WorldWideScience

Sample records for mediterranean agricultural landscape

  1. The footprint of marginal agriculture in the Mediterranean mountain landscape: An analysis of the Central Spanish Pyrenees.

    Science.gov (United States)

    Lasanta, T; Nadal-Romero, E; Errea, M P

    2017-12-01

    Agriculture forms an essential part of the mountains of the Mediterranean. For centuries, large areas were cultivated to feed the local population, with highly marginal slopes being tilled at times of heavy demographic pressure, using the shifting agriculture system. A great deal of agricultural land was abandoned during the 20th century, giving rise to secondary succession processes that tend to eliminate the agricultural footprint. However, revegetation is a highly complex process leading to areas with dense, well-structured plant cover, and other open areas of scrubland. This article studies the role of traditional agriculture in the deterioration of the landscape. By using experimental plots in the Central Pyrenees to reproduce traditional agriculture and abandonment, maps of field types, and current uses and ground cover, it could be confirmed that shifting agriculture has caused very heavy soil loss, which explains the deterioration of the landscape on several slopes. Burning scrub and adding the ash to the soil as a fertilizer did not greatly help to improve soil quality, but caused high rates of erosion and a very slow process of regrowth. The average data obtained from the shifting experimental plots recorded losses of 1356kgha -1 years -1 , 1.6 times more than the plot of fertilized cereal, and 8.2 times more than the dense scrub plot. Following abandonment, losses in the shifting agriculture plot were almost three times higher than the abandoned sloping field plot. Traditional shifting agriculture in the Pyrenees is the main cause of the deterioration of the landscape 50-70years after agriculture ceased. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Measuring Implicit European and Mediterranean Landscape Identity: A Tool Proposal

    Science.gov (United States)

    Fornara, Ferdinando; Dentale, Francesco; Troffa, Renato; Piras, Simona

    2016-01-01

    This study presents a tool – the Landscape Identity Implicit Association Test (LI-IAT) – devoted to measure the implicit identification with European and Mediterranean landscapes. To this aim, a series of prototypical landscapes was selected as stimulus, following an accurate multi-step procedure. Participants (N = 174), recruited in two Italian cities, performed two LI-IATs devoted to assess their identification with European vs. Not-European and Mediterranean vs. Not-Mediterranean prototypical landscapes. Psychometric properties and criterion validity of these measures were investigated. Two self-report measures, assessing, respectively, European and Mediterranean place identity and pleasantness of the target landscapes, were also administered. Results showed: (1) an adequate level of internal consistency for both LI-IATs; (2) a higher identification with European and Mediterranean landscapes than, respectively, with Not-European and Not-Mediterranean ones; and (3) a significant positive relationship between the European and Mediterranean LI-IATs and the corresponding place identity scores, also when pleasantness of landscapes was controlled for. Overall, these findings provide a first evidence supporting the reliability and criterion validity of the European and Mediterranean LI-IATs. PMID:27642284

  3. IRIS: A SIGNIFICANT ELEMENT OF THE MEDITERRANEAN LANDSCAPE

    Directory of Open Access Journals (Sweden)

    A. UBRIZSY SAVOIA

    2000-01-01

    Full Text Available The Southern European species of Iris growing in dry, rocky places, stony ground, terra rossa, sandy, basalt and/or calcareous hills, maquis and coastal rocky slopes, are a neglected bioplasm resource of the Mediterranean landscape. These species have traditional uses and cultural significance and have inspired artists. Both natural and naturalised ornamental Iris species may help to improve and maintain the Mediterranean landscape by avoiding land erosion, fixing dunes and preserving coastal zones. These Iris species are a significant component of Mediterranean floristic diversity. Their conservation and use in traditional Mediterranean landscape gardening are emphasised.

  4. IRIS: A SIGNIFICANT ELEMENT OF THE MEDITERRANEAN LANDSCAPE

    Directory of Open Access Journals (Sweden)

    S. PIGNATTI

    2000-04-01

    Full Text Available The Southern European species of Iris growing in dry, rocky places, stony ground, terra rossa, sandy, basalt and/or calcareous hills, maquis and coastal rocky slopes, are a neglected bioplasm resource of the Mediterranean landscape. These species have traditional uses and cultural significance and have inspired artists. Both natural and naturalised ornamental Iris species may help to improve and maintain the Mediterranean landscape by avoiding land erosion, fixing dunes and preserving coastal zones. These Iris species are a significant component of Mediterranean floristic diversity. Their conservation and use in traditional Mediterranean landscape gardening are emphasised.

  5. Travelling in the eastern Mediterranean with landscape character assessment

    Science.gov (United States)

    Abu Jaber, N.; Abunnasr, Y.; Abu Yahya, A.; Boulad, N.; Christou, O.; Dimitropoulos, G.; Dimopoulos, T.; Gkoltsiou, K.; Khreis, N.; Manolaki, P.; Michael, K.; Odeh, T.; Papatheodoulou, A.; Sorotou, A.; Sinno, S.; Suliman, O.; Symons, N.; Terkenli, T.; Trigkas, Vassilis; Trovato, M. G.; Victora, M.; Zomeni, M.; Vogiatzakis, I. N.

    2015-06-01

    Following its application in Northern Europe, Landscape Character Assessment has also been implemented in Euro-Mediterranean countries as a tool for classifying, describing and assessing landscapes. Many landscape classifications employed in the Euro-Mediterranean area are similar in philosophy and application to the ones developed in Northern Europe. However, many aspects of landform, climate, land-use and ecology, as well as socio-economic context are distinctive of Mediterranean landscapes. The paper discusses the conceptual and methodological issues faced during landscape mapping and characterisation in four East-Mediterranean countries (within the MEDSCAPES project): Cyprus, Greece, Jordan and Lebanon. The major hurdles to overcome during the first phase of methodology development include variation in availability, quality, scale and coverage of spatial datasets between countries and also terminology semantics around landscapes. For example, the concept of landscape - a well-defined term in Greek and English - did not exist in Arabic. Another issue is the use of relative terms like 'high mountains,' `uplands' `lowlands' or ' hills'. Such terms, which are regularly used in landscape description, were perceived slightly differently in the four participating countries. In addition differences exist in nomenclature and classification systems used by each country for the dominant landscape-forming factors i.e. geology, soils and land use- but also in the cultural processes shaping the landscapes - compared both to each other and to the Northern-European norms. This paper argues for the development of consistent, regionally adapted, relevant and standardised methodologies if the results and application of LCA in the eastern Mediterranean region are to be transferable and comparable between countries.

  6. Mediterranean Agricultural Soil Conservation under global Change: The MASCC project.

    Science.gov (United States)

    Raclot, Damien; Ciampalini, Rossano

    2017-04-01

    The MASCC project (2016-2019, http://mascc-project.org) aims to address mitigation and adaptation strategies to global change by assessing current and future development of Mediterranean agricultural soil vulnerability to erosion in relation to projected land use, agricultural practices and climate change. It targets to i) assess the similarities/dissimilarities in dominant factors affecting the current Mediterranean agricultural soil vulnerability by exploring a wide range of Mediterranean contexts; ii) improve the ability to evaluate the impact of extreme events on both the current and projected agricultural soil vulnerability and the sediment delivery at catchment outlet; iii) evaluate the vulnerability and resilience of agricultural production to a combination of potential changes in a wide range of Mediterranean contexts, iv) and provide guidelines on sustainable agricultural conservation strategies adapted to each specific agro-ecosystem and taking into consideration both on- and off-site erosion effects and socio-economics issues. To achieve these objectives, the MASCC project consortium gather researchers from six Mediterranean countries (France, Morocco, Tunisia, Italy, Spain and Portugal) which monitor mid- to long-term environmental catchments and benefit from mutual knowledge created from previous projects and network. The major assets for MASCC are: i) the availability of an unrivalled database on catchment soil erosion and innovative agricultural practices comprising a wide range of Mediterranean contexts, ii) the capacity to better evaluate the impact of extreme events on soil erosion, iii) the expert knowledge of the LANDSOIL model, a catchment-scale integrated approach of the soil-landscape system that enables to simulate both the sediment fluxes at the catchment outlet and the intra-catchment soil evolving properties and iv) the multi-disciplinarity of the involved researchers with an international reputation in the fields of soil science

  7. Landscape Change in Mediterranean Farmlands: Impacts of Land Abandonment on Cultivation Terraces in Portofino (Italy and Lesvos (Greece

    Directory of Open Access Journals (Sweden)

    Sluis Theo Van Der

    2014-01-01

    Full Text Available The Mediterranean landscape has been rapidly changing over the past decades. Many regions saw a population decline, which resulted in changing land use, abandonment of marginal lands and colonisation by shrubs and tree species. Typical features like farming terraces, olive yards, and upland grasslands have been decreasing over the past 50 years. This results in a declining biodiversity and loss of traditional Mediterranean landscapes. In this paper we assess the landscape changes that took place in two areas, in Portofino, on the Italian Riviera, and Lesvos, a Greek island near the Turkish coast. We compared land use maps and aerial photographs over the past decades to quantify the land use changes in these two areas. Additional information was acquired from farmers’ interviews and literature. We found that changes are related to societal changes in the appraisal of agricultural land uses, and to the urban expansion, tourism and recreation. These diffuse processes are a result of policy measures and autonomous societal transformations. This is confirmed by the results of two interview surveys: between 1999 and 2012 agricultural land use in Portofino regional Park and buffer zone further marginalised, and the associated landscape changes are perceived as a substantial loss of character and identity. This problem is emblematic for large parts of the Mediterranean. Comparing different landscapes reveal similar processes of landscape change, which can be related to similar driving forces. Based on such comparisons, we learn about possible trajectories of change, and ask for a comprehensive approach to land use management.

  8. Socioeconomic Dimensions of Changes in the Agricultural Landscape of the Mediterranean Basin: A Case Study of the Abandonment of Cultivation Terraces on Nisyros Island, Greece

    Science.gov (United States)

    Petanidou, Theodora; Kizos, Thanasis; Soulakellis, Nikolaos

    2008-02-01

    Agricultural landscapes illustrate the impact of human actions on physical settings, and differential human pressures cause these landscapes to change with time. Our study explored changes in the terraced landscapes of Nisyros Island, Greece, focusing on the socioeconomic aspects during two time periods using field data, cadastral research, local documents, and published literature, as well as surveys of the islanders. Population increases during the late 19th to early 20th centuries marked a significant escalation of terrace and dry stone wall construction, which facilitated cultivation on 58.4% of the island. By the mid-20th century, the economic collapse of agricultural activities and consequent emigration caused the abandonment of cultivated land and traditional management practices, dramatically reducing farm and field numbers. Terrace abandonment continued in recent decades, with increased livestock grazing becoming the main land management tool; as a result, both farm and pasture sizes increased. Neglect and changing land use has led to deterioration and destruction of many terraces on the island. We discuss the socioeconomic and political backgrounds responsible for the land-use change before World War II (annexation of Nisyros Island by the Ottoman Empire, Italy, and Greece; overseas migration opportunities; and world transportation changes) and after the war (social changes in peasant societies; worldwide changes in agricultural production practices). The adverse landscape changes documented for Nisyros Island appear to be inevitable for modern Mediterranean rural societies, including those on other islands in this region. The island’s unique terraced landscapes may qualify Nisyros to become an archive or repository of old agricultural management techniques to be used by future generations and a living resource for sustainable management.

  9. Socioeconomic dimensions of changes in the agricultural landscape of the Mediterranean basin: a case study of the abandonment of cultivation terraces on Nisyros Island, Greece.

    Science.gov (United States)

    Petanidou, Theodora; Kizos, Thanasis; Soulakellis, Nikolaos

    2008-02-01

    Agricultural landscapes illustrate the impact of human actions on physical settings, and differential human pressures cause these landscapes to change with time. Our study explored changes in the terraced landscapes of Nisyros Island, Greece, focusing on the socioeconomic aspects during two time periods using field data, cadastral research, local documents, and published literature, as well as surveys of the islanders. Population increases during the late 19th to early 20th centuries marked a significant escalation of terrace and dry stone wall construction, which facilitated cultivation on 58.4% of the island. By the mid-20th century, the economic collapse of agricultural activities and consequent emigration caused the abandonment of cultivated land and traditional management practices, dramatically reducing farm and field numbers. Terrace abandonment continued in recent decades, with increased livestock grazing becoming the main land management tool; as a result, both farm and pasture sizes increased. Neglect and changing land use has led to deterioration and destruction of many terraces on the island. We discuss the socioeconomic and political backgrounds responsible for the land-use change before World War II (annexation of Nisyros Island by the Ottoman Empire, Italy, and Greece; overseas migration opportunities; and world transportation changes) and after the war (social changes in peasant societies; worldwide changes in agricultural production practices). The adverse landscape changes documented for Nisyros Island appear to be inevitable for modern Mediterranean rural societies, including those on other islands in this region. The island's unique terraced landscapes may qualify Nisyros to become an archive or repository of old agricultural management techniques to be used by future generations and a living resource for sustainable management.

  10. Mimicking biochar-albedo feedback in complex Mediterranean agricultural landscapes

    International Nuclear Information System (INIS)

    Bozzi, E; Genesio, L; Miglietta, F; Toscano, P; Pieri, M

    2015-01-01

    Incorporation of charcoal produced by biomass pyrolysis (biochar) in agricultural soils is a potentially sustainable strategy for climate change mitigation. However, some side effects of large-scale biochar application need to be investigated. In particular a massive use of a low-reflecting material on large cropland areas may impact the climate via changes in surface albedo. Twelve years of MODIS-derived albedo data were analysed for three pairs of selected agricultural sites in central Italy. In each pair bright and dark coloured soil were identified, mimicking the effect of biochar application on the land surface albedo of complex agricultural landscapes. Over this period vegetation canopies never completely masked differences in background soil colour. This soil signal, expressed as an albedo difference, induced a local instantaneous radiative forcing of up to 4.7 W m −2 during periods of high solar irradiance. Biochar mitigation potential might therefore be reduced up to ∼30%. This study proves the importance of accounting for crop phenology and crop management when assessing biochar mitigation potential and provides more insights into the analysis of its environmental feedback. (letter)

  11. IRIS: A SIGNIFICANT ELEMENT OF THE MEDITERRANEAN LANDSCAPE

    OpenAIRE

    A. UBRIZSY SAVOIA; S. PIGNATTI; S. VAROLI PIAZZA

    2000-01-01

    The Southern European species of Iris growing in dry, rocky places, stony ground, terra rossa, sandy, basalt and/or calcareous hills, maquis and coastal rocky slopes, are a neglected bioplasm resource of the Mediterranean landscape. These species have traditional uses and cultural significance and have inspired artists. Both natural and naturalised ornamental Iris species may help to improve and maintain the Mediterranean landscape by avoiding land erosion, fixing dunes and preserving coastal...

  12. Rural Districts between Urbanization and Land Abandonment: Undermining Long-Term Changes in Mediterranean Landscapes

    Directory of Open Access Journals (Sweden)

    Ilaria Zambon

    2018-04-01

    Full Text Available The present study investigates changes in the rural landscapes of a Mediterranean country (Greece over a long time period (1970–2015 encompassing economic expansions and recessions. Using a spatial distribution of 5 basic agricultural land-use classes (arable land, garden crop, vineyards, tree crop and fallow land derived from official statistics at 6 years (1970, 1979, 1988, 1997, 2006, 2015, a quantitative analysis based on correlation and multivariate techniques was carried out to identify recent changes in the Greek agricultural landscape at prefectural level during different economic waves. Empirical results evidenced both intuitive and counter-intuitive landscape transformations, including: (i a progressive, spatially-homogeneous reduction of cropland; (ii a (more or less rapid decrease in the surface of high-input crops, including arable land, horticulture and vineyards; (iii a parallel increase in the surface of tree crops, especially olive; (iv a spatially-heterogeneous decrease of fallow land concentrated in metropolitan and tourism districts, especially in the last decade; and, finally, (v increasingly diversified landscapes in rural, accessible areas close to the sea coast. Based on a correlation analysis with background socioeconomic indicators, our findings reflect the multiple impacts of urbanization and land abandonment on the composition and diversity of rural landscapes. Changes in agricultural land-use were moulded by multiple drivers depending on latent transformations in rural systems and inherent conflicts with expanding urban regions. Together with market conditions and the Common Agricultural Policy subsidy regime, social contexts and the economic cycle are important when identifying long-term changes in agricultural landscapes, especially in transitional socio-ecological systems.

  13. Glossary on agricultural landscapes.

    NARCIS (Netherlands)

    Kruse, A.; Centeri, C.; Renes, J.; Roth, M.; Printsman, A.; Palang, H.; Benito Jorda, M.-D.; Verlarde, M.D.; Kruckenberg, H.

    2010-01-01

    T he following glossary of terms related to the European agricultural landscape shall serve as a common basis for all parties, working in or on agricultural landscapes. Some of the terms are quite common and sometimes used in our every day language, but they often have different meanings in

  14. The farming system component of European agricultural landscapes

    DEFF Research Database (Denmark)

    Andersen, Erling

    2017-01-01

    Agricultural landscapes are the outcome of combined natural and human factors over time. This paper explores the scope of perceiving the agricultural landscapes of the European Union (EU) as distinct patterns of farming systems and landscape elements in homogeneous biophysical and administrative...... landscapes evolve from the praxis of the farmers and takes into account the scale, intensity and specialisation of the agricultural production. From farming system design point of view, the approach can be used to integrate the landscape in the design process. From a policy point of view, the approach offers...... endowments. The focus is on the farming systems component of the agricultural landscapes by applying a typology to the sample farms of the Farm Accountancy Data Network and scaling up the results to the landscape level for the territory of the EU. The farming system approach emphasises that agricultural...

  15. Landscape anthropogenic disturbance in the Mediterranean ecosystem: is the current landscape sustainable?

    Science.gov (United States)

    Biondi, Guido; D'Andrea, Mirko; Fiorucci, Paolo; Franciosi, Chiara; Lima, Marco

    2013-04-01

    Mediterranean landscape during the last centuries has been subject to strong anthropogenic disturbances who shifted natural vegetation cover in a cultural landscape. Most of the natural forest were destroyed in order to allow cultivation and grazing activities. In the last century, fast growing conifer plantations were introduced in order to increase timber production replacing slow growing natural forests. In addition, after the Second World War most of the grazing areas were changed in unmanaged mediterranean conifer forest frequently spread by fires. In the last decades radical socio economic changes lead to a dramatic abandonment of the cultural landscape. One of the most relevant result of these human disturbances, and in particular the replacement of deciduous forests with coniferous forests, has been the increasing in the number of forest fires, mainly human caused. The presence of conifers and shrubs, more prone to fire, triggered a feedback mechanism that makes difficult to return to the stage of potential vegetation causing huge economic, social and environmental damages. The aim of this work is to investigate the sustainability of the current landscape. A future landscape scenario has been simulated considering the natural succession in absence of human intervention assuming the current fire regime will be unaltered. To this end, a new model has been defined, implementing an ecological succession model coupled with a simply Forest Fire Model. The ecological succession model simulates the vegetation dynamics using a rule-based approach discrete in space and time. In this model Plant Functional Types (PFTs) are used to describe the landscape. Wildfires are randomly ignited on the landscape, and their propagation is simulated using a stochastic cellular automata model. The results show that the success of the natural succession toward a potential vegetation cover is prevented by the frequency of fire spreading. The actual landscape is then unsustainable

  16. Identifying the characteristic of SundaParahiyangan landscape for a model of sustainable agricultural landscape

    Science.gov (United States)

    Dahlan, M. Z.; Nurhayati, H. S. A.; Mugnisjah, W. Q.

    2017-10-01

    This study was an explorative study of the various forms of traditional ecological knowledge (TEK) of Sundanese people in the context of sustainable agriculture. The qualitative method was used to identify SundaParahiyangan landscape by using Rapid Participatory Rural Appraisal throughsemi-structured interviews, focus group discussions, and field survey. The Landscape Characteristic Assessment and Community Sustainability Assessment were used to analyze the characteristic of landscape to achieve the sustainable agricultural landscape criteria proposed by US Department of Agriculture. The results revealed that the SundaParahiyangan agricultural landscape has a unique characteristic as a result of the long-term adaptation of agricultural society to theirlandscape through a learning process for generations. In general, this character was reflected in the typical of Sundanese’s agroecosystems such as forest garden, mixed garden, paddy field, and home garden. In addition, concept of kabuyutan is one of the TEKs related to understanding and utilization of landscape has been adapted on revitalizing the role of landscape surrounding the agroecosystem as the buffer zone by calculating and designating protected areas. To support the sustainability of production area, integrated practices of agroforestry with low-external-input and sustainable agriculture (LEISA) system can be applied in utilizing and managing agricultural resources.

  17. Determinants of a traditional agricultural landscape

    Directory of Open Access Journals (Sweden)

    Janina Borysiak

    2018-03-01

    Full Text Available The study aim was to define the landscape determinants as certificates of natural and cultural heritage which identify the young glacial landscape under traditional agricultural management. These studies were conducted in the upper Parsęta basin (Pomerania, Poland covered by the many annual environmental monitoring programs since 1994. The aim of this monitoring is to observe changes in geoecosystems of the temperate climate zone. The parameters of the abiotic landscape subsystem have been monitored in a wide range of terms, whereas biotic elements and cultural resources only in a very limited way. This was the reason for undertaking complementary studies. The paper presents the so-called “zero-state” for 2014, which will be a reference point from which to track the direction of landscape changes in the future. The abiotic, geobotanical, and cultural determinants of this state chosen have been characterized on the basis of field mapping data and the available literature. They were chosen based on the methodology of landscape audit to define the specificity of the traditional agricultural landscape. They were selected on the basis of assessment criteria for landscape structure: complexity (diversification of land use and cover, naturalness (syngenesis of plant communities, hydrochemical properties of surface waters, coherence of composition with natural conditions, stewardship (intensity of use, crop weeds, ecological succession, fallows, anthropogenic denudation, aesthetic and visual perception, historicity (continuity of natural landscape elements, continuation of traditional agricultural use, architectural objects, and disharmonious elements.

  18. [Landscape planning approaches for biodiversity conservation in agriculture].

    Science.gov (United States)

    Liu, Yun-hui; Li, Liang-tao; Yu, Zhen-rong

    2008-11-01

    Biodiversity conservation in agriculture not only relates to the sustainable development of agriculture, but also is an essential part of species conservation. In recent years, the landscape planning approach for biodiversity was highlighted instead of species-focused approach. In this paper, the landscape factors affecting the biodiversity in agriculture were reviewed, and the possible landscape approaches at three different scales for more efficient conservation of biodiversity in agro-landscape were suggested, including: (1) the increase of the proportion of natural or semi-natural habitats in agriculture, diversification of land use or crop pattern, and protection or construction of corridor at landscape level; (2) the establishment of non-cropping elements such as field margin at between-field level; and (3) the application of reasonable crop density, crop distribution pattern and rotation, and intercrop etc. at within-field level. It was suggested that the relevant policies for natural conservation, land use planning, and ecological compensation should be made to apply the landscape approaches for biodiversity conservation at larger scale.

  19. A simulation of soil water content based on remote sensing in a semi-arid Mediterranean agricultural landscape

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, N.; Martinez-Fernandez, J.; Rodriguez-Ruiz, M.; Torres, E.; Calera, A.

    2012-11-01

    This paper shows the application of a water balance based on remote sensing that integrated a Landsat 5 series from 2009 in an area of 1,300 km{sup 2} in the Duero Basin (Spain). The objective was to simulate the daily soil water content (SWC), actual evapotranspiration, deep percolation and irrigation rates. The accuracy of the application is tested in a semi-arid Mediterranean agricultural landscape with crops over natural conditions. The results of the simulated SWC were compared against 19 in situ stations of the Soil Moisture Measurement Stations Network (REMEDHUS), in order to check the feasibility and accuracy of the application. The theoretical basis of the application was the FAO56 calculation assisted by remotely sensed imagery. The basal crop coefficient (Kcb), as well as other parameters of the calculation came from the remote reflectance of the images. This approach was implemented in the computerized tool HIDROMORE+, which integrates various spatial databases. The comparison of simulated and observed values (at different depths and different land uses) showed a good global agreement for the area (R{sup 2} = 0.92, RMSE = 0.031 m{sup 3} m{sup -}3, and bias = -0.027 m{sup 3} m{sup -}3). The land uses better described were rainfed cereals (R2 = 0.86, RMSE = 0.030 m{sup 3} m{sup -}3, and bias = -0.025 m{sup 3} m{sup -}3) and vineyards (R{sup 2} = 0.86, RMSE = 0.016 m{sup 3} m{sup -}3, and bias = -0.013 m{sup 3} m{sup -}3). In general, an underestimation of the soil water content is noticed, more pronounced into the root zone than at surface layer. The final aim was to convert the application into a hydrological tool available for agricultural water management. (Author) 42 refs.

  20. Farm multifunctional diversification and agricultural landscape trasformations

    Directory of Open Access Journals (Sweden)

    Emilio Chiodo

    Full Text Available The work aims to analyze changes in agricultural landscape linked to transformations in agricultural productive system. The territory for analysis is situated along the “internal Marche ridge” of the Apennines, in the province of Ancona (Marche region, partly included in the Regional Natural Park “Gola della Rossa e Frassassi”. The work aims at elaborating an investigative methodology which can highlight the transformation of territorial structures and the dynamics that influence management of the territory and landscape in order to provide operative instructions for an integrated elaboration of instruments for urban planning and economic programming, specially for agricultural policies. Multi-functionality and diversification in agriculture are the instruments that can help agriculture to improve the economic value of products and at the same time to improve the quality of territory and landscape.

  1. [Spatial evaluation on ecological and aesthetic quality of Beijing agricultural landscape].

    Science.gov (United States)

    Pan, Ying; Xiao, He; Yu, Zhen-Rong

    2009-10-01

    A total of ten single indices mainly reflecting the ecological and aesthetic quality of agricultural landscape, including ecosystem function, naturalness, openness and diversity, contamination probability, and orderliness were selected, their different weights were given based on field survey and expert system, and an integrated evaluation index system of agricultural landscape quality was constructed. In the meantime, the land use data provided by GIS and the remote sensing data of vegetation index were used to evaluate the Beijing agricultural landscape quality and its spatial variation. There was a great spatial variation in the agricultural landscape quality of Beijing, being worse at the edges of urban area and towns, but better in suburbs. The agricultural landscape quality was mainly related to topography and human activity. To construct a large-scale integrated index system based on remote sensing data and landscape indices would have significance in evaluating the spatial variation of agricultural landscape quality.

  2. Incorporating Bioenergy in Sustainable Landscape Designs Workshop Two: Agricultural Landscapes

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy in Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories in 2014. The second workshop focused on agricultural landscapes and took place in Argonne, IL from June 24—26, 2014. The workshop brought together experts to discuss how landscape design can contribute to the deployment and assessment of sustainable bioenergy. This report summarizes the discussions that occurred at this particular workshop.

  3. Home range and habitat use of little owl (Athene noctua in an agricultural landscape in coastal Catalonia, Spain

    Directory of Open Access Journals (Sweden)

    Framis, H.

    2011-12-01

    Full Text Available In recent decades agricultural landscapes in Catalonia have undergone a profound transformation as in most of Europe. Reforestation and urban development have reduced farmland and therefore the availability of suitable habitat for some bird species such as the little owl (Athene noctua. The outskirts of the city of Mataró by the Mediterranean Sea exemplify this landscape change, but still support a population of little owl where agriculture is carried out. Three resident little owls were monitored with telemetry weekly from November 2007 until the beginning of August 2008 in this suburban agricultural landscape. Mean home range ± SD was 10.9 ± 5.5 ha for minimum convex polygon (MCP100 and 7.4 ± 3.8 ha for Kernel 95% probability function (K95. Home ranges of contiguous neighboring pairs overlapped 18.4% (MCP100 or 6% (K95. Home range varied among seasons reaching a maximum between March and early August but always included the nesting site. Small forested patches were associated with roosting and nesting areas where cavities in Carob trees (Ceratonia siliqua were important. When foraging in crop fields, the owls typically fed where crops had recently been harvested and replanted. All three owls bred successfully.

  4. Integrated Methodology for Estimating Water Use in Mediterranean Agricultural Areas

    Directory of Open Access Journals (Sweden)

    George C. Zalidis

    2009-08-01

    Full Text Available Agricultural use is by far the largest consumer of fresh water worldwide, especially in the Mediterranean, where it has reached unsustainable levels, thus posing a serious threat to water resources. Having a good estimate of the water used in an agricultural area would help water managers create incentives for water savings at the farmer and basin level, and meet the demands of the European Water Framework Directive. This work presents an integrated methodology for estimating water use in Mediterranean agricultural areas. It is based on well established methods of estimating the actual evapotranspiration through surface energy fluxes, customized for better performance under the Mediterranean conditions: small parcel sizes, detailed crop pattern, and lack of necessary data. The methodology has been tested and validated on the agricultural plain of the river Strimonas (Greece using a time series of Terra MODIS and Landsat 5 TM satellite images, and used to produce a seasonal water use map at a high spatial resolution. Finally, a tool has been designed to implement the methodology with a user-friendly interface, in order to facilitate its operational use.

  5. Landscape Transformation under Global Environmental Change in Mediterranean Mountains: Agrarian Lands as a Guarantee for Maintaining Their Multifunctionality

    Directory of Open Access Journals (Sweden)

    Diego Varga

    2018-01-01

    Full Text Available The analysis of past and present patterns of agrarian mountain areas allows researchers to characterize the influence of landscape heterogeneity on biodiversity, cultural heritage, and forest fire hazard. This process was mapped, quantified, and described through the use of digital mapping (GIS and landscape indexes in a protected area in Alta Garrotxa (Catalonia, Spain. These areas require urgent management and modelling to provide alternative management scenarios, in order to maintain and recover habitats. A set of different scenarios have been designed using a multi-criteria evaluation and geospatial information available for the study area to identify the key areas for management action and to predict the potential effects on agricultural lands by prioritizing one or another management objective: biodiversity, landscape structure and perception, cultural heritage, fire hazard, and management cost. The observed progressive land abandonment of open areas with a small size and greater isolation will have a large impact on biodiversity and cultural heritage, and increase fire risk. Sustainable development will require planning objectives compatible with the conservation of biodiversity and the preservation of Mediterranean features with support for agricultural activities. This methodology can contribute to and be easily implemented by land managers, which could help to strengthen the link between managers and stakeholders.

  6. From climate-smart agriculture to climate-smart landscapes

    Directory of Open Access Journals (Sweden)

    Scherr Sara J

    2012-08-01

    Full Text Available Abstract Background For agricultural systems to achieve climate-smart objectives, including improved food security and rural livelihoods as well as climate change adaptation and mitigation, they often need to be take a landscape approach; they must become ‘climate-smart landscapes’. Climate-smart landscapes operate on the principles of integrated landscape management, while explicitly incorporating adaptation and mitigation into their management objectives. Results An assessment of climate change dynamics related to agriculture suggests that three key features characterize a climate-smart landscape: climate-smart practices at the field and farm scale; diversity of land use across the landscape to provide resilience; and management of land use interactions at landscape scale to achieve social, economic and ecological impacts. To implement climate-smart agricultural landscapes with these features (that is, to successfully promote and sustain them over time, in the context of dynamic economic, social, ecological and climate conditions requires several institutional mechanisms: multi-stakeholder planning, supportive landscape governance and resource tenure, spatially-targeted investment in the landscape that supports climate-smart objectives, and tracking change to determine if social and climate goals are being met at different scales. Examples of climate-smart landscape initiatives in Madagascar’s Highlands, the African Sahel and Australian Wet Tropics illustrate the application of these elements in contrasting contexts. Conclusions To achieve climate-smart landscape initiatives widely and at scale will require strengthened technical capacities, institutions and political support for multi-stakeholder planning, governance, spatial targeting of investments and multi-objective impact monitoring.

  7. Biodiversity conservation in agricultural landscapes

    OpenAIRE

    Josefsson, Jonas

    2015-01-01

    Agricultural industrialization alters rural landscapes in Europe, causing large-scale and rapid loss of important biodiversity. The principal instruments to protect farmland biodiversity are various agri-environmental measures (AEMs) in the EU Common Agricultural Policy (CAP). However, growing awareness of shortcomings to CAP biodiversity integration prompts examination of causes and potential solutions. This thesis assesses the importance of structural heterogeneity of crop and non-crop habi...

  8. A landscape project for the coexistence of agriculture and nature: a proposal for the coastal area of a Natura 2000 site in Sicily (Italy

    Directory of Open Access Journals (Sweden)

    Lara Riguccio

    2016-06-01

    Full Text Available Many rural coastal Mediterranean areas suffer from great anthropomorphic pressure. This is due to intensive agriculture, and construction for residential, tourism and industrial uses. The present work investigates the idea of using a landscape project in the Gulf of Gela in South Sicily to recover the dunes and the area behind them. The method used is based on the literature and will evaluate and interpret the dynamics of the landscape, so as to draw up a landscape plan, which can be used to help sustain the assets of the area, in a way, which is compatible with conserving nature. This method was tested in the LIFE11-Leopoldia project, funded by the European Union. The results of the study form part of the landscape project. This project is aimed at connecting the different productive zones in the area, protecting the natural environments and the rural historical patrimony, through combining the modern road networks with the older slower, historic infrastructure. Three different levels of landscape management are proposed: total protection (the dunes, high-level protection (the area behind the dunes where traditional agriculture is practised, buffer areas and ecological connecting areas, medium levels of protection (sustainable agriculture, green connections and ecological corridors. The key aims of the project are as follows: transversality - repairing the agricultural fabric and the relationship between the land and the sea; sustainability - recovering the environmental system and traditional activities; flexibility - agriculture with only minor environmental impact.

  9. Long-Term Changes in Game Species Over a Long Period of Transformation in the Iberian Mediterranean Landscape

    Science.gov (United States)

    Delibes-Mateos, Miguel; Farfán, Miguel Ángel; Olivero, Jesús; Márquez, Ana Luz; Vargas, Juan Mario

    2009-06-01

    Agricultural change has transformed large areas of traditional farming landscapes, leading to important changes in the species community assemblages in most European countries. We suspect that the drastic changes in land-use that have occurred in Andalusia (southern Spain) over recent decades, may have affected the distribution and abundance of game species in this region. This article compares the distribution of the main game species in Andalusia during the 1960s and 1990s, using data from maps available from the Mainland Spanish Fish, Game and National Parks Service and from recent datasets on hunting yield distributions, respectively. Big-game and small-game species were significantly segregated in southern Spain during the 1990s, as two clearly independent chorotypes (groups of species whose abundances are similarly distributed) were obtained from the classification analysis. In contrast, big-game and small-game species were not significantly segregated several decades ago, when there was only one chorotype consisting of small-game species and wild boar. The other three ungulates did not constitute a significant chorotype, as they showed positive correlations with some species in the group mentioned above. These changes seem to be a consequence of the transformations that have occurred in the Iberian Mediterranean landscape over the last few decades. The abandoning of traditional activities, and the consequent formation of dense scrubland and woodland, has led to an expansion of big-game species, and a decrease of small-game species in mountain areas. Moreover, agricultural intensification has apparently depleted small-game species populations in some agricultural areas. On the other hand, the increasingly intensive hunting management could be artificially boosting this segregation between small-game and big-game species. Our results suggest that the conservation and regeneration of traditional agricultural landscapes (like those predominating in the 1960s

  10. Characterizing European cultural landscapes

    DEFF Research Database (Denmark)

    Tieskens, Koen F.; Schulp, Catharina J E; Levers, Christian

    2017-01-01

    intensification and land abandonment. To prevent the loss of cultural landscapes, knowledge on the location of different types of cultural landscapes is needed. In this paper, we present a characterization of European cultural landscapes based on the prevalence of three key dimensions of cultural landscapes......Almost all rural areas in Europe have been shaped or altered by humans and can be considered cultural landscapes, many of which now are considered to entail valuable cultural heritage. Current dynamics in land management have put cultural landscapes under a huge pressure of agricultural...... the three dimensions into a continuous “cultural landscape index” that allows for a characterization of Europe's rural landscapes. The characterization identifies hotspots of cultural landscapes, where all three dimensions are present, such as in the Mediterranean. On the other hand, Eastern and Northern...

  11. Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves.

    Science.gov (United States)

    Tscheulin, T; Neokosmidis, L; Petanidou, T; Settele, J

    2011-10-01

    The diversity and abundance of wild bees ensures the delivery of pollination services and the maintenance of ecosystem diversity. As previous studies carried out in Central Europe and the US have shown, bee diversity and abundance is influenced by the structure and the composition of the surrounding landscape. Comparable studies have so far not been carried out in the Mediterranean region. The present study examines the influence of Mediterranean landscape context on the diversity and abundance of wild bees. To do this, we sampled bees in 13 sites in olive groves on Lesvos Island, Greece. Bees were assigned to five categories consisting of three body size groups (small, medium and large bees), the single most abundant bee species (Lasioglossum marginatum) and all species combined. The influence of the landscape context on bee abundance and species richness was assessed at five radii (250, 500, 750, 1000 and 1250 m) from the centre of each site. We found that the abundance within bee groups was influenced differently by different landscape parameters and land covers, whereas species richness was unaffected. Generally, smaller bees' abundance was impacted by landscape parameters at smaller scales and larger bees at larger scales. The land cover that influenced bee abundance positively was olive grove, while phrygana, conifer forest, broad-leaved forest, cultivated land, rock, urban areas and sea had mostly negative or no impact. We stress the need for a holistic approach, including all land covers, when assessing the effects of landscape context on bee diversity and abundance in the Mediterranean.

  12. Designing agricultural landscapes for natural pest control

    NARCIS (Netherlands)

    Steingrover, E.G.; Geertsema, W.; Wingerden, van W.K.R.E.

    2010-01-01

    The green–blue network of semi-natural non-crop landscape elements in agricultural landscapes has the potential to enhance natural pest control by providing various resources for the survival of beneficial insects that suppress crop pests. A study was done in the Hoeksche Waard to explore how

  13. Local and landscape-scale biotic correlates of mistletoe distribution in Mediterranean pine forests

    Energy Technology Data Exchange (ETDEWEB)

    Roura-Pascual, N.; Brotons, L.; Garcia, D.; Zamora, R.; Caceres, M. de

    2012-11-01

    The study of the spatial patterns of species allows the examination of hypotheses on the most plausible ecological processes and factors determining their distribution. To investigate the determinants of parasite species on Mediterranean forests at regional scales, occurrence data of the European Misletoe (Viscum album) in Catalonia (NE Iberian Peninsula) were extracted from forest inventory data and combined with different types of explanatory variables by means of generalized linear mixed models. The presence of mistletoes in stands of Pinus halepensis seems to be determined by multiple factors (climatic conditions, and characteristics of the host tree and landscape structure) operating at different spatial scales, with the availability of orchards of Olea europaea in the surroundings playing a relevant role. These results suggest that host quality and landscape structure are important mediators of plant-plant and plant-animal interactions and, therefore, management of mistletoe populations should be conducted at both local (i.e. clearing of infected host trees) and landscape scales (e.g. controlling the availability of nutrient-rich food sources that attract bird dispersers). Research and management at landscape-scales are necessary to anticipate the negative consequence of land-use changes in Mediterranean forests. (Author) 38 refs.

  14. Land Change in Eastern Mediterranean Wood-Pasture Landscapes

    DEFF Research Database (Denmark)

    Schaich, Harald; Kizos, Thanasis; Schneider, Stefan

    2015-01-01

    In Mediterranean Europe, wood-pasture landscapes with oak woodlands as emblematic ecosystems are undergoing rapid land-use change, which may threaten their legacy as hotspots of biodiversity, ecosystem services, and cultural heritage. The objective of this study was to quantify land cover changes...... and transitions as well as the dynamics of oak woodland patterns and densities over 50 years in two municipalities at the center and edges of Quercus macrolepis distribution in Northern Lesvos (Greece). We used aerial photographs from 1960 and WorldView-2 satellite images from 2010 to process land cover maps...... and metrics, and to calculate oak canopy cover with a point-grid sampling approach. Spatiotemporal dynamics of land cover change were generally high—especially between oak woodlands and grass- and shrub-lands, resulting in a more heterogeneous and fragmented landscape in 2010. Surprisingly, oak woodland area...

  15. Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands

    Science.gov (United States)

    Syphard, A.D.; Yang, J.; Franklin, J.; He, H.S.; Keeley, J.E.

    2007-01-01

    In Mediterranean-type ecosystems (MTEs), fire disturbance influences the distribution of most plant communities, and altered fire regimes may be more important than climate factors in shaping future MTE vegetation dynamics. Models that simulate the high-frequency fire and post-fire response strategies characteristic of these regions will be important tools for evaluating potential landscape change scenarios. However, few existing models have been designed to simulate these properties over long time frames and broad spatial scales. We refined a landscape disturbance and succession (LANDIS) model to operate on an annual time step and to simulate altered fire regimes in a southern California Mediterranean landscape. After developing a comprehensive set of spatial and non-spatial variables and parameters, we calibrated the model to simulate very high fire frequencies and evaluated the simulations under several parameter scenarios representing hypotheses about system dynamics. The goal was to ensure that observed model behavior would simulate the specified fire regime parameters, and that the predictions were reasonable based on current understanding of community dynamics in the region. After calibration, the two dominant plant functional types responded realistically to different fire regime scenarios. Therefore, this model offers a new alternative for simulating altered fire regimes in MTE landscapes. ?? 2007 Elsevier Ltd. All rights reserved.

  16. Topographically mediated controls on aboveground biomass across a mediterranean-type landscape

    Science.gov (United States)

    Dahlin, K.; Asner, G. P.; Field, C. B.

    2009-12-01

    Aboveground biomass accumulation is a useful metric for evaluating habitat restoration and ecosystem services projects, in addition to being a robust measure of carbon sequestration. However, at the landscape scale non-anthropogenic controls on biomass accumulation are poorly understood. In this study we combined field measurements, high resolution data from the NASA JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and the Carnegie Airborne Observatory (CAO) airborne light detection and ranging (lidar) system to create a comprehensive map of aboveground biomass across a patchy mediterranean-type landscape (Jasper Ridge Biological Preserve, Stanford, CA). Candidate explanatory variables (e.g. slope, elevation, incident solar radiation) were developed using a geologic map and a digital elevation model derived from the lidar data. Finally, candidate variables were tested, and a model was produced to predict aboveground biomass from environmental data. Though many of the explanatory variables have only indirect effects on plant growth, the model permits inferences to be made about the relative importance of light, water, temperature, and edaphic characteristics on carbon accumulation in mediterranean-type systems.

  17. Ecohydrological modeling: the consideration of agricultural trees is essential in the Mediterranean area

    Science.gov (United States)

    Fader, Marianela; von Bloh, Werner; Shi, Sinan; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall and direct degradation of ecosystems. Human population growth and socioeconomic changes, notably on the Eastern and Southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive ecohydrological model. Here we present here the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL, "Lund-Potsdam-Jena managed Land"): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was then successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. A first application of the model indicates that, currently, agricultural trees consume in average more irrigation water per hectare than annual crops. Also, different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. This is very relevant since the Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 74% from climate change and population growth if irrigation systems and conveyance are not improved. Additionally, future water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios by the end of the century (1). The importance of including agricultural trees in the ecohydrological models is also shown in the results concerning soil organic carbon (SOC). Since in former model

  18. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control.

    Science.gov (United States)

    Bianchi, F J J A; Booij, C J H; Tscharntke, T

    2006-07-22

    Agricultural intensification has resulted in a simplification of agricultural landscapes by the expansion of agricultural land, enlargement of field size and removal of non-crop habitat. These changes are considered to be an important cause of the rapid decline in farmland biodiversity, with the remaining biodiversity concentrated in field edges and non-crop habitats. The simplification of landscape composition and the decline of biodiversity may affect the functioning of natural pest control because non-crop habitats provide requisites for a broad spectrum of natural enemies, and the exchange of natural enemies between crop and non-crop habitats is likely to be diminished in landscapes dominated by arable cropland. In this review, we test the hypothesis that natural pest control is enhanced in complex patchy landscapes with a high proportion of non-crop habitats as compared to simple large-scale landscapes with little associated non-crop habitat. In 74% and 45% of the studies reviewed, respectively, natural enemy populations were higher and pest pressure lower in complex landscapes versus simple landscapes. Landscape-driven pest suppression may result in lower crop injury, although this has rarely been documented. Enhanced natural enemy activity was associated with herbaceous habitats in 80% of the cases (e.g. fallows, field margins), and somewhat less often with wooded habitats (71%) and landscape patchiness (70%). The similar contributions of these landscape factors suggest that all are equally important in enhancing natural enemy populations. We conclude that diversified landscapes hold most potential for the conservation of biodiversity and sustaining the pest control function.

  19. LANDSCAPE ECOLOGICAL METHOD TO STUDY AGRICULTURAL VEGETATION: SOME EXAMPLES FROM THE PO VALLEY

    Directory of Open Access Journals (Sweden)

    E. GIGLIO

    2006-01-01

    Full Text Available Vegetation is the most important landscape component, as regards to its ability to catch solar energy and to transform it, but also to shape the landscape, to structure the space, to create the fit environment for different animal species, to contribute to the maintenance of a correct metastability level for the landscape, etc. It is a biological system which acts under the constraints of the principles of the System Theory and owns the same properties of any other living system: so, it is a complex adaptive, hierarchical, dynamic, dissipative, self-organizing, self-transcendent, autocatalytic, self-maintaining system and follows the non-equilibrium thermodynamic. Its ecological state can be investigated through the comparison between “gathered data” (pathology and “normal data” (physiology for analogous types of vegetation. The Biological Integrated School of Landscape Ecology provides an integrated methodology to define ecological threshold limits of the different Agricultural Landscape types and applies to agricultural vegetation the specific part of the new methodology already tested to studying forests (the Landscape Biological Survey of Vegetation. Ecological quality, better and worst parameters, biological territorial capacity of vegetated corridors, agricultural field, poplar groves, orchards and woody remnant patches are investigated. Some examples from diverse agricultural landscapes of the Po Valley will be discussed. KEY WORDS: agricultural landscape, vegetation, landscape ecology, landscape health, Biological Integrated Landscape Ecology, Landscape Biological Survey of vegetation.

  20. LANDSCAPE ECOLOGICAL METHOD TO STUDY AGRICULTURAL VEGETATION: SOME EXAMPLES FROM THE PO VALLEY

    Directory of Open Access Journals (Sweden)

    E. GIGLIO

    2006-05-01

    Full Text Available Vegetation is the most important landscape component, as regards to its ability to catch solar energy and to transform it, but also to shape the landscape, to structure the space, to create the fit environment for different animal species, to contribute to the maintenance of a correct metastability level for the landscape, etc. It is a biological system which acts under the constraints of the principles of the System Theory and owns the same properties of any other living system: so, it is a complex adaptive, hierarchical, dynamic, dissipative, self-organizing, self-transcendent, autocatalytic, self-maintaining system and follows the non-equilibrium thermodynamic. Its ecological state can be investigated through the comparison between “gathered data” (pathology and “normal data” (physiology for analogous types of vegetation. The Biological Integrated School of Landscape Ecology provides an integrated methodology to define ecological threshold limits of the different Agricultural Landscape types and applies to agricultural vegetation the specific part of the new methodology already tested to studying forests (the Landscape Biological Survey of Vegetation. Ecological quality, better and worst parameters, biological territorial capacity of vegetated corridors, agricultural field, poplar groves, orchards and woody remnant patches are investigated. Some examples from diverse agricultural landscapes of the Po Valley will be discussed. KEY WORDS: agricultural landscape, vegetation, landscape ecology, landscape health, Biological Integrated Landscape Ecology, Landscape Biological Survey of vegetation.

  1. Spatial Analysis of Agricultural Landscape and Hymenoptera Biodiversity at Cianjur Watershed

    Directory of Open Access Journals (Sweden)

    YAHERWANDI

    2006-12-01

    Full Text Available Hymenoptera is one of the four largest insect order (the other three are Coleoptera, Diptera, and Lepidoptera. There are curerently over 115 000 described Hymenoptera species. It is clear that Hymenoptera is one of the major components of insect biodiversity. However, Hymenoptera biodiversity is affected by ecology, environment, and ecosystem management. In an agricultural areas, the spatial structure, habitat diversity, and habitat composition may vary from cleared landscapes to structurally rich landscape. Thus, it is very likely that such large-scale spatial patterns (landscape effects may influence local biodiversity and ecological functions. Therefore, the objective of this research were to study diversity and configuration elements of agricultural landscapes at Cianjur Watershed with geographical information sytems (GIS and its influence on Hymenoptera biodiversity. The structural differences between agricultural landscapes of Nyalindung, Gasol, and Selajambe were characterized by patch analyst with ArcView 3.2 of digital land use data. Results indicated that class of land uses of Cianjur Watershed landscape were housing, mixed gardens, talun and rice, vegetable, and corn fields. Landscape structure influenced the biodiversity of Hymenoptera. Species richness and the species diversity were higher in Nyalindung landscape compare to Gasol and Selajambe landscape.

  2. A Stakeholders’ Analysis of Eastern Mediterranean Landscapes: Contextualities, Commonalities and Concerns

    Directory of Open Access Journals (Sweden)

    Theano S. Terkenli

    2017-12-01

    Full Text Available This study aims at demonstrating and critically assessing high-level landscape stakeholders’ perceptions and understandings of landscape-related issues, threats and problems, in the Eastern Mediterranean, through a purposive comparative research survey of four case studies: Cyprus, Greece, Jordan and Lebanon. Employing qualitative data analysis of intensive stakeholder interviews, performed in the broader context of the MEDSCAPES ENPI-MED project (www.enpi-medscapes.org, the paper draws together the insights and concerns of a total of 61 public entities, private entrepreneurs, academicians and NGO representatives, on landscape knowledge, understanding, management and public awareness, in these four countries. The results point to significant commonalities among them and begin to show relational and synthetic nature of the interrelationship between humans and the landscape, as it developed in the context of the local and regional geographies and histories of this broader region, affected by and involving a series of relevant geophysical, economic, political, social, moral, institutional and other parameters.

  3. Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes.

    Science.gov (United States)

    Basu, Parthiba; Parui, Arpan Kumar; Chatterjee, Soumik; Dutta, Aditi; Chakraborty, Pushan; Roberts, Stuart; Smith, Barbara

    2016-10-01

    Factors associated with agricultural intensification, for example, loss of seminatural vegetation and pesticide use has been shown to adversely affect the bee community. These factors may impact the bee community differently at different landscape scales. The scale dependency is expected to be more pronounced in heterogeneous landscapes. However, the scale-dependent response of the bee community to drivers of its decline is relatively understudied, especially in the tropics where the agricultural landscape is often heterogeneous. This study looked at effects of agricultural intensification on bee diversity at patch and landscape scales in a tropical agricultural landscape. Wild bees were sampled using 12 permanent pan trap stations. Patch and landscape characteristics were measured within a 100 m (patch scale) and a 500 m (landscape scale) radius of pan trap stations. Information on pesticide input was obtained from farmer surveys. Data on vegetation cover, productivity, and percentage of agricultural and fallow land (FL) were collected using satellite imagery. Intensive areas in a bee-site network were less specialized in terms of resources to attract rare bee species while the less intensive areas, which supported more rare species, were more vulnerable to disturbance. A combination of patch quality and diversity as well as pesticide use regulates species diversity at the landscape scale (500 m), whereas pesticide quantity drove diversity at the patch scale (100 m). At the landscape scale, specialization of each site in terms of resources for bees increased with increasing patch diversity and FL while at the patch scale specialization declined with increased pesticide use. Bee functional groups responded differentially to landscape characteristics as well as pesticide use. Wood nesting bees were negatively affected by the number of pesticides used but other bee functional groups were not sensitive to pesticides. Synthesis and Applications : Different factors

  4. Beyond the edge: Linking agricultural landscapes, stream networks, and best management practices

    Science.gov (United States)

    Kreiling, Rebecca M.; Thoms, Martin C.; Richardson, William B.

    2018-01-01

    Despite much research and investment into understanding and managing nutrients across agricultural landscapes, nutrient runoff to freshwater ecosystems is still a major concern. We argue there is currently a disconnect between the management of watershed surfaces (agricultural landscape) and river networks (riverine landscape). These landscapes are commonly managed separately, but there is limited cohesiveness between agricultural landscape-focused research and river science, despite similar end goals. Interdisciplinary research into stream networks that drain agricultural landscapes is expanding but is fraught with problems. Conceptual frameworks are useful tools to order phenomena, reveal patterns and processes, and in interdisciplinary river science, enable the joining of multiple areas of understanding into a single conceptual–empirical structure. We present a framework for the interdisciplinary study and management of agricultural and riverine landscapes. The framework includes components of an ecosystems approach to the study of catchment–stream networks, resilience thinking, and strategic adaptive management. Application of the framework is illustrated through a study of the Fox Basin in Wisconsin, USA. To fully realize the goal of nutrient reduction in the basin, we suggest that greater emphasis is needed on where best management practices (BMPs) are used within the spatial context of the combined watershed–stream network system, including BMPs within the river channel. Targeted placement of BMPs throughout the riverine landscape would increase the overall buffering capacity of the system to nutrient runoff and thus its resilience to current and future disturbances.

  5. The role of agricultural engineering in the management of landscape changes

    Directory of Open Access Journals (Sweden)

    Natalia Fumagalli

    2011-02-01

    Full Text Available Landscape represents the “sensory aspect” of the land and as such it can be appreciated by all the five senses: sight, smelling, hearing, touch and taste. At the same time, landscape evolves over time and its value – ecological, economical and affective – changes as its constitutive elements change. Engineering can help “to drive” this evolution addressing it towards a condition of balance between individual and community requirements, especially referred to the effect of technological development on landscape. This effect can be referred to three dimensions: perceptive, functional and symbolic dimensions. The possible contribution to the management of landscape changes concerns all the three historic souls of Agricultural Engineering; in particular, Agricultural Hydraulics deals with the topic of landscape referring to both irrigation and the possible recreational use of canal systems; Agricultural Engineering determines plot form and size and woodland view; Rural Building deals with both the recovery of existing buildings and the design and making of new ones and their fitting in the landscape; moreover, the sector has developed new methods for the evaluation and the planning of rural land resources, especially about agriculture and forestry productivity, ecological stability and visual quality of rural land itself.

  6. Local habitat and landscape influence predation of bird nests on afforested Mediterranean cropland

    Science.gov (United States)

    Sánchez-Oliver, J. S.; Rey Benayas, J. M.; Carrascal, L. M.

    2014-07-01

    Afforestation programs such as the one promoted by the EU Common Agrarian Policy have contributed to spread tree plantations on former cropland. Nevertheless these afforestations may cause severe damage to open habitat species, especially birds of high conservation value. We investigated predation of artificial bird nests at young tree plantations and at the open farmland habitat adjacent to the tree plantations in central Spain. Predation rates were very high at both tree plantations (95.6%) and open farmland habitat (94.2%) after two and three week exposure. Plantation edge/area ratio and development of the tree canopy decreased predation rates and plantation area and magpie (Pica pica) abundance increased predation rates within tree plantations, which were also affected by land use types around plantations. The area of nearby tree plantations (positive effect), distance to the tree plantation edge (negative effect), and habitat type (mainly attributable to the location of nests in vineyards) explained predation rates at open farmland habitat. We conclude that predation rates on artificial nests were particularly high and rapid at or nearby large plantations, with high numbers of magpies and low tree development, and located in homogenous landscapes dominated by herbaceous crops and pastures with no remnants of semi-natural woody vegetation. Landscape planning should not favour tree plantations as the ones studied here in Mediterranean agricultural areas that are highly valuable for ground-nesting bird species.

  7. Natural enemy interactions constrain pest control in complex agricultural landscapes.

    Science.gov (United States)

    Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2013-04-02

    Biological control of pests by natural enemies is a major ecosystem service delivered to agriculture worldwide. Quantifying and predicting its effectiveness at large spatial scales is critical for increased sustainability of agricultural production. Landscape complexity is known to benefit natural enemies, but its effects on interactions between natural enemies and the consequences for crop damage and yield are unclear. Here, we show that pest control at the landscape scale is driven by differences in natural enemy interactions across landscapes, rather than by the effectiveness of individual natural enemy guilds. In a field exclusion experiment, pest control by flying insect enemies increased with landscape complexity. However, so did antagonistic interactions between flying insects and birds, which were neutral in simple landscapes and increasingly negative in complex landscapes. Negative natural enemy interactions thus constrained pest control in complex landscapes. These results show that, by altering natural enemy interactions, landscape complexity can provide ecosystem services as well as disservices. Careful handling of the tradeoffs among multiple ecosystem services, biodiversity, and societal concerns is thus crucial and depends on our ability to predict the functional consequences of landscape-scale changes in trophic interactions.

  8. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  9. Time, Space and the History of Agricultural Landscapes

    DEFF Research Database (Denmark)

    Svenningsen, Stig Roar; Christensen, Andreas Aagaard

    history, especially as the rate of changes in cultural landscapes has increased during the last 40 years as the result of the development in the agro-industrial sector. However landscape changes rarely occur as abrupt and sudden breaks, but more as gradual process over long time periods corresponding...... with development in farming technology, modes of production and social organization. The majority of sources material to landscape history are of geographic nature, such as cartographic material, aerial imagery, photographs and paintings and opposite to the gradual nature of changes in the landscape, most sources...... to the physical structure of landscapes has a fixed temporal nature depicting the landscape at time of record, often at different spatial scales. This creates a challenge for Environmental history of European agricultural landscapes to produce a framework, which can incorporate these differences in temporal...

  10. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control

    NARCIS (Netherlands)

    Bianchi, F.J.J.A.; Booij, C.J.H.; Tscharntke, T.

    2006-01-01

    Agricultural intensification has resulted in a simplification of agricultural landscapes by the expansion of agricultural land, enlargement of field size and removal of non-crop habitat. These changes are considered to be an important cause of the rapid decline in farmland biodiversity, with the

  11. Shifting agriculture: the main cause of landscape degradation in the Central Spanish Pyrenees

    Science.gov (United States)

    Lasanta, Teodoro; Nadal-Romero, Estela; Errea, Paz

    2017-04-01

    (minimum disturbances), but the plant succession is slower than in the other agricultural uses. Undoubtedly, the use of marginal areas from agriculture and high soil losses during cultivation justify the presence of highly degraded soils that delay the forest succession. This explains the high stone cover in many slopes and a landscape characterized by shrublands, after more than 60 years of land abandonment. Acknowledgement This research was supported by the DESEMON and ESPAS projects (CGL2014-52135-C3-3-R and CGL2015-65569-R, funded by the MINECO-FEDER). The "Geomorphology and Global Change" and the "Climate, water, global change and natural systems" research groups were financed by the Aragón Government and the European Social Fund (ESF-FSE). Estela Nadal-Romero was the recipient of a "Ramón y Cajal" postdoctoral contract (Spanish Ministry of Economy and Competitiveness). References Lasanta, T., Errea, M.P. & Nadal-Romero, E. (in press). Traditional agrarian landscape in the Mediterranean mountains. A regional and local factors analysis in the Central Spanish Pyrenees. Land Degradation and Development.

  12. Soil erosion in a man-made landscape: the Mediterranean

    Science.gov (United States)

    Cerdà, A.; Ruiz Sinoga, J. D.; Cammeraat, L. H.

    2012-04-01

    Mediterranean-type ecosystems are characterised by a seasonally contrasted distribution of precipitation, by the coincidence of the driest and hottest season in summer, by an often-mountainous terrain, and by a long history of intense human occupation, especially around the Mediterranean Sea. The history of the Mediterranean lands is the history of human impacts on the soil system, and soil erosion is the most intense and widespread impact on this land where high intensity and uneven rainfall is found. A review of the soil erosion rates measured in the Mediterranean basin will be shown. The measurements done by means of erosion pins, topographical measurements, rainfall simulators, Gerlach collectors in open or close plots, watershed/basin measurements, reservoirs siltation and historical data will be shown. A review of the soil erosion models applied in the Mediterranean will be shown. The tentative approach done until October 2011 show that the soil erosion rates on Mediterranean type ecosystems are not as high as was supposed by the pioneers in the 70's. And this is probably due to the fact that the soils are very shallow and sediments are not available after millennia of high erosion rates. This is related to the large amount of rock fragments are covering the soil, and the rock outcrops that are found in the upper slope trams and the summits. Soil erosion in the Mediterranean is seasonal due to the rainfall concentration in winter, and highly variable within years as the high intensity rainfall events control the sediment production. Natural vegetation is adapted to the Mediterranean environmental conditions, and they are efficient to control the soil losses. An example are the forest fire that increase the soil losses but this is a temporal change as after 2-4 years the soil erosion rates are similar to the pre-fire period. Agriculture lands are the source of sediments although the highest erosion rates are found in badland areas that cover a small part of

  13. Characterizing European cultural landscapes: Accounting for structure, management intensity and value of agricultural and forest landscapes

    NARCIS (Netherlands)

    Tieskens, Koen F.; Schulp, Catharina J.E.; Levers, Christian; Lieskovský, Juraj; Kuemmerle, Tobias; Plieninger, Tobias; Verburg, Peter H.

