kostas; Sausen, Robert

    2018-02-01

    High-resolution Infrared Radiation Sounder (HIRS) brightness temperatures at channel 12 (T12) can be used to assess the water vapour content of the upper troposphere. The transition from HIRS/2 to HIRS/3 in 1999 involved a shift in the central wavelength of channel 12 from 6.7 to 6.5 µm, causing a discontinuity in the time series of T12. To understand the impact of this change in the measured brightness temperatures, we have performed radiative transfer calculations for channel 12 of HIRS/2 and HIRS/3 instruments, using a large set of radiosonde profiles of temperature and relative humidity from three different sites. Other possible changes within the instrument, apart from the changed spectral response function, have been assumed to be of minor importance, and in fact, it was necessary to assume as a working hypothesis that the spectral and radiometric calibration of the two instruments did not change during the relatively short period of their common operation. For each radiosonde profile we performed two radiative transfer calculations, one using the HIRS/2 channel response function of NOAA 14 and one using the HIRS/3 channel response function of NOAA 15, resulting in negative differences of T12 (denoted as ΔT12 := T12/15 - T12/14) ranging between -12 and -2 K. Inspection of individual profiles for large, medium and small values of ΔT12 pointed to the role of the mid-tropospheric humidity. This guided us to investigate the relation between ΔT12 and the channel 11 brightness temperatures which are typically used to detect signals from the mid-troposphere. This allowed us to construct a correction for the HIRS/3 T12, which leads to a pseudo-channel 12 brightness temperature as if a HIRS/2 instrument had measured it. By applying this correction we find an excellent agreement between the original HIRS/2 T12 and the HIRS/3 data inferred from the correction method with R = 0.986. Upper-tropospheric humidity (UTH) derived from the pseudo HIRS/2 T12 data compared

  15. Autonomous miniaturised device with USB interface for pulse height analysis and multi-channel scaling (TUKAN-8K-USB)

    International Nuclear Information System (INIS)

    Guzik, Z.; Borsuk, S.; Plominski, M.; Traczyk, K.

    2005-01-01

    We present autonomous a 8K-channel miniature device designed for spectroscopy or intensity vs. time measurements. The device (TUKAN-8K-USB) is based on the USB interface, and is contained in a screened separate box - it can be proved either directly from the USB port or from an external DC source (wall adapter of battery). The device may work in two independent operational modes: Multi-Channel Analysis (MCA) and Multi-Channel Scaling (MCS). The crucial MCA component - Peak detect and Hold circuitry - is featuring a novel architecture based on a diamond transistor. Its analog stage can accept analog pulses with front edges down to 100 ns and has a differential linearity below 0.5% (full scale sliding scale averaging). Automatic stops on count in Region-Of-Interest (ROI) and on preset live or real time are implemented. The MCS works at medium speed counting rates (up to 8 MHz), with preset dwell time, number of channels and multi-sweep mode. Each these parameters can also be controlled externally. Digital interfacing is based on four used configurable logical I/O lines. A single CYCLONE EP1C3 Altera FPGA provides all control functions. The USB communication is based on FYDI FIFO controller. The analyzer is equipped with advanced, user-friendly software, which is subjected of another publication. )author)

  16. G-Channel Restoration for RWB CFA with Double-Exposed W Channel.

    Science.gov (United States)

    Park, Chulhee; Song, Ki Sun; Kang, Moon Gi

    2017-02-05

    In this paper, we propose a green (G)-channel restoration for a red-white-blue (RWB) color filter array (CFA) image sensor using the dual sampling technique. By using white (W) pixels instead of G pixels, the RWB CFA provides high-sensitivity imaging and an improved signal-to-noise ratio compared to the Bayer CFA. However, owing to this high sensitivity, the W pixel values become rapidly over-saturated before the red-blue (RB) pixel values reach the appropriate levels. Because the missing G color information included in the W channel cannot be restored with a saturated W, multiple captures with dual sampling are necessary to solve this early W-pixel saturation problem. Each W pixel has a different exposure time when compared to those of the R and B pixels, because the W pixels are double-exposed. Therefore, a RWB-to-RGB color conversion method is required in order to restore the G color information, using a double-exposed W channel. The proposed G-channel restoration algorithm restores G color information from the W channel by considering the energy difference caused by the different exposure times. Using the proposed method, the RGB full-color image can be obtained while maintaining the high-sensitivity characteristic of the W pixels.

  17. Mapping of moveout in a TTI medium

    KAUST Repository

    Stovas, A.; Alkhalifah, Tariq Ali

    2012-01-01

    To compute moveout in a transversely isotropic medium with tilted symmetry axis is a very complicated problem. We propose to split this problem into two parts. First, to compute the moveout in a corresponding VTI medium. Second, to map the computed moveout to a TTI medium.

  18. Fractional diffusion equation for heterogeneous medium

    International Nuclear Information System (INIS)

    Polo L, M. A.; Espinosa M, E. G.; Espinosa P, G.; Del Valle G, E.

    2011-11-01

    The asymptotic diffusion approximation for the Boltzmann (transport) equation was developed in 1950 decade in order to describe the diffusion of a particle in an isotropic medium, considers that the particles have a diffusion infinite velocity. In this work is developed a new approximation where is considered that the particles have a finite velocity, with this model is possible to describe the behavior in an anomalous medium. According with these ideas the model was obtained from the Fick law, where is considered that the temporal term of the current vector is not negligible. As a result the diffusion equation of fractional order which describes the dispersion of particles in a highly heterogeneous or disturbed medium is obtained, i.e., in a general medium. (Author)

  19. X-ray radiation channeling in micro-channel plates: Spectroscopy with a synchrotron radiation beam

    International Nuclear Information System (INIS)

    Mazuritskiy, M.I.; Dabagov, S.B.; Marcelli, A.; Dziedzic-Kocurek, K.; Lerer, A.M.

    2015-01-01

    We present here the angular distribution of the radiation propagated inside MultiChannel Plates with micro-channels of ∼3 μm diameter. The spectra collected at the exit of the channels present a complex distribution with contributions that can be assigned to the fluorescence radiation, originated from the excitation of the micro-channel walls. For radiation above the absorption edge, when the monochromatic energy in the region of the Si L-edge hits the micro-channel walls with a grazing angle θ ⩾ 5°, or at the O K-edge when θ ⩾ 2° a fluorescence radiation is detected. Additional information associated to the fine structures of the XANES spectra detected at the exit of MCPs are also presented and discussed

  20. The impact of medium architecture of alluvial settings on non-Fickian transport

    Science.gov (United States)

    Zhang, Yong; Green, Christopher T.; Fogg, Graham E.

