WorldWideScience

Sample records for medical image retrieval

  1. Mobile medical image retrieval

    Science.gov (United States)

    Duc, Samuel; Depeursinge, Adrien; Eggel, Ivan; Müller, Henning

    2011-03-01

    Images are an integral part of medical practice for diagnosis, treatment planning and teaching. Image retrieval has gained in importance mainly as a research domain over the past 20 years. Both textual and visual retrieval of images are essential. In the process of mobile devices becoming reliable and having a functionality equaling that of formerly desktop clients, mobile computing has gained ground and many applications have been explored. This creates a new field of mobile information search & access and in this context images can play an important role as they often allow understanding complex scenarios much quicker and easier than free text. Mobile information retrieval in general has skyrocketed over the past year with many new applications and tools being developed and all sorts of interfaces being adapted to mobile clients. This article describes constraints of an information retrieval system including visual and textual information retrieval from the medical literature of BioMedCentral and of the RSNA journals Radiology and Radiographics. Solutions for mobile data access with an example on an iPhone in a web-based environment are presented as iPhones are frequently used and the operating system is bound to become the most frequent smartphone operating system in 2011. A web-based scenario was chosen to allow for a use by other smart phone platforms such as Android as well. Constraints of small screens and navigation with touch screens are taken into account in the development of the application. A hybrid choice had to be taken to allow for taking pictures with the cell phone camera and upload them for visual similarity search as most producers of smart phones block this functionality to web applications. Mobile information access and in particular access to images can be surprisingly efficient and effective on smaller screens. Images can be read on screen much faster and relevance of documents can be identified quickly through the use of images contained in

  2. Dictionary Pruning with Visual Word Significance for Medical Image Retrieval.

    Science.gov (United States)

    Zhang, Fan; Song, Yang; Cai, Weidong; Hauptmann, Alexander G; Liu, Sidong; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Feng, David Dagan; Chen, Mei

    2016-02-12

    Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis and treatment but it can be problematic given the small visual variations between anatomical structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify discriminative characteristics between different medical images with Pruned Dictionary based on Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two main components. First, we calculate a topic-word significance value for each visual word given a certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are learnt, based on the relationship between the images and words, and are employed to bridge the gap between low-level visual features and high-level semantics. These latent topics describe the images and words semantically and can thus facilitate more meaningful comparisons between the words. Second, we compute an overall-word significance value to evaluate the significance of a visual word within the entire dictionary. We designed an iterative ranking method to measure overall-word significance by considering the relationship between all latent topics and words. The words with higher values are considered meaningful with more significant discriminative power in differentiating medical images. We evaluated our method on two public medical imaging datasets and it showed improved retrieval accuracy and efficiency.

  3. Automatic medical image annotation and keyword-based image retrieval using relevance feedback.

    Science.gov (United States)

    Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal

    2012-08-01

    This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.

  4. Content Based Medical Image Retrieval for Histopathological, CT and MRI Images

    Directory of Open Access Journals (Sweden)

    Swarnambiga AYYACHAMY

    2013-09-01

    Full Text Available A content based approach is followed for medical images. The purpose of this study is to access the stability of these methods for medical image retrieval. The methods used in color based retrieval for histopathological images are color co-occurrence matrix (CCM and histogram with meta features. For texture based retrieval GLCM (gray level co-occurrence matrix and local binary pattern (LBP were used. For shape based retrieval canny edge detection and otsu‘s method with multivariable threshold were used. Texture and shape based retrieval were implemented using MRI (magnetic resonance images. The most remarkable characteristics of the article are its content based approach for each medical imaging modality. Our efforts were focused on the initial visual search. From our experiment, histogram with meta features in color based retrieval for histopathological images shows a precision of 60 % and recall of 30 %. Whereas GLCM in texture based retrieval for MRI images shows a precision of 70 % and recall of 20 %. Shape based retrieval for MRI images shows a precision of 50% and recall of 25 %. The retrieval results shows that this simple approach is successful.

  5. Application of object modeling technique to medical image retrieval system

    International Nuclear Information System (INIS)

    Teshima, Fumiaki; Abe, Takeshi

    1993-01-01

    This report describes the results of discussions on the object-oriented analysis methodology, which is one of the object-oriented paradigms. In particular, we considered application of the object modeling technique (OMT) to the analysis of a medical image retrieval system. The object-oriented methodology places emphasis on the construction of an abstract model from real-world entities. The effectiveness of and future improvements to OMT are discussed from the standpoint of the system's expandability. These discussions have elucidated that the methodology is sufficiently well-organized and practical to be applied to commercial products, provided that it is applied to the appropriate problem domain. (author)

  6. An intelligent framework for medical image retrieval using MDCT and multi SVM.

    Science.gov (United States)

    Balan, J A Alex Rajju; Rajan, S Edward

    2014-01-01

    Volumes of medical images are rapidly generated in medical field and to manage them effectively has become a great challenge. This paper studies the development of innovative medical image retrieval based on texture features and accuracy. The objective of the paper is to analyze the image retrieval based on diagnosis of healthcare management systems. This paper traces the development of innovative medical image retrieval to estimate both the image texture features and accuracy. The texture features of medical images are extracted using MDCT and multi SVM. Both the theoretical approach and the simulation results revealed interesting observations and they were corroborated using MDCT coefficients and SVM methodology. All attempts to extract the data about the image in response to the query has been computed successfully and perfect image retrieval performance has been obtained. Experimental results on a database of 100 trademark medical images show that an integrated texture feature representation results in 98% of the images being retrieved using MDCT and multi SVM. Thus we have studied a multiclassification technique based on SVM which is prior suitable for medical images. The results show the retrieval accuracy of 98%, 99% for different sets of medical images with respect to the class of image.

  7. Mutual information based feature selection for medical image retrieval

    Science.gov (United States)

    Zhi, Lijia; Zhang, Shaomin; Li, Yan

    2018-04-01

    In this paper, authors propose a mutual information based method for lung CT image retrieval. This method is designed to adapt to different datasets and different retrieval task. For practical applying consideration, this method avoids using a large amount of training data. Instead, with a well-designed training process and robust fundamental features and measurements, the method in this paper can get promising performance and maintain economic training computation. Experimental results show that the method has potential practical values for clinical routine application.

  8. Medical Image Retrieval Based On the Parallelization of the Cluster Sampling Algorithm

    OpenAIRE

    Ali, Hesham Arafat; Attiya, Salah; El-henawy, Ibrahim

    2017-01-01

    In this paper we develop parallel cluster sampling algorithms and show that a multi-chain version is embarrassingly parallel and can be used efficiently for medical image retrieval among other applications.

  9. Large-scale retrieval for medical image analytics: A comprehensive review.

    Science.gov (United States)

    Li, Zhongyu; Zhang, Xiaofan; Müller, Henning; Zhang, Shaoting

    2018-01-01

    Over the past decades, medical image analytics was greatly facilitated by the explosion of digital imaging techniques, where huge amounts of medical images were produced with ever-increasing quality and diversity. However, conventional methods for analyzing medical images have achieved limited success, as they are not capable to tackle the huge amount of image data. In this paper, we review state-of-the-art approaches for large-scale medical image analysis, which are mainly based on recent advances in computer vision, machine learning and information retrieval. Specifically, we first present the general pipeline of large-scale retrieval, summarize the challenges/opportunities of medical image analytics on a large-scale. Then, we provide a comprehensive review of algorithms and techniques relevant to major processes in the pipeline, including feature representation, feature indexing, searching, etc. On the basis of existing work, we introduce the evaluation protocols and multiple applications of large-scale medical image retrieval, with a variety of exploratory and diagnostic scenarios. Finally, we discuss future directions of large-scale retrieval, which can further improve the performance of medical image analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Image retrieval

    DEFF Research Database (Denmark)

    Ørnager, Susanne

    1997-01-01

    The paper touches upon indexing and retrieval for effective searches of digitized images. Different conceptions of what subject indexing means are described as a basis for defining an operational subject indexing strategy for images. The methodology is based on the art historian Erwin Panofsky......), special knowledge about image codes, and special knowledge about history of ideas. The semiologist Roland Barthes has established a semiology for pictorial expressions based on advertising photos. Barthes uses the concepts denotation/connotation where denotations can be explained as the sober expression...

  11. Dual-force ISOMAP: a new relevance feedback method for medical image retrieval.

    Science.gov (United States)

    Shen, Hualei; Tao, Dacheng; Ma, Dianfu

    2013-01-01

    With great potential for assisting radiological image interpretation and decision making, content-based image retrieval in the medical domain has become a hot topic in recent years. Many methods to enhance the performance of content-based medical image retrieval have been proposed, among which the relevance feedback (RF) scheme is one of the most promising. Given user feedback information, RF algorithms interactively learn a user's preferences to bridge the "semantic gap" between low-level computerized visual features and high-level human semantic perception and thus improve retrieval performance. However, most existing RF algorithms perform in the original high-dimensional feature space and ignore the manifold structure of the low-level visual features of images. In this paper, we propose a new method, termed dual-force ISOMAP (DFISOMAP), for content-based medical image retrieval. Under the assumption that medical images lie on a low-dimensional manifold embedded in a high-dimensional ambient space, DFISOMAP operates in the following three stages. First, the geometric structure of positive examples in the learned low-dimensional embedding is preserved according to the isometric feature mapping (ISOMAP) criterion. To precisely model the geometric structure, a reconstruction error constraint is also added. Second, the average distance between positive and negative examples is maximized to separate them; this margin maximization acts as a force that pushes negative examples far away from positive examples. Finally, the similarity propagation technique is utilized to provide negative examples with another force that will pull them back into the negative sample set. We evaluate the proposed method on a subset of the IRMA medical image dataset with a RF-based medical image retrieval framework. Experimental results show that DFISOMAP outperforms popular approaches for content-based medical image retrieval in terms of accuracy and stability.