    Abstract Almost all rural areas in Europe have been shaped or altered by humans and can be considered cultural landscapes, many of which now are considered to entail valuable cultural heritage. Current dynamics in land management have put cultural landscapes under a huge pressure of agricultural

  14. Arthropods Biodiversity in Agricultural Landscapes: Effects of Land Use and Anthropization

    Directory of Open Access Journals (Sweden)

    Enrico Previati

    2007-06-01

    Full Text Available The greatest proportion of Po river plain is occupied by arable lands. Negative effects of modern intensive agriculture on biodiversity can derive from various phenomena operating at different spatial scales, from local to regional ones. If agricultural fields are subjected to periodical disturbances by farming practices, also landscape structure can influence community structure in the fields providing refugial areas or alternative trophic resources. In the same way in perennial habitats, such as strips and meadows, community structure and composition may be linked to both local factors and surrounding land use, that can influence organism persistence and dispersal mechanisms. We studied some natural and anthropized habitats in a wide agricultural area in the province of Ferrara (conventional annual and perennial fields, herbaceous strips, hedgerows and meadows to investigate relationships between arthropod community structure and both local impact factors (habitat type, management and surronding landscape structure and use. Results from uni and multivariate analysis showed a great influence on trophic and taxonomic structure of habitat type and quality.A less complex landscape had only slightly influence on trophic structure, leading to higher abundance and richness of generalist taxa. In conclusion we emphasize the importance of maintaining high-quality habitats to enhance arthopod diversity in agricultural landscapes.

  15. Keynote address: Modern agricultural landscapes – a perspective on their past, present and future

    DEFF Research Database (Denmark)

    Christensen, Andreas Aagaard

    of landscape patterns in affected territories, leading to the creation of a new type of landscape. A distinctly modern agricultural landscape, characterized by rectilinear spatial forms, functionally segregated, specialized land use patterns, individualized decision making practices and an agricultural economy...... embedded within regional, globalizing networks of economic, technological and cultural exchange. In such landscapes, patterns of land use have since converged to an increasing extent, forming flows of correlated practices and associated ecological impairments observable across extensive arrays of otherwise...... of a capitalist modern origin. In this context, the purpose of this keynote address is to explore how the relationship between institutional and physical legacies of land use modernization affects decision making in contemporary agricultural landscapes. On the basis of a selection of European and postcolonial...

  16. Support of the landscape amenity function of agriculture and trade liberalisation

    Directory of Open Access Journals (Sweden)

    Simona Kubíčková

    2004-01-01

    Full Text Available Recent agricultural policy and trade discussions have given increasing attention to “multifunctionality”, the notion, that agriculture provides multiple outputs that include public goods (such as landscape amenities as well as privately traded commodities. A frequent point of contention is also whether payment for the provision of non-commodity outputs distorts trade by giving domestic farmers a competitive advantage over foreign competitors. The paper reviews some requirements for environmental policy design and the role of property rights for the justification of the development of compensation programs targeted to landscape protection. The second part of the paper illustrates the possibilities, how to use results of Contingent Valuation (CV study of landscape amenity benefits of agriculture to prove eligibility for agri-environmental payments in the case of the Protected Landscape Area White Carpathians (Bílé Karpaty. It is documented in the paper, that Contingent Valuation can provide useful information about genuine concern and overall efficiency of compensation programs as well as people’s views about alternative ethical ends, besides human well-being, that policy makers should take in consideration.

  17. Landscape diversity and the resilience of agricultural returns: a portfolio analysis of land-use patterns and economic returns from lowland agriculture

    Directory of Open Access Journals (Sweden)

    Abson David J

    2013-01-01

    Full Text Available Abstract Background Conventional agriculture is increasingly based on highly specialized, highly productive farms. It has been suggested that 1 this specialization leads to farms that lack resilience to changing market and environmental conditions; and 2 that by decreasing agricultural diversity, the resilience of the farming system also decreases. Methods We used agricultural gross margin (GM forecasts from 1966 to 2010 and remote sensing data from agricultural landscapes in the lowland UK, in conjunction with modern portfolio theory, to test the hypothesis that decreasing land-use diversity results in landscapes that provide higher, but more volatile, economic returns. We considered the role of spatial scale on the expected levels of volatility and resilience of agricultural returns. Results We found that: 1 there was a strong linear trade-off between expected GMs and the expected volatility of those GMs in real lowland agricultural landscapes in the UK; 2 land-use diversification was negatively correlated with expected GMs from agriculture, and positively correlated with decreasing expected volatility in GMs; 3 the resilience of agricultural returns was positively correlated with the diversity of agricultural land use, and the resilience of agricultural returns rose quickly with increased land-holding size at small spatial extents, but this effect diminished after landholdings reached 12,000 hectares. Conclusions Land-use diversity may have an important role in ensuring resilient agricultural returns in the face of uncertain market and environmental conditions, and land-holding size plays a pivotal role in determining the relationships between resilience and returns at a landscape scale. Creating finer-grained land-use patterns based on pre-existing local land uses may increase the resilience of individual farms, while maintaining aggregate yield across landscapes.

  18. Transdisciplinary Challenges for Sustainable Management of Mediterranean Landscapes in the Global Information Society

    Directory of Open Access Journals (Sweden)

    Zev Naveh

    2009-11-01

    Full Text Available The present chaotic transformation from the industrial to the global information society is accelerating the ecological, social and economic unsustainability. The rapidly growing unsustainable, fossil energy powered urbanindustrial technosphere and their detrimental impacts on nature and human well-being are threatening the solar energy powered natural and seminatural biosphere landscapes and their vital ecosystem services. A sustainability revolution is therefore urgently needed, requiring a shift from the „fossil age“ to the „solar age“ of a new world economy, coupled with more sustainable lifestyles and consumption patterns. The sustainable future of viable multifunctional biosphere landscapes of the Mediterranean Region and elsewhere and their biological and cultural richness can only be ensured by a post-industrial symbiosis between nature and human society. For this purpose a mindset shift of scientists and professionals from narrow disciplinarity to transdisciplinarity is necessary, dealing with holistic land use planning and management, in close cooperation with land users and stakeholders. To conserve and restore the rapidly vanishing and degrading Mediterranean uplands and highest biological ecological and cultural landscape ecodiversity, their dynamic homeorhetic flow equilibrium, has to be maintained by continuing or simulating all anthropogenic processes of grazing, browsing by wild and domesticated ungulates. Catastrophic wildfires can be prevented only by active fire and fuel management, converting highly inflammable pine forests and dense shrub thickets into floristically enriched, multi- layered open woodlands and recreation forests.

  19. Quantifying Trade-Offs Among Ecosystem Services, Biodiversity, and Agricultural Returns in an Agriculturally Dominated Landscape Under Future Land‑Management Scenarios

    Directory of Open Access Journals (Sweden)

    Emma C. Underwood

    2017-07-01

    Full Text Available https://doi.org/10.15447/sfews.2017v15iss2art4Change in land use in agriculturally dominated areas is often assumed to provide positive benefits for land-owners and financial agricultural returns at the expense of biodiversity and other ecosystem services. For an agriculturally dominated area in the Central Valley of California we quantify the trade-offs among ecosystem services, biodiversity, and the financial returns from agricultural lands. We do this by evaluating three different landscape management scenarios projected to 2050 compared to the current baseline: habitat restoration, urbanization, and enhanced agriculture. The restoration scenario benefited carbon storage services and increased landscape suitability for birds, and also decreased ecosystem disservices (nitrous oxide emissions, nitrogen leaching, although there was a trade-off in slightly lower financial agricultural returns. Under the urbanization scenario, carbon storage, suitability for birds, and agricultural returns were negatively affected. A scenario which enhanced agriculture, tailored to the needs of a key species of conservation concern (Swainson’s Hawk, Buteo swainsoni, presented the most potential for trade-offs. This scenario benefitted carbon storage and increased landscape suitability for the Swainson's Hawk as well as 15 other focal bird species. However, this scenario increased ecosystem disservices. These spatially explicit results, generated at a scale relevant to land management decision-makers in the Central Valley, provide valuable insight into managing for multiple benefits in the landscape and an approach for assessing future land-management decisions.

  20. TMDL implementation in agricultural landscapes: a communicative and systemic approach.

    Science.gov (United States)

    Jordan, Nicholas R; Slotterback, Carissa Schively; Cadieux, Kirsten Valentine; Mulla, David J; Pitt, David G; Olabisi, Laura Schmitt; Kim, Jin-Oh

    2011-07-01

    Increasingly, total maximum daily load (TMDL) limits are being defined for agricultural watersheds. Reductions in non-point source pollution are often needed to meet TMDL limits, and improvements in management of annual crops appear insufficient to achieve the necessary reductions. Increased adoption of perennial crops and other changes in agricultural land use also appear necessary, but face major barriers. We outline a novel strategy that aims to create new economic opportunities for land-owners and other stakeholders and thereby to attract their voluntary participation in land-use change needed to meet TMDLs. Our strategy has two key elements. First, focused efforts are needed to create new economic enterprises that capitalize on the productive potential of multifunctional agriculture (MFA). MFA seeks to produce a wide range of goods and ecosystem services by well-designed deployment of annual and perennial crops across agricultural landscapes and watersheds; new revenue from MFA may substantially finance land-use change needed to meet TMDLs. Second, efforts to capitalize on MFA should use a novel methodology, the Communicative/Systemic Approach (C/SA). C/SA uses an integrative GIS-based spatial modeling framework for systematically assessing tradeoffs and synergies in design and evaluation of multifunctional agricultural landscapes, closely linked to deliberation and design processes by which multiple stakeholders can collaboratively create appropriate and acceptable MFA landscape designs. We anticipate that application of C/SA will strongly accelerate TMDL implementation, by aligning the interests of multiple stakeholders whose active support is needed to change agricultural land use and thereby meet TMDL goals.

  1. Comparing the utility of image algebra operations for characterizing landscape changes: the case of the Mediterranean coast.

    Science.gov (United States)

    Alphan, Hakan

    2011-11-01

    The aim of this study is to compare various image algebra procedures for their efficiency in locating and identifying different types of landscape changes on the margin of a Mediterranean coastal plain, Cukurova, Turkey. Image differencing and ratioing were applied to the reflective bands of Landsat TM datasets acquired in 1984 and 2006. Normalized Difference Vegetation index (NDVI) and Principal Component Analysis (PCA) differencing were also applied. The resulting images were tested for their capacity to detect nine change phenomena, which were a priori defined in a three-level classification scheme. These change phenomena included agricultural encroachment, sand dune afforestation, coastline changes and removal/expansion of reed beds. The percentage overall accuracies of different algebra products for each phenomenon were calculated and compared. The results showed that some of the changes such as sand dune afforestation and reed bed expansion were detected with accuracies varying between 85 and 97% by the majority of the algebra operations, while some other changes such as logging could only be detected by mid-infrared (MIR) ratioing. For optimizing change detection in similar coastal landscapes, underlying causes of these changes were discussed and the guidelines for selecting band and algebra operations were provided. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Organic farming benefits local plant diversity in vineyard farms located in intensive agricultural landscapes.

    Science.gov (United States)

    Nascimbene, Juri; Marini, Lorenzo; Paoletti, Maurizio G

    2012-05-01

    The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.

  3. Distributed denitrification in a northeastern agricultural landscape

    Science.gov (United States)

    Anderson, T. R.; Groffman, P. M.; Walter, M. T.

    2011-12-01

    Denitrification may be an important sink of anthropogenic nitrogen (N) in eastern US watersheds. Denitrification occurs primarily under anaerobic conditions by heterotrophic microbes, and is therefore expected to be vigorous in wet soils containing large amounts of organic carbon. Actual rates of denitrification, however, have been difficult to quantify, and remain one of the critical unresolved N processes at the landscape scale. We measured denitrification rates in situ along hydrologic flow paths and across gradients of hydroperiodicities, i.e., frequencies and durations of saturated conditions, at Cornell University's Teaching & Research Center in Harford, NY (an active dairy farm). Denitrification rates were measured monthly using the 15N push-pull method from 14 mini-piezometers arrayed along a gradient of hydroperiodicity as indicated by a soil topographic index (STI). Measured rates of denitrification were spatially variable across sites and ranged from undetectable to over 4500 μg N/kg soil/day with a mean of 572 ± 167 μg N/kg soil/day. Mean rates of denitrification increased with STI, which ranged from 8.7 to 23.0 across our mini-piezometer sites. This relationship was used to estimate denitrification rates across the landscape and resolve a missing piece of the N budget for the farm. Only 14% of the farm fell into areas of STI greater than 8.7; however, denitrification in these areas account for more than 60% of the missing N balance for the entire landscape. Improved understanding of the distribution and magnitudes of denitrification in agricultural landscapes has good potential to facilitate new, novel, and better management practices for controlling N loading to streams and rivers. Indeed, the very areas that appear to have a propensity to harbor denitrification, i.e., areas prone to be wet, are often artificially drained as part of standard agricultural practices which reduces the frequency that these areas are likely to be anaerobic and

  4. Agricultural Landscape and Pesticide Effects on Honey Bee (Hymenoptera: Apidae) Biological Traits.

    Science.gov (United States)

    Alburaki, Mohamed; Steckel, Sandra J; Williams, Matthew T; Skinner, John A; Tarpy, David R; Meikle, William G; Adamczyk, John; Stewart, Scott D

    2017-06-01

    Sixteen honey bee (Apis mellifera L.) colonies were placed in four different agricultural landscapes to study the effects of agricultural landscape and exposure to pesticides on honey bee health. Colonies were located in three different agricultural areas with varying levels of agricultural intensity (AG areas) and one nonagricultural area (NAG area). Colonies were monitored for their performance and productivity for one year by measuring colony weight changes, brood production, and colony thermoregulation. Palynological and chemical analyses were conducted on the trapped pollen collected from each colony and location. Our results indicate that the landscape's composition significantly affected honey bee colony performance and development. Colony weight and brood production were significantly greater in AG areas compared to the NAG area. Better colony thermoregulation in AG areas' colonies was also observed. The quantities of pesticides measured in the trapped pollen were relatively low compared to their acute toxicity. Unexplained queen and colony losses were recorded in the AG areas, while colony losses because of starvation were observed in the NAG area. Our results indicate that landscape with high urban activity enhances honey bee brood production, with no significant effects on colony weight gain. Our study indicates that agricultural crops provide a valuable resource for honey bee colonies, but there is a trade-off with an increased risk of exposure to pesticides. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Environmental research programme. Ecological research. Annual report 1994. Urban-industrial landscapes, forests, agricultural landscapes, river and lake landscapes, terrestrial ecosystem research, environmental pollution and health

    International Nuclear Information System (INIS)

    1995-01-01

    In the annual report 1994 of the Federal Ministry of Research and Technology, the points of emphasis of the ecological research programme and their financing are discussed. The individual projects in the following subject areas are described in detail: urban-industrial landscapes, forests, agricultural landscapes, river and lake landscapes, other ecosystems and landscapes, terrestrial ecosystem research, environmental pollution and human health and cross-sectional activities in ecological research. (vhe) [de

  6. Scale-Aware Pansharpening Algorithm for Agricultural Fragmented Landscapes

    Directory of Open Access Journals (Sweden)

    Mario Lillo-Saavedra

    2016-10-01

    Full Text Available Remote sensing (RS has played an important role in extensive agricultural monitoring and management for several decades. However, the current spatial resolution of satellite imagery does not have enough definition to generalize its use in highly-fragmented agricultural landscapes, which represents a significant percentage of the world’s total cultivated surface. To characterize and analyze this type of landscape, multispectral (MS images with high and very high spatial resolutions are required. Multi-source image fusion algorithms are normally used to improve the spatial resolution of images with a medium spatial resolution. In particular, pansharpening (PS methods allow one to produce high-resolution MS images through a coherent integration of spatial details from a panchromatic (PAN image with spectral information from an MS. The spectral and spatial quality of source images must be preserved to be useful in RS tasks. Different PS strategies provide different trade-offs between the spectral and the spatial quality of the fused images. Considering that agricultural landscape images contain many levels of significant structures and edges, the PS algorithms based on filtering processes must be scale-aware and able to remove different levels of detail in any input images. In this work, a new PS methodology based on a rolling guidance filter (RGF is proposed. The main contribution of this new methodology is to produce artifact-free pansharpened images, improving the MS edges with a scale-aware approach. Three images have been used, and more than 150 experiments were carried out. An objective comparison with widely-used methodologies shows the capability of the proposed method as a powerful tool to obtain pansharpened images preserving the spatial and spectral information.

  7. How much water do we need for irrigation under Climate Change in the Mediterranean?

    Science.gov (United States)

    Fader, Marianela; Alberte, Bondeau; Wolfgang, Cramer; Simon, Decock; Sinan, Shi

    2014-05-01

    Anthropogenic climate change will very likely alter the hydrological system of already water-limited agricultural landscapes around the Mediterranean. This includes the need for, as well as the availability of irrigation water. On top of that Mediterranean agroecosystems are very likely to be under strong pressure in the near future through changes in consumer demands and diets, increasing urbanization, demographic change, and new markets for agricultural exportation. As a first step to assess the water demand of the agricultural sector, we use an ecohydrological model (the Lund-Potsdam-Jena managed land model, LPJmL) to estimate current and future irrigation water requirements of this region, considering various climate and socio-economic scenarios. LPJmL is a process-based, agricultural and water balance model, where plant growth is ecophysiologically coupled with hydrological variables. For these simulations, the model was adapted to the Mediterranean region in terms of agrosystems as well as crop parameters, and a sensitivity analysis for the irrigation system efficiency was performed. Patterns of current irrigation water requirements differ strongly spatially within the Mediterranean region depending mainly on potential evapotranspiration, the combination of crops cultivated and the extension of irrigated areas. The simulations for the future indicate that the Mediterranean may need considerable additional amounts of irrigation water. However, the regional patterns differ strongly depending on changes in length of growing periods, changes in transpirational rate (temperature and precipitation change, CO2-fertilization), and the consideration of potential improvements in irrigation system efficiency.

  8. Mapping agricultural landscapes and characterizing adaptive capacity in Central America

    Science.gov (United States)

    Holland, M. B.; Imbach, P. A.; Bouroncle, C.; Donatti, C.; Leguia, E.; Martinez, M.; Medellin, C.; Saborio-Rodriguez, M.; Shamer, S.; Zamora, J.

    2013-12-01

    One of the key challenges in developing adaptation strategies for smallholder farmers in developing countries is that of a data-poor environment, where spatially-explicit information about where the most vulnerable smallholder communities are located is lacking. Developing countries tend to lack consistent and reliable maps on agricultural land use, and have limited information available on smallholder adaptive capacity. We developed a novel participatory and expert mapping process to overcome these barriers and develop detailed national-scale maps that allow for a characterization of unique agricultural landscapes based on profiles of adaptive capacity for smallholder agriculture in each area. This research focuses specifically on the Central American nations of Costa Rica, Guatemala, and Honduras, where our focus is on coffee and basic grains as the two main cropping systems. Here we present the methodology and results of a series of in-depth interviews and participatory mapping sessions with experts working within the broader agricultural sector in each country. We held individual interviews and mapping sessions with approximately thirty experts from each country, and used a detailed survey instrument for each mapping session to both spatially identify distinct agricultural landscapes, and to further characterize each area based on specific farm practices and social context. The survey also included a series of questions to help us assess the relative adaptive capacity of smallholder agriculture within each landscape. After all expert mapping sessions were completed in each country we convened an expert group to assist in both validating and refining the set of landscapes already defined. We developed a characterization of adaptive capacity by aggregating indicators into main assets-based criteria (e.g. land tenure, access to credit, access to technical assistance, sustainable farm practices) derived from further expert weighting of indicators through an online

  9. Plant biodiversity in French Mediterranean vineyards

    Science.gov (United States)

    Cohen, Marianne; Bilodeau, Clelia; Alexandre, Frédéric; Godron, Michel; Gresillon, Etienne

    2017-04-01

    In a context of agricultural intensification and increasing urbanization, the biodiversity of farmed plots is a key to improve the sustainability of farmed landscapes. The medium life-duration of the vineyards as well as their location in Mediterranean region are favorable to plant biodiversity. We studied 35 vineyards and if present, their edges, located in three French Mediterranean terroirs: Bandol, Pic Saint Loup and Terrasses du Larzac. We collected botanical information (floral richness et diversity, biological traits), and analyzed their relationships with different factors: social (management, heritage or professional concern), environmental (slope, exposition, geology), spatial (edges, surrounding landscape in a 500 meters radius, distance to the nearest large city). Vineyards are generally heavily disturbed by intensive practices like tilling and application of herbicides, and for this reason their floral diversity is low. This is particularly true in Bandol terroir, in accordance with the standards of the Bandol PDO wine sector. Farmed landscapes and proximity to a large town impact on functional groups, generalist species being overrepresented. If vineyards are surrounded with natural edges, it doubles the floral richness at the plot and edges scale. Species present in vineyards edges are perennial herbaceous species with Euro- Asian and Mediterranean distribution ranges characteristic of prairie and wasteland stages, increasing the functional diversity of vineyards (generalist species). Environmental factors have a lower influence: vineyards are generally located on flat lands. These results suggest that some practices should be encouraged to avoid the biological degradation of vineyards: conservation of tree-lined edges and their extensive management, reduction of chemical weeding, grass-growing using non-cosmopolitan species. These recommendations should also contribute to soil conservation.

  10. Achieving production and conservation simultaneously in tropical agricultural landscapes

    DEFF Research Database (Denmark)

    Renwick, Anna R.; Vickery, Juliet A.; Potts, Simon G.

    2014-01-01

    Increasing population size and demand for food in the developing world is driving the intensification of agriculture, often threatening the biodiversity within the farmland itself and in the surrounding landscape. This paper quantifies bird and tree species richness, tree carbon and farmer's gross...... for the rural populations, and ensuring ‘sustained agricultural growth’ within such systems while minimising negative impacts on biodiversity and other key ecosystem services will be a major future challenge....

  11. The heterogeneity of wooded-agricultural landscape mosaics influences woodland bird community assemblages

    OpenAIRE

    Neumann, Jessica L.; Griffiths, Geoffrey H.; Foster, Christopher W.; Holloway, Graham J.

    2016-01-01

    Context\\ud Landscape heterogeneity (the composition and configuration of different landcover types) plays a key role in shaping woodland bird assemblages in wooded-agricultural mosaics. Understanding how species respond to landscape factors could contribute to preventing further decline of woodland bird populations.\\ud Objective\\ud To investigate how woodland birds with different species traits respond to landscape heterogeneity, and to identify whether specific landcover types are important ...

  12. Factors Affecting Water Dynamics and Their Assessment in Agricultural Landscapes

    International Nuclear Information System (INIS)

    Sakadevan, K.; Nguyen, M.L.

    2015-01-01

    The intensification and extension of agriculture have contributed significantly to the global food production in the last five decades. However, intensification without due attention to the ecosystem services and sustainability of soil and water resources contributed to land and water quality degradation such as soil erosion, decreased soil fertility and quality, salinization and nutrient discharge to surface and ground waters. Land use change from forests to crop lands altered the vegetation pattern and hydrology of landscapes with increased nutrient discharge from crop lands to riverine environment. Global climate change will increase the amount of water required for agriculture in addition to water needed for further irrigation development causing water scarcity in many dry, arid and semi-arid regions. The water and nutrient use efficiencies of agricultural production systems are still below 40% in many regions across the globe. Nitrogen (N) and phosphorus (P) fertilizer use in agriculture have accelerated the cycling of these nutrients in the landscape and contributed to water quality degradation. Such nutrient pollution has a wide array of consequences including eutrophication of inland waters and marine ecosystems. While intensifying drought conditions, increasing water consumption and environmental pollution in many parts of the world threatens agricultural productivity and livelihood, these also provided opportunities for farmers to use improved land and water management technologies and practices to make agriculture resilient to external shocks

  13. From Forest Landscape to Agricultural Landscape in the Developing Tropical Country of Malaysia: Pattern, Process, and Their Significance on Policy

    Science.gov (United States)

    Abdullah, Saiful Arif; Hezri, Adnan A.

    2008-11-01

    Agricultural expansion and deforestation are spatial processes of land transformation that impact on landscape pattern. In peninsular Malaysia, the conversion of forested areas into two major cash crops—rubber and oil palm plantations—has been identified as driving significant environmental change. To date, there has been insufficient literature studying the link between changes in landscape patterns and land-related development policies. Therefore, this paper examines: (i) the links between development policies and changes in land use/land cover and landscape pattern and (ii) the significance and implications of these links for future development policies. The objective is to generate insights on the changing process of land use/land cover and landscape pattern as a functional response to development policies and their consequences for environmental conditions. Over the last century, the development of cash crops has changed the country from one dominated by natural landscapes to one dominated by agricultural landscapes. But the last decade of the century saw urbanization beginning to impact significantly. This process aligned with the establishment of various development policies, from land development for agriculture between the mid 1950s and the 1970s to an emphasis on manufacturing from the 1980s onward. Based on a case study in Selangor, peninsular Malaysia, a model of landscape pattern change is presented. It contains three stages according to the relative importance of rubber (first stage: 1900-1950s), oil palm (second stage: 1960s-1970s), and urban (third stage: 1980s-1990s) development that influenced landscape fragmentation and heterogeneity. The environmental consequences of this change have been depicted through loss of biodiversity, geohazard incidences, and the spread of vector-borne diseases. The spatial ecological information can be useful to development policy formulation, allowing diagnosis of the country’s “health” and sustainability

  14. Landscape change in mediterranean farmlands: impacts of land abandonment on cultivation terraces in portofino (italy) and lesvos (greece)

    NARCIS (Netherlands)

    Sluis, van der T.; Kizos, T.; Pedroli, G.B.M.

    2014-01-01

    The Mediterranean landscape has been rapidly changing over the past decades. Many regions saw a population decline, which resulted in changing land use, abandonment of marginal lands and colonisation by shrubs and tree species. Typical features like farming terraces, olive yards, and upland

  15. The lichens in the agricultural landscape of Podlasie, North East Poland

    International Nuclear Information System (INIS)

    Matwiejuk, A.

    2016-01-01

    This paper carries information for diagnosis lichenobiota in the agricultural landscape of Poland NE. The research led to a better understanding of the problem of occurrence of lichens in the agricultural landscape. The functional groups of lichens, which were used to characterize lichen biota taking into account the morphological forms, frequency of occurrence and habitat requirements were determined. The basis for the specification of the more interesting taxa in the study area was to analyze the species composition of lichens in relation to the data on their previous records in rural areas, the degree of recognition in Poland NE and conservation status and threats in the country. (author)

  16. Conservation planning in agricultural landscapes: hotspots of conflict between agriculture and nature.

    Science.gov (United States)

    Shackelford, Gorm E; Steward, Peter R; German, Richard N; Sait, Steven M; Benton, Tim G

    2015-03-01

    Conservation conflict takes place where food production imposes a cost on wildlife conservation and vice versa. Where does conservation impose the maximum cost on production, by opposing the intensification and expansion of farmland? Where does conservation confer the maximum benefit on wildlife, by buffering and connecting protected areas with a habitable and permeable matrix of crop and non-crop habitat? Our aim was to map the costs and benefits of conservation versus production and thus to propose a conceptual framework for systematic conservation planning in agricultural landscapes. World-wide. To quantify these costs and benefits, we used a geographic information system to sample the cropland of the world and map the proportion of non-crop habitat surrounding the cropland, the number of threatened vertebrates with potential to live in or move through the matrix and the yield gap of the cropland. We defined the potential for different types of conservation conflict in terms of interactions between habitat and yield (potential for expansion, intensification, both or neither). We used spatial scan statistics to find 'hotspots' of conservation conflict. All of the 'hottest' hotspots of conservation conflict were in sub-Saharan Africa, which could have impacts on sustainable intensification in this region. Systematic conservation planning could and should be used to identify hotspots of conservation conflict in agricultural landscapes, at multiple scales. The debate between 'land sharing' (extensive agriculture that is wildlife friendly) and 'land sparing' (intensive agriculture that is less wildlife friendly but also less extensive) could be resolved if sharing and sparing were used as different types of tool for resolving different types of conservation conflict (buffering and connecting protected areas by maintaining matrix quality, in different types of matrix). Therefore, both sharing and sparing should be prioritized in hotspots of conflict, in the context of

  17. Habitat connectivity and fragmented nuthatch populations in agricultural landscapes

    NARCIS (Netherlands)

    Langevelde, van F.

    1999-01-01

    In agricultural landscapes, the habitat of many species is subject to fragmentation. When the habitat of a species is fragmented and the distances between patches of habitat are large relative to the movement distances of the species, it can be expected that the degree of habitat

  18. Land Tenure as a Factor Underlying Agricultural Landscape Changes in Europe: A Review

    Directory of Open Access Journals (Sweden)

    Krčílková Š.

    2016-06-01

    Full Text Available Land tenure is generally considered to be an important factor affecting farming, landscape, and rural development. This paper reviews selected case studies to identify how land tenure influences agricultural landscape changes in Europe. We identified how land tenure information was transformed into variables, grouping these variables into general thematic categories: (1 land rights variables based on references to the type of stakeholders and duration of land occupancy, (2 land structure variables describing general land structure, and (3 behavioural variables dependent on stakeholders’ attitudes, perceptions, and personal values. Each thematic category can be defined on three spatial levels: parcel or production block, stakeholder, and landscape. The results show that the tenure factor is not frequently included into landscape-change studies. When a land tenure factor was part of a given study, it either played a minor role among other drivers of landscape change or, if it influenced significant landscape changes, it had only locally specific effects. Moreover, there were studies with contradictory results and so it is difficult to generalize specific findings. Nevertheless, land tenure is frequently discussed within landscape-change research in relation to land abandonment as well as green services and their connection with the European Union’s Common Agricultural Policy.

  19. Participatory conservation approaches for satoyama, the traditional forest and agricultural landscape of Japan.

    Science.gov (United States)

    Kobori, Hiromi; Primack, Richard B

    2003-06-01

    The traditional agricultural landscape of Japan, known as satoyama, consists of a mixture of forests, wet rice paddy fields, grasslands, and villages. This landscape supports a great diversity of plant and animal species, many of which are significant to the Japanese culture. The satoyama landscape is currently being rapidly converted to residential and industrial uses in Japan's expanding metropolitan areas, with the local loss of many species. Only 7% of the land in the Yokohama area remains as satoyama. City residents and older farmers have become key participants in programs to protect examples of satoyama. Many urban residents value the experience of participating in agricultural and conservation activities once they are made aware of the threat faced by the satoyama landscape. In one particularly successful program, conservation efforts and fund-raising are linked to "Totoro", an imaginary forest animal featured in a popular animated film.

  20. Aspects of Agricultural Landscape as a Cultural Asset in Metropolitan Areas: Case Study for Bucharest City

    Directory of Open Access Journals (Sweden)

    Andreea Popa

    2012-05-01

    Full Text Available Typical for the last decades economical and social processes at metropolitan level induce new models of spatial organization characterized by extensive urban development. These extensive processes configure various components of the cultural landscape in different ways. Such development modifies the rural, agricultural and industrial landscapes and generates new landscape typologies modeled by interaction between urban and rural space. Diverse approaches of urban development have modified the territorial structure and also the way in which the territory visually and dynamically responds to external factors by transforming the main cultural features. In such a context, preservation of common agricultural landscape as a part of cultural landscape is becoming an important issue for the local development policies

  1. The effects of erosional and management history on soil organic carbon stores in ephemeral wetlands of hummocky agricultural landscapes

    NARCIS (Netherlands)

    Bedard-Haughn, A.; Jongbloed, F.; Akkennan, J.; Uijl, A.; Jong, de E.; Yates, T.; Pennock, D.

    2006-01-01

    Carbon sequestration by agricultural soils has been widely promoted as a means of mitigating greenhouse gas emissions. In many regions agricultural fields are just one component of a complex landscape matrix and understanding the interactions between agricultural fields and other landscape

  2. Chlorate origin and fate in shallow groundwater below agricultural landscapes

    International Nuclear Information System (INIS)

    Mastrocicco, Micòl; Di Giuseppe, Dario; Vincenzi, Fabio; Colombani, Nicolò; Castaldelli, Giuseppe

    2017-01-01

    In agricultural lowland landscapes, intensive agricultural is accompanied by a wide use of agrochemical application, like pesticides and fertilizers. The latter often causes serious environmental threats such as N compounds leaching and surface water eutrophication; additionally, since perchlorate can be present as impurities in many fertilizers, the potential presence of perchlorates and their by-products like chlorates and chlorites in shallow groundwater could be a reason of concern. In this light, the present manuscript reports the first temporal and spatial variation of chlorates, chlorites and major anions concentrations in the shallow unconfined aquifer belonging to Ferrara province (in the Po River plain). The study was made in 56 different locations to obtain insight on groundwater chemical composition and its sediment matrix interactions. During the monitoring period from 2010 to 2011, in June 2011 a nonpoint pollution of chlorates was found in the shallow unconfined aquifer belonging to Ferrara province. Detected chlorates concentrations ranged between 0.01 and 38 mg/l with an average value of 2.9 mg/l. Chlorates were found in 49 wells out of 56 and in all types of lithology constituting the shallow aquifer. Chlorates concentrations appeared to be linked to NO 3 − , volatile fatty acids (VFA) and oxygen reduction potential (ORP) variations. Chlorates behaviour was related to the biodegradation of perchlorates, since perchlorates are favourable electron acceptors for the oxidation of labile dissolved organic carbon (DOC) in groundwater. Further studies must take into consideration to monitor ClO 4 − in pore waters and groundwater to better elucidate the mass flux of ClO 4 − in shallow aquifers belonging to agricultural landscapes. - Highlights: • Chlorates were found in agricultural shallow wells after fertilizers spreading. • Chlorates concentrations appeared to be linked to NO 3 − , VFA and ORP variations. • Chlorates behaviour was

  3. Analysis of road development and associated agricultural land use change.

    Science.gov (United States)

    Alphan, Hakan

    2017-12-05

    Development of road network is one of the strongest drivers of habitat fragmentation. It interferes with ecological processes that are based on material and energy flows between landscape patches. Therefore, changes in temporal patterns of roads may be regarded as important landscape-level environmental indicators. The aim of this study is to analyze road development and associated agricultural land use change near the town of Erdemli located in the eastern Mediterranean coast of Turkey. The study area has witnessed an unprecedented development of agriculture since the 2000s. This process has resulted with the expansion of the road network. Associations between agricultural expansion and road development were investigated. High-resolution satellite images of 2004 and 2015 were used to analyze spatial and temporal dimensions of change. Satellite images were classified using a binary approach, in which land areas were labeled as either "agriculture" or "non-agriculture." Road networks were digitized manually. The study area was divided into 23 sublandscapes using a regular grid with 1-km cell spacing. Percentage of landscape (PL) for agriculture and road density (RD) metrics were calculated for the earlier (2004) and later (2015) years. Metric calculations were performed separately for each of the 23 sublandscapes in order to understand spatial diversity of agriculture and road density. Study results showed that both RD and PL exhibited similar increasing trends between 2004 and 2015.

  4. Choosing the safest route: frog orientation in an agricultural landscape

    NARCIS (Netherlands)

    Mazerolle, M.J.; Vos, C.C.

    2006-01-01

    Orientation is a key component to successful movements between habitats. We hypothesized that barren agricultural landscapes hinder the ability of frogs to orient and move between habitats. Specifically, we predicted that when presented with a choice between a short route through a hostile

  5. Socially optimal drainage system and agricultural biodiversity: a case study for Finnish landscape.

    Science.gov (United States)

    Saikkonen, Liisa; Herzon, Irina; Ollikainen, Markku; Lankoski, Jussi

    2014-12-15

    This paper examines the socially optimal drainage choice (surface/subsurface) for agricultural crop cultivation in a landscape with different land qualities (fertilities) when private profits and nutrient runoff damages are taken into account. We also study the measurable social costs to increase biodiversity by surface drainage when the locations of the surface-drained areas in a landscape affect the provided biodiversity. We develop a general theoretical model and apply it to empirical data from Finnish agriculture. We find that for low land qualities the measurable social returns are higher to surface drainage than to subsurface drainage, and that the profitability of subsurface drainage increases along with land quality. The measurable social costs to increase biodiversity by surface drainage under low land qualities are negative. For higher land qualities, these costs depend on the land quality and on the biodiversity impacts. Biodiversity conservation plans for agricultural landscapes should focus on supporting surface drainage systems in areas where the measurable social costs to increase biodiversity are negative or lowest. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Selecting landscape metrics as indicators of spatial heterogeneity-A comparison among Greek landscapes

    Science.gov (United States)

    Plexida, Sofia G.; Sfougaris, Athanassios I.; Ispikoudis, Ioannis P.; Papanastasis, Vasilios P.

    2014-02-01

    This paper investigates the spatial heterogeneity of three landscapes along an altitudinal gradient and different human land use. The main aim was the identification of appropriate landscape indicators using different extents. ASTER image was used to create a land cover map consisting of three landscapes which differed in altitude and land use. A number of landscape metrics quantifying patch complexity, configuration, diversity and connectivity were derived from the thematic map at the landscape level. There were significant differences among the three landscapes regarding these four aspects of landscape heterogeneity. The analysis revealed a specific pattern of land use where lowlands are being increasingly utilized by humans (percentage of agricultural land = 65.84%) characterized by physical connectedness (high values of Patch Cohesion Index) and relatively simple geometries (low values of fractal dimension index). The landscape pattern of uplands was found to be highly diverse based upon the Shannon Diversity index. After selecting the scale (600 ha) where metrics values stabilized, it was shown that metrics were more correlated at the small scale of 60 ha. From the original 24 metrics, 14 individual metrics with high Spearman correlation coefficient and Variance Inflation Factor criterion were eliminated, leaving 10 representative metrics for subsequent analysis. Data reduction analysis showed that Patch Density, Area-Weighted Mean Fractal Dimension Index and Patch Cohesion Index are suitable to describe landscape patterns irrespective of the scale. A systematic screening of these metrics could enhance a deeper understanding of the results obtained by them and contribute to a sustainable landscape management of Mediterranean landscapes.

  7. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas.

    Directory of Open Access Journals (Sweden)

    Olga Heim

    Full Text Available Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany. Using spatial analysis (GIS, we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water. In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers. Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the

  8. Hedgerows Have a Barrier Effect and Channel Pollinator Movement in the Agricultural Landscape

    Directory of Open Access Journals (Sweden)

    Klaus Felix

    2015-01-01

    Full Text Available Agricultural intensification and the subsequent fragmentation of semi-natural habitats severely restrict pollinator and pollen movement threatening both pollinator and plant species. Linear landscape elements such as hedgerows are planted for agricultural and conservation purposes to increase the resource availability and habitat connectivity supporting populations of beneficial organisms such as pollinators. However, hedgerows may have unexpected effects on plant and pollinator persistence by not just channeling pollinators and pollen along, but also restricting movement across the strip of habitat. Here, we tested how hedgerows influence pollinator movement and pollen flow. We used fluorescent dye particles as pollen analogues to track pollinator movement between potted cornflowers Centaurea cyanus along and across a hedgerow separating two meadows. The deposition of fluorescent dye was significantly higher along the hedgerow than across the hedgerow and into the meadow, despite comparable pollinator abundances. The differences in pollen transfer suggest that hedgerows can affect pollinator and pollen dispersal by channeling their movement and acting as a permeable barrier. We conclude that hedgerows in agricultural landscapes can increase the connectivity between otherwise isolated plant and pollinator populations (corridor function, but can have additional, and so far unknown barrier effects on pollination services. Functioning as a barrier, linear landscape elements can impede pollinator movement and dispersal, even for highly mobile species such as bees. These results should be considered in future management plans aiming to enhance the persistence of threatened pollinator and plant populations by restoring functional connectivity and to ensure sufficient crop pollination in the agricultural landscape.

  9. Nutrient removal by prairie filter strips in agricultural landscapes

    Science.gov (United States)

    X. Zhou; M.J. Helmers; H. Asbjornsen; R. Kolka; M.D. Tomer; R.M. Cruse

    2014-01-01

    Nitrogen (N) and phosphorus (P) from agricultural landscapes have been identified as primary sources of excess nutrients in aquatic systems. The main objective of this study was to evaluate the effectiveness of prairie filter strips (PFS) in removing nutrients from cropland runoff in 12 small watersheds in central Iowa. Four treatments with PFS of different spatial...

  10. Soil governance in the agricultural landscapes of New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    Ashley A Webb

    2015-03-01

    Full Text Available Soil is a valuable natural resource. In the state of New South Wales, Australia, the governance of soil has evolved since Federation in 1901. Following rapid agricultural development, and in the face of widespread soil degradation, the establishment of the Soil Conservation Service marked a turning point in the management of soil. Throughout the 20th century, advances in knowledge were translated into evolving governance frameworks that were largely reactionary but saw progressive reforms such as water pollution legislation and case studies of catchment-scale land and vegetation management. In the 21st century, significant reforms have embedded sustainable use of agricultural soils within catchment- and landscape-scale legislative and institutional frameworks. What is clear, however, is that a multitude of governance strategies and models are utilised in NSW. No single governance model is applicable to all situations because it is necessary to combine elements of several different mechanisms or instruments to achieve the most desired outcomes. Where an industry, such as the sugar industry, has taken ownership of an issue such as acid sulfate soil management, self-regulation has proven to be extremely effective. In the case of co-managing agricultural soils with other landuses, such as mining, petroleum exploration and urban development, regulation, compliance and enforcement mechanisms have been preferred. Institutional arrangements in the form of independent commissioners have also played a role. At the landscape or total catchment level, it is clear that a mix of mechanisms is required. Fundamental, however, to the successful evolution of soil governance is strategic investment in soil research and development that informs the ongoing productive use of agricultural landscapes while preventing land degradation or adverse environmental effects.

  11. Land change in eastern Mediterranean wood-pasture landscapes: the case of deciduous oak woodlands in Lesvos (Greece).

    Science.gov (United States)

    Schaich, Harald; Kizos, Thanasis; Schneider, Stefan; Plieninger, Tobias

    2015-07-01

    In Mediterranean Europe, wood-pasture landscapes with oak woodlands as emblematic ecosystems are undergoing rapid land-use change, which may threaten their legacy as hotspots of biodiversity, ecosystem services, and cultural heritage. The objective of this study was to quantify land cover changes and transitions as well as the dynamics of oak woodland patterns and densities over 50 years in two municipalities at the center and edges of Quercus macrolepis distribution in Northern Lesvos (Greece). We used aerial photographs from 1960 and WorldView-2 satellite images from 2010 to process land cover maps and metrics, and to calculate oak canopy cover with a point-grid sampling approach. Spatiotemporal dynamics of land cover change were generally high--especially between oak woodlands and grass- and shrub-lands, resulting in a more heterogeneous and fragmented landscape in 2010. Surprisingly, oak woodland area remained stable with marginal losses in one study site and gains in the other one. Oak canopy cover increased by 8 and 9%. Spatial hotspots of change were mountainous and peripheral phrygana areas with expanding oak stands, as well as river valleys and near urban areas with expanding olive groves and grass- and shrublands in former complex cultivation and oak stands. We conclude that the parallel processes of abandonment of crop cultivation and intensification of livestock grazing have been less detrimental to oak woodlands than supposed. To ensure long-term persistence of oak woodlands in the face of ongoing rural depopulation and land-use intensification, environmental and agricultural policies should better address their specificities as anthropogenic habitats.

  12. Land Change in Eastern Mediterranean Wood-Pasture Landscapes: The Case of Deciduous Oak Woodlands in Lesvos (Greece)

    Science.gov (United States)

    Schaich, Harald; Kizos, Thanasis; Schneider, Stefan; Plieninger, Tobias

    2015-07-01

    In Mediterranean Europe, wood-pasture landscapes with oak woodlands as emblematic ecosystems are undergoing rapid land-use change, which may threaten their legacy as hotspots of biodiversity, ecosystem services, and cultural heritage. The objective of this study was to quantify land cover changes and transitions as well as the dynamics of oak woodland patterns and densities over 50 years in two municipalities at the center and edges of Quercus macrolepis distribution in Northern Lesvos (Greece). We used aerial photographs from 1960 and WorldView-2 satellite images from 2010 to process land cover maps and metrics, and to calculate oak canopy cover with a point-grid sampling approach. Spatiotemporal dynamics of land cover change were generally high—especially between oak woodlands and grass- and shrub-lands, resulting in a more heterogeneous and fragmented landscape in 2010. Surprisingly, oak woodland area remained stable with marginal losses in one study site and gains in the other one. Oak canopy cover increased by 8 and 9 %. Spatial hotspots of change were mountainous and peripheral phrygana areas with expanding oak stands, as well as river valleys and near urban areas with expanding olive groves and grass- and shrublands in former complex cultivation and oak stands. We conclude that the parallel processes of abandonment of crop cultivation and intensification of livestock grazing have been less detrimental to oak woodlands than supposed. To ensure long-term persistence of oak woodlands in the face of ongoing rural depopulation and land-use intensification, environmental and agricultural policies should better address their specificities as anthropogenic habitats.

  13. Pollinator interactions with yellow starthistle (Centaurea solstitialis across urban, agricultural, and natural landscapes.

    Directory of Open Access Journals (Sweden)

    Misha Leong

    Full Text Available Pollinator-plant relationships are found to be particularly vulnerable to land use change. Yet despite extensive research in agricultural and natural systems, less attention has focused on these interactions in neighboring urban areas and its impact on pollination services. We investigated pollinator-plant interactions in a peri-urban landscape on the outskirts of the San Francisco Bay Area, California, where urban, agricultural, and natural land use types interface. We made standardized observations of floral visitation and measured seed set of yellow starthistle (Centaurea solstitialis, a common grassland invasive, to test the hypotheses that increasing urbanization decreases 1 rates of bee visitation, 2 viable seed set, and 3 the efficiency of pollination (relationship between bee visitation and seed set. We unexpectedly found that bee visitation was highest in urban and agricultural land use contexts, but in contrast, seed set rates in these human-altered landscapes were lower than in natural sites. An explanation for the discrepancy between floral visitation and seed set is that higher plant diversity in urban and agricultural areas, as a result of more introduced species, decreases pollinator efficiency. If these patterns are consistent across other plant species, the novel plant communities created in these managed landscapes and the generalist bee species that are favored by human-altered environments will reduce pollination services.

  14. The behaviour of hoverfly larvae (Diptera, Syrphidae) lessens the effects of floral subsidy in agricultural landscapes

    OpenAIRE

    Laubertie, Elsa; Wratten, Steve; Magro, Alexandra; Hemptinne, Jean

    2016-01-01

    Modern agricultural landscapes favour crop pests: herbivores benefit from resource concentration and/or the absence of natural enemies in large areas of intensively farmed fields interspersed by small fragments of natural or non-crop habitats. Conservation biological control (CBC) aims at increasing the functional diversity of agricultural landscapes to make them more hospitable to natural enemies, and less to herbivores. Although natural enemies readily respond to this management, very few s...

  15. Integrated analysis of the effects of agricultural management on nitrogen fluxes at landscape scale

    Energy Technology Data Exchange (ETDEWEB)

    Kros, J., E-mail: hans.kros@wur.nl [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Frumau, K.F.A.; Hensen, A. [Energy Research Centre of The Netherlands, P.O. Box 1, 1755 ZG Petten (Netherlands); Vries, W. de [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2011-11-15

    The integrated modelling system INITIATOR was applied to a landscape in the northern part of the Netherlands to assess current nitrogen fluxes to air and water and the impact of various agricultural measures on these fluxes, using spatially explicit input data on animal numbers, land use, agricultural management, meteorology and soil. Average model results on NH{sub 3} deposition and N concentrations in surface water appear to be comparable to observations, but the deviation can be large at local scale, despite the use of high resolution data. Evaluated measures include: air scrubbers reducing NH{sub 3} emissions from poultry and pig housing systems, low protein feeding, reduced fertilizer amounts and low-emission stables for cattle. Low protein feeding and restrictive fertilizer application had the largest effect on both N inputs and N losses, resulting in N deposition reductions on Natura 2000 sites of 10% and 12%, respectively. - Highlights: > We model nitrogen fluxes and the impact of agricultural measures in a rural landscape. > Average model results appear to be comparable to observations. > The measures low protein feeding and restrictive fertilizer application had the largest effect. - Effects of agricultural management on N losses to air and water are evaluated at landscape scale combining a model assessment and measurements.

  16. EVALUATION OF RAINFALL-RUNOFF MODELS FOR MEDITERRANEAN SUBCATCHMENTS

    Directory of Open Access Journals (Sweden)

    A. Cilek

    2016-06-01

    Full Text Available The development and the application of rainfall-runoff models have been a corner-stone of hydrological research for many decades. The amount of rainfall and its intensity and variability control the generation of runoff and the erosional processes operating at different scales. These interactions can be greatly variable in Mediterranean catchments with marked hydrological fluctuations. The aim of the study was to evaluate the performance of rainfall-runoff model, for rainfall-runoff simulation in a Mediterranean subcatchment. The Pan-European Soil Erosion Risk Assessment (PESERA, a simplified hydrological process-based approach, was used in this study to combine hydrological surface runoff factors. In total 128 input layers derived from data set includes; climate, topography, land use, crop type, planting date, and soil characteristics, are required to run the model. Initial ground cover was estimated from the Landsat ETM data provided by ESA. This hydrological model was evaluated in terms of their performance in Goksu River Watershed, Turkey. It is located at the Central Eastern Mediterranean Basin of Turkey. The area is approximately 2000 km2. The landscape is dominated by bare ground, agricultural and forests. The average annual rainfall is 636.4mm. This study has a significant importance to evaluate different model performances in a complex Mediterranean basin. The results provided comprehensive insight including advantages and limitations of modelling approaches in the Mediterranean environment.

  17. Best Management Practices for sediment control in a Mediterranean agricultural watershed

    Science.gov (United States)

    Abdelwahab, Ossama M. M.; Bingner, Ronald L.; Milillo, Fabio; Gentile, Francesco

    2015-04-01

    Soil erosion can lead to severe destruction of agricultural sustainability that affects not only productivity, but the entire ecosystem in the neighboring areas. Sediments transported together with the associated nutrients and chemicals can significantly impact downstream water bodies. Various conservation and management practices implemented individually or integrated together as a system can be used to reduce the negative impacts on agricultural watersheds from soil erosion. Hydrological models are useful tools for decision makers when selecting the most effective combination of management practices to reduce pollutant loads within a watershed system. The Annualized Agricultural Non-point Source (AnnAGNPS) pollutant loading management model can be used to analyze the effectiveness of diverse management and conservation practices that can control or reduce the impact of soil erosion processes and subsequent sediment loads in agricultural watersheds. A 506 km2 Mediterranean medium-size watershed (Carapelle) located in Apulia, Southern Italy was used as a case study to evaluate the model and best management practices (BMPs) for sediment load control. A monitoring station located at the Ordona bridge has been instrumented to continuously monitor stream flow and suspended sediment loads. The station has been equipped with an ultrasound stage meter and a stage recorder to monitor stream flow. An infrared optic probe was used to measure suspended sediment concentrations (Gentile et al., 2010 ). The model was calibrated and validated in the Carapelle watershed on an event basis (Bisantino et al., 2013), and the validated model was used to evaluate the effectiveness of BMPs on sediment reduction. Various management practices were investigated including evaluating the impact on sediment load of: (1) converting all cropland areas into forest and grass covered conditions; (2) converting the highest eroding cropland areas to forest or grass covered conditions; and (3

  18. A Landscape View of Agricultural Insecticide Use across the Conterminous US from 1997 through 2012.

    Directory of Open Access Journals (Sweden)

    Timothy D Meehan

    Full Text Available Simplification of agricultural landscapes is expected to have positive effects on many crop pests and negative effects on their natural enemies, potentially leading to increased pest pressure, decreased crop yield, and increased insecticide use. While many intermediate links in this causal chain have empirical support, there is mixed evidence for ultimate relationships between landscape simplification, crop yield, and insecticide use, especially at large spatial and temporal scales. We explored relationships between landscape simplification (proportion of a county in harvested cropland and insecticide use (proportion of harvested cropland treated with insecticides, using county-level data from the US Census of Agriculture and a variety of standard and spatiotemporal regression techniques. The best model indicated that insecticide use across the US has increased between 1997 and 2012, was strongly dependent on the crops grown in a county, increased with average farm income and size, and increased with annual growing degree days. After accounting for those variables, and other unidentified spatial and temporal structure in the data, there remained a statistically significant, moderate, positive relationship between insecticide use and landscape simplification. These results lend general support to the causal chain outlined above, and to the notion that a landscape perspective is useful for managing ecosystem services that are provided by mobile organisms and valuable to agriculture.

  19. The Paleo-Anthropocene in the East Mediterranean

    Science.gov (United States)

    Ackermann, Oren; Frumin, Suembikya; Kolska Horwitz, Liora; Maeir, Aren M.; Weiss, Ehud; Zhevelev, Helena M.

    2015-04-01

    The East Mediterranean region is located in a transition zone between the sub-humid Mediterranean climate and the semi-arid and arid climates. During the last few Millennia, this area has witnessed human activities at various levels of intensity that have affected the landscape system evolution. For this reason, the given region is an excellent example of an anthropogenic landscape that has been shaped since the Paleo-Anthropocene and until today. The lecture will present a few milestones that demonstrate the ancient anthropogenic impact on various landscape components including physical structure and vegetation and fauna composition and patterns. Physical structure Site density increased dramatically from prehistoric times through to the Byzantine period, when it reached more than 5 sites/km2. Agricultural terraces cover more than 50% of the slopes in the main ridge slope. Vegetation patterns and composition Ancient activities that altered the physical structure had an impact on vegetation patterns that remain visible today. Human land use over history changed the vegetation composition, as revealed in archaeobotanical finds and pollen analysis. For example, changes in conditions during the Neolithic period, at the beginning of agriculture, can be seen by the appearance of weeds. In later periods, the planting of olive trees changed the vegetation composition which has an effect until today. The area also underwent human transitions, as many cultures appeared and inhabited the area. These cultures at times brought with them plants associated specifically with these cultures (e.g. the Philistines). Fauna extinction and invasion There are a few example of species extinction that occurred in the past as a result of mass hunting and killing; for example, the extinction of the Gazella subgutturosa in North Syria. In addition, there is evidence that ancient cultures brought animal species with them. For example, the Philistines that came to the area during the early

  20. CITRUS AS A COMPONENT OF THE MEDITERRANEAN DIET

    Directory of Open Access Journals (Sweden)

    Amilcar Duarte

    2016-12-01

    Full Text Available Citrus are native to southeastern Asia, but are present in the Mediterranean basin for centuries. This group of species has reached great importance in some of the Mediterranean countries and, in the case of orange, mandarin and lemon trees, they found here soil and climatic conditions which allows them to achieve a high level of fruit quality, even better than in the regions where they came from. Citrus fruits are present in the diet of the peoples living on the Mediterranean basin, at least since the time of the Roman Empire. In the 20th century they became the main crop in various agricultural areas of the Mediterranean, playing an important role in the landscape, in the diet of the overall population, and also in international trade. They are present in the gardens of palaces and monasteries, but also in the courtyards and orchards of the poorest families. Their fruits are not only a refreshing dessert, but also a condiment, or even a major component of many dishes. Citrus fruits have well-documented nutritional and health benefits. They can actually help prevent and cure some diseases and, above all, they are essential in a balanced and tasty diet.

  1. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes

    NARCIS (Netherlands)

    Landis, D.A.; Gardiner, M.M.; Werf, van der W.; Swinton, S.M.

    2008-01-01

    Increased demand for corn grain as an ethanol feedstock is altering U. S. agricultural landscapes and the ecosystem services they provide. From 2006 to 2007, corn acreage increased 19% nationally, resulting in reduced crop diversity in many areas. Biological control of insects is an ecosystem

  2. Nectar production in oilseeds: Food for pollinators in an agricultural landscape

    Science.gov (United States)

    Pollinating insects are in decline throughout the world, driven by a combination of factors including the loss of forage resources. The corn- and soybean-dominated agriculture of the Central and Midwestern US produces a landscape relatively devoid of nectar and pollen resources. Introducing specialt...

  3. Agriculture and land management: the landscape monitoring system in Tuscany

    Directory of Open Access Journals (Sweden)

    Mauro Agnoletti

    2009-10-01

    Full Text Available With respect to the reduced weight in the Gross National Product (GDP and the continuous decrease in manpower which has been recorded in the last decades, an important role is recognized to the rural sector in the current developmetn model which justify the heavy financial committment of Europe and Italy to sustain european agriculture.Within this role, land preservation has an important role for the sector competitiveness, the rural space quality and the citizen’s life quality, and this role is nowadays recognized even by the politics for landscape defined for the Piano strategico nazionale 2007-20131. Both action definitions and planning and development of landscape resources firstly require to define landscape monitoring systems pointing out trends, and critical and strength points represented by the great historical and environmental differences of Italian landscapes. This study is a synthesis of the results from a 5 year project aimed to the definition of a landscape monitoring system in Tuscany, ranging from 1800 and 2000 and based on study areas covering around 1% of the regional territory, which will soon be implemented. The first recorded results show a strong decrease of landscape diversity (40-50% in the investigated time period. This study want to be an example for the implementation of the future monitoring system of this resource.

  4. The representativeness of Olea pollen from olive groves and the late Holocene landscape reconstruction in central Mediterranean

    Science.gov (United States)

    Florenzano, Assunta; Mercuri, Anna Maria; Rinaldi, Rossella; Rattighieri, Eleonora; Fornaciari, Rita; Messora, Rita; Arru, Laura

    2017-10-01

    Modern pollen spectra are an invaluable reference tool for paleoenvironmental and cultural landscape reconstructions, but the importance of knowing the pollen rain released from orchards remains underexplored. In particular, the role of cultivated trees is in past and current agrarian landscapes has not been fully investigated. Here, we present a pollen analysis of 70 surface soil samples taken from 12 olive groves in Basilicata and Tuscany, two regions of Italy that exemplify this cultivation in the Mediterranean basin. This study was carried out to assess the representativeness of Olea pollen in modern cultivations. Although many variables can influence the amount of pollen observed in soils, it was clear that most of the pollen was deposited below the trees in the olive groves. A rapid decline in the olive pollen percentages (c. 85% on average) was found when comparing samples taken from IN vs. OUT of each grove. The mean percentages of Olea pollen obtained from the archaeological sites close to the studied orchards suggest that olive groves were established far from the Roman farmhouses of Tuscany. Further south, in the core of the Mediterranean basin, the cultivation of Olea trees was likely situated approximately 500–1000 m from the rural sites in Basilicata, and dated from the Hellenistic to the Medieval period.

  5. Detection of Anthropogenic pressures on western Mediterranean irrigation systems (La Albufera de Valencia agriculture system, eastern Spain)

    Science.gov (United States)

    Pascual-Aguilar, J. A.; Andreu, V.; Picó, Y.

    2012-04-01

    Irrigation systems are considered as one of the major landscapes features in western Mediterranean environments. Both socio-economic and cultural elements are interrelated in their development and preservation. Generally, due to their location in flat lands and close to major urban-industrial zones, irrigation lands are suffering of intense pressures that can alter their agricultural values, environmental quality and, consequently, the sustainability of the systems. To understand the nature of anthropogenic pressures on large Mediterranean water agricultural systems a methodology based on environmental forensics criteria has been developed and applied to La Albufera Natural Park in Valencia (Eastern Spain), a protected area where traditional irrigation systems exists since Muslim times (from 8th to 15th centuries). The study analysed impacts on water and soils, for the first case the fate of emerging contaminants of urban origin (pharmaceuticals and illegal drugs) are analysed. Impact on soils is analysed using the dynamics urban expansion and the loss and fragmentation of soils. The study focused is organised around two major procedures: (1) analysis of 16 water samples to identify the presence of 14 illicit drugs and 17 pharmaceutical compounds by Liquid Chromatography-Mass Spectrometry techniques; (2) spatial analysis with Geographical Information Systems (GIS) integrating different sources and data formats such as water analysis, social, location of sewage water treatment plan and the synchronic comparison of two soil sealing layers -for the years 1991 and 2010. Results show that there is a clear trend in the introduction of pharmaceutical in the irrigation water through previous use of urban consumption and, in many cases, for receiving the effluents of wastewaters treatment plants. Impacts on soils are also important incidence in the fragmentation and disappearance of agricultural land due to soil sealing, even within the protected area of the Natural Park

  6. High trees increase sunflower seed predation by birds in an agricultural landscape of Israel

    Directory of Open Access Journals (Sweden)

    Jessica eSchäckermann

    2014-07-01

    Full Text Available Natural habitats in agricultural landscapes promote agro-ecosystem services but little is known about negative effects (dis-services derived by natural habitats such as crop seed predation. Birds are important seed predators and use high landscape structures to perch and hide. High trees in agricultural landscapes may therefore drive seed predation. We examined if the presence, the distance and the percentages of high trees (tree height >5 m and the percentages of natural habitat surrounding sunflower fields, increased seed predation by birds in Israel. At the field scale, we assessed seed predation across a sample grid of an entire field. At the landscape scale, we assessed seed predation at the field margins and interiors of 20 sunflower fields. Seed predation was estimated as the percentage of removed seeds from sunflower heads. Distances of sample points to the closest high tree and percentage of natural habitat and of high trees in a 1km radius surrounding the fields were measured.We found that seed predation increased with decreasing distance to the closest high tree at the field and landscape scale. At the landscape scale, the percentage of high trees and natural habitat did not increase seed predation. Seed predation in the fields increased by 37 %, with a maximum seed predation of 92 %, when a high tree was available within zero to 50 m to the sunflower fields. If the closest high tree was further away, seed predation was less than 5 %. Sunflower seed predation by birds can be reduced, when avoiding sowing sunflowers within a radius of 50 m to high trees. Farmers should plan to grow crops, not sensitive to bird seed predation, closer to trees to eventually benefit from ecosystem services provided by birds, such as predation of pest insects, while avoiding these locations for growing crops sensitive to bird seed predation. Such management recommendations are directing towards sustainable agricultural landscapes.