    2013-01-01

    The influence of heterogeneous architecture of alluvial aquifers on non-Fickian transport is explored using the Monte Carlo approach. More than two thousand high-resolution hydrofacies models representing seven groups of alluvial settings are built to test the effects of varying facies proportions, mean length and its anisotropy ratio, juxtapositional tendencies, and sub-facies heterogeneity. Results show that the volumetric fraction (P(Z)) of floodplain layers classified by their thicknesses Z controls the non-Fickian tailing of tracer transport at late times. A simple quantitative relationship SBTC≈SP(Z)/2-1 is built based on a multi-rate mass transfer analysis, where SBTC is the slope of the power-law portion of tracer breakthrough curve, and SP(Z) denotes the slope of the power-law portion of the distribution of P(Z) which can be measured, e.g., in core logs. At early times, the mean length of hydrofacies affects the non-Fickian tailing by controlling the channeling of flow in high-permeability non-floodplain materials and the sequestration in surrounding low-permeability floodplain layers. The competition between channeling and sequestration generates complex pre-asymptotic features, including sublinear growth of plume mean displacement, superlinear growth of plume variance, and skewed mass distribution. Those observations of the influence of medium heterogeneity on tracer transport at early and late times may lead to development of nonlocal transport models that can be parameterized using measurable aquifer characteristics.

  1. HIPPI and Fibre Channel

    International Nuclear Information System (INIS)

    Tolmie, D.E.

    1992-01-01

    The High-Performance Parallel Interface (HIPPI) and Fibre Channel are near-gigabit per second data communications interfaces being developed in ANSI standards Task Group X3T9.3. HIPPI is the current interface of choice in the high-end and supercomputer arena, and Fibre Channel is a follow-on effort. HIPPI came from a local area network background, and Fibre Channel came from a mainframe to peripheral interface background

  2. Optical illusions induced by rotating medium

    Science.gov (United States)

    Zang, XiaoFei; Huang, PengCheng; Zhu, YiMing

    2018-03-01

    Different from the traditional single-function electromagnetic wave rotators (rotate the electromagnetic wavefronts), we propose that rotating medium can be extended to optical illusions such as breaking the diffraction limit and overlapping illusion. Furthermore, the homogeneous but anisotropic rotating medium is simplified by homogeneous and isotropic positive-index materials according to the effective medium theory, which is helpful for future device fabrication. Finite element simulations for the two-dimensional case are performed to demonstrate these properties.

  3. Mesons in the nuclear Medium

    CERN Document Server

    Kotulla, M

    2006-01-01

    We discuss recent experimental results on the modification of hadron properties in a nuclear medium. Particular emphasis is placed on an $\\omega$ production experiment performed by the CBELSA/TAPS collaboration at the ELSA accelerator. The data shows a smaller $\\omega$ meson mass together with a significant increase of its width in the nuclear medium.

  4. Morphological elements of the Lofoten Basin Channel - implications for the properties of the latest turbidity currents

    Science.gov (United States)

    Laberg, J. S.; Forwick, M.; Johannesen, H. B.; Ivanov, M.; Kenyon, N. H.; Vorren, T. O.

    2009-04-01

    lobe is located beyond the mouth of the meandering channels. Its areal extent is yet unknown. High-resolution sub-bottom profiler records show units of some meter thickness that can be followed for several tens of kilometres. They are separated by continuous to slightly discontinuous medium to high amplitude reflections. Recent coring has identified up to 4 m thick intervals of sand between units of mud. Acknowledgement This work is a contribution to the UNESCO Training Through Research (TTR) program (http://ioc.unesco.org/ttr/) and the Democen project (http://www.ig.uit.no/Democen/). Financial support from the Research Council of Norway and StatoilHydro is greatly acknowledged. References Laberg, J.S., Vorren, T.O., Kenyon, N.H., Ivanov, M., Andersen, E.S. 2005. A modern canyon-fed sandy turbidite system of the Norwegian continental margin. Norwegian Journal of Geology 85, 267-277. Laberg, J.S., Guidard, S., Mienert, J., Vorren, T.O., Haflidason, H., Nygård, A. 2007. Morphology and morphogenesis of a high-latitude canyon; the Andøya Canyon, Norwegian Sea. Marine Geology 246, 68-85.

  5. Quantum channels with a finite memory

    International Nuclear Information System (INIS)

    Bowen, Garry; Mancini, Stefano

    2004-01-01

    In this paper we study quantum communication channels with correlated noise effects, i.e., quantum channels with memory. We derive a model for correlated noise channels that includes a channel memory state. We examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for certain classes of channel. Also, we show that the structure of any finite-memory state is unimportant in the asymptotic limit, and specifically, for a perfect finite-memory channel where no information is lost to the environment, achieving the upper bound implies that the channel is asymptotically noiseless

  6. Selection of culture medium and conditions for the production of ...

    African Journals Online (AJOL)

    defined medium–A, defined medium-B, synthetic medium, rich medium and industrial medium) showed that the synthetic medium yielded maximum yeast biomass (12.8 g/LDCW) followed by rich medium (11.7 g/L DCW) and defined medium B ...

  7. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lin [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Sun, Jihong, E-mail: jhsun@bjut.edu.cn [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Zhang, Li; Wang, Jinpeng; Ren, Bo [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China)

    2012-08-15

    The bimodal mesoporous silicas with short random mesoporous channels and MCM-41 with long ordered mesopores were synthesised and modified with 3-(2-aminoethylamino) propyltrimethoxysilane as ibuprofen carriers to study the influence of mesoporous structure on drug delivery property. For further comparing the different mesoporous channels, modified SBA-15 with relative large and long ordered mesopores was also synthesized as drug carriers. The resultant samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, N{sub 2} adsorption-desorption isotherms, thermogravimetric analyses, solid-state {sup 29}Si NMR spectra, elemental analysis, and UV-vis spectra. Meanwhile, the Korsmeyer-Peppas equation f{sub t} = kt{sup n} was employed to analyze the drug release profile and three release mediums including simulated fluid solution, distilled water and simulated gastric fluid were used. The results indicated that the modified BMMs with the bimodal mesopores leaded to the most drug loading amount of 25.0 mg/0.1 g, while the MCM-41 with the long and one-dimensional mesopores had the least loading amount around 20.3 mg/0.1 g. Meanwhile, the easier diffusion behavior of drug molecules in the bimodal mesopore channels of BMMs resulted in relatively faster drug release properties in comparison with MCM-41, while the release time maintained in SBF for about 12 h (release percent was about 90 wt%) and corresponding release constant k obtained from Korsmeyer-Peppas equation was around 4.10. Highlights: Black-Right-Pointing-Pointer BMMs, MCM-41 and SBA-15 with different mesostructure channels were modified with amino groups via post-treatment procedure. Black-Right-Pointing-Pointer Loading and release profiles of ibuprofen in modified BMMs, MCM-41 and SBA-15. Black-Right-Pointing-Pointer BMMs presents more drug loading amount than MCM-41 as well as better controlled release than SBA-15.