  12. Implementation and evaluation of a medical image management system with content-based retrieval support

    International Nuclear Information System (INIS)

    Carita, Edilson Carlos; Seraphim, Enzo; Honda, Marcelo Ossamu; Azevedo-Marques, Paulo Mazzoncini de

    2008-01-01

    Objective: the present paper describes the implementation and evaluation of a medical images management system with content-based retrieval support (PACS-CBIR) integrating modules focused on images acquisition, storage and distribution, and text retrieval by keyword and images retrieval by similarity. Materials and methods: internet-compatible technologies were utilized for the system implementation with free ware, and C ++ , PHP and Java languages on a Linux platform. There is a DICOM-compatible image management module and two query modules, one of them based on text and the other on similarity of image texture attributes. Results: results demonstrate an appropriate images management and storage, and that the images retrieval time, always < 15 sec, was found to be good by users. The evaluation of retrieval by similarity has demonstrated that the selected images extractor allowed the sorting of images according to anatomical areas. Conclusion: based on these results, one can conclude that the PACS-CBIR implementation is feasible. The system has demonstrated to be DICOM-compatible, and that it can be integrated with the local information system. The similar images retrieval functionality can be enhanced by the introduction of further descriptors. (author)

  13. Design and development of a content-based medical image retrieval system for spine vertebrae irregularity.

    Science.gov (United States)

    Mustapha, Aouache; Hussain, Aini; Samad, Salina Abdul; Zulkifley, Mohd Asyraf; Diyana Wan Zaki, Wan Mimi; Hamid, Hamzaini Abdul

    2015-01-16

    Content-based medical image retrieval (CBMIR) system enables medical practitioners to perform fast diagnosis through quantitative assessment of the visual information of various modalities. In this paper, a more robust CBMIR system that deals with both cervical and lumbar vertebrae irregularity is afforded. It comprises three main phases, namely modelling, indexing and retrieval of the vertebrae image. The main tasks in the modelling phase are to improve and enhance the visibility of the x-ray image for better segmentation results using active shape model (ASM). The segmented vertebral fractures are then characterized in the indexing phase using region-based fracture characterization (RB-FC) and contour-based fracture characterization (CB-FC). Upon a query, the characterized features are compared to the query image. Effectiveness of the retrieval phase is determined by its retrieval, thus, we propose an integration of the predictor model based cross validation neural network (PMCVNN) and similarity matching (SM) in this stage. The PMCVNN task is to identify the correct vertebral irregularity class through classification allowing the SM process to be more efficient. Retrieval performance between the proposed and the standard retrieval architectures are then compared using retrieval precision (Pr@M) and average group score (AGS) measures. Experimental results show that the new integrated retrieval architecture performs better than those of the standard CBMIR architecture with retrieval results of cervical (AGS > 87%) and lumbar (AGS > 82%) datasets. The proposed CBMIR architecture shows encouraging results with high Pr@M accuracy. As a result, images from the same visualization class are returned for further used by the medical personnel.

  14. A novel 3D shape descriptor for automatic retrieval of anatomical structures from medical images

    Science.gov (United States)

    Nunes, Fátima L. S.; Bergamasco, Leila C. C.; Delmondes, Pedro H.; Valverde, Miguel A. G.; Jackowski, Marcel P.

    2017-03-01

    Content-based image retrieval (CBIR) aims at retrieving from a database objects that are similar to an object provided by a query, by taking into consideration a set of extracted features. While CBIR has been widely applied in the two-dimensional image domain, the retrieval of3D objects from medical image datasets using CBIR remains to be explored. In this context, the development of descriptors that can capture information specific to organs or structures is desirable. In this work, we focus on the retrieval of two anatomical structures commonly imaged by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques, the left ventricle of the heart and blood vessels. Towards this aim, we developed the Area-Distance Local Descriptor (ADLD), a novel 3D local shape descriptor that employs mesh geometry information, namely facet area and distance from centroid to surface, to identify shape changes. Because ADLD only considers surface meshes extracted from volumetric medical images, it substantially diminishes the amount of data to be analyzed. A 90% precision rate was obtained when retrieving both convex (left ventricle) and non-convex structures (blood vessels), allowing for detection of abnormalities associated with changes in shape. Thus, ADLD has the potential to aid in the diagnosis of a wide range of vascular and cardiac diseases.

  15. Wavelet optimization for content-based image retrieval in medical databases.

    Science.gov (United States)

    Quellec, G; Lamard, M; Cazuguel, G; Cochener, B; Roux, C

    2010-04-01

    We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize the distribution of wavelet coefficients in each subband of the decomposition. A distance measure is then defined to compare two image signatures and thus retrieve the most similar images in a database when a query image is submitted by a physician. To retrieve relevant images from a medical database, the signatures and the distance measure must be related to the medical interpretation of images. As a consequence, we introduce several degrees of freedom in the system so that it can be tuned to any pathology and image modality. In particular, we propose to adapt the wavelet basis, within the lifting scheme framework, and to use a custom decomposition scheme. Weights are also introduced between subbands. All these parameters are tuned by an optimization procedure, using the medical grading of each image in the database to define a performance measure. The system is assessed on two medical image databases: one for diabetic retinopathy follow up and one for screening mammography, as well as a general purpose database. Results are promising: a mean precision of 56.50%, 70.91% and 96.10% is achieved for these three databases, when five images are returned by the system. Copyright 2009 Elsevier B.V. All rights reserved.

  16. Modeling multiple visual words assignment for bag-of-features based medical image retrieval

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-01-01

    In this paper, we investigate the bag-of-features based medical image retrieval methods, which represent an image as a collection of local features, such as image patch and key points with SIFT descriptor. To improve the bag-of-features method, we first model the assignment of local descriptor as contribution functions, and then propose a new multiple assignment strategy. By assuming the local feature can be reconstructed by its neighboring visual words in vocabulary, we solve the reconstruction weights as a QP problem and then use the solved weights as contribution functions, which results in a new assignment method called the QP assignment. We carry our experiments on ImageCLEFmed datasets. Experiments\\' results show that our proposed method exceeds the performances of traditional solutions and works well for the bag-of-features based medical image retrieval tasks.

  17. Modeling multiple visual words assignment for bag-of-features based medical image retrieval

    KAUST Repository

    Wang, Jim Jing-Yan; Almasri, Islam

    2012-01-01

    In this paper, we investigate the bag-of-features based medical image retrieval methods, which represent an image as a collection of local features, such as image patch and key points with SIFT descriptor. To improve the bag-of-features method, we first model the assignment of local descriptor as contribution functions, and then propose a new multiple assignment strategy. By assuming the local feature can be reconstructed by its neighboring visual words in vocabulary, we solve the reconstruction weights as a QP problem and then use the solved weights as contribution functions, which results in a new assignment method called the QP assignment. We carry our experiments on ImageCLEFmed datasets. Experiments' results show that our proposed method exceeds the performances of traditional solutions and works well for the bag-of-features based medical image retrieval tasks.

  18. Facilitating medical information search using Google Glass connected to a content-based medical image retrieval system.

    Science.gov (United States)

    Widmer, Antoine; Schaer, Roger; Markonis, Dimitrios; Muller, Henning

    2014-01-01

    Wearable computing devices are starting to change the way users interact with computers and the Internet. Among them, Google Glass includes a small screen located in front of the right eye, a camera filming in front of the user and a small computing unit. Google Glass has the advantage to provide online services while allowing the user to perform tasks with his/her hands. These augmented glasses uncover many useful applications, also in the medical domain. For example, Google Glass can easily provide video conference between medical doctors to discuss a live case. Using these glasses can also facilitate medical information search by allowing the access of a large amount of annotated medical cases during a consultation in a non-disruptive fashion for medical staff. In this paper, we developed a Google Glass application able to take a photo and send it to a medical image retrieval system along with keywords in order to retrieve similar cases. As a preliminary assessment of the usability of the application, we tested the application under three conditions (images of the skin; printed CT scans and MRI images; and CT and MRI images acquired directly from an LCD screen) to explore whether using Google Glass affects the accuracy of the results returned by the medical image retrieval system. The preliminary results show that despite minor problems due to the relative stability of the Google Glass, images can be sent to and processed by the medical image retrieval system and similar images are returned to the user, potentially helping in the decision making process.

  19. SOFTWARE FOR REGIONS OF INTEREST RETRIEVAL ON MEDICAL 3D IMAGES

    Directory of Open Access Journals (Sweden)

    G. G. Stromov

    2014-01-01

    Full Text Available Background. Implementation of software for areas of interest retrieval in 3D medical images is described in this article. It has been tested against large volume of model MRIs.Material and methods. We tested software against normal and pathological (severe multiple sclerosis model MRIs from tge BrainWeb resource. Technological stack is based on open-source cross-platform solutions. We implemented storage system on Maria DB (an open-sourced fork of MySQL with P/SQL extensions. Python 2.7 scripting was used for automatization of extract-transform-load operations. The computational core is written on Java 7 with Spring framework 3. MongoDB was used as a cache in the cluster of workstations. Maven 3 was chosen as a dependency manager and build system, the project is hosted at Github.Results. As testing on SSMU's LAN has showed, software has been developed is quite efficiently retrieves ROIs are matching for the morphological substratum on pathological MRIs.Conclusion. Automation of a diagnostic process using medical imaging allows to level down the subjective component in decision making and increase the availability of hi-tech medicine. Software has shown in the article is a complex solution for ROI retrieving and segmentation process on model medical images in full-automated mode.We would like to thank Robert Vincent for great help with consulting of usage the BrainWeb resource.

  20. Web tools for effective retrieval, visualization, and evaluation of cardiology medical images and records

    Science.gov (United States)

    Masseroli, Marco; Pinciroli, Francesco

    2000-12-01

    To provide easy retrieval, integration and evaluation of multimodal cardiology images and data in a web browser environment, distributed application technologies and java programming were used to implement a client-server architecture based on software agents. The server side manages secure connections and queries to heterogeneous remote databases and file systems containing patient personal and clinical data. The client side is a Java applet running in a web browser and providing a friendly medical user interface to perform queries on patient and medical test dat and integrate and visualize properly the various query results. A set of tools based on Java Advanced Imaging API enables to process and analyze the retrieved cardiology images, and quantify their features in different regions of interest. The platform-independence Java technology makes the developed prototype easy to be managed in a centralized form and provided in each site where an intranet or internet connection can be located. Giving the healthcare providers effective tools for querying, visualizing and evaluating comprehensively cardiology medical images and records in all locations where they can need them- i.e. emergency, operating theaters, ward, or even outpatient clinics- the developed prototype represents an important aid in providing more efficient diagnoses and medical treatments.

  1. A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval.

    Science.gov (United States)

    Yang, Liu; Jin, Rong; Mummert, Lily; Sukthankar, Rahul; Goode, Adam; Zheng, Bin; Hoi, Steven C H; Satyanarayanan, Mahadev

    2010-01-01

    Similarity measurement is a critical component in content-based image retrieval systems, and learning a good distance metric can significantly improve retrieval performance. However, despite extensive study, there are several major shortcomings with the existing approaches for distance metric learning that can significantly affect their application to medical image retrieval. In particular, "similarity" can mean very different things in image retrieval: resemblance in visual appearance (e.g., two images that look like one another) or similarity in semantic annotation (e.g., two images of tumors that look quite different yet are both malignant). Current approaches for distance metric learning typically address only one goal without consideration of the other. This is problematic for medical image retrieval where the goal is to assist doctors in decision making. In these applications, given a query image, the goal is to retrieve similar images from a reference library whose semantic annotations could provide the medical professional with greater insight into the possible interpretations of the query image. If the system were to retrieve images that did not look like the query, then users would be less likely to trust the system; on the other hand, retrieving images that appear superficially similar to the query but are semantically unrelated is undesirable because that could lead users toward an incorrect diagnosis. Hence, learning a distance metric that preserves both visual resemblance and semantic similarity is important. We emphasize that, although our study is focused on medical image retrieval, the problem addressed in this work is critical to many image retrieval systems. We present a boosting framework for distance metric learning that aims to preserve both visual and semantic similarities. The boosting framework first learns a binary representation using side information, in the form of labeled pairs, and then computes the distance as a weighted Hamming

  2. Unified modeling language and design of a case-based retrieval system in medical imaging.

    Science.gov (United States)

    LeBozec, C; Jaulent, M C; Zapletal, E; Degoulet, P

    1998-01-01

    One goal of artificial intelligence research into case-based reasoning (CBR) systems is to develop approaches for designing useful and practical interactive case-based environments. Explaining each step of the design of the case-base and of the retrieval process is critical for the application of case-based systems to the real world. We describe herein our approach to the design of IDEM--Images and Diagnosis from Examples in Medicine--a medical image case-based retrieval system for pathologists. Our approach is based on the expressiveness of an object-oriented modeling language standard: the Unified Modeling Language (UML). We created a set of diagrams in UML notation illustrating the steps of the CBR methodology we used. The key aspect of this approach was selecting the relevant objects of the system according to user requirements and making visualization of cases and of the components of the case retrieval process. Further evaluation of the expressiveness of the design document is required but UML seems to be a promising formalism, improving the communication between the developers and users.