  7. Assessing habitat quality of farm-dwelling house sparrows in different agricultural landscapes.

    Science.gov (United States)

    von Post, Maria; Borgström, Pernilla; Smith, Henrik G; Olsson, Ola

    2012-04-01

    Having historically been abundant throughout Europe, the house sparrow (Passer domesticus) has in recent decades suffered severe population declines in many urban and rural areas. The decline in rural environments is believed to be caused by agricultural intensification, which has resulted in landscape simplification. We used giving-up densities (GUDs) of house sparrows feeding in artificial food patches placed in farmlands of southern Sweden to determine habitat quality during the breeding season at two different spatial scales: the landscape and the patch scale. At the landscape scale, GUDs were lower on farms in homogeneous landscapes dominated by crop production compared to more heterogeneous landscapes with mixed farming or animal husbandry. At the patch level, feeding patches with a higher predation risk (caused by fitting a wall to the patch to obstruct vigilance) had higher GUDs. In addition, GUDs were positively related to population size, which strongly implies that GUDs reflect habitat quality. However, the increase followed different patterns in homogeneous and heterogeneous landscapes, indicating differing population limiting mechanisms in these two environments. We found no effect of the interaction between patch type and landscape type, suggesting that predation risk was similar in both landscape types. Thus, our study suggests that simplified landscapes constitute a poorer feeding environment for house sparrows during breeding, that the population-regulating mechanisms in the landscapes differ, but that predation risk is the same across the landscape types.

  8. IMPORTANCE OF AGRICULTURE WITHIN THE STRUCTURE OF EMPLOYMENT AND PRODUCTION IN THE MEDITERRANEAN COUNTRIES

    Directory of Open Access Journals (Sweden)

    Jakub Piecuch

    2016-03-01

    Full Text Available The expansion of the European Union during the 1980s with the Mediterranean region countries was a major challenge both for the new Member States and for the Community as a whole. The new Member States, i.e. Greece, Spain and Portugal, were poorly developed in economic terms, with a high proportion of the agricultural sector in overall production and employment structure. Still, the concerns about the future turned out to be unfounded, and the impulse of the accession process and the necessity to compete on the common market brought certain advantages both to existing and to new Member States, thus enforcing certain changes in the structure of production and employment in the economies discussed in this paper. Today, the Mediterranean region states, irrespective of the success achieved in the past years, are again facing the need to resolve certain important economic problems related to the global fi nancial crisis. This paper discusses one of the aspects that strongly contributes to the present diffi cult socioeconomic situation of the contemplated region, i.e. evolution of the sectoral structure of employment and GDP during the European Union membership, with special consideration of the situation in agriculture

  9. Soil erosion processes and sediment fluxes in a Mediterranean landscape of marls, Campina de Cadiz, SW Spain

    International Nuclear Information System (INIS)

    Faust, D.; Schmidt, M.

    2009-01-01

    Marl landscapes, especially in the Mediterranean, show evident traces of high present-day and past soil erosion rates. The tendency to develop hill slope channels leads even at moderate rainstorm magnitudes to a significant increase of slope-to-slope connectivity, resulting in high amounts of mass transfer from upper parts of the hill slopes towards foot slopes and valley floors. To analyse the intensity of this transfer a study was conducted focussing on late Holocene sediments correlative to modern-time soil erosion in the marl landscape of SW Spain. Based of field observations and sediment analysis several landscape positions within a medium-scale catchment were explored. Depending on landscape constellation, the sediment characteristics reflect either hill slope processes or alluvial processes or an interchange of them. For a temporal context a method to trace young sediments by analysing nutrients originating from modern-time application of mineral fertiliser was applied. Results show high rates of sedimentation (>1 cm/year) for this young period in several profiles. By identifying the predominant geomorphic components and processes in the study area a conceptual model of the studied system was developed. (Author) 17 refs.

  10. Environment, agriculture, and settlement patterns in a marginal Polynesian landscape

    Science.gov (United States)

    Kirch, P.V.; Hartshorn, A.S.; Chadwick, O.A.; Vitousek, P.M.; Sherrod, D.R.; Coil, J.; Holm, L.; Sharp, W.D.

    2004-01-01

    Beginning ca. A.D. 1400, Polynesian farmers established permanent settlements along the arid southern flank of Haleakala Volcano, Maui, Hawaiian Islands; peak population density (43-57 persons per km2) was achieved by A.D. 1700-1800, and it was followed by the devastating effects of European contact. This settlement, based on dryland agriculture with sweet potato as a main crop, is represented by >3,000 archaeological features investigated to date. Geological and environmental factors are the most important influence on Polynesian farming and settlement practices in an agriculturally marginal landscape. Interactions between lava flows, whose ages range from 3,000 to 226,000 years, and differences in rainfall create an environmental mosaic that constrained precontact Polynesian farming practices to a zone defined by aridity at low elevation and depleted soil nutrients at high elevation. Within this productive zone, however, large-scale agriculture was concentrated on older, tephra-blanketed lava flows; younger flows were reserved for residential sites, small ritual gardens, and agricultural temples.

  11. Anthropogenic Influences in Land Use/Land Cover Changes in Mediterranean Forest Landscapes in Sicily

    Directory of Open Access Journals (Sweden)

    Donato S. La Mela Veca

    2016-01-01

    Full Text Available This paper analyzes and quantifies the land use/land cover changes of the main forest and semi-natural landscape types in Sicily between 1955 and 2012. We analyzed seven representative forest and shrubland landscapes in Sicily. These study areas were chosen for their importance in the Sicilian forest panorama. We carried out a diachronic survey on historical and current aerial photos; all the aerial images used to survey the land use/land cover changes were digitalized and georeferenced in the UTM WGS84 system. In order to classify land use, the Regional Forest Inventory 2010 legend was adopted for the more recent images, and the CORINE Land Cover III level used for the older, lower resolution images. This study quantifies forest landscape dynamics; our results show for almost all study areas an increase of forest cover and expansion, whereas a regressive dynamic is found in rural areas due to intensive agricultural and pasturage uses. Understanding the dynamics of forest landscapes could enhance the role of forestry policy as a tool for landscape management and regional planning.

  12. GIS analysis of change in an agriculture landscape in Central Finland

    Directory of Open Access Journals (Sweden)

    Riitta Ruuska

    1996-12-01

    Full Text Available Changes in landscape over a period of 50 years were analysed in a rural area of 324 ha in Central Finland. The data were digitized from aerial photographs of the National Land Survey taken in 1944, 1959, 1979 and 1991, and analysed with the IDRISI™ geographic information system (GIS. The average proportion of land in agricultural use in the sample area was 17.4%. The arable area declined from the maximum of 62.3 ha (1959 to 47.6 ha. The total length of linear landscape elements, predominantly ditch bank habitats, halved, from 876 m/ha of field (1944 to 449 m/ha by the end of the period. The average rate of loss of field boundary habitat was 9.1 m/ha/ year. At the same time, the Shannon-Weaver index of diversity of agricultural landscape elements dropped from 0.37 to 0.24. The number of field parcels declined by 29%, and the mean parcel size increased by 45%, from 1.2 ha to 1.7 ha. The index value of the fractal dimension measuring the complexity of parcel shapes also fell, from 1.88 (1959 to 1.86 (1991. The change in spatial structure reflects the intensification of farming in Finland. Biodiversity at ecosystem level has clearly declined. However, the implications for the agroecosystem and its sustainability are still unknown.

  13. Habitat connectivity and fragmented nuthatch populations in agricultural landscapes

    OpenAIRE

    Langevelde, van, F.

    1999-01-01

    In agricultural landscapes, the habitat of many species is subject to fragmentation. When the habitat of a species is fragmented and the distances between patches of habitat are large relative to the movement distances of the species, it can be expected that the degree of habitat connectivity affects processes at population and individual level. In this thesis, I report on a study of effects of habitat fragmentation and opportunities to mitigate these effects by planning ecological n...

  14. Changes in forest landscape due to agricultural activities and their influence on natural ecosystems: the eastern Galician mountains

    Directory of Open Access Journals (Sweden)

    Diaz-Maroto I.J.

    2018-03-01

    Full Text Available Forest and agricultural landscapes are vital in relation to biodiversity. Protection policies in such areas should include incentives to enable the common landuse practices. Conservation cannot be addressed in the short term because these landscapes have evolved as socio-ecological systems and provide optimal conditions for biodiversity maintenance. They occur in areas where agriculture has not changed significantly as in the eastern Galician mountains. The landscape dynamics has been shaped by human involvement during centuries. We analyzed how the landscape has evolved according to environmental, socioeconomic and historical changes with the aim of proposing actions for its conservation. The study focused on the recovery of natural hardwood forests which have been intensively exploited since ancient times. Over the past few centuries, these forests have been transformed to agricultural land, felled for use in the naval, metallurgical and railway industries, expropriated from the Church, and affected by wildfire; more recently, have been replaced by fast growing species. Today, broadleaved forests cover small areas of rugged land where the topography often precludes other land uses. In conclusion, although the landscape in the study area has undergone a major transformation, now this land is a priority for biodiversity conservation.

  15. Promoting biodiversity values of small forest patches in agricultural landscapes: Ecological drivers and social demand.

    Science.gov (United States)

    Varela, Elsa; Verheyen, Kris; Valdés, Alicia; Soliño, Mario; Jacobsen, Jette B; De Smedt, Pallieter; Ehrmann, Steffen; Gärtner, Stefanie; Górriz, Elena; Decocq, Guillaume

    2018-04-01

    Small forest patches embedded in agricultural (and peri-urban) landscapes in Western Europe play a key role for biodiversity conservation with a recognized capacity of delivering a wide suite of ecosystem services. Measures aimed to preserve these patches should be both socially desirable and ecologically effective. This study presents a joint ecologic and economic assessment conducted on small forest patches in Flanders (Belgium) and Picardie (N France). In each study region, two contrasted types of agricultural landscapes were selected. Open field (OF) and Bocage (B) landscapes are distinguished by the intensity of their usage and higher connectivity in the B landscapes. The social demand for enhancing biodiversity and forest structure diversity as well as for increasing the forest area at the expenses of agricultural land is estimated through an economic valuation survey. These results are compared with the outcomes of an ecological survey where the influence of structural features of the forest patches on the associated herbaceous diversity is assessed. The ecological and economic surveys show contrasting results; increasing tree species richness is ecologically more important for herbaceous diversity in the patch, but both tree species richness and herbaceous diversity obtain insignificant willingness to pay estimates. Furthermore, although respondents prefer the proposed changes to take place in the region where they live, we find out that social preferences and ecological effectiveness do differ between landscapes that represent different intensities of land use. Dwellers where the landscape is perceived as more "degraded" attach more value to diversity enhancement, suggesting a prioritization of initiatives in these area. In contrast, the ecological analyses show that prioritizing the protection and enhancement of the relatively better-off areas is more ecologically effective. Our study calls for a balance between ecological effectiveness and welfare

  16. Effects of farm heterogeneity and methods for upscaling on modelled nitrogen losses in agricultural landscapes

    International Nuclear Information System (INIS)

    Dalgaard, T.; Hutchings, N.; Dragosits, U.; Olesen, J.E.; Kjeldsen, C.; Drouet, J.L.; Cellier, P.

    2011-01-01

    The aim of this study is to illustrate the importance of farm scale heterogeneity on nitrogen (N) losses in agricultural landscapes. Results are exemplified with a chain of N models calculating farm-N balances and distributing the N-surplus to N-losses (volatilisation, denitrification, leaching) and soil-N accumulation/release in a Danish landscape. Possible non-linearities in upscaling are assessed by comparing average model results based on (i) individual farm level calculations and (ii) averaged inputs at landscape level. Effects of the non-linearities that appear when scaling up from farm to landscape are demonstrated. Especially in relation to ammonia losses the non-linearity between livestock density and N-loss is significant (p > 0.999), with around 20-30% difference compared to a scaling procedure not taking this non-linearity into account. A significant effect of farm type on soil N accumulation (p > 0.95) was also identified and needs to be included when modelling landscape level N-fluxes and greenhouse gas emissions. - Highlights: → Farm-N balances and the distribution on types of N-losses are modelled for 56 farms. → Farm type significantly affects N-losses and soil-N accumulation. → A non-linear relation between livestock density and ammonia loss is identified. → Approaches for upscaling from farm to landscape level are discussed. → Accounting farm heterogeneity is important when upscaling N-losses. - This study illustrates the importance of including non-linear effects of farm and landscape heterogeneity on the modelling and upscaling of farm nitrogen losses and greenhouse gas emissions in agricultural landscapes.

  17. Effects of farm heterogeneity and methods for upscaling on modelled nitrogen losses in agricultural landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Dalgaard, T., E-mail: tommy.dalgaard@agrsci.dk [Aarhus University, Department of Agroecology, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark); Hutchings, N. [Aarhus University, Department of Agroecology, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark); Dragosits, U. [CEH Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB, Scotland (United Kingdom); Olesen, J.E.; Kjeldsen, C. [Aarhus University, Department of Agroecology, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark); Drouet, J.L.; Cellier, P. [INRA, UMR Environnement et Grandes Cultures, BP 01, 78850 Thiverval-Grignon (France)

    2011-11-15

    The aim of this study is to illustrate the importance of farm scale heterogeneity on nitrogen (N) losses in agricultural landscapes. Results are exemplified with a chain of N models calculating farm-N balances and distributing the N-surplus to N-losses (volatilisation, denitrification, leaching) and soil-N accumulation/release in a Danish landscape. Possible non-linearities in upscaling are assessed by comparing average model results based on (i) individual farm level calculations and (ii) averaged inputs at landscape level. Effects of the non-linearities that appear when scaling up from farm to landscape are demonstrated. Especially in relation to ammonia losses the non-linearity between livestock density and N-loss is significant (p > 0.999), with around 20-30% difference compared to a scaling procedure not taking this non-linearity into account. A significant effect of farm type on soil N accumulation (p > 0.95) was also identified and needs to be included when modelling landscape level N-fluxes and greenhouse gas emissions. - Highlights: > Farm-N balances and the distribution on types of N-losses are modelled for 56 farms. > Farm type significantly affects N-losses and soil-N accumulation. > A non-linear relation between livestock density and ammonia loss is identified. > Approaches for upscaling from farm to landscape level are discussed. > Accounting farm heterogeneity is important when upscaling N-losses. - This study illustrates the importance of including non-linear effects of farm and landscape heterogeneity on the modelling and upscaling of farm nitrogen losses and greenhouse gas emissions in agricultural landscapes.

  18. The Representativeness of Olea Pollen from Olive Groves and the Late Holocene Landscape Reconstruction in Central Mediterranean

    Directory of Open Access Journals (Sweden)

    Assunta Florenzano

    2017-10-01

    Full Text Available Modern pollen spectra are an invaluable reference tool for paleoenvironmental and cultural landscape reconstructions, but the importance of knowing the pollen rain released from orchards remains underexplored. In particular, the role of cultivated trees is in past and current agrarian landscapes has not been fully investigated. Here, we present a pollen analysis of 70 surface soil samples taken from 12 olive groves in Basilicata and Tuscany, two regions of Italy that exemplify this cultivation in the Mediterranean basin. This study was carried out to assess the representativeness of Olea pollen in modern cultivations. Although many variables can influence the amount of pollen observed in soils, it was clear that most of the pollen was deposited below the trees in the olive groves. A rapid decline in the olive pollen percentages (c. 85% on average was found when comparing samples taken from IN vs. OUT of each grove. The mean percentages of Olea pollen obtained from the archeological sites close to the studied orchards suggest that olive groves were established far from the Roman farmhouses of Tuscany. Further south, in the core of the Mediterranean basin, the cultivation of Olea trees was likely situated ~500–1,000 m from the rural sites in Basilicata, and dated from the Hellenistic to the Medieval period.

  19. Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modelling

    DEFF Research Database (Denmark)

    Søgaard, H.; Jensen, N.O.; Bøgh, E.

    2003-01-01

    Within an agricultural landscape of western Denmark, the carbon dioxide exchange was studied throughout a year (April 1998-March 1999). During the growing season, five eddy correlation systems were operated in parallel over some of the more important crops (winter wheat, winter barley, spring...

  20. The Mediterranean Diet and the Increasing Demand of the Olive Oil Sector: Shifts and Environmental Consequences

    Directory of Open Access Journals (Sweden)

    Bruno Neves

    2018-06-01

    Full Text Available Mediterranean countries play a crucial role as olive oil producers and consumers compared to other world regions. This work focusses on the development of the world production, trade and consumption where the Mediterranean region stands out from the rest of the world, in particular, the Northern Mediterranean countries. Aspects such as how communication emphasizes the benefits of the Mediterranean diet - which is a distinctive characteristic of the Mediterranean culture and identity - the Slow Food Movement, the International Olive Council campaigns, and the successive Common Agricultural Policies, that have triggered production, trade and consumption around the world, are here discussed. Such increases and stimuli brought and is still bringing changes to the olive oil sector such as a shifting tendency in production modes as well as modernization of the sector, responding to the increasing demand. These shifts and demand are changing landscapes and are being referred as environmentally harmful to the ecosystems as the production of olive oil is shifting to more intensive production systems and monoculture plantations. These issues are here debated and illustrated with case study examples, referring to the Mediterranean countries, particularly, referring to the Iberian Peninsula.

  1. Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region.

    Science.gov (United States)

    Bevivino, Annamaria; Paganin, Patrizia; Bacci, Giovanni; Florio, Alessandro; Pellicer, Maite Sampedro; Papaleo, Maria Cristiana; Mengoni, Alessio; Ledda, Luigi; Fani, Renato; Benedetti, Anna; Dalmastri, Claudia

    2014-01-01

    Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered). Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture) showed a more stable bacterial community than those with high human input (vineyards and managed meadow). Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio-indicators of soil

  2. Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region.

    Directory of Open Access Journals (Sweden)

    Annamaria Bevivino

    Full Text Available Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered. Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture showed a more stable bacterial community than those with high human input (vineyards and managed meadow. Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio

  3. Complexity of human and ecosystem interactions in an agricultural landscape

    Science.gov (United States)

    Coupe, Richard H.; Barlow, Jeannie R.; Capel, Paul D.

    2012-01-01

    The complexity of human interaction in the commercial agricultural landscape and the resulting impacts on the ecosystem services of water quality and quantity is largely ignored by the current agricultural paradigm that maximizes crop production over other ecosystem services. Three examples at different spatial scales (local, regional, and global) are presented where human and ecosystem interactions in a commercial agricultural landscape adversely affect water quality and quantity in unintended ways in the Delta of northwestern Mississippi. In the first example, little to no regulation of groundwater use for irrigation has caused declines in groundwater levels resulting in loss of baseflow to streams and threatening future water supply. In the second example, federal policy which subsidizes corn for biofuel production has encouraged many producers to switch from cotton to corn, which requires more nutrients and water, counter to national efforts to reduce nutrient loads to the Gulf of Mexico and exacerbating groundwater level declines. The third example is the wholesale adoption of a system for weed control that relies on a single chemical, initially providing many benefits and ultimately leading to the widespread occurrence of glyphosate and its degradates in Delta streams and necessitating higher application rates of glyphosate as well as the use of other herbicides due to increasing weed resistance. Although these examples are specific to the Mississippi Delta, analogous situations exist throughout the world and point to the need for change in how we grow our food, fuel, and fiber, and manage our soil and water resources.

  4. No evidence of increased fire risk due to agricultural land abandonment in Sardinia (Italy

    Directory of Open Access Journals (Sweden)

    C. Ricotta

    2012-05-01

    Full Text Available Different land cover types are related to different levels of fire hazard through their vegetation structure and fuel load composition. Therefore, understanding the relationships between landscape changes and fire behavior is of crucial importance for developing adequate fire fighting and fire prevention strategies for a changing world. In the last decades the abandonment of agricultural lands and pastoral activities has been the major driver of landscape transformations in Mediterranean Europe. As agricultural land abandonment typically promotes an increase in plant biomass (fuel load, a number of authors argue that vegetation succession in abandoned fields and pastures is expected to increase fire hazard. In this short paper, based on 28 493 fires in Sardinia (Italy in the period 2001–2010, we show that there is no evidence of increased probability of fire ignition in abandoned rural areas. To the contrary, in Sardinia the decreased human impact associated with agricultural land abandonment leads to a statistically significant decrease of fire ignition probability.

  5. The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study.

    Science.gov (United States)

    Bajocco, S; De Angelis, A; Perini, L; Ferrara, A; Salvati, L

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  6. The Impact of Land Use/Land Cover Changes on Land Degradation Dynamics: A Mediterranean Case Study

    Science.gov (United States)

    Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L.

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  7. The Cultural Landscape Past of the Eastern Mediterranean: The Border Lord’s Gardens and the Common Landscape Tradition of the Arabic and Byzantine Culture

    Directory of Open Access Journals (Sweden)

    Konstantinos Moraitis

    2018-02-01

    Full Text Available An evaluation of landscape tradition, in Near and Middle East area, could emphasize a profound past of agricultural experience, as well as of landscape and garden art. In reference to this common past, Byzantine and Arabic landscape and garden art paradigms appear to be geographically and culturally correlated, as proved by a Byzantine 12th century folksong, presenting the construction of a villa, with its surrounding gardens and landscape formations, in the territory of Euphrates River. This song refers to Vasilios Digenes Akritas or ‘Border Lord’, a legendary hero of mixed Byzantine-Greek and Arab blood; ‘Digenes’ meaning a person of dual genes, both of Byzantine and Arabic origin, and ‘Akritas’ an inhabitant of the borderline. At the end of the narration of the song, contemporary reader feels skeptical. Was modern landscape and garden art born in the European continent or was it transferred to Western world through an eastern originated lineage of Byzantine and Arabic provenance?

  8. Rapid genetic turnover in populations of the insect pest Bemisia tabaci Middle East: Asia Minor 1 in an agricultural landscape.

    Science.gov (United States)

    Dinsdale, A; Schellhorn, N A; De Barro, P; Buckley, Y M; Riginos, C

    2012-10-01

    Organisms differ greatly in dispersal ability, and landscapes differ in amenability to an organism's movement. Thus, landscape structure and heterogeneity can affect genetic composition of populations. While many agricultural pests are known for their ability to disperse rapidly, it is unclear how fast and over what spatial scale insect pests might respond to the temporally dynamic agricultural landscapes they inhabit. We used population genetic analyses of a severe crop pest, a member of the Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidea) cryptic species complex known as Middle East-Asia Minor 1 (commonly known as biotype B), to estimate spatial and temporal genetic diversity over four months of the 2006-2007 summer growing season. We examined 559 individuals from eight sites, which were scored for eight microsatellite loci. Temporal genetic structure greatly exceeded spatial structure. There was significant temporal change in local genetic composition from the beginning to the end of the season accompanied by heterozygote deficits and inbreeding. This temporal structure suggests entire cohorts of pests can occupy a large and variable agricultural landscape but are rapidly replaced. These rapid genetic fluctuations reinforce the concept that agricultural landscapes are dynamic mosaics in time and space and may contribute to better decisions for pest and insecticide resistance management.

  9. Erosion and Land Degradation in Mediterranean areas as a adaptive response to Mediterranean agriiculture

    Science.gov (United States)

    Imeson, Anton

    2014-05-01

    The motivation for this session is the statement or claim that Mediterranean areas are sensitive to erosion and desertification. One result of the LEDDRA Approach, which is applying the Complex Adaptive (CAS)paradigm at study sites in Mediterranean Spain, Greece and Italy is that there is just a single socio-environmental system in which land degradation is being caused by the actions of people and the Mediterranean soils have co-eveolved with people under the influence of fire and grazing. They are therefore resilient, and this was demonstrated by Naveh and Thornes. Also the Medalus field sites showed very low rates of erosion. With examples from different Mediterranean landscapes, it is considered that Mediterranean landscapes went through an initial phase of being sensitive to erosion which ended up with the original soils before ploughing or deforestation, being eroded from most of the areas, In some places these are found. LEDDRA The Leddra approach is to consider different states which are separated by transitions. The first state is that of the deforestaion and destruction of the forest that took place 6000 10000 years ago, in the Eastern and Northern Mediterranean, and 2000 to 4,000 years ago in large areas of the Western Mediterranean, and 100 to 400 years ago in California. Australia, New Zealand and Chile. The second state involves appropriating and settling the land from indigenous people and introducing cattle and sheep and Mediterranean crops. The current state of desertification is one in which erosion occurs because of the use of specific cultivation methods and subsidies for irrigating and producing crops outside of their range. In the Mediterranean landscape State, such as found near Santiago in Chile and in Crete, society gains many cultural benefits from grazing. However, the consequences of this are that the whole ecosystem is maintained in an arid state, so that areas in Crete receiving 800-1100 mm rainfall have a semi arid vegetation, instead

  10. Temporal dynamics influenced by global change: bee community phenology in urban, agricultural, and natural landscapes.

    Science.gov (United States)

    Leong, Misha; Ponisio, Lauren C; Kremen, Claire; Thorp, Robbin W; Roderick, George K

    2016-03-01

    Urbanization and agricultural intensification of landscapes are important drivers of global change, which in turn have direct impacts on local ecological communities leading to shifts in species distributions and interactions. Here, we illustrate how human-altered landscapes, with novel ornamental and crop plant communities, result not only in changes to local community diversity of floral-dependent species, but also in shifts in seasonal abundance of bee pollinators. Three years of data on the spatio-temporal distributions of 91 bee species show that seasonal patterns of abundance and species richness in human-altered landscapes varied significantly less compared to natural habitats in which floral resources are relatively scarce in the dry summer months. These findings demonstrate that anthropogenic environmental changes in urban and agricultural systems, here mediated through changes in plant resources and water inputs, can alter the temporal dynamics of pollinators that depend on them. Changes in phenology of interactions can be an important, though frequently overlooked, mechanism of global change. © 2015 John Wiley & Sons Ltd.

  11. Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries

    NARCIS (Netherlands)

    Feon, Le V.; Schermann-Legionnet, A.; Delettre, Y.; Aviron, S.; Billeter, R.; Bugter, R.J.F.; Hendrickx, F.; Burel, F.

    2010-01-01

    The impacts of agricultural practices and landscape composition on bee communities were investigated in 14 sites located in four Western European countries (Belgium, France, the Netherlands and Switzerland). Standardized interviews with farmers assessed agricultural practices in terms of

  12. Agricultural Urbanism in the Context of Landscape Ecological Architecture

    Science.gov (United States)

    Maltseva, I. N.; Kaganovich, N. N.; Mindiyrova, T. N.

    2017-11-01

    The article analyzes some of the fundamental aspects of cities sustainable development connected in many respects with the concept of ecological architecture. One of the main concepts of sustainability is considered in detail: the city as an eco-sustainable and balanced system, architectural objects as a full-fledged part of this system, which, most likely, will be determined by one of the directions of this development - the development of landscape architecture as an tool for integration of nature into the urban environment. At the same time, the variety of its functional forms and architectural methods in the system of organization of internal and external space is outlined as well as its interrelation with energy-saving architecture defining them as the two most important components of eco-sustainable development. The development forms of landscape architecture are considered in the review of analogs, as an example (agricultural urbanism object) a thesis on the topic “Vertical Farm Agroindustrial Complex” is presented.

  13. Chlorate origin and fate in shallow groundwater below agricultural landscapes.

    Science.gov (United States)

    Mastrocicco, Micòl; Di Giuseppe, Dario; Vincenzi, Fabio; Colombani, Nicolò; Castaldelli, Giuseppe

    2017-12-01

    In agricultural lowland landscapes, intensive agricultural is accompanied by a wide use of agrochemical application, like pesticides and fertilizers. The latter often causes serious environmental threats such as N compounds leaching and surface water eutrophication; additionally, since perchlorate can be present as impurities in many fertilizers, the potential presence of perchlorates and their by-products like chlorates and chlorites in shallow groundwater could be a reason of concern. In this light, the present manuscript reports the first temporal and spatial variation of chlorates, chlorites and major anions concentrations in the shallow unconfined aquifer belonging to Ferrara province (in the Po River plain). The study was made in 56 different locations to obtain insight on groundwater chemical composition and its sediment matrix interactions. During the monitoring period from 2010 to 2011, in June 2011 a nonpoint pollution of chlorates was found in the shallow unconfined aquifer belonging to Ferrara province. Detected chlorates concentrations ranged between 0.01 and 38 mg/l with an average value of 2.9 mg/l. Chlorates were found in 49 wells out of 56 and in all types of lithology constituting the shallow aquifer. Chlorates concentrations appeared to be linked to NO 3 - , volatile fatty acids (VFA) and oxygen reduction potential (ORP) variations. Chlorates behaviour was related to the biodegradation of perchlorates, since perchlorates are favourable electron acceptors for the oxidation of labile dissolved organic carbon (DOC) in groundwater. Further studies must take into consideration to monitor ClO 4 - in pore waters and groundwater to better elucidate the mass flux of ClO 4 - in shallow aquifers belonging to agricultural landscapes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Agricultural interventions for water saving and crop yield improvement, in a Mediterranean area - an experimental design

    Science.gov (United States)

    Morianou, Giasemi; Kourgialas, Nektarios; Psarras, George; Koubouris, George; Arampatzis, George; Karatzas, George; Pavlidou, Elisavet

    2017-04-01

    This work is a part of LIFE+ AGROCLIMAWATER project and the aim is to improve the water efficiency, increase the adaptive capacity of tree corps and save water, in a Mediterranean area, under different climatic conditions and agricultural practices. The experimental design as well as preliminary results at farm and river basin scales are presented in this work. Specifically, ten (10) pilot farms, both organic and conventional ones have been selected in the sub-basin of Platanias in western Crete - Greece. These ten pilot farms were selected representing the most typical crops in Platanias area (olive trees and citrus trees), as well as the typical soil, landscape and agricultural practices differentiation for each crop (field slope, water availability, soil type, management regime). From the ten pilot farms, eight were olive farms and the rest two citrus. This proportion correspond adequacy to the presentence of olive and citrus crops in the extended area of Platanias prefecture. Each of the ten pilot farm has been divided in two parts, the first one will be used as a control part, while the other one as the demonstration part where the interventions will be applied. The action plans for each selected farm are based on the following groups of possible interventions: a) reduction of water evaporation losses from soil surface, b) reduction of transpiration water losses through winter pruning and summer pruning, c) reduction of deep percolation water and nutrient losses, d) reduction of surface runoff, e) measures in order to maximize the efficiency of irrigation and f) rationalization of fertilizers and agrochemicals utilized. Preliminary results indicate that water saving and crop yield can be significantly improved based on the above innervations both at farm and river basin scale.

  15. LiDAR-guided Archaeological Survey of a Mediterranean Landscape: Lessons from the Ancient Greek Polis of Kolophon (Ionia, Western Anatolia).

    Science.gov (United States)

    Grammer, Benedikt; Draganits, Erich; Gretscher, Martin; Muss, Ulrike

    2017-01-01

    In 2013, an airborne laser scan survey was conducted in the territory of the Ionian city of Kolophon near the western coast of modern Turkey as part of an archaeological survey project carried out by the Mimar Sinan University of Istanbul (Turkey) and the University of Vienna (Austria). Several light detection and ranging (LiDAR) studies have been carried out in the temperate climate zones of Europe, but only a few in Mediterranean landscapes. Our study is based on the first LiDAR survey carried out for an archaeological purpose in Turkey and one of the first in the Mediterranean that have been planned, measured and filtered especially for archaeological research questions. The interpretation of LiDAR data combined with ground-observations proved extremely useful for the detection and documentation of archaeological remains below Mediterranean evergreen vegetation and dense maquis. This article deals with the methodological aspects of interpreting LiDAR data, using the Kolophon data as a case study. We offer a discussion of the strengths and limitations of LiDAR as an archaeological remote sensing method and suggest a best practice model for interpreting LiDAR data in a Mediterranean context. © 2017 The Authors. Archaeological Prospection published by John Wiley & Sons Ltd.

  16. Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape.

    Science.gov (United States)

    Qiu, Jiangxiao; Carpenter, Stephen R; Booth, Eric G; Motew, Melissa; Zipper, Samuel C; Kucharik, Christopher J; Chen, Xi; Loheide, Steven P; Seifert, Jenny; Turner, Monica G

    2018-01-01

    Sustaining food production, water quality, soil retention, flood, and climate regulation in agricultural landscapes is a pressing global challenge given accelerating environmental changes. Scenarios are stories about plausible futures, and scenarios can be integrated with biophysical simulation models to explore quantitatively how the future might unfold. However, few studies have incorporated a wide range of drivers (e.g., climate, land-use, management, population, human diet) in spatially explicit, process-based models to investigate spatial-temporal dynamics and relationships of a portfolio of ecosystem services. Here, we simulated nine ecosystem services (three provisioning and six regulating services) at 220 × 220 m from 2010 to 2070 under four contrasting scenarios in the 1,345-km 2 Yahara Watershed (Wisconsin, USA) using Agro-IBIS, a dynamic model of terrestrial ecosystem processes, biogeochemistry, water, and energy balance. We asked (1) How does ecosystem service supply vary among alternative future scenarios? (2) Where on the landscape is the provision of ecosystem services most susceptible to future social-ecological changes? (3) Among alternative future scenarios, are relationships (i.e., trade-offs, synergies) among food production, water, and biogeochemical services consistent over time? Our results showed that food production varied substantially with future land-use choices and management, and its trade-offs with water quality and soil retention persisted under most scenarios. However, pathways to mitigate or even reverse such trade-offs through technological advances and sustainable agricultural practices were apparent. Consistent relationships among regulating services were identified across scenarios (e.g., trade-offs of freshwater supply vs. flood and climate regulation, and synergies among water quality, soil retention, and climate regulation), suggesting opportunities and challenges to sustaining these services. In particular, proactive

  17. Patterns and drivers of scattered tree loss in agricultural landscapes

    DEFF Research Database (Denmark)

    Plieninger, Tobias; Levers, Christian; Mantel, Martin

    2015-01-01

    of high nature conservation value) for a region in Southwestern Germany for the 1968 2009 period and to identify the driving forces of this decline. We derived orchard meadow loss from 1968 and 2009 aerial images and used a boosted regression trees modelling framework to assess the relative importance......Scattered trees support high levels of farmland biodiversity and ecosystem services in agricultural landscapes, but they are threatened by agricultural intensification, urbanization, and land abandonment. This study aimed to map and quantify the decline of orchard meadows (scattered fruit trees...... economic profitability and increase opportunity costs for orchards, providing incentives for converting orchard meadows to other, more profitable land uses. These insights could be taken up by local- and regional-level conservation policies to identify the sites of persistent orchard meadows...

  18. Floral Resources and Nesting Requirements of the Ground-Nesting Social Bee, Lasioglossum malachurum (Hymenoptera: Halictidae), in a Mediterranean Semiagricultural Landscape

    OpenAIRE

    Polidori, Carlo; Rubichi, Alice; Barbieri, Valeria; Trombino, Luca; Donegana, Marta

    2010-01-01

    In order to adopt correct conservation strike plans to maintain bee pollination activity it is necessary to know the species' resource utilisation and requirements. We investigated the floral resources and the nesting requirements of the eusocial bee Lasioglossum malachurum Kirby at various sites in a Mediterranean landscape. Analysis of bees' pollen loads showed that Compositae was the more exploited family, although interpopulations differences appeared in the pollen types used. From 5 to 7...

  19. An assessment of landscape changes in Mediterranean region. A case study of Algarve, southern Portugal.

    Science.gov (United States)

    Fernandez, Helena; Martins, Fernando; Valín, Maria Isabel; Moreno, Ângela; Pedras, Celestina

    2014-05-01

    Currently, the application of remote sensing techniques is a key factor for the planning and land management to ensure a sustainable development of the regions. Algarve, the most southern region of Portugal is characterized by its Mediterranean climate. This climate is described by irregular precipitation throughout the year with drought during summer months. The regional climate has a profound influence on its particular vegetation and wildlife turning it in a unique habitat for many species. Since the 1970s, increases in tourism have greatly affected the coastal region. This has led to great landscape pressure and urban growth, resulting in population increases due to local economic prosperity. Across Algarve, in recent decades, lawns areas have grown dramatically. Landscape water use has increased mainly because homeowners seldom pay the 'true' cost of water. Continued expansion of water supply is not, therefore, a viable management option in the future, particularly given the anticipated increase in the frequency and severity of droughts in Portugal. There's a need to change the perception of landscape relative to water consumption. Algarve needs a sustainable, 'demand-led' approach to water resource management, focusing on conserving water and using it more efficiently. The water resources available in the Algarve are limited, and decisions regarding sustainability must consider the environment. The aim of this study is to apply the remote sensing techniques to analyse the landscape changes in three municipalities of Algarve (Portugal): Albufeira, Loulé and Faro. The three Landsat images, from April 9th 1973 (Landsat1), March 23th 1989 (Landsat5) and April 26th 2013 (Landsat8) were used. The images were classified based on the radiometric information and the Normalized Difference Vegetation Index (NDVI). These range of dates of the Landsat images used allowed for the differentiation between classes of the landscape. Land use and water resources are closely

  20. Assessing the efficiency of Mediterranean ditch networks in preventing vineyards soil erosion within landscape

    Science.gov (United States)

    Levavasseur, Florent; Bailly, Jean-Stéphane; Lagacherie, Philippe

    2013-04-01

    Water erosion of cultivated soils is a threat to the sustainability of agriculture, especially in Mediterranean areas. For a long time, Mediterranean farmers have thus adopted some soil conservation practices. Actual ditch networks, which are generally associated with terraces, result from historical successive farmer settlements and are one of these soil conservation practices. By intercepting surface run-off, ditches decrease slope length and prevent soil erosion on downstream plots. However, since water erosion hazard and ditch network geometries are highly variable in vineyards landscape and since ditch building and maintaining are costly, the objective of this study was to identify and map the resulting efficiency of ditch networks in preventing soil erosion. For a given area, a ditch network efficiency is defined here as the balance between the network density, i.e. network cumulated length for a given area unit, and the erosion sensitivity over an area which measures the performance of the ditch network in limiting soil erosion. The erosion efficiency of ditch networks was thus identified using both i) computer generated ditch networks with various spatial configurations and ii) the stream power index as an erosion sensitivity indicator, computed from a DTM in which each ditch network was burned. The stream power index of the actual networks were compared with a set of generated networks whose density and topology were selected to maximize the performance in preventing soil erosion thanks to the use of a self-developed optimized stochastic network generator. For four 1 km² hillslopes, we showed that the performances of actual networks to prevent soil erosion was among the best that were obtained by simulated networks with even greater densities. Furthermore, we showed that the stream power index values that accounted for the actual ditch networks to prevent soil erosion hazard was both minimal and weakly variable in the whole study area (30 km²) at

  1. Trait-based approaches for guiding the restoration of degraded agricultural landscapes in East Africa

    NARCIS (Netherlands)

    Lohbeck, Madelon; Winowiecki, Leigh; Aynekulu, Ermias; Okia, Clement; Vågen, Tor Gunnar

    2018-01-01

    Functional ecology provides a framework that can link vegetation characteristics of various land uses with ecosystem function. However, this application has been mostly limited to [semi-]natural systems and small spatial scales. Here, we apply functional ecology to five agricultural landscapes in

  2. Long-Term Forest Dynamics and Land-Use Abandonment in the Mediterranean Mountains, Corsica, France

    Directory of Open Access Journals (Sweden)

    Almudena San Roman Sanz

    2013-06-01

    Full Text Available Human practices have had an impact on Mediterranean ecosystems for millennia, particularly through agricultural and pastoral activities. Since the mid-19th century, land-use abandonment has led to the expansion of shrubland and forest, especially in the mountainous areas of the northern Mediterranean basin. Knowledge of these factors is vital to understanding present forest patterns and predicting future forest dynamics in the Mediterranean mountains. We aimed to analyze and understand how land-use abandonment affected spatial modifications of landscapes in two study areas, 44,000 ha and 60,000 ha, located on the island of Corsica, France, representing a typical Mediterranean environment with chestnut forests. Our approach used land-cover archive documents from 1774, 1913, 1975, and 2000, and human population history, 1770 to present day, to describe landscape patterns following land-use abandonment. This research showed that dramatic changes in landscape at the two study areas were caused by the suspension of human influence and the interruption of traditional farming practices. Over the study period, both study sites showed significant reforestation of shrubland and cultivated areas marked by the presence of Quercus ilex forests (+3.40% yr-1 between 1975 and 2000 and by Pinus pinaster (+3.00% yr-1 between 1975 and 2000 at one study site that had experienced heavy rural exodus. At the same time, areas containing chestnut forests decreased by 50% between 1774 and 2000 (-0.09% yr-1 between 1774 and 1975 and -1.42% yr-1 between 1975 and 2000. Shrubland expansion remained limited at both study sites. Our study highlights the value of small-scale approaches for understanding the ecological consequences of land-use abandonment and present and future land-management decisions. Discussion concludes on the importance of working with long-term series for studies on resilience in social-ecological systems and on the consequences in terms of provision of

  3. Monitoring the agricultural landscape for insect resistance

    Science.gov (United States)

    Casas, Joseph; Glaser, J. A.; Copenhaver, Ken

    Farmers in 25 countries on six continents are using plant biotechnology to solve difficult crop production challenges and conserve the environment. In fact, 13.3 million farmers, which include 90 percent of the farming in developing countries, choose to plant biotech crops. Over the past decade, farmers increased area planted in genetically modified (GM) crops by more than 10 percent each year, thus increasing their farm income by more than 44 billion US dollars (1996-2007), and achieved economic, environmental and social benefits in crops such as soybeans, canola, corn and cotton. To date, total acres of biotech crops harvested exceed more than 2 billion with a proven 13-year history of safe use. Over the next decade, expanded adoption combined with current research on 57 crops in 63 countries will broaden the advantages of genetically modified foods for growers, consumers and the environment. Genetically modified (GM) crops with the ability to produce toxins lethal to specific insect pests are covering a larger percentage of the agricultural landscape every year. The United States department of Agriculture (USDA) estimated that 63 percent of corn and 65 percent of cotton contained these specific genetic traits in 2009. The toxins could protect billions of dollars of loss from insect damage for crops valued at greater than 165 billion US dollars in 2008. The stable and efficient production of these crops has taken on even more importance in recent years with their use, not only as a food source, but now also a source of fuel. It is in the best interest of the United States Environmental Protection Agency (USEPA) to ensure the continued efficacy of toxin producing GM crops as their use reduces pesticides harmful to humans and animals. However, population genetics models have indicated the risk of insect pests developing resistance to these toxins if a high percentage of acreage is grown in these crops. The USEPA is developing methods to monitor the agricultural

  4. Ecosystem services in agricultural landscapes: a spatially explicit approach to support sustainable soil management.

    Science.gov (United States)

    Forouzangohar, Mohsen; Crossman, Neville D; MacEwan, Richard J; Wallace, D Dugal; Bennett, Lauren T

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km(2) in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes.

  5. Fuel dynamics by using Landscape Ecology Indices in the Alto Mijares, Spain

    Science.gov (United States)

    Iqbal, J.; Garcia, C. V.

    2009-04-01

    Land abandonment in Mediterranean regions has brought about a number of management problems, being an increased wildfire activity prevalent among them. Agricultural neglect in highlands resulted in reduced anthropogenic disturbances and greater landscape homogeneity in areas such as the Alto Mijares in Spain. It is widely accepted that processes like forest fires, influence structure of the landscape and vice versa. Fire-prone Mediterranean flora is well adapted to this disturbance, exhibiting excellent succession capabilities; but higher fuel loads and homogeneous conditions may ally to promote vegetation recession when the fire regime is altered by land abandonment. Both succession and recession make changes to the landscape structure and configuration. However, these changes are difficult to quantify and characterize. If landscape restoration of these forests is a management objective, then developing a quantitative knowledge base for landscape fuel dynamics is a prerequisite. Four classified LandsatTM satellite images were compared to quantify changes in landscape structure between 1984 and 1998. An attempt is made to define landscape level dynamics for fuel development after reduced disturbance and fuel accumulation that leads to catastrophic fires by using landscape ecology indices. By doing so, indices that best describe the fuel dynamics are pointed. The results indicate that low-level disturbance increases heterogeneity, thus lowers fire hazard. No disturbance or severe disturbance increases homogeneity because of vegetation succession and may lead to devastating fires. These fires could be avoided by human induced disturbance like controlled burning, harvesting, mechanical works for fuel reduction and other silviculture measures; thus bringing in more heterogeneity in the region. The Alto Mijares landscape appears to be in an unstable equilibrium where succession and recession are at tug of war. The effects are evident in the general absence of the climax

  6. Human management and landscape changes at Palaikastro (Eastern Crete) from the Late Neolithic to the Early Minoan period

    Science.gov (United States)

    Cañellas-Boltà, N.; Riera-Mora, S.; Orengo, H. A.; Livarda, A.; Knappett, C.

    2018-03-01

    On the east Mediterranean island of Crete, a hierarchical society centred on large palatial complexes emerges during the Bronze Age. The economic basis for this significant social change has long been debated, particularly concerning the role of olive cultivation in the island's agricultural system. With the aim of studying vegetation changes and human management to understand the landscape history from Late Neolithic to Bronze Age, two palaeoenvironmental records have been studied at Kouremenos marsh, near the site of Palaikastro (Eastern Crete). Pollen, NPP and charcoal particles analyses evidenced seven phases of landscape change, resulting from different agricultural and pastoral practices and the use of fire probably to manage vegetation. Moreover, the Kouremenos records show the importance of the olive tree in the area. They reflect a clear trend for its increasing use and exploitation from 3600 cal yr BC (Final Neolithic) to the Early Minoan period, that is coeval with an opening of the landscape. The increase of Olea pollen was due to the expansion of the tree and its management using pruning and mechanical cleaning. The onset of olive expansion at c. 3600 cal yr BC places Crete among the first locales in the eastern Mediterranean in the management of this tree. Between c. 2780 and 2525 cal yr BC the landscape was largely occupied by olive and grasslands, coinciding with an increase in grazing practices. The high Olea pollen percentages (40-45%) suggest an intensive and large-scale exploitation of the olive tree. The results suggest that a complex and organized landscape with complementary land uses and activities was already in place since the Final Neolithic. The notable expansion of olive trees suggests the relevance of olive exploitation in the socio-economic development of Minoan towns of eastern Crete. Other crops, such as cereals and vine, and activities such as grazing have also played an important role in the configuration of the past landscape.

  7. Integrated analysis of the effects of agricultural management on nitrogen fluxes at landscape scale

    NARCIS (Netherlands)

    Kros, J.; Frumeau, K.F.A.; Hensen, A.; Vries, de W.

    2011-01-01

    The integrated modelling system INITIATOR was applied to a landscape in the northern part of the Netherlands to assess current nitrogen fluxes to air and water and the impact of various agricultural measures on these fluxes, using spatially explicit input data on animal numbers, land use,

  8. The Influence of Soil Displacement in Bavarian Agricultural Landscapes on the Land-Atmosphere Exchange of Greenhouse Gases.

    Science.gov (United States)

    Smidt, J.; Schmid, H. P. E.

    2016-12-01

    The terrestrial biosphere represents the world's second-largest stock of carbon, after the oceans, estimated to be 2300 Gt carbon with 1500 Gt of organic carbon (Kirkels et al., 2014). In agricultural landscapes, erosion and deposition caused by tillage and subsequent heavy precipitation redistribute large amounts of soil and therefore carbon (Van Oost et al., 2007). Erosion rates in areas of agricultural production are 1-2 magnitudes larger than in areas covered with native vegetation (Montgomery, 2007). Landscapes in the German state of Bavaria have been used for agricultural production for thousands of years. Within the framework of the project "Bavarian Landscapes Under Climate Change," a multi-method approach is taken. At two distinct watersheds in Bavaria, we attempt to quantify the effect of soil displacement on the fluxes of CO2, N2O and CH4 using continuous eddy covariance (EC) data, small manual gas chamber measurements and a soil laboratory incubation experiment designed to simulate an erosion event. The pre-alpine site of Rottenbuch, part of the TERENO network, is located at 690 masl and characterized by molasses and carbonic/dolomitic fluvioglacial sediments. The Otterbach site, part of the Bavarian Forest, lies at 350 masl and is dominated by granite and gneiss rock. The sites have an annual precipitation of 1200 and 700 mm, respectively. In Rottenbuch, the downslope area is managed grassland and the upslope area is grazed part of the year. In Otterbach, the downslope field is organic grassland, and the upslope area is used for agricultural production. There is a standard EC station at each site, as well as automatic chambers (Rottenbuch) and manual chambers (Otterbach). The data collected will be used to calibrate, run and verify numerical models to ascertain the sensitivity of the fluxes to biological, biochemical and physical processes and ultimately bring light to the question of agricultural landscapes as sinks or sources of greenhouse gases.

  9. Effects of farm heterogeneity and methods for upscaling on modelled nitrogen losses in agricultural landscapes

    DEFF Research Database (Denmark)

    Dalgaard, Tommy; Hutchings, Nicholas John; Dragosits, U

    2011-01-01

    The aim of this study is to illustrate the importance of farm scale heterogeneity on nitrogen (N) losses in agricultural landscapes. Results are exemplified with a chain of N models calculating farm-N balances and distributing the N-surplus to N-losses (volatilisation, denitrification, leaching......) and soil-N accumulation/release in a Danish landscape. Possible non-linearities in upscaling are assessed by comparing average model results based on (i) individual farm level calculations and (ii) averaged inputs at landscape level. Effects of the non-linearities that appear when scaling up from farm...... to landscape are demonstrated. Especially in relation to ammonia losses the non-linearity between livestock density and N-loss is significant (p > 0.999), with around 20–30% difference compared to a scaling procedure not taking this non-linearity into account. A significant effect of farm type on soil N...

  10. The influence of mistletoes on birds in an agricultural landscape of central Mexico

    Science.gov (United States)

    Zuria, Iriana; Castellanos, Ignacio; Gates, J. Edward

    2014-11-01

    Mistletoes are hemiparasitic flowering plants that function as keystone resources in forests and woodlands of temperate regions, where a positive relationship between mistletoe density and avian species richness has been observed. Mistletoes have been less studied in tropical regions and the relationship between birds and mistletoes has seldom been explored in tropical agricultural systems. Therefore, we studied the presence of infected trees and infection prevalence (i.e., number of parasitized trees/total number of trees) by Psittacanthus (Loranthaceae) mistletoes in 23 hedgerows located in an agricultural landscape of central Mexico during the dry and rainy seasons, and investigated the relationship between bird species richness and abundance and the abundance of mistletoes. We found a mean of 74 mistletoe plants per 100-m transect of only one species, Psittacanthus calyculatus. Thirty-one percent of the trees surveyed were infected and tree species differed in infection prevalence, mesquite (Prosopis laevigata) being the most infected species with 86% of the surveyed trees infected. For both seasons, we found a positive and significant association between bird species richness and number of mistletoe plants. The same pattern was observed for total bird abundance. Many resident and Neotropical migratory birds were observed foraging on mistletoes. Our results show that mistletoes are important in promoting a higher bird species richness and abundance in tropical agricultural landscapes.

  11. Resilient landscapes in Mediterranean urban areas: Understanding factors influencing forest trends.

    Science.gov (United States)

    Tomao, Antonio; Quatrini, Valerio; Corona, Piermaria; Ferrara, Agostino; Lafortezza, Raffaele; Salvati, Luca

    2017-07-01

    Urban and peri-urban forests are recognized as basic elements for Nature-Based Solutions (NBS), as they preserve and may increase environmental quality in urbanized contexts. For this reason, the amount of forest land per inhabitant is a pivotal efficiency indicator to be considered in the sustainable governance, land management, planning and design of metropolitan areas. The present study illustrates a multivariate analysis of per-capita forest area (PFA) in mainland Attica, the urban region surrounding Athens, Greece. Attica is considered a typical case of Mediterranean urbanization where planning has not regulated urban expansion and successive waves of spontaneous growth have occurred over time. In such a context, an analysis of factors that can affect landscape changes in terms of PFA may inform effective strategies for the sustainable management of socio-ecological local systems in light of the NBS perspective. A total of 26 indicators were collected per decade at the municipal scale in the study area with the aim to identify the factors most closely associated to the amount of PFA. Indicators of urban morphology and functions have been considered together with environmental and topographical variables. In Attica, PFA showed a progressive decrease between 1960 and 2010. In particular, PFA progressively declined (1980, 1990) along fringe areas surrounding Athens and in peri-urban districts experiencing dispersed expansion of residential settlements. Distance from core cities and from the seacoast, typical urban functions (e.g., multiple use of buildings and per capita built-up area) and percentage of agricultural land-use in each municipality are the variables most associated with high PFA. In recent years, some municipalities have shown an expansion of forest cover, mainly due to land abandonment and forest recolonization. Findings from this case study have allowed us to identify priorities for NBS at metropolitan level aimed at promoting more sustainable

  12. Low-Intensity Agricultural Landscapes in Transylvania Support High Butterfly Diversity: Implications for Conservation

    Science.gov (United States)

    Loos, Jacqueline; Dorresteijn, Ine; Hanspach, Jan; Fust, Pascal; Rakosy, László; Fischer, Joern

    2014-01-01

    European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide

  13. Selection of flooded agricultural fields and other landscapes by female northern pintails wintering in Tulare Basin, California

    Science.gov (United States)

    Fleskes, Joseph P.; Jarvis, Robert L.; Gilmer, David S.

    2003-01-01

    Habitat selection and use are measures of relative importance of habitats to wildlife and necessary information for effective wildlife conservation. To measure the relative importance of flooded agricultural fields and other landscapes to northern pintails (Anas acuta) wintering in Tulare Basin (TB), California, we radiotagged female pintails during late August-early October, 1991-1993 in TB and other San Joaquin Valley areas and determined use and selection of these TB landscapes through March each year. Availability of landscape and field types in TB changed within and among years. Pintail use and selection (based upon use-to-availability log ratios) of landscape and field types differed among seasons, years, and diel periods. Fields flooded after harvest and before planting (i.e., pre-irrigated) were the most available, used, and selected landscape type before the hunting season (Prehunt). Safflower was the most available, used, and-except in 1993, when pre-irrigated fallow was available-selected pre-irrigated field type during Prehunt. Pre-irrigated barley-wheat received 19-22% of use before hunting season, but selection varied greatly among years and diel periods. During and after hunting season, managed marsh was the most available, used, and, along with floodwater areas, selected landscape type; pre-irrigated cotton and alfalfa were the least selected field types and accounted for <13% of pintail use. Agricultural drainwater evaporation ponds, sewage treatment ponds, and reservoirs accounted for 42-48% of flooded landscape available but were little used and least selected. Exodus of pintails from TB coincided with drying of pre-irrigated fallow, safflower, and barley-wheat fields early in winter, indicating that preferred habitats were lacking in TB during late winter. Agriculture conservation programs could improve TB for pintails by increasing flooding of fallow and harvested safflower and grain fields. Conservation of remaining wetlands should concentrate

  14. Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression.

    Science.gov (United States)

    Schellhorn, N A; Bianchi, F J J A; Hsu, C L

    2014-01-01

    Entomophagous arthropods can provide valuable biological control services, but they need to fulfill their life cycle in agricultural landscapes often dominated by ephemeral and disturbed habitats. In this environment, movement is critical to escape from disturbances and to find resources scattered in space and time. Despite considerable research effort in documenting species movement and spatial distribution patterns, the quantification of arthropod movement has been hampered by their small size and the variety of modes of movement that can result in redistribution at different spatial scales. In addition, insight into how movement influences in-field population processes and the associated biocontrol services is limited because emigration and immigration are often confounded with local-scale population processes. More detailed measurements of the habitat functionality and movement processes are needed to better understand the interactions between species movement traits, disturbances, the landscape context, and the potential for entomophagous arthropods to suppress economically important pests.

  15. Hierarchical spatial segregation of two Mediterranean vole species: the role of patch-network structure and matrix composition.

    Science.gov (United States)

    Pita, Ricardo; Lambin, Xavier; Mira, António; Beja, Pedro

    2016-09-01

    According to ecological theory, the coexistence of competitors in patchy environments may be facilitated by hierarchical spatial segregation along axes of environmental variation, but empirical evidence is limited. Cabrera and water voles show a metapopulation-like structure in Mediterranean farmland, where they are known to segregate along space, habitat, and time axes within habitat patches. Here, we assess whether segregation also occurs among and within landscapes, and how this is influenced by patch-network and matrix composition. We surveyed 75 landscapes, each covering 78 ha, where we mapped all habitat patches potentially suitable for Cabrera and water voles, and the area effectively occupied by each species (extent of occupancy). The relatively large water vole tended to be the sole occupant of landscapes with high habitat amount but relatively low patch density (i.e., with a few large patches), and with a predominantly agricultural matrix, whereas landscapes with high patch density (i.e., many small patches) and low agricultural cover, tended to be occupied exclusively by the small Cabrera vole. The two species tended to co-occur in landscapes with intermediate patch-network and matrix characteristics, though their extents of occurrence were negatively correlated after controlling for environmental effects. In combination with our previous studies on the Cabrera-water vole system, these findings illustrated empirically the occurrence of hierarchical spatial segregation, ranging from within-patches to among-landscapes. Overall, our study suggests that recognizing the hierarchical nature of spatial segregation patterns and their major environmental drivers should enhance our understanding of species coexistence in patchy environments.

  16. Between Smallholder Traditions and “Ecological Modernisation” – Agricultural Transformation, Landscape Change and the Cap in Austria 1995–2015

    Directory of Open Access Journals (Sweden)

    Kurz Peter

    2018-03-01

    Full Text Available The paper explores transformations in agriculture during the period 1995–2015 and shows their impact on rural landscapes in the case of Austria. When Austria joined the European Union in 1995, this meant a minor gash in agricultural politics, from broad support of smallholder agriculture to a programme of modernisation and rationalisation. Austrian politicians defined this shift as a process of “ecological modernisation” (Fischler et al. 1994, incorporating agri-environmental schemes as instruments and modifying existing programmes of direct payments. The survey forms the groundwork for a discussion on landscape effects of the CAP as an “ecological” modernisation programme and possible impact of the CAP-reform 2020.

  17. Perceptions of Present and Future Climate Change Impacts on Water Availability for Agricultural Systems in the Western Mediterranean Region

    Directory of Open Access Journals (Sweden)

    Thi Phuoc Lai Nguyen

    2016-11-01

    Full Text Available Many Mediterranean countries have experienced water shortages during the last 20 years and future climate change projections foresee further pressure on water resources. This will have significant implications for irrigation water management in agricultural systems in the future. Through qualitative and quantitative empirical research methods carried out on a case study on four Mediterranean farming systems located in Oristano, Italy, we sought to understand the relationship between farmers’ perceptions of climate change (i.e., increased temperature and decreased precipitation and of present and future water availability for agriculture as forecasted by climatic and crop models. We also explored asymmetries between farmers’ perceptions and present and future climate change and water scenarios as well as factors influencing perceptions. Our hypotheses were that farmers’ perceptions are the main drivers of actual water management practices and that sustainable practices can emerge from learning spaces designed from the understanding of the gaps between perceptions and scientific evidences. Results showed that most farmers perceived that climate change is occurring or will occur in their area. They also perceived that there has been an increased temperature trend, but also increased precipitation. Therefore, they are convinced that they have and will have enough irrigation water for agriculture in the near future, while climate change projections foresee an increasing pressure on water resources in the Mediterranean region. Such results suggest the need for (i irrigation management policies that take into account farmers’ perceptions in order to promote virtuous behaviors and improve irrigation water use efficiency; (ii new, well-designed learning spaces to improve the understanding on climate change expectations in the near future in order to support effective adaptive responses at the farm and catchment scales.

  18. Pesticide exposure on sloths (Bradypus variegatus and Choloepus hoffmanni) in an agricultural landscape of Northeastern Costa Rica.

    Science.gov (United States)

    Pinnock Branford, Margaret Verónica; de la Cruz, Elba; Solano, Karla; Ramírez, Oscar

    2014-01-01

    Between 2005 and 2008, wild Bradypus variegatus and Choloepus hoffmanni inhabiting an agricultural landscape and captive animals from a rescue center in Northeastern Costa Rica were studied to assess exposure to pesticides. A total of 54 animals were sampled: 42 wild sloths captured at an agricultural landscape and 12 captive animals from a rescue center. Pesticides' active ingredients were determined in three sample matrices: hair, aqueous mixture (paws' wash) and cotton gauze (mouth clean) based on multi-residue gas chromatography methods. Recoveries tests ranged from 73 to 146% and relative standard deviations were less than 20% throughout all the recovery tests. Active ingredients detected in sloths samples were ametryn, chlorothalonil, chlorpyrifos, diazinon, difenoconazole, ethoprophos and thiabendazole. These active ingredients were used in intensive agricultural production for bananas, pineapples and other crops. Blood plasma cholinesterase activity (PChE) was determined by the Ellman method modified for micro plates. Enzyme activity determination was normalized to protein content in the samples according to Bradford method. Wild sloth PChE activity was similar for both species while sloths in captivity showed differences between species. Enzyme activity was significantly lower for two-toed sloths. This study showed that sloths were exposed to pesticides that caused acute and chronic effect in mammals and can also be a threat to other wildlife species. There is a need to better understand the potential effects of exposure to pesticides in sloths and other wild mammal populations, especially those threatened or endangered. More studies in this field must be carried out on the wildlife fauna inhabiting the agricultural landscape and its surroundings.

  19. [Dynamic changes of land desertification landscape pattern in agriculture and pasturage interlaced zone of northern Shaanxi].

    Science.gov (United States)

    Jia, Ke-Li; Chang, Qing-Rui

    2007-09-01

    By using the 1986, 1993 and 2003 Landsat TM images and with the help of GIS, the dynamic changes of land desertification landscape pattern in agriculture and pasturage interlaced zone of northern Shaanxi in 1986-2003 were analyzed. The results showed that in the past 17 years, the desertification area in the zone decreased by 206,655.2 hm2, with the patches in landscape structure reduced and fragmentation abated. Fortunately, the desertification degree decreased obviously, and moderate and light desertification took the leading position. From 1986 to 2003, the spatial centroid of desertification landscape patches expanded southwestward and northeastward, giving serious threat to the ecological safety of the southeast and northeast loess gully and hilly areas.