  8. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery

    International Nuclear Information System (INIS)

    Gao, Lin; Sun, Jihong; Zhang, Li; Wang, Jinpeng; Ren, Bo

    2012-01-01

    The bimodal mesoporous silicas with short random mesoporous channels and MCM-41 with long ordered mesopores were synthesised and modified with 3-(2-aminoethylamino) propyltrimethoxysilane as ibuprofen carriers to study the influence of mesoporous structure on drug delivery property. For further comparing the different mesoporous channels, modified SBA-15 with relative large and long ordered mesopores was also synthesized as drug carriers. The resultant samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, N 2 adsorption–desorption isotherms, thermogravimetric analyses, solid-state 29 Si NMR spectra, elemental analysis, and UV–vis spectra. Meanwhile, the Korsmeyer–Peppas equation f t = kt n was employed to analyze the drug release profile and three release mediums including simulated fluid solution, distilled water and simulated gastric fluid were used. The results indicated that the modified BMMs with the bimodal mesopores leaded to the most drug loading amount of 25.0 mg/0.1 g, while the MCM-41 with the long and one-dimensional mesopores had the least loading amount around 20.3 mg/0.1 g. Meanwhile, the easier diffusion behavior of drug molecules in the bimodal mesopore channels of BMMs resulted in relatively faster drug release properties in comparison with MCM-41, while the release time maintained in SBF for about 12 h (release percent was about 90 wt%) and corresponding release constant k obtained from Korsmeyer–Peppas equation was around 4.10. Highlights: ► BMMs, MCM-41 and SBA-15 with different mesostructure channels were modified with amino groups via post-treatment procedure. ► Loading and release profiles of ibuprofen in modified BMMs, MCM-41 and SBA-15. ► BMMs presents more drug loading amount than MCM-41 as well as better controlled release than SBA-15.

  9. Improvement of Metroliner Telephone Channel Capacity and Modeling of Telephone Channel Demands

    Science.gov (United States)

    1972-03-01

    The channel capacity of the present Metroliner telephone system is analyzed and methods are proposed to increase that capacity without increasing the overall bandwidth. To determine the number of channels required, calculations have been carried out ...

  10. Channel erosion in a rapidly urbanizing region of Tijuana, Mexico: Enlargement downstream of channel hardpoints

    Science.gov (United States)

    Taniguchi, Kristine; Biggs, Trent; Langendoen, Eddy; Castillo, Carlos; Gudiño, Napoleon; Yuan, Yongping; Liden, Douglas

    2016-04-01

    Urban-induced erosion in Tijuana, Mexico, has led to excessive sediment deposition in the Tijuana Estuary in the United States. Urban areas in developing countries, in contrast to developed countries, are characterized by much lower proportions of vegetation and impervious surfaces due to limited access to urban services such as road paving and landscaping, and larger proportions of exposed soils. In developing countries, traditional watershed scale variables such as impervious surfaces may not be good predictors of channel enlargement. In this research, we surveyed the stream channel network of an erodible tributary of the Tijuana River Watershed, Los Laureles Canyon, at 125 locations, including repeat surveys from 2008. Structure from Motion (SfM) and 3D photo-reconstruction techniques were used to create digital terrain models of stream reaches upstream and downstream of channel hardpoints. Channels are unstable downstream of hardpoints, with incision up to 2 meters and widening up to 12 meters. Coordinated channelization is essential to avoid piece-meal approaches that lead to channel degradation. Watershed impervious area is not a good predictor of channel erosion due to the overriding importance of hardpoints and likely to the high sediment supply from the unpaved roads which prevents channel erosion throughout the stream network.

  11. Parallel inter channel interaction mechanisms

    International Nuclear Information System (INIS)

    Jovic, V.; Afgan, N.; Jovic, L.

    1995-01-01

    Parallel channels interactions are examined. For experimental researches of nonstationary regimes flow in three parallel vertical channels results of phenomenon analysis and mechanisms of parallel channel interaction for adiabatic condition of one-phase fluid and two-phase mixture flow are shown. (author)

  12. Matching Dyadic Distributions to Channels

    OpenAIRE

    Böcherer, Georg; Mathar, Rudolf

    2010-01-01

    Many communication channels with discrete input have non-uniform capacity achieving probability mass functions (PMF). By parsing a stream of independent and equiprobable bits according to a full prefix-free code, a modu-lator can generate dyadic PMFs at the channel input. In this work, we show that for discrete memoryless channels and for memoryless discrete noiseless channels, searching for good dyadic input PMFs is equivalent to minimizing the Kullback-Leibler distance between a dyadic PMF ...

  13. Multiplicative properties of quantum channels

    Science.gov (United States)

    Rahaman, Mizanur

    2017-08-01

    In this paper, we study the multiplicative behaviour of quantum channels, mathematically described by trace preserving, completely positive maps on matrix algebras. It turns out that the multiplicative domain of a unital quantum channel has a close connection to its spectral properties. A structure theorem (theorem 2.5), which reveals the automorphic property of an arbitrary unital quantum channel on a subalgebra, is presented. Various classes of quantum channels (irreducible, primitive, etc) are then analysed in terms of this stabilising subalgebra. The notion of the multiplicative index of a unital quantum channel is introduced, which measures the number of times a unital channel needs to be composed with itself for the multiplicative algebra to stabilise. We show that the maps that have trivial multiplicative domains are dense in completely bounded norm topology in the set of all unital completely positive maps. Some applications in quantum information theory are discussed.

  14. Long Channel Carbon Nanotube as an Alternative to Nanoscale Silicon Channels in Scaled MOSFETs

    Directory of Open Access Journals (Sweden)

    Michael Loong Peng Tan

    2013-01-01

    Full Text Available Long channel carbon nanotube transistor (CNT can be used to overcome the high electric field effects in nanoscale length silicon channel. When maximum electric field is reduced, the gate of a field-effect transistor (FET is able to gain control of the channel at varying drain bias. The device performance of a zigzag CNTFET with the same unit area as a nanoscale silicon metal-oxide semiconductor field-effect transistor (MOSFET channel is assessed qualitatively. The drain characteristic of CNTFET and MOSFET device models as well as fabricated CNTFET device are explored over a wide range of drain and gate biases. The results obtained show that long channel nanotubes can significantly reduce the drain-induced barrier lowering (DIBL effects in silicon MOSFET while sustaining the same unit area at higher current density.