  3. Combining textual and visual information for image retrieval in the medical domain.

    Science.gov (United States)

    Gkoufas, Yiannis; Morou, Anna; Kalamboukis, Theodore

    2011-01-01

    In this article we have assembled the experience obtained from our participation in the imageCLEF evaluation task over the past two years. Exploitation on the use of linear combinations for image retrieval has been attempted by combining visual and textual sources of images. From our experiments we conclude that a mixed retrieval technique that applies both textual and visual retrieval in an interchangeably repeated manner improves the performance while overcoming the scalability limitations of visual retrieval. In particular, the mean average precision (MAP) has increased from 0.01 to 0.15 and 0.087 for 2009 and 2010 data, respectively, when content-based image retrieval (CBIR) is performed on the top 1000 results from textual retrieval based on natural language processing (NLP).

  4. Bag-of-features based medical image retrieval via multiple assignment and visual words weighting

    KAUST Repository

    Wang, Jingyan; Li, Yongping; Zhang, Ying; Wang, Chao; Xie, Honglan; Chen, Guoling; Gao, Xin

    2011-01-01

    Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights. © 2011 IEEE.

  5. Bag-of-features based medical image retrieval via multiple assignment and visual words weighting

    KAUST Repository

    Wang, Jingyan

    2011-11-01

    Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights. © 2011 IEEE.

  6. Optimization of reference library used in content-based medical image retrieval scheme

    International Nuclear Information System (INIS)

    Park, Sang Cheol; Sukthankar, Rahul; Mummert, Lily; Satyanarayanan, Mahadev; Zheng Bin

    2007-01-01

    Building an optimal image reference library is a critical step in developing the interactive computer-aided detection and diagnosis (I-CAD) systems of medical images using content-based image retrieval (CBIR) schemes. In this study, the authors conducted two experiments to investigate (1) the relationship between I-CAD performance and size of reference library and (2) a new reference selection strategy to optimize the library and improve I-CAD performance. The authors assembled a reference library that includes 3153 regions of interest (ROI) depicting either malignant masses (1592) or CAD-cued false-positive regions (1561) and an independent testing data set including 200 masses and 200 false-positive regions. A CBIR scheme using a distance-weighted K-nearest neighbor algorithm is applied to retrieve references that are considered similar to the testing sample from the library. The area under receiver operating characteristic curve (A z ) is used as an index to evaluate the I-CAD performance. In the first experiment, the authors systematically increased reference library size and tested I-CAD performance. The result indicates that scheme performance improves initially from A z =0.715 to 0.874 and then plateaus when the library size reaches approximately half of its maximum capacity. In the second experiment, based on the hypothesis that a ROI should be removed if it performs poorly compared to a group of similar ROIs in a large and diverse reference library, the authors applied a new strategy to identify 'poorly effective' references. By removing 174 identified ROIs from the reference library, I-CAD performance significantly increases to A z =0.914 (p<0.01). The study demonstrates that increasing reference library size and removing poorly effective references can significantly improve I-CAD performance

  7. Search and retrieval of medical images for improved diagnosis of neurodegenerative diseases

    Science.gov (United States)

    Ekin, Ahmet; Jasinschi, Radu; Turan, Erman; Engbers, Rene; van der Grond, Jeroen; van Buchem, Mark A.

    2007-01-01

    In the medical world, the accuracy of diagnosis is mainly affected by either lack of sufficient understanding of some diseases or the inter-, and/or intra-observer variability of the diagnoses. The former requires understanding the progress of diseases at much earlier stages, extraction of important information from ever growing amounts of data, and finally finding correlations with certain features and complications that will illuminate the disease progression. The latter (inter-, and intra- observer variability) is caused by the differences in the experience levels of different medical experts (inter-observer variability) or by mental and physical tiredness of one expert (intra-observer variability). We believe that the use of large databases can help improve the current status of disease understanding and decision making. By comparing large number of patients, some of the otherwise hidden relations can be revealed that results in better understanding, patients with similar complications can be found, the diagnosis and treatment can be compared so that the medical expert can make a better diagnosis. To this effect, this paper introduces a search and retrieval system for brain MR databases and shows that brain iron accumulation shape provides additional information to the shape-insensitive features, such as the total brain iron load, that are commonly used in the clinics. We propose to use Kendall's correlation value to automatically compare various returns to a query. We also describe a fully automated and fast brain MR image analysis system to detect degenerative iron accumulation in brain, as it is the case in Alzheimer's and Parkinson's. The system is composed of several novel image processing algorithms and has been extensively tested in Leiden University Medical Center over so far more than 600 patients.

  8. Automated Medical Literature Retrieval

    Directory of Open Access Journals (Sweden)

    David Hawking

    2012-09-01

    Full Text Available Background The constantly growing publication rate of medical research articles puts increasing pressure on medical specialists who need to be aware of the recent developments in their field. The currently used literature retrieval systems allow researchers to find specific papers; however the search task is still repetitive and time-consuming. Aims In this paper we describe a system that retrieves medical publications by automatically generating queries based on data from an electronic patient record. This allows the doctor to focus on medical issues and provide an improved service to the patient, with higher confidence that it is underpinned by current research. Method Our research prototype automatically generates query terms based on the patient record and adds weight factors for each term. Currently the patient’s age is taken into account with a fuzzy logic derived weight, and terms describing blood-related anomalies are derived from recent blood test results. Conditionally selected homonyms are used for query expansion. The query retrieves matching records from a local index of PubMed publications and displays results in descending relevance for the given patient. Recent publications are clearly highlighted for instant recognition by the researcher. Results Nine medical specialists from the Royal Adelaide Hospital evaluated the system and submitted pre-trial and post-trial questionnaires. Throughout the study we received positive feedback as doctors felt the support provided by the prototype was useful, and which they would like to use in their daily routine. Conclusion By supporting the time-consuming task of query formulation and iterative modification as well as by presenting the search results in order of relevance for the specific patient, literature retrieval becomes part of the daily workflow of busy professionals.

  9. Retrieve An Image

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Retrieve An Image. “A building”. “Box-shaped”. “Brown Color”. “Foreshortened view”. OR. Why not specify a similar looking picture? -- Main Motivation!

  10. A review of content-based image retrieval systems in medical applications-clinical benefits and future directions.

    Science.gov (United States)

    Müller, Henning; Michoux, Nicolas; Bandon, David; Geissbuhler, Antoine

    2004-02-01

    Content-based visual information retrieval (CBVIR) or content-based image retrieval (CBIR) has been one on the most vivid research areas in the field of computer vision over the last 10 years. The availability of large and steadily growing amounts of visual and multimedia data, and the development of the Internet underline the need to create thematic access methods that offer more than simple text-based queries or requests based on matching exact database fields. Many programs and tools have been developed to formulate and execute queries based on the visual or audio content and to help browsing large multimedia repositories. Still, no general breakthrough has been achieved with respect to large varied databases with documents of differing sorts and with varying characteristics. Answers to many questions with respect to speed, semantic descriptors or objective image interpretations are still unanswered. In the medical field, images, and especially digital images, are produced in ever-increasing quantities and used for diagnostics and therapy. The Radiology Department of the University Hospital of Geneva alone produced more than 12,000 images a day in 2002. The cardiology is currently the second largest producer of digital images, especially with videos of cardiac catheterization ( approximately 1800 exams per year containing almost 2000 images each). The total amount of cardiologic image data produced in the Geneva University Hospital was around 1 TB in 2002. Endoscopic videos can equally produce enormous amounts of data. With digital imaging and communications in medicine (DICOM), a standard for image communication has been set and patient information can be stored with the actual image(s), although still a few problems prevail with respect to the standardization. In several articles, content-based access to medical images for supporting clinical decision-making has been proposed that would ease the management of clinical data and scenarios for the integration of

  11. The Wikipedia Image Retrieval Task

    NARCIS (Netherlands)

    T. Tsikrika (Theodora); J. Kludas

    2010-01-01

    htmlabstractThe wikipedia image retrieval task at ImageCLEF provides a testbed for the system-oriented evaluation of visual information retrieval from a collection of Wikipedia images. The aim is to investigate the effectiveness of retrieval approaches that exploit textual and visual evidence in the

  12. IMAGE DESCRIPTIONS FOR SKETCH BASED IMAGE RETRIEVAL

    OpenAIRE

    SAAVEDRA RONDO, JOSE MANUEL; SAAVEDRA RONDO, JOSE MANUEL

    2008-01-01

    Due to the massive use of Internet together with the proliferation of media devices, content based image retrieval has become an active discipline in computer science. A common content based image retrieval approach requires that the user gives a regular image (e.g, a photo) as a query. However, having a regular image as query may be a serious problem. Indeed, people commonly use an image retrieval system because they do not count on the desired image. An easy alternative way t...

  13. Multimodal medical information retrieval with unsupervised rank fusion.

    Science.gov (United States)

    Mourão, André; Martins, Flávio; Magalhães, João

    2015-01-01

    Modern medical information retrieval systems are paramount to manage the insurmountable quantities of clinical data. These systems empower health care experts in the diagnosis of patients and play an important role in the clinical decision process. However, the ever-growing heterogeneous information generated in medical environments poses several challenges for retrieval systems. We propose a medical information retrieval system with support for multimodal medical case-based retrieval. The system supports medical information discovery by providing multimodal search, through a novel data fusion algorithm, and term suggestions from a medical thesaurus. Our search system compared favorably to other systems in 2013 ImageCLEFMedical. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Interactive Exploration for Image Retrieval

    Directory of Open Access Journals (Sweden)

    Jérôme Fournier

    2005-08-01

    Full Text Available We present a new version of our content-based image retrieval system RETIN. It is based on adaptive quantization of the color space, together with new features aiming at representing the spatial relationship between colors. Color analysis is also extended to texture. Using these powerful indexes, an original interactive retrieval strategy is introduced. The process is based on two steps for handling the retrieval of very large image categories. First, a controlled exploration method of the database is presented. Second, a relevance feedback method based on statistical learning is proposed. All the steps are evaluated by experiments on a generalist database.

  15. Medical Imaging.

    Science.gov (United States)

    Barker, M. C. J.

    1996-01-01

    Discusses four main types of medical imaging (x-ray, radionuclide, ultrasound, and magnetic resonance) and considers their relative merits. Describes important recent and possible future developments in image processing. (Author/MKR)

  16. Medical imaging

    International Nuclear Information System (INIS)

    Loshkajian, A.

    2000-01-01

    This didactical book presents the medical imaging techniques: radiography, scanner, nuclear magnetic resonance (NMR). Examples are given for the most common pathologies in all domains of medicine. (J.S.)