  20. Species composition and diversity of non-forest woody vegetation along roads in the agricultural landscape

    Directory of Open Access Journals (Sweden)

    Tóth Attila

    2016-03-01

    Full Text Available Non-forest woody vegetation represents an important component of green infrastructure in the agricultural landscape, where natural and semi-natural forest cover has only a low land use proportion. This paper focuses on linear woody vegetation structures along roads in the agricultural landscape and analyses them in three study areas in the Nitra Region, Slovakia. We evaluate species composition and diversity, species occurrence frequency or spatial distribution, their structure according to relatively achievable age and origin. For the evaluation of occurrence frequency, a Frequency Factor was proposed and applied. This factor allows a better comparison of different study areas and results in more representative findings. The study areas were divided into sectors based on visual landscape features, which are easily identifiable in the field, such as intersections and curves in roads, and intersections of roads with other features, such as cadastral or land boundaries, watercourses, etc. Based on the species abundance, woody plants present within the sectors were categorised into 1 predominant, 2 complementary and 3 mixed-in species; and with regard to their origin into 1 autochthonous and 2 allochthonous. Further, trees were categorised into 1 long-lived, 2 medium-lived and 3 short-lived tree species. The main finding is that among trees, mainly allochthonous species dominated. Robinia pseudoacacia L. was the predominant tree species in all three study areas. It was up to 4 times more frequent than other predominant tree species. Introduced tree species prevailed also among complementary and mixed-in species. Among shrubs, mainly native species dominated, while non-native species had a significantly lower proportion and spatial distribution. Based on these findings, several measures have been proposed to improve the overall ecological stability, the proportion and spatial distribution of native woody plant species. The recommendations and

  1. Fluxes of carbon dioxide and methane from diverse aquatic environments in an agricultural landscape

    Science.gov (United States)

    Stanley, E. H.; Crawford, J. T.; Loken, L. C.; Casson, N. J.; Gubbins, N. J.; Oliver, S. K.

    2014-12-01

    The contribution of aquatic environments to landscape carbon cycling is particularly apparent in carbon- and water-rich regions. Such areas arguably represent an end member in terms of the relative significance of aquatic carbon cycling, while dry, carbon-poor zones are the likely opposing end member. Not surprisingly, most limnological attention has focused on these former regions, leaving open questions as to how aquatic systems in other locales influence larger-scale carbon dynamics. This includes human-dominated landscapes where agricultural and urban land uses can fundamentally alter carbon dynamics. Surveys of streams, ponds, and lakes in a southern Wisconsin landscape highlight three findings relevant to understanding the role of these aquatic systems in larger-scale carbon dynamics. First, streams and ponds had unexpectedly high summertime concentrations in and fluxes of CO2 and CH4. These values were approximately an order of magnitude greater than for less disturbed, forest and wetland-dominated landscapes in northern Wisconsin. Second, while mean C gas concentrations in lakes were lower than in streams and ponds, detailed spatial measurements demonstrate variability in surface water CO2 (43-1090 ppm pCO2) and CH4 (6-839 ppm pCH4) within a lake on a single day is similar to that observed among 25 streams included in our survey (260-6000 ppm pCO2; 50-600 ppm pCH4). This small-scale heterogeneity highlights a basic challenge for upscaling site-specific data collected at one or a few points to the whole lake and across lakes. Third, while agricultural and urban ecosystems are not necessarily carbon-rich environments, area-specific carbon storage in streams and ponds is substantial (up to 3000-5000 g C per m2). Further, carbon storage was strongly related to CH4 concentrations in streams, as C-rich sediments provided both an environment and substrate to fuel methanogenesis. The picture that emerges of C processing in aquatic environments throughout this human

  2. Amphibian population genetics in agricultural landscapes: does viniculture drive the population structuring of the European common frog (Rana temporaria?

    Directory of Open Access Journals (Sweden)

    Patrick P. Lenhardt

    2017-07-01

    Full Text Available Amphibian populations have been declining globally over the past decades. The intensification of agriculture, habitat loss, fragmentation of populations and toxic substances in the environment are considered as driving factors for this decline. Today, about 50% of the area of Germany is used for agriculture and is inhabited by a diverse variety of 20 amphibian species. Of these, 19 are exhibiting declining populations. Due to the protection status of native amphibian species, it is important to evaluate the effect of land use and associated stressors (such as road mortality and pesticide toxicity on the genetic population structure of amphibians in agricultural landscapes. We investigated the effects of viniculture on the genetic differentiation of European common frog (Rana temporaria populations in Southern Palatinate (Germany. We analyzed microsatellite data of ten loci from ten breeding pond populations located within viniculture landscape and in the adjacent forest block and compared these results with a previously developed landscape permeability model. We tested for significant correlation of genetic population differentiation and landscape elements, including land use as well as roads and their associated traffic intensity, to explain the genetic structure in the study area. Genetic differentiation among forest populations was significantly lower (median pairwise FST = 0.0041 at 5.39 km to 0.0159 at 9.40 km distance than between viniculture populations (median pairwise FST = 0.0215 at 2.34 km to 0.0987 at 2.39 km distance. Our analyses rejected isolation by distance based on roads and associated traffic intensity as the sole explanation of the genetic differentiation and suggest that the viniculture landscape has to be considered as a limiting barrier for R. temporaria migration, partially confirming the isolation of breeding ponds predicted by the landscape permeability model. Therefore, arable land may act as a sink habitat

  3. Analysis on landscape pattern change and ecosystem services value of modern agriculture corridor: a case study of Jingcheng Highway

    Science.gov (United States)

    Liu, Bao; Gu, Xiaohe; Zhang, Jing; Du, Chong; Di, Xingcui

    2009-10-01

    Based on SPOT images and other geoscience data, this paper gets the land use and land cover information of Modern Agriculture Corridor from 2006 to 2008 by RS and GIS technology and makes analysis of land use changes in landscape ecology view. Then we build a quantitative evaluation model which select vegetation coverage as adjustment coefficient to monitor the changes of ecological services value. The results show that: In the aspect of landscape pattern index, the landscape heterogeneity of the region is increasing, the land use types become various, degree of landscape fragmentation has increased; woodland, farmland and construction land play a leading role in the dynamic changes of landscape. In the view of ecosystem service value, the total value of ecosystem services of Modern Agriculture Corridor from 2006 to 2008 are respectively 186, 188, 193 million Yuan, and the annual average rate is 2%; ecosystem qualities are different in different seasons, and quality in summer is best which has 33% contribution to the full-year value of ecosystem services; the average contribution rates of forest and waters ecosystems are the highest, respectively 37% and 33%; increase of woodland, grassland and water area is the main reason that enhancing ecosystem services.

  4. Downstream approaches to phosphorus management in agricultural landscapes: regional applicability and use.

    Science.gov (United States)

    Kröger, R; Dunne, E J; Novak, J; King, K W; McLellan, E; Smith, D R; Strock, J; Boomer, K; Tomer, M; Noe, G B

    2013-01-01

    This review provides a critical overview of conservation practices that are aimed at improving water quality by retaining phosphorus (P) downstream of runoff genesis. The review is structured around specific downstream practices that are prevalent in various parts of the United States. Specific practices that we discuss include the use of controlled drainage, chemical treatment of waters and soils, receiving ditch management, and wetlands. The review also focuses on the specific hydrology and biogeochemistry associated with each of those practices. The practices are structured sequentially along flowpaths as you move through the landscape, from the edge-of-field, to adjacent aquatic systems, and ultimately to downstream P retention. Often practices are region specific based on geology, cropping practices, and specific P related problems and thus require a right practice, and right place mentality to management. Each practice has fundamental P transport and retention processes by systems that can be optimized by management with the goal of reducing downstream P loading after P has left agricultural fields. The management of P requires a system-wide assessment of the stability of P in different biogeochemical forms (particulate vs. dissolved, organic vs. inorganic), in different storage pools (soil, sediment, streams etc.), and under varying biogeochemical and hydrological conditions that act to convert P from one form to another and promote its retention in or transport out of different landscape components. There is significant potential of hierarchically placing practices in the agricultural landscape and enhancing the associated P mitigation. But an understanding is needed of short- and long-term P retention mechanisms within a certain practice and incorporating maintenance schedules if necessary to improve P retention times and minimize exceeding retention capacity. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Pesticide concentrations in frog tissue and wetland habitats in a landscape dominated by agriculture.

    Science.gov (United States)

    Smalling, Kelly L; Reeves, Rebecca; Muths, Erin; Vandever, Mark; Battaglin, William A; Hladik, Michelle L; Pierce, Clay L

    2015-01-01

    Habitat loss and exposure to pesticides are likely primary factors contributing to amphibian decline in agricultural landscapes. Conservation efforts have attempted to restore wetlands lost through landscape modifications to reduce contaminant loads in surface waters and providing quality habitat to wildlife. The benefits of this increased wetland area, perhaps especially for amphibians, may be negated if habitat quality is insufficient to support persistent populations. We examined the presence of pesticides and nutrients in water and sediment as indicators of habitat quality and assessed the bioaccumulation of pesticides in the tissue of two native amphibian species Pseudacris maculata (chorus frogs) and Lithobates pipiens (leopard frogs) at six wetlands (3 restored and 3 reference) in Iowa, USA. Restored wetlands are positioned on the landscape to receive subsurface tile drainage water while reference wetlands receive water from overland run-off and shallow groundwater sources. Concentrations of the pesticides frequently detected in water and sediment samples were not different between wetland types. The median concentration of atrazine in surface water was 0.2 μg/L. Reproductive abnormalities in leopard frogs have been observed in other studies at these concentrations. Nutrient concentrations were higher in the restored wetlands but lower than concentrations thought lethal to frogs. Complex mixtures of pesticides including up to 8 fungicides, some previously unreported in tissue, were detected with concentrations ranging from 0.08 to 1,500 μg/kg wet weight. No significant differences in pesticide concentrations were observed between species, although concentrations tended to be higher in leopard frogs compared to chorus frogs, possibly because of differences in life histories. Our results provide information on habitat quality in restored wetlands that will assist state and federal agencies, landowners, and resource managers in identifying and implementing

  6. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses

    Science.gov (United States)

    Sayer, Jeffrey; Sunderland, Terry; Ghazoul, Jaboury; Pfund, Jean-Laurent; Sheil, Douglas; Meijaard, Erik; Venter, Michelle; Boedhihartono, Agni Klintuni; Day, Michael; Garcia, Claude; van Oosten, Cora; Buck, Louise E.

    2013-01-01

    Landscape approaches” seek to provide tools and concepts for allocating and managing land to achieve social, economic, and environmental objectives in areas where agriculture, mining, and other productive land uses compete with environmental and biodiversity goals. Here we synthesize the current consensus on landscape approaches. This is based on published literature and a consensus-building process to define good practice and is validated by a survey of practitioners. We find the landscape approach has been refined in response to increasing societal concerns about environment and development tradeoffs. Notably, there has been a shift from conservation-orientated perspectives toward increasing integration of poverty alleviation goals. We provide 10 summary principles to support implementation of a landscape approach as it is currently interpreted. These principles emphasize adaptive management, stakeholder involvement, and multiple objectives. Various constraints are recognized, with institutional and governance concerns identified as the most severe obstacles to implementation. We discuss how these principles differ from more traditional sectoral and project-based approaches. Although no panacea, we see few alternatives that are likely to address landscape challenges more effectively than an approach circumscribed by the principles outlined here. PMID:23686581

  7. Glomed-Land: a research project to study the effect of global change in contrasted mediterranean landscapes and future scenarios

    Science.gov (United States)

    Ruiz-Sinoga, José D.; Hueso-González, Paloma; León-Gross, Teodoro; Molina, Julián; Remond, Ricardo; Martínez-Murillo, Juan F.

    2017-04-01

    The Global Change is referred to the occurrence of great environmental changes associated to climatic fluctuations and human activity as wel (Vitousek et al., 1997; Steffen et al., 2004; Dearing et al., 2006). García-Ruiz et al. (2015) indicated that the relief varies very slowly in time while the changes in vegetation, overland flow generation and erosion occurred very rapidly and conditioned by their interactions and the climate variability as well. The GLOMED-LAND Project has its bases and scientific justification on the combination of the experience of the members of the research team, from one side, in the analysis of the dynamics and eco-geomorphological and climatic processes in Mediterranean environments of southern Spain, in the context of current Global change, and from another, in the study, development and application of new tools for simulation and modelling of future scenarios, and finally, in the analysis of the impact that society exercises the broadcast media related to the problem derived from the awareness and adaptation to Global change. Climate change (CC), directly affects the elements that compose the landscape. Both in the analysis of future climate scenarios raised by the IPCC (2013), such as the regionalisation carried out by AEMET, the Mediterranean region and, especially, the South of Spain, - with its defined longitudinal pluviometric gradient - configured as one of the areas of greatest uncertainty, reflected in a higher concentration of temporal rainfall, and even a reduction in the rainfall. Faced with this situation, the CC can modify the current landscape setting, with all the environmental impacts that this would entail for the terrestrial ecosystems and the systemic services rendered to the society. The combination of different work scales allows the analysis of the dynamics of the landscape and the consequence of its modifications on, hydro-geomorphological processes, closely related to degradation processes that can affect the

  8. Landscape Ecology and problems of European cultural landscapes

    DEFF Research Database (Denmark)

    Brandt, Jesper

    2011-01-01

    by practical problems of European cultural – especial agriculturallandscapes since the rise of the environmental movement. Central themes have been the consequences of technological and structural changes within European agriculture for the landscape and the development of habitats and dispersal...... Problemstellungen basieren auf multifunktionalen Nutzungskonzepten ruraler Landschaften, besonders im Hinblick auf Suburbanisierungsprozesse. Eine Anzahl untereinander vergleichbarer Projekte, mit parallelen bis ähnlichen Ausprägungen innerhalb Dänemarks und weiteerer europäischer Länder, werden exemplarisch...

  9. Adaptation to Climate change Impacts on the Mediterranean islands' Agriculture (ADAPT2CLIMA)

    Science.gov (United States)

    Giannakopoulos, Christos; Karali, Anna; Lemesios, Giannis; Loizidou, Maria; Papadaskalopoulou, Christina; Moustakas, Konstantinos; Papadopoulou, Maria; Moriondo, Marco; Markou, Marinos; Hatziyanni, Eleni; Pasotti, Luigi

    2016-04-01

    Agriculture is one of the economic sectors that will likely be hit hardest by climate change, since it directly depends on climatic factors such as temperature, sunlight, and precipitation. The EU LIFE ADAPT2CLIMA (http://adapt2clima.eu/en/) project aims to facilitate the development of adaptation strategies for agriculture by deploying and demonstrating an innovative decision support tool. The ADAPT2CLIMA tool will make it possible to simulate the impacts of climate change on crop production and the effectiveness of selected adaptation options in decreasing vulnerability to climate change in three Mediterranean islands, namely Crete (Greece), Sicily (Italy), and Cyprus. The islands were selected for two reasons: firstly, they figure among the most important cultivation areas at national level. Secondly, they exhibit similarities in terms of location (climate), size, climate change threats faced (coastal agriculture, own water resources), agricultural practices, and policy relevance. In particular, the tool will provide: i) climate change projections; ii) hydrological conditions related to agriculture: iii) a vulnerability assessment of selected crops; iv) an evaluation of the adaptation options identified. The project is expected to contribute significantly to increasing climate resilience of agriculture areas in Sicily, Cyprus and Crete as well as at EU and international level by: • Developing, implementing and demonstrating an innovative and interactive decision support tool (ADAPT2CLIMA tool) for adaptation planning in agriculture that estimates future climate change impacts on local water resources, as well as the climate change vulnerability of the agricultural crop production in the project areas; • Evaluating the technical and economic viability of the implementation of the ADAPT2CLIMA tool; • Developing climate change adaptation strategies for agriculture (including a monitoring plan) for the three project areas and presenting them to the competent

  10. Patterns and Drivers of Scattered Tree Loss in Agricultural Landscapes: Orchard Meadows in Germany (1968-2009)

    Science.gov (United States)

    Plieninger, Tobias; Levers, Christian; Mantel, Martin; Costa, Augusta; Schaich, Harald; Kuemmerle, Tobias

    2015-01-01

    Scattered trees support high levels of farmland biodiversity and ecosystem services in agricultural landscapes, but they are threatened by agricultural intensification, urbanization, and land abandonment. This study aimed to map and quantify the decline of orchard meadows (scattered fruit trees of high nature conservation value) for a region in Southwestern Germany for the 1968 2009 period and to identify the driving forces of this decline. We derived orchard meadow loss from 1968 and 2009 aerial images and used a boosted regression trees modelling framework to assess the relative importance of 18 environmental, demographic, and socio-economic variables to test five alternative hypothesis explaining orchard meadow loss. We found that orchard meadow loss occurred in flatter areas, in areas where smaller plot sizes and fragmented orchard meadows prevailed, and in areas near settlements and infrastructure. The analysis did not confirm that orchard meadow loss was higher in areas where agricultural intensification was stronger and in areas of lower implementation levels of conservation policies. Our results demonstrated that the influential drivers of orchard meadow loss were those that reduce economic profitability and increase opportunity costs for orchards, providing incentives for converting orchard meadows to other, more profitable land uses. These insights could be taken up by local- and regional-level conservation policies to identify the sites of persistent orchard meadows in agricultural landscapes that would be prioritized in conservation efforts. PMID:25932914

  11. Does spatial co-occurrence of carnivores in a Central European agricultural landscape follow the null model?

    Czech Academy of Sciences Publication Activity Database

    Šálek, Martin; Červinka, J.; Padyšáková, E.; Kreisinger, Jakub

    2014-01-01

    Roč. 60, č. 1 (2014), s. 99-107 ISSN 1612-4642 R&D Projects: GA MŠk LC06073 Institutional support: RVO:68081766 Keywords : Carnivores * Co-occurrence * Interspecific competition * Mesopredator release * Agricultural landscape Subject RIV: EG - Zoology Impact factor: 1.634, year: 2014

  12. Soils in an agricultural landscape of Jokioinen, south-western Finland

    Directory of Open Access Journals (Sweden)

    M. YLI-HALLA

    2008-12-01

    Full Text Available Eleven pedons in an agricultural landscape at elevations 80-130 m above sea level in Jokioinen, south-western Finland were investigated and classified according to Soil Taxonomy, the FAO-Unesco system (FAO, and the World Reference Base for Soil Resources system (WRB. The soils were related to geomorphology of the landscape which is characterized by clayey fields and forested bedrock high areas covered with glacial till. A Spodosol/Podzol was found in a coarse-sandy soil in an esker while the sandy loam in a bedrock high area soils did not have an E horizon. A man-made mollic epipedon was found in a cultivated soil which had a sandy plow layer while clayey plow layers were ochric epipedons. Cambic horizons, identified by structure and redox concentrations, were common in cultivated soils. In a heavy clay soil, small slickensides and wedge-shaped aggregates, i.e., vertic characteristics, were found. Histosols occurred in local topographic depressions irrespective of the absolute elevation. According to the three classification systems, the following catenas are recognized: Haplocryods - Dystro/Eutrocryepts -Haplocryolls - Cryaquepts - Cryosaprists (Soil Taxonomy, Podzols - Regosols - Cambisols - Histosols (FAO-Unesco, and Podzols - Cambisols - Phaeozems - Gleysols - Histosols (WRB.;

  13. Railway embankments as new habitat for pollinators in an agricultural landscape.

    Science.gov (United States)

    Moroń, Dawid; Skórka, Piotr; Lenda, Magdalena; Rożej-Pabijan, Elżbieta; Wantuch, Marta; Kajzer-Bonk, Joanna; Celary, Waldemar; Mielczarek, Łukasz Emil; Tryjanowski, Piotr

    2014-01-01

    Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.

  14. Railway embankments as new habitat for pollinators in an agricultural landscape.

    Directory of Open Access Journals (Sweden)

    Dawid Moroń

    Full Text Available Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (seminatural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.

  15. Development of a Frost Risk Assessment Tool in Agriculture for a Mediterranean ecosystem Utilizing MODIS satellite observations Geomatics and Surface Data

    Science.gov (United States)

    Louka, Panagiota; Papanikolaou, Ioannis; Petropoulos, George; Migiros, George; Tsiros, Ioannis

    2014-05-01

    Frost risk in Mediterranean countries is a critical factor in agricultural planning and management. Nowadays, the rapid technological developments in Earth Observation (EO) technology have improved dramatically our ability to map the spatiotemporal distribution of frost conditions over a given area and evaluate its impacts on the environment and society. In this study, a frost risk model for agricultural crops cultivated in a Mediterranean environment has been developed, based primarily on Earth Observation (EO) data from MODIS sensor and ancillary spatial and point data. The ability of the model to predict frost conditions has been validated for selected days on which frost conditions had been observed for a region in Northwestern Greece according to ground observations obtained by the Agricultural Insurance Organization (ELGA). An extensive evaluation of the frost risk model predictions has been performed herein to evaluate objectively its ability to predict the spatio-temporal distribution of frost risk in the studied region, including comparisons against physiographical factors of the study area. The topographical characteristics that were taken under consideration were latitude, altitude, slope steepness, topographic convergence and the extend of the areas influenced by water bodies (such as lake and sea) existing in the study area. Additional data were also used concerning land use data and vegetation classification (type and density). Our results showed that the model was able to produce reasonably the spatio-temporal distribution of the frost conditions in our study area, following largely explainable patterns in respect to the study site and local weather conditions characteristics. All in all, the methodology implemented herein proved capable in obtaining rapidly and cost-effectively cartography of the frost risk in a Mediterranean environment, making it potentially a very useful tool for agricultural management and planning. The model presented here has

  16. An Agent-Based Assessment of Land Use and Ecosystem Changes in Traditional Agricultural Landscape of Portugal

    NARCIS (Netherlands)

    Acosta, L.; Rounsevell, M.D.A.; Bakker, M.M.; Doorn, van A.M.; Gómez-Delgado, M.; Delgado, M.

    2014-01-01

    This paper presents an assessment of land use changes and their impacts on the ecosystem in the Montado, a traditional agricultural landscape of Portugal in response to global environmental change. The assessment uses an agent- based model (ABM) of the adaptive decisions of farmers to simulate the

  17. Groundwater Ecosystems Vary with Land Use across a Mixed Agricultural Landscape.

    Science.gov (United States)

    Korbel, K L; Hancock, P J; Serov, P; Lim, R P; Hose, G C

    2013-01-01

    Changes in surface land use may threaten groundwater quality and ecosystem integrity, particularly in shallow aquifers where links between groundwater and surface activities are most intimate. In this study we examine the response of groundwater ecosystem to agricultural land uses in the shallow alluvial aquifer of the Gwydir River valley, New South Wales, Australia. We compared groundwater quality and microbial and stygofauna assemblages among sites under irrigated cropping, non-irrigated cropping and grazing land uses. Stygofauna abundance and richness was greatest at irrigated sites, with the composition of the assemblage suggestive of disturbance. Microbial assemblages and water quality also varied with land use. Our study demonstrates significant differences in the composition of groundwater ecosystems in areas with different surface land use, and highlights the utility of groundwater biota for biomonitoring, particularly in agricultural landscapes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Bird communities as indicators of the impact of changes in agriculture in the Mar Menor catchment area (Murcia, SE Spain)

    International Nuclear Information System (INIS)

    Farinos, P.; Robledano, F.; Jimenez, M. V.; Zapata Perez, V. M.

    2009-01-01

    Mediterranean coastal landscapes have suffered significant changes along the last decades due to agricultural intensification and tourism, that have altered the hydrological regime of wetland, as ha occurred in the Mar Menor (Southeast Spain). Such alterations and the consequent changes in nutrient flows are threatening the conservation of these wetlands. We analyze the effects of these ecosystems changes on the bird assemblages, focusing on two especially sensitive communities: water birds and steppe passerines. (Author) 2 refs.

  19. High-Resolution Biogeochemical Simulation Identifies Practical Opportunities for Bioenergy Landscape Intensification Across Diverse US Agricultural Regions

    Science.gov (United States)

    Field, J.; Adler, P. R.; Evans, S.; Paustian, K.; Marx, E.; Easter, M.

    2015-12-01

    The sustainability of biofuel expansion is strongly dependent on the environmental footprint of feedstock production, including both direct impacts within feedstock-producing areas and potential leakage effects due to disruption of existing food, feed, or fiber production. Assessing and minimizing these impacts requires novel methods compared to traditional supply chain lifecycle assessment. When properly validated and applied at appropriate spatial resolutions, biogeochemical process models are useful for simulating how the productivity and soil greenhouse gas fluxes of cultivating both conventional crops and advanced feedstock crops respond across gradients of land quality and management intensity. In this work we use the DayCent model to assess the biogeochemical impacts of agricultural residue collection, establishment of perennial grasses on marginal cropland or conservation easements, and intensification of existing cropping at high spatial resolution across several real-world case study landscapes in diverse US agricultural regions. We integrate the resulting estimates of productivity, soil carbon changes, and nitrous oxide emissions with crop production budgets and lifecycle inventories, and perform a basic optimization to generate landscape cost/GHG frontiers and determine the most practical opportunities for low-impact feedstock provisioning. The optimization is constrained to assess the minimum combined impacts of residue collection, land use change, and intensification of existing agriculture necessary for the landscape to supply a commercial-scale biorefinery while maintaining exiting food, feed, and fiber production levels. These techniques can be used to assess how different feedstock provisioning strategies perform on both economic and environmental criteria, and sensitivity of performance to environmental and land use factors. The included figure shows an example feedstock cost-GHG mitigation tradeoff frontier for a commercial-scale cellulosic

  20. Contrasting perceptions of anthropogenic coastal agricultural landscape meanings and management in Italy and Canada

    Science.gov (United States)

    Targetti, Stefano; Sherren, Kate; Raggi, Meri; Viaggi, Davide

    2016-04-01

    The Anthropocene concept entails the idea that humans have become the most influential driving factor on the environment. In this context, it is useful to get insights from coastal areas that are affected by a huge impact of human activities in shaping the territory, are prone to several threats linked with climate change, and featured by interlinked economic, cultural and social systems. We compare evidence from three different methods focusing on the perceptions of coastal agricultural landscapes: i) a survey focusing on residents' perceptions of local rural landscape elements; ii) an expert-elicitation multicriteria exercise (Analytic Network Process) focusing on the relationship between economic actors, ecosystem services and local competitiveness; and iii) a Q-methodology survey to identify public discourses concerning management alternatives. The methods were applied in two coastal case studies characterized by land drainage, shoreline barriers and coastal armoring that represent high cultural heritage; created by humans they rely on active management to persist. Moreover, in both the case studies concerns have been raised about the role of agriculture in the rural development context and the perspectives of local stakeholders towards the management of the reclaimed lands. The first area is located on the southern side of the Po River Delta (Emilia Romagna, Italy). The area was reclaimed during the 19th and 20th centuries for agricultural production and is now characterized by intensive agriculture in the hinterlands, an urbanised coastal area with a developed tourism sector, and the presence of remnant wetlands which are mostly included in the Po Delta Natural Park (covering around 30% of the case study). The second area is located in the dykelands of the Bay of Fundy (Nova Scotia, Canada) whose origins go back to the 17th Century when French settlers built the first dykes to reclaim salt marshes for farmland. While some are still farmed, a range of

  1. Environmental research programme. Ecological research. Annual report 1995. Urban-industrial landscapes, forests, agricultural landscapes, river and lake landscapes, terrestrial ecosystem research, environmental pollution and health

    International Nuclear Information System (INIS)

    1996-01-01

    In promoting ecology research, the federal ministry of science and technology (BMBF) pursues the aim to enhance understanding of the natural resources indispensable to the life of man, animals and plant societies and their interrelations, and to point out existing scope for action to preserve or replenish them. Consequently, ecology research makes an essential contribution towards effective nature conservancy and environmental protection. The interactions between climate and ecosystems also form an important part of this. With regard to topical environmental issues concerning agricultural landscapes, rivers and lakes, forests and urban-industrial agglomerations, system interrelations in representative ecosystems are investigated. The results are to be embodied in directives for the protection or appropriate use of these ecosystems in order to contribute towards a sustainable development of these types of landscapes. The book also evaluates and assesses which types of nuisances, interventions and modes of use represent hazards for the respective systems. (orig./VHE) [de

  2. Landscape fragmentation and pollinator movement within agricultural environments: a modelling framework for exploring foraging and movement ecology.

    Science.gov (United States)

    Rands, Sean A

    2014-01-01

    Pollinator decline has been linked to landscape change, through both habitat fragmentation and the loss of habitat suitable for the pollinators to live within. One method for exploring why landscape change should affect pollinator populations is to combine individual-level behavioural ecological techniques with larger-scale landscape ecology. A modelling framework is described that uses spatially-explicit individual-based models to explore the effects of individual behavioural rules within a landscape. The technique described gives a simple method for exploring the effects of the removal of wild corridors, and the creation of wild set-aside fields: interventions that are common to many national agricultural policies. The effects of these manipulations on central-place nesting pollinators are varied, and depend upon the behavioural rules that the pollinators are using to move through the environment. The value of this modelling framework is discussed, and future directions for exploration are identified.

  3. Landscape fragmentation and pollinator movement within agricultural environments: a modelling framework for exploring foraging and movement ecology

    Directory of Open Access Journals (Sweden)

    Sean A. Rands

    2014-02-01

    Full Text Available Pollinator decline has been linked to landscape change, through both habitat fragmentation and the loss of habitat suitable for the pollinators to live within. One method for exploring why landscape change should affect pollinator populations is to combine individual-level behavioural ecological techniques with larger-scale landscape ecology. A modelling framework is described that uses spatially-explicit individual-based models to explore the effects of individual behavioural rules within a landscape. The technique described gives a simple method for exploring the effects of the removal of wild corridors, and the creation of wild set-aside fields: interventions that are common to many national agricultural policies. The effects of these manipulations on central-place nesting pollinators are varied, and depend upon the behavioural rules that the pollinators are using to move through the environment. The value of this modelling framework is discussed, and future directions for exploration are identified.

  4. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    Science.gov (United States)

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil

  5. Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions

    Science.gov (United States)

    Sanfiorenzo, A. R.; Waits, L.; Finegan, B.; Shaver, I.; Chain Guadarrama, A.; Cleary, K.; Santiago-Garcia, R.; Hormel, L.; Vierling, L. A.; Bosque-Perez, N.; DeClerck, F.; Fagan, M. E.; Sibelet, N.

    2016-12-01

    Tropical ecosystem conversion to agriculture has caused widespread habitat loss and created fragmented landscapes composed of remnant forest patches embedded in a matrix of agricultural land uses. Non-traditional agricultural export (NTAE) crops such as pineapple are rapidly replacing multiuse landscapes characterized by a diverse matrix of pasture and smallholder crops with intensive, large-scale, monoculture plantations. Using an interdisciplinary approach, we examine the coupled social and ecological implications of agricultural intensification Guided by frameworks from political economy, landscape ecology and landscape genetics we: (1) describe the social and economic implications of pineapple expansion, specifically the concentration of land, labor and financial resources, (2) quantify pineapple cultivation's spatial characteristics, and (3) assess the effects of pineapple expansion on surrounding forest ecosystems, on the agricultural matrix and on biodiversity conservation. Our results indicate that pineapple production concentrates land, labor, and financial resources, which has a homogenizing effect on the agricultural economy in the study region. This constrains farm-based livelihoods, with larger implications for food security and agricultural diversity. Landscape ecology and genetics analyses further reveal how pineapple production simplifies and homogenizes the agricultural matrix between forest patches, which increase the genetic structure and reduce the genetic diversity of Symphonia globulifera a forest understory tree species. To offset the effects of agricultural intensification on social and environmental systems, we recommend developing landscape level land use planning capacity. Furthermore, agricultural and conservation policy reform is needed to promote landscape heterogeneity and economic diversity within the agricultural sector. Our interdisciplinary research provides a detailed examination of the social and ecological impacts of

  6. Tree Species Abundance Predictions in a Tropical Agricultural Landscape with a Supervised Classification Model and Imbalanced Data

    Directory of Open Access Journals (Sweden)

    Sarah J. Graves

    2016-02-01

    Full Text Available Mapping species through classification of imaging spectroscopy data is facilitating research to understand tree species distributions at increasingly greater spatial scales. Classification requires a dataset of field observations matched to the image, which will often reflect natural species distributions, resulting in an imbalanced dataset with many samples for common species and few samples for less common species. Despite the high prevalence of imbalanced datasets in multiclass species predictions, the effect on species prediction accuracy and landscape species abundance has not yet been quantified. First, we trained and assessed the accuracy of a support vector machine (SVM model with a highly imbalanced dataset of 20 tropical species and one mixed-species class of 24 species identified in a hyperspectral image mosaic (350–2500 nm of Panamanian farmland and secondary forest fragments. The model, with an overall accuracy of 62% ± 2.3% and F-score of 59% ± 2.7%, was applied to the full image mosaic (23,000 ha at a 2-m resolution to produce a species prediction map, which suggested that this tropical agricultural landscape is more diverse than what has been presented in field-based studies. Second, we quantified the effect of class imbalance on model accuracy. Model assessment showed a trend where species with more samples were consistently over predicted while species with fewer samples were under predicted. Standardizing sample size reduced model accuracy, but also reduced the level of species over- and under-prediction. This study advances operational species mapping of diverse tropical landscapes by detailing the effect of imbalanced data on classification accuracy and providing estimates of tree species abundance in an agricultural landscape. Species maps using data and methods presented here can be used in landscape analyses of species distributions to understand human or environmental effects, in addition to focusing conservation

  7. Mapping and determinism of soil microbial community distribution across an agricultural landscape.

    Science.gov (United States)

    Constancias, Florentin; Terrat, Sébastien; Saby, Nicolas P A; Horrigue, Walid; Villerd, Jean; Guillemin, Jean-Philippe; Biju-Duval, Luc; Nowak, Virginie; Dequiedt, Samuel; Ranjard, Lionel; Chemidlin Prévost-Bouré, Nicolas

    2015-06-01

    Despite the relevance of landscape, regarding the spatial patterning of microbial communities and the relative influence of environmental parameters versus human activities, few investigations have been conducted at this scale. Here, we used a systematic grid to characterize the distribution of soil microbial communities at 278 sites across a monitored agricultural landscape of 13 km². Molecular microbial biomass was estimated by soil DNA recovery and bacterial diversity by 16S rRNA gene pyrosequencing. Geostatistics provided the first maps of microbial community at this scale and revealed a heterogeneous but spatially structured distribution of microbial biomass and diversity with patches of several hundreds of meters. Variance partitioning revealed that both microbial abundance and bacterial diversity distribution were highly dependent of soil properties and land use (total variance explained ranged between 55% and 78%). Microbial biomass and bacterial richness distributions were mainly explained by soil pH and texture whereas bacterial evenness distribution was mainly related to land management. Bacterial diversity (richness, evenness, and Shannon index) was positively influenced by cropping intensity and especially by soil tillage, resulting in spots of low microbial diversity in soils under forest management. Spatial descriptors also explained a small but significant portion of the microbial distribution suggesting that landscape configuration also shapes microbial biomass and bacterial diversity. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes

    International Nuclear Information System (INIS)

    Bouldin, J.L.; Farris, J.L.; Moore, M.T.; Cooper, C.M.

    2004-01-01

    Agricultural drainage ditches in the Mississippi Alluvial Delta landscape vary from edge-of-field waterways to sizeable drainages. Ditch attributes vary with size, location and maintenance and may aid in mitigation of contaminants from agricultural fields. The goal of this study was to better understand how vegetative characteristics affect water quality in conveyance structures in the context of ditch class and surrounding land use. Characterization of 36 agricultural ditches included presence of riparian buffer strips, water depth, surrounding land use, vegetative cover, and associated aqueous physicochemical parameters. Vegetation was assessed quantitatively, obtaining stem counts in a sub-sample of ditch sites, using random quadrat method. Physical features varied with ditch size and vegetative diversity was higher in larger structures. Polygonum sp. was the dominant bed vegetation and was ubiquitous among site sizes. Macrophytes varied from aquatic to upland species, and included Leersia sp. and upland grasses (Poaceae family) in all drainage size classes. Percent cover of bed and bank varied from 0 to 100% and 70 to 100%, respectively, and highest nutrient values were measured in sites with no buffer strips. These conveyance structures and surrounding buffer zones are being ranked for their ability to reduce excess nutrients, suspended solids, and pesticides associated with runoff. - Capsule: Vegetated buffer areas provide effective mitigation for non-point source pollution from agriculture

  9. Agricultural intensification and drought frequency increases may have landscape-level consequences for ephemeral ecosystems.

    Science.gov (United States)

    Dalu, Tatenda; Wasserman, Ryan J; Dalu, Mwazvita T B

    2017-03-01

    Ephemeral wetlands in arid regions are often degraded or destroyed through poor land-use practice long before they are ever studied or prioritized for conservation. Climate change will likely also have implications for these ecosystems given forecast changes in rainfall patterns in many arid environments. Here, we present a conceptual diagram showing typical and modified ephemeral wetlands in agricultural landscapes and how modification impacts on species diversity and composition. © 2016 John Wiley & Sons Ltd.

  10. Crop Protection in Medieval Agriculture

    NARCIS (Netherlands)

    Zadoks, J.C.

    2013-01-01

    Mediterranean and West European pre-modern agriculture (agriculture before 1600) was by necessity ‘organic agriculture’. Crop protection is part and parcel of this agriculture, with weed control in the forefront. Crop protection is embedded in the medieval agronomy text books but specialised

  11. An integrative analysis of the dynamics of landscape- and local-scale colonization of Mediterranean woodlands by Pinus halepensis.

    Directory of Open Access Journals (Sweden)

    Efrat Sheffer

    Full Text Available Afforestation efforts have resulted in extensive plantations of either native or non-native conifers, which in many regions has led to the spread of those conifers into surrounding natural vegetation. This process of species colonization can trigger profound changes in both community dynamics and ecosystem processes. Our study disentangled the complexity of a process of colonization in a heterogeneous landscape into a simple set of rules. We analyzed the factors that control the colonization of natural woodland ecosystems by Pinus halepensis dispersing from plantations in the Mediterranean region of Israel. We developed maximum-likelihood models to explain the densities of P. halepensis colonizing natural woodlands. Our models unravel how P. halepensis colonization is controlled by factors that determine colonization pressure by dispersing seeds and by factors that control resistance to colonization of the natural ecosystems. Our models show that the combination of different seed arrival processes from local, landscape, and regional scales determine pine establishment potential, but the relative importance of each component varied according to seed source distribution. Habitat resistance, determined by abiotic and biotic conditions, was as important as propagule input in determining the density of pine colonization. Thus, despite the fact that pine propagules disperse throughout the landscape, habitat heterogeneity within the natural ecosystems generates significant variation in the actual densities of colonized pine. Our approach provides quantitative measures of how processes at different spatial scales affect the distribution and densities of colonizing species, and a basis for projection of expected distributions. Variation in colonization rates, due to landscape-scale heterogeneity in both colonization pressure and resistance to colonization, can be expected to produce a diversity of new ecosystems. This work provides a template for

  12. Relationships between bees (Hymenoptera: Apoidea: Apiformes and flowers in the Bulgarian agricultural landscape

    Directory of Open Access Journals (Sweden)

    Banaszak Józef

    2015-06-01

    Full Text Available The species composition and number of visitations of food plants by bees were studied in refuge sites in agricultural landscapes and in selected crops. The habitat fragments of interest are characterised in terms of pollinator diversity at genus level and the use of food plants by individual genera. Trophic and temporal niche overlap is described for individual genera and the honey bee Apis mellifera in different habitat types. Factors influencing the manner of use of individual plant species by pollinating insects are identified

  13. Bees (Hymenoptera, Apoidea, Apiformes in the Agricultural Landscape of Bulgaria: Species Diversity

    Directory of Open Access Journals (Sweden)

    Banaszak Józef

    2014-06-01

    Full Text Available Wild bees (Apiformes were studied in 4 crop fields and 8 refuge habitats for 2 - 5 years in agricultural landscapes in the Pleven and Plovdiv regions of Bulgaria. In total, 233 bee species were recorded. Bee forage plants visited by the honey bee and wild Apiformes are listed for each refuge habitat. Species composition is given for individual habitats, including fields of alfalfa (Medicago sativa, oilseed rape (Brassica napus, sunflower (Helianthus annuus, and radish (Raphanus sativus. Species richness and dominance structure of bee communities in the 2 regions are compared, and species responsible for significant differences are identified.

  14. Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales

    NARCIS (Netherlands)

    Schweiger, O.; Maelfait, J.P.; Wingerden, van W.K.R.E.; Hendrickx, F.; Billeter, R.; Speelmans, M.; Augenstein, I.; Aukema, B.; Aviron, S.; Bailey, D.; Bukacek, R.; Burel, F.; Diekötter, T.; Dirksen, J.; Frenzel, M.; Herzog, F.; Liira, J.; Roubalova, M.; Bugter, R.J.F.

    2005-01-01

    1. In landscapes influenced by anthropogenic activities, such as intensive agriculture, knowledge of the relative importance and interaction of environmental factors on the composition and function of local communities across a range of spatial scales is important for maintaining biodiversity. 2. We

  15. Landscape for biological diversity in Europe

    NARCIS (Netherlands)

    Jongman, R.H.G.

    2002-01-01

    The European landscape reflects its agricultural legacy, but agriculture is losing its dominant position in the rural economy. The rural landscapes of Europe are in a process of polarization between intensive land use and naturalistic areas. In addition to this process, fragmentation of the

  16. Analysis of soil and vegetation patterns in semi-arid Mediterranean landscapes by way of a conceptual water balance model

    Directory of Open Access Journals (Sweden)

    I. Portoghese

    2008-06-01

    Full Text Available This paper investigates the impact of various vegetation types on water balance variability in semi-arid Mediterranean landscapes, and the different strategies they may have developed to succeed in such water-limited environments. The existence of preferential associations between soil water holding capacity and vegetation species is assessed through an extensive soil geo-database focused on a study region in Southern Italy. Water balance constraints that dominate the organization of landscapes are investigated by a conceptual bucket approach. The temporal water balance dynamics are modelled, with vegetation water use efficiency being parameterized through the use of empirically obtained crop coefficients as surrogates of vegetation behavior in various developmental stages. Sensitivity analyses with respect to the root zone depth and soil water holding capacity are carried out with the aim of explaining the existence of preferential soil-vegetation associations and, hence, the spatial distribution of vegetation types within the study region. Based on these sensitivity analyses the degrees of suitability and adaptability of each vegetation type to parts of the study region are explored with respect of the soil water holding capacity, and the model results were found consistent with the observed affinity patterns.

  17. Water and energy footprint of irrigated agriculture in the Mediterranean region

    Science.gov (United States)

    Daccache, A.; Ciurana, J. S.; Rodriguez Diaz, J. A.; Knox, J. W.

    2014-12-01

    Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m3 kg-1) and energy (CO2 kg-1) productivity and identify vulnerable areas or ‘hotspots’. For a selected key crops in the region, irrigation accounts for 61 km3 yr-1 of water abstraction and 1.78 Gt CO2 emissions yr-1, with most emissions from sunflower (73 kg CO2/t) and cotton (60 kg CO2/t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 t Mm-3 and emissions of 31 kg CO2/t. Irrigation modernization would save around 8 km3 of water but would correspondingly increase CO2 emissions by around +135%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km3 yr-1 (+137%) whilst CO2 emissions would rise by +270%. The study has major policy implications for understanding the water-energy-food nexus in the region and the trade-offs between strategies to save water, reduce CO2 emissions and/or intensify food production.

  18. Mitigating Nitrous Oxide Emissions from Agricultural Landscape: The Role of Isotopic Techniques

    Science.gov (United States)

    Zaman, Mohammad; Nguyen, Minh Long

    2014-05-01

    A review of studies from agricultural landscapes indicate that intensification of agricultural activities, inefficient use of reactive nitrogen (N) fertilizers and irrigation water, increasing human population and changes in their diet (more protein demand), high stocking rate (number of grazing livestock per hectare) and intensive cultivation are the major influencing factors for nitrous oxide (N2O) emissions into the atmosphere. Nitrification (both autotrophic and heterotrophic), denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are the three major microbial processes that produce greenhouse N2O and non-greenhouse gas (N2) and can sometimes occur concurrently in a given soil system. The contribution of N2O production from each of these microbial processes is inconclusive because of the complex interactions between various microbial processes and the physical and chemical conditions in soil microsite (s). Nitrous oxide emissions across an agricultural landscape from different N inputs (chemical fertilizers and animal manure) and soil types are also extremely variable both temporally and spatially and range from 1-20% of the applied N and could therefore represent agronomic loss. The available conventional methods such as acetylene (C2H2) inhibition and helium (He) cannot accurately measure both N2O and N2 and their ratio in a given soil. The use of 15N stable isotopic technique offers the best option to measure both N2O and N2 and to identify their source (nitrification and denitrification) with a greater accuracy. Manipulating soil and fertilizer management practices can minimise these gaseous N losses. For example the combined use of urease inhibitor like (N-(n-butyl) thiophosphoric triamide (nBTPT) (trade name Agrotain®) and nitrification inhibitor dicyandiamide (DCD) with urea (100 kg N ha-1) or animal urine (600 kg N ha-1) was shown to reduce N losses by 39-53 % via denitrification-nitrification-DNRA processes. Other farm management

  19. Low effect of young afforestations on bird communities inhabiting heterogeneous Mediterranean cropland

    Directory of Open Access Journals (Sweden)

    Juan S. Sánchez-Oliver

    2015-12-01

    Full Text Available Afforestation programs such as the one promoted by the EU Common Agricultural Policy have spread tree plantations on former cropland. These afforestations attract generalist forest and ubiquitous species but may cause severe damage to open habitat species, especially birds of high conservation value. We investigated the effects of young (<20 yr tree plantations dominated by pine P. halepensis on bird communities inhabiting the adjacent open farmland habitat in central Spain. We hypothesize that pine plantations located at shorter distances from open fields and with larger surface would affect species richness and conservation value of bird communities. Regression models controlling for the influence of land use types around plantations revealed positive effects of higher distance to pine plantation edge on community species richness in winter, and negative effects on an index of conservation concern (SPEC during the breeding season. However, plantation area did not have any effect on species richness or community conservation value. Our results indicate that the effects of pine afforestation on bird communities inhabiting Mediterranean cropland are diluted by heterogeneous agricultural landscapes.

  20. Landscapes and ethno-knowledge in the Ticuna and Cocama agriculture at upper River Solimões, Amazonas, Brazil

    Directory of Open Access Journals (Sweden)

    Sandra do Nascimento Noda

    2012-08-01

    Full Text Available The units of landscape in the Cocama and Ticuna agriculture, in the upper River Solimões, are characterized by productionarrangements and management of natural resources. This paper aims to characterize these agro-ecological based practices,the landscaped results and its regional applicability. The survey was conducted in Novo Paraíso, at Bom Intento Island,and in Nova Aliança, both located in the municipality of Benjamin Constant, state of Amazonas, Brazil. The social andeconomic organization of Ticuna and Cocama Peoples is founded on kinship and communal ownership of natural resources,including spaces for gathering. Family units, despite their weak linkages with the market and its rules, have in the logicof reciprocity the motivation for the production, transmission and management of resources and factors of production.The landscapes are reconstructed by agro-ecological production derived from ethno-knowledge and correspond to theinherent processes of management and conservation of flora and fauna. This process allows the existence of compleximbrications of constantly changing landscapes in which forms of production are recreated for sufficiency and sustainability.

  1. Changes in water budgets and sediment yields from a hypothetical agricultural field as a function of landscape and management characteristics--A unit field modeling approach

    Science.gov (United States)

    Roth, Jason L.; Capel, Paul D.

    2012-01-01

    Crop agriculture occupies 13 percent of the conterminous United States. Agricultural management practices, such as crop and tillage types, affect the hydrologic flow paths through the landscape. Some agricultural practices, such as drainage and irrigation, create entirely new hydrologic flow paths upon the landscapes where they are implemented. These hydrologic changes can affect the magnitude and partitioning of water budgets and sediment erosion. Given the wide degree of variability amongst agricultural settings, changes in the magnitudes of hydrologic flow paths and sediment erosion induced by agricultural management practices commonly are difficult to characterize, quantify, and compare using only field observations. The Water Erosion Prediction Project (WEPP) model was used to simulate two landscape characteristics (slope and soil texture) and three agricultural management practices (land cover/crop type, tillage type, and selected agricultural land management practices) to evaluate their effects on the water budgets of and sediment yield from agricultural lands. An array of sixty-eight 60-year simulations were run, each representing a distinct natural or agricultural scenario with various slopes, soil textures, crop or land cover types, tillage types, and select agricultural management practices on an isolated 16.2-hectare field. Simulations were made to represent two common agricultural climate regimes: arid with sprinkler irrigation and humid. These climate regimes were constructed with actual climate and irrigation data. The results of these simulations demonstrate the magnitudes of potential changes in water budgets and sediment yields from lands as a result of landscape characteristics and agricultural practices adopted on them. These simulations showed that variations in landscape characteristics, such as slope and soil type, had appreciable effects on water budgets and sediment yields. As slopes increased, sediment yields increased in both the arid and

  2. A comparison of the herbicide tolerances of rare and common plants in an agricultural landscape.

    Science.gov (United States)

    Egan, J Franklin; Graham, Ian M; Mortensen, David A

    2014-03-01

    Declining plant biodiversity in agroecosystems has often been attributed to escalating use of chemical herbicides, but other changes in farming systems, including the clearing of seminatural habitat fragments, confound the influence of herbicides. The present study introduces a new approach to evaluate the impacts of herbicide pollution on plant communities at landscape or regional scales. If herbicides are in fact a key factor shaping agricultural plant diversity, one would expect to see the signal of past herbicide impacts in the current plant community composition of an intensively farmed region, with common, successful species more tolerant to widely used herbicides than rare or declining species. Data from an extensive field survey of plant diversity in Lancaster County, Pennsylvania, USA, were compared with herbicide bioassay experiments in a greenhouse to test the hypothesis that common species possess higher herbicide tolerances than rare species. Five congeneric pairs of rare and common species were treated with 3 commonly used herbicide modes of action in bioassay experiments, and few significant differences were found in the tolerances of rare species relative to common species. These preliminary results suggest that other factors beyond herbicide exposure may be more important in shaping the distribution and abundance of plant species diversity across an agricultural landscape. © 2014 SETAC.

  3. Land-use changes in a small watershed in the Mediterranean landscape (SE Spain): environmental implications of a shift towards subtropical crops

    NARCIS (Netherlands)

    Duran Zuazo, V.H.; Rodriguez Pleguezuelo, C.R.; Francia Martinez, J.R.; Martin Peinado, F.J.; Graaff, de J.

    2013-01-01

    Resource use and watershed management have become an increasingly important issue, stressing the need to find appropriate management approaches for improving agricultural landscapes. We analysed land-use changes from 1978 to 2007 in a representative watershed of Almuñécar (SE Spain). In 1978 the

  4. Linking ecology and aesthetics in sustainable agricultural landscapes: Lessons from the Palouse region of Washington, U.S.A

    Science.gov (United States)

    Linda R. Klein; William G. Hendrix; Virginia I. Lohr; Jolie B. Kaytes; Rodney D. Sayler; Mark E. Swanson; William J. Elliot; John P. Reganold

    2015-01-01

    Inspired by international escalation in agricultural sustainability debates, we explored the promise of landscape-scale conservation buffers to mitigate environmental damage, improve ecological function, and enhance scenic quality. Although the ecological benefits of buffer vegetation are well established by plot- and field-scale research, buffer adoption by farmers is...

  5. Integrating Geomorphic and Social Dynamics in the Analysis of Anthropogenic Landforms: Examining Landscape Evolution of Terrain Modified by Agricultural Terracing

    Science.gov (United States)

    Glaubius, J.; Maerker, M.

    2016-12-01

    Anthropogenic landforms, such as mines and agricultural terraces, are impacted by both geomorphic and social processes at varying intensities through time. In the case of agricultural terraces, decisions regarding terrace maintenance are intertwined with land use, such as when terraced fields are abandoned. Furthermore, terrace maintenance and land use decisions, either jointly or separately, may be in response to geomorphic processes, as well as geomorphic feedbacks. Previous studies of these complex geomorphic systems considered agricultural terraces as static features or analyzed only the geomorphic response to landowner decisions. Such research is appropriate for short-term or binary landscape scenarios (e.g. the impact of maintained vs. abandoned terraces), but the complexities inherent in these socio-natural systems requires an approach that includes both social and geomorphic processes. This project analyzes feedbacks and emergent properties in terraced systems by implementing a coupled landscape evolution model (LEM) and agent-based model (ABM) using the Landlab and Mesa modeling libraries. In the ABM portion of the model, agricultural terraces are conceptualized using a life-cycle stages schema and implemented using Markov Decision Processes to simulate the changing geomorphic impact of terracing based on human decisions. This paper examines the applicability of this approach by comparing results from a LEM-only model against the coupled LEM-ABM model for a terraced region. Model results are compared by quantify and spatial patterning of sediment transport. This approach fully captures long-term landscape evolution of terraced terrain that is otherwise lost when the life-cycle of terraces is not considered. The coupled LEM-ABM approach balances both environmental and social processes so that the socio-natural feedbacks in such anthropogenic systems can be disentangled.

  6. An unified framework to integrate biotic, abiotic processes and human activities in spatially explicit models of agricultural landscapes

    Directory of Open Access Journals (Sweden)

    Fabrice eVinatier

    2016-02-01

    Full Text Available Recent concern over possible ways to sustain ecosystem services has triggered important research worldwide on ecosystem processes at the landscape scale. Understanding this complexity of landscape functioning calls for coupled and spatially-explicit modelling approaches. However, disciplinary boundaries have limited the number of multi-process studies at the landscape scale, and current progress in coupling processes at this scale often reveals strong imbalance between biotic and abiotic processes, depending on the core discipline of the modellers. We propose a spatially-explicit, unified conceptual framework that allows researchers from different fields to develop a shared view of agricultural landscapes. In particular,we distinguish landscape elements that are mobile in space and represent biotic or abiotic objects (for example water, fauna or flora populations, and elements that are immobile and represent fixed landscape elements with a given geometry (for example ditch section or plot. The shared representation of these elements allows setting common objects and spatio-temporal process boundaries that may otherwise differ between disciplines. We present guidelines and an assessment of the applicability of this framework to a virtual landscape system with realistic properties. This framework allows the complex system to be represented with a limited set of concepts but leaves the possibility to include current modelling strategies specific to biotic or abiotic disciplines. Future operational challenges include model design, space and time discretization, and the availability of both landscape modelling platforms and data.

  7. The Effect of Landscape Composition on the Abundance of Laodelphax striatellus Fallén in Fragmented Agricultural Landscapes

    Directory of Open Access Journals (Sweden)

    Zhanyu Liu

    2016-10-01

    Full Text Available The spatial distribution of crop and non-crop habitats over segmented agricultural landscapes could be used as a means to reduce insect pest populations. Seven land cover categories such as wheat, rapeseed, vegetable, water, built-up, paved road, and unsurfaced road were extracted from GeoEye satellite images dating from late May to late June of 2010. Three diversity metrics and three evenness metrics were estimated from the abovementioned land cover categories for quantifying the effect of landscape composition on nymphal and adult Laodelphax striatellus Fallén. The degree of correlation between the proportion of crop cover and adjacent spatial scales (r: 0.651–0.983 was higher than the correlation between the proportion of crop cover and nonadjacent spatial scales (r: −0.255–0.896. While the degree of correlation between diversity indices and abundance of L. striatellus decreased gradually when the spatial scales varied from large (>100 m radius buffer to small (<100 m. Our study suggests that when using natural biological pest control and ecological engineering practices in the rural-urban fringes, the crop field’s width should be less than 200 m and increasing vegetation diversity within such a scale will be helpful to regulate the insect pests under a certain density.

  8. Building the landscapes of Monte di Procida

    Directory of Open Access Journals (Sweden)

    Carmine Piscopo

    2014-02-01

    Full Text Available A coastal landscape, peppered with ancient formations and recent damage, characterized by labyrinthine paths leading towards sandy beaches, from which strips of land start. The aim of the article is to present the City Plan (PUC2 for this particular landscape, currently being prepared. Themes in the plan are the strengthening of links to the coast, exploitation of Mediterranean architecture, regeneration of the network of paths, and mitigation of the effects due to climatechange. This strategy comes from the survey and interpretation of the area and takes account of the changing character of the landscape, in which "landscape units" have been identified and articulated in order to build a new architecture of the places.

  9. Impact of landscape characteristics on the stream carbon and nitrogen export: example of a small agricultural catchment in Denmark

    DEFF Research Database (Denmark)

    Wohlfart, T.; Exbrayat, J.F.; Schelde, Kirsten

    2012-01-01

    Agriculture plays an important role on the environment, notably the quality of water draining cultivated soils. Understanding the relationship between landscape characteristics and stream quality is crucial to sustain a good quality of water and to develop adapted policies. Therefore, this study...... point between the chemical data and landscape characteristics (e.g. topography, land-use and soil type distributions) of the corresponding contributing area. Results show that, in spite of an overall little share, the influence of organic soil types seems to impact N losses to streams stronger than...... local land use by farming....

  10. The Globalized Landscape: Rural Landscape Change and Policy in the United States and European Union

    NARCIS (Netherlands)

    Nassauer, J.I.; Wascher, D.M.

    2008-01-01

    While some rural areas draw increasing populations to their landscape amenities and some are changed by the long reach of metropolitan sprawl, agriculture defines, and dominates rural landscapes. Amenity characteristics and ecological services of many rural landscapes occur in the context of

  11. Spatiotemporal variability of hydrologic soil properties and the implications for overland flow and land management in a peri-urban Mediterranean catchment

    Science.gov (United States)

    Ferreira, C. S. S.; Walsh, R. P. D.; Steenhuis, T. S.; Shakesby, R. A.; Nunes, J. P. N.; Coelho, C. O. A.; Ferreira, A. J. D.

    2015-06-01

    Planning of semi-urban developments is often hindered by a lack of knowledge on how changes in land-use affect catchment hydrological response. The temporal and spatial patterns of overland flow source areas and their connectivity in the landscape, particularly in a seasonal climate, remain comparatively poorly understood. This study investigates seasonal variations in factors influencing runoff response to rainfall in a peri-urban catchment in Portugal characterized by a mosaic of landscape units and a humid Mediterranean climate. Variations in surface soil moisture, hydrophobicity and infiltration capacity were measured in six different landscape units (defined by land-use on either sandstone or limestone) in nine monitoring campaigns at key times over a one-year period. Spatiotemporal patterns in overland flow mechanisms were found. Infiltration-excess overland flow was generated in rainfalls during the dry summer season in woodland on both sandstone and limestone and on agricultural soils on limestone due probably in large part to soil hydrophobicity. In wet periods, saturation overland flow occurred on urban and agricultural soils located in valley bottoms and on shallow soils upslope. Topography, water table rise and soil depth determined the location and extent of saturated areas. Overland flow generated in upslope source areas potentially can infiltrate in other landscape units downslope where infiltration capacity exceeds rainfall intensity. Hydrophilic urban and agricultural-sandstone soils were characterized by increased infiltration capacity during dry periods, while forest soils provided potential sinks for overland flow when hydrophilic in the winter wet season. Identifying the spatial and temporal variability of overland flow sources and sinks is an important step in understanding and modeling flow connectivity and catchment hydrologic response. Such information is important for land managers in order to improve urban planning to minimize flood risk.

  12. Water and energy footprint of irrigated agriculture in the Mediterranean region

    International Nuclear Information System (INIS)

    Daccache, A; Ciurana, J S; Knox, J W; Rodriguez Diaz, J A

    2014-01-01

    Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m 3 kg −1 ) and energy (CO 2 kg −1 ) productivity and identify vulnerable areas or ‘hotspots’. For a selected key crops in the region, irrigation accounts for 61 km 3 yr −1 of water abstraction and 1.78 Gt CO 2 emissions yr −1 , with most emissions from sunflower (73 kg CO 2 /t) and cotton (60 kg CO 2 /t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 t Mm −3 and emissions of 31 kg CO 2 /t. Irrigation modernization would save around 8 km 3 of water but would correspondingly increase CO 2 emissions by around +135%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km 3 yr −1 (+137%) whilst CO 2 emissions would rise by +270%. The study has major policy implications for understanding the water–energy–food nexus in the region and the trade-offs between strategies to save water, reduce CO 2 emissions and/or intensify food production. (letter)

  13. Conservation of Pollinators in Traditional Agricultural Landscapes - New Challenges in Transylvania (Romania) Posed by EU Accession and Recommendations for Future Research.

    Science.gov (United States)

    Kovács-Hostyánszki, Anikó; Földesi, Rita; Mózes, Edina; Szirák, Ádám; Fischer, Joern; Hanspach, Jan; Báldi, András

    2016-01-01

    Farmland biodiversity is strongly declining in most of Western Europe, but still survives in traditional low intensity agricultural landscapes in Central and Eastern Europe. Accession to the EU however intensifies agriculture, which leads to the vanishing of traditional farming. Our aim was to describe the pollinator assemblages of the last remnants of these landscapes, thus set the baseline of sustainable farming for pollination, and to highlight potential measures of conservation. In these traditional farmlands in the Transylvanian Basin, Romania (EU accession in 2007), we studied the major pollinator groups-wild bees, hoverflies and butterflies. Landscape scale effects of semi-natural habitats, land cover diversity, the effects of heterogeneity and woody vegetation cover and on-site flower resources were tested on pollinator communities in traditionally managed arable fields and grasslands. Our results showed: (i) semi-natural habitats at the landscape scale have a positive effect on most pollinators, especially in the case of low heterogeneity of the direct vicinity of the studied sites; (ii) both arable fields and grasslands hold abundant flower resources, thus both land use types are important in sustaining pollinator communities; (iii) thus, pollinator conservation can rely even on arable fields under traditional management regime. This has an indirect message that the tiny flower margins around large intensive fields in west Europe can be insufficient conservation measures to restore pollinator communities at the landscape scale, as this is still far the baseline of necessary flower resources. This hypothesis needs further study, which includes more traditional landscapes providing baseline, and exploration of other factors behind the lower than baseline level biodiversity values of fields under agri-environmental schemes (AES).