  15. Local quantum channels preserving classical correlations

    International Nuclear Information System (INIS)

    Guo Zhihua; Cao Huaixin

    2013-01-01

    The aim of this paper is to discuss local quantum channels that preserve classical correlations. First, we give two equivalent characterizations of classical correlated states. Then we obtain the relationships among classical correlation-preserving local quantum channels, commutativity-preserving local quantum channels and commutativity-preserving quantum channels on each subsystem. Furthermore, for a two-qubit system, we show the general form of classical correlation-preserving local quantum channels. (paper)

  16. USACE Navigation Channels 2012

    Data.gov (United States)

    California Natural Resource Agency — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  17. Isotachophoresis system having larger-diameter channels flowing into channels with reduced diameter and with selectable counter-flow

    Energy Technology Data Exchange (ETDEWEB)

    Mariella, Jr., Raymond P.

    2018-03-06

    An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.

  18. Sedimentary processes of the lower Monterey Fan channel and channel-mouth lobe

    Science.gov (United States)

    Klaucke, I.; Masson, D.G.; Kenyon, Neil H.; Gardner, J.V.

    2004-01-01

    The distribution of deposits, sediment transport pathways and processes on the lower Monterey Fan channel and channel-mouth lobe (CML) are studied through the integration of GLORIA and TOBI sidescan sonar data with 7-kHz subbottom profiler records and sediment cores for ground-truthing. The lower Monterey channel is characterised by an up to 30-m-deep channel with poorly developed levees and alternating muddy and silty muddy overbank deposits. The channel is discontinuous, disappearing where gradients are less than about 1:350. Ground-truthing of the large CML shows that the entire CML is characterised by widespread deposits of generally fine sand, with coarser sand at the base of turbidites. Sand is particularly concentrated in finger-like areas of low-backscatter intensity and is interpreted as the result of non-turbulent sediment-gravity flows depositing metres thick massive, fine sand. TOBI sidescan sonar data reveal recent erosional features in the form of scours, secondary channels, large flow slides, and trains of blocks at the distal end of the CML. Erosion is probably related to increasing gradient as the CML approaches Murray Fracture zone and to differential loading of sandy submarine fan deposits onto pelagic clays. Reworking of older flow slides by sediment transport processes on the lobe produces trains of blocks that are several metres in diameter and aligned parallel to the flow direction. ?? 2004 Elsevier B.V. All rights reserved.

  19. Achievable Rates of Secure Transmission in Gaussian MISO Channel with Imperfect Main Channel Estimation

    KAUST Repository

    Zhou, Xinyu; Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2016-01-01

    A Gaussian multiple-input single-output (MISO) fading channel is considered. We assume that the transmitter, in addition to the statistics of all channel gains, is aware instantaneously of a noisy version of the channel to the legitimate receiver. On the other hand, the legitimate receiver is aware instantaneously of its channel to the transmitter, whereas the eavesdropper instantaneously knows all channel gains. We evaluate an achievable rate using a Gaussian input without indexing an auxiliary random variable. A sufficient condition for beamforming to be optimal is provided. When the number of transmit antennas is large, beamforming also turns out to be optimal. In this case, the maximum achievable rate can be expressed in a simple closed form and scales with the logarithm of the number of transmit antennas. Furthermore, in the case when a noisy estimate of the eavesdropper’s channel is also available at the transmitter, we introduce the SNR difference and the SNR ratio criterions and derive the related optimal transmission strategies and the corresponding achievable rates.

  20. Achievable Rates of Secure Transmission in Gaussian MISO Channel with Imperfect Main Channel Estimation

    KAUST Repository

    Zhou, Xinyu

    2016-03-15

    A Gaussian multiple-input single-output (MISO) fading channel is considered. We assume that the transmitter, in addition to the statistics of all channel gains, is aware instantaneously of a noisy version of the channel to the legitimate receiver. On the other hand, the legitimate receiver is aware instantaneously of its channel to the transmitter, whereas the eavesdropper instantaneously knows all channel gains. We evaluate an achievable rate using a Gaussian input without indexing an auxiliary random variable. A sufficient condition for beamforming to be optimal is provided. When the number of transmit antennas is large, beamforming also turns out to be optimal. In this case, the maximum achievable rate can be expressed in a simple closed form and scales with the logarithm of the number of transmit antennas. Furthermore, in the case when a noisy estimate of the eavesdropper’s channel is also available at the transmitter, we introduce the SNR difference and the SNR ratio criterions and derive the related optimal transmission strategies and the corresponding achievable rates.

  1. Amniocar as a proliferative medium for mesenchymal cells

    Directory of Open Access Journals (Sweden)

    V. V. Chestkov

    2014-01-01

    Full Text Available Objectives. To develop the Amniocar nutrient medium that contains fetal calf serum (FCS and growth factors cocktail for mass cultivation of human fibroblasts. To study proliferative activity of the medium on cultures of HUVEC cells of mesenchymal origin and mesenchymal stromal cells, as well as on cell culture of human amniotic fluid.Materials and methods. Determination of the rate of accumulation of the cellular mass and cell morphology in the course of cultivation of cells of various histogenesis in the Amniocar medium and nutrient medium that contains 10 % of FCS.Results. It has been demonstrated that the Amniocar medium is prevalent as compared to the standard DMEM medium with 10 % of FCS by 2 to 5 times for cultivation of skin fibroblasts, HUVEC, and mesenchymal stem cells. The Amniocar medium increased the quantity of endothelial cells that enter mitosis and maintained the culture of HUVEC cells with prolonged passaging in vitro. Clonal cultivation of human amniotic fluid cells in the Amniocar medium secured development of colonies of both fibroblast and epithelial type.Conclusions. Proliferative Amniocar medium is efficient for mass cultivation of various cells of mesenchymal origin and can be used for diagnostic purposes in medical genetics, oncology, etc.

  2. Radon in geological medium

    Energy Technology Data Exchange (ETDEWEB)

    Hricko, J [GEOCOMPLEX, a.s., Bratislava (Slovakia)

    1996-12-31

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a{sub v} has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km{sup 2}. The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a{sub v} > 50 kBq/m{sup 3}). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs.

  3. Radon in geological medium

    International Nuclear Information System (INIS)

    Hricko, J.

    1995-01-01

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a v has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km 2 . The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a v > 50 kBq/m 3 ). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  4. Clofilium inhibits Slick and Slack potassium channels.

    Science.gov (United States)

    de Los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na(+) and Cl(-), and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels.