  17. Conversion of a Surface Model of a Structure of Interest into a Volume Model for Medical Image Retrieval

    Directory of Open Access Journals (Sweden)

    Sarmad ISTEPHAN

    2015-06-01

    Full Text Available Volumetric medical image datasets contain vital information for noninvasive diagnosis, treatment planning and prognosis. However, direct and unlimited query of such datasets is hindered due to the unstructured nature of the imaging data. This study is a step towards the unlimited query of medical image datasets by focusing on specific Structures of Interest (SOI. A requirement in achieving this objective is having both the surface and volume models of the SOI. However, typically, only the surface model is available. Therefore, this study focuses on creating a fast method to convert a surface model to a volume model. Three methods (1D, 2D and 3D are proposed and evaluated using simulated and real data of Deep Perisylvian Area (DPSA within the human brain. The 1D method takes 80 msec for DPSA model; about 4 times faster than 2D method and 7.4 fold faster than 3D method, with over 97% accuracy. The proposed 1D method is feasible for surface to volume conversion in computer aided diagnosis, treatment planning and prognosis systems containing large amounts of unstructured medical images.

  18. Medical imaging

    CERN Document Server

    Townsend, David W

    1996-01-01

    Since the introduction of the X-ray scanner into radiology almost 25 years ago, non-invasive imaging has become firmly established as an essential tool in the diagnosis of disease. Fully three-dimensional imaging of internal organs is now possible, b and for studies which explore the functional status of the body. Powerful techniques to correlate anatomy and function are available, and scanners which combine anatomical and functional imaging in a single device are under development. Such techniques have been made possible through r ecent technological and mathematical advances. This series of lectures will review both the physical basis of medical imaging techniques using X-rays, gamma and positron emitting radiosiotopes, and nuclear magnetic resonance, and the mathematical methods used to reconstruct three-dimentional distributions from projection data. The lectures will trace the development of medical imaging from simple radiographs to the present-day non-invasive measurement of in vivo biochemistry. They ...

  19. Document image retrieval through word shape coding.

    Science.gov (United States)

    Lu, Shijian; Li, Linlin; Tan, Chew Lim

    2008-11-01

    This paper presents a document retrieval technique that is capable of searching document images without OCR (optical character recognition). The proposed technique retrieves document images by a new word shape coding scheme, which captures the document content through annotating each word image by a word shape code. In particular, we annotate word images by using a set of topological shape features including character ascenders/descenders, character holes, and character water reservoirs. With the annotated word shape codes, document images can be retrieved by either query keywords or a query document image. Experimental results show that the proposed document image retrieval technique is fast, efficient, and tolerant to various types of document degradation.

  20. Medical imaging

    International Nuclear Information System (INIS)

    Elliott, Alex

    2005-01-01

    Diagnostic medical imaging is a fundamental part of the practice of modern medicine and is responsible for the expenditure of considerable amounts of capital and revenue monies in healthcare systems around the world. Much research and development work is carried out, both by commercial companies and the academic community. This paper reviews briefly each of the major diagnostic medical imaging techniques-X-ray (planar and CT), ultrasound, nuclear medicine (planar, SPECT and PET) and magnetic resonance. The technical challenges facing each are highlighted, with some of the most recent developments. In terms of the future, interventional/peri-operative imaging, the advancement of molecular medicine and gene therapy are identified as potential areas of expansion

  1. Intelligent distributed medical image management

    Science.gov (United States)

    Garcia, Hong-Mei C.; Yun, David Y.

    1995-05-01

    The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.

  2. Content Based Retrieval System for Magnetic Resonance Images

    International Nuclear Information System (INIS)

    Trojachanets, Katarina

    2010-01-01

    The amount of medical images is continuously increasing as a consequence of the constant growth and development of techniques for digital image acquisition. Manual annotation and description of each image is impractical, expensive and time consuming approach. Moreover, it is an imprecise and insufficient way for describing all information stored in medical images. This induces the necessity for developing efficient image storage, annotation and retrieval systems. Content based image retrieval (CBIR) emerges as an efficient approach for digital image retrieval from large databases. It includes two phases. In the first phase, the visual content of the image is analyzed and the feature extraction process is performed. An appropriate descriptor, namely, feature vector is then associated with each image. These descriptors are used in the second phase, i.e. the retrieval process. With the aim to improve the efficiency and precision of the content based image retrieval systems, feature extraction and automatic image annotation techniques are subject of continuous researches and development. Including the classification techniques in the retrieval process enables automatic image annotation in an existing CBIR system. It contributes to more efficient and easier image organization in the system.Applying content based retrieval in the field of magnetic resonance is a big challenge. Magnetic resonance imaging is an image based diagnostic technique which is widely used in medical environment. According to this, the number of magnetic resonance images is enormously growing. Magnetic resonance images provide plentiful medical information, high resolution and specific nature. Thus, the capability of CBIR systems for image retrieval from large database is of great importance for efficient analysis of this kind of images. The aim of this thesis is to propose content based retrieval system architecture for magnetic resonance images. To provide the system efficiency, feature

  3. Transformation invariant image indexing and retrieval for image databases

    NARCIS (Netherlands)

    Gevers, Th.; Smeulders, A.W.M.

    1994-01-01

    This paper presents a novel design of an image database system which supports storage, indexing and retrieval of images by content. The image retrieval methodology is based on the observation that images can be discriminated by the presence of image objects and their spatial relations. Images in the

  4. Feature hashing for fast image retrieval

    Science.gov (United States)

    Yan, Lingyu; Fu, Jiarun; Zhang, Hongxin; Yuan, Lu; Xu, Hui

    2018-03-01

    Currently, researches on content based image retrieval mainly focus on robust feature extraction. However, due to the exponential growth of online images, it is necessary to consider searching among large scale images, which is very timeconsuming and unscalable. Hence, we need to pay much attention to the efficiency of image retrieval. In this paper, we propose a feature hashing method for image retrieval which not only generates compact fingerprint for image representation, but also prevents huge semantic loss during the process of hashing. To generate the fingerprint, an objective function of semantic loss is constructed and minimized, which combine the influence of both the neighborhood structure of feature data and mapping error. Since the machine learning based hashing effectively preserves neighborhood structure of data, it yields visual words with strong discriminability. Furthermore, the generated binary codes leads image representation building to be of low-complexity, making it efficient and scalable to large scale databases. Experimental results show good performance of our approach.

  5. Dialog-based Interactive Image Retrieval

    OpenAIRE

    Guo, Xiaoxiao; Wu, Hui; Cheng, Yu; Rennie, Steven; Feris, Rogerio Schmidt

    2018-01-01

    Existing methods for interactive image retrieval have demonstrated the merit of integrating user feedback, improving retrieval results. However, most current systems rely on restricted forms of user feedback, such as binary relevance responses, or feedback based on a fixed set of relative attributes, which limits their impact. In this paper, we introduce a new approach to interactive image search that enables users to provide feedback via natural language, allowing for more natural and effect...

  6. Toward privacy-preserving JPEG image retrieval

    Science.gov (United States)

    Cheng, Hang; Wang, Jingyue; Wang, Meiqing; Zhong, Shangping

    2017-07-01

    This paper proposes a privacy-preserving retrieval scheme for JPEG images based on local variance. Three parties are involved in the scheme: the content owner, the server, and the authorized user. The content owner encrypts JPEG images for privacy protection by jointly using permutation cipher and stream cipher, and then, the encrypted versions are uploaded to the server. With an encrypted query image provided by an authorized user, the server may extract blockwise local variances in different directions without knowing the plaintext content. After that, it can calculate the similarity between the encrypted query image and each encrypted database image by a local variance-based feature comparison mechanism. The authorized user with the encryption key can decrypt the returned encrypted images with plaintext content similar to the query image. The experimental results show that the proposed scheme not only provides effective privacy-preserving retrieval service but also ensures both format compliance and file size preservation for encrypted JPEG images.

  7. Grid-Independent Compressive Imaging and Fourier Phase Retrieval

    Science.gov (United States)

    Liao, Wenjing

    2013-01-01

    This dissertation is composed of two parts. In the first part techniques of band exclusion(BE) and local optimization(LO) are proposed to solve linear continuum inverse problems independently of the grid spacing. The second part is devoted to the Fourier phase retrieval problem. Many situations in optics, medical imaging and signal processing call…

  8. Ontology of Gaps in Content-Based Image Retrieval

    OpenAIRE

    Deserno, Thomas M.; Antani, Sameer; Long, Rodney

    2008-01-01

    Content-based image retrieval (CBIR) is a promising technology to enrich the core functionality of picture archiving and communication systems (PACS). CBIR has a potential for making a strong impact in diagnostics, research, and education. Research as reported in the scientific literature, however, has not made significant inroads as medical CBIR applications incorporated into routine clinical medicine or medical research. The cause is often attributed (without supporting analysis) to the ina...

  9. Secure image retrieval with multiple keys

    Science.gov (United States)

    Liang, Haihua; Zhang, Xinpeng; Wei, Qiuhan; Cheng, Hang

    2018-03-01

    This article proposes a secure image retrieval scheme under a multiuser scenario. In this scheme, the owner first encrypts and uploads images and their corresponding features to the cloud; then, the user submits the encrypted feature of the query image to the cloud; next, the cloud compares the encrypted features and returns encrypted images with similar content to the user. To find the nearest neighbor in the encrypted features, an encryption with multiple keys is proposed, in which the query feature of each user is encrypted by his/her own key. To improve the key security and space utilization, global optimization and Gaussian distribution are, respectively, employed to generate multiple keys. The experiments show that the proposed encryption can provide effective and secure image retrieval for each user and ensure confidentiality of the query feature of each user.

  10. Multimedia medical data archive and retrieval server on the Internet

    Science.gov (United States)

    Komo, Darmadi; Levine, Betty A.; Freedman, Matthew T.; Mun, Seong K.; Tang, Y. K.; Chiang, Ted T.

    1997-05-01

    The Multimedia Medical Data Archive and Retrieval Server has been installed at the imaging science and information systems (ISIS) center in Georgetown University Medical Center to provide medical data archive and retrieval support for medical researchers. The medical data includes text, images, sound, and video. All medical data is keyword indexed using a database management system and placed temporarily in a staging area and then transferred to a StorageTek one terabyte tape library system with a robotic arm for permanent archive. There are two methods of interaction with the system. The first method is to use a web browser with HTML functions to perform insert, query, update, and retrieve operations. These generate dynamic SQL calls to the database and produce StorageTek API calls to the tape library. The HTML functions consist of a database, StorageTek interface, HTTP server, common gateway interface, and Java programs. The second method is to issue a DICOM store command, which is translated by the system's DICOM server to SQL calls and then produce StorageTek API calls to the tape library. The system performs as both an Internet and a DICOM server using standard protocols such as HTTP, HTML, Java, and DICOM. Users with proper authentication can log on to the server from anywhere on the Internet using a standard web browser resulting in a user-friendly, open environment, and platform independent solution for archiving multimedia medical data. It represents a complex integration of different components including a robotic tape storage system, database, user-interface, WWW protocols, and TCP/IP networking. The user will only deal with the WWW and DICOM server components of the system, the database and robotic tape library system are transparent and the user will not know that the medical data is stored on magnetic tapes. The server provides the researchers a cost-effective tool for archiving and retrieving medical data across a TCP/IP network environment. It will

  11. Simultenious binary hash and features learning for image retrieval

    Science.gov (United States)

    Frantc, V. A.; Makov, S. V.; Voronin, V. V.; Marchuk, V. I.; Semenishchev, E. A.; Egiazarian, K. O.; Agaian, S.