  14. Conservation of Pollinators in Traditional Agricultural Landscapes - New Challenges in Transylvania (Romania Posed by EU Accession and Recommendations for Future Research.

    Directory of Open Access Journals (Sweden)

    Anikó Kovács-Hostyánszki

    Full Text Available Farmland biodiversity is strongly declining in most of Western Europe, but still survives in traditional low intensity agricultural landscapes in Central and Eastern Europe. Accession to the EU however intensifies agriculture, which leads to the vanishing of traditional farming. Our aim was to describe the pollinator assemblages of the last remnants of these landscapes, thus set the baseline of sustainable farming for pollination, and to highlight potential measures of conservation. In these traditional farmlands in the Transylvanian Basin, Romania (EU accession in 2007, we studied the major pollinator groups-wild bees, hoverflies and butterflies. Landscape scale effects of semi-natural habitats, land cover diversity, the effects of heterogeneity and woody vegetation cover and on-site flower resources were tested on pollinator communities in traditionally managed arable fields and grasslands. Our results showed: (i semi-natural habitats at the landscape scale have a positive effect on most pollinators, especially in the case of low heterogeneity of the direct vicinity of the studied sites; (ii both arable fields and grasslands hold abundant flower resources, thus both land use types are important in sustaining pollinator communities; (iii thus, pollinator conservation can rely even on arable fields under traditional management regime. This has an indirect message that the tiny flower margins around large intensive fields in west Europe can be insufficient conservation measures to restore pollinator communities at the landscape scale, as this is still far the baseline of necessary flower resources. This hypothesis needs further study, which includes more traditional landscapes providing baseline, and exploration of other factors behind the lower than baseline level biodiversity values of fields under agri-environmental schemes (AES.

  15. Pedo-environmental evolution and agricultural landscape transformation

    Directory of Open Access Journals (Sweden)

    Gilmo Vianello

    Full Text Available Landscapes represent the stage setting of the ecosystem, the great theatre where the evolution of the environment, the changing of things and plant and animal life are played out; the diversity of landscapes derives from the combination, over time, of different environmental factors having perceptibly different roles, as in the case of climate, vegetation and human activity. Less perceptible and scarcely known is the role of soil, which has the ability not only to diversify the ecosystem’s landscapes but also to differentiate its level of productivity and liveability. The role of soil as part of the landscape is not always so evident, especially when it is covered by vegetation that precludes observation. At times, however, soils show themselves conspicuously, at least on the surface, when the colours of the epipedons invade the landscape and – in the ploughing season – dominate it. While it may be reassuring to see neatly cultivated fields and crops growing luxuriantly and homogeneously, the increasingly marked and evident signs of soil degradation or erosion are a cause for concern. In the recent past, the relationship between man and soil resources was strongly influenced by natural factors inside and outside the soil itself, socio-economic conditions and above all the labour force, i.e. the people employed in the primary sector; consequently, it was based on such factors that crop-growing choices were adapted to the different ecosystems, resulting in a diversification of rural landscapes. Starting from the second half of the twentieth century, the introduction of chemicals, mechanisation and exploitation of various forms of energy drastically transformed land use in the space of just a few years, with a logic aimed at improving the production capacity of farmland and forest land in both qualitative and quantitative terms. As a consequence, farming choices that were formerly adapted to the natural and socio-economic conditions of

  16. Pedo-environmental evolution and agricultural landscape transformation

    Directory of Open Access Journals (Sweden)

    Gilmo Vianello

    2009-10-01

    Full Text Available Landscapes represent the stage setting of the ecosystem, the great theatre where the evolution of the environment, the changing of things and plant and animal life are played out; the diversity of landscapes derives from the combination, over time, of different environmental factors having perceptibly different roles, as in the case of climate, vegetation and human activity. Less perceptible and scarcely known is the role of soil, which has the ability not only to diversify the ecosystem’s landscapes but also to differentiate its level of productivity and liveability. The role of soil as part of the landscape is not always so evident, especially when it is covered by vegetation that precludes observation. At times, however, soils show themselves conspicuously, at least on the surface, when the colours of the epipedons invade the landscape and – in the ploughing season – dominate it. While it may be reassuring to see neatly cultivated fields and crops growing luxuriantly and homogeneously, the increasingly marked and evident signs of soil degradation or erosion are a cause for concern. In the recent past, the relationship between man and soil resources was strongly influenced by natural factors inside and outside the soil itself, socio-economic conditions and above all the labour force, i.e. the people employed in the primary sector; consequently, it was based on such factors that crop-growing choices were adapted to the different ecosystems, resulting in a diversification of rural landscapes. Starting from the second half of the twentieth century, the introduction of chemicals, mechanisation and exploitation of various forms of energy drastically transformed land use in the space of just a few years, with a logic aimed at improving the production capacity of farmland and forest land in both qualitative and quantitative terms. As a consequence, farming choices that were formerly adapted to the natural and socio-economic conditions of

  17. Floodplains as a source of fine sediment in grazed landscapes: tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    Science.gov (United States)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2017-12-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five potential sources: streambanks, forested floodplain, grassland, and grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and fallout radionuclides were used as potential tracers. Principal Component analysis was employed to complement the results and Monte Carlo random sampling routine was used to test the uncertainty in estimated contributions of sources to in-stream sediment loads. Results indicate that the majority of suspended sediment is derived from streambanks and grazed floodplains. Erosion of the floodplain both by surface runoff and by streambank erosion from lateral channel migration contributes to the production of fine sediment within the stream system. These results suggest that human activities, in this case grazing, have converted portions of floodplains, normally net depositional environments, into sources of fine sediments. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on degraded floodplain surfaces and eroding channel banks within heavily grazed reaches of the stream.

  18. Mediterranean evergreen vegetation dynamics : detection and modelling of forest and shrub-land development in the Peyne catchment

    NARCIS (Netherlands)

    Nijland, W.

    2011-01-01

    Vegetation development in Mediterranean landscapes is often a slow process. The typical Mediterranean climate -with long dry periods in summer, mild winters and concentrated rainfall events in spring and autumn- is an important constraint on growth, enhanced by the often marginal and degraded soil

  19. Agricultural utilisation and potential suitability of the Sysľovské polia Special Protection Area (south-western Slovakia landscape in relation to the habitat requirements of the red-footed falcon (Falco vespertinus

    Directory of Open Access Journals (Sweden)

    Zemko Martin

    2017-12-01

    Full Text Available Intensification of land use in an agricultural landscape significantly affects biodiversity also in protected areas. This can be observed in the Sysľovské polia Special Protection Area in relation to the occurrence of the red-footed falcon (Falco vespertinus. The objective of this study was to evaluate the landscape structure and suitability of agrotechnical procedures for the habitat demands of this species in the course of the period from 2004 until 2017. The utilisation was assessed on the basis of four landscape elements representation in 1949 and 2017. The next step was analysis of landscape patches. The aim was to quantify the diversity and the spatial structure of the landscape mosaic using Shannon’s Diversity Index and Evenness Index as well as Simpson’s Diversity Index and Evenness Index and spatial pattern analysis in the Fragstats software programme. Assessment of crop suitability was carried out according to the following criteria: representation of positive/negative agricultural crops, diversity of crops in crop rotation, and (non-observance of crop rotation. It was found that the agricultural landscape use did not change significantly. The study area has been used as an intensively-farmed agricultural landscape for a long time. The landscape elements have remained almost identical, with dominance of arable land. Differences emerged in the analysis of the micropatches, which are represented by natural hedgerows consisting of various species of trees, shrubs and grasses. The results show a decrease in the diversity of patches and changes in the structure of the landscape patches, which may be important in terms of the preservation of the habitat of fauna which form an important part of the F vespertinus diet. On the basis of the evaluation of the suitability of agricultural crop growing, we found that there were some areas showing negative values in all the criteria, and thus they require changes in the crop rotation focusing

  20. Landscape value of the tea (Camellia sinensis areas

    Directory of Open Access Journals (Sweden)

    Nilgün Güneroğlu

    2016-04-01

    Full Text Available Agricultural fields are very effective and widespread in Turkey’s rural landscape formation. Turkey is located on transitional climatic zone on mid-latitudes which leads to diversification of agricultural plants. Accordingly, many agricultural landscape types representing diferent regions and culture were naturally formed. Agricultural lands are not only fields for harvesting crops but also areas to form natural habitats, reduce greenhouse effect and create cultural landscapes with countable value. Moreover, it is well-known that landscape value has also economic compesation as result of offered ecosystem services. Therefore this study was carried out in Rize city located on Northeastern part of Turkey and characterized by Tea (Camellia sinensis cultivation. This study was carried out in three steps. The first step is a literature search, the second one is the preparing of identity card for each survey point and the last step is based on data obtained from questionnaries and related field work to produce quantitative landscpae value map of the region by considering visual perception and tourism value of the study area. Finally, character number 2 has the highest landscape value whereas character number 4 has the lowest landscape value among previosuly determined 5 landscape characters of the study area. It is concluded that non-fragmented areas are generally more preffered as they offer integrated and perceivable landscapes to the users.

  1. Adapting Landscape Mosaics of medIteranean Rainfed Agrosystems for a sustainable management of crop production, water and soil resources: the ALMIRA project.

    Science.gov (United States)

    Jacob, Frédéric; Mekki, Insaf; Chikhaoui, Mohamed

    2014-05-01

    In the context of mitigating the pressures induced by global change combined with demography and market pressures, there is increasing societal demand and scientific need to understand the functioning of Mediterranean Rainfed Agrosystems (MRAs) for their potential to provide various environmental and economic services of importance such as food production, preservation of employment and local knowhow, downstream water delivery or mitigation of rural exodus. Efficient MRAs management strategies that allow for compromises between economic development and natural resources preservation are needed. Such strategies require innovative system based research, integration across approaches and scales. One of the major challenges is to make all contributions from different disciplines converging towards a reproducible transdisciplinary approach. The objective of this communication is to present the ALMIRA project, a Tunisian - Moroccan - French project which lasts four years (2014 - 2017). The communication details the societal context, the scientific positioning and the related work hypothesis, the study areas, the project structure, the expected outcomes and the partnership which capitalizes on long term collaborations. ALMIRA aims to explore the modulation of landscape mosaics within MRAs to optimize landscape services. To explore this new lever, ALMIRA proposes to design, implement and test a new Integrated Assessment Modelling approach that explicitly i) includes innovations and action means into prospective scenarii for landscape evolutions, and ii) addresses landscape mosaics and processes of interest from the agricultural field to the resource governance catchment. This requires tackling methodological challenges in relation to i) the design of spatially explicit landscape evolution scenarii, ii) the coupling of biophysical processes related to agricultural catchment hydrology, iii) the digital mapping of landscape properties and iv) the economic assessment of the

  2. Coupled social and ecological outcomes of land use change and agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions.

    Science.gov (United States)

    Sanfiorenzo, A. R.; Shaver, I.; Chain Guadarrama, A.; Cleary, K.; Santiago-Garcia, R.; Finegan, B.; Hormel, L.; Sibelet, N.; Vierling, L. A.; Bosque-Perez, N.; DeClerck, F.; Fagan, M. E.; Waits, L.

    2017-12-01

    Tropical ecosystem conversion to agriculture has caused widespread habitat loss and created fragmented landscapes composed of remnant forest patches embedded in a matrix of agricultural land uses. Non- traditional agricultural export (NTAE) crops such as pineapple are rapidly replacing multiuse landscapes characterized by a diverse matrix of pasture and smallholder crops with intensive, large-scale, monoculture plantations. Using an interdisciplinary approach, we conduct a case study to examine the coupled social and ecological implications of LUCC and agricultural intensification in this region, with larger application to regions experiencing similar patterns. Guided by frameworks from both political and landscape ecology, we: (1) describe the social and economic implications of pineapple expansion, specifically the concentration of land, labor and financial resources, (2) quantify pineapple cultivation's spatial characteristics, and (3) assess the effects of pineapple expansion on surrounding forest ecosystems, on the agricultural matrix and on biodiversity conservation. Our results indicate that pineapple production concentrates land, labor, and financial resources, which has a homogenizing effect on the agricultural economy in the study region. This constrains farm-based livelihoods, with larger implications for food security and agricultural diversity. Landscape ecology analyses further reveal how pineapple production simplifies and homogenizes the agricultural matrix between forest patches, which is likely to have a negative effect on biodiversity. To offset the effects of pineapple expansion on social and environmental systems, we recommend developing landscape level land use planning capacity. Furthermore, agricultural and conservation policy reform is needed to promote landscape heterogeneity and economic diversity within the agricultural sector. Our interdisciplinary research provides a detailed examination of the social and ecological impacts of

  3. Can native plant species be preserved in an anthropogenic forest landscape dominated by aliens? A case study from Mediterranean Chile

    Directory of Open Access Journals (Sweden)

    Steffi Heinrichs

    2016-06-01

    Full Text Available Plantations with fast growing exotic tree species can negatively affect native plant species diversity and promote the spread of alien species. Mediterranean Chile experienced major landscape changes with a vast expansion of industrial plantations of Pinus radiata in the past. However, with increasing knowledge of biodiversity effects on ecosystem services Chilean forest owners now aim to integrate the conservation of native biodiversity into forest management, but data on native species diversity and establishment within a plantation landscape is scarce. Here we investigated plant species diversity and composition in four forest management options applied within a landscape dominated by P. radiata plantations in comparison to an unmanaged reference: (i a clear cut, (ii a strip cut, (iii a native canopy of Nothofagus glauca and (iv a young P. radiata plantation. We wanted to assess if native plant species can be maintained either by natural regeneration or by planting of native tree species (Nothofagus glauca, N. obliqua, Quillaja saponaria within this landscape. Results show a high diversity of native and forest plant species within the different management options indicating a high potential for native biodiversity restoration within an anthropogenic landscape. In particular, herbaceous species can benefit from management. They are rare in unmanaged natural forests that are characterized by low light conditions and a thick litter layer. Management, however, also promoted a diversity of alien species. The rapid spread of alien grass species after management can deter an initial establishment of native tree species or the survival and growth after planting mainly under dry but less under sufficient moisture conditions. The most unsuccessful option for promoting native plant species was clear cutting in a dry area where alien grasses were abundant. For drought-tolerant tree species such as Quillaja saponaria, though

  4. Estimating landscape-scale impacts of agricultural management on soil carbon using measurements and models

    Science.gov (United States)

    Schipanski, M.; Rosenzweig, S. T.; Robertson, A. D.; Sherrod, L. A.; Ghimire, R.; McMaster, G. S.

    2017-12-01

    Agriculture covers 40% of Earth's ice-free land area and has broad impacts on global biogeochemical cycles. While some agricultural management changes are small in scale or impact, others have the potential to shift biogeochemical cycles at landscape and larger scales if widely adopted. Understanding which management practices have the potential to contribute to climate change adaptation and mitigation while maintaining productivity requires scaling up estimates spatially and temporally. We used on-farm, long-term, and landscape scale datasets to estimate how crop rotations impact soil organic carbon (SOC) accumulation rates under current and future climate scenarios across the semi-arid Central and Southern Great Plains. We used a stratified, landscape-scale soil sampling approach across 96 farm fields to evaluate crop rotation intensity effects on SOC pools and pesticide inputs. Replacing traditional wheat-fallow rotations with more diverse, continuously cropped rotations increased SOC by 17% and 12% in 0-10 cm and 0-20 cm depths, respectively, and reduced herbicide use by 50%. Using USDA Cropland Data Layer, we estimated soil C accumulation and pesticide reduction potentials of shifting to more intensive rotations. We also used a 30-year cropping systems experiment to calibrate and validate the Daycent model to evaluate rotation intensify effects under future climate change scenarios. The model estimated greater SOC accumulation rates under continuously cropped rotations, but SOC stocks peaked and then declined for all cropping systems beyond 2050 under future climate scenarios. Perennial grasslands were the only system estimated to maintain SOC levels in the future. In the Southern High Plains, soil C declined despite increasing input intensity under current weather while modest gains were simulated under future climate for sorghum-based cropping systems. Our findings highlight the potential vulnerability of semi-arid regions to climate change, which will be

  5. Effects of wildfire on soil nutrients in Mediterranean ecosystem

    NARCIS (Netherlands)

    Caon, L.; Vallejo, V.R.; Ritsema, C.J.; Geissen, V.

    2014-01-01

    High-intensity and fast-spreading wildfires are natural in the Mediterranean basin. However, since 1960, wildfire occurrence has increased because of changes in land use, which resulted in extensive land abandonment, increases in the fuel load and continuity in the landscape. The level of soil

  6. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Science.gov (United States)

    Ripperger, Simon P; Kalko, Elisabeth K V; Rodríguez-Herrera, Bernal; Mayer, Frieder; Tschapka, Marco

    2015-01-01

    Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae), a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  7. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Directory of Open Access Journals (Sweden)

    Simon P Ripperger

    Full Text Available Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae, a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  8. Conceptual Analysis: The Charcoal-Agriculture Nexus to Understand the Socio-Ecological Contexts Underlying Varied Sustainability Outcomes in African Landscapes

    Directory of Open Access Journals (Sweden)

    Miyuki Iiyama

    2017-06-01

    Full Text Available The production of charcoal is an important socio-economic activity in sub-Saharan Africa (SSA. Charcoal production is one of the leading drivers of rural land-use changes in SSA, although the intensity of impacts on the multi-functionality of landscapes varies considerably. Within a given landscape, charcoal production is closely interconnected to agriculture production both as major livelihoods, while both critically depend on the same ecosystem services. The interactions between charcoal and agricultural production systems can lead to positive synergies of impacts, but will more often result in trade-offs and even vicious cycles. Such sustainability outcomes vary from one site to another due to the heterogeneity of contexts, including agricultural production systems that affect the adoption of technologies and practices. Trade-offs or cases of vicious cycles occur when one-off resource exploitation of natural trees for charcoal production for short-term economic gains permanently impairs ecosystem functions. Given the fact that charcoal, as an important energy source for the growing urban populations and an essential livelihood for the rural populations, cannot be readily substituted in SSA, there must be policies to support charcoal production. Policies should encourage sustainable technologies and practices, either by establishing plantations or by encouraging regeneration, whichever is more suitable for the local environment. To guide context-specific interventions, this paper presents a new perspective—the charcoal-agriculture nexus—aimed at facilitating the understanding of the socio-economic and ecological interactions of charcoal and agricultural production. The nexus especially highlights two dimensions of the socio-ecological contexts: charcoal value chains and tenure systems. Combinations of the two are assumed to underlie varied socio-economic and ecological sustainability outcomes by conditioning incentive mechanisms to affect

  9. Redirecting fire-prone Mediterranean ecosystems toward more resilient and less flammable communities.

    Science.gov (United States)

    Santana, Victor M; Baeza, M Jaime; Valdecantos, Alejandro; Vallejo, V Ramón

    2018-06-01

    The extensive abandonment of agricultural lands in the Mediterranean basin has led to large landscapes being dominated by early-successional species, characterized by high flammability and an increasing fire risk. This fact promotes fire occurrence and places ecosystems in a state of arrested succession. In this work, we assessed the effectiveness of several restoration actions in redirecting these ecosystems toward more resilient communities dominated by resprouting species. These actions included the mechanical clearing of early-successional species, the plantation of resprouting species, and the combination of both treatments. For 13 years, we assessed shifts in the successional trajectory and ecosystem flammability by changes in: species composition, species richness, ecosystem evenness, the natural colonization of resprouting species, total biomass and proportion of dead biomass. We observed that the plantation and clearing combination was a suitable strategy to promote resilience. Species richness increased as well as the presence of the resprouting species introduced by planting. The natural colonization of the resprouting species was also enhanced. These changes in the successional trajectory were accompanied by a possible reduction of fire risk by reducing dead fuel proportion. These findings are relevant for the management of Mediterranean basin areas, but also suggest new tools for redirecting systems in fire-prone areas worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Use of radar remote sensing (RADARSAT) to map winter wetland habitat for shorebirds in an agricultural landscape.

    Science.gov (United States)

    Taft, Oriane W; Haig, Susan M; Kiilsgaard, Chris

    2004-05-01

    Many of today's agricultural landscapes once held vast amounts of wetland habitat for waterbirds and other wildlife. Successful restoration of these landscapes relies on access to accurate maps of the wetlands that remain. We used C-band (5.6-cm-wavelength), HH-polarized radar remote sensing (RADARSAT) at a 38 degrees incidence angle (8-m resolution) to map the distribution of winter shorebird (Charadriiformes) habitat on agricultural lands in the Willamette Valley of western Oregon. We acquired imagery on three dates (10 December 1999, 27 January 2000, and 15 March 2000) and simultaneously collected ground reference data to classify radar signatures and evaluate map accuracy of four habitat classes: (1) wet with 50% vegetation, (3) dry with 50% vegetation. Overall accuracy varied from 45 to 60% among the three images, but the accuracy of focal class 1 was greater, ranging from 72 to 80%. Class 4 coverage was stable and dominated maps (40% of mapped study area) for all three dates, while coverage of class 3 decreased slightly throughout the study period. Among wet classes, class 1 was most abundant (about 30% coverage) in December and January, decreasing in March to approximately 15%. Conversely, class 2 increased dramatically from January to March, likely due to transition from class 1 as vegetation grew. This approach was successful in detecting optimal habitat for shorebirds on agricultural lands. For modest classification schemes, radar remote sensing is a valuable option for wetland mapping in areas where cloud cover is persistent.

  11. Implementing automatic LiDAR and supervised mapping methodologies to quantify agricultural terraced landforms at landscape scale: the case of Veneto Region

    Science.gov (United States)

    Eugenio Pappalardo, Salvatore; Ferrarese, Francesco; Tarolli, Paolo; Varotto, Mauro

    2016-04-01

    Traditional agricultural terraced landscapes presently embody an important cultural value to be deeply investigated, both for their role in local heritage and cultural economy and for their potential geo-hydrological hazard due to abandonment and degradation. Moreover, traditional terraced landscapes are usually based on non-intensive agro-systems and may enhance some important ecosystems services such as agro-biodiversity conservation and cultural services. Due to their unplanned genesis, mapping, quantifying and classifying agricultural terraces at regional scale is often critical as far as they are usually set up on geomorphologically and historically complex landscapes. Hence, traditional mapping methods are generally based on scientific literature and local documentation, historical and cadastral sources, technical cartography and aerial images visual interpretation or, finally, field surveys. By this, limitations and uncertainty in mapping at regional scale are basically related to forest cover and lack in thematic cartography. The Veneto Region (NE of Italy) presents a wide heterogeneity of agricultural terraced landscapes, mainly distributed within the hilly and Prealps areas. Previous studies performed by traditional mapping method quantified 2,688 ha of terraced areas, showing the higher values within the Prealps of Lessinia (1,013 ha, within the Province of Verona) and in the Brenta Valley (421 ha, within the Province of Vicenza); however, terraced features of these case studies show relevant differences in terms of fragmentation and intensity of terraces, highlighting dissimilar degrees of clusterization: 1.7 ha on one hand (Province of Verona) and 1.2 ha per terraced area (Province of Vicenza) on the other one. The aim of this paper is to implement and to compare automatic methodologies with traditional survey methodologies to map and assess agricultural terraces in two representative areas of the Veneto Region. Testing different Remote Sensing

  12. Using Cosmic-Ray Neutron Probes to Monitor Landscape Scale Soil Water Content in Mixed Land Use Agricultural Systems

    International Nuclear Information System (INIS)

    Franz, Trenton E.; Wahbi, Ammar; Weltin, Georg; Heng, Lee; Dercon, Gerd; Vreugdenhi, Mariette; Oismueller, Markus; Strauss, Peter; Desilets, Darin

    2016-01-01

    With an ever-increasing demand for natural resources and the societal need to understand and predict natural disasters such as flood, soil water content (SWC) observations remain a critical variable to monitor in order to optimally allocate resources, establish early warning systems, and improve weather forecasts. However, routine agricultural production practices of soil cultivation, planting, and harvest make the operation and maintenance of direct contact point sensors for long-term monitoring a challenging task. In this work, we used Cosmic-Ray Neutron Probe (CRNP) to monitor landscape average SWC in a mixed agricultural land use system in northeast Austria since December 2013.

  13. The importance of conserving biodiversity outside of protected areas in mediterranean ecosystems.

    Directory of Open Access Journals (Sweden)

    Robin L Cox

    Full Text Available Mediterranean-type ecosystems constitute one of the rarest terrestrial biomes and yet they are extraordinarily biodiverse. Home to over 250 million people, the five regions where these ecosystems are found have climate and coastal conditions that make them highly desirable human habitats. The current conservation landscape does not reflect the mediterranean biome's rarity and its importance for plant endemism. Habitat conversion will clearly outpace expansion of formal protected-area networks, and conservationists must augment this traditional strategy with new approaches to sustain the mediterranean biota. Using regional scale datasets, we determine the area of land in each of the five regions that is protected, converted (e.g., to urban or industrial, impacted (e.g., intensive, cultivated agriculture, or lands that we consider to have conservation potential. The latter are natural and semi-natural lands that are unprotected (e.g., private range lands but sustain numerous native species and associated habitats. Chile has the greatest proportion of its land (75% in this category and California-Mexico the least (48%. To illustrate the potential for achieving mediterranean biodiversity conservation on these lands, we use species-area curves generated from ecoregion scale data on native plant species richness and vertebrate species richness. For example, if biodiversity could be sustained on even 25% of existing unprotected, natural and semi-natural lands, we estimate that the habitat of more than 6,000 species could be represented. This analysis suggests that if unprotected natural and semi-natural lands are managed in a manner that allows for persistence of native species, we can realize significant additional biodiversity gains. Lasting biodiversity protection at the scale needed requires unprecedented collaboration among stakeholders to promote conservation both inside and outside of traditional protected areas, including on lands where people

  14. Landscape and Local Controls of Insect Biodiversity in Conservation Grasslands: Implications for the Conservation of Ecosystem Service Providers in Agricultural Environments

    Directory of Open Access Journals (Sweden)

    Thomas O. Crist

    2014-07-01

    Full Text Available The conservation of biodiversity in intensively managed agricultural landscapes depends on the amount and spatial arrangement of cultivated and natural lands. Conservation incentives that create semi-natural grasslands may increase the biodiversity of beneficial insects and their associated ecosystem services, such as pollination and the regulation of insect pests, but the effectiveness of these incentives for insect conservation are poorly known, especially in North America. We studied the variation in species richness, composition, and functional-group abundances of bees and predatory beetles in conservation grasslands surrounded by intensively managed agriculture in Southwest Ohio, USA. Characteristics of grassland patches and surrounding land-cover types were used to predict insect species richness, composition, and functional-group abundance using linear models and multivariate ordinations. Bee species richness was positively influenced by forb cover and beetle richness was positively related to grass cover; both taxa had greater richness in grasslands surrounded by larger amounts of semi-natural land cover. Functional groups of bees and predatory beetles defined by body size and sociality varied in their abundance according to differences in plant composition of grassland patches, as well as the surrounding land-cover diversity. Intensive agriculture in the surrounding landscape acted as a filter to both bee and beetle species composition in conservation grasslands. Our results support the need for management incentives to consider landscape-level processes in the conservation of biodiversity and ecosystem services.

  15. Allometry and partitioning of above- and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes

    International Nuclear Information System (INIS)

    Kuyah, Shem; Dietz, Johannes; Muthuri, Catherine; Noordwijk, Meine van; Neufeldt, Henry

    2013-01-01

    Farmers in developing countries are one of the world's largest and most efficient producers of sequestered carbon. However, measuring, monitoring and verifying how much carbon trees in smallholder farms are removing from the atmosphere has remained a great challenge in developing nations. Devising a reliable way for measuring carbon associated with trees in agricultural landscapes is essential for helping smallholder farmers benefit from emerging carbon markets. This study aimed to develop biomass equations specific to dominant eucalyptus species found in agricultural landscapes in Western Kenya. Allometric relationships were developed by regressing diameter at breast height (DBH) alone or DBH in combination with height, wood density or crown area against the biomass of 48 trees destructively sampled from a 100 km 2 site. DBH alone was a significant predictor variable and estimated aboveground biomass (AGB) with over 95% accuracy. The stems, branches and leaves formed up to 74, 22 and 4% of AGB, respectively, while belowground biomass (BGB) of the harvested trees accounted for 21% of the total tree biomass, yielding an overall root-to-shoot ratio (RS) of 0.27, which varied across tree size. Total tree biomass held in live Eucalyptus trees was estimated to be 24.4 ± 0.01 Mg ha −1 , equivalent to 11.7 ± 0.01 Mg of carbon per hectare. The equations presented provide useful tools for estimating tree carbon stocks of Eucalyptus in agricultural landscapes for bio-energy and carbon accounting. These equations can be applied to Eucalyptus in most agricultural systems with similar agro-ecological settings where tree growth parameters would fall within ranges comparable to the sampled population. -- Highlights: ► Equation with DBH alone estimated aboveground biomass with about 95% accuracy. ► Local generic equations overestimated above- and below-ground biomass by 10 and 48%. ► Height, wood density and crown area data did not improve model accuracy. ► Stems

  16. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape.

    Science.gov (United States)

    Knapp, Michal; Řezáč, Milan

    2015-01-01

    Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island

  17. Is recreational hunting important for landscape multi-functionality?

    DEFF Research Database (Denmark)

    Lund, Jens Friis; Jensen, Frank Søndergaard

    2017-01-01

    Recreational hunting may be important to the shaping of the agricultural landscape. Land owners who hunt or lease out hunting rights have an incentive to promote landscapes that contain wildlife biotopes, which may serve wider societal values, such as landscape aesthetics, biodiversity, and prese......Recreational hunting may be important to the shaping of the agricultural landscape. Land owners who hunt or lease out hunting rights have an incentive to promote landscapes that contain wildlife biotopes, which may serve wider societal values, such as landscape aesthetics, biodiversity......, and preservation of valued and/or threatened animal and plant species. Recreational hunting may thus contribute to preserve and enhance landscape multifunctionality. Yet, little is known about the importance of hunting interests in motivating such landscape management. In this article, we seek to shed light...

  18. Soil health in the Mediterranean region: Development and consolidation of a multifactor index to characterize the health of agricultural lands

    Science.gov (United States)

    Gil, Eshel; Guy, Levy; Oshri, Rinot; Michael, Borisover; Uri, Yermiyahu; Leah, Tsror; Hanan, Eizenberg; Tal, Svoray; Alex, Furman; Yael, Mishael; Yosef, Steinberger

    2017-04-01

    The link among between soil health, soil conservation, and food security, resilience, and function under a wide range of agricultural uses and different environmental systems, is at the heart of many ecofriendly research studies worldwide. We consider the health of soil as a function of its ability to provide ecosystem services, including agricultural production (provisional services); regulating natural cycles (regulation services) and as a habitat for plants (support services). Soil health is affected by a wide range of soil properties (biotic and abiotic) that maintain complex interactions among themselves. The decline in soil health includes degradation in its physical properties (e.g., deterioration of soil structure, compaction and sealing, water-repellency, soil erosion by water and wind), chemical properties (e.g., salinization, depletion of nutrients and organic matter content, accumulation of pollutants and reduction of the soils' ion exchange capacity) and biological properties (e.g., vulnerable populations of microflora, microfauna, and mesofauna, leading to a breach of ecological balance and biodiversity and, as a result, destruction of beneficial populations and pathogen outbreaks). Numerous studies show that agricultural practices have a major impact on soil functioning. Substituting longstanding tillage with no-till cropping and the amalgamation of cover crops in crop rotations were found to improve soil properties. Such changes contributed to the enhancement of the agronomical performance of the soil. On the other hand, these practices may result in lessened effectiveness of controlling perennial weeds. The evaluation of soil-health status in the Mediterranean region is very limited. Moreover, existing approaches for evaluation that have been used (such as the Cornell and Hany tests) do not give sufficient weight to important agronomic processes, such as soil erosion, salinization, sodification, spread of weeds in the fields (in particular, weeds

  19. Conservation of Pollinators in Traditional Agricultural Landscapes – New Challenges in Transylvania (Romania) Posed by EU Accession and Recommendations for Future Research

    Science.gov (United States)

    Kovács-Hostyánszki, Anikó; Földesi, Rita; Mózes, Edina; Szirák, Ádám; Fischer, Joern; Hanspach, Jan; Báldi, András

    2016-01-01

    Farmland biodiversity is strongly declining in most of Western Europe, but still survives in traditional low intensity agricultural landscapes in Central and Eastern Europe. Accession to the EU however intensifies agriculture, which leads to the vanishing of traditional farming. Our aim was to describe the pollinator assemblages of the last remnants of these landscapes, thus set the baseline of sustainable farming for pollination, and to highlight potential measures of conservation. In these traditional farmlands in the Transylvanian Basin, Romania (EU accession in 2007), we studied the major pollinator groups—wild bees, hoverflies and butterflies. Landscape scale effects of semi-natural habitats, land cover diversity, the effects of heterogeneity and woody vegetation cover and on-site flower resources were tested on pollinator communities in traditionally managed arable fields and grasslands. Our results showed: (i) semi-natural habitats at the landscape scale have a positive effect on most pollinators, especially in the case of low heterogeneity of the direct vicinity of the studied sites; (ii) both arable fields and grasslands hold abundant flower resources, thus both land use types are important in sustaining pollinator communities; (iii) thus, pollinator conservation can rely even on arable fields under traditional management regime. This has an indirect message that the tiny flower margins around large intensive fields in west Europe can be insufficient conservation measures to restore pollinator communities at the landscape scale, as this is still far the baseline of necessary flower resources. This hypothesis needs further study, which includes more traditional landscapes providing baseline, and exploration of other factors behind the lower than baseline level biodiversity values of fields under agri-environmental schemes (AES). PMID:27285118

  20. Ecosystem services in the face of invasion: the persistence of native and nonnative spiders in an agricultural landscape.

    Science.gov (United States)

    Hogg, Brian N; Daane, Kent M

    2011-03-01

    The presence of intact natural ecosystems in agricultural landscapes can mitigate losses in the diversity of natural enemies and enhance ecosystem services. However, native natural enemies may fail to persist in agroecosystems if invaders dominate species interactions. In this study, native and nonnative spiders were sampled along transects that extended from oak woodland and riparian zones into surrounding California vineyards, to assess the role of natural habitat as a source for spider biodiversity in the vineyard landscape, and to compare the dominance of exotic Cheiracanthium spiders between habitats. Many spider species were more abundant in natural habitat than in vineyards, and numbers of spiders and spider species within vineyards were higher at the vineyard edge adjacent to oak woodland. These results suggest that natural habitat is a key source for spiders in vineyards. The positive effect of oak woodland on the vineyard spider community extended only to the vineyard edge, however. Proportions of Cheiracanthium spiders increased dramatically in the vineyard, while numbers of native wandering spiders (the native ecological homologues of Cheiracanthium spiders) decreased. Dispersal limitation and strong habitat preferences may have prevented native wandering spiders from establishing far from the vineyard edge. Exotic Cheiracanthium spiders, in contrast, may possess specific adaptations to vineyards or to a wide range of habitats. Results suggest that the ecosystem services provided by intact natural habitat may be limited in agricultural landscapes that are dominated by invasive species.

  1. Multifunctional landscape practice and accessibility in manorial landscapes

    DEFF Research Database (Denmark)

    Brandt, Jesper; Svenningsen, Stig Roar; Christensen, Andreas Aagaard

    . However classical manorial estates seems to represent an opposite trend. Allthough working at the same market conditions as other large specialized holdings developed through the process of structural rationalization, they have often maintained and elaborated a land use strategy based on a multifunctional...... use of the potential ecosystem services present within their domain. The targeted combination of agriculture, forestry, hunting rents, rental housing, and a variety of recreational activities influences makes a certain public accessibility to an integrated part of this strategy, diverging from...... the multifunctional landscape strategy supporting a certain public access. A study of this thesis is presented based on an analysis of multifunctionality, landscape development and accessibility in Danish Manorial landscapes and eventual linkages between their multifunctional landscape strategy, their history...

  2. Comparing the landscape level perceptual abilities of forest sciurids in fragmented agricultural landscapes*

    Science.gov (United States)

    Patrick A. Zollner

    2000-01-01

    Perceptual range is the maximum distance from which an animal can perceive the presence of remote landscape elements such as patches of habitat. Such perceptual abilities are of interest because they influence the probability that an animal will successfully disperse to a new patch in a landscape. Furthermore, understanding how perceptual range differs between species...

  3. Which regional features of Danish agriculture favour the corn bunting in the contemporary farming landscape?

    DEFF Research Database (Denmark)

    Fox, Anthony David; Heldbjerg, Henning

    2008-01-01

    Corn buntings Miliaria calandra were abundant throughout arable agricultural landscapes in Europe, but have catastrophically declined since the mid 1970s with changes in farming practice and now give serious conservation cause for concern. Corn buntings declined in Denmark during 1976...... on land use correlation and bird surveillance, these results show an association between mixed farming and favourable conservation status of a species now red-listed throughout much of Europe. Further investigations of habitat use at small spatial scales and throughout the annual cycle are urgently...

  4. Towards sustainable and multifunctional agriculture in farmland landscapes: Lessons from the integrative approach of a French LTSER platform.

    Science.gov (United States)

    Bretagnolle, Vincent; Berthet, Elsa; Gross, Nicolas; Gauffre, Bertrand; Plumejeaud, Christine; Houte, Sylvie; Badenhausser, Isabelle; Monceau, Karine; Allier, Fabrice; Monestiez, Pascal; Gaba, Sabrina

    2018-06-15

    Agriculture is currently facing unprecedented challenges: ensuring food, fiber and energy production in the face of global change, maintaining the economic performance of farmers and preserving natural resources such as biodiversity and associated key ecosystem services for sustainable agriculture. Addressing these challenges requires innovative landscape scale farming systems that account for changing economic and environmental targets. These novel agricultural systems need to be recognized, accepted and promoted by all stakeholders, including local residents, and supported by public policies. Agroecosystems should be considered as socio-ecological systems and alternative farming systems should be based on ecological principles while taking societal needs into account. This requires an in-depth knowledge of the multiple interactions between sociological and ecological dynamics. Long Term Socio-Ecological Research platforms (LTSER) are ideal for acquiring this knowledge as they (i) are not constrained by traditional disciplinary boundaries, (ii) operate at a large spatial scale involving all stakeholders, and (iii) use systemic approaches to investigate biodiversity and ecosystem services. This study presents the socio-ecological research strategy from the LTSER "Zone Atelier Plaine & Val de Sèvre" (ZA PVS), a large study area where data has been sampled since 1994. Its global aim is to identify effective solutions for agricultural development and the conservation of biodiversity in farmlands. Three main objectives are targeted by the ZAPVS. The first objective is intensive monitoring of landscape features, the main taxa present and agricultural practices. The second objective is the experimental investigation, in real fields with local farmers, of important ecosystem functions and services, in relation to pesticide use, crop production and farming socio-economic value. The third aim is to involve stakeholders through participatory research, citizen science and

  5. Coupling movement and landscape ecology for animal conservation in production landscapes.

    Science.gov (United States)

    Doherty, Tim S; Driscoll, Don A

    2018-01-10

    Habitat conversion in production landscapes is among the greatest threats to biodiversity, not least because it can disrupt animal movement. Using the movement ecology framework, we review animal movement in production landscapes, including areas managed for agriculture and forestry. We consider internal and external drivers of altered animal movement and how this affects navigation and motion capacities and population dynamics. Conventional management approaches in fragmented landscapes focus on promoting connectivity using structural changes in the landscape. However, a movement ecology perspective emphasizes that manipulating the internal motivations or navigation capacity of animals represents untapped opportunities to improve movement and the effectiveness of structural connectivity investments. Integrating movement and landscape ecology opens new opportunities for conservation management in production landscapes. © 2018 The Authors.

  6. Comparative patterns of plant invasions in the Mediterranean biome.

    Science.gov (United States)

    Arianoutsou, Margarita; Delipetrou, Pinelopi; Vilà, Montserrat; Dimitrakopoulos, Panayiotis G; Celesti-Grapow, Laura; Wardell-Johnson, Grant; Henderson, Lesley; Fuentes, Nicol; Ugarte-Mendes, Eduardo; Rundel, Philip W

    2013-01-01

    The objective of this work was to compare and contrast the patterns of alien plant invasions in the world's five mediterranean-climate regions (MCRs). We expected landscape age and disturbance history to have bearing on levels of invasion. We assembled a database on naturalized alien plant taxa occurring in natural and semi-natural terrestrial habitats of all five regions (specifically Spain, Italy, Greece and Cyprus from the Mediterranean Basin, California, central Chile, the Cape Region of South Africa and Southwestern - SW Australia). We used multivariate (hierarchical clustering and NMDS ordination) trait and habitat analysis to compare characteristics of regions, taxa and habitats across the mediterranean biome. Our database included 1627 naturalized species with an overall low taxonomic similarity among the five MCRs. Herbaceous perennials were the most frequent taxa, with SW Australia exhibiting both the highest numbers of naturalized species and the highest taxonomic similarity (homogenization) among habitats, and the Mediterranean Basin the lowest. Low stress and highly disturbed habitats had the highest frequency of invasion and homogenization in all regions, and high natural stress habitats the lowest, while taxonomic similarity was higher among different habitats in each region than among regions. Our analysis is the first to describe patterns of species characteristics and habitat vulnerability for a single biome. We have shown that a broad niche (i.e. more than one habitat) is typical of naturalized plant species, regardless of their geographical area of origin, leading to potential for high homogenization within each region. Habitats of the Mediterranean Basin are apparently the most resistant to plant invasion, possibly because their landscapes are generally of relatively recent origin, but with a more gradual exposure to human intervention over a longer period.

  7. Effects of different agricultural managements in soil microbial community structure in a semi-arid Mediterranean region.

    Science.gov (United States)

    García-Orenes, Fuensanta; Morugan, Alicia; Mataix-Solera, Jorge; Scow, Kate

    2013-04-01

    Agriculture has been practiced in semi-arid Mediterranean regions for 10.000 years and in many cases these practices have been unsuitable causing land degradation for millennium and an important loss of soil quality. The land management can provide solutions to find the best agricultural practices in order to maintain the soil quality and get a sustainable agriculture model. Microbiological properties are the most sensitive and rapid indicators of soil perturbations and land use managements. The study of microbial community and diversity has an important interest as indicators of changes in soil quality. The main objective of this work was to asses the effect of different agricultural management practices in soil microbial community (evaluated as abundance of phospholipid fatty acids, PLFA). Four different treatments were selected, based on the most commonly practices applied by farmers in the study area, "El Teularet Experimental Station", located at the Enguera Range in the southern part of the Valencia province (eastern Spain). These treatments were: a) ploughing, b) herbicides c) mulch, using the types applied by organic farmers to develop a sustainable agriculture, such as oat straw and d) control that was established as plot where the treatment was abandonment after farming. An adjacent area with the same type of soil, but with natural vegetation was used as a standard or reference high quality soil. Soil samples were taken to evaluate the changes in microbial soil structure, analysing the abundance of PLFA. The results showed a major content of total PLFA in soils treated with oats straw, being these results similar to the content of PLFA in the soil with natural vegetation, also these soils were similar in the distribution of abundance of different PLFA studied. However, the herbicide and tillage treatments showed great differences regarding the soil used as reference (soil under natural vegetation).

  8. White-faced monkey (Cebus capucinus) ecology and management in neotropical agricultural landscapes during the dry season

    OpenAIRE

    Heather E. Williams; Christopher Vaughan

    2001-01-01

    Habitat use by a C. capucinus troop was studied in an agricultural landscape during late dry season (March-April 1994) in northwest Costa Rica. Riparian forests, palm canals and living fence rows accounted for 82 % of observations, significantly more than the other six habitats present. The study troop consumed 24 species of plants and five animals. Feeding concentrated on the introduced African oil palm (Elaeis guineensis) (33.6 %) and mango (Mangifera indica) (27.2 %), found mostly in palm ...

  9. Past experience with the EU Common Agricultural Policy and future challenges for landscape development

    DEFF Research Database (Denmark)

    Vesterager, Jens Peter; Jepsen, Martin Rudbeck; Busck, Anne Gravsholt

    and land use through the Common Agricultural Policies (CAP) and several other policies, however it is sometimes difficult to distinguish between effects of EU policies and the general trends on the European continent. In a Danish perspective, the formal effects of EU membership have been effectuated since...... the accession to the EU by 1973, however the trend towards intensification and industrialisation have emerged since the 2nd world war. Since 1973, landscape challenge have changed from intensification to debates on marginalisation in the early 1980s, introduction of the environmental policies in the mid 1980s...

  10. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation.

    Science.gov (United States)

    Nitsos, Christos; Matsakas, Leonidas; Triantafyllidis, Kostas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.

  11. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Directory of Open Access Journals (Sweden)

    Lluís Brotons

    Full Text Available Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain. We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape

  12. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    Science.gov (United States)

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  13. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

    Science.gov (United States)

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  14. Fire regimes and vegetation responses in two Mediterranean-climate regions

    Science.gov (United States)

    Montenegro, G.; Ginocchio, R.; Segura, A.; Keely, J.E.; Gomez, M.

    2004-01-01

    Wildfires resulting from thunderstorms are common in some Mediterranean-climate regions, such as southern California, and have played an important role in the ecology and evolution of the flora. Mediterranean-climate regions are major centers for human population and thus anthropogenic impacts on fire regimes may have important consequences on these plant formations. However, changes in fire regimes may have different impacts on Mediterranean type-ecosystems depending on the capability of plants to respond to such perturbations. Therefore, we compare here fire regimes and vegetation responses of two Mediterranean-climate regions which differ in wildfire regimes and history of human occupation, the central zone of Chile (matorral) and the southern area of California in United States (chaparral). In Chile almost all fires result from anthropogenic activities, whereas lightning fires resulting from thunderstorms are frequent in California. In both regions fires are more frequent in summer, due to high accumulation of dry plant biomass for ignition. Humans have markedly increased fires frequency both in the matorral and chaparral, but extent of burned areas has remained unaltered, probably due to better fire suppression actions and a decline in the built-up of dry plant fuel associated to increased landscape fragmentation with less flammable agricultural and urban developments. As expected, post-fire plant regeneration responses differs between the matorral and chaparral due to differences in the importance of wildfires as a natural evolutionary force in the system. Plants from the chaparral show a broader range of post-fire regeneration responses than the matorral, from basal resprouting, to lignotuber resprouting, and to fire-stimulated germination and flowering with fire-specific clues such as heat shock, chemicals from smoke or charred wood. Plants from the matorral have some resprouting capabilities after fire, but these probably evolved from other environmental

  15. Measuring, understanding and implementing (or at least trying) soil and water conservation in agricultural areas in Mediterranean conditions

    Science.gov (United States)

    Gómez, Jose Alfonso; Burguet, María; Castillo, Carlos; de Luna, Elena; Guzmán, Gema; Lora, Ángel; Lorite, Ignacio; Mora, José; Pérez, Rafael; Soriano, María A.; Taguas, Encarnación V.

    2015-04-01

    these strategies under predicted climate change scenarios in a few decades from now. The models are also used to evaluate historical erosion rates, and the long-term impact of soil erosion on olive yield due to the loss of soil profile. This is our second major line of research. Our their key line of research is the analysis of gully erosion processes, from field based observation to evaluation at regional scale, and the development of cost-effective strategies for gully control at farm scale. This includes the testing of some of these strategies with farmers. We integrate the use of vegetation in gully erosion control strategies to enhance biodiversity and landscape values; both severely degraded in many agricultural areas in the Mediterranean. The fourth, and last, major line of research is the development or improvement of technologies for soil erosion studies. Among them is the use of rainfall simulations, laboratory flumes, photoreconstruction techniques for 3D model, improved sampling devices, etc. Within this line we have improved the use of sediment tracers to understand the processes of sediment mobilization within the landscape, or at plot scale. This greatly improves our understanding of erosion processes and the actual effectiveness of erosion control strategies. The results of these lines of research are put together in the form of Good Agricultural Practices, and technical notes, software, for implementation by farmers and technicians working at the fields that are disseminated through seminars, cooperation with government and non-government agencies and other documents such as videos or web sites. In this communication we mention some of the our research in order to highlight the major problems and questions that are faced when trying to develop viable soil and water conservation techniques, specially the need for transdisciplinary research and the cooperation, form the start, with key stakeholders, specially farmers.

  16. The potential of lignocellulosic ethanol production in the Mediterranean Basin

    Energy Technology Data Exchange (ETDEWEB)

    Faraco, Vincenza [Department of Organic Chemistry and Biochemistry, University of Naples ' ' Federico II' ' , Naples (Italy); School of Biotechnological Sciences, University of Naples ' ' Federico II' ' , Naples (Italy); Hadar, Yitzhak [Department of Microbiology and Plant Pathology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot (Israel)

    2011-01-15

    This review provides an overview of the potential of bioethanol fuel production from lignocellulosic residues in the Mediterranean Basin. Residues from cereal crops, olive trees, and tomato and grape processing are abundant lignocellulosic wastes in France, Italy, Spain, Turkey and Egypt, where their use as raw materials for ethanol production could give rise to a potential production capacity of 13 Mtoe of ethanol. Due to the lack of sufficient amounts of agricultural residues in all of the other Mediterranean countries, use of the cellulosic content of municipal solid waste (MSW) as feedstock for ethanol fuel production is also proposed. A maximum potential production capacity of 30 Mtoe of ethanol could be achieved from 50% of the 180 million tons of waste currently produced annually in the Mediterranean Basin, the management of which has become a subject of serious concern. However, to make large-scale ethanol production from agricultural residues and MSW a medium-term feasible goal in the Mediterranean Basin, huge efforts are needed to achieve the required progress in cellulose ethanol technologies and to overcome several foreseeable constraints. (author)

  17. Distribution and abundance of bee forage flora across an agricultural landscape – railway embankments vs. road verges

    Directory of Open Access Journals (Sweden)

    Małgorzata Wrzesień

    2016-09-01

    Full Text Available In this study, we evaluated if railway embankments and road verges create refuge habitats for bee flora across agricultural landscape. The survey was conducted in 2009–2012, in the Lublin Province, SE Poland. Data on the bee forage flora were obtained while making floristic charts along 60 transect plots × 300 m, with a total length of 18 000 m, for each type of linear structure. Forage bee flora was compared with respect to species richness, diversity, and evenness indices. The canonical correspondence analysis (CCA was used to characterize relationship between species composition and environmental variables. The bee forage species richness and abundance were significantly greater on railway embankments than on road verges. The composition of species varied considerably; the number of bee forage species common to both habitats was only approximately 38% in entire data set. Most good-value bee forage species were recorded along the embankments of railways with an intermediate traffic volume. Bee forage species diversity benefits from the location of habitat elements (forests or meadows, primarily if the distance is <50 m. The lack of dense patches of valuable bee forage species in the road verges was related to the high density of non-nectariferous graminoids. Our results demonstrate how the value of man-made areas in an agricultural ecosystem can vary with respect to floral resources across the landscape, suggesting that it is inappropriate to generalize about agricultural systems as a whole without first addressing differences among habitats.

  18. Inland drift sand landscapes

    NARCIS (Netherlands)

    Fanta, J.; Siepel, H.

    2010-01-01

    Man has had a complex relationship with inland drift sands through the ages. For some centuries these landscapes were seen as a threat to society, especially agriculture and housing. At present we conserve these landscapes as important Natura 2000 priority habitats. In this book you may find these

  19. The importance of riparian zones on stream carbon and nitrogen export in a temperate, agricultural dominated landscape

    DEFF Research Database (Denmark)

    Wohlfart, T; Exbrayat, J F; Schelde, Kirsten

    2012-01-01

    The surrounding landscape of a stream has crucial impacts on the aquatic environment. This study pictures the hydro-biogeochemical situation of the Tyrebaekken creek catchment in central Jutland, Denmark. The intensively managed agricultural landscape is dominated by rotational croplands. One...... northern and one southern stream run through the catchment before converging to form a second order brook. The small catchments mainly consist of sandy soil types besides organic soils along the riparian zone of the streams. The aim of the study was to characterise the relative influence of soil type...... and dissolved organic carbon (DOC) concentrations were measured and dissolved organic nitrogen (DON) was calculated for each grabbed sample. Electro-conductivity, pH and flow velocity were measured during sampling. Statistical analyses showed significant differences between the northern, southern and converged...

  20. Towards an economic sustainable, high yielding and climate-smart agriculture with high landscape values; Paa vaeg mot ett ekonomiskt haallbart, hoegproducerande och klimatsmart jordbruk med hoega landskapsvaerden

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, Karl-Ivar

    2013-07-15

    In 1995-97, the Swedish Environmental Protection Agency carried out a futures study with the aim of identifying ways to achieve environmentally friendly, sustainable Swedish agriculture by 2021. The results indicated that major environmental improvements were possible, while also improving profitability and increasing production of food and bioenergy. At a time half way between 1995 and 2021, the trends predicted in that study were compared against actual developments in agriculture. The analysis showed that most objectives regarding environmental quality were on the way to being achieved relatively well. However, profitability continued to be weak, while food production had decreased and bioenergy production was far below the predicted level. The latter means that agriculture was far from achieving the target of compensating for its emissions of greenhouse gases through bioenergy production substituting for fossil energy. This analysis showed that weak profitability and insufficient production capacity at current prices are the greatest sustainability problems in Swedish agriculture. If profitability cannot be improved, agriculture will decline and its positive effects on the landscape will decrease. If production does not increase, there will have to be continued or increased food imports, which are often less favourable from an environmental perspective than food produced in Sweden. If bioenergy production in agriculture does not drastically increase, it will be difficult to realise the vision of a Sweden without net emissions of greenhouse gases by 2050. The present report updates the futures study. In the evaluation, great emphasis is placed on identifying paths to economically sustainable, high producing and climate-smart agriculture with high landscape values. It is assumed that the current agricultural support system is replaced with environmental payment based on landscape and climate benefits. The views expressed in this report are those of its author and

  1. Estimation of real evapotranspiration and its variation in Mediterranean landscapes of central-southern Chile

    Science.gov (United States)

    Olivera-Guerra, L.; Mattar, C.; Galleguillos, M.

    2014-05-01

    Evapotranspiration (ETd) is a key controller in the ecohydrological processes of semi-arid landscapes. This is the case of the dry land in Chile's central-southern zone, where forestry, farming and livestock activities must adapt to precipitation with considerable year-on-year variations. In this study, the spatial distribution of ETd was estimated in relation to the land use map and physical parameters of the soil. The ETd was estimated through the Simplified Surface Energy Balance Index (S-SEBI) using data from weather stations and remote data provided by the ASTER and MODIS sensors for November 2004 and 2006, respectively. The spatial variability of ETd was compared among different plant types, soil textural classes and depths using non-parametric statistical tests. In this comparison, the highest rates of ETd were obtained in the forest covers with values of 7.3 ± 0.8 and 8.4 ± 0.8 mm d-1 for 2004 and 2006, respectively. The lowest values were estimated for pastures and shrublands with values of 3.5 ± 1.2 mm d-1 and for crops with rates of 4.4 ± 1.6 mm d-1. Comparison of the ETd of the native forest covers and plantations of exotic species showed statistically significant differences; however, no great variation was noted, at least in the study months. Additionally, the highest rates of ETd were found in the clay loam textures (6.0 ± 1.8 and 6.4 ± 2.0 mm d-1) and the lowest rates in the sandy loam soils (3.7 ± 1.6 and 3.9 ± 1.6 mm d-1) for 2004 and 2006, respectively. The results enable analysis of the spatial patterns of the landscape in terms of the relation between water consumption, ET and the biophysical characteristics of a Mediterranean ecosystem. These results form part of the creation of tools useful in the optimization of decision-making for the management and planning of water resources and soil use in territories with few measuring instruments.

  2. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    Science.gov (United States)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  3. Floodplains as a source of fine sediment in grazed landscapes: Tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    Science.gov (United States)

    Yu, Mingjing; Rhoads, Bruce L.

    2018-05-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five sources: croplands, forested floodplains, grasslands, upper grazed floodplains, and lower grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from the five sources to the suspended sediment loads. To account for possible effects of small sample sizes, the analysis was repeated with only two sources: grazed floodplains and croplands/grasslands/forested floodplains. Results based on mean values of tracers indicate that the vast majority of suspended sediment within the stream (>95%) is derived from erosion of channel banks and the soil surface within areas of grazed floodplains. Uncertainty analysis based on Monte Carlo simulations indicates that mean values of tracer properties, which do not account for sampling variability in these properties, probably overestimate contributions from the two major sources. Nevertheless, this analysis still supports the conclusion that floodplain erosion accounts for the largest percentage of instream sediment (≈55-75%). Although grazing occurs over only a small portion of the total watershed area, grazed floodplains, which lie in close proximity to the stream channel, are an important source of sediment in this headwater steam system. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should

  4. Landscape structure shapes habitat finding ability in a butterfly.

    Directory of Open Access Journals (Sweden)

    Erik Öckinger

    Full Text Available Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L. from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape.

  5. Landscape Structure Shapes Habitat Finding Ability in a Butterfly

    Science.gov (United States)

    Öckinger, Erik; Van Dyck, Hans

    2012-01-01

    Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L.) from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape. PMID:22870227

  6. The Mediterranean Coastal Dunes in Egypt: An Endangered Landscape

    Science.gov (United States)

    Batanouny, K. H.

    1999-08-01

    The Mediterranean coast in Egypt extends almost 900 km, the major part of which is bordered by sand dunes of different natures and types. Along the coastline between Alexandria and El-Alamein, a distance of some 100 km, the sand dunes represent a particular landscape with special characteristics and features, and consequently plants with particular attributes. In this area, the belt of sand dunes has developed immediately south of the shore and these dunes may rise up to 10 m in height and extend about 0·5-1·5 km inland from the shore. These dunes are famous as a habitat for the fig (Ficus carica L.) cultivation depending on the irregular rainfall. They also represent a landing station and a cross-road for birds such as quail migrating from Europe in the north. In the past, summer resort areas were confined to limited areas with few people, these same areas support the growth of some important plant species, for example, sand binders, medicinal and range plants. For more than two decades, there has been considerable socio-economic change and an open-door policy in the economy of the country has been adopted. One of the consequences of this change is that a great part of the coastal dune belt west of Alexandria till El-Alamein, has been subjected to destruction, due to the continuous construction of summer resort villages. These were built at a distance of about 100 m of the shoreline, extending 400-600 m inland and a breadth of 400 m or more along the shoreline. The area already covered by the dunes is now almost occupied by new buildings, gardens and other infrastructure. The consequences of these human activities are numerous and include impacts on the soil, water resources, the flora and the fauna, migrating birds, trends of the indigenous people, and the cultural environment. The present paper gives a concise environmental setting of the dune belt before the advent of the new activities, and the socio-economic and political attitudes which threaten the dunes

  7. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation

    Directory of Open Access Journals (Sweden)

    Christos Nitsos

    2015-01-01

    Full Text Available Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.

  8. Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop

    International Nuclear Information System (INIS)

    Recatala, L.; Sanchez, J.; Arbelo, C.; Sacristan, D.

    2010-01-01

    The validity of a quality standard for cadmium (Cd) in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L.) is evaluated in this work considering both its effect on the crop growth (biomass production) and the metal accumulation in the edible part of the plant. Four soils with different properties relevant to regulate the behaviour of heavy metals were selected from the Valencian Region, a representative area of the European Mediterranean Region. For all soils, the effective concentration of added Cd causing 50% inhibition (EC 50 ) on the biomass production was much higher than the minimum legal concentration used to declare soils as contaminated by cadmium, i.e. 100 times the baseline value for Cd, in Spain (Spanish Royal Decree 9/2005). As expected, Cd toxicity in the crop was higher in the soils having less carbonate content. On the other hand, for all soils, from the second dose on, which represents 10-times the baseline value for Cd, the metal content in crops exceeded the maximum level established for leaf crops by the European legislation (Regulation EC no. 466/2001). Soil salinity and coarse textures make the accumulation of Cd in the edible part of the plant easier. Therefore, the legal baseline soil cadmium content established by the Spanish legislation seems not valid neither from the point of view of the effect on the crop growth nor from the point of view of the metal accumulation in the edible part of the plant. In order to realistically declare contaminated soils by heavy metals, soil quality standards should be proposed taking into account the soil properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards for heavy metals as highlighted by the European Thematic Strategy for Soil Protection.

  9. Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop

    Energy Technology Data Exchange (ETDEWEB)

    Recatala, L., E-mail: luis.recatala@uv.es [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Sanchez, J. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Arbelo, C. [Departamento de Edafologia y Geologia, Facultad de Biologia, Universidad de La Laguna, 38206 La Laguna (Tenerife), Islas Canarias (Spain); Sacristan, D. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain)

    2010-12-01

    The validity of a quality standard for cadmium (Cd) in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L.) is evaluated in this work considering both its effect on the crop growth (biomass production) and the metal accumulation in the edible part of the plant. Four soils with different properties relevant to regulate the behaviour of heavy metals were selected from the Valencian Region, a representative area of the European Mediterranean Region. For all soils, the effective concentration of added Cd causing 50% inhibition (EC{sub 50}) on the biomass production was much higher than the minimum legal concentration used to declare soils as contaminated by cadmium, i.e. 100 times the baseline value for Cd, in Spain (Spanish Royal Decree 9/2005). As expected, Cd toxicity in the crop was higher in the soils having less carbonate content. On the other hand, for all soils, from the second dose on, which represents 10-times the baseline value for Cd, the metal content in crops exceeded the maximum level established for leaf crops by the European legislation (Regulation EC no. 466/2001). Soil salinity and coarse textures make the accumulation of Cd in the edible part of the plant easier. Therefore, the legal baseline soil cadmium content established by the Spanish legislation seems not valid neither from the point of view of the effect on the crop growth nor from the point of view of the metal accumulation in the edible part of the plant. In order to realistically declare contaminated soils by heavy metals, soil quality standards should be proposed taking into account the soil properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards for heavy metals as highlighted by the European Thematic Strategy for Soil Protection.