  5. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  6. Microstructural information from channeling measurements

    International Nuclear Information System (INIS)

    Quere, Y.

    1984-09-01

    Channeling is sensitive to nearly all structural changes in solids. One briefly recalls how particles are dechanneled by lattice defects and describes the main applications of channeling to materials science: detection of radiation damage, location of impurity atoms, precipitations in alloys... Channeling being a phenomenon characteristic of perfect crystals, any type of lattice imperfection (phonons, crystal defects, precipitation etc.) is expected to produce dechanneling. Consequently channeling and its opposite, dechanneling, have both been used to study structure and structural changes of materials

  7. A fast and sensitive method for evaluating nuclides migration characteristics in rock medium by using micro-channel reactor concept

    Science.gov (United States)

    Okuyama, Keita; Sasahira, Akira; Noshita, Kenji; Yoshida, Takuma; Kato, Kazuyuki; Nagasaki, Shinya; Ohe, Toshiaki

    Experimental effort to evaluate the barrier performance of geologic disposal requires relatively long testing periods and chemically stable conditions. We have developed a new technique, the micro mock-up method, to present a fast and sensitive method to measure both nuclide diffusivity and sorption coefficient within a day to overcome such disadvantage of the conventional method. In this method, a Teflon plate having a micro channel (10-200 μm depth, 2, 4 mm width) is placed just beneath the rock sample plate, radionuclide solution is injected into the channel with constant rate. The breakthrough curve is being measured until a steady state. The outlet flux in the steady state however does not meet the inlet flux because of the matrix diffusion into the rock body. This inlet-outlet difference is simply related to the effective diffusion coefficient ( De) and the distribution coefficient ( Kd) of rock sample. Then, we adopt a fitting procedure to speculate Kd and De values by comparing the observation to the theoretical curve of the two-dimensional diffusion-advection equation. In the present study, we measured De of 3H by using both the micro mock-up method and the conventional through-diffusion method for comparison. The obtained values of De by two different ways for granite sample (Inada area of Japan) were identical: 1.0 × 10 -11 and 9.0 × 10 -12 m 2/s but the testing period was much different: 10 h and 3 days, respectively. We also measured the breakthrough curve of 85Sr and the resulting Kd and De agreed well to the previous study obtained by the batch sorption experiments with crushed samples. The experimental evidence and the above advantages reveal that the micro mock-up method based on the microreactor concept is powerful and much advantageous when compared to the conventional method.

  8. Pharmacological modulation of SK3 channels

    DEFF Research Database (Denmark)

    Grunnet, M; Jespersen, Thomas; Angelo, K

    2001-01-01

    Small-conductance, calcium-activated K+ channels (SK channels) are voltage-insensitive channels that have been identified molecularly within the last few years. As SK channels play a fundamental role in most excitable cells and participate in afterhyperpolarization (AHP) and spike-frequency adapt...... at concentrations of 3 microM and above. Amitriptyline, a tricyclic antidepressive widely used clinically, inhibits SK3 channels with an IC50 of 39.1 +/- 10 microM (n=6)....

  9. Physical processes in the interstellar medium

    CERN Document Server

    Spitzer, Lyman

    2008-01-01

    Physical Processes in the Interstellar Medium discusses the nature of interstellar matter, with a strong emphasis on basic physical principles, and summarizes the present state of knowledge about the interstellar medium by providing the latest observational data. Physics and chemistry of the interstellar medium are treated, with frequent references to observational results. The overall equilibrium and dynamical state of the interstellar gas are described, with discussions of explosions produced by star birth and star death and the initial phases of cloud collapse leading to star formation.

  10. Optimising the Quality of Experience during Channel Zapping : The Impact of Advertisements during Channel Zapping

    NARCIS (Netherlands)

    Kooij, R.E.; Klos, V.B.; Godana, B.E.; Nicolai, F.P.; Ahmed, O.K.

    2009-01-01

    Nowadays various digital television services are available. However, the user of these services experiences longer delays than the traditional analog TV while switching from channel to channel. The digital TV operator usually displays a black screen with the channel number during zapping. However,

  11. Effects of ethanol on voltage-sensitive Na-channels in cultured skeletal muscle: Up-regulation as a result of chronic treatment

    International Nuclear Information System (INIS)

    Brodie, C.; Sampson, S.R.

    1990-01-01

    The effects of acute and chronic treatment with ethanol were studied on the number and activity of tetrodotoxin-sensitive Na-channels in cultured rat skeletal muscle. The number of channels was determined by measurements of specific binding of [3H] saxitoxin (STX) in whole cell preparations. Measurements were also made of the frequency and rate of rise of spontaneously occurring action potentials, which are the physiologic expression of Na-channel density. Acute ethanol (37.5-150 mM), while causing depolarization of membrane potential and blockade of electrical activity, was without effect on specific STX binding. Neither methanol, acetaldehyde nor ethylene glycol had significant effects on these properties when given acutely in the same concentrations as ethanol. Chronic ethanol caused dose-related increases in STX binding and action potential properties with maximal levels being attained after 3 days of treatment at a concentration of 150 mM. On removal of ethanol from the culture medium all properties returned to control levels after 48 hr. Both increased external K+ and tetrodotoxin, which up-regulate Na-channels by reducing cytosolic Ca++, potentiated the ethanol-induced increase in Na-channel density. The increase in STX binding was not associated with changes in affinity of the binding sites for the ligand but was completely prevented by treatment with cycloheximide and actinomycin D. The results demonstrate that ethanol interacts with the cell membrane to induce synthesis of STX-binding sites

  12. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2015-08-10

    The objective of the current study is to mechanistically differentiate the dissolution and supersaturation behaviors of amorphous drugs from amorphous solid dispersions (ASDs) based on medium-soluble versus medium-insoluble carriers under nonsink dissolution conditions through a direct head-to-head comparison. ASDs of indomethacin (IND) were prepared in several polymers which exhibit different solubility behaviors in acidic (pH1.2) and basic (pH7.4) dissolution media. The selected polymers range from water-soluble (e.g., PVP and Soluplus) and water-insoluble (e.g., ethylcellulose and Eudragit RL PO) to those only soluble in an acidic or basic dissolution medium (e.g., Eudragit E100, Eudragit L100, and HPMCAS). At 20wt.% drug loading, DSC and powder XRD analysis confirmed that the majority of incorporated IND was present in an amorphous state. Our nonsink dissolution results confirm that whether the carrier matrix is medium soluble determines the release mechanism of amorphous drugs from ASD systems which has a direct impact on the rate of supersaturation generation, thus in turn affecting the evolution of supersaturation in amorphous systems. For example, under nonsink dissolution conditions, the release of amorphous IND from medium-soluble carriers is governed by a dissolution-controlled mechanism leading to an initial surge of supersaturation followed by a sharp decline in drug concentration due to rapid nucleation and crystallization. In contrast, the dissolution of IND ASD from medium-insoluble carriers is more gradual as drug release is regulated by a diffusion-controlled mechanism by which drug supersaturation is built up gradually and sustained over an extended period of time without any apparent decline. Since several tested carrier polymers can be switched from soluble to insoluble by simply changing the pH of the dissolution medium, the results obtained here provide unequivocal evidence of the proposed transition of kinetic solubility profiles from the