    2016-05-01

    Content-based image retrieval systems have plenty of applications in modern world. The most important one is the image search by query image or by semantic description. Approaches to this problem are employed in personal photo-collection management systems, web-scale image search engines, medical systems, etc. Automatic analysis of large unlabeled image datasets is virtually impossible without satisfactory image-retrieval technique. It's the main reason why this kind of automatic image processing has attracted so much attention during recent years. Despite rather huge progress in the field, semantically meaningful image retrieval still remains a challenging task. The main issue here is the demand to provide reliable results in short amount of time. This paper addresses the problem by novel technique for simultaneous learning of global image features and binary hash codes. Our approach provide mapping of pixel-based image representation to hash-value space simultaneously trying to save as much of semantic image content as possible. We use deep learning methodology to generate image description with properties of similarity preservation and statistical independence. The main advantage of our approach in contrast to existing is ability to fine-tune retrieval procedure for very specific application which allow us to provide better results in comparison to general techniques. Presented in the paper framework for data- dependent image hashing is based on use two different kinds of neural networks: convolutional neural networks for image description and autoencoder for feature to hash space mapping. Experimental results confirmed that our approach has shown promising results in compare to other state-of-the-art methods.

  12. Image Information Retrieval: An Overview of Current Research

    OpenAIRE

    Abby A. Goodrum

    2000-01-01

    This paper provides an overview of current research in image information retrieval and provides an outline of areas for future research. The approach is broad and interdisciplinary and focuses on three aspects of image research (IR): text-based retrieval, content-based retrieval, and user interactions with image information retrieval systems. The review concludes with a call for image retrieval evaluation studies similar to TREC.

  13. Intelligent image retrieval based on radiology reports

    Energy Technology Data Exchange (ETDEWEB)

    Gerstmair, Axel; Langer, Mathias; Kotter, Elmar [University Medical Center Freiburg, Department of Diagnostic Radiology, Freiburg (Germany); Daumke, Philipp; Simon, Kai [Averbis GmbH, Freiburg (Germany)

    2012-12-15

    To create an advanced image retrieval and data-mining system based on in-house radiology reports. Radiology reports are semantically analysed using natural language processing (NLP) techniques and stored in a state-of-the-art search engine. Images referenced by sequence and image number in the reports are retrieved from the picture archiving and communication system (PACS) and stored for later viewing. A web-based front end is used as an interface to query for images and show the results with the retrieved images and report text. Using a comprehensive radiological lexicon for the underlying terminology, the search algorithm also finds results for synonyms, abbreviations and related topics. The test set was 108 manually annotated reports analysed by different system configurations. Best results were achieved using full syntactic and semantic analysis with a precision of 0.929 and recall of 0.952. Operating successfully since October 2010, 258,824 reports have been indexed and a total of 405,146 preview images are stored in the database. Data-mining and NLP techniques provide quick access to a vast repository of images and radiology reports with both high precision and recall values. Consequently, the system has become a valuable tool in daily clinical routine, education and research. (orig.)

  14. Intelligent image retrieval based on radiology reports

    International Nuclear Information System (INIS)

    Gerstmair, Axel; Langer, Mathias; Kotter, Elmar; Daumke, Philipp; Simon, Kai

    2012-01-01

    To create an advanced image retrieval and data-mining system based on in-house radiology reports. Radiology reports are semantically analysed using natural language processing (NLP) techniques and stored in a state-of-the-art search engine. Images referenced by sequence and image number in the reports are retrieved from the picture archiving and communication system (PACS) and stored for later viewing. A web-based front end is used as an interface to query for images and show the results with the retrieved images and report text. Using a comprehensive radiological lexicon for the underlying terminology, the search algorithm also finds results for synonyms, abbreviations and related topics. The test set was 108 manually annotated reports analysed by different system configurations. Best results were achieved using full syntactic and semantic analysis with a precision of 0.929 and recall of 0.952. Operating successfully since October 2010, 258,824 reports have been indexed and a total of 405,146 preview images are stored in the database. Data-mining and NLP techniques provide quick access to a vast repository of images and radiology reports with both high precision and recall values. Consequently, the system has become a valuable tool in daily clinical routine, education and research. (orig.)

  15. Logistics and safety of extracorporeal membrane oxygenation in medical retrieval.

    Science.gov (United States)

    Burns, Brian J; Habig, Karel; Reid, Cliff; Kernick, Paul; Wilkinson, Chris; Tall, Gary; Coombes, Sarah; Manning, Ron

    2011-01-01

    This article reviews the logistics and safety of extracorporeal membrane oxygenation (ECMO) medical retrieval in New South Wales, Australia. We describe the logistics involved in ECMO road and rotary-wing retrieval by a multidisciplinary team during the H1N1 influenza epidemic in winter 2009 (i.e., June 1 to August 31, 2009). Basic patient demographics and key retrieval time lines were analyzed. There were 17 patients retrieved on ECMO, with their ages ranging from 22 to 55 years. The median weight was 110 kg. Four critical events were recorded during retrieval, with no adverse outcomes. The retrieval distance varied from 20.8 to 430 km. There were delays in times from retrieval booking to both retrieval tasking and retrieval team departure in 88% of retrievals. The most common reasons cited were "patient not ready" 23.5% (4/17); "vehicle not available," 23.5% (4/17); and "complex retrieval," 41.2% (7/17). The median time (hours:minutes) from booking with the medical retrieval unit (MRU) to tasking was 4:35 (interquartile range [IQR] 3:27-6:15). The median time lag from tasking to departure was 1:00 (IQR 00:10-2:20). The median stabilization time was 1:30 (IQR 1:20-1:55). The median retrieval duration was 7:35 (IQR 5:50-10:15). The process of development of ECMO retrieval was enabled by the preexistence of a high-volume experienced medical retrieval service. Although ECMO retrieval is not a new concept, we describe an entire process for ECMO retrieval that we believe will benefit other retrieval service providers. The increased workload of ECMO retrieval during the swine flu pandemic has led to refinement in the system and process for the future.

  16. Robust histogram-based image retrieval

    Czech Academy of Sciences Publication Activity Database

    Höschl, Cyril; Flusser, Jan

    2016-01-01

    Roč. 69, č. 1 (2016), s. 72-81 ISSN 0167-8655 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Image retrieval * Noisy image * Histogram * Convolution * Moments * Invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.995, year: 2016 http://library.utia.cas.cz/separaty/2015/ZOI/hoschl-0452147.pdf

  17. Contextual Distance Refining for Image Retrieval

    KAUST Repository

    Islam, Almasri

    2014-01-01

    Recently, a number of methods have been proposed to improve image retrieval accuracy by capturing context information. These methods try to compensate for the fact that a visually less similar image might be more relevant because it depicts the same object. We propose a new quick method for refining any pairwise distance metric, it works by iteratively discovering the object in the image from the most similar images, and then refine the distance metric accordingly. Test show that our technique improves over the state of art in terms of accuracy over the MPEG7 dataset.

  18. Contextual Distance Refining for Image Retrieval

    KAUST Repository

    Islam, Almasri

    2014-09-16

    Recently, a number of methods have been proposed to improve image retrieval accuracy by capturing context information. These methods try to compensate for the fact that a visually less similar image might be more relevant because it depicts the same object. We propose a new quick method for refining any pairwise distance metric, it works by iteratively discovering the object in the image from the most similar images, and then refine the distance metric accordingly. Test show that our technique improves over the state of art in terms of accuracy over the MPEG7 dataset.

  19. A semantic medical multimedia retrieval approach using ontology information hiding.

    Science.gov (United States)

    Guo, Kehua; Zhang, Shigeng

    2013-01-01

    Searching useful information from unstructured medical multimedia data has been a difficult problem in information retrieval. This paper reports an effective semantic medical multimedia retrieval approach which can reflect the users' query intent. Firstly, semantic annotations will be given to the multimedia documents in the medical multimedia database. Secondly, the ontology that represented semantic information will be hidden in the head of the multimedia documents. The main innovations of this approach are cross-type retrieval support and semantic information preservation. Experimental results indicate a good precision and efficiency of our approach for medical multimedia retrieval in comparison with some traditional approaches.

  20. Active learning methods for interactive image retrieval.

    Science.gov (United States)

    Gosselin, Philippe Henri; Cord, Matthieu

    2008-07-01

    Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.

  1. Retrieval and classification of food images.

    Science.gov (United States)

    Farinella, Giovanni Maria; Allegra, Dario; Moltisanti, Marco; Stanco, Filippo; Battiato, Sebastiano

    2016-10-01

    Automatic food understanding from images is an interesting challenge with applications in different domains. In particular, food intake monitoring is becoming more and more important because of the key role that it plays in health and market economies. In this paper, we address the study of food image processing from the perspective of Computer Vision. As first contribution we present a survey of the studies in the context of food image processing from the early attempts to the current state-of-the-art methods. Since retrieval and classification engines able to work on food images are required to build automatic systems for diet monitoring (e.g., to be embedded in wearable cameras), we focus our attention on the aspect of the representation of the food images because it plays a fundamental role in the understanding engines. The food retrieval and classification is a challenging task since the food presents high variableness and an intrinsic deformability. To properly study the peculiarities of different image representations we propose the UNICT-FD1200 dataset. It was composed of 4754 food images of 1200 distinct dishes acquired during real meals. Each food plate is acquired multiple times and the overall dataset presents both geometric and photometric variabilities. The images of the dataset have been manually labeled considering 8 categories: Appetizer, Main Course, Second Course, Single Course, Side Dish, Dessert, Breakfast, Fruit. We have performed tests employing different representations of the state-of-the-art to assess the related performances on the UNICT-FD1200 dataset. Finally, we propose a new representation based on the perceptual concept of Anti-Textons which is able to encode spatial information between Textons outperforming other representations in the context of food retrieval and Classification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. SiNC: Saliency-injected neural codes for representation and efficient retrieval of medical radiographs.

    Directory of Open Access Journals (Sweden)

    Jamil Ahmad

    Full Text Available Medical image collections contain a wealth of information which can assist radiologists and medical experts in diagnosis and disease detection for making well-informed decisions. However, this objective can only be realized if efficient access is provided to semantically relevant cases from the ever-growing medical image repositories. In this paper, we present an efficient method for representing medical images by incorporating visual saliency and deep features obtained from a fine-tuned convolutional neural network (CNN pre-trained on natural images. Saliency detector is employed to automatically identify regions of interest like tumors, fractures, and calcified spots in images prior to feature extraction. Neuronal activation features termed as neural codes from different CNN layers are comprehensively studied to identify most appropriate features for representing radiographs. This study revealed that neural codes from the last fully connected layer of the fine-tuned CNN are found to be the most suitable for representing medical images. The neural codes extracted from the entire image and salient part of the image are fused to obtain the saliency-injected neural codes (SiNC descriptor which is used for indexing and retrieval. Finally, locality sensitive hashing techniques are applied on the SiNC descriptor to acquire short binary codes for allowing efficient retrieval in large scale image collections. Comprehensive experimental evaluations on the radiology images dataset reveal that the proposed framework achieves high retrieval accuracy and efficiency for scalable image retrieval applications and compares favorably with existing approaches.