  10. Climate change and water availability for vulnerable agriculture

    Science.gov (United States)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2017-04-01

    Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of

  11. Understanding sediment sources in a peri-urban Mediterranean catchment using geochemical tracers

    Science.gov (United States)

    Ferreira, Carla; Walsh, Rory; Kikuchi, Ryunosuke; Blake, Will

    2016-04-01

    One of the main physical environmental impacts of urbanization is an increase in suspended sediment concentrations and loads, particularly in the constructional phase. Impacts in peri-urban catchments characterized by a mosaic of urban and non-urban landscape elements with varying roles in acting as sources and sinks of overland flow and slope wash have received little attention, particularly in Mediterranean environments. The present study uses a sediment 'fingerprinting' approach to determine the main sediment sources in the peri-urban Ribeira dos Covões catchment (6.2km2) in Portugal and how they change during storm events following contrasting antecedent weather. The catchment, rural until 1972, underwent discontinuous urbanization in 1973-1993, followed by an urban consolidation phase. Currently, its land-use is a complex mosaic of woodland (56%), urban (40%) and agricultural (4%) land parcels. Distinct urban patterns include some well-defined urban residential centres, but also areas of discontinuous urban sprawl. Since 2010, a major road was built and an enterprise park has been under construction, covering 1% and 5% of the catchment, respectively. The catchment has a Mediterranean climate. The geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils are generally deep (>3.0m), but shallow (urbanized and partly urbanized catchments, and to supporting them in designing and implementing effective land-use mosaics and site-specific measures to mitigate erosion.

  12. Landscape conditions predisposing grizzly bears to conflicts on private agricultural lands in the western USA

    Science.gov (United States)

    Wilson, S.M.; Madel, M.J.; Mattson, D.J.; Graham, J.M.; Merrill, T.

    2006-01-01

    We used multiple logistic regression to model how different landscape conditions contributed to the probability of human-grizzly bear conflicts on private agricultural ranch lands. We used locations of livestock pastures, traditional livestock carcass disposal areas (boneyards), beehives, and wetland-riparian associated vegetation to model the locations of 178 reported human-grizzly bear conflicts along the Rocky Mountain East Front, Montana, USA during 1986-2001. We surveyed 61 livestock producers in the upper Teton watershed of north-central Montana, to collect spatial and temporal data on livestock pastures, boneyards, and beehives for the same period, accounting for changes in livestock and boneyard management and beehive location and protection, for each season. We used 2032 random points to represent the null hypothesis of random location relative to potential explanatory landscape features, and used Akaike's Information Criteria (AIC/AICC) and Hosmer-Lemeshow goodness-of-fit statistics for model selection. We used a resulting "best" model to map contours of predicted probabilities of conflict, and used this map for verification with an independent dataset of conflicts to provide additional insights regarding the nature of conflicts. The presence of riparian vegetation and distances to spring, summer, and fall sheep or cattle pastures, calving and sheep lambing areas, unmanaged boneyards, and fenced and unfenced beehives were all associated with the likelihood of human-grizzly bear conflicts. Our model suggests that collections of attractants concentrated in high quality bear habitat largely explain broad patterns of human-grizzly bear conflicts on private agricultural land in our study area. ?? 2005 Elsevier Ltd. All rights reserved.

  13. Flowering meadows, a biodiverse alternative to lawns in mediterranean urban spaces

    OpenAIRE

    Martínez, Maria del Puy; Castro, Maria Conceição; Pinto-Gomes, Carlos

    2014-01-01

    The rate of expansion of cities and the subsequent loss of biodiversity demand an approach with a strong focus on local ecology when tackling landscape architecture projects. The Mediterranean landscape is rich in flora and is characterised by a seasonal dynamic that confers on it a value which is unique in Europe. Green spaces are exceptional places that are not only able to accommodate a variety of user functions, but also favour natural processes that bring the public close to nature. This...

  14. Conservation scenarios for olive farming on sloping land in de Mediterranean

    NARCIS (Netherlands)

    Fleskens, L.

    2007-01-01

    The future of olive farming on sloping land in the Mediterranean is uncertain. Sloping and Mountainous Olive Production Systems (SMOPS) that have been sustainable for ages have in a relatively short time frame witnessed major changes. Although remnants of many of these traditional landscapes still

  15. Linking spatial patterns of soil redistribution traced with 137Cs and soil nutrients in a Mediterranean mountain agroecosystem (NE Spain)

    Science.gov (United States)

    Quijano, Laura; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Mediterranean mountain agroecosystems are prone to soil loss mainly due to the accelerated erosion as a consequence of human induced changes from agriculture and grazing practices over the last centuries and the climatic conditions (i.e. irregular and scarce precipitations and drought periods). Soil erosion leads to soil degradation inducing the loss of soil functions. The progressive decline of soil functions thereof soil quality is associated to a decrease of soil productivity and can threat the sustainability of cultivated soils. The use of fallout 137Cs as a soil movement tracer provides useful data to identify areas where loss and gain of 137Cs occurs and that of soil. This study aims to address soil movement and soil nutrient dynamics closely related to the status of soil degradation. A rain-fed cereal field (1.6 ha) representative of Mediterranean mountain agricultural landscapes (42°25'41''N 1°13'8''W) was selected to examine the effects of soil redistribution processes on the spatial variability of soil organic carbon (SOC) and nitrogen (SON) and their relationships with soil properties and topographic characteristics. From the hydrological point of view, the field is isolated due to the effect of landscape features and man-made structures. Climate is continental Mediterranean with an average annual rainfall of 500 mm and soils are Calcisols. The reference inventories of 137Cs and soil nutrients were established from 21 soil samples collected in nearby undisturbed areas under typical Mediterranean vegetation cover. A total of 156 bulk soil samples (30-50 cm depth) and 156 topsoil samples (5 cm) were collected on a 10 m grid. 137Cs and soil nutrients loss and gain areas were identified by comparing the reference inventories with the values of inventories at the sampling points. A new approach to characterize and measure active (ACF) and stable (SCF) carbon fraction contents by using a dry combustion method based on the oxidation temperature of carbon

  16. Climatic change in Mediterranean area

    International Nuclear Information System (INIS)

    Manos, A.

    1991-01-01

    United Nations Environmental Program (UNEP) studies on forecasted greenhouse climatic effects on the Mediterranean coastal and marine ecosystems and regional socio-economic framework have indicated the need for a concerted plan of protective and remedial action. The studies considered rises of 1.5 degrees in ambient temperature and 20 centimeters in sea level occurring before the year 2025. A regional, as opposed to a global area, study approach was adopted since the severity of climatic effects is expected to vary greatly from one part of the world to another. The specific areas investigated were the Po River Delta and Venezia Lagoon in Italy, the Nile Delta, Camargue, the Ebro Delta, the Tunisian National Park area, and the Thermaicos Gulf in Greece. The rise in average temperature is expected to negatively effect Mediterranean agricultural production and the coastal and marine ecosystems due to prolonged periods of drought and exceptional rainfall. It is suggested that a system of dikes be constructed to protect the coastal areas which are heavily dependent on tourism and agriculture

  17. Nitrous oxide emissions from agricultural landscapes: quantification tools, policy development, and opportunities for improved management

    Science.gov (United States)

    Tonitto, C.; Gurwick, N. P.

    2012-12-01

    Policy initiatives to reduce greenhouse gas emissions (GHG) have promoted the development of agricultural management protocols to increase SOC storage and reduce GHG emissions. We review approaches for quantifying N2O flux from agricultural landscapes. We summarize the temporal and spatial extent of observations across representative soil classes, climate zones, cropping systems, and management scenarios. We review applications of simulation and empirical modeling approaches and compare validation outcomes across modeling tools. Subsequently, we review current model application in agricultural management protocols. In particular, we compare approaches adapted for compliance with the California Global Warming Solutions Act, the Alberta Climate Change and Emissions Management Act, and by the American Carbon Registry. In the absence of regional data to drive model development, policies that require GHG quantification often use simple empirical models based on highly aggregated data of N2O flux as a function of applied N - Tier 1 models according to IPCC categorization. As participants in development of protocols that could be used in carbon offset markets, we observed that stakeholders outside of the biogeochemistry community favored outcomes from simulation modeling (Tier 3) rather than empirical modeling (Tier 2). In contrast, scientific advisors were more accepting of outcomes based on statistical approaches that rely on local observations, and their views sometimes swayed policy practitioners over the course of policy development. Both Tier 2 and Tier 3 approaches have been implemented in current policy development, and it is important that the strengths and limitations of both approaches, in the face of available data, be well-understood by those drafting and adopting policies and protocols. The reliability of all models is contingent on sufficient observations for model development and validation. Simulation models applied without site-calibration generally

  18. Responses of common buzzard (Buteo buteo) and Eurasian kestrel (Falco tinnunculus) to land use changes in agricultural landscapes of Western France

    NARCIS (Netherlands)

    Butet, A.; Michel, N.; Rantier, Y.; Comor, V.N.R.; Hubert-Moy, L.; Nabucet, J.; Delettre, Y.R.

    2010-01-01

    In front of land use changes, there has been a wide decline in biodiversity. In this study, we analysed the numerical response of two diurnal raptor species, the common buzzard and the Eurasian kestrel to different agricultural landscape contexts. We carried out a 3-year survey of the abundance of

  19. Measures of the EU Agri-Environmental Protection Scheme (GAEPS) and their impacts on the visual acceptability of Finnish agricultural landscapes.

    Science.gov (United States)

    Tahvanainen, Liisa; Ihalainen, Marjut; Hietala-Koivu, Reija; Kolehmainen, Osmo; Tyrväinen, Liisa; Nousiainen, Ismo; Helenius, Juha

    2002-11-01

    As a member of the European Union, Finland has committed itself to creating an environmental policy for agriculture. The aims of this study were to evaluate visual impacts of the General Agri-Environmental Protection Scheme (GAEPS) and Supplementary Protection Scheme (SPS) and general attitudes towards some activities in those policies and furthermore to examine the suitability of the method of Alho et al. (2001) for the scenic beauty assessment. The study areas consisted of three original, untreated, and 15 modified rural landscapes representing a variety of different activities. The scenic beauty of the landscapes was evaluated through pairwise comparisons of the responses of 68 people. Furthermore, attitudes towards environmental values, water protection, buffer strips and subsidies to agriculture were obtained. The respondents found the maintained buffer strips more pleasing than unmaintained strips and considered that the quality of watercourses was increased by buffer strips along them. A suitable width for the buffer strip along main ditches, brooks and waterways was regarded, on average, to be wider than the current recommendations. Although the opinions of farmers were basically in line with the existing recommendations, farmers' opininons on the second and third most important effects of buffer strips, an increase in weeds and a decrease in cultivated land, clearly differed from those of the other respondents. Afforestation, lack of building maintenance and abandoned fields were considered to be the most important factors impacting rural landscapes. This study indicates that the Finnish Agri-Environmental Protection Schemes have had positive impacts on the visual quality of landscapes. Attitudes towards other impacts are contradictory. This study also showed the improvement of the Alho et al. (2001) method in these kinds of studies relative to other methods of pairwise comparisons.

  20. Land Cover Classification in Complex and Fragmented Agricultural Landscapes of the Ethiopian Highlands

    Directory of Open Access Journals (Sweden)

    Michael Eggen

    2016-12-01

    Full Text Available Ethiopia is a largely agrarian country with nearly 85% of its employment coming from agriculture. Nevertheless, it is not known how much land is under cultivation. Mapping land cover at finer resolution and global scales has been particularly difficult in Ethiopia. The study area falls in a region of high mapping complexity with environmental challenges which require higher quality maps. Here, remote sensing is used to classify a large area of the central and northwestern highlands into eight broad land cover classes that comprise agriculture, grassland, woodland/shrub, forest, bare ground, urban/impervious surfaces, water, and seasonal water/marsh areas. We use data from Landsat spectral bands from 2000 to 2011, the Normalized Difference Vegetation Index (NDVI and its temporal mean and variance, together with a digital elevation model, all at 30-m spatial resolution, as inputs to a supervised classifier. A Support Vector Machines algorithm (SVM was chosen to deal with the size, variability and non-parametric nature of these data stacks. In post-processing, an image segmentation algorithm with a minimum mapping unit of about 0.5 hectares was used to convert per pixel classification results into an object based final map. Although the reliability of the map is modest, its overall accuracy is 55%—encouraging results for the accuracy of agricultural uses at 85% suggest that these methods do offer great utility. Confusion among grassland, woodland and barren categories reflects the difficulty of classifying savannah landscapes, especially in east central Africa with monsoonal-driven rainfall patterns where the ground is obstructed by clouds for significant periods of time. Our analysis also points out the need for high quality reference data. Further, topographic analysis of the agriculture class suggests there is a significant amount of sloping land under cultivation. These results are important for future research and environmental monitoring in

  1. A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci.

    Directory of Open Access Journals (Sweden)

    Ahmed Ben Abdelkrim

    Full Text Available Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest.

  2. A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci.

    Science.gov (United States)

    Ben Abdelkrim, Ahmed; Hattab, Tarek; Fakhfakh, Hatem; Belkadhi, Mohamed Sadok; Gorsane, Faten

    2017-01-01

    Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest.

  3. Forest landscape restoration : reconciling biodiversity conservation with local livelihoods in Ecuador

    OpenAIRE

    Middendorp, Romaike Sanne

    2017-01-01

    Tropical forest conversion and agricultural intensification are important drivers of loss of biodiversity and ecosystem services on which local communities depend. Resilient agricultural landscapes are crucial to safeguard food security and adapt to environmental and climate changes. An increasing number of policies and programs target forest landscape restoration but lack the scientific basis to ensure sustainable outcomes. This dissertation explores the potential of forest landscape restora...

  4. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    Science.gov (United States)

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species. © 2016 The Author(s).

  5. Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC)

    Science.gov (United States)

    Requejo Silva, Ana; Lozano García, Beatriz; Parras Alcántara, Luis

    2017-04-01

    Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC) Ana Requejo1, Beatriz Lozano-García1, Luis Parras Alcántara1 1 Department of Agricultural Chemistry and Soil Science, Faculty of Science, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, Spain. The carbon content of the atmosphere can be influenced by soils, since they can store carbon or emit large quantities of CO2. C sequestration into soils is one of the most important ecosystems services because of its role in climate regulation (IPPC, 2007). Thereof, agriculture and forestry are the only activities that can contribute to C sequestration through photosynthesis and its carbon incorporation into carbohydrates (Parras Alcántara et al., 2013). Dehesa is a multifunctional agro-sylvo-pastoral system and typical landscape of southern and central Spain and southern Portugal. It is an anthropogenic system dedicated to the combined production of black iberian pigs, a variety of foods, fuel, coal, and cork. Besides, it acts as well in the production of endangered species as wildlife habitat and as sustainable hunting areas. These dehesa areas are defined by a relationship between productivity and conservation of forest oaks, providing environmental benefits such as carbon capture and storage. The area focused in this study is the Cardeña-Montoro Nature Reserve, located within the Sierra Morena (Córdoba, South Spain). The most representative soils in Cardeña-Montoro Nature Reserve are Cambisols, Regosols, Leptosols and Fluvisols according to IUSS Working Group WRB (2006). They are characterized by a low fertility, poor physical conditions and marginal capacity for agricultural use, along with low organic matter content due to climate conditions (semiarid Mediterranean climate) and soil texture (sandy). Several studies have shown that land use affects the SOC concentration (Lozano-García et al., 2016; Khaledian et al., 2016). Based on this

  6. Thrips densities in organic leek fields in relation to the surrounding landscapes. Landscape management for functional biodiversity

    NARCIS (Netherlands)

    Belder, den E.; Elderson, J.; Schelling, G.C.; Brink, van den W.J.

    2003-01-01

    The study assessed the effects of hedgerow networks (line elements containing shrubs less than 2 m), woodlots (height > 2 m), other natural areas, and agricultural and horticultural land (polygons) in the landscapes on the abundance of a generalist thrips species in organic leek fields. Landscape

  7. A geographically weighted regression model for geothermal potential assessment in mediterranean cultural landscape

    Science.gov (United States)

    D'Arpa, S.; Zaccarelli, N.; Bruno, D. E.; Leucci, G.; Uricchio, V. F.; Zurlini, G.

    2012-04-01

    Geothermal heat can be used directly in many applications (agro-industrial processes, sanitary hot water production, heating/cooling systems, etc.). These applications respond to energetic and environmental sustainability criteria, ensuring substantial energy savings with low environmental impacts. In particular, in Mediterranean cultural landscapes the exploitation of geothermal energy offers a valuable alternative compared to other exploitation systems more land-consuming and visual-impact. However, low enthalpy geothermal energy applications at regional scale, require careful design and planning to fully exploit benefits and reduce drawbacks. We propose a first example of application of a Geographically Weighted Regression (GWR) for the modeling of geothermal potential in the Apulia Region (South Italy) by integrating hydrological (e.g. depth to water table, water speed and temperature), geological-geotechnical (e.g. lithology, thermal conductivity) parameters and land-use indicators. The GWR model can effectively cope with data quality, spatial anisotropy, lack of stationarity and presence of discontinuities in the underlying data maps. The geothermal potential assessment required a good knowledge of the space-time variation of the numerous parameters related to the status of geothermal resource, a contextual analysis of spatial and environmental features, as well as the presence and nature of regulations or infrastructures constraints. We create an ad hoc geodatabase within ArcGIS 10 collecting relevant data and performing a quality assessment. Cross-validation shows high level of consistency of the spatial local models, as well as error maps can depict areas of lower reliability. Based on low enthalpy geothermal potential map created, a first zoning of the study area is proposed, considering four level of possible exploitation. Such zoning is linked and refined by the actual legal constraints acting at regional or province level as enforced by the regional

  8. The potential of landscape labelling approaches for integrated landscape management in Europe

    DEFF Research Database (Denmark)

    Mann, Carsten; Plieninger, Tobias

    2017-01-01

    This paper combines conceptual thinking and empirical analysis of landscape labelling as a new governance approach. With the help of a literature review and qualitative interviews, we (1) explore the conceptual orientation of landscape labelling, (2) analyse existing approaches in Europe and (3......) elaborate its potential for integrated landscape management on a regional scale. Governance analysis to identify fostering and hindering factors is carried out for regional brands in biosphere reserves in Germany, geographic indication in Spain, organic agriculture in France and a community forest...... approach within policy mixes that depend on supportive governance structures and stakeholders....

  9. Characterisation of Agri-Landscape Systems at a Regional Level: A Case Study in Northern Tuscany

    Directory of Open Access Journals (Sweden)

    Mariassunta Galli

    2010-09-01

    Full Text Available Preserving our landscape in sustainable development processes is now widely considered as fundamental. It is a complex and evolving issue that can be tackled from several perspectives. Agronomy can contribute to analyzing the relationships between agricultural production systems (cropping, farming and agricultural systems at different levels (field, farm, and region and the agricultural landscape (in terms of patches, matrixes, dynamics, etc. This is of particular interest where the relationships between “what and how” are produced by agricultural activities and the landscape are changing. In this case their own reciprocity may represent an opportunity to analyze complex systems, such as the characterization of agri-landscapes at a regional level. We propose a case study developed as an up-scaling analytical process from a farm to a regional level. The result was the identification of six main agri-landscape systems highlighting the landscape drivers that are changing the traditional landscape of a rural region in Northern Tuscany (Lunigiana.

  10. Modeling Coupled Landscape Evolution and Soil Organic Carbon Dynamics in Intensively Management Landscapes

    Science.gov (United States)

    Yan, Q.; Kumar, P.

    2017-12-01

    Soil is the largest reservoir of carbon in the biosphere but in agricultural areas it is going through rapid erosion due disturbance arising from crop harvest, tillage, and tile drainage. Identifying whether the production of soil organic carbon (SOC) from the crops can compensate for the loss due to erosion is critical to ensure our food security and adapt to climate change. In the U.S. Midwest where large areas of land are intensively managed for agriculture practices, predicting soil quantity and quality are critical for maintaining crop yield and other Critical Zone services. This work focuses on modeling the coupled landscape evolutions soil organic carbon dynamics in agricultural fields. It couples landscape evolution, surface water runoff, organic matter transformation, and soil moisture dynamics to understand organic carbon gain and loss due to natural forcing and farming practices, such as fertilizer application and tillage. A distinctive feature of the model is the coupling of surface ad subsurface processes that predicts both surficial changes and transport along with the vertical transport and dynamics. Our results show that landscape evolution and farming practices play dominant roles in soil organic carbon (SOC) dynamics both above- and below-ground. Contrary to the common assumption that a vertical profile of SOC concentration decreases exponentially with depth, we find that in many situations SOC concentration below-ground could be higher than that at the surface. Tillage plays a complex role in organic matter dynamics. On one hand, tillage would accelerate the erosion rate, on the other hand, it would improve carbon storage by burying surface SOC into below ground. Our model consistently reproduces the observed above- and below-ground patterns of SOC in the field sites of Intensively Managed Landscapes Critical Zone Observatory (IMLCZO). This model bridges the gaps between the landscape evolution, below- and above-ground hydrologic cycle, and

  11. Facilitation of a native pest of rice, Stenotus rubrovittatus (Hemiptera: Miridae), by the non-native Lolium multiflorum (Cyperales: Poaceae) in an agricultural landscape.

    Science.gov (United States)

    Yoshioka, Akira; Takada, Mayura; Washitani, Izumi

    2011-10-01

    Source populations of polyphagous pests often occur on host plants other than the economically damaged crop. We evaluated the contribution of patches of a non-native meadow grass, Lolium multiflorum Lam. (Poaceae), and other weeds growing in fallow fields or meadows as source hosts of an important native pest of rice, Stenotus rubrovittatus (Matsumura) (Hemiptera: Miridae), in an agricultural landscape of northern Japan. Periodical censuses of this mirid bug by using the sweeping method, vegetation surveys, and statistical analysis revealed that L. multiflorum was the only plant species that was positively correlated with the density of adult S. rubrovittatus through two generations and thus may be the most stable and important host of the mirid bug early in the season before the colonization of rice paddies. The risk and cost of such an indirect negative effect on a crop plant through facilitation of a native pest by a non-native plant in the agricultural landscape should not be overlooked.

  12. Environmental analysis of the logistics of agricultural products from roof top greenhouses in Mediterranean urban areas.

    Science.gov (United States)

    Sanyé-Mengual, Esther; Cerón-Palma, Ileana; Oliver-Solà, Jordi; Montero, Juan Ignacio; Rieradevall, Joan

    2013-01-15

    As urban populations increase so does the amount of food transported to cities worldwide, and innovative agro-urban systems are being developed to integrate agricultural production into buildings; for example, by using roof top greenhouses (RTGs). This paper aims to quantify and compare, through a life cycle assessment, the environmental impact of the current linear supply system with a RTG system by using a case study for the production of tomatoes. The main results indicate that a change from the current linear system to the RTG system could result in a reduction, per kilogram of tomatoes (the functional unit), in the range of 44.4-75.5% for the different impact categories analysed, and savings of up to 73.5% in energy requirements. These savings are associated with re-utilisation of packaging systems (55.4-85.2%), minimisation of transport requirements (7.6-15.6%) and reduction of the loss of product during transportation and retail stages (7.3-37%). The RTG may become a strategic factor in the design of low-carbon cities in Mediterranean areas. Short-term implementation in the city of Barcelona could result in savings of 66.1 tonnes of CO₂ eq. ha(-1) when considering the global warming potential, and of 71.03 t ha(-1) when considering that the transformation from woodland to agricultural land is avoided. Copyright © 2012 Society of Chemical Industry.

  13. Durum wheat quality prediction in Mediterranean environments

    DEFF Research Database (Denmark)

    Toscano, P.; Gioli, B.; Genesio, L.

    2014-01-01

    Durum wheat is one of the most important agricultural crops in the Mediterranean area. In addition to yield, grain quality is very important in wheat markets because of the demand for high-quality end products such as pasta, couscous and bulgur wheat. Grain quality is directly affected by several...

  14. Modeling the impacts of phenological and inter-annual changes in landscape metrics on local biodiversity of agricultural lands of Eastern Ontario using multi-spatial and multi-temporal remote sensing data

    Science.gov (United States)

    Alavi-Shoushtari, N.; King, D.

    2017-12-01

    Agricultural landscapes are highly variable ecosystems and are home to many local farmland species. Seasonal, phenological and inter-annual agricultural landscape dynamics have potential to affect the richness and abundance of farmland species. Remote sensing provides data and techniques which enable monitoring landscape changes in multiple temporal and spatial scales. MODIS high temporal resolution remote sensing images enable detection of seasonal and phenological trends, while Landsat higher spatial resolution images, with its long term archive enables inter-annual trend analysis over several decades. The objective of this study to use multi-spatial and multi-temporal remote sensing data to model the response of farmland species to landscape metrics. The study area is the predominantly agricultural region of eastern Ontario. 92 sample landscapes were selected within this region using a protocol designed to maximize variance in composition and configuration heterogeneity while controlling for amount of forest and spatial autocorrelation. Two sample landscape extents (1×1km and 3×3km) were selected to analyze the impacts of spatial scale on biodiversity response. Gamma diversity index data for four taxa groups (birds, butterflies, plants, and beetles) were collected during the summers of 2011 and 2012 within the cropped area of each landscape. To extract the seasonal and phenological metrics a 2000-2012 MODIS NDVI time-series was used, while a 1985-2012 Landsat time-series was used to model the inter-annual trends of change in the sample landscapes. The results of statistical modeling showed significant relationships between farmland biodiversity for several taxa and the phenological and inter-annual variables. The following general results were obtained: 1) Among the taxa groups, plant and beetles diversity was most significantly correlated with the phenological variables; 2) Those phenological variables which are associated with the variability in the start of

  15. Using interviews and biological sign surveys to infer seasonal use of forested and agricultural portions of a human-dominated landscape by Asian elephants in Nepal

    Science.gov (United States)

    Lamichhane, Babu Ram; Subedi, Naresh; Pokheral, Chiranjibi Prasad; Dhakal, Maheshwar; Acharya, Krishna Prasad; Pradhan, Narendra Man Babu; Smith, James L. David; Malla, Sabita; Thakuri, Bishnu Singh; Yackulic, Charles B.

    2018-01-01

    Understanding how wide-ranging animals use landscapes in which human use is highly heterogeneous is important for determining patterns of human–wildlife conflict and designing mitigation strategies. Here, we show how biological sign surveys in forested components of a human-dominated landscape can be combined with human interviews in agricultural portions of a landscape to provide a full picture of seasonal use of different landscape components by wide-ranging animals and resulting human–wildlife conflict. We selected Asian elephants (Elephas maximus) in Nepal to illustrate this approach. Asian elephants are threatened throughout their geographic range, and there are large gaps in our understanding of their landscape-scale habitat use. We identified all potential elephant habitat in Nepal and divided the potential habitat into sampling units based on a 10 km by 10 km grid. Forested areas within grids were surveyed for signs of elephant use, and local villagers were interviewed regarding elephant use of agricultural areas and instances of conflict. Data were analyzed using single-season and multi-season (dynamic) occupancy models. A single-season occupancy model applied to data from 139 partially or wholly forested grid cells estimated that 0.57 of grid cells were used by elephants. Dynamic occupancy models fit to data from interviews across 158 grid cells estimated that monthly use of non-forested, human-dominated areas over the preceding year varied between 0.43 and 0.82 with a minimum in February and maximum in October. Seasonal patterns of crop raiding by elephants coincided with monthly elephant use of human-dominated areas, and serious instances of human–wildlife conflict were common. Efforts to mitigate human–elephant conflict in Nepal are likely to be most effective if they are concentrated during August through December when elephant use of human-dominated landscapes and human–elephant conflict are most common.

  16. Impacts of Intensified Agriculture Developments on Marsh Wetlands

    Directory of Open Access Journals (Sweden)

    Zhaoqing Luan

    2013-01-01

    Full Text Available A spatiotemporal analysis on the changes in the marsh landscape in the Honghe National Nature Reserve, a Ramsar reserve, and the surrounding farms in the core area of the Sanjiang Plain during the past 30 years was conducted by integrating field survey work with remote sensing techniques. The results indicated that intensified agricultural development had transformed a unique natural marsh landscape into an agricultural landscape during the past 30 years. Ninety percent of the natural marsh wetlands have been lost, and the areas of the other natural landscapes have decreased very rapidly. Most dry farmland had been replaced by paddy fields during the progressive change of the natural landscape to a farm landscape. Attempts of current Chinese institutions in preserving natural wetlands have achieved limited success. Few marsh wetlands have remained healthy, even after the establishment of the nature reserve. Their ecological qualities have been declining in response to the increasing threats to the remaining wetland habitats. Irrigation projects play a key role in such threats. Therefore, the sustainability of the natural wetland ecosystems is being threatened by increased regional agricultural development which reduced the number of wetland ecotypes and damaged the ecological quality.

  17. Farm nitrogen balances in six European agricultural landscapes – a method for farming system assessment, emission hotspot identification, and mitigation measure evaluation

    DEFF Research Database (Denmark)

    Dalgaard, Tommy; Bienkowski, J.; Bleeker, A.

    2012-01-01

    average was similar to those of PL and DK (122 ± 20 and 146 ± 55 kg N ha−1yr−1, respectively) when landless poultry were included. However, the challenge remains how to account for indirect N surpluses and emissions from such farms with a large export of manure out of the landscape. We conclude that farm......–2009. This indicates that farm N surpluses may be used as an independent dataset for validation of measured and modelled N emissions in agricultural landscapes. However, no significant correlation was found to N measured in surface waters, probably because of the short time horizon of the study. A case study...

  18. How hedge woody species diversity and habitat change is a function of land use history and recent management in a European agricultural landscape.

    Science.gov (United States)

    McCann, Thomas; Cooper, Alan; Rogers, David; McKenzie, Paul; McErlean, Thomas

    2017-07-01

    European hedged agricultural landscapes provide a range of ecosystem services and are an important component of cultural and biodiversity heritage. This paper investigates the extent of hedges, their woody species diversity (including the influence of historical versus recent hedge origin) and dynamics of change. The rationale is to contribute to an ecological basis for hedge habitat management. Sample sites were allocated based on a multivariate classification of landscape attributes. All field boundaries present in each site were mapped and surveyed in 1998 and 2007. To assess diversity, a list of all woody species was recorded in one standard 30 m linear plot within each hedge. There was a net decrease in hedge habitat extent, mainly as a result of removal, and changes between hedges and other field boundary types due to the development and loss of shrub growth-form. Agricultural intensification, increased rural building, and variation in hedge management practices were the main drivers of change. Hedges surveyed at baseline, which were lost at resurvey, were more species rich than new hedges gained. Hedges coinciding with historical land unit boundaries of likely Early Medieval origin were found to be more species rich. The most frequent woody species in hedges were native, including a high proportion with Fraxinus excelsior, a species under threat from current and emerging plant pests and pathogens. Introduced species were present in circa 30% of hedges. We conclude that since hedge habitat distribution and woody species diversity is a function of ecology and anthropogenic factors, the management of hedges in enclosed agricultural landscapes requires an integrated approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cogent Confabulation based Expert System for Segmentation and Classification of Natural Landscape Images

    Directory of Open Access Journals (Sweden)

    BRAOVIC, M.

    2017-05-01

    Full Text Available Ever since there has been an increase in the number of automatic wildfire monitoring and surveillance systems in the last few years, natural landscape images have been of great importance. In this paper we propose an expert system for fast segmentation and classification of regions on natural landscape images that is suitable for real-time applications. We focus primarily on Mediterranean landscape images since the Mediterranean area and areas with similar climate are the ones most associated with high wildfire risk. The proposed expert system is based on cogent confabulation theory and knowledge bases that contain information about local and global features, optimal color spaces suitable for classification of certain regions, and context of each class. The obtained results indicate that the proposed expert system significantly outperforms well-known classifiers that it was compared against in both accuracy and speed, and that it is effective and efficient for real-time applications. Additionally, we present a FESB MLID dataset on which we conducted our research and that we made publicly available.

  20. Sustainable Forest Management in a Mediterranean region: social preferences

    Energy Technology Data Exchange (ETDEWEB)

    Maroto, C.; Segura, M.; Ginestar, C.; Uriol, J.; Segura, B.

    2013-07-01

    Aim of study: There is a lack of empirical research that deals with sustainable forest management in Mediterranean regions, among the most vulnerable ecosystems. The main purpose of this work is to define the strategic criteria and objectives for sustainable forest management and aggregate the preferences of stake holders in a Mediterranean region, using AHP and Goal Programming. Area of study: Valencian Community (Spain). Material and Methods: Firstly, we identified forest stake holders and structured a decision hierarchy. Then a workshop was carried out to test and validate the proposed criteria and objectives, as well as a survey to determine social preferences. Secondly, another survey was conducted amongst experts to prioritize action plans. Main results: Stake holders preferences gave the greatest importance to the environmental criteria (hydrological regulation and erosion, climate change mitigation and biodiversity) with an average weight of 40%. Social criteria (employment, recreational activities and landscape) had a weight of 38% and 22% the economic criteria case (wood, hunting and fishing, livestock, renewable energies, rural tourism and mining). The results showed that new products and services such as tourism, renewable energies, landscape, hydrological regulation and erosion control, biodiversity or climate change mitigation are very relevant objectives. We also prioritized action plans comparing them with the distribution of the administration budget. Research highlights: The environmental and social criteria are much more important than the economic ones in the regional planning of the Mediterranean forest, regardless of the method used to aggregate the social preferences and if the forest is public or private. (Author)

  1. Pest control of aphids depends on landscape complexity and natural enemy interactions.

    Science.gov (United States)

    Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2015-01-01

    Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of

  2. (Re)surveying Mediterranean rural landscapes : GIS and legacy survey data.

    OpenAIRE

    Witcher, R. E.

    2008-01-01

    Legacy data have always been important for Mediterranean archaeologists. Over the past decade, one specific category of legacy data, that deriving from regional survey, has become particularly important. Not only has the scale of research questions become larger (requiring greater reliance on others' data), but the surface archaeological record is deteriorating (diminishing the ability to recover good data). The legacy data from many individual surveys have now been subject to digitisation an...

  3. An integrated approach to monitoring ecosystem services and agriculture: implications for sustainable agricultural intensification in Rwanda.

    Science.gov (United States)

    Rosa, Melissa F; Bonham, Curan A; Dempewolf, Jan; Arakwiye, Bernadette

    2017-01-01

    Maintaining the long-term sustainability of human and natural systems across agricultural landscapes requires an integrated, systematic monitoring system that can track crop productivity and the impacts of agricultural intensification on natural resources. This study presents the design and practical implementation of a monitoring framework that combines satellite observations with ground-based biophysical measurements and household surveys to provide metrics on ecosystem services and agricultural production at multiple spatial scales, reaching from individual households and plots owned by smallholder farmers to 100-km 2 landscapes. We developed a set of protocols for monitoring and analyzing ecological and agricultural household parameters within two 10 × 10-km landscapes in Rwanda, including soil fertility, crop yield, water availability, and fuelwood sustainability. Initial results suggest providing households that rely on rainfall for crop irrigation with timely climate information and improved technical inputs pre-harvest could help increase crop productivity in the short term. The value of the monitoring system is discussed as an effective tool for establishing a baseline of ecosystem services and agriculture before further change in land use and climate, identifying limitations in crop production and soil fertility, and evaluating food security, economic development, and environmental sustainability goals set forth by the Rwandan government.

  4. Airborne laser altimeter measurements of landscape topography

    International Nuclear Information System (INIS)

    Ritchie, J.C.

    1995-01-01

    Measurements of topography can provide a wealth of information on landscape properties for managing hydrologic and geologic systems and conserving natural and agricultural resources. This article discusses the application of an airborne laser altimeter to measure topography and other landscape surface properties. The airborne laser altimeter makes 4000 measurements per second with a vertical recording resolution of 5 cm. Data are collected digitally with a personal computer. A video camera, borehole sighted with the laser, records an image for locating flight lines. GPS data are used to locate flight line positions on the landscape. Laser data were used to measure vegetation canopy topography, height, cover, and distribution and to measure microtopography of the land surface and gullies with depths of 15–20 cm. Macrotopography of landscape profiles for segments up to 4 km were in agreement with available topographic maps but provided more detail. Larger gullies with and without vegetation, and stream channel cross sections and their associated floodplains have also been measured and reported in other publications. Landscape segments for any length could be measured for either micro- or macrotopography. Airborne laser altimeter measurements of landscape profiles can provide detailed information on landscape properties or specific needs that will allow better decisions on the design and location of structures (i.e., roads, pipe, and power lines) and for improving the management and conservation of natural and agricultural landscapes. (author)

  5. Seasonal Workers in Mediterranean Agriculture: the social costs of eating fresh, dirigé par Jörg Gertel et Sarah Ruth Sippel (2014)

    OpenAIRE

    Perrotta, Domenico

    2014-01-01

    GERTEL J. and SIPPEL S.R. (eds.) (2014), Seasonal Workers in Mediterranean Agriculture. The social costs of eating fresh, Routledge, [London] 294p. Cet ouvrage collectif a trois grands motifs d’intérêt. En premier lieu, en recueillant un grand nombre de recherches empiriques réalisées dans différents domaines disciplinaires, il constitue la première tentative en langue anglaise de systématiser ce que la science sociale a produit au cours des quinze dernières années par rapport au thème des ou...

  6. Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe–A review

    NARCIS (Netherlands)

    Henle, K.; Alard, D.; Clitherow, J.; Cobb, P.; Firbank, L.G.; Kull, T.; McCracken, D.; Moritz, R.F.A.; Niemelä, J.; Rebane, M.; Wascher, D.M.; Watt, A.; Young, J.

    2008-01-01

    This paper reviews conflicts between biodiversity conservation and agricultural activities in agricultural landscapes and evaluates strategies to reconcile such conflicts. Firstly, a historical perspective on the development of conflicts related to biodiversity in agricultural landscapes is

  7. Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape

    Science.gov (United States)

    Zhu, Q.; Lin, H. S.

    2009-08-01

    The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage

  8. Assessing the recreational demand for agricultural land in Finland

    Directory of Open Access Journals (Sweden)

    E. POUTA

    2008-12-01

    Full Text Available It is widely assumed that the scenic attractiveness and other public good aspects of agricultural land can be utilized as a source of livelihood in rural areas in the form of recreation and tourism. In this study we use two approaches to consider whether agricultural landscapes are preferred as a destination for recreation (day trips and rural tourism (overnight trips. We first analyse the choice of recreation site type based on a model that aggregates sites using the presence of agricultural land as an aggregation variable. Population survey data on recreation trips reveal an association between the respondent’s living environment, recreational activities and visit characteristics and the probability of choosing a destination with agricultural land. Second, we also estimate the demand functions for trips to agricultural sites and other destination types to consider whether the presence of agricultural land, as opposed to other land use categories, increases the number of trips and the benefits of recreation. The results suggest that agricultural landscapes are inferior to alternative site types in terms of per-trip benefits. However, agricultural landscapes are associated with high annual benefits because of the high rate of visitation.;

  9. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe.

    Science.gov (United States)

    Hass, Annika L; Kormann, Urs G; Tscharntke, Teja; Clough, Yann; Baillod, Aliette Bosem; Sirami, Clélia; Fahrig, Lenore; Martin, Jean-Louis; Baudry, Jacques; Bertrand, Colette; Bosch, Jordi; Brotons, Lluís; Burel, Françoise; Georges, Romain; Giralt, David; Marcos-García, María Á; Ricarte, Antonio; Siriwardena, Gavin; Batáry, Péter

    2018-02-14

    Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish ( Raphanus sativus ), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management. © 2018 The Author(s).

  10. Effect of woodlots on thrips density in leek fields: a landscape analysis

    NARCIS (Netherlands)

    Belder, den E.; Elderson, J.; Brink, van den W.J.; Schelling, G.C.

    2002-01-01

    The effect of woodlots, natural areas and agricultural land in the landscape on a generalist herbivore insect species in cropland was investigated. The abundance of onion thrips (Thrips tabaci) was compared in leek (Allium porrum) fields in 43 agricultural landscape plots of different sizes in The

  11. Measures of safeguard and rehabilitation for landscape protection planning: a qualitative approach based on diversity indicators.

    Science.gov (United States)

    La Rosa, Daniele; Privitera, Riccardo; Martinico, Francesco; La Greca, Paolo

    2013-09-01

    Maintaining existing levels of landscape diversity is becoming more and more important for planning considering the increasing pressures on agricultural ecosystems due to soil sealing, sprawl processes and intensive agriculture. Norms for land-use regulation and measures for landscape Safeguard and Rehabilitation have to take into consideration these threats in landscape planning. Evaluating the diversity of agricultural ecosystems is a fundamental step for proposing sound approaches to planning and managing both soil and landscape, as well as maintaining the related ecosystem services. The paper proposes a method aimed at the qualitative evaluation of spatial diversity of agricultural landscapes using a reduced set of ecological indicators based on land-use vector data. Indicators are calculated for defined landscape units characterized by landscape homogeneity. GIS geoprocessing and spatial analysis functions are employed. The study area is the Province of Enna in Sicily (Italy), which is characterized by cultivation mosaics in its southern region, cereal cultivation in the central region and prevailing natural environments in the northern region. Results from the indicator calculations are used to define measures to be included in a Landscape Protection Plan. Safeguard and Rehabilitation measures are introduced, which link indicator scores to planning protection aims. The results highlight the relevance of some agricultural mosaics in proximity to streams and seasonal fluvial environments, where some undamaged natural environments are still present. For these areas, specific landscape safeguard measures are proposed to preserve their diversity features together with their original agricultural functions. The work shows that even with a reduced number of indicators, a differentiated set of measures can be proposed for a Landscape Protection Plan. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A worker-driven way out of the crisis in Mediterranean agriculture

    NARCIS (Netherlands)

    G. Iocco (Giulio); K.A. Siegmann (Karin Astrid)

    2017-01-01

    textabstractSOS Rosarno, an association of farmworkers, farmers and activists in Calabria, Italy, represents an innovative response from below to the extreme exploitation and precarity of migrant farmworkers in the Mediterranean region, as well as to the retailer-driven crisis of small-scale

  13. Environmental vulnerability and agriculture in the karstic domain: landscape indicators and cases in the Atlas Highlands, Morocco.

    Directory of Open Access Journals (Sweden)

    Akdim Brahim

    1999-01-01

    Full Text Available After the brief presentation of the major karstic areas in Morocco, the article focused essentially on the Atlas mountains to investigate the impact of the agriculture on the natural systems equilibrium. Socio-economic changes (demographic pressure, escalation of the landscape use, utilisation of new techniques in water harvesting, etc... have sometimes fathered mechanisms of degradation. Many indicators seem to reflect these mechanisms. The pedologic indicators, soil erosion, the hydrologic and geomorphic indicators, are apprehended to demonstrate existent correlation between different variables and the often negative impacts of land over-use in the karstic domain of the Middle Atlas.

  14. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks.

    Science.gov (United States)

    Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute

  15. Conversion of traditional agricultural land to built-up areas. Land use/cover changes in the municipality of Valencia (1956-2012

    Directory of Open Access Journals (Sweden)

    Antonio Valera Lozano

    2017-01-01

    Full Text Available The aim of this study is to understand the land use-cover dynamics from the mid- 1950s to 2012 in the municipality of Valencia, eastern Spain. The study area is a very interesting example of the many land use and land cover changes in the landscape of Mediterranean alluvial plains. The analysis was based on photo interpretation of aerial photographs (1956, 1984, 2006 and 2012 and GIS based methodology. At a detailed scale (1:10,000, results show that there has been a highly dynamic process produced by the extent of land developed as urban area. In 1956 11,112 hectares were occupied by agricultural land and natural areas. During fifty five years, the sealed surface was 2,396 hectares. In 2012 the built-up extent was around 33% of the studied area. In the municipality of Valencia much of the land converted to urban use was once highly productive agricultural land.

  16. Comparison of the ranging behavior of Scotophilus kuhlii (Lesser Asiatic Yellow Bat) in agricultural and urban landscape

    Science.gov (United States)

    Atiqah, Nur; Akbar, Zubaid; Syafrinna, Ubaidah, Nur; Foo, Ng Yong

    2015-09-01

    Knowledge on home range sizes and movement patterns of animals through the environment is crucial for determining effects of habitat disturbance and fragmentation. To gauge the effects of land-use changes on Scotophilus kuhlii, a telemetric study was conducted between February 2014 and April 2014 in Tasik Chini, Pahang and Universiti Kebangsaan Malaysia (UKM), Bangi Campus. The home range sizes and movement patterns of S. kuhlii inhabiting agricultural landscape (Tasik Chini, Pahang) versus urban landscape (UKM) were compared. A total of ten individuals were successfully radio-tracked. Comparison of home range sizes of both sexes showed male S. kuhlii at Tasik Chini have larger mean home range sizes compared to UKM while female S.kuhlii in UKM have larger mean home range sizes compared to Tasik Chini. All individuals from both localities showed random movement. It is suggested that the home range and activity patterns might be influenced by food availability in the study area, food preferences and diet segregation and breeding behavior. This study provides baseline information on habitat utilization by S. kuhlii in relation to habitat perturbations.

  17. Influence of landscape mosaic on streamflow of a peri-urban catchment under Mediterranean climate

    Science.gov (United States)

    Ferreira, Carla; Walsh, Rory; Ferreira, António

    2017-04-01

    Peri-urban areas tend to be characterized by patchy landscape mosaics of different land-uses. Although the impact of land-use changes on catchment hydrology have been widely investigated, the impact of mixed land-use patterns on the streamflow of peri-urban areas is still poorly understood. This study aims to (i) explore and quantify streamflow delivery from sub-catchments characterized by distinct landscape mosaics; (ii) assess the impact of different urbanization styles on hydrograph properties; and (iii) explore the influence of urbanization type on flow connectivity and stream discharge. The study was carried out in Ribeira dos Covões, a small (6.2km2) peri-urban catchment in central Portugal. The climate is Mediterranean, with a mean annual rainfall of 892mm. Catchment geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils developed on sandstone are generally deep (>3m) Fluvisols and Podsols, whereas on limestone the Leptic Cambisols are typically shallow (blocks and of high population density (9900 inhabitants km-2). The study uses hydrological data recorded over three hydrological years, starting in November 2010, in a monitoring network comprising eight streamflow gauging stations (instrumented with water level recorders) and five rainfall gauges. The gauging stations provide information on the discharge response to rainstorms of the catchment outlet and upstream sub-catchments of different size, urban pattern (in terms of percentage urban land-use and impervious area, distance to the stream network, and storm water management), and lithology (either sandstone or limestone). Annual storm runoff coefficients were lowest (13.7%) in catchments dominated by forest (>80%) and greatest (17.3-17.6%) in the most urbanized sub-catchments (49-53% urban). Impervious area seems to control streamflow particularly during dry periods. Winter runoff (streamflow per unit area) was 2-4 times higher than summer runoff in highly urbanized areas

  18. Landscape ecological, phytosociological and geobotanical study of eumediterranean in west of Syria

    OpenAIRE

    Ghazal, Abdullah

    2008-01-01

    The Eu-Mediterranean vegetation in Syria is widespread over a large geographical area, occupying an altitudinal zone mainly from 300 to 900 m asl., but can be also found outside this range. The study area is located to the west of the longitude 37° E, where this vegetation dominates. A complete field surveying of the landscape for all regions in the study area was carried out. The environmental variables of the landscape (climate, soil, geology, land use, flora and vegetation) were ana...

  19. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale.

    Science.gov (United States)

    Bernardo, Pauline; Charles-Dominique, Tristan; Barakat, Mohamed; Ortet, Philippe; Fernandez, Emmanuel; Filloux, Denis; Hartnady, Penelope; Rebelo, Tony A; Cousins, Stephen R; Mesleard, François; Cohez, Damien; Yavercovski, Nicole; Varsani, Arvind; Harkins, Gordon W; Peterschmitt, Michel; Malmstrom, Carolyn M; Martin, Darren P; Roumagnac, Philippe

    2018-01-01

    Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine relationships between agricultural land use and distributions of plant-associated viruses in two Mediterranean-climate biodiversity hotspots (Western Cape region of South Africa and Rhône river delta region of France). In total, we analysed 1725 geo-referenced plant samples collected over two years from 4.5 × 4.5 km 2 grids spanning farmlands and adjacent uncultivated vegetation. We found substantial virus prevalence (25.8-35.7%) in all ecosystems, but prevalence and identified family-level virus diversity were greatest in cultivated areas, with some virus families displaying strong agricultural associations. Our survey revealed 94 previously unknown virus species, primarily from uncultivated plants. This is the first effort to systematically evaluate plant-associated viromes across broad agro-ecological interfaces. Our findings indicate that agriculture substantially influences plant virus distributions and highlight the extent of current ignorance about the diversity and roles of viruses in nature.

  20. Landscape and landscape ecology as factors in the process of integrated spatial management

    DEFF Research Database (Denmark)

    Brandt, Jesper

    2009-01-01

    Congress on Landscape Ecology in Veldhoven in 1981 (Tjallingii and De Veer 1981).Natural landscapes and landscape aspects of nature conservation was certainly a theme on the conference, but the main focus was on man-made landscapes, including urban ecology and the relations between urban and rural...... were very eager to be engaged in practical landscape planning, their scientific responsibility forced them often to be more and more humble concerning the applicability, often confronted with the economic consequences of their advises. As a consequence especially many biologists moved again into pure...... told, that the local farm cooperative had got a loan from the Ministry of Agriculture to cover the expenditures. Due to the experimental character of the project the loan was very attractive: It was free of rent and payment. But one important condition was added: It had to be proved that the corridor...

  1. Survival of a native mammalian carnivore, the leopard cat Prionailurus bengalensis Kerr, 1792 (Carnivora: Felidae, in an agricultural landscape on an oceanic Philippine island

    Directory of Open Access Journals (Sweden)

    M.R.P. Lorica

    2013-06-01

    Full Text Available Concerns about vulnerability of mammalian carnivores to extinction, especially on small islands, appear to conflict with prior reports of endemic populations of leopard cat Prionailurus bengalensis (Kerr, 1792 surviving in agricultural landscapes on oceanic islands. We investigated the persistence of the Visayan leopard cat (P. b. rabori in the sugarcane fields on Negros, an oceanic island in central Philippines. A population remained throughout the year at our study site on a sugarcane farm, and reproduction was noted. Non-native rodents form the bulk of the cat diet, followed by reptiles, birds, amphibians, and insects. Prey species identified from the samples commonly occur in agricultural areas in the Philippines. Prey composition did not vary significantly with respect to wet and dry season, or sugarcane harvest cycle. This study provides evidence that an intensively managed agricultural landscape on this oceanic island supports a native obligate carnivore that subsists primarily on exotic rats. This study supports a prior prediction that leopard cats will show flexibility in prey selection on islands with few or no native small mammal prey species, but in this case they do so not by switching to other vertebrates and invertebrates, but rather to exotic pest species of rodents.

  2. Isolation and characterization of 10 microsatellite loci in Cneorum tricoccon (Cneoraceae), a Mediterranean relict plant.

    Science.gov (United States)

    García-Fernández, Alfredo; Lázaro-Nogal, Ana; Traveset, Anna; Valladares, Fernando

    2012-08-01

    The main aim of this study was to isolate and characterize microsatellite loci in Cneorum tricoccon (Cneoraceae), a Mediterranean shrub relict of the early Tertiary, which inhabits western Mediterranean islands and coasts. Microsatellites will be useful for investigating biogeography and landscape genetics across the species distribution range, including current or past gene flow. Seventeen microsatellite loci were characterized, of which 10 were polymorphic and amplified for a total of 56 alleles in three populations of C. tricoccon. The markers revealed average coefficients of expected heterozygosity (H(e) = 0.425), observed heterozygosity (H(o) = 0.282), and inbreeding coefficient value per population (F(IS) = 0.408). These microsatellite primers will potentially be useful in the study of population and landscape genetics, conservation status of isolated populations, island-continental distribution, current or historical movements between populations, and in the investigation of the consequences of dispersal mechanisms of these plants.

  3. Integrated assessment of silvoarable agroforestry at landscape scale

    NARCIS (Netherlands)

    Palma, J.H.N.

    2006-01-01

    InEurope, agroforestry systems have been used mainly in traditional agriculture toprovide a variety of agricultural and tree products. However, during the last three centuries, the agricultural landscape

  4. Ground beetles in Mediterranean olive agroecosystems: Their significance and functional role as bioindicators (Coleoptera, Carabidae).

    Science.gov (United States)

    Pizzolotto, Roberto; Mazzei, Antonio; Bonacci, Teresa; Scalercio, Stefano; Iannotta, Nino; Brandmayr, Pietro

    2018-01-01

    The impact of agricultural practices and soil management on the communities of arthropods living in the agricultural landscape is acknowledged as a critical issue by the literature, and it needs to be better investigated to improve the ecological sustainability of agriculture. In the present study, we aimed to study how soil management affect carabid species distribution in one of the most typical agroecosystem of the Mediterranean region, i.e. the olive grove. In South Italy olive plantations feature different types of soil management, from tillage to half- or full-cover cropping. Species distribution has been examined for a total of 10,189 individuals and 62 species collected from 17 sites. Notably from our analysis we have observed that three factors (climax vegetation, soil features and soil management) explained half of the data variability. The composition of species groupings mirrors both bioclimatic conditions (climax vegetation) and soil features, especially watering, while soil management affects the species distribution, with different intensity from site to site. Eleven species have been recognized as the most abundant in the different facets of the studied olive groves and consequently designated as characteristics of the olive agroecosystem. The species traits of the sampled species have been weighted for a compelling evaluation of the effects of agricultural management on biodiversity, showing uniform traits distribution when coping with the ecological factors that characterize the different plantation facets. We have found that carabid beetles can be used as model organisms for studying the effects of agricultural practices. Our study suggests that the interaction of man-induced trasformation with the natural background of the olive agroecosystem may be difficult to disentangle, so that such complexity must be taken into account when carabid beetles are expected to provide an ecosystem service for good agricultural practices.

  5. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Science.gov (United States)

    Bird, Matthew S; Day, Jenny A

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  6. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Directory of Open Access Journals (Sweden)

    Matthew S Bird

    Full Text Available Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m; although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%, relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%. The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  7. Landscape Archaeology and Sacred Space in the Eastern Mediterranean: A Glimpse from Cyprus

    Directory of Open Access Journals (Sweden)

    Giorgos Papantoniou

    2017-06-01

    Full Text Available This article aims to raise issues for discussion about the change in the use and concept of sacred landscapes, which were originally constructed in the era of the Cypriot kings (the basileis, but then continued to function in a new imperial environment, that of the rule of the Ptolemaic strategos and later of the Roman proconsul and the various Christian bishops. Our archaeological survey project in the Xeros river valley, titled ‘Settled and Sacred Landscapes of Cyprus’, reveals that these new politico-economic structures were also supported by the construction of symbolically charged sacred landscapes. Thus, while outlining the long history of the island as manifested from the diachronic study of Cypriot sacred landscapes, we identify three pivotal phases: first, the consolidation of the Cypriot polities and the establishment of a ‘full’ sacred landscape; second, the transition from segmented to unitary administration under the Ptolemaic and Roman imperial rule and the consolidation of a more ‘unified sacred landscape’; and finally, the establishment of a number of Christian bishoprics on the island and the movement back to a ‘full’ sacred landscape. Moving beyond the discipline of Cypriot archaeology, this contribution aims to serve as a paradigm for the implications that the employment of the ‘sacred landscapes’ concept may have when addressing issues of socio-political and socio-economic transformations. While it is very difficult to define or capture the concept of landscape in a pre-modern world, it offers a useful means by which to assess changing local conditions. We have also attempted to situate the term in archaeological thought, in order to allow the concept to become a more powerful investigative tool for approaching the past.

  8. Fire in Mediterranean climate ecosystems: a comparative overview

    Science.gov (United States)

    Keeley, Jon E.

    2012-01-01

    Four regions of the world share a similar climate and structurally similar plant communities with the Mediterranean Basin. These five areas, known collectively as "mediterranean-type climate (MTC) regions", are dominated by evergreen sclerophyllous-leaved shrublands, semi-deciduous scrub, and woodlands, all of which are prone to widespread crown fires. Summer droughts produce an annual fire hazard that contributes to a highly predictable fire regime. Fire has been an important factor driving the convergence of these systems and is reflected in plant traits such as lignotubers in resprouting shrubs and delayed reproduction that restricts recruitment to a postfire pulse of seedlings. On fertile soils where postfire resprouting is very rapid, opportunities for postfire seedling recruitment are limited and thus these woody taxa have not opted for delaying reproduction. Such fire-independent recruitment is widespread in the floras of MTC regions of the Mediterranean Basin and California and postfire seeding tends to dominate at the more arid end of the gradient. Due to very different geological histories in South Africa and Western Australia, substrates are nutrient poor and thus postfire resprouters do not pose a similar competitive challenge to seedlings and thus postfire seeding is very widespread in these floras. Although circumstantial evidence suggests that the MTC region of Chile had fire-prone landscapes in the Tertiary, these were lost with the late Miocene completion of the Andean uplift, which now blocks summer lightning storms from moving into the region. Today these five regions pose a significant fire management challenge due to the annual fire hazard and metropolitan centers juxtaposed with highly flammable vegetation. This challenge varies across the five MTC landscapes as a function of differences in regional fuel loads and population density.

  9. Sustainable Forest Management in a Mediterranean region: Social preferences

    Directory of Open Access Journals (Sweden)

    C. Maroto Álvarez

    2013-12-01

    Full Text Available Aim of study: There is a lack of empirical research that deals with sustainable forest management in Mediterranean regions, among the most vulnerable ecosystems. The main purpose of this work is to define the strategic criteria and objectives for sustainable forest management and aggregate the preferences of stakeholders in a Mediterranean region, using AHP and Goal Programming.Area of study: Valencian Community (Spain.Material and Methods: Firstly, we identified forest stakeholders and structured a decision hierarchy. Then a workshop was carried out to test and validate the proposed criteria and objectives, as well as a survey to determine social preferences. Secondly, another survey was conducted amongst experts to prioritize action plans.Main results: Stakeholders’ preferences gave the greatest importance to the environmental criteria (hydrological regulation and erosion, climate change mitigation and biodiversity with an average weight of 40%.  Social criteria (employment, recreational activities and landscape had a weight of 38% and 22% the economic criteria case (wood, hunting and fishing, livestock, renewable energies, rural tourism and mining. The results showed that new products and services such as tourism, renewable energies, landscape, hydrological regulation and erosion control, biodiversity or climate change mitigation are very relevant objectives. We also prioritized action plans comparing them with the distribution of the administration budget.Research highlights: The environmental and social criteria are much more important than the economic ones in the regional planning of the Mediterranean forest, regardless of the method used to aggregate the social preferences and if the forest is public or private.Key words: Multiple Criteria Decision Making; Goal Programming; Analytic Hierarchy Process; Preferences Aggregation.

  10. Geomorphological characterization of conservation agriculture

    Science.gov (United States)

    Tarolli, Paolo; Cecchin, Marco; Prosdocimi, Massimo; Masin, Roberta

    2017-04-01

    characterise the surface morphology. For each of derived Digital Elevation Model, seven morphometric indexes, such as slope, curvature, flow direction, contributing area, roughness, and connectivity was calculated. We showed then the variations of the morphology in the areas converted to the conservation agriculture, and, consequently, a possible modification of processes such as erosion and runoff. The results suggested that the agricultural surfaces interested by no-tillage practices are different from those tilled with conventional systems. The topography is rougher, with chaotic flow directions, and more concave areas, thus resulting in potential water storages, mitigating the intensity of soil erosion and runoff processes. On the other hand, the topography of traditional tillage area is more regular and smooth, with flow directions that tend to follow the same direction on the surface. These results are a novelty in the Earth Science and Agronomy: we demonstrated and quantified, from the geomorphological point of view, the potential role of conservative agriculture in mitigating, not only land degradation phenomena, but also the distribution of pollutants, and rainfall-runoff processes. References Prosdocimi, M., Tarolli, P., Cerdà, A. (2016). Mulching practice for reducing soil water erosion: A review. Earth-Science Reviews, 161, 191-203. Prosdocimi, M., Burguet, M., Di Prima, S., Sofia, G., Terol, E, Rodrigo Comino J., Cerdà, A., Tarolli, P. (2017). Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Science of the Total Environment, 574, 204-215. Tarolli, P., Sofia G. (2016). Human topographic signatures and derived geomorphic processes across landscapes, Geomorphology, 255, 140-161.