  13. On the Capacity of the Dirty Paper Channel with Fast Fading and Discrete Channel States

    OpenAIRE

    Rini, Stefano; Shitz, Shlomo Shamai

    2016-01-01

    The "writing dirty paper" capacity result crucially dependents on the perfect channel knowledge at the transmitter as the presence of even a small uncertainty in the channel realization gravely hampers the ability of the transmitter to pre-code its transmission against the channel state. This is particularly disappointing as it implies that interference pre-coding in practical systems is effective only when the channel estimates at the users have very high precision, a condition which is gene...

  14. Downlink Channel Estimation in Cellular Systems with Antenna Arrays at Base Stations Using Channel Probing with Feedback

    Directory of Open Access Journals (Sweden)

    Biguesh Mehrzad

    2004-01-01

    Full Text Available In mobile communication systems with multisensor antennas at base stations, downlink channel estimation plays a key role because accurate channel estimates are needed for transmit beamforming. One efficient approach to this problem is channel probing with feedback. In this method, the base station array transmits probing (training signals. The channel is then estimated from feedback reports provided by the users. This paper studies the performance of the channel probing method with feedback using a multisensor base station antenna array and single-sensor users. The least squares (LS, linear minimum mean square error (LMMSE, and a new scaled LS (SLS approaches to the channel estimation are studied. Optimal choice of probing signals is investigated for each of these techniques and their channel estimation performances are analyzed. In the case of multiple LS channel estimates, the best linear unbiased estimation (BLUE scheme for their linear combining is developed and studied.

  15. First record of Trichodina heterodentata (Ciliophora: Trichodinidae from channel catfish, Ictalurus punctatus cultivated in Brazil

    Directory of Open Access Journals (Sweden)

    ML. Martins

    Full Text Available This study characterises morphologically Trichodina heterodentata Duncan, 1977 from channel catfish, Ictalurus punctatus (Rafinesque, 1818 in the State of Santa Catarina, Brazil. Body and gill smears were air-dried at room temperature, impregnated with silver nitrate and/or stained with Giemsa. Ten characteristics were selected to compare the present material with other morphological characterisations of T. heterodentata. Prevalence rate was 100%, mean intensity 89,333.70 (3,125 to 299,100 parasites per host. Trichodina heterodentata was considered medium-sized trichodinid with mean body diameter 59.4 ± 8.5 μm, denticulate ring 38.5 ± 4.5 μm, adhesive disc 60.2 ± 6.7 μm diameter and 24.4 ± 1.6 denticles. In relation to previous reports of T. heterodentata this material resembles in 90% of the analysed characters. This work confirms the biometrical variation that exists in the different populations of T. heterodentata. A list of hosts and comparative measurements of T. heterodentata are presented and the channel catfish is considered a new host.

  16. TRP channels in kidney disease.

    NARCIS (Netherlands)

    Hsu, Y.J.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2007-01-01

    Mammalian TRP channel proteins form six-transmembrane cation-permeable channels that may be grouped into six subfamilies on the basis of amino acid sequence homology (TRPC, TRPV, TRPM, TRPA, TRPP, and TRPML). Recent studies of TRP channels indicate that they are involved in numerous fundamental cell

  17. Plasma channels for electron beam transport

    International Nuclear Information System (INIS)

    Schneider, R.F.; Smith, J.R.; Moffatt, M.E.; Nguyen, K.T.; Uhm, H.S.

    1988-01-01

    In recent years, there has been much interest in transport of intense relativistic electron beams using plasma channels. These channels are formed by either: ionization of an organic gas by UV photoionization or electron impact ionization of a low pressure gas utilizing a low energy (typically several hundred volts) electron gun. The second method is discussed here. As their electron gun, the authors used a 12 volt lightbulb filament which is biased to -400 volts with respect to the grounded 15 cm diameter drift tube. The electrons emitted from the filament are confined by an axial magnetic field of --100 Gauss to create a plasma channel which is less than 1 cm in radius. The channel density has been determined with Langmuir probes and the resulting line densities were found to be 10 11 to 10 12 per cm. When a multi-kiloamp electron beam is injected onto this channel, the beam space charge will eject the plasma electrons leaving the ions behind to charge neutralize the electron beam, hence allowing the beam to propagate. In this work, the authors performed experimental studies on the dynamics of the plasma channel. These include Langmuir probe measurements of a steady state (DC) channel, as well as time-resolved Langmuir probe studies of pulsed channels. In addition they performed experimental studies of beam propagation in these plasma channels. Specifically, they observed the behavior of current transport in these channels. Detailed results of beam transport and channel studies are presented

  18. Hall effects on unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel

    Science.gov (United States)

    Krishna, M. Veera; Swarnalathamma, B. V.

    2017-07-01

    We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.

  19. Dimension measuring method for channel box

    International Nuclear Information System (INIS)

    Jo, Hiroto.

    1995-01-01

    The device of the present invention concerns detection of a channel box for spent fuel assemblies of a BWR type reactor, which measures a cross sectional shape and dimension of the channel box to check deformation amount such as expansion. That is, a customary fuel exchanger and a dimension measuring device are used. The lower end of the channel box is measured by a distance sensor of the dimension measuring device when it is aligned with a position of the distance sensor. The channel box is lowered at the same time while detecting axial position data of the fuel exchanger. The position of the channel box in an axial direction is detected based on axial position data of the fuel exchanger. The lower end of the channel box can accurately be recognized by the detection of both of them. Subsequent deformation measurement for the channel box at accurate axial positions is enabled. In addition, since the axial position data of the fuel exchanger per se are detected, an axial profile of the channel box can be measured even if a lifting speed of the channel box is varied on every region. (I.S.)