  3. Medical Imaging System

    Science.gov (United States)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  4. Storage and retrieval of large digital images

    Science.gov (United States)

    Bradley, J.N.

    1998-01-20

    Image compression and viewing are implemented with (1) a method for performing DWT-based compression on a large digital image with a computer system possessing a two-level system of memory and (2) a method for selectively viewing areas of the image from its compressed representation at multiple resolutions and, if desired, in a client-server environment. The compression of a large digital image I(x,y) is accomplished by first defining a plurality of discrete tile image data subsets T{sub ij}(x,y) that, upon superposition, form the complete set of image data I(x,y). A seamless wavelet-based compression process is effected on I(x,y) that is comprised of successively inputting the tiles T{sub ij}(x,y) in a selected sequence to a DWT routine, and storing the resulting DWT coefficients in a first primary memory. These coefficients are periodically compressed and transferred to a secondary memory to maintain sufficient memory in the primary memory for data processing. The sequence of DWT operations on the tiles T{sub ij}(x,y) effectively calculates a seamless DWT of I(x,y). Data retrieval consists of specifying a resolution and a region of I(x,y) for display. The subset of stored DWT coefficients corresponding to each requested scene is determined and then decompressed for input to an inverse DWT, the output of which forms the image display. The repeated process whereby image views are specified may take the form an interaction with a computer pointing device on an image display from a previous retrieval. 6 figs.

  5. Digital medical imaging

    International Nuclear Information System (INIS)

    Goeringer, F.; Mun, S.K.; Kerlin, B.D.

    1989-01-01

    In formulating an implementation strategy for digital medical imaging, three interrelated thrusts have emerged for the defense medical establishment. These thrusts: totally filmless medical imaging on the battlefield, teleradiology, and DIN/PACS for peacetime military health care are discussed. They have implications in their fully developed form as resource savers and quality improvers for the unique aspects of military health care

  6. Medical ultrasound imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy...

  7. Image Retrieval Berdasarkan Fitur Warna, Bentuk, dan Tekstur

    Directory of Open Access Journals (Sweden)

    Rita Layona

    2014-12-01

    Full Text Available Along with the times, information retrieval is no longer just on textual data, but also the visual data. The technique was originally used is Text-Based Image Retrieval (TBIR, but the technique still has some shortcomings such as the relevance of the picture successfully retrieved, and the specific space required to store meta-data in the image. Seeing the shortage of Text-Based Image Retrieval techniques, then other techniques were developed, namely Image Retrieval based on content or commonly called Content Based Image Retrieval (CBIR. In this research, CBIR will be discussed based on color, shape and texture using a color histogram, Gabor and SIFT. This study aimed to compare the results of image retrieval with some of these techniques. The results obtained are by combining color, shape and texture features, the performance of the system can be improved.

  8. Enhancing Image Retrieval System Using Content Based Search ...

    African Journals Online (AJOL)

    The output shows more efficiency in retrieval because instead of performing the search on the entire image database, the image category option directs the retrieval engine to the specified category. Also, there is provision to update or modify the different image categories in the image database as need arise. Keywords: ...

  9. Processing of medical images

    International Nuclear Information System (INIS)

    Restrepo, A.

    1998-01-01

    Thanks to the innovations in the technology for the processing of medical images, to the high development of better and cheaper computers, and, additionally, to the advances in the systems of communications of medical images, the acquisition, storage and handling of digital images has acquired great importance in all the branches of the medicine. It is sought in this article to introduce some fundamental ideas of prosecution of digital images that include such aspects as their representation, storage, improvement, visualization and understanding

  10. Medical imaging technology

    CERN Document Server

    Haidekker, Mark A

    2013-01-01

    Biomedical imaging is a relatively young discipline that started with Conrad Wilhelm Roentgen’s discovery of the x-ray in 1885. X-ray imaging was rapidly adopted in hospitals around the world. However, it was the advent of computerized data and image processing that made revolutionary new imaging modalities possible. Today, cross-sections and three-dimensional reconstructions of the organs inside the human body is possible with unprecedented speed, detail and quality. This book provides an introduction into the principles of image formation of key medical imaging modalities: X-ray projection imaging, x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, and radionuclide imaging. Recent developments in optical imaging are also covered. For each imaging modality, the introduction into the physical principles and sources of contrast is provided, followed by the methods of image formation, engineering aspects of the imaging devices, and a discussion of strengths and limitations of the modal...

  11. A hierarchical SVG image abstraction layer for medical imaging

    Science.gov (United States)

    Kim, Edward; Huang, Xiaolei; Tan, Gang; Long, L. Rodney; Antani, Sameer

    2010-03-01

    As medical imaging rapidly expands, there is an increasing need to structure and organize image data for efficient analysis, storage and retrieval. In response, a large fraction of research in the areas of content-based image retrieval (CBIR) and picture archiving and communication systems (PACS) has focused on structuring information to bridge the "semantic gap", a disparity between machine and human image understanding. An additional consideration in medical images is the organization and integration of clinical diagnostic information. As a step towards bridging the semantic gap, we design and implement a hierarchical image abstraction layer using an XML based language, Scalable Vector Graphics (SVG). Our method encodes features from the raw image and clinical information into an extensible "layer" that can be stored in a SVG document and efficiently searched. Any feature extracted from the raw image including, color, texture, orientation, size, neighbor information, etc., can be combined in our abstraction with high level descriptions or classifications. And our representation can natively characterize an image in a hierarchical tree structure to support multiple levels of segmentation. Furthermore, being a world wide web consortium (W3C) standard, SVG is able to be displayed by most web browsers, interacted with by ECMAScript (standardized scripting language, e.g. JavaScript, JScript), and indexed and retrieved by XML databases and XQuery. Using these open source technologies enables straightforward integration into existing systems. From our results, we show that the flexibility and extensibility of our abstraction facilitates effective storage and retrieval of medical images.

  12. Modelling of chromatic contrast for retrieval of wallpaper images

    OpenAIRE

    Gao, Xiaohong W.; Wang, Yuanlei; Qian, Yu; Gao, Alice

    2015-01-01

    Colour remains one of the key factors in presenting an object and consequently has been widely applied in retrieval of images based on their visual contents. However, a colour appearance changes with the change of viewing surroundings, the phenomenon that has not been paid attention yet while performing colour-based image retrieval. To comprehend this effect, in this paper, a chromatic contrast model, CAMcc, is developed for the application of retrieval of colour intensive images, cementing t...

  13. Ontology of gaps in content-based image retrieval.

    Science.gov (United States)

    Deserno, Thomas M; Antani, Sameer; Long, Rodney

    2009-04-01

    Content-based image retrieval (CBIR) is a promising technology to enrich the core functionality of picture archiving and communication systems (PACS). CBIR has a potential for making a strong impact in diagnostics, research, and education. Research as reported in the scientific literature, however, has not made significant inroads as medical CBIR applications incorporated into routine clinical medicine or medical research. The cause is often attributed (without supporting analysis) to the inability of these applications in overcoming the "semantic gap." The semantic gap divides the high-level scene understanding and interpretation available with human cognitive capabilities from the low-level pixel analysis of computers, based on mathematical processing and artificial intelligence methods. In this paper, we suggest a more systematic and comprehensive view of the concept of "gaps" in medical CBIR research. In particular, we define an ontology of 14 gaps that addresses the image content and features, as well as system performance and usability. In addition to these gaps, we identify seven system characteristics that impact CBIR applicability and performance. The framework we have created can be used a posteriori to compare medical CBIR systems and approaches for specific biomedical image domains and goals and a priori during the design phase of a medical CBIR application, as the systematic analysis of gaps provides detailed insight in system comparison and helps to direct future research.

  14. A Statistical Approach to Retrieving Historical Manuscript Images without Recognition

    National Research Council Canada - National Science Library

    Rath, Toni M; Lavrenko, Victor; Manmatha, R

    2003-01-01

    ...), and word spotting -- an image matching approach (computationally expensive). In this work, the authors present a novel retrieval approach for historical document collections that does not require recognition...

  15. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  16. Classification in Medical Imaging

    DEFF Research Database (Denmark)

    Chen, Chen

    Classification is extensively used in the context of medical image analysis for the purpose of diagnosis or prognosis. In order to classify image content correctly, one needs to extract efficient features with discriminative properties and build classifiers based on these features. In addition...... on characterizing human faces and emphysema disease in lung CT images....

  17. Retrieving clinically relevant diabetic retinopathy images using a multi-class multiple-instance framework

    Science.gov (United States)

    Chandakkar, Parag S.; Venkatesan, Ragav; Li, Baoxin

    2013-02-01

    Diabetic retinopathy (DR) is a vision-threatening complication from diabetes mellitus, a medical condition that is rising globally. Unfortunately, many patients are unaware of this complication because of absence of symptoms. Regular screening of DR is necessary to detect the condition for timely treatment. Content-based image retrieval, using archived and diagnosed fundus (retinal) camera DR images can improve screening efficiency of DR. This content-based image retrieval study focuses on two DR clinical findings, microaneurysm and neovascularization, which are clinical signs of non-proliferative and proliferative diabetic retinopathy. The authors propose a multi-class multiple-instance image retrieval framework which deploys a modified color correlogram and statistics of steerable Gaussian Filter responses, for retrieving clinically relevant images from a database of DR fundus image database.

  18. The Use of QBIC Content-Based Image Retrieval System

    Directory of Open Access Journals (Sweden)

    Ching-Yi Wu

    2004-03-01

    Full Text Available The fast increase in digital images has caught increasing attention on the development of image retrieval technologies. Content-based image retrieval (CBIR has become an important approach in retrieving image data from a large collection. This article reports our results on the use and users study of a CBIR system. Thirty-eight students majored in art and design were invited to use the IBM’s OBIC (Query by Image Content system through the Internet. Data from their information needs, behaviors, and retrieval strategies were collected through an in-depth interview, observation, and self-described think-aloud process. Important conclusions are:(1)There are four types of information needs for image data: implicit, inspirational, ever-changing, and purposive. The types of needs may change during the retrieval process. (2)CBIR is suitable for the example-type query, text retrieval is suitable for the scenario-type query, and image browsing is suitable for the symbolic query. (3)Different from text retrieval, detailed description of the query condition may lead to retrieval failure more easily. (4)CBIR is suitable for the domain-specific image collection, not for the images on the Word-Wide Web.[Article content in Chinese

  19. A digital library for medical imaging activities

    Science.gov (United States)

    dos Santos, Marcelo; Furuie, Sérgio S.

    2007-03-01

    This work presents the development of an electronic infrastructure to make available a free, online, multipurpose and multimodality medical image database. The proposed infrastructure implements a distributed architecture for medical image database, authoring tools, and a repository for multimedia documents. Also it includes a peer-reviewed model that assures quality of dataset. This public repository provides a single point of access for medical images and related information to facilitate retrieval tasks. The proposed approach has been used as an electronic teaching system in Radiology as well.