  11. Spatial modeling of personalized exposure dynamics: the case of pesticide use in small-scale agricultural production landscapes of the developing world

    Directory of Open Access Journals (Sweden)

    Binder Claudia R

    2009-03-01

    Full Text Available Abstract Background Pesticide poisoning is a global health issue with the largest impacts in the developing countries where residential and small-scale agricultural areas are often integrated and pesticides sprayed manually. To reduce health risks from pesticide exposure approaches for personalized exposure assessment (PEA are needed. We present a conceptual framework to develop a spatial individual-based model (IBM prototype for assessing potential exposure of farm-workers conducting small-scale agricultural production, which accounts for a considerable portion of global food crop production. Our approach accounts for dynamics in the contaminant distributions in the environment, as well as patterns of movement and activities performed on an individual level under different safety scenarios. We demonstrate a first prototype using data from a study area in a rural part of Colombia, South America. Results Different safety scenarios of PEA were run by including weighting schemes for activities performed under different safety conditions. We examined the sensitivity of individual exposure estimates to varying patterns of pesticide application and varying individual patterns of movement. This resulted in a considerable variation in estimates of magnitude, frequency and duration of exposure over the model runs for each individual as well as between individuals. These findings indicate the influence of patterns of pesticide application, individual spatial patterns of movement as well as safety conditions on personalized exposure in the agricultural production landscape that is the focus of our research. Conclusion This approach represents a conceptual framework for developing individual based models to carry out PEA in small-scale agricultural settings in the developing world based on individual patterns of movement, safety conditions, and dynamic contaminant distributions. The results of our analysis indicate our prototype model is sufficiently

  12. Landscapes in transition

    NARCIS (Netherlands)

    Padfield, Rory; Drew, Simon; Syayuti, Khadijah; Page, Susan; Evers, Stephanie; Campos-Arceiz, Ahimsa; Kangayatkarasu, Nagulendran; Sayok, Alex; Hansen, Sune; Schouten, Greetje; Maulidia, Martha; Papargyropoulou, Effie; Tham, Mun Hou

    2016-01-01

    The recent Southeast Asian haze crisis has generated intense public scrutiny over the rate, methods and types of landscape change in the tropics. Debate has centred on the environmental impacts of large-scale agricultural expansion, particularly the associated loss of high carbon stock forest and

  13. Investigating the knowledge level of sellers of pesticides used in agricultural struggle in Adana province

    OpenAIRE

    Nazlıcan, Ersin; Ötegen, Volkan Recai; Akbaba, Muhsin; İlter, Hüseyin

    2018-01-01

    Objective:While significant increase in pesticide use in our country, most extensive usesare at Aegean and Mediterranean regions. Adjusting amount of pesticideconsumption is important for both human health and environmental contamination.Our aim is investigating the level of knowledge of sellers of pesticides usedin agricultural struggle about pesticides in Adana, in Mediterranean region.Method: In Adana, survey with 37 questions applied to sellers of pesticidesused in agricultural struggle, ...

  14. Implications of changes in land cover and landscape structure for the biocontrol potential of stemborers in Ethiopia

    NARCIS (Netherlands)

    Kebede, Yodit; Bianchi, Felix; Baudron, Frédéric; Abraham, Kristin; Valença, de Anne; Tittonell, Pablo

    2018-01-01

    The land cover and structure of agricultural landscapes may influence the abundance and diversity of natural enemies of crop pests. However, these landscapes are continuously evolving due to changing land uses and agricultural practices. Here we assess changes in land use and landscape structure in

  15. Multifunctional Dryland Forestry: Accumulating Experience From the East-Mediterranean

    Science.gov (United States)

    Osem, Y.; Shachack, M.; Moshe, I.

    2014-12-01

    Although small in size the landscapes of East Mediterranean Israel extend over a wide geo-climatic gradient ranging from dry sub-humid to hyper-arid lands. Thousands of years under intense human exploitation in this region, involving cutting, livestock grazing, agricultural practice and fire have resulted in severe degradation of these water limited ecosystems. The highly degraded state of the native vegetation as found by the new settlers coming to Israel in the beginning of the previous century, has provided the basic motivation for an extensive afforestation enterprise carried out during the last 100 years. This talk will present an overview on the accumulating experience in establishing and managing multifunctional forests in this dryland region. Given their very limited timber value, dryland forests are designed and managed under various goals the important of which are landscape aesthetics, recreation opportunities, grazing land, ecosystem restoration and soil conservation. Being subjected to water scarcity of high temporal and spatial variation, these manmade systems are managed to withstand water deficiency of unpredictable magnitude through the manipulation of both water input and water consumption. In the dry subhumid regions, forest management focuses mainly on controlling water consumption through the manipulation of vegetation structure using thinning and livestock grazing as primary silvicultural tools. Going into the semiarid zone, practices of rainfall redistribution and runoff harvesting become crucial for tree establishment and growth. The implementation of these practices varies depending on topography, rainfall amount and forest goals. The talk will provide a brief description of these unique silvicultural systems, review some of the recent scientific work in them and refer to critical gaps in knowledge. The relevancy to intercrop agroforestry in rainfed ecosystems will be discussed.

  16. Woodlands Grazing Issues in Mediterranean Basin

    Science.gov (United States)

    Campos, P.

    2009-04-01

    's family ownerships. These poor livestockeepers could maintain their livestock regimen on the basis of low cash-income earnings and crops self-consumption in extremely poor family living conditions. In this state woodlands, social an environmental goals -as they were noted above- could generate high trade off between family basic needs and soil degradation because woodlands and crops operations. As result, grazing rent is pending on the low opportunity cost for family labour. In this context, Tunisian Mediterranean woodlands maintain the highest livestock rate population, which woodland economy could be called for poor people subsistence and environmentally unsustainable because soil erosion, forest degradation and over/under grazing. These study present three study cases where Mediterranean basin grazing resources economies are analyzed in the contexts of Tunisian developing economy (Iteimia woodlands, North West of Tunisia) and Spanish developed economy (Jerez de la Frontera and Monfragüe woodlands, South and West of Spain). The results show the crucial role that livestock (goat, sheep and cattle) play in maintaining the working Mediterranean woodlands landscape. People, woodlands and livestock grazing dependences are changing so fast in Mediterranean basin that they appear too complex for being accurately forecasting by rangeland economists. In this context, perhaps a question might be a more suitable concluding remark: ¿will does woodlands extensive livestock become a quasi-wild management for urban landowners pleasure aims in rich Mediterranean basin countries?

  17. NATURE MANAGEMENT, LANDSCAPE AND THE CAP

    OpenAIRE

    Brouwer, Floor M.; Godeschalk, Frans E.

    2004-01-01

    The integration of nature management, landscape and environmental concerns into the Common Agricultural Policy (CAP) has gained momentum with the CAP reforms adopted in June 2003. The report explores instruments and approaches that contribute to the inte-gration of nature conservation and landscape concerns into the CAP. A broader use of the CAP instruments might help to achieve nature types in the Netherlands.

  18. ECONOMIC BACKGROUND CROP ROTATION AS A WAY TO PREVENT THE DEGRADATION OF AGRICULTURAL LANDSCAPES

    Directory of Open Access Journals (Sweden)

    Shevchenko O.

    2017-05-01

    recommended rotation of soil saturation with large crops of grasses and crops of solid cover, which makes it possible to avoid or minimize the growing row crops. Introduce a rotation of soil combined with contour reclamation of the territory, which includes, band allocation of agricultural crops, construction of various water-regulating structures meadow to the degree of degradation of soil and the steepness of the slope. This limits the fields are projected across the slope or parallel horizontally, and to combat deflation - across the direction of prevailing winds. The study crop rotation over time as a way of preventing the degradation of agricultural landscapes allowed to establish scientifically grounded crop rotation not only performs reclamation feature - provides protection from degradation of the soil and creates a favorable ecological environment in agricultural landscapes, but also can have significant economic efficiency. By comparison the actual amount of sales of crop considering the cost of its production in the administrative districts of Kyiv region (2703,4 million UAH with a forecast value of crop production while maintaining a crop pattern in the rotation with a corresponding set of crops (3075,8 million UAH proved that the economic effect of the introduction of scientifically grounded crop rotations in the region will be about 372,4 million USD, and additional income from 1 hectare of crop area – 322,8 USD. It is proved that, in addition to rotation for a successful fight against land degradation on lands occupied in agriculture also need to implement complex soil conservation measures to protect soil from degradation. To determine the economically justified soil conservation measures were examined the economic impact and effectiveness of each in current market conditions.

  19. Balancing shifting cultivation and forest conservation: lessons from a "sustainable landscape" in southeastern Mexico.

    Science.gov (United States)

    Dalle, Sarah Paule; Pulido, María T; de Blois, Sylvie

    2011-07-01

    Shifting cultivation is often perceived to be a threat to forests, but it is also central to the culture and livelihoods of millions of people worldwide. Balancing agriculture and forest conservation requires knowledge of how agricultural land uses evolve in landscapes with forest conservation initiatives. Based on a case study from Quintana Roo, Mexico, and remote sensing data, we investigated land use and land cover change (LUCC) in relation to accessibility (from main settlement and road) in search of evidence for agricultural expansion and/or intensification after the initiation of a community forestry program in 1986. Intensification was through a shortening of the fallow period. Defining the sampling space as a function of human needs and accessibility to agricultural resources was critical to ensure a user-centered perspective of the landscape. The composition of the accessible landscape changed substantially between 1976 and 1997. Over the 21-year period studied, the local population saw the accessible landscape transformed from a heterogeneous array of different successional stages including mature forests to a landscape dominated by young fallows. We detected a dynamic characterized by intensification of shifting cultivation in the most accessible areas with milpas being felled more and more from young fallows in spite of a preference for felling secondary forests. We argue that the resulting landscape provides a poorer resource base for sustaining agricultural livelihoods and discuss ways in which agricultural change could be better addressed through participatory land use planning. Balancing agricultural production and forest conservation will become even more important in a context of intense negotiations for carbon credits, an emerging market that is likely to drive future land changes worldwide.

  20. Mediterranean fruit fly

    International Nuclear Information System (INIS)

    1982-01-01

    The Mediterranean Fruit Fly (Medfly, Ceratitis capitata), widespread in most tropical and subtropical area, lays eggs under the skin of fruit. Its larvae feed on the pulp, causing tremendous losses for agriculture. Insecticides, besides being hazardous for the environment, have proven too slow for effective pest control (eradication in 20 generations). This training film demonstrates in 7 detailed steps how the Sterile Insect Technique (SIT) can lead to elimination of the insect population within 6 generations. It shows different stages of breeding and describes the sterilization of pupae by exposure to gamma rays provided by a cobalt 60 source

  1. Mediterranean fruit fly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    The Mediterranean Fruit Fly (Medfly, Ceratitis capitata), widespread in most tropical and subtropical area, lays eggs under the skin of fruit. Its larvae feed on the pulp, causing tremendous losses for agriculture. Insecticides, besides being hazardous for the environment, have proven too slow for effective pest control (eradication in 20 generations). This training film demonstrates in 7 detailed steps how the Sterile Insect Technique (SIT) can lead to elimination of the insect population within 6 generations. It shows different stages of breeding and describes the sterilization of pupae by exposure to gamma rays provided by a cobalt 60 source

  2. Agriculture for improved nutrition: the current research landscape.

    Science.gov (United States)

    Turner, Rachel; Hawkes, Corinna; Jeff, Waage; Ferguson, Elaine; Haseen, Farhana; Homans, Hilary; Hussein, Julia; Johnston, Deborah; Marais, Debbi; McNeill, Geraldine; Shankar, Bhavani

    2013-12-01

    Concern about food security and its effect on persistent undernutrition has increased interest in how agriculture could be used to improve nutritional outcomes in developing countries. Yet the evidence base for the impact of agricultural interventions targeted at improved nutrition is currently poor. To map the extent and nature of current and planned research on agriculture for improved nutrition in order to identify gaps where more research might be useful. The research, which was conducted from April to August 2012, involved developing a conceptual framework linking agriculture and nutrition, identifying relevant research projects and programs, devising and populating a "template" with details of the research projects in relation to the conceptual framework, classifying the projects, and conducting a gap analysis. The study identified a large number of research projects covering a broad range of themes and topics. There was a strong geographic focus on sub-Saharan Africa, and many studies were explicitly concerned with nutritional impacts on women and children. Although the study revealed a diverse and growing body of research, it also identified research gaps. Few projects consider the entire evidence chain linking agricultural input or practice to nutritional outcomes. There is comparatively little current research on indirect effects of agriculture on nutrition, or the effect of policies or governance, rather than technical interventions. Most research is focused on undernutrition and small farmer households, and few studies target consumers generally, urban populations, or nutrition-related non-communicable diseases. There is very little work on the cost-effectiveness of agricultural interventions. On the basis of these findings, we make suggestions for research investment and for broader engagement of researchers and disciplines in developing approaches to design and evaluate agricultural programs for improved nutrition.

  3. Erosion processes by water in agricultural landscapes: a low-cost methodology for post-event analyses

    Science.gov (United States)

    Prosdocimi, Massimo; Calligaro, Simone; Sofia, Giulia; Tarolli, Paolo

    2015-04-01

    Throughout the world, agricultural landscapes assume a great importance, especially for supplying food and a livelihood. Among the land degradation phenomena, erosion processes caused by water are those that may most affect the benefits provided by agricultural lands and endanger people who work and live there. In particular, erosion processes that affect the banks of agricultural channels may cause the bank failure and represent, in this way, a severe threat to floodplain inhabitants and agricultural crops. Similarly, rills and gullies are critical soil erosion processes as well, because they bear upon the productivity of a farm and represent a cost that growers have to deal with. To estimate quantitatively soil losses due to bank erosion and rills processes, area based measurements of surface changes are necessary but, sometimes, they may be difficult to realize. In fact, surface changes due to short-term events have to be represented with fine resolution and their monitoring may entail too much money and time. The main objective of this work is to show the effectiveness of a user-friendly and low-cost technique that may even rely on smart-phones, for the post-event analyses of i) bank erosion affecting agricultural channels, and ii) rill processes occurring on an agricultural plot. Two case studies were selected and located in the Veneto floodplain (northeast Italy) and Marche countryside (central Italy), respectively. The work is based on high-resolution topographic data obtained by the emerging, low-cost photogrammetric method named Structure-from-Motion (SfM). Extensive photosets of the case studies were obtained using both standalone reflex digital cameras and smart-phone built-in cameras. Digital Terrain Models (DTMs) derived from SfM revealed to be effective to estimate quantitatively erosion volumes and, in the case of the bank eroded, deposited materials as well. SfM applied to pictures taken by smartphones is useful for the analysis of the topography

  4. Landscape Dynamics on the Island of La Gonave, Haiti, 1990–2010

    Directory of Open Access Journals (Sweden)

    Lisa M. Kennedy

    2013-09-01

    Full Text Available The island of La Gonave lies northwest of Port-au-Prince and is representative of the subsistence Haitian lifestyle. Little is known about the land cover changes and conversion rates on La Gonave. Using Landsat images from 1990 to 2010, this research investigates landscape dynamics through image classification, change detection, and landscape pattern analysis. Five land cover classes were considered: Agriculture, Forest/Dense Vegetation (DV, Shrub, Barren/Eroded, and Nonforested Wetlands. Overall image classification accuracy was 87%. Results of land cover change analysis show that all major land cover types experienced substantial changes from 1990 to 2010. The area percent change was −39.7, −22.7, 87.4, and −7.0 for Agriculture, Forest/Dense Vegetation, Shrub, and Barren/Eroded. Landscape pattern analysis illustrated the encroachment of Shrub cover in core Forest/DV patches and the decline of Agricultural patch integrity. Agricultural abandonment, deforestation, and forest regrowth combined to generate a dynamic island landscape, resulting in higher levels of land cover fragmentation.

  5. BATS AND BT INSECT RESISTANCE ON AGRICULTURAL LANDSCAPES

    Science.gov (United States)

    A landscape model that utilizes land cover classification data, insect life history, insect movement, and bat foraging pressure is developed that addresses the implementation of genetically modified crops in the Winter Garden region of Texas. The principal strategy for delaying r...

  6. Developments in strategic landscape monitoring for the Nordic countries

    DEFF Research Database (Denmark)

    Landscape plays an increasingly relevant and prominent role in the protection and mangement of the Earth's terrestrial environments and ecosystems, including the diverse forested, agricultural, wilderness and build-up landscapes within the Nordic countries. However to be meaningful in the Informa...

  7. Identification Of Minangkabau Landscape Characters

    Science.gov (United States)

    Asrina, M.; Gunawan, A.; Aris, Munandar

    2017-10-01

    Minangkabau is one of cultures in indonesia which occupies landscape intact. Landscape of Minangkabau have a very close relationship with the culture of the people. Uniqueness of Minangkabau culture and landscape forming an inseparable characterunity. The landscape is necessarily identified to know the inherent landscape characters. The objective of this study was to identify the character of the Minangkabau landscape characterizes its uniqueness. The study was conducted by using descriptive method comprised literature review and field observasion. Observed the landscape characters comprised two main features, they were major and minor features. Indetification of the features was conducted in two original areas (darek) of the Minangkabau traditional society. The research results showed that major features or natural features of the landscape were predominantly landform, landcover, and hidrology. All luhak (districts) of Minangkabau showed similar main features such as hill, canyon, lake, valley, and forest. The existence of natural features such as hills, canyon and valleys characterizes the nature of minangkabau landscape. Minor features formed by Minangkabau cultural society were agricultural land and settlement. Rumah gadang (big house) is one of famous minor features characterizes the Minangkabau culture. In addition, several historical artefacts of building and others structure may strengthen uniqueness of the Minangkabau landscape character, such as The royal palace, inscription, and tunnels.

  8. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    Science.gov (United States)

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  9. Sustainable agricultural development in inland valleys

    NARCIS (Netherlands)

    Zwart, S.J.

    2018-01-01

    The inland valley in Africa are common landscapes that have favorable conditions for agricultural production. Compared to the surrounding uplands they are characterized by a relatively high and secure water availability and high soil fertility levels. Inland valleys thus have a high agricultural

  10. Financial Intermediation In Agriculture In Nigeria: Emerging Role Of ...

    African Journals Online (AJOL)

    ) - an NGO, with the Nigerian Agricultural Cooperative and Rural Development Bank (NACRDB) - a public sector finance agency in agricultural financing with a view to determining the emerging roles of NGOs in Nigeria's agricultural landscape ...

  11. REDD+ and climate smart agriculture in landscapes: A case study in Vietnam using companion modelling.

    Science.gov (United States)

    Salvini, G; Ligtenberg, A; van Paassen, A; Bregt, A K; Avitabile, V; Herold, M

    2016-05-01

    Finding land use strategies that merge land-based climate change mitigation measures and adaptation strategies is still an open issue in climate discourse. This article explores synergies and trade-offs between REDD+, a scheme that focuses mainly on mitigation through forest conservation, with "Climate Smart Agriculture", an approach that emphasizes adaptive agriculture. We introduce a framework for ex-ante assessment of the impact of land management policies and interventions and for quantifying their impacts on land-based mitigation and adaptation goals. The framework includes a companion modelling (ComMod) process informed by interviews with policymakers, local experts and local farmers. The ComMod process consists of a Role-Playing Game with local farmers and an Agent Based Model. The game provided a participatory means to develop policy and climate change scenarios. These scenarios were then used as inputs to the Agent Based Model, a spatially explicit model to simulate landscape dynamics and the associated carbon emissions over decades. We applied the framework using as case study a community in central Vietnam, characterized by deforestation for subsistence agriculture and cultivation of acacias as a cash crop. The main findings show that the framework is useful in guiding consideration of local stakeholders' goals, needs and constraints. Additionally the framework provided beneficial information to policymakers, pointing to ways that policies might be re-designed to make them better tailored to local circumstances and therefore more effective in addressing synergistically climate change mitigation and adaptation objectives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature

    NARCIS (Netherlands)

    Nijland, W.; Jansma, E.; Addink, E.A.; Domínguez Delmás, M.; Jong, S.M. de

    2011-01-01

    Plant growth in Mediterranean landscapes is limited by the typical summer-dry climate. Forests in these areas are only marginally productive and may be quite susceptible to modern climate change. To improve our understanding of forest sensitivity to annual and seasonal climatic variability, we

  13. Discrimination of Pest Infestation at the Landscape Level

    Science.gov (United States)

    Surveillance of the United States agricultural landscape requires coverage over a large area. Over 86,000,000 acres of land were planted with maize in the United States in 2009. Over 78% of this was located in ten states in the Midwest. To monitor this large landscape for the ...

  14. Defining chemical status of a temporary Mediterranean River.

    Science.gov (United States)

    Skoulikidis, Nikolaos Th

    2008-07-01

    Although the majority of rivers and streams in the Mediterranean area are temporary, no particular attention is being paid for such systems in the Water Framework Directive (WFD). A typical temporal Mediterranean river, draining an intensively cultivated basin, was assessed for its chemical status. Elevated concentrations of nitrates and salts in river water as well as nutrients and heavy metals in river sediments have been attributed to agricultural land uses and practices and point sources of organic pollution. A scheme for the classification of the river's chemical status (within the ecological quality classification procedure) was applied by combining pollution parameters in groups according to related pressures. In light of the temporal hydrological regime and anthropogenic impacts, sediment chemical quality elements were considered, in addition to hydrochemical ones. Despite the extensive agricultural activities in the basin, the majority of the sites examined showed a good quality and only three of them were classified as moderate. For the classification of the chemical quality of temporary water bodies, there is a need to develop ecologically relevant salinity and sediment quality standards.

  15. Changes in the pastoral sheep systems of semi-arid Mediterranean areas: association with common agricultural policy reform and implications for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Toro-Mujica, P.M.; Aguilar, C.; Vera, R.; Barba, C.; Rivas, J.; García-Martínez, A.

    2015-07-01

    The dynamics of sheep systems the Mediterranean region have been influenced by reforms coming from the Common Agricultural Policy, and the general economic evolution of markets. The aim of this study was the analysis of the structural changes that occurred between 1999 and 2009, and the identification of future implications for the sheep systems in Andalusia region, Spain. Analysis of the structural changes allowed the generation of strategic information, identified trends that should suggest new rural policies and changes that are likely to have social and environmental impacts, and lastly, prioritize future research. The application of multivariate methodology allowed clustering the farm population into four groups. The typology of these systems was determined by variables related to the sheep subsystem, by the set of agricultural activities, and by changes in swine husbandry, within a context of changes in land tenure and the drive for agricultural intensification. Major modifications of extant systems included a 42% reduction in the number of farms, a decrease in sheep numbers, replacement of native rangelands with improved pastures, olive trees and orchards, a reduction of traditional extensive pastoral activities, and increases in hog production in Dehesa grasslands. Given the historical economic and social importance of the sheep-cereal system, the observed substantial modifications of land use suggest a need to assess their consequences in terms. (Author)

  16. Contribution of Black Carbon Aerosol to Drying of the Mediterranean

    Science.gov (United States)

    Tang, T.; Shindell, D. T.; Samset, B. H.; Boucher, O.; Forster, P.; Hodnebrog, Ø.; Myhre, G.; Sillmann, J.; Voulgarakis, A.; Andrews, T.; Faluvegi, G.; Fläschner, D.; Iverson, T.; Kasoar, M.; Kharin, V. V.; Kirkevag, A.; Lamarque, J. F.; Olivié, D.; Richardson, T.; Stjern, C.; Takemura, T.; Zwiers, F. W.

    2017-12-01

    Atmospheric aerosols affect cloud properties, radiative balance and thus, the hydrological cycle. Many studies have reported that precipitation has decreased in the Mediterranean since the mid-20th century, and investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare observed Mediterranean precipitation trends during 1951-2010 with responses to individual forcing in a set of state-of-the-art global climate models. Our analyses suggest that nearly one-third (30%) of the observed precipitation decrease may be attributable to black carbon forcing. The remainder is most strongly linked to forcing of well-mixed greenhouse gases (WMGHGs), with scattering sulfate aerosols having negligible impacts. Black carbon caused an enhanced positive North Atlantic Oscillation (NAO)/Arctic Oscillation (AO)-like sea level pressure (SLP) pattern, characterized by higher SLP at mid-latitudes and lower SLP at high-latitudes. This SLP change diverted the jet stream and storm tracks further northward, reducing precipitation in the Mediterranean while increasing precipitation in Northern Europe. The results from this study suggest that future black carbon emissions may significantly affect regional water resources, agricultural practices, ecosystems, and economy in the Mediterranean region.

  17. Understanding the influence of nutrients on stream ecosystems in agricultural landscapes

    Science.gov (United States)

    Munn, Mark D.; Frey, Jeffrey W.; Tesoriero, Anthony J.; Black, Robert W.; Duff, John H.; Lee, Kathy E.; Maret, Terry R.; Mebane, Christopher A.; Waite, Ian R.; Zelt, Ronald B.

    2018-06-06

    Sustaining the quality of the Nation’s water resources and the health of our diverse ecosystems depends on the availability of sound water-resources data and information to develop effective, science-based policies. Effective management of water resources also brings more certainty and efficiency to important economic sectors. Taken together, these actions lead to immediate and long-term economic, social, and environmental benefits that make a difference to the lives of the almost 400 million people projected to live in the United States by 2050.In 1991, Congress established the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) to address where, when, why, and how the Nation’s water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has been a leading source of scientific data and knowledge used by national, regional, State, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs (https://water.usgs.gov/nawqa/applications/). Plans for the third decade of NAWQA (2013–23) address priority water-quality issues and science needs identified by NAWQA stakeholders, such as the Advisory Committee on Water Information and the National Research Council, and are designed to meet increasing challenges related to population growth, increasing needs for clean water, and changing land-use and weather patterns.Excess nutrients are a pervasive problem of streams, lakes, and coastal waters. The current report, “The Quality of Our Nation’s Waters—Understanding the Effects of Nutrients on Stream Ecosystems in Agricultural Landscapes,” presents a summary of results from USGS investigations conducted from 2003 to 2011 on processes that influence nutrients and how nutrient enrichment can alter biological components of

  18. Processes of aesthetic transformation in ordinary landscapes

    DEFF Research Database (Denmark)

    Krarup, Jonna Majgaard

    2004-01-01

    it was distributed systematically as an almost industrially produced landscape element. Windbreaks are now regarded as a traditional element in the Danish agricultural landscape. As a landscape element it is an international phenomenon known and used in Germany, France, England etc. Originally local farming...... practices, natural conditions, techniques and national legislation in the respective countries, formed the aesthetic expression. In this respect one could speak of the impact of northern nature on the aesthetic expression of the Danish windbreaks, as well as the impact from national phenomena....... These features determined the specific aesthetic and architectural identity of ordinary Danish, i.e. Nordic, landscapes. Contemporary cultural changes such as the aesthetification of everyday life and of ordinary landscape, i.e. farming landscape, are now manifest in the way the windbreaks are motivated...

  19. Land use and land management effects on soil organic carbon stock in Mediterranean agricultural areas (Southern Spain)

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2014-05-01

    INTRODUCTION Soils play a key role in the carbon geochemical cycle. Agriculture contributes to carbon sequestration through photosynthesis and the incorporation of carbon into carbohydrates. Soil management is one of the best tools for climate change mitigation. Small increases or decreases in soil carbon content due to changes in land use or management practices, may result in a significant net exchange of carbon between the soil carbon pool and the atmosphere. In the last decades arable crops (AC) have been transformed into olive grove cultivations (OG) or vineyards (V) in Mediterranean areas. A field study was conducted to determine long-term effects of land use change (LUC) (AC by OG and V) on soil organic carbon (SOC), total nitrogen (TN), C:N ratio and their stratification in Calcic-Chromic Luvisols (LVcc/cr) in Mediterranean conditions. MATERIAL AND METHODS An unirrigated farm in Montilla-Moriles (Córdoba, Spain) cultivated under conventional tillage (animal power with lightweight reversible plows and non-mineral fertilization or pesticides) was selected for study in 1965. In 1966, the farm was divided into three plots with three different uses (AC, OG and V). The preliminary analyses were realized in 1965 for AC (AC1), and the second analyses were realized in 2011 for AC (AC2 - winter crop rotation with annual wheat and barley, receiving mineral fertilization or pesticides), OG (annual passes with disk harrow and cultivator in the spring, followed by a tine harrow in the summer receiving mineral fertilization and weed control with residual herbicides), and V (with three or five chisel passes a year from early spring to early autumn with mineral fertilization or pesticides.). In all cases (AC1, AC2, OG and V) were collected soil entire profiles. Soil properties determined were: soil particle size, bulk density, SOC, TN, C:N ratio, stocks and SRs. The statistical significance of the differences in the variables between land use practices was tested using the

  20. Contrast in edge vegetation structure modifies the predation risk of natural ground nests in an agricultural landscape.

    Directory of Open Access Journals (Sweden)

    Nicole A Schneider

    Full Text Available Nest predation risk generally increases nearer forest-field edges in agricultural landscapes. However, few studies test whether differences in edge contrast (i.e. hard versus soft edges based on vegetation structure and height affect edge-related predation patterns and if such patterns are related to changes in nest conspicuousness between incubation and nestling feeding. Using data on 923 nesting attempts we analyse factors influencing nest predation risk at different edge types in an agricultural landscape of a ground-cavity breeding bird species, the Northern Wheatear (Oenanthe oenanthe. As for many other bird species, nest predation is a major determinant of reproductive success in this migratory passerine. Nest predation risk was higher closer to woodland and crop field edges, but only when these were hard edges in terms of ground vegetation structure (clear contrast between tall vs short ground vegetation. No such edge effect was observed at soft edges where adjacent habitats had tall ground vegetation (crop, ungrazed grassland. This edge effect on nest predation risk was evident during the incubation stage but not the nestling feeding stage. Since wheatear nests are depredated by ground-living animals our results demonstrate: (i that edge effects depend on edge contrast, (ii that edge-related nest predation patterns vary across the breeding period probably resulting from changes in parental activity at the nest between the incubation and nestling feeding stage. Edge effects should be put in the context of the nest predator community as illustrated by the elevated nest predation risk at hard but not soft habitat edges when an edge is defined in terms of ground vegetation. These results thus can potentially explain previously observed variations in edge-related nest predation risk.

  1. Sensitivity Analysis of the Agricultural Policy/Environmental eXtender (APEX) for Phosphorus Loads in Tile-Drained Landscapes.

    Science.gov (United States)

    Ford, W; King, K; Williams, M; Williams, J; Fausey, N

    2015-07-01

    Numerical modeling is an economical and feasible approach for quantifying the effects of best management practices on dissolved reactive phosphorus (DRP) loadings from agricultural fields. However, tools that simulate both surface and subsurface DRP pathways are limited and have not been robustly evaluated in tile-drained landscapes. The objectives of this study were to test the ability of the Agricultural Policy/Environmental eXtender (APEX), a widely used field-scale model, to simulate surface and tile P loadings over management, hydrologic, biologic, tile, and soil gradients and to better understand the behavior of P delivery at the edge-of-field in tile-drained midwestern landscapes. To do this, a global, variance-based sensitivity analysis was performed, and model outputs were compared with measured P loads obtained from 14 surface and subsurface edge-of-field sites across central and northwestern Ohio. Results of the sensitivity analysis showed that response variables for DRP were highly sensitive to coupled interactions between presumed important parameters, suggesting nonlinearity of DRP delivery at the edge-of-field. Comparison of model results to edge-of-field data showcased the ability of APEX to simulate surface and subsurface runoff and the associated DRP loading at monthly to annual timescales; however, some high DRP concentrations and fluxes were not reflected in the model, suggesting the presence of preferential flow. Results from this study provide new insights into baseline tile DRP loadings that exceed thresholds for algal proliferation. Further, negative feedbacks between surface and subsurface DRP delivery suggest caution is needed when implementing DRP-based best management practices designed for a specific flow pathway. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Analysis of Employment Flow of Landscape Architecture Graduates in Agricultural Universities

    Science.gov (United States)

    Yao, Xia; He, Linchun

    2012-01-01

    A statistical analysis of employment flow of landscape architecture graduates was conducted on the employment data of graduates major in landscape architecture in 2008 to 2011. The employment flow of graduates was to be admitted to graduate students, industrial direction and regional distribution, etc. Then, the features of talent flow and factors…

  3. Climate change assessment for Mediterranean agricultural areas by statistical downscaling

    Directory of Open Access Journals (Sweden)

    L. Palatella

    2010-07-01

    Full Text Available In this paper we produce projections of seasonal precipitation for four Mediterranean areas: Apulia region (Italy, Ebro river basin (Spain, Po valley (Italy and Antalya province (Turkey. We performed the statistical downscaling using Canonical Correlation Analysis (CCA in two versions: in one case Principal Component Analysis (PCA filter is applied only to predictor and in the other to both predictor and predictand. After performing a validation test, CCA after PCA filter on both predictor and predictand has been chosen. Sea level pressure (SLP is used as predictor. Downscaling has been carried out for the scenarios A2 and B2 on the basis of three GCM's: the CCCma-GCM2, the Csiro-MK2 and HadCM3. Three consecutive 30-year periods have been considered. For Summer precipitation in Apulia region we also use the 500 hPa temperature (T500 as predictor, obtaining comparable results. Results show different climate change signals in the four areas and confirm the need of an analysis that is capable of resolving internal differences within the Mediterranean region. The most robust signal is the reduction of Summer precipitation in the Ebro river basin. Other significative results are the increase of precipitation over Apulia in Summer, the reduction over the Po-valley in Spring and Autumn and the increase over the Antalya province in Summer and Autumn.

  4. Sustaining ecosystem services in cultural landscapes

    OpenAIRE

    Plieninger, T.; van der Horst, D.; Schleyer, C.; Bieling, C.

    2014-01-01

    Classical conservation approaches focus on the man-made degradation of ecosystems and tend to neglect the social-ecological values that human land uses have imprinted on many environments. Throughout the world, ingenious land-use practices have generated unique cultural landscapes, but these are under pressure from agricultural intensification, land abandonment, and urbanization. In recent years, the cultural landscapes concept has been broadly adopted in science, policy, and management. The ...

  5. (Resurveying Mediterranean Rural Landscapes: GIS and Legacy Survey Data

    Directory of Open Access Journals (Sweden)

    Robert Witcher

    2008-07-01

    Full Text Available Legacy data have always been important for Mediterranean archaeologists. Over the past decade, one specific category of legacy data, that deriving from regional survey, has become particularly important. Not only has the scale of research questions become larger (requiring greater reliance on others' data, but the surface archaeological record is deteriorating (diminishing the ability to recover good data. The legacy data from many individual surveys have now been subject to digitisation and GIS analysis, successfully redeploying data collected for one purpose within new theoretical and interpretive frameworks. However, a key research focus is now comparative survey - using the results of many different Mediterranean surveys side-by-side to identify regional variability in settlement organisation, economy and demography. In order to overcome the significant methodological differences between these surveys, attention has focused on the documentation of metadata. Yet, many legacy data lack vital information about their creation and hence how they might be (reinterpreted and compared. GIS has been advanced as an environment in which to contain, order and analyse the data necessary for comparative survey. However, there is a danger that the technology will facilitate inappropriate use of these datasets in a way that fails to acknowledge and understand the very real differences between them. Here, emphasis is placed upon the use of GIS as a space for exploratory data analysis: a process that encompasses and emphasises the integral processes of digitisation, visualisation and simple analysis for the characterisation of datasets in order to derive an alternative form of metadata. Particular emphasis is placed upon the interaction of past human behaviour (e.g. in the Roman period and archaeological recovery (i.e. the behaviour of archaeologists in the present, or recent past; these two sets of 'social action' combine to create distinctive archaeological

  6. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...... the tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability....

  7. Development of land degradation spectral indices in a semi-arid Mediterranean ecosystem

    Science.gov (United States)

    Chabrillat, Sabine; Kaufmann, Hermann J.; Palacios-Orueta, Alicia; Escribano, Paula; Mueller, Andreas

    2004-10-01

    The goal of this study is to develop remote sensing desertification indicators for drylands, in particular using the capabilities of imaging spectroscopy (hyperspectral imagery) to derive soil and vegetation specific properties linked to land degradation status. The Cabo de Gata-Nijar Natural Park in SE Spain presents a still-preserved semiarid Mediterranean ecosystem that has undergone several changes in landscape patterns and vegetation cover due to human activity. Previous studies have revealed that traditional land uses, particularly grazing, favoured in the Park the transition from tall arid brush to tall grass steppe. In the past ~40 years, tall grass steppes and arid garrigues increased while crop field decreased, and tall arid brushes decreased but then recovered after the area was declared a Natural Park in 1987. Presently, major risk is observed from a potential effect of exponential tourism and agricultural growth. A monitoring program has been recently established in the Park. Several land degradation parcels presenting variable levels of soil development and biological activity were defined in summer 2003 in agricultural lands, calcareous and volcanic areas, covering the park spatial dynamics. Intensive field spectral campaigns took place in Summer 2003 and May 2004 to monitor inter-annual changes, and assess the landscape spectral variability in spatial and temporal dimension, from the dry to the green season. Up to total 1200 field spectra were acquired over ~120 targets each year in the land degradation parcels. The targets were chosen to encompass the whole range of rocks, soils, lichens, and vegetation that can be observed in the park. Simultaneously, acquisition of hyperspectral images was performed with the HyMap sensor. This paper presents preliminary results from mainly the field spectral campaigns. Identifying sources of variability in the spectra, in relation with the ecosystem dynamics, will allow the definition of spectral indicators of

  8. L’agriculture en Arabie du Sud avant l’Islam South Arabian Pre-Islamic Agriculture: Piecing Together Ancient Landscapes & Agricultural Systems

    Directory of Open Access Journals (Sweden)

    Julien Charbonnier

    2008-04-01

    Full Text Available Le présent article vise à reconstituer les différents systèmes de culture d’Arabie du sud antique. Pour ce faire, les études archéobotaniques sont mises en perspective avec les recherches sur les paysages et les techniques de culture anciennes. Il apparaît ainsi, qu’entre l’âge du Bronze et la période sudarabique, le Yémen n’a cessé de s’enrichir de l’arrivée de nouvelles plantes, en provenance de Proche-Orient, de l’Afrique et du Monde indien. Leurs capacités propres et les nouvelles combinaisons dont elles offraient l’opportunité ont permis à l’homme de diversifier les systèmes de culture afin de tirer au maximum parti des terres et d’être plus flexible face aux altérations du climat et de l’environnement.This paper aims at recognizing and understanding the various agro-systems of the ancient South Arabia. Archaeobotanical data are confronted with studies concerning pre-Islamic landscapes and agricultural techniques. It appears that, during the Bronze Age and the South Arabian period, new cultivars, coming from the Near-East, Africa and India, have regularly reached the region. Because of their own specificities and of the new associations they permitted, these plants have allowed Man to enrich agro-systems and to be more flexible in order to cope with climatic and environmental changes.

  9. Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    W. Korres

    2010-05-01

    Full Text Available Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture. Nevertheless, its spatio-temporal patterns in agriculturally used landscapes that are affected by multiple natural (rainfall, soil, topography etc. and agronomic (fertilisation, soil management etc. factors are often not well known. The aim of this study is to determine the dominant factors governing the spatio-temporal patterns of surface soil moisture in a grassland and an arable test site that are located within the Rur catchment in Western Germany. Surface soil moisture (0–6 cm was measured in an approx. 50×50 m grid during 14 and 17 measurement campaigns (May 2007 to November 2008 in both test sites. To analyse the spatio-temporal patterns of surface soil moisture, an Empirical Orthogonal Function (EOF analysis was applied and the results were correlated with parameters derived from topography, soil, vegetation and land management to link the patterns to related factors and processes. For the grassland test site, the analysis resulted in one significant spatial structure (first EOF, which explained 57.5% of the spatial variability connected to soil properties and topography. The statistical weight of the first spatial EOF is stronger on wet days. The highest temporal variability can be found in locations with a high percentage of soil organic carbon (SOC. For the arable test site, the analysis resulted in two significant spatial structures, the first EOF, which explained 38.4% of the spatial variability, and showed a highly significant correlation to soil properties, namely soil texture and soil stone content. The second EOF, which explained 28.3% of the spatial variability, is linked to differences in land management. The soil moisture in the arable test site varied more strongly during dry and wet periods at locations with low porosity. The method applied is capable of identifying the dominant parameters controlling spatio-temporal patterns of

  10. Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes.

    Science.gov (United States)

    Tamburini, Giovanni; De Simone, Serena; Sigura, Maurizia; Boscutti, Francesco; Marini, Lorenzo

    2016-08-31

    Agroecosystems are principally managed to maximize food provisioning even if they receive a large array of supporting and regulating ecosystem services (ESs). Hence, comprehensive studies investigating the effects of local management and landscape composition on the provision of and trade-offs between multiple ESs are urgently needed. We explored the effects of conservation tillage, nitrogen fertilization and landscape composition on six ESs (crop production, disease control, soil fertility, water quality regulation, weed and pest control) in winter cereals. Conservation tillage enhanced soil fertility and pest control, decreased water quality regulation and weed control, without affecting crop production and disease control. Fertilization only influenced crop production by increasing grain yield. Landscape intensification reduced the provision of disease and pest control. We also found tillage and landscape composition to interactively affect water quality regulation and weed control. Under N fertilization, conventional tillage resulted in more trade-offs between ESs than conservation tillage. Our results demonstrate that soil management and landscape composition affect the provision of several ESs and that soil management potentially shapes the trade-offs between them. © 2016 The Author(s).

  11. Evaluation Of The Two Model Biocorridors In Soth-West Part Of Slovakia In Agricultural Landscape

    Directory of Open Access Journals (Sweden)

    Petra Debnáriková

    2016-12-01

    Full Text Available The aim of the research is to evaluate two different models of biocorridors in south-west part of Slovakia in intensively utilized agricultural landscape. The first biocorridor is a part of fragmented alluvial softwood forest along the Žitava’s river in its unregulated part in cadastral territory Horný Ohaj, district Vráble. This biocorridor should be the representative biocorridor by its structure and plant composition in its area. The second biocorridor is biocorridor composed by Robinia pseudoacacia L. in the village Báb, district Nitra. The research analyzes the structure of the selected biocorridors by using the methods of phytocoenology, evaluate functional integrity by monitoring of their spatial parameters in terrain and by processing maps in the AutoCAD program. At the base of phytocoenological report evaluates occurence of alien species.

  12. The changing Mediterranean Sea — a sensitive ecosystem?

    Science.gov (United States)

    Turley, Carol M.

    1999-08-01

    seasonal climate and low land runoff contribute to the low productivity of the sea. Nutrients are a major controlling factor in oceanic productivity and often influence the type and succession of phytoplankton. Changes in river flow and agricultural practice can influence the concentration and ratio of different nutrients flowing into the sea. For example, changing agricultural practices have resulted in higher nitrogen and phosphorus flowing into the Adriatic and lagoons of the Nile which has lead to eutrophication. The predicted population increases, especially along the southern shores, seems likely to result in eutrophication and an increased risk of pollution in other areas unless well managed. A further warning tale from the Black Sea has recently come to light where damming of rivers has resulted in depletion of silica in the seawater. (Humborg, C., Ittekkot, V., Cociasu, A., & Bodungen, B. (1997). Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, London, 386, 385-388.) This means that silica-requiring phytoplankton do not have their essential growth nutrient and may explain the unbalanced growth of other toxic forms which do not require silica. Similarly, the Aswan dam holds back massive amounts of silica carried by the Nile from entering the eastern Mediterranean. The future of the Mediterranean ecosystem does not look rosy. If we are to learn from scientific observations, such as those in the Mediterranean Sea, Black Sea and Adriatic, scientists, economists and policy makers, from the 18 countries bordering the Mediterranean, must interface to ensure an adequate and appropriate response.

  13. Landscape ecological impact of climatic change some preliminary findings of the LICC Project

    International Nuclear Information System (INIS)

    Boer, M.M.

    1991-01-01

    The main objectives of the LICC project are to address the potential effects of a future climatic change on (semi-) natural terrestrial ecosystems and landscapes in Europe; six case studies are covered: alpine regions, boreal and subartic regions, Mediterranean region, fluvial systems, wetlands and coastal dunes. Preliminary findings showed a serious lack in fundamental ecological knowledge. Assessment of potential effects involved changes in water and sediment fluxes, changes in the vegetation cover, species response, dispersal and migration in a fragmented landscape and modification of climate impacts by man

  14. Afforestation, subsequent forest fires and provision of hydrological services: a model-based analysis for a Mediterranean mountainous catchment

    Science.gov (United States)

    Nunes, João Pedro; Naranjo Quintanilla, Paula; Santos, Juliana; Serpa, Dalila; Carvalho-Santos, Cláudia; Rocha, João; Keizer, Jan Jacob; Keesstra, Saskia

    2017-04-01

    Mediterranean landscapes have experienced extensive abandonment and reforestation in recent decades, which should have improved the provision of hydrological services, such as flood mitigation, soil erosion protection and water quality regulation. However, these forests are fire-prone, and the post-fire increase in runoff, erosion and sediment exports could negatively affect service provision. This issue was assessed using the SWAT model for a small mountain agroforestry catchment, which was monitored between 2010 and 2014 and where some eucalypt stands burned in 2011 and were subsequently plowed for replanting. The model was calibrated and validated for streamflow, sediment yield and erosion in agricultural fields and the burnt hillslopes, showing that it can be adapted for post-fire simulation. It was then used to perform a decadal assessment of surface runoff, erosion, and sediment exports between 2004 and 2014. Results show that the fire did not noticeably affect flood mitigation but that it increased erosion by 3 orders of magnitude, which subsequently increased sediment yield. Erosion in the burnt forest during this decade was one order of magnitude above that in agricultural fields. SWAT was also used to assess different fire and land-use scenarios during the same period. Results indicate that the impacts of fire were lower without post-fire soil management, and when the fire occurred in pine forests (i.e. before the 1990s) or in shrublands (i.e. before afforestation in the 1930s). These impacts were robust to changes in post-fire weather conditions and to a lower fire frequency (20-year intervals). The results suggest that, in the long term, fire-prone forests might not provide the anticipated soil protection and water quality regulation services in wet Mediterranean regions.

  15. Assessing Vulnerability of Lake Erie Landscapes to Soil Erosion: Modelled and Measured Approaches

    Science.gov (United States)

    Joosse, P.; Laamrani, A.; Feisthauer, N.; Li, S.

    2017-12-01

    Loss of soil from agricultural landscapes to Lake Erie via water erosion is a key transport mechanism for phosphorus bound to soil particles. Agriculture is the dominant land use in the Canadian side of the Lake Erie basin with approximately 75% of the 2.3 million hectares under crop or livestock production. The variable geography and diversity of agricultural production systems and management practices makes estimating risk of soil erosion from agricultural landscapes in the Canadian Lake Erie basin challenging. Risk of soil erosion depends on a combination of factors including the extent to which soil remains bare, which differs with crop type and management. Two different approaches of estimating the vulnerability of landscapes to soil erosion will be compared among Soil Landscapes of Canada in the Lake Erie basin: a modelling approach incorporating farm census and soil survey data, represented by the 2011 Agriculture and Agri-Food Canada Agri-Environmental Indicator for Soil Erosion Risk; and, a measured approach using remotely sensed data that quantifies the magnitude of bare and covered soil across the basin. Results from both approaches will be compared by scaling the national level (1:1 million) Soil Erosion Risk Indicator and the remotely sensed data (30x30 m resolution) to the quaternary watershed level.

  16. Floral Resources and Nesting Requirements of the Ground-Nesting Social Bee, Lasioglossum malachurum (Hymenoptera: Halictidae, in a Mediterranean Semiagricultural Landscape

    Directory of Open Access Journals (Sweden)

    Carlo Polidori

    2010-01-01

    Full Text Available In order to adopt correct conservation strike plans to maintain bee pollination activity it is necessary to know the species' resource utilisation and requirements. We investigated the floral resources and the nesting requirements of the eusocial bee Lasioglossum malachurum Kirby at various sites in a Mediterranean landscape. Analysis of bees' pollen loads showed that Compositae was the more exploited family, although interpopulations differences appeared in the pollen types used. From 5 to 7 pollen types were used by bees, but only as few as 1–1.9 per load. Variations of the pollen spectrum through the annual nesting cycle were conspicuous. At all sites, bees nested in horizontal ground areas with high soil hardness, low acidity, and rare superficial stones. On the other side, the exploited soil was variable in soil granulometry (although always high in % of silt or sand and it was moderately variable in content of organic matter and highly variable in vegetation cover. Creation of ground patches with these characteristics in proximity of both cultivated and natural flowering fields may successfully promote colonization of new areas by this bee.

  17. Exploratory Landscape Metrics for Agricultural Sustainability

    NARCIS (Netherlands)

    Vaz, E; de Noronha, M.T.; Nijkamp, P.

    2014-01-01

    Socioeconomic growth and urban change have been an increasing concern for decision makers in recent decades. The monitoring, mapping, and analysis of agricultural land use change, especially in areas where urban change has been high, is crucial. The collision between traditional economic activities

  18. Predicted effect of landscape position on wildlife habitat value of Conservation Reserve Enhancement Program wetlands in a tile-drained agricultural region

    Science.gov (United States)

    Otis, David L.; Crumpton, William R.; Green, David; Loan-Wilsey, Anna; Cooper, Tom; Johnson, Rex R.

    2013-01-01

    Justification for investment in restored or constructed wetland projects are often based on presumed net increases in ecosystem services. However, quantitative assessment of performance metrics is often difficult and restricted to a single objective. More comprehensive performance assessments could help inform decision-makers about trade-offs in services provided by alternative restoration program design attributes. The primary goal of the Iowa Conservation Reserve Enhancement Program is to establish wetlands that efficiently remove nitrates from tile-drained agricultural landscapes. A secondary objective is provision of wildlife habitat. We used existing wildlife habitat models to compare relative net change in potential wildlife habitat value for four alternative landscape positions of wetlands within the watershed. Predicted species richness and habitat value for birds, mammals, amphibians, and reptiles generally increased as the wetland position moved lower in the watershed. However, predicted average net increase between pre- and post-project value was dependent on taxonomic group. The increased average wetland area and changes in surrounding upland habitat composition among landscape positions were responsible for these differences. Net change in predicted densities of several grassland bird species at the four landscape positions was variable and species-dependent. Predicted waterfowl breeding activity was greater for lower drainage position wetlands. Although our models are simplistic and provide only a predictive index of potential habitat value, we believe such assessment exercises can provide a tool for coarse-level comparisons of alternative proposed project attributes and a basis for constructing informed hypotheses in auxiliary empirical field studies.

  19. 36 CFR 219.12 - Collaboration and cooperatively developed landscape goals.

    Science.gov (United States)

    2010-07-01

    ... cooperatively developed landscape goals. 219.12 Section 219.12 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PLANNING National Forest System Land and Resource Management Planning Collaborative Planning for Sustainability § 219.12 Collaboration and cooperatively developed landscape goals. (a...

  20. Values of rural landscapes in Europe: inspiration or by-product?

    NARCIS (Netherlands)

    Pedroli, G.B.M.; Elsen, van T.; Mansvelt, van J.D.

    2007-01-01

    European landscapes are facing a deep crisis. As a consequence of globalization and the economical change associated with it, traditional functions like production agriculture are becoming less important. After the self-evident but inspired landscapes of numerous generations of peasants, monks and

  1. Perceptions of social and environmental changes in a Mediterranean forest during the last 100 years: the Gavarres Massif.

    Science.gov (United States)

    Rodríguez-Carreras, Roser; Ubeda, Xavier; Outeiro, Luís; Asperó, Francesc

    2014-06-01

    During the last century the landscape of the mid-Mediterranean mountains has undergone major transformations. The precipitous decline in the economic viability of forest products has engendered ever-thickening forests and agricultural lands have reverted to forest land cover. The related exodus of existing inhabitants since 1960 has led to new styles of occupancy: residential and touristic land uses have emerged while the primary and secondary sectors have largely disappeared. The object of the present study is to review how these transformations have developed in a specific area of north-eastern of Catalonia, known as the Gavarres Massif. The study applies a qualitative approach, based on interviews with stakeholders including active members of the local community and others who utilize or visit the area, all of whom are representatives of different social groups with a wide range of interests and points of view with regard to the massif. The information collected from the perspectives and opinions of the participants is coupled with objective data about the area. The result of this investigation is a rich variety of perceptions on landscape and social transformation and its current functional dynamics. Analyzing the information obtained allows us to understand the fact that the disappearance of the rural world is directly related to the collapse of an entire economic system that relied on the environment. In this study, two divergent points of view arise, one which supports recovering past landscapes and another which favours managing changes, conserving the existing landscape. Proposals for the current and future territorial management of Les Gavarres are presented. The diversity of opinions which emerges with regard to managing necessary changes in the massif emphasizes the importance of increased social dialogue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Honey bee success predicted by landscape composition in Ohio, USA

    Directory of Open Access Journals (Sweden)

    DB Sponsler

    2015-03-01

    Full Text Available Foraging honey bees (Apis mellifera L. can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating colony success metrics to local landscape composition. We employed a beekeeper survey in conjunction with GIS-based landscape analysis to model colony success as a function of landscape composition in the State of Ohio, USA, a region characterized by intensive cropland, urban development, deciduous forest, and grassland. We found that colony food accumulation and wax production were positively related to cropland and negatively related to forest and grassland, a pattern that may be driven by the abundance of dandelion and clovers in agricultural areas compared to forest or mature grassland. Colony food accumulation was also negatively correlated with urban land cover in sites dominated by urban and agricultural land use, which does not support the popular opinion that the urban environment is more favorable to honey bees than cropland.

  3. Honey bee success predicted by landscape composition in Ohio, USA.

    Science.gov (United States)

    Sponsler, D B; Johnson, R M

    2015-01-01

    Foraging honey bees (Apis mellifera L.) can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating colony success metrics to local landscape composition. We employed a beekeeper survey in conjunction with GIS-based landscape analysis to model colony success as a function of landscape composition in the State of Ohio, USA, a region characterized by intensive cropland, urban development, deciduous forest, and grassland. We found that colony food accumulation and wax production were positively related to cropland and negatively related to forest and grassland, a pattern that may be driven by the abundance of dandelion and clovers in agricultural areas compared to forest or mature grassland. Colony food accumulation was also negatively correlated with urban land cover in sites dominated by urban and agricultural land use, which does not support the popular opinion that the urban environment is more favorable to honey bees than cropland.

  4. Multifunctional landscapes: Site characterization and field-scale design to incorporate biomass production into an agricultural system

    International Nuclear Information System (INIS)

    Ssegane, Herbert; Negri, M. Cristina; Quinn, John; Urgun-Demirtas, Meltem

    2015-01-01

    Current and future demand for food, feed, fiber, and energy require novel approaches to land management, which demands that multifunctional landscapes are created to integrate various ecosystem functions into a sustainable land use. We developed an approach to design such landscapes at a field scale to minimize concerns of land use change, water quality, and greenhouse gas emissions associated with production of food and bioenergy. This study leverages concepts of nutrient recovery and phytoremediation to place bioenergy crops on the landscape to recover nutrients released to watersheds by commodity crops. Crop placement is determined by evaluating spatial variability of: 1) soils, 2) surface flow pathways, 3) shallow groundwater flow gradients, 4) subsurface nitrate concentrations, and 5) primary crop yield. A 0.8 ha bioenergy buffer was designed within a 6.5 ha field to intercept concentrated surface flow, capture and use nitrate leachate, and minimize use of productive areas. Denitrification-Decomposition (DNDC) simulations show that on average, a switchgrass (Panicum Virgatum L.) or willow (Salix spp.) buffer within this catchment according to this design could reduce annual leached NO 3 by 61 or 59% and N 2 O emission by 5.5 or 10.8%, respectively, produce 8.7 or 9.7 Mg ha −1 of biomass respectively, and displace 6.7 Mg ha −1 of corn (Zea mays L.) grain. Therefore, placement of bioenergy crops has the potential to increase environmental sustainability when the pairing of location and crop type result in minimal disruption of current food production systems and provides additional environmental benefits. - Highlights: • Design of a multifunctional landscape by integrating cellulosic biofuel production into an existing agricultural system. • The design does not adversely offset current grain production for bioenergy crops. • Maps of concentrated flow paths, subsurface flow direction, NO 3 –N hotspots, and intra-field corn yield variability.

  5. Changes in the pastoral sheep systems of semi-arid Mediterranean areas: association with common agricultural policy reform and implications for sustainability

    Directory of Open Access Journals (Sweden)

    Paula M. Toro-Mujica

    2015-06-01

    Full Text Available The dynamics of sheep systems the Mediterranean region have been influenced by reforms coming from the Common Agricultural Policy, and the general economic evolution of markets. The aim of this study was the analysis of the structural changes that occurred between 1999 and 2009, and the identification of future implications for the sheep systems in Andalusia region, Spain. Analysis of the structural changes allowed the generation of strategic information, identified trends that should suggest new rural policies and changes that are likely to have social and environmental impacts, and lastly, prioritize future research. The application of multivariate methodology allowed clustering the farm population into four groups. The typology of these systems was determined by variables related to the sheep subsystem, by the set of agricultural activities, and by changes in swine husbandry, within a context of changes in land tenure and the drive for agricultural intensification. Major modifications of extant systems included a 42% reduction in the number of farms, a decrease in sheep numbers, replacement of native rangelands with improved pastures, olive trees and orchards, a reduction of traditional extensive pastoral activities, and increases in hog production in Dehesa grasslands. Given the historical economic and social importance of the sheep-cereal system, the observed substantial modifications of land use suggest a need to assess their consequences in terms of social and environmental impacts, as well as their implications for climate change.

  6. Human thermal comfort antithesis in the context of the Mediterranean tourism potential

    Science.gov (United States)

    Nastos, Panagiotis T.; Zerefos, Christos S.; Kapsomenakis, Ioannis N.; Eleftheratos, Kostas; Polychroni, Iliana

    2016-04-01

    Weather and climate information are determinative factors in the decision of a touristic destination. The evaluation of the thermal, aesthetical and physical components of the climate is considered an issue of high importance in order to assess the climatic tourism potential. Mediterranean is an endowed region with respect to its temperate climate and impressive landscapes over the coastal environment and numerous islands. However, the harmony of the natural beauty is interrupted by extreme weather phenomena, such as heat and cold waves, heavy rains and stormy conditions. Thus, it is very important to know the seasonal behavior of the climate for touristic activities and recreation. Towards this objective we evaluated the antithesis in the human thermal perception as well as the sultriness, stormy, foggy, sunny and rainy days recorded in specific Greek touristic destinations against respective competitive Mediterranean resorts. Daily meteorological parameters, such as air temperature, relative humidity, wind speed, cloudiness and precipitation, were acquired from the most well-known touristic sites over the Mediterranean for the period 1970 to present. These variables were used on one hand to estimate the human thermal burden, by means of the thermal index of Physiologically Equivalent temperature (PET) and on the other hand to interpret the physical and aesthetic components of the tourism potential, by utilizing specific thresholds of the initial and derived variables in order to quantify in a simple and friendly way the environmental footprint on desired touristic destinations. The findings of this research shed light on the climate information for tourism in Greece against Mediterranean destinations. Greek resorts, especially in the Aegean Islands appear to be more ideal with respect to thermal comfort against resorts at the western and central Mediterranean, where the heat stress within the summer season seems to be an intolerable pressure on humans. This could

  7. Connecting Brabant's cover sand landscapes through landscape history

    Science.gov (United States)

    Heskes, Erik; van den Ancker, Hanneke; Jungerius, Pieter Dirk; Harthoorn, Jaap; Maes, Bert; Leenders, Karel; de Jongh, Piet; Kluiving, Sjoerd; van den Oetelaar, Ger

    2015-04-01

    Noord-Brabant has the largest variety of cover sand landscapes in The Netherlands, and probably in Western Europe. During the Last Ice Age the area was not covered by land ice and a polar desert developed in which sand dunes buried the existing river landscapes. Some of these polar dune landscapes experienced a geomorphological and soil development that remained virtually untouched up to the present day, such as the low parabolic dunes of the Strabrechtse Heide or the later and higher dunes of the Oisterwijkse Vennen. As Noord-Brabant lies on the fringe of a tectonic basin, the thickness of cover sand deposits in the Centrale Slenk, part of a rift through Europe, amounts up to 20 metres. Cover sand deposits along the fault lines cause the special phenomenon of 'wijst' to develop, in which the higher grounds are wetter than the boarding lower grounds. Since 4000 BC humans settled in these cover sand landscapes and made use of its small-scale variety. An example are the prehistoric finds on the flanks and the historic towns on top of the 'donken' in northwest Noord-Brabant, where the cover sand landscapes are buried by river and marine deposits and only the peaks of the dunes protrude as donken. Or the church of Handel that is built beside a 'wijst' source and a site of pilgrimage since living memory. Or the 'essen' and plaggen agriculture that developed along the stream valleys of Noord-Brabant from 1300 AD onwards, giving rise to geomorphological features as 'randwallen' and plaggen soils of more than a metre thickness. Each region of Brabant each has its own approach in attracting tourists and has not yet used this common landscape history to connect, manage and promote their territories. We propose a landscape-historical approach to develop a national or European Geopark Brabants' cover sand landscapes, in which each region focuses on a specific part of the landscape history of Brabant, that stretches from the Late Weichselian polar desert when the dune

  8. Landscape Analysis of Nutrition-sensitive Agriculture Policy Development in Senegal.

    Science.gov (United States)

    Lachat, Carl; Nago, Eunice; Ka, Abdoulaye; Vermeylen, Harm; Fanzo, Jessica; Mahy, Lina; Wüstefeld, Marzella; Kolsteren, Patrick

    2015-06-01

    Unlocking the agricultural potential of Africa offers a genuine opportunity to address malnutrition and drive development of the continent. Using Senegal as a case study, to identify gaps and opportunities to strengthen agricultural policies with nutrition-sensitive approaches. We carried out a systematic analysis of 13 policy documents that related to food production, agriculture, food security, or nutrition. Next, we collected data during a participatory analysis with 32 national stakeholders and in-depth interviews with 15 national experts of technical directorates of the different ministries that deal with agriculture and food production. The current agricultural context has various elements that are considered to enhance its nutrition sensitivity. On average, 8.3 of the 17 Food and Agriculture Organization guiding principles for agriculture programming for nutrition were included in the policies reviewed. Ensuring food security and increasing dietary diversity were considered to be the principal objectives of agricultural policies. Although there was considerable agreement that agriculture can contribute to nutrition, current agricultural programs generally do not target communities on the basis of their nutritional vulnerability. Agricultural programs were reported to have specific components to target female beneficiaries but were generally not used as delivery platforms for nutritional interventions. The findings of this study indicate the need for a coherent policy environment across the food system that aligns recommendations at the national level with local action on the ground. In addition, specific activities are needed to develop a shared understanding of nutrition and public health nutrition within the agricultural community in Senegal. © The Author(s) 2015.

  9. Environmental Sensitive Areas (ESAs) changes in the Canyoles river watershed in Eastern Spain since the European Common Agriculture Policies (CAP) implementation

    Science.gov (United States)

    Ángel González Peñaloza, Félix; Cerdà, Artemi

    2014-05-01

    The Enviromental Sensitive Areas (ESAs) approach to study the Land Degradation is a methodology developed by professor Costas Kosmas et al., (1999) to map environmental sensitive areas and then the impact of Land Degradation and desertification on Mediterranean Type Ecosystems (Salvati et al., 2013). This methodology has been applied mainly to the Mediterranean Belt (Lavado Contador et al., 2009), but other authors adapted the methodology to other climatic regions (Izzo et al., 2013). The ESAs methodology allows mapping changes in the distribution of the sensitive areas to Desertification as a consequence of biophysical or human chances. In the Mediterranean countries of Europe, especially Spain, suffered a dramatic change due to the application of the European Common Agricultural Policies (CAP) after 1992. The objective of the CAP was to implemented policies to improve the environmental conditions of agricultural land. This target is especially relevant in Mediterranean areas of Spain, mainly the South and the East of the country. An Environmental Sensitive Area (ESAs) model (Kosmas et al., 2009) was implemented using Geographical Information System (GIS) tools, to identify, assess, monitor and map the levels of sensitivity to land degradation in the Canyoles river watershed, which is a representative landscape of the Mediterranean belt in Eastern Spain The results show that it was found that after the implementation of CAP, the most sensitive areas have expanded. This increase in degraded areas is driven by the expansion of commercial and chemically managed crops that increased the soil erosion (Cerdà et al., 2009) and that few soil conservation strategies were applied (Giménez Morera et al., 2010). Another factor that triggered Desertification processes is the increase in the recurrencesof forest fires as a consequence of land abandonment (Cerdà and Lasanta, 2005; Cerdà and Doerr, 2007). This contributed to an increase of scrubland. Our research show an

  10. Pest Control and Pollination Cost-Benefit Analysis of Hedgerow Restoration in a Simplified Agricultural Landscape.

    Science.gov (United States)

    Morandin, L A; Long, R F; Kremen, C

    2016-05-11

    Field edge habitat in homogeneous agricultural landscapes can serve multiple purposes including enhanced biodiversity, water quality protection, and habitat for beneficial insects, such as native bees and natural enemies. Despite this ecosystem service value, adoption of field border plantings, such as hedgerows, on large-scale mono-cropped farms is minimal. With profits primarily driving agricultural production, a major challenge affecting hedgerow plantings is linked to establishment costs and the lack of clear economic benefits on the restoration investment. Our study documented that hedgerows are economically viable to growers by enhancing beneficial insects and natural pest control and pollination on farms. With pest control alone, our model shows that it would take 16 yr to break even from insecticide savings on the US$4,000 cost of a typical 300-m hedgerow field edge planting. By adding in pollination benefits by native bees, where honey bees (Apis mellifera L.) may be limiting, the return time is reduced to 7 yr. USDA cost share programs allow for a quicker return on a hedgerow investment. Our study shows that over time, small-scale restoration can be profitable, helping to overcome the barrier of cost associated with field edge habitat restoration on farms. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the United States.

  11. Reclaimed water as a main resource to enhance the adaptive capacity to climate change in semi-arid Mediterranean agricultural areas using Earth Observation products

    Science.gov (United States)

    Pavia Rico, Ana; Lopez-Baeza, Ernesto; Matieu, Pierre-Philippe; Hernandez Sancho, Francesc; Loarte, Edwin

    Lack of water is being a big problem in semi-arid areas to make agricultural profits. Most of Mediterranean countries like Spain, Italy, Greece or Cyprus and other countries like Morocco, the Arab United Emirates, South-American countries or China are starting to reuse wastewater as adaptation to climate change water scarcity. Drought areas are nowadays increasing, thus making fertile areas unproductive. For this reason, the European trend is to work on reusing wastewater as a solution to water scarcity in agriculture. Moreover, since population is growing fast, wastewater production is increasing as well as drinkable water demand, thus making reclaimed water as the water guarantee for irrigation and better agricultural management. This work represents a preliminary initiative to check, analyse and monitor the land by using remote sensing techniques to identify and determine the potential lands that used to be productive in the past, are now abandoned, and we want to recuperate to obtain socio-economic benefits. On top of this, this initiative will clearly enhance the adaption capacity of rural/agricultural lands to climate change. Alternatively to reclaimed water, greenhouses, desalination plants or transboarding water do not really eliminate the problem but only offer a temporary solution, make spending plenty of money and always provoking irreversible damages to the environment. The pilot area to first develop this research is the Valencia and Murcia Autonomous Communities located in the Spanish Mediterranean Coastline. An added value of this work will be to develop a methodology transferable to other potential countries with similar climatic characteristics and difficulties for irrigation, by using remote sensing methods and techniques. The remote sensing products obtained provide full information about the current state of the potential lands to grow crops. Potential areas are then being selected to carry out a socio-economic analysis leading to: (i

  12. Importance of Ship Emissions to Local Summertime Ozone Production in the Mediterranean Marine Boundary Layer: A Modeling Study

    OpenAIRE

    Christian N. Gencarelli; Ian M. Hedgecock; Francesca Sprovieri; Gregor J. Schürmann; Nicola Pirrone

    2014-01-01

    Ozone concentrations in the Mediterranean area regularly exceed the maximum levels set by the EU Air Quality Directive, 2008/50/CE, a maximum 8-h mean of 120 μg·m-3, in the summer, with consequences for both human health and agriculture. There are a number of reasons for this: the particular geographical and meteorological conditions in the Mediterranean play a part, as do anthropogenic ozone precursor emissions from around the Mediterranean and continental Europe. Ozone concentrations measur...

  13. Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow.

    Science.gov (United States)

    van Strien, Maarten J; Keller, Daniela; Holderegger, Rolf; Ghazoul, Jaboury; Kienast, Felix; Bolliger, Janine

    2014-03-01

    For conservation managers, it is important to know whether landscape changes lead to increasing or decreasing gene flow. Although the discipline of landscape genetics assesses the influence of landscape elements on gene flow, no studies have yet used landscape-genetic models to predict gene flow resulting from landscape change. A species that has already been severely affected by landscape change is the large marsh grasshopper (Stethophyma grossum), which inhabits moist areas in fragmented agricultural landscapes in Switzerland. From transects drawn between all population pairs within maximum dispersal distance (landscape composition as well as some measures of habitat configuration. Additionally, a complete sampling of all populations in our study area allowed incorporating measures of population topology. These measures together with the landscape metrics formed the predictor variables in linear models with gene flow as response variable (F(ST) and mean pairwise assignment probability). With a modified leave-one-out cross-validation approach, we selected the model with the highest predictive accuracy. With this model, we predicted gene flow under several landscape-change scenarios, which simulated construction, rezoning or restoration projects, and the establishment of a new population. For some landscape-change scenarios, significant increase or decrease in gene flow was predicted, while for others little change was forecast. Furthermore, we found that the measures of population topology strongly increase model fit in landscape genetic analysis. This study demonstrates the use of predictive landscape-genetic models in conservation and landscape planning.

  14. Measurements of N2O emissions at the landscape scale

    DEFF Research Database (Denmark)

    Schelde, Kirsten; Cellier, P.; Bertolini, T.

    2011-01-01

    Nitrous oxide emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape near Bjerringbro, Denmark, to investigate the main sources of variations...

  15. Empirical Analyses in Agricultural and Resource Economics

    OpenAIRE

    Stevens, Andrew William

    2017-01-01

    Agriculture has played a profound and unique role in humanity's development. We are dependent on agriculture for the vast majority of our food supply, and have so far been successful at increasing agricultural production to meet rising demand. At the same time, agriculture is the largest and most direct way that humans have altered our planet's landscape and natural environment. Indeed, over half of all land in the United States is used for some agricultural purpose. In this dissertation, I e...

  16. Integrating landscape ecology and geoinformatics to decipher landscape dynamics for regional planning.

    Science.gov (United States)

    Dikou, Angela; Papapanagiotou, Evangelos; Troumbis, Andreas

    2011-09-01

    We used remote sensing and GIS in conjunction with multivariate statistical methods to: (i) quantify landscape composition (land cover types) and configuration (patch density, diversity, fractal dimension, contagion) for five coastal watersheds of Kalloni gulf, Lesvos Island, Greece, in 1945, 1960, 1971, 1990 and 2002/2003, (ii) evaluate the relative importance of physical (slope, geologic substrate, stream order) and human (road network, population density) variables on landscape composition and configuration, and (iii) characterize processes that led to land cover changes through land cover transitions between these five successive periods in time. Distributions of land cover types did not differ among the five time periods at the five watersheds studied because the largest cumulative changes between 1945 and 2002/2003 did not take place at dominant land cover types. Landscape composition related primarily to the physical attributes of the landscape. Nevertheless, increase in population density and the road network were found to increase heterogeneity of the landscape mosaic (patchiness), complexity of patch shape (fractal dimension), and patch disaggregation (contagion). Increase in road network was also found to increase landscape diversity due to the creation of new patches. The main processes involved in land cover changes were plough-land abandonment and ecological succession. Landscape dynamics during the last 50 years corroborate the ecotouristic-agrotouristic model for regional development to reverse trends in agricultural land abandonment and human population decline and when combined with hypothetical regulatory approaches could predict how this landscape could develop in the future, thus, providing a valuable tool to regional planning.

  17. 75 FR 16728 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2010-04-02

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... manner that increases resiliency of the Beaver Creek Landscape Management Project area ecosystem to... requirements to require. The Beaver Creek Landscape Management Project includes treatments previously proposed...

  18. Desperately Seeking Sustainability: Urban Shrinkage, Land Consumption and Regional Planning in a Mediterranean Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Luca Salvati

    2015-08-01

    Full Text Available Land degradation has expanded in the Mediterranean region as a result of a variety of factors, including economic and population growth, land-use changes and climate variations. The level of land vulnerability to degradation and its growth over time are distributed heterogeneously over space, concentrating on landscapes exposed to high human pressure. The present study investigates the level of land vulnerability to degradation in a shrinking urban area (Rome, Italy at four points in time (1960, 1990, 2000 and 2010 and it identifies relevant factors negatively impacting the quality of land and the level of landscape fragmentation. A multi-domain assessment of land vulnerability incorporating indicators of climate quality, soil quality, vegetation quality and land management quality was carried out based on the Environmentally Sensitive Area (ESA framework. The highest rate of growth in the level of land vulnerability was observed in low-density suburban areas. The peri-urban mosaic formed by coastal woodlands and traditional cropland preserved high-quality land with a stable degree of vulnerability over time. Evidence suggests that the agro-forest mosaic surrounding Mediterranean cities act as a “buffer zone” mitigating on-site and off-site land degradation. The conservation of relict natural landscapes is a crucial target for multi-scale policies combating land degradation in suburban dry regions.

  19. Dietary shifts and implications for US agriculture.

    Science.gov (United States)

    O'Brien, P

    1995-06-01

    Changes to healthier dietary patterns similar to those of traditional Mediterranean diets or those of the US government's dietary guidelines and food guide pyramid would require significant changes in American agricultural practices. The volume, mix, production, and marketing of agricultural commodities would need to be modified. Because differences between actual and recommended intakes for major food groups are quite large and affect a broad range of products, adjustments in supply and demand could overshadow past experience in dealing with such changes. New food and agriculture policies may well be needed to ease and accelerate agricultural adjustments, to improve nutritional characteristics of popular foods, and to promote desirable changes in consumers' food choices.

  20. 76 FR 13344 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2011-03-11

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... Impact Statement for the Beaver Creek Landscape Management Project was published in the Federal Register... Responsible Official for the Beaver Creek Landscape Management Project. DATES: The Final Environmental Impact...

  1. Trends of Forest Dynamics in Tiger Landscapes Across Asia

    Science.gov (United States)

    Mondal, Pinki; Nagendra, Harini

    2011-10-01

    Protected areas (PAs) are cornerstones of biodiversity conservation, but small parks alone cannot support wide-ranging species, such as the tiger. Hence, forest dynamics in the surrounding landscapes of PAs are also important to tiger conservation. Tiger landscapes often support considerable human population in proximity of the PA, sometimes within the core itself, and thus are subject to various land use activities (such as agricultural expansion and road development) driving habitat loss and fragmentation. We synthesize information from 27 journal articles in 24 tiger landscapes to assess forest-cover dynamics in tiger-range countries. Although 29% of the PAs considered in this study have negligible change in overall forest cover, approximately 71% are undergoing deforestation and fragmentation. Approximately 58% of the total case studies have human settlements within the core area. Most changes—including agricultural expansion, plantation, and farming (52%), fuelwood and fodder collection (43%), logging (38%), grazing (38%), and tourism and development (10%)—can be attributed to human impacts largely linked to the nature of the management regime. This study highlights the need for incorporating new perspectives, ideas, and lessons learned locally and across borders into management plans to ensure tiger conservation in landscapes dominated by human activities. Given the increasing isolation of most parks due to agricultural, infrastructural, and commercial developments at the periphery, it is imperative to conduct planning and evaluation at the landscape level, as well as incorporate multiple actors and institutions in planning, instead of focusing solely on conservation within the PAs as is currently the case in most tiger parks.

  2. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales.

    Directory of Open Access Journals (Sweden)

    Eduardo Freitas Moreira

    Full Text Available Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for

  3. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales.

    Science.gov (United States)

    Moreira, Eduardo Freitas; Boscolo, Danilo; Viana, Blandina Felipe

    2015-01-01

    Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for these relationships and

  4. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards

    NARCIS (Netherlands)

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Keesstra, Saskia; Novara, Agata; Cerdà, Artemi

    2016-01-01

    Soil and water loss in agriculture is a major problem throughout the world, and especially in Mediterranean areas. Non-conservation agricultural practices have further aggravated the situation, especially in vineyards, which are affected by one of the highest rates of soil loss among cultivated

  5. Ecological networks in urban landscapes

    NARCIS (Netherlands)

    Cook, E.A.

    2000-01-01

    This research focuses on the topic of ecological networks in urban landscapes. Analysis and planning of ecological networks is a relatively new phenomenon and is a response to fragmentation and deterioration of quality of natural systems. In agricultural areas and with existing nature

  6. Sustaining ecosystem services in cultural landscapes

    Directory of Open Access Journals (Sweden)

    Tobias Plieninger

    2014-06-01

    Full Text Available Classical conservation approaches focus on the man-made degradation of ecosystems and tend to neglect the social-ecological values that human land uses have imprinted on many environments. Throughout the world, ingenious land-use practices have generated unique cultural landscapes, but these are under pressure from agricultural intensification, land abandonment, and urbanization. In recent years, the cultural landscapes concept has been broadly adopted in science, policy, and management. The interest in both outstanding and vernacular landscapes finds expression in the UNESCO World Heritage Convention, the European Landscape Convention, and the IUCN Protected Landscape Approach. These policies promote the protection, management, planning, and governance of cultural landscapes. The ecosystem services approach is a powerful framework to guide such efforts, but has rarely been applied in landscape research and management. With this paper, we introduce a special feature that aims to enhance the theoretical, empirical and practical knowledge of how to safeguard the resilience of ecosystem services in cultural landscapes. It concludes (1 that the usefulness of the ecosystem services approach to the analysis and management of cultural landscapes should be reviewed more critically; (2 that conventional ecosystem services assessment needs to be complemented by socio-cultural valuation; (3 that cultural landscapes are inherently changing, so that a dynamic view on ecosystem services and a focus on drivers of landscape change are needed; and (4 that managing landscapes for ecosystem services provision may benefit from a social-ecological resilience perspective.

  7. Simple landscape modifications for pollinator and arthropod natural enemy enhancement

    Science.gov (United States)

    Beneficial arthropods which play an important role in providing ecosystem services (pollination and pest control) have come under threat as a result of intensive agricultural practices and simplification of habitats. Ecological intensification in agricultural landscapes by diversifying the habitat r...

  8. Toward a whole-landscape approach for sustainable land use in the tropics.

    Science.gov (United States)

    DeFries, R; Rosenzweig, C

    2010-11-16

    Increasing food production and mitigating climate change are two primary but seemingly contradictory objectives for tropical landscapes. This special feature examines synergies and trade-offs among these objectives. Four themes emerge from the papers: the important roles of both forest and agriculture sectors for climate mitigation in tropical countries; the minor contribution from deforestation-related agricultural expansion to overall food production at global and continental scales; the opportunities for synergies between improved food production and reductions in greenhouse gas emissions through diversion of agricultural expansion to already-cleared lands, improved soil, crop, and livestock management, and agroforestry; and the need for targeted policy and management interventions to make these synergistic opportunities a reality. We conclude that agricultural intensification is a key factor to meet dual objectives of food production and climate mitigation, but there is no single panacea for balancing these objectives in all tropical landscapes. Place-specific strategies for sustainable land use emerge from assessments of current land use, demographics, and other biophysical and socioeconomic characteristics, using a whole-landscape, multisector perspective.

  9. Effects of native biodiversity on grape loss of four castes: testing the biotic resistance hypothesis

    OpenAIRE

    M. Nereu; M. Nereu; R. H. Heleno; F. Lopez-Núñez; M. Agostinho; J. A. Ramos

    2018-01-01

    Management of agricultural landscapes can influence the biodiversity and the ecological services provided by these ecosystems, such as natural biological pest control. Viticulture is a very important economic activity in most countries with Mediterranean climate, often shaping their landscapes and culture. Grape production is affected by a number of pests and diseases, and farmers use prophylactic and response-driven pesticides to control these pests. Here we quantified the ...

  10. Do agricultural terraces and forest fires recurrence in Mediterranean afforested micro-catchments alter soil quality and soil nutrient content?

    Science.gov (United States)

    E Lucas-Borja, Manuel; Calsamiglia, Aleix; Fortesa, Josep; García-Comendador, Julián; Gago, Jorge; Estrany, Joan

    2017-04-01

    Bioclimatic characteristics and intense human pressure promote Mediterranean ecosystems to be fire-prone. Afforestation processes resulting from the progressive land abandonment during the last decades led to greater biomass availability increasing the risk of large forest fires. Likewise, the abandonment and lack of maintenance in the terraced lands constitute a risk of land degradation in terms of soil quantity and quality. Despite the effects of fire and the abandonment of terraced lands on soil loss and physico-chemical properties are identified, it is not clearly understood how wildfires and abandonment of terraces affect soil quality and nutrients content. Microbiological soil parameters and soil enzymes activities are biomarkers of the soil microbial communitýs functional ability, which potentially enables them as indicators of change, disturbance or stress within the soil community. The objective of this study was to investigate the effects of terracing (abandoned and non-abandoned) on the soil enzyme activities, microbiological soil parameters and soil nutrients dynamics in three Mediterranean afforested micro-catchments (i.e., fire recurrence in the last 20 years; i.e., unburned areas, burned once and burned twice. The combination of the presence of terraces and the recurrence of forest fire, thirty-six plots of 25 m2 were sampled along the these three micro-catchments collecting four replicas at the corners of each plot. The results elucidated how non-terraced and unburned plots presented the highest values of soil respiration rate and extracellular soil enzymes. Differences between experimental plots with different forest fire recurrence or comparing terraced and unburned plots with burned plots were weaker in relation to biochemical and microbiological parameters. Soil nutrient content showed an opposite trend with higher values in terraced plots, although differences were weaker. We conclude that terraced landscapes present poorer soil quality

  11. Climate change and landscape evolution in Provence-Alpes-Cote d'Azur. Volume 1 - Phase 1: identification of large landscape settings; Volume 2 - Phase 2: Hypotheses for climate change in the Provence-Alpes-Cote d'Azur region; Phase 3: Predictable effects of climate change on emblematic landscapes and action plan (technical sheets)

    International Nuclear Information System (INIS)

    2015-08-01

    The main objective of this study is to give an insight on possible effects climate change may have on landscapes of the Provence-Alpes-Cote d'Azur region on the medium and long term according to current hypotheses regarding global warming for Mediterranean regions. A first phase aimed at identifying the main landscape settings of the region. This comprised a definition of the notion of landscape, a discussion of landscape definitions with respect to a regional scale, a framework for the definition of the main landscape settings, an identification of these landscape settings and their characterisation according to a set of criteria and parameters. The second phase aimed at giving an overview of hypotheses regarding climate change. The authors discuss various issues and knowledge about the world climate, available climate models and their uncertainties, and climatic predictions for the region. The third phase aimed at assessing predictable effects of climate change on emblematic landscapes and at defining actions plans. The different components of these action plans are then discussed for the identified landscapes for which the landscape context and challenges are described, and potential actors are indicated. These different phases are first presented, and more detailed reports are provided for each of them, notably with detailed reports and sheets for each landscape setting

  12. Biodiversity conservation in agriculture requires a multi-scale approach.

    Science.gov (United States)

    Gonthier, David J; Ennis, Katherine K; Farinas, Serge; Hsieh, Hsun-Yi; Iverson, Aaron L; Batáry, Péter; Rudolphi, Jörgen; Tscharntke, Teja; Cardinale, Bradley J; Perfecto, Ivette

    2014-09-22

    Biodiversity loss--one of the most prominent forms of modern environmental change--has been heavily driven by terrestrial habitat loss and, in particular, the spread and intensification of agriculture. Expanding agricultural land-use has led to the search for strong conservation strategies, with some suggesting that biodiversity conservation in agriculture is best maximized by reducing local management intensity, such as fertilizer and pesticide application. Others highlight the importance of landscape-level approaches that incorporate natural or semi-natural areas in landscapes surrounding farms. Here, we show that both of these practices are valuable to the conservation of biodiversity, and that either local or landscape factors can be most crucial to conservation planning depending on which types of organisms one wishes to save. We performed a quantitative review of 266 observations taken from 31 studies that compared the impacts of localized (within farm) management strategies and landscape complexity (around farms) on the richness and abundance of plant, invertebrate and vertebrate species in agro-ecosystems. While both factors significantly impacted species richness, the richness of sessile plants increased with less-intensive local management, but did not significantly respond to landscape complexity. By contrast, the richness of mobile vertebrates increased with landscape complexity, but did not significantly increase with less-intensive local management. Invertebrate richness and abundance responded to both factors. Our analyses point to clear differences in how various groups of organisms respond to differing scales of management, and suggest that preservation of multiple taxonomic groups will require multiple scales of conservation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Spatial and temporal dimensions of landscape fragmentation across the Brazilian Amazon.

    Science.gov (United States)

    Rosa, Isabel M D; Gabriel, Cristina; Carreiras, Joāo M B

    2017-01-01

    The Brazilian Amazon in the past decades has been suffering severe landscape alteration, mainly due to anthropogenic activities, such as road building and land clearing for agriculture. Using a high-resolution time series of land cover maps (classified as mature forest, non-forest, secondary forest) spanning from 1984 through 2011, and four uncorrelated fragmentation metrics (edge density, clumpiness index, area-weighted mean patch size and shape index), we examined the temporal and spatial dynamics of forest fragmentation in three study areas across the Brazilian Amazon (Manaus, Santarém and Machadinho d'Oeste), inside and outside conservation units. Moreover, we compared the impacts on the landscape of: (1) different land uses (e.g. cattle ranching, crop production), (2) occupation processes (spontaneous vs. planned settlements) and (3) implementation of conservation units. By 2010/2011, municipalities located along the Arc of Deforestation had more than 55% of the remaining mature forest strictly confined to conservation units. Further, the planned settlement showed a higher rate of forest loss, a more persistent increase in deforested areas and a higher relative incidence of deforestation inside conservation units. Distinct agricultural activities did not lead to significantly different landscape structures; the accessibility of the municipality showed greater influence in the degree of degradation of the landscapes. Even with a high proportion of the landscapes covered by conservation units, which showed a strong inhibitory effect on forest fragmentation, we show that dynamic agriculturally driven economic activities, in municipalities with extensive road development, led to more regularly shaped, heavily fragmented landscapes, with higher densities of forest edge.

  14. The importance of agricultural lands for Himalayan birds in winter.

    Science.gov (United States)

    Elsen, Paul R; Kalyanaraman, Ramnarayan; Ramesh, Krishnamurthy; Wilcove, David S

    2017-04-01

    The impacts of land-use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low-intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low-intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low-intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land-use classes, but only 4 species were unique to primary forests. Low-, medium-, and high-intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low-intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land-use intensity increased, especially in high-intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification-especially increased grazing-will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low-intensity agricultural

  15. Forest diversity, climate change and forest fires in the Mediterranean region of Turkey.

    Science.gov (United States)

    Ozturk, Munir; Gucel, Salih; Kucuk, Mahir; Sakcali, Serdal

    2010-01-01

    This paper reviews the forest resources in Turkey in the light of published literature and summarises extensive fieldwork undertaken in the Mediterranean phytogeograhical region of Turkey. The issues of landscape change and the associated drivers are addressed and the threats to the forest diversity are considered. It notes the impacts of climate change and forest fires and attemepts have been made to put forth future options for sustainable forest development.

  16. Agroparks - The European Landscape Convention and a European way to regional sustainable landscape development through land use integration

    DEFF Research Database (Denmark)

    Christensen, Andreas Aagaard; Svennningsen, Stig R.; Brandt, Jesper

    2011-01-01

    areas of Europe, in which environmental management increasingly conforms to the principles of liberal economy. Based on a national study of privately owned largeholder manorial estates in Denmark including a detailed case study conducted in one of the survey areas, we conclude that transition...... to landscape sustainability is held back by two main inhibitors, which currently makes it a necessity for rural agency to act unsustainably: (1) The global liberalized legal system which supports individual private ownership to land and thus restrains large scale decision making at a spatial scale to match...... of production activities. These landscapes integrate nature protection, agriculture, settlement and recreation in complex structures of management. They could serve as an example for future sustainable landscape planning at a larger scale, supported by regional regulation. The European Landscape Convention (ELC...

  17. Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen.

    Directory of Open Access Journals (Sweden)

    Nadja Danner

    Full Text Available The availability of pollen in agricultural landscapes is essential for the successful growth and reproduction of honey bee colonies (Apis mellifera L.. The quantity and diversity of collected pollen can influence the growth and health of honey bee colonies, but little is known about the influence of landscape structure on pollen diet. In a field experiment, we rotated 16 honey bee colonies across 16 agricultural landscapes, used traps to collect samples of collected pollen and observed intra-colonial dance communication to gain information about foraging distances. DNA metabarcoding was applied to analyze mixed pollen samples. Neither the amount of collected pollen nor pollen diversity was related to landscape diversity. However, we found a strong seasonal variation in the amount and diversity of collected pollen in all sites independent of landscape diversity. The observed increase in foraging distances with decreasing landscape diversity suggests that honey bees compensated for lower landscape diversity by increasing their pollen foraging range in order to maintain pollen amount and diversity. Our results underscore the importance of a diverse pollen diet for honey bee colonies. Agri-environmental schemes aiming to support pollinators should focus on possible spatial and temporal gaps in pollen availability and diversity in agricultural landscapes.

  18. Wide-area mapping of small-scale features in agricultural landscapes using airborne remote sensing.

    Science.gov (United States)

    O'Connell, Jerome; Bradter, Ute; Benton, Tim G

    2015-11-01

    Natural and semi-natural habitats in agricultural landscapes are likely to come under increasing pressure with the global population set to exceed 9 billion by 2050. These non-cropped habitats are primarily made up of trees, hedgerows and grassy margins and their amount, quality and spatial configuration can have strong implications for the delivery and sustainability of various ecosystem services. In this study high spatial resolution (0.5 m) colour infrared aerial photography (CIR) was used in object based image analysis for the classification of non-cropped habitat in a 10,029 ha area of southeast England. Three classification scenarios were devised using 4 and 9 class scenarios. The machine learning algorithm Random Forest (RF) was used to reduce the number of variables used for each classification scenario by 25.5 % ± 2.7%. Proportion of votes from the 4 class hierarchy was made available to the 9 class scenarios and where the highest ranked variables in all cases. This approach allowed for misclassified parent objects to be correctly classified at a lower level. A single object hierarchy with 4 class proportion of votes produced the best result (kappa 0.909). Validation of the optimum training sample size in RF showed no significant difference between mean internal out-of-bag error and external validation. As an example of the utility of this data, we assessed habitat suitability for a declining farmland bird, the yellowhammer ( Emberiza citronella ), which requires hedgerows associated with grassy margins. We found that ∼22% of hedgerows were within 200 m of margins with an area >183.31 m 2 . The results from this analysis can form a key information source at the environmental and policy level in landscape optimisation for food production and ecosystem service sustainability.

  19. Wide-area mapping of small-scale features in agricultural landscapes using airborne remote sensing

    Science.gov (United States)

    O'Connell, Jerome; Bradter, Ute; Benton, Tim G.

    2015-11-01

    Natural and semi-natural habitats in agricultural landscapes are likely to come under increasing pressure with the global population set to exceed 9 billion by 2050. These non-cropped habitats are primarily made up of trees, hedgerows and grassy margins and their amount, quality and spatial configuration can have strong implications for the delivery and sustainability of various ecosystem services. In this study high spatial resolution (0.5 m) colour infrared aerial photography (CIR) was used in object based image analysis for the classification of non-cropped habitat in a 10,029 ha area of southeast England. Three classification scenarios were devised using 4 and 9 class scenarios. The machine learning algorithm Random Forest (RF) was used to reduce the number of variables used for each classification scenario by 25.5 % ± 2.7%. Proportion of votes from the 4 class hierarchy was made available to the 9 class scenarios and where the highest ranked variables in all cases. This approach allowed for misclassified parent objects to be correctly classified at a lower level. A single object hierarchy with 4 class proportion of votes produced the best result (kappa 0.909). Validation of the optimum training sample size in RF showed no significant difference between mean internal out-of-bag error and external validation. As an example of the utility of this data, we assessed habitat suitability for a declining farmland bird, the yellowhammer (Emberiza citronella), which requires hedgerows associated with grassy margins. We found that ˜22% of hedgerows were within 200 m of margins with an area >183.31 m2. The results from this analysis can form a key information source at the environmental and policy level in landscape optimisation for food production and ecosystem service sustainability.

  20. Using Landscape metrics to analyze the landscape evolution under land abandonment

    Science.gov (United States)

    Pelorosso, Raffaele; Della Chiesa, Stefano; Gobattoni, Federica; Leone, Antonio

    2010-05-01

    The human actions and the human-linked land use changes are the main responsible of the present landscapes and vegetation patterns (Antrop, 2005; Pelorosso et al., 2009). Hence, revised concept of potential natural vegetation has been developed in landscape ecology. In fact, it cannot more be considered as the optimum for a certain landscape, but only as a general indication never widely reached. In particular Ingegnoli and Pignatti (2007) introduced the concept of fittest vegetation as "the most suitable or suited vegetation for the specific climate and geomorphic conditions, in a limited period of time and in a certain defined place with a particular range of incorporable disturbances (including man's) under natural or not natural conditions". Anthropic exploitation of land and its resources to obtain goods and services (Willemen et al, 2008) can be considered therefore the main cause of landscape change as an integrant part of nature, not external. The abandon of the land by farmers or other users it is one of the more felt problems for the marginal territories of Mediterranean basin. It is therefore caused by socio-economic changes of last decades and cause several impact on biodiversity (Geri et al. 2010) and hydro-geological assessment. A mountain landscape has however the capacity to provide goods like timber and services like aesthetic pleasure or regulation of water system. The necessity of a conservation strategy and the development of sustainable socio-economic management plan play a very important role in governing land and quality of life for people and ecosystems also for marginal territory. After a land abandonment, soil conditions and several climatic and orographic characteristic plus human disturbance affect the length of time required by secondary succession, throwing the establishment of vegetation with different association, structure and composition until a (stable or meta-stable) equilibrium is reached (Ingegnoli and Pignatti, 2007). In this

  1. A framework to assess landscape structural capacity to provide regulating ecosystem services in West Africa.

    Science.gov (United States)

    Inkoom, Justice Nana; Frank, Susanne; Greve, Klaus; Fürst, Christine

    2018-03-01

    The Sudanian savanna landscapes of West Africa are amongst the world's most vulnerable areas to climate change impacts. Inappropriate land use and agriculture management practices continuously impede the capacity of agricultural landscapes to provide ecosystem services (ES). Given the absence of practical assessment techniques to evaluate the landscape's capacity to provide regulating ES in this region, the goal of this paper is to propose an integrative assessment framework which combines remote sensing, geographic information systems, expert weighting and landscape metrics-based assessment. We utilized Analytical Hierarchical Process and Likert scale for the expert weighting of landscape capacity. In total, 56 experts from several land use and landscape management related departments participated in the assessment. Further, we adapted the hemeroby concept to define areas of naturalness while landscape metrics including Patch Density, Shannon's Diversity, and Shape Index were utilized for structural assessment. Lastly, we tested the reliability of expert weighting using certainty measurement rated by experts themselves. Our study focused on four regulating ES including flood control, pest and disease control, climate control, and wind erosion control. Our assessment framework was tested on four selected sites in the Vea catchment area of Ghana. The outcome of our study revealed that highly heterogeneous landscapes have a higher capacity to provide pest and disease control, while less heterogeneous landscapes have a higher potential to provide climate control. Further, we could show that the potential capacities to provide ecosystem services are underestimated by 15% if landscape structural aspects assessed through landscape metrics are not considered. We conclude that the combination of adapted land use and an optimized land use pattern could contribute considerably to lower climate change impacts in West African agricultural landscapes. Copyright © 2017 Elsevier

  2. Re-wilding Europe's traditional agricultural landscapes: Values and the link between science and practice

    Science.gov (United States)

    Paul H. Gobster

    2014-01-01

    Landscape and Urban Planning encourages multiple perspectives and approaches to help understand landscapes as social-ecological systems, with the goal that by building a robust science of landscape we can provide sustainable solutions for guiding its change. But the link between science and practice, or more simply put, between knowledge and action, is not always clear...

  3. Plastic and the nest entanglement of urban and agricultural crows.

    Directory of Open Access Journals (Sweden)

    Andrea K Townsend

    Full Text Available Much attention has been paid to the impacts of plastics and other debris on marine organisms, but the effects of plastic on terrestrial organisms have been largely ignored. Detrimental effects of terrestrial plastic could be most pronounced in intensively human-modified landscapes (e.g., urban and agricultural areas, which are a source of much anthropogenic debris. Here, we examine the occurrence, types, landscape associations, and consequences of anthropogenic nest material in the American crow (Corvus brachyrhynchos, a North American species that breeds in both urban and agricultural landscapes. We monitored 195 nestlings in 106 nests across an urban and agricultural gradient in the Sacramento Valley, California, USA. We found that 85.2% of crow nests contained anthropogenic material, and 11 of 195 nestlings (5.6% were entangled in their nests. The length of the material was greater in nests in agricultural territories than in urban territories, and the odds of entanglement increased 7.55 times for each meter of anthropogenic material in the nest. Fledging success was significantly lower for entangled than for unentangled nestlings. In all environments, particularly urban, agricultural, and marine, careful disposal of potential hazards (string, packing and hay bale twine, balloon ribbon, wire, fishing line could reduce the occurrence of entanglement of nestling birds.

  4. Plastic and the nest entanglement of urban and agricultural crows.

    Science.gov (United States)

    Townsend, Andrea K; Barker, Christopher M

    2014-01-01

    Much attention has been paid to the impacts of plastics and other debris on marine organisms, but the effects of plastic on terrestrial organisms have been largely ignored. Detrimental effects of terrestrial plastic could be most pronounced in intensively human-modified landscapes (e.g., urban and agricultural areas), which are a source of much anthropogenic debris. Here, we examine the occurrence, types, landscape associations, and consequences of anthropogenic nest material in the American crow (Corvus brachyrhynchos), a North American species that breeds in both urban and agricultural landscapes. We monitored 195 nestlings in 106 nests across an urban and agricultural gradient in the Sacramento Valley, California, USA. We found that 85.2% of crow nests contained anthropogenic material, and 11 of 195 nestlings (5.6%) were entangled in their nests. The length of the material was greater in nests in agricultural territories than in urban territories, and the odds of entanglement increased 7.55 times for each meter of anthropogenic material in the nest. Fledging success was significantly lower for entangled than for unentangled nestlings. In all environments, particularly urban, agricultural, and marine, careful disposal of potential hazards (string, packing and hay bale twine, balloon ribbon, wire, fishing line) could reduce the occurrence of entanglement of nestling birds.

  5. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2008-03-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  6. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    2011-02-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  7. Landscape changes have greater effects than climate changes on six insect pests in China.

    Science.gov (United States)

    Zhao, Zihua; Sandhu, Hardev S; Ouyang, Fang; Ge, Feng

    2016-06-01

    In recent years, global changes are the major causes of frequent, widespread outbreaks of pests in mosaic landscapes, which have received substantial attention worldwide. We collected data on global changes (landscape and climate) and economic damage caused by six main insect pests during 1951-2010 in China. Landscape changes had significant effects on all six insect pests. Pest damage increased significantly with increasing arable land area in agricultural landscapes. However, climate changes had no effect on damage caused by pests, except for the rice leaf roller (Cnaphalocrocis medinalis Guenee) and armyworm (Mythimna separate (Walker)), which caused less damage to crops with increasing mean temperature. Our results indicate that there is slight evidence of possible offset effects of climate changes on the increasing damage from these two agricultural pests. Landscape changes have caused serious outbreaks of several species, which suggests the possibility of the use of landscape design for the control of pest populations through habitat rearrangement. Landscape manipulation may be used as a green method to achieve sustainable pest management with minimal use of insecticides and herbicides.

  8. Landscape Diversity as a Screening Tool to Assess Agroecosystems Sustainability; Preliminary Study in Central Italy

    Directory of Open Access Journals (Sweden)

    Francesco Visicchio

    2007-06-01

    Full Text Available Modernization of agricultural activities has strongly modified agricultural landscapes. Intensive agriculture, with the increased use of inorganic fertiliser and density of livestock, affects water quality discharging nutrients such as nitrogen and phosphorus in water bodies. Nutrients in rivers, subsequently, are excellent indicators to assess sustainability/ land-use intensity in agroecosystems. Landscape, however, is a dynamic system and is the product of interaction amongst the natural environment and human activities, including farming which is a main driving force. At present not much has been investigated on the predictive role of landscape on land-use intensity. Aim of this study is to determine if, in Italian agroecosystem, landscape complexity can be related to land-use intensity. Indexes of landscape complexity (i.e. edge density, number of patches, Shannon’s diversity index, Interspersion-Juxtaposition index derived by processing Corine Land Cover data (level IV, 1:25.000 of Lazio Region, were related with landuse intensity (values of compounds of nitrogen and phosphorus and other parameters found in rivers monitored in accordance to European Directives on Waste Water. Results demonstrate that some landscape indexes were related to some environment parameters. Consequently landscape complexity, with further investigation, could be an efficient screening tool, at large scale, to assess water quality and ultimately agroecosystems sustainability in the absence of monitoring stations.

  9. Landscape Changes in Rural Areas: A Focus on Sardinian Territory

    Directory of Open Access Journals (Sweden)

    Mara Balestrieri

    2018-01-01

    Full Text Available During the past decades the Italian rural landscape has undergone drastic alterations as a result of complex and contradictory transformation dynamics. This paper aims to investigate and evaluate these alterations in Sardinia, one of the most rural Italian regions. Land-use maps from different years were studied to identify the dominant rural landscape features of the region and the transformations they were subjected to over the course of time. The analysis investigates changes on three geographical scales: region, provinces, and “agrarian regions”. An overall economic balance of landscape changes was calculated from the value ascribed to types of land use on the basis of the allowances (compensation for expropriation provided by the local authorities (Provincial Commissions. This economic balance was considered in light of the regional policies which accompanied it. Results partially confirm the national and European general trend of loss of agricultural land when it is converted to new forms of exploitation. The analysis at different geographical scales has, in some cases, revealed data against the general trend, especially for some agricultural regions and for certain agricultural products. There is consistent with economic balance. This shows the need of a deep ex post evaluation of the effects of policies financed by regional and national community funds on the evolution of Sardinian landscapes.

  10. A bio-indicator for the evaluation of quality forestry and landscape fragmentation

    Directory of Open Access Journals (Sweden)

    Kappers EF

    2013-11-01

    Full Text Available A bio-indicator for the evaluation of quality forestry and landscape fragmentation. Intensive agricultural practices, as well as tourism development, summer fires, urbanization and air pollution represent a serious threat for many woodlands in Mediterranean Europe. Tawny owls, Strix aluco, is a valuable indicator of habitat quality and shows high sensitivity to wood fragmentation. Assessing the association between Tawny owls and their habitat may provide useful tools for conservation and management of forested habitats. Populations of woodland birds are influenced by forest characteristics, wood proportion being a key factor explaining breeding density and regularity in nest spacing. Populations of the Tawny Owl reach their highest densities in old deciduous forests. The distribution of territories remains almost constant for many years, and the period during which any particular wood maintains suitable conditions for nesting depends on factors like tree species and management, especially on the timing and extent of thinning. To assure the maintenance of good habitat quality in most woodlands, regulation of water diversion, prevention of summer fires, and a general reduction of human activities inside forests seem to be useful conservation tools.

  11. Influence of land use and climate on recent forest expansion: a case study in the Eurosiberian–Mediterranean limit of north-west Spain

    NARCIS (Netherlands)

    Alvarez-Martinez, J.M.; Suarez-Seoane, S.; Stoorvogel, J.J.; Luis Calabuig, de E.

    2014-01-01

    1.In Mediterranean mountainous areas, forests have expanded in recent decades because traditional management practices have been abandoned or reduced. However, understanding the ecological mechanisms behind landscape change is a complex undertaking because the influence of land use may be reinforced

  12. Effects of land use change and management on SOC and soil quality in Mediterranean rangelands areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Requejo, Ana; Zornoza, Raúl

    2017-04-01

    INTRODUCTION Rangelands in the Iberian Peninsula occupy more than 90,000 km2. These rangelands were created from the former Mediterranean oak forests, mainly composed of holm oak and cork oak (Quercus ilex rotundifolia and Quercus suber), by clear-cutting shrubs, removing selected trees and cultivating. These man-made landscapes are called 'dehesas' in Spain and 'montados' in Portugal. Between 1955 and 1981, more than 5,000 km2 of dehesas was converted from pastureland to cultivated land. This process has been accelerated since 1986 owing to subsidies from the European Common Agricultural Policy (Parras-Alcántara et al., 2015a). The role that natural rangelands play in the global carbon cycle is extremely important, accounting for 10-30% of the world's total soil organic carbon (SOC), in addition, SOC concentration is closely related to soil quality and vegetation productivity (Brevik, 2012). Therefore, to study the land use and management changes is important, particularly in Mediterranean soils, as they are characterized by low organic carbon content, furthermore, the continuous use of ploughing for grain production is the principal cause of soil degradation. Therefore, land use decisions and management systems can increase or decrease SOC content and stock (Corral-Fernández et al., 2013; Parras-Alcántara et al., 2014, 2015a and 2015b; Parras-Alcántara and Lozano-García, 2014) MATERIAL AND METHODS A field study was conducted to determine the land use change (Mediterranean evergreen oak woodland to olive grove and cereal, all of them managed under conventional tillage and under conservationist practices) effects on SOC stocks and the soil quality (Stratification Ratio) in Los Pedroches valley, southern Spain. RESULTS Results for the present study indicate that management practices had little effect on SOC storage in dehesas. The stratification ratio was >2 both under conventional tillage and under organic farming, so, soils under dehesa had high quality

  13. Selecting native perennial plants for ecological intensification in Mediterranean greenhouse horticulture.

    Science.gov (United States)

    Rodríguez, E; González, M; Paredes, D; Campos, M; Benítez, E

    2017-12-04

    Natural control by predators and parasitoids provides an important and often unnoticed ecosystem service to agricultural landscapes by reducing pest populations in crops. The current model of horticultural intensification in south-eastern Spain produces high yields but has also resulted in a landscape almost completely covered by plastic. Promoting natural areas among greenhouses could enhance biodiversity, by being beneficial insects, and reduce pest pressure outdoors. The first step is to ascertain how pests and their natural enemies (NEs) use Mediterranean vegetation for selecting the best plants for pest suppression outdoors. The abundance of the two major horticultural pests, the tobacco whitefly, Bemisia tabaci, and the western flower thrips, Frankliniella occidentalis, together with their NEs, were assayed in 22 flowering perennial plants, which were newly planted in an experimental field surrounded by greenhouses. Eight plant species were identified as the most critical species for sustaining pest populations outdoors. A set of five plant species supported a medium level of pests, and another set of ten plant species supported the lowest level of both pests. Tobacco whitefly occurred in a few plants species, whereas western flower thrips occurred on almost all the plant species studied, and was favoured by the presence of flowers in perennial plants. The results suggest that plant diversity may provide relatively few acceptable host plants for tobacco whitefly than for western flower thrips. NEs were generally collected in plants that also supported abundance of pests, indicating that host/prey availability, more than food resources from flowers, was a stronger predictor of NE abundance in perennial plants. Field trials using the plants with the lowest host acceptance by pests are needed in order to ascertain whether pest abundance outdoors is reduced.

  14. Developmental Research of Off-Farm Agricultural Businesses in Berks County, Pennsylvania. Final Report.

    Science.gov (United States)

    Berks County Schools, Reading, PA.

    Student vocational interest and agricultural business surveys were conducted in Berks County, Pennsylvania to gauge career opportunities in off-farm agricultural occupations. The seven categories of businesses surveyed included agriculture supplies, agriculture mechanics, horticulture mechanics, floriculture, landscaping, turf, and garden center…

  15. The environment of the last hunters-gatherers and first agro-pastoralists in the western Mediterranean region, between the Rhone and the Northern Apennines (7th - 6th millennium cal. BCE): Attractiveness of the landscape units and settlement patterns

    Science.gov (United States)

    Battentier, Janet; Binder, Didier; Guillon, Sebastien; Maggi, Roberto; Negrino, Fabio; Sénépart, Ingrid; Tozzi, Carlo; Théry-Parisot, Isabelle; Delhon, Claire

    2018-03-01

    In the north western Mediterranean, in the area between the Rhone River and the Northern Apennines, the last Mesolithic societies (Castelnovian) and the first Neolithic societies (Impressed Ware or Impressa) coexisted during the first half of the 6th millennium cal. BCE (Before Common Era). Linking the two settlement distribution patterns (mainly high lands and low lands for the Castelnovian versus Mediterranean coastal areas for the Impressa) to their specific environmental backgrounds during that period of coexistence enables us to document the attractiveness of the various available landscape units as a function of the subsistence practices (hunting, fishing and gathering versus agro-pastoralism). Pollen and charcoal data from 41 archaeological sites along with contemporaneous natural (off archaeological sites) sequences (hereafter referred to as "off-site sequences") from three windows (Provence/Western Liguria, the middle Rhone valley/Prealps and Southern Alps, Eastern Liguria/Northern Apennines) were examined in order to reconstruct the vegetal landscape in the surroundings of the Mesolithic and Neolithic settlements between 6500 and 5400 cal. BCE. The importance of environmental versus cultural factors in the settlement preferences of both groups is discussed in order to document our reflection concerning non-consensual issues, such as the existence of interaction or avoidance behaviours or the sharing (or not) of parts or all of the territory and of its natural resources. The results notably highlight the expansion of fir forests that, based on ecological and accessibility criteria, could be considered as rather inauspicious for settlement and hunting as well as for pastoral activities. This expansion may have influenced the settlement patterns of both cultural complexes, leading populations to locate their settlements principally within landscape units that remained clear of extensive fir forests. It appears that, despite being motivated by the prevailing

  16. Towards integrated modelling of soil organic carbon cycling at landscape scale

    Science.gov (United States)

    Viaud, V.

    2009-04-01

    Soil organic carbon (SOC) is recognized as a key factor of the chemical, biological and physical quality of soil. Numerous models of soil organic matter turnover have been developed since the 1930ies, most of them dedicated to plot scale applications. More recently, they have been applied to national scales to establish the inventories of carbon stocks directed by the Kyoto protocol. However, only few studies consider the intermediate landscape scale, where the spatio-temporal pattern of land management practices, its interactions with the physical environment and its impacts on SOC dynamics can be investigated to provide guidelines for sustainable management of soils in agricultural areas. Modelling SOC cycling at this scale requires accessing accurate spatially explicit input data on soils (SOC content, bulk density, depth, texture) and land use (land cover, farm practices), and combining both data in a relevant integrated landscape representation. The purpose of this paper is to present a first approach to modelling SOC evolution in a small catchment. The impact of the way landscape is represented on SOC stocks in the catchment was more specifically addressed. This study was based on the field map, the soil survey, the crop rotations and land management practices of an actual 10-km² agricultural catchment located in Brittany (France). RothC model was used to drive soil organic matter dynamics. Landscape representation in the form of a systematic regular grid, where driving properties vary continuously in space, was compared to a representation where landscape is subdivided into a set of homogeneous geographical units. This preliminary work enabled to identify future needs to improve integrated soil-landscape modelling in agricultural areas.

  17. Modelling global change impacts on soil carbon contents of agro-silvo-pastoral Mediterranean systems

    Science.gov (United States)

    Lozano-García, Beatriz; Muñoz-Rojas, Miriam; Parras-Alcántara, Luis

    2016-04-01

    To assess the impact of climate change on soil organic C (SOC) stocks in agro-silvo-pastoral environments, different models have been applied worldwide at local or regional scales, such as as RothC (Francaviglia et al., 2012) or CENTURY (Alvaro-Fuentes et al., 2012). However, some of these models may require a high number of input parameters or can underestimate the effect of soil depth. CarboSOIL (Muñoz-Rojas et al., 2013) is an empirical model based on regression techniques and developed to predict SOC contents at standard soil depths (0-25, 25-50 and 50-75 cm) under a range of climate and/or land use change scenarios. CarboSOIL has been successfully applied in different Mediterranean areas ,e.g. Southern Spain (Muñoz-Rojas et al., 2013; Abd-Elmabod et al., 2014), Northern Egypt (Muñoz-Rojas et al., 2014) and Italy (Muñoz-Rojas et al., 2015). In this study, CarboSOIL was applied in the Cardeña and Montoro mountain range Natural Park. This area covers 385 km2 and is located within Sierra Morena (Córdoba, South Spain) and has a semiarid Mediterranean climate. It is characterized by agro-silvo-pastoral systems. The Mediterranean evergreen oak woodland (MEOW-dehesa) is savanna-like open woodland ecosystem characterized by silvopastoral uses, being an ancient human modified Mediterranean landscape (Corral-Fernández et al., 2013; Lozano-García and Parras-Alcántara 2013). The most representative soils in the Cardeña and Montoro mountain range Natural Park are Cambisols, Regosols, Leptosols and Fluvisols. These soils are characterized by low fertility, poor physical conditions and marginal capacity for agricultural use, together with low organic matter (OM) content due to climate conditions (semiarid Mediterranean climate) and soil texture (sandy). The model was applied at different soil depths: 0-25, 25-50 and 50-75 cm (Parras-Alcántara et al., 2015) considering land use and climate changes scenarios based on available global climate models (IPPC, 2007). A

  18. Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols

    Directory of Open Access Journals (Sweden)

    T. Tang

    2018-06-01

    Full Text Available Atmospheric aerosols and greenhouse gases affect cloud properties, radiative balance and, thus, the hydrological cycle. Observations show that precipitation has decreased in the Mediterranean since the beginning of the 20th century, and many studies have investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare the modeled dynamical response of Mediterranean precipitation to individual forcing agents in a set of global climate models (GCMs. Our analyses show that both greenhouse gases and aerosols can cause drying in the Mediterranean and that precipitation is more sensitive to black carbon (BC forcing than to well-mixed greenhouse gases (WMGHGs or sulfate aerosol. In addition to local heating, BC appears to reduce precipitation by causing an enhanced positive sea level pressure (SLP pattern similar to the North Atlantic Oscillation–Arctic Oscillation, characterized by higher SLP at midlatitudes and lower SLP at high latitudes. WMGHGs cause a similar SLP change, and both are associated with a northward diversion of the jet stream and storm tracks, reducing precipitation in the Mediterranean while increasing precipitation in northern Europe. Though the applied forcings were much larger, if forcings are scaled to those of the historical period of 1901–2010, roughly one-third (31±17 % of the precipitation decrease would be attributable to global BC forcing with the remainder largely attributable to WMGHGs, whereas global scattering sulfate aerosols would have negligible impacts. Aerosol–cloud interactions appear to have minimal impacts on Mediterranean precipitation in these models, at least in part because many simulations did not fully include such processes; these merit further study. The findings from this study suggest that future BC and WMGHG emissions may significantly affect regional water resources, agricultural practices, ecosystems and

  19. Effects of landscape composition and configuration on pollination in a native herb : a field experiment

    OpenAIRE

    Ekroos, Johan; Jakobsson, Anna; Wideen, Joel; Herbertsson, Lina; Rundlof, Maj; Smith, Henrik G.

    2015-01-01

    Bumble bee abundance in agricultural landscapes is known to decrease with increasing distance from seminatural grasslands, but whether the pollination of bumble-bee-pollinated wild plants shows a similar pattern is less well known. In addition, the relative effects of landscape composition (landscape heterogeneity) and landscape configuration (distance from seminatural grassland) on wild plant pollination, and the interaction between these landscape effects, have not been studied using landsc...

  20. Analysis of seasonal risk for importation of the Mediterranean fruit fly, Ceratitis capitate (Diptera: Tephritidae), via air passenger traffic arriving in Florida and California

    OpenAIRE

    Szyniszewska, A.M.; Leppla, N.C.; Huang, Z.; Tatem, A.J.

    2016-01-01

    The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), is one of the most economically damaging pests in the world and has repeatedly invaded two major agricultural states in the United States, Florida and California, each time requiring costly eradication. The Mediterranean fruit fly gains entry primarily in infested fruit carried by airline passengers and, since Florida and California each receive about 13 million international passengers annually, the risk of Mediterranean fruit fly ...

  1. Heavy metals in agricultural landscapes as hazards to human and ecosystem health: a case study on zinc and cadmium in drainage channel sediments.

    Science.gov (United States)

    Savic, Radovan; Ondrasek, Gabrijel; Josimov-Dundjerski, Jasmina

    2015-02-01

    In agricultural systems, heavy metals pose severe risks to the health of soil-plant-animal-human continuum. Drainage channels, as integral components of agricultural landscapes, contain sediment material that can be both a source and a sink of metals and other toxic/persistent elements due to its highly reactive interfaces and strong binding affinity. The drainage channel network in a case study area of Vojvodina (Serbia) is not appropriately protected from contamination, nor is it maintained regularly (e.g. by desilting), thus endangering and potentially decreasing the ecological value of surrounding water and agricultural land resources, i.e. exposing food production to potential contaminants. In this study (2004-2012), Cd and Zn concentrations were analysed in 100 samples from 46 drainage channels sediments spread along the areas of the most intensive agricultural land use in Vojvodina. Among the samples measured, 5% had Cd and 14% had Zn concentrations above the maximally permitted levels, indicating that some drainage channel sections have been exposed to different point and non-point source pollutants. The maximum detected concentrations of the analysed elements were >50% (Zn) and were as much as 11-fold (Cd) higher than their remediation values. There is a strong need for the establishment of qualitative monitoring of channel sediment media in agro-ecosystems closely linked with complex pollution sources (intensive agriculture, industry, urban zones). © 2013 Society of Chemical Industry.

  2. Landscape effects on pollinator communities and pollination services in small-holder agroecosystems

    NARCIS (Netherlands)

    Zou, Yi; Bianchi, Felix J.J.A.; Jauker, Frank; Xiao, Haijun; Chen, Junhui; Cresswell, James; Luo, Shudong; Huang, Jikun; Deng, Xiangzheng; Hou, Lingling; Werf, van der Wopke

    2017-01-01

    Pollination by insects is key for the productivity of many fruit and non-graminous seed crops, but little is known about the response of pollinators to landscapes dominated by small-holder agriculture. Here we assess the relationships between landscape context, pollinator communities (density and

  3. Landscape and zonal features of the formation of producing economy in Russia

    Science.gov (United States)

    Nizovtsev, Vyacheslav; Natalia, Erman

    2016-04-01

    Based on analysis of the extensive source base, including complex landscape, component, paleogeographic and archeological published and scientific materials as well as the connected analysis of published paleogeographical, paleolandscape and historical and geographic maps of the territory of Russia landscape and zonal features of the transition from appropriating economy to producing economy were determined. All the specifics of historical changes in the landscape use of the vast areas of Russia is caused by the variety of its landscape zones and the specifics of their constituent landscapes. Human economic activities as a factor of differentiation and development of landscapes became apparent almost in all landscape zones together with the emergence of the producing type of economy from the Aeneolithic-Bronze Age (Atlantic period) in the southern steppe regions (in the northern areas of the main centers of the producing economy) and from the Bronze Age in the forest areas. The emergence of the producing economy in the forest-steppe and steppe landscape zones on the territory of Russia is dated IV (Aeneolithic) - III (Early Bronze Age) millennium BC. It is from this period that on the European part of Russia and in Siberia the so-called Neolithic revolution begins. The use of copper and bronze axes helped to develop new areas for planting crops in the forest-steppe zone. In the forest-steppe zone swidden and lea tillage cultivation develops. In the steppe and forest-steppe Eurasia depending on the local landscape conditions two ways of producing economy with a predominance of cattle-breeding developed: nomadic cattle breeding and house cattle breeding with a significant influence of agriculture in the economy and long-term settlements. The steppe areas were completely dominated by the mobile nomadic herding, breeding cattle and small cattle. Along with the valley landscapes the interfluvial landscapes were also actively explored. Almost in all the steppe areas

  4. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes

    Science.gov (United States)

    Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.

    2014-01-01

    Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.

  5. Agricultural production and stability of settlement systems in Upper Mesopotamia during the Early Bronze Age (third millennium BCE)

    Science.gov (United States)

    Kalayci, Tuna

    This study investigates the relationship between rainfall variation and rain-fed agricultural production in Upper Mesopotamia with a specific focus on Early Bronze Age urban settlements. In return, the variation in production is used to explore stability of urban settlement systems. The organization of the flow of agricultural goods is the key to sustaining the total settlement system. The vulnerability of a settlement system increases due to the increased demand for more output from agricultural lands. This demand is the key for the success of urbanization project. However, without estimating how many foodstuffs were available at the end of a production cycle, further discussions on the forces that shaped and sustained urban settlement systems will be lacking. While large scale fluctuations in the flow of agricultural products between settlements are not the only determinants of hierarchical structures, the total available agricultural yield for each urban settlement in a hierarchy must have influenced settlement relations. As for the methodology, first, Early Bronze Age precipitation levels are estimated by using modern day associations between the eastern Mediterranean coastal areas and the inner regions of Upper Mesopotamia. Next, these levels are integrated into a remote-sensing based biological growth model. Also, a CORONA satellite imagery based archaeological survey is conducted in order to map the Early Bronze Age settlement system in its entirety as well as the ancient markers of agricultural intensification. Finally, ancient agricultural production landscapes are modeled in a GIS. The study takes a critical position towards the traditionally held assumption that large urban settlements (cities) in Upper Mesopotamia were in a state of constant demand for food. The results from this study also suggest that when variations in ancient precipitation levels are translated into the variations in production levels, the impact of climatic aridification on ancient

  6. Seed dispersers, seed predators, and browsers act synergistically as biotic filters in a mosaic landscape.

    Directory of Open Access Journals (Sweden)

    Regino Zamora

    Full Text Available In this study, we analize the functional influence of animals on the plants they interact with in a mediterranean mountain. We hypothesise that seed dispersers, seed predators, and browsers can act as biotic filters for plant communities. We analyse the combined effects of mutualistic (seed dispersal and antagonistic (seed predation, herbivory animal interactions in a mosaic landscape of Mediterranean mountains, basing our results on observational and experimental field. Most of the dispersed seeds came from tree species, whereas the population of saplings was composed predominantly of zoochorous shrub species. Seed predators preferentially consumed seeds from tree species, whereas seeds from the dominant fleshy-fruited shrubs had a higher probability of escaping these predators. The same pattern was repeated among the different landscape units by browsers, since they browsed selectively and far more intensely on tree-species saplings than on the surrounding shrubs. In synthesis, our work identifies the major biotic processes that appear to be favoring a community dominated by shrubs versus trees because seed dispersers, predators, and herbivores together favored shrub dispersal and establishment versus trees.

  7. Appreciation of landscape aesthetic values in Slovakia assessed by social media photographs

    Science.gov (United States)

    Lieskovský, Juraj; Rusňák, Tomáš; Klimantová, Alexandra; Izsóff, Martin; Gašparovičová, Petra

    2017-11-01

    Geolocated photos from google Panoramio are used as a proxy for evaluation of aesthetic values appreciation of different landscape types in Slovakia. We collected the photo's metadata from years 2005 - 2014 and calculated the density of photos uploaded by unique user per square kilometre. Then we compared the photos density in different landscape types. The most appreciated are subalpine and alpine landscape types. The high photo density was also found in urban landscapes where most of the population live. Outside the urban area, we found that less intensive type of landscapes are visually more attractive. From the abiotic landscape categories the most aesthetically valuable are landscapes in giant highlands and glacial giant highlands. The lowland landscape used intensively for agricultural production is less attractive.