  20. On the low SNR capacity of MIMO fading channels with imperfect channel state information

    KAUST Repository

    Benkhelifa, Fatma

    2014-06-01

    The capacity of multiple-input multiple-output (MIMO) Rayleigh fading channels with full knowledge of channel state information (CSI) at both the transmitter and the receiver (CSI-TR) has been shown recently to scale at low signal-to-noise ratio (SNR) essentially as SNR log(1/SNR), independently of the number of transmit and receive antennas. In this paper, we investigate the ergodic capacity of MIMO Rayleigh fading channel with estimated channel state information at the transmitter (CSI-T) and possibly imperfect channel state information at the receiver (CSI-R). Our framework can be seen as a generalization of previous works as it can capture the perfect CSI-TR as a special case when the estimation error variance goes to zero. In this paper, we mainly focus on the low SNR regime, and we show that the capacity scales as (1-α) SNR log(1/SNR), where α is the estimation error variance. This characterization shows the loss of performance due to error estimation over the perfect channel state information at both the transmitter and the receiver. As a by-product of our new analysis, we show that our framework can be also extended to characterize the capacity of MIMO Rician fading channels at low SNR with possibly imperfect CSI-T and CSI-R. © 1972-2012 IEEE.

  1. On the low SNR capacity of MIMO fading channels with imperfect channel state information

    KAUST Repository

    Benkhelifa, Fatma

    2014-05-01

    The capacity of Multiple Input Multiple Output (MIMO) Rayleigh fading channels with full knowledge of channel state information (CSI) at both the transmitter and the receiver (CSI-TR) has been shown recently to scale at low Signal-to-Noise Ratio (SNR) essentially as SNR log(1=SNR), independently of the number of transmit and receive antennas. In this paper, we investigate the ergodic capacity of MIMO Rayleigh fading channel with estimated channel state information at the transmitter (CSI-T) and possibly imperfect channel state information at the receiver (CSI-R). Our framework can be seen as a generalization of previous works as it can capture the perfect CSI-TR as a special case when the estimation error variance goes to zero. In our work, we mainly focus on the low SNR regime and we show that the capacity scales as (1-α) SNR log(1=SNR), where α is the estimation error variance. This characterization shows the loss of performance due to error estimation over the perfect channel state information at both the transmitter and the receiver. As a by-product of our new analysis, we show that our framework can also be extended to characterize the capacity of MIMO Rician fading channels at low SNR with possibly imperfect CSI-T and CSI-R. © 2014 IFIP.

  2. An Adaptive Channel Estimation Algorithm Using Time-Frequency Polynomial Model for OFDM with Fading Multipath Channels

    Directory of Open Access Journals (Sweden)

    Liu KJ Ray

    2002-01-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM is an effective technique for the future 3G communications because of its great immunity to impulse noise and intersymbol interference. The channel estimation is a crucial aspect in the design of OFDM systems. In this work, we propose a channel estimation algorithm based on a time-frequency polynomial model of the fading multipath channels. The algorithm exploits the correlation of the channel responses in both time and frequency domains and hence reduce more noise than the methods using only time or frequency polynomial model. The estimator is also more robust compared to the existing methods based on Fourier transform. The simulation shows that it has more than improvement in terms of mean-squared estimation error under some practical channel conditions. The algorithm needs little prior knowledge about the delay and fading properties of the channel. The algorithm can be implemented recursively and can adjust itself to follow the variation of the channel statistics.

  3. Demystifying Mechanosensitive Piezo Ion Channels.

    Science.gov (United States)

    Xu, X Z Shawn

    2016-06-01

    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel.

  4. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium-channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium-channel blockers are a type of medicine used ...

  5. WHAT SIZE SHARK DOES THE AQUARIUM NEED? A TEACHING CASE INVOLVING CONFLICT S IN DI STRIBUTI ON CHANNELS

    Directory of Open Access Journals (Sweden)

    Custódio Genésio da Costa Filho

    2014-03-01

    distribution channels comprising four levels: the manufacturer (the company, wholesalers (formed by the company’s sales structure, regional distributors and a national wholesaler, retailers (large hypermarket chains and small and medium retailers and consumers. Thus, the teaching case encourages students to reflect on the situation, analyze the causes of conflicts, rethink the distribution channels’ structure and seek a solution to the problem. The teaching note assists the teacher in better exploring the various options available to the company’s board of directors, as well as providing conceptual support.

  6. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  7. Morphology of channels and channel-sand bodies in the Glauconitic sandstone member (Upper Mannville), Little Bow area, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, J.C.; Hermanson, S.W.; Lawton, D.C.

    1982-12-01

    Large channels in the Glauconitic sandstone member of southern Alberta have proved to be difficult exploration targets because of an irregular distribution of reservoir sands within the channels. In the Little Bow area, two channels are present in the lower part of the Glauconitic member and have cut into the underlying Calcareous member. The channels can be recognized where they truncate regional markers of the Calcareous member -- the Bantry shale and Ostracod limestone, and where channel-fill deposits exhibit uniform geophysical log characters, indicating sandstone- or mudstone-filled reaches. Sediments of the Glauconitic member adjacent to the channels comprise a series of splay sandstones and mudstones that prograded into interdistributary bays of the lower delta plain. The two channels associated with these deposits are interpreted as distributary channels. Sand bodies within the channels formed as lateral bars and are isolated by mudstones which mark the abandoned stream course. Geological exploration for these discontinuous channel sandstones is difficult, and high-resolutio seismic data integrated with sound geologic modelling are critical for successful prospect delineation.

  8. A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel

    Directory of Open Access Journals (Sweden)

    Szwast Maciej

    2015-06-01

    Full Text Available The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing together with the inert gas receiving permeate. In the proposed mathematical model it was considered that pressure of gas changes along the length of flow channels was the result of both - the drop of pressure connected with flow resistance, and energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel. The literature on membrane technology takes into account only the drop of pressure connected with flow resistance. Consideration given to energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel constitute the essential novelty in the current study. The paper also presents results of calculations obtained by means of a computer program which used equations of the derived model. Physicochemical data concerning separation of the CO2/CH4 mixture with He as the sweep gas and data concerning properties of the membrane made of PDMS were assumed for calculations.

  9. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan; Wu, Ying

    2015-01-01

    -dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided

  10. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2005-04-01

    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  11. Channel selection for automatic seizure detection

    DEFF Research Database (Denmark)

    Duun-Henriksen, Jonas; Kjaer, Troels Wesenberg; Madsen, Rasmus Elsborg

    2012-01-01

    Objective: To investigate the performance of epileptic seizure detection using only a few of the recorded EEG channels and the ability of software to select these channels compared with a neurophysiologist. Methods: Fifty-nine seizures and 1419 h of interictal EEG are used for training and testing...... of an automatic channel selection method. The characteristics of the seizures are extracted by the use of a wavelet analysis and classified by a support vector machine. The best channel selection method is based upon maximum variance during the seizure. Results: Using only three channels, a seizure detection...... sensitivity of 96% and a false detection rate of 0.14/h were obtained. This corresponds to the performance obtained when channels are selected through visual inspection by a clinical neurophysiologist, and constitutes a 4% improvement in sensitivity compared to seizure detection using channels recorded...