  20. Implementation of Texture Based Image Retrieval Using M-band Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    LiaoYa-li; Yangyan; CaoYang

    2003-01-01

    Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recognition and interpretation of images. The paper presents an approach to implement texture-based image retrieval using M-band wavelet transform. Firstly the traditional 2-band wavelet is extended to M-band wavelet transform. Then the wavelet moments are computed by M-band wavelet coefficients in the wavelet domain. The set of wavelet moments forms the feature vector related to the texture distribution of each wavelet images. The distances between the feature vectors describe the similarities of different images. The experimental result shows that the M-band wavelet moment features of the images are effective for image indexing.The retrieval method has lower computational complexity, yet it is capable of giving better retrieval performance for a given medical image database.

  1. Mobile object retrieval in server-based image databases

    Science.gov (United States)

    Manger, D.; Pagel, F.; Widak, H.

    2013-05-01

    The increasing number of mobile phones equipped with powerful cameras leads to huge collections of user-generated images. To utilize the information of the images on site, image retrieval systems are becoming more and more popular to search for similar objects in an own image database. As the computational performance and the memory capacity of mobile devices are constantly increasing, this search can often be performed on the device itself. This is feasible, for example, if the images are represented with global image features or if the search is done using EXIF or textual metadata. However, for larger image databases, if multiple users are meant to contribute to a growing image database or if powerful content-based image retrieval methods with local features are required, a server-based image retrieval backend is needed. In this work, we present a content-based image retrieval system with a client server architecture working with local features. On the server side, the scalability to large image databases is addressed with the popular bag-of-word model with state-of-the-art extensions. The client end of the system focuses on a lightweight user interface presenting the most similar images of the database highlighting the visual information which is common with the query image. Additionally, new images can be added to the database making it a powerful and interactive tool for mobile contentbased image retrieval.

  2. W-transform method for feature-oriented multiresolution image retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, M.K.; Lin, B. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1995-07-01

    Image database management is important in the development of multimedia technology. Since an enormous amount of digital images is likely to be generated within the next few decades in order to integrate computers, television, VCR, cables, telephone and various imaging devices. Effective image indexing and retrieval systems are urgently needed so that images can be easily organized, searched, transmitted, and presented. Here, the authors present a local-feature-oriented image indexing and retrieval method based on Kwong, and Tang`s W-transform. Multiresolution histogram comparison is an effective method for content-based image indexing and retrieval. However, most recent approaches perform multiresolution analysis for whole images but do not exploit the local features present in the images. Since W-transform is featured by its ability to handle images of arbitrary size, with no periodicity assumptions, it provides a natural tool for analyzing local image features and building indexing systems based on such features. In this approach, the histograms of the local features of images are used in the indexing, system. The system not only can retrieve images that are similar or identical to the query images but also can retrieve images that contain features specified in the query images, even if the retrieved images as a whole might be very different from the query images. The local-feature-oriented method also provides a speed advantage over the global multiresolution histogram comparison method. The feature-oriented approach is expected to be applicable in managing large-scale image systems such as video databases and medical image databases.

  3. VICAR - VIDEO IMAGE COMMUNICATION AND RETRIEVAL

    Science.gov (United States)

    Wall, R. J.

    1994-01-01

    VICAR (Video Image Communication and Retrieval) is a general purpose image processing software system that has been under continuous development since the late 1960's. Originally intended for data from the NASA Jet Propulsion Laboratory's unmanned planetary spacecraft, VICAR is now used for a variety of other applications including biomedical image processing, cartography, earth resources, and geological exploration. The development of this newest version of VICAR emphasized a standardized, easily-understood user interface, a shield between the user and the host operating system, and a comprehensive array of image processing capabilities. Structurally, VICAR can be divided into roughly two parts; a suite of applications programs and an executive which serves as the interfaces between the applications, the operating system, and the user. There are several hundred applications programs ranging in function from interactive image editing, data compression/decompression, and map projection, to blemish, noise, and artifact removal, mosaic generation, and pattern recognition and location. An information management system designed specifically for handling image related data can merge image data with other types of data files. The user accesses these programs through the VICAR executive, which consists of a supervisor and a run-time library. From the viewpoint of the user and the applications programs, the executive is an environment that is independent of the operating system. VICAR does not replace the host computer's operating system; instead, it overlays the host resources. The core of the executive is the VICAR Supervisor, which is based on NASA Goddard Space Flight Center's Transportable Applications Executive (TAE). Various modifications and extensions have been made to optimize TAE for image processing applications, resulting in a user friendly environment. The rest of the executive consists of the VICAR Run-Time Library, which provides a set of subroutines (image

  4. Fundus Image Features Extraction for Exudate Mining in Coordination with Content Based Image Retrieval: A Study

    Science.gov (United States)

    Gururaj, C.; Jayadevappa, D.; Tunga, Satish

    2018-06-01

    Medical field has seen a phenomenal improvement over the previous years. The invention of computers with appropriate increase in the processing and internet speed has changed the face of the medical technology. However there is still scope for improvement of the technologies in use today. One of the many such technologies of medical aid is the detection of afflictions of the eye. Although a repertoire of research has been accomplished in this field, most of them fail to address how to take the detection forward to a stage where it will be beneficial to the society at large. An automated system that can predict the current medical condition of a patient after taking the fundus image of his eye is yet to see the light of the day. Such a system is explored in this paper by summarizing a number of techniques for fundus image features extraction, predominantly hard exudate mining, coupled with Content Based Image Retrieval to develop an automation tool. The knowledge of the same would bring about worthy changes in the domain of exudates extraction of the eye. This is essential in cases where the patients may not have access to the best of technologies. This paper attempts at a comprehensive summary of the techniques for Content Based Image Retrieval (CBIR) or fundus features image extraction, and few choice methods of both, and an exploration which aims to find ways to combine these two attractive features, and combine them so that it is beneficial to all.

  5. Fundus Image Features Extraction for Exudate Mining in Coordination with Content Based Image Retrieval: A Study

    Science.gov (United States)

    Gururaj, C.; Jayadevappa, D.; Tunga, Satish

    2018-02-01

    Medical field has seen a phenomenal improvement over the previous years. The invention of computers with appropriate increase in the processing and internet speed has changed the face of the medical technology. However there is still scope for improvement of the technologies in use today. One of the many such technologies of medical aid is the detection of afflictions of the eye. Although a repertoire of research has been accomplished in this field, most of them fail to address how to take the detection forward to a stage where it will be beneficial to the society at large. An automated system that can predict the current medical condition of a patient after taking the fundus image of his eye is yet to see the light of the day. Such a system is explored in this paper by summarizing a number of techniques for fundus image features extraction, predominantly hard exudate mining, coupled with Content Based Image Retrieval to develop an automation tool. The knowledge of the same would bring about worthy changes in the domain of exudates extraction of the eye. This is essential in cases where the patients may not have access to the best of technologies. This paper attempts at a comprehensive summary of the techniques for Content Based Image Retrieval (CBIR) or fundus features image extraction, and few choice methods of both, and an exploration which aims to find ways to combine these two attractive features, and combine them so that it is beneficial to all.

  6. Semantic concept-enriched dependence model for medical information retrieval.

    Science.gov (United States)

    Choi, Sungbin; Choi, Jinwook; Yoo, Sooyoung; Kim, Heechun; Lee, Youngho

    2014-02-01

    In medical information retrieval research, semantic resources have been mostly used by expanding the original query terms or estimating the concept importance weight. However, implicit term-dependency information contained in semantic concept terms has been overlooked or at least underused in most previous studies. In this study, we incorporate a semantic concept-based term-dependence feature into a formal retrieval model to improve its ranking performance. Standardized medical concept terms used by medical professionals were assumed to have implicit dependency within the same concept. We hypothesized that, by elaborately revising the ranking algorithms to favor documents that preserve those implicit dependencies, the ranking performance could be improved. The implicit dependence features are harvested from the original query using MetaMap. These semantic concept-based dependence features were incorporated into a semantic concept-enriched dependence model (SCDM). We designed four different variants of the model, with each variant having distinct characteristics in the feature formulation method. We performed leave-one-out cross validations on both a clinical document corpus (TREC Medical records track) and a medical literature corpus (OHSUMED), which are representative test collections in medical information retrieval research. Our semantic concept-enriched dependence model consistently outperformed other state-of-the-art retrieval methods. Analysis shows that the performance gain has occurred independently of the concept's explicit importance in the query. By capturing implicit knowledge with regard to the query term relationships and incorporating them into a ranking model, we could build a more robust and effective retrieval model, independent of the concept importance. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. An Effective Combined Feature For Web Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    H.M.R.B Herath

    2015-08-01

    Full Text Available Abstract Technology advances as well as the emergence of large scale multimedia applications and the revolution of the World Wide Web has changed the world into a digital age. Anybody can use their mobile phone to take a photo at any time anywhere and upload that image to ever growing image databases. Development of effective techniques for visual and multimedia retrieval systems is one of the most challenging and important directions of the future research. This paper proposes an effective combined feature for web based image retrieval. Frequently used colour and texture features are explored in order to develop a combined feature for this purpose. Widely used three colour features Colour moments Colour coherence vector and Colour Correlogram and three texture features Grey Level Co-occurrence matrix Tamura features and Gabor filter were analyzed for their performance. Precision and Recall were used to evaluate the performance of each of these techniques. By comparing precision and recall values the methods that performed best were taken and combined to form a hybrid feature. The developed combined feature was evaluated by developing a web based CBIR system. A web crawler was used to first crawl through Web sites and images found in those sites are downloaded and the combined feature representation technique was used to extract image features. The test results indicated that this web system can be used to index web images with the combined feature representation schema and to find similar images. Random image retrievals using the web system shows that the combined feature can be used to retrieve images belonging to the general image domain. Accuracy of the retrieval can be noted high for natural images like outdoor scenes images of flowers etc. Also images which have a similar colour and texture distribution were retrieved as similar even though the images were belonging to deferent semantic categories. This can be ideal for an artist who wants

  8. Improved image retrieval based on fuzzy colour feature vector

    Science.gov (United States)

    Ben-Ahmeida, Ahlam M.; Ben Sasi, Ahmed Y.

    2013-03-01

    One of Image indexing techniques is the Content-Based Image Retrieval which is an efficient way for retrieving images from the image database automatically based on their visual contents such as colour, texture, and shape. In this paper will be discuss how using content-based image retrieval (CBIR) method by colour feature extraction and similarity checking. By dividing the query image and all images in the database into pieces and extract the features of each part separately and comparing the corresponding portions in order to increase the accuracy in the retrieval. The proposed approach is based on the use of fuzzy sets, to overcome the problem of curse of dimensionality. The contribution of colour of each pixel is associated to all the bins in the histogram using fuzzy-set membership functions. As a result, the Fuzzy Colour Histogram (FCH), outperformed the Conventional Colour Histogram (CCH) in image retrieving, due to its speedy results, where were images represented as signatures that took less size of memory, depending on the number of divisions. The results also showed that FCH is less sensitive and more robust to brightness changes than the CCH with better retrieval recall values.

  9. Medical Imaging and Infertility.

    Science.gov (United States)

    Peterson, Rebecca

    2016-11-01

    Infertility affects many couples, and medical imaging plays a vital role in its diagnosis and treatment. Radiologic technologists benefit from having a broad understanding of infertility risk factors and causes. This article describes the typical structure and function of the male and female reproductive systems, as well as congenital and acquired conditions that could lead to a couple's inability to conceive. Medical imaging procedures performed for infertility diagnosis are discussed, as well as common interventional options available to patients. © 2016 American Society of Radiologic Technologists.

  10. Pareto-depth for multiple-query image retrieval.

    Science.gov (United States)

    Hsiao, Ko-Jen; Calder, Jeff; Hero, Alfred O

    2015-02-01

    Most content-based image retrieval systems consider either one single query, or multiple queries that include the same object or represent the same semantic information. In this paper, we consider the content-based image retrieval problem for multiple query images corresponding to different image semantics. We propose a novel multiple-query information retrieval algorithm that combines the Pareto front method with efficient manifold ranking. We show that our proposed algorithm outperforms state of the art multiple-query retrieval algorithms on real-world image databases. We attribute this performance improvement to concavity properties of the Pareto fronts, and prove a theoretical result that characterizes the asymptotic concavity of the fronts.

  11. Superconductors and medical imaging

    International Nuclear Information System (INIS)

    Aubert, Guy

    2011-01-01

    After difficult beginnings in the 1970's, magnetic resonance imaging (MRI) has evolved to become nowadays the jewel in the crown of medical technology. Superconductors have been a key factor for the extraordinary expansion of MRI which in turn represents about 75 % of their total market. After recalling some basic principles, this article traces their common history and refers to future developments. (author)

  12. Color and neighbor edge directional difference feature for image retrieval

    Institute of Scientific and Technical Information of China (English)

    Chaobing Huang; Shengsheng Yu; Jingli Zhou; Hongwei Lu

    2005-01-01

    @@ A novel image feature termed neighbor edge directional difference unit histogram is proposed, in which the neighbor edge directional difference unit is defined and computed for every pixel in the image, and is used to generate the neighbor edge directional difference unit histogram. This histogram and color histogram are used as feature indexes to retrieve color image. The feature is invariant to image scaling and translation and has more powerful descriptive for the natural color images. Experimental results show that the feature can achieve better retrieval performance than other color-spatial features.

  13. Generating region proposals for histopathological whole slide image retrieval.

    Science.gov (United States)

    Ma, Yibing; Jiang, Zhiguo; Zhang, Haopeng; Xie, Fengying; Zheng, Yushan; Shi, Huaqiang; Zhao, Yu; Shi, Jun

    2018-06-01

    Content-based image retrieval is an effective method for histopathological image analysis. However, given a database of huge whole slide images (WSIs), acquiring appropriate region-of-interests (ROIs) for training is significant and difficult. Moreover, histopathological images can only be annotated by pathologists, resulting in the lack of labeling information. Therefore, it is an important and challenging task to generate ROIs from WSI and retrieve image with few labels. This paper presents a novel unsupervised region proposing method for histopathological WSI based on Selective Search. Specifically, the WSI is over-segmented into regions which are hierarchically merged until the WSI becomes a single region. Nucleus-oriented similarity measures for region mergence and Nucleus-Cytoplasm color space for histopathological image are specially defined to generate accurate region proposals. Additionally, we propose a new semi-supervised hashing method for image retrieval. The semantic features of images are extracted with Latent Dirichlet Allocation and transformed into binary hashing codes with Supervised Hashing. The methods are tested on a large-scale multi-class database of breast histopathological WSIs. The results demonstrate that for one WSI, our region proposing method can generate 7.3 thousand contoured regions which fit well with 95.8% of the ROIs annotated by pathologists. The proposed hashing method can retrieve a query image among 136 thousand images in 0.29 s and reach precision of 91% with only 10% of images labeled. The unsupervised region proposing method can generate regions as predictions of lesions in histopathological WSI. The region proposals can also serve as the training samples to train machine-learning models for image retrieval. The proposed hashing method can achieve fast and precise image retrieval with small amount of labels. Furthermore, the proposed methods can be potentially applied in online computer-aided-diagnosis systems. Copyright

  14. Density-based retrieval from high-similarity image databases

    DEFF Research Database (Denmark)

    Hansen, Michael Edberg; Carstensen, Jens Michael

    2004-01-01

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce a me...

  15. A Learning State-Space Model for Image Retrieval

    Directory of Open Access Journals (Sweden)

    Lee Greg C

    2007-01-01

    Full Text Available This paper proposes an approach based on a state-space model for learning the user concepts in image retrieval. We first design a scheme of region-based image representation based on concept units, which are integrated with different types of feature spaces and with different region scales of image segmentation. The design of the concept units aims at describing similar characteristics at a certain perspective among relevant images. We present the details of our proposed approach based on a state-space model for interactive image retrieval, including likelihood and transition models, and we also describe some experiments that show the efficacy of our proposed model. This work demonstrates the feasibility of using a state-space model to estimate the user intuition in image retrieval.

  16. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V [Wayland, MA

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  17. Wavelets in medical imaging

    International Nuclear Information System (INIS)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-01-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  18. Wavelets in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  19. Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram

    Directory of Open Access Journals (Sweden)

    Abolfazl Lakdashti

    2008-06-01

    Full Text Available Introduction: Content Based Image Retrieval (CBIR is a method of image searching and retrieval in a  database. In medical applications, CBIR is a tool used by physicians to compare the previous and current  medical images associated with patients pathological conditions. As the volume of pictorial information  stored in medical image databases is in progress, efficient image indexing and retrieval is increasingly  becoming a necessity.  Materials and Methods: This paper presents a new content based radiographic image retrieval approach  based on histogram of pattern orientations, namely pattern orientation histogram (POH. POH represents  the  spatial  distribution  of  five  different  pattern  orientations:  vertical,  horizontal,  diagonal  down/left,  diagonal down/right and non-orientation. In this method, a given image is first divided into image-blocks  and  the  frequency  of  each  type  of  pattern  is  determined  in  each  image-block.  Then,  local  pattern  histograms for each of these image-blocks are computed.   Results: The method was compared to two well known texture-based image retrieval methods: Tamura  and  Edge  Histogram  Descriptors  (EHD  in  MPEG-7  standard.  Experimental  results  based  on  10000  IRMA  radiography  image  dataset,  demonstrate  that  POH  provides  better  precision  and  recall  rates  compared to Tamura and EHD. For some images, the recall and precision rates obtained by POH are,  respectively, 48% and 18% better than the best of the two above mentioned methods.    Discussion and Conclusion: Since we exploit the absolute location of the pattern in the image as well as  its global composition, the proposed matching method can retrieve semantically similar medical images.

  20. Multi region based image retrieval system

    Indian Academy of Sciences (India)

    data mining, information theory, statistics and psychology. ∗ .... ground complication and independent of image size and orientation (Zhang 2007). ..... Figure 2. Significant regions: (a) the input image, (b) the primary significant region, (c) the ...

  1. Learning tag relevance by neighbor voting for social image retrieval

    NARCIS (Netherlands)

    Li, X.; Snoek, C.G.M.; Worring, M.

    2008-01-01

    Social image retrieval is important for exploiting the increasing amounts of amateur-tagged multimedia such as Flickr images. Since amateur tagging is known to be uncontrolled, ambiguous, and personalized, a fundamental problem is how to reliably interpret the relevance of a tag with respect to the

  2. A recommender system for medical imaging diagnostic.

    Science.gov (United States)

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision.

  3. TRADEMARK IMAGE RETRIEVAL USING LOW LEVEL FEATURE EXTRACTION IN CBIR

    OpenAIRE

    Latika Pinjarkar*, Manisha Sharma, Smita Selot

    2016-01-01

    Trademarks work as significant responsibility in industry and commerce. Trademarks are important component of its industrial property, and violation can have severe penalty. Therefore designing an efficient trademark retrieval system and its assessment for uniqueness is thus becoming very important task now a days. Trademark image retrieval system where a new candidate trademark is compared with already registered trademarks to check that there is no possibility of resembl...

  4. Measuring and Predicting Tag Importance for Image Retrieval.

    Science.gov (United States)

    Li, Shangwen; Purushotham, Sanjay; Chen, Chen; Ren, Yuzhuo; Kuo, C-C Jay

    2017-12-01

    Textual data such as tags, sentence descriptions are combined with visual cues to reduce the semantic gap for image retrieval applications in today's Multimodal Image Retrieval (MIR) systems. However, all tags are treated as equally important in these systems, which may result in misalignment between visual and textual modalities during MIR training. This will further lead to degenerated retrieval performance at query time. To address this issue, we investigate the problem of tag importance prediction, where the goal is to automatically predict the tag importance and use it in image retrieval. To achieve this, we first propose a method to measure the relative importance of object and scene tags from image sentence descriptions. Using this as the ground truth, we present a tag importance prediction model to jointly exploit visual, semantic and context cues. The Structural Support Vector Machine (SSVM) formulation is adopted to ensure efficient training of the prediction model. Then, the Canonical Correlation Analysis (CCA) is employed to learn the relation between the image visual feature and tag importance to obtain robust retrieval performance. Experimental results on three real-world datasets show a significant performance improvement of the proposed MIR with Tag Importance Prediction (MIR/TIP) system over other MIR systems.

  5. Online Hashing for Scalable Remote Sensing Image Retrieval

    Directory of Open Access Journals (Sweden)

    Peng Li

    2018-05-01

    Full Text Available Recently, hashing-based large-scale remote sensing (RS image retrieval has attracted much attention. Many new hashing algorithms have been developed and successfully applied to fast RS image retrieval tasks. However, there exists an important problem rarely addressed in the research literature of RS image hashing. The RS images are practically produced in a streaming manner in many real-world applications, which means the data distribution keeps changing over time. Most existing RS image hashing methods are batch-based models whose hash functions are learned once for all and kept fixed all the time. Therefore, the pre-trained hash functions might not fit the ever-growing new RS images. Moreover, the batch-based models have to load all the training images into memory for model learning, which consumes many computing and memory resources. To address the above deficiencies, we propose a new online hashing method, which learns and adapts its hashing functions with respect to the newly incoming RS images in terms of a novel online partial random learning scheme. Our hash model is updated in a sequential mode such that the representative power of the learned binary codes for RS images are improved accordingly. Moreover, benefiting from the online learning strategy, our proposed hashing approach is quite suitable for scalable real-world remote sensing image retrieval. Extensive experiments on two large-scale RS image databases under online setting demonstrated the efficacy and effectiveness of the proposed method.

  6. Machine learning and medical imaging

    CERN Document Server

    Shen, Dinggang; Sabuncu, Mert

    2016-01-01

    Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, a...

  7. Biomedical image retrieval using microscopic configuration with ...

    Indian Academy of Sciences (India)

    G DEEP

    2018-03-10

    Mar 10, 2018 ... The selection of feature descriptors affects the image .... Example of obtaining LBP for 3 9 3 neighbourhoods (adopted from Ojala et al [9]). 20 Page 2 of 13 ...... Directional binary wavelet patterns for biomedical image indexing ...

  8. Medical image registration for analysis

    International Nuclear Information System (INIS)

    Petrovic, V.

    2006-01-01

    Full text: Image registration techniques represent a rich family of image processing and analysis tools that aim to provide spatial correspondences across sets of medical images of similar and disparate anatomies and modalities. Image registration is a fundamental and usually the first step in medical image analysis and this paper presents a number of advanced techniques as well as demonstrates some of the advanced medical image analysis techniques they make possible. A number of both rigid and non-rigid medical image alignment algorithms of equivalent