  12. UMTS Common Channel Sensitivity Analysis

    DEFF Research Database (Denmark)

    Pratas, Nuno; Rodrigues, António; Santos, Frederico

    2006-01-01

    and as such it is necessary that both channels be available across the cell radius. This requirement makes the choice of the transmission parameters a fundamental one. This paper presents a sensitivity analysis regarding the transmission parameters of two UMTS common channels: RACH and FACH. Optimization of these channels...... is performed and values for the key transmission parameters in both common channels are obtained. On RACH these parameters are the message to preamble offset, the initial SIR target and the preamble power step while on FACH it is the transmission power offset....

  13. Defect Distributions in Channeling Experiments

    DEFF Research Database (Denmark)

    Andersen, Hans Henrik; Sigmund, P.

    1965-01-01

    A simple collision model allows to calculate energy losses of perfectly channeled particles. The maximum energy loss is related in a simple way to the displacement energy of lattice atoms perpendicular to the channel. From that, one obtains rather definite predictions on the possibility...... of radiation damage by channeled particles. As an application, one gets a necessary criterion for the occurence of super tails in channeling experiments. The theory involves some assumptions on the behaviour of Born-Mayer potentials which are verified by comparison to experimental displacement energies....

  14. On the ergodic secrecy capacity of the wiretap channel under imperfect main channel estimation

    KAUST Repository

    Rezki, Zouheir

    2011-11-01

    The ergodic secrecy capacity of the wiretap channel is known when the main channel (between the transmitter and the legitimate receiver) state information (CSI) is perfect at the transmitter and the coherence period is sufficiently large to enable random coding arguments in each block. In a fast fading scenario, when the codeword length spans many coherence periods, the secrecy capacity is still not known. In this paper, we present a framework that characterizes this secrecy capacity under imperfect main channel estimation at the transmitter. Inner and outer bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate is a simple on-off scheme using a Gaussian input. The upper bound is obtained using an appropriate correlation scheme of the main and the eavesdropper channels. The upper and the lower bounds coincide with recently derived ones in the perfect main CSI extreme. Furthermore, the lower bound matches the upper bound in no main CSI extreme, where the secrecy capacity is equal to zero. Numerical results are provided for independent identically distributed (i.i.d.) Rayleigh fading channels. © 2011 IEEE.

  15. Improved lipid and biomass productivities in Chlorella vulgaris by differing the inoculation medium from the production medium

    Directory of Open Access Journals (Sweden)

    Shahrbanoo Hamedi

    2016-06-01

    Full Text Available Improvement of biomass and lipid productivities is now one of the main concerns in commercialization of microalgae cultivation as a feedstock for algal biofuel production. Conventional photoautotrophic processes using well-studied and rich in oil strain of Chlorella vulgaris are not able to meet such demands. A new strategy of inoculating algae production medium with cells grown in a different medium from the production medium was proposed herein. More specifically, when SH4 was used as production medium and N8 was used as inoculation medium, biomass and lipid productivities increased by 2.33 folds and 1.44 fold, respectively, compared with when the production and inoculation media were the same, such as SH4. The findings of the present investigation showed that this cultivation scheme resulted in 52% increase in cell number and 54% increase in dry weight leading to improved productivities. Although by even considering this improvement, photoautotrophic cultivation of algae can hardly compete with the heterotrophic cultivation, the high cost of hydrocarbon supply required in large-scale heterotrophic processes marks the technique proposed in the present study as a promising approach for commercialization of algal biofuel production.

  16. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  17. Next Generation of Magneto-Dielectric Antennas and Optimum Flux Channels

    Science.gov (United States)

    Yousefi, Tara

    There is an ever-growing need for broadband conformal antennas to not only reduce the number of antennas utilized to cover a broad range of frequencies (VHF-UHF) but also to reduce visual and RF signatures associated with communication systems. In many applications antennas needs to be very close to low-impedance mediums or embedded inside low-impedance mediums. However, for conventional metal and dielectric antennas to operate efficiently in such environments either a very narrow bandwidth must be tolerated, or enough loss added to expand the bandwidth, or they must be placed one quarter of a wavelength above the conducting surface. The latter is not always possible since in the HF through low UHF bands, critical to Military and Security functions, this quarter-wavelength requirement would result in impractically large antennas. Despite an error based on a false assumption in the 1950’s, which had severely underestimated the efficiency of magneto-dielectric antennas, recently demonstrated magnetic-antennas have been shown to exhibit extraordinary efficiency in conformal applications. Whereas conventional metal-and-dielectric antennas carrying radiating electric currents suffer a significant disadvantage when placed conformal to the conducting surface of a platform, because they induce opposing image currents in the surface, magnetic-antennas carrying magnetic radiating currents have no such limitation. Their magnetic currents produce co-linear image currents in electrically conducting surfaces. However, the permeable antennas built to date have not yet attained the wide bandwidth expected because the magnetic-flux-channels carrying the wave have not been designed to guide the wave near the speed of light at all frequencies. Instead, they tend to lose the wave by a leaky fast-wave mechanism at low frequencies or they over-bind a slow-wave at high frequencies. In this dissertation, we have studied magnetic antennas in detail and presented the design approach and

  18. Numerical simulation of the heat transfer at cooling a high-temperature metal cylinder by a flow of a gas-liquid medium

    Science.gov (United States)

    Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.

    2017-10-01

    The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.

  19. Study of niobium corrosion in alkaline medium

    International Nuclear Information System (INIS)

    Almeida, S.H. de.

    1987-01-01

    A comparative study of niobium electrochemical behaviour in NaOH and KOH solution, with concentrations between 0,5 and 6,1M is presented. The studies were done through electrochemicals assays, consisting in the corrosion potential and anodic and cathodic polarization curves, complemented by loss of mass experiments. The niobium anodic behaviour in alkaline medium is characterized by passivation occurrence, with a stable film formation. The Na oH solution in alkaline medium are more corrosible to niobium than the KOH solution. The loss of mass assays showed that the corrosion velocit is more dependente of hydroxide concentration in KOH medium than the NaOH medium. (C.G.C.) [pt

  20. Post-Translational Modifications of TRP Channels

    Directory of Open Access Journals (Sweden)

    Olaf Voolstra

    2014-04-01

    Full Text Available Transient receptor potential (TRP channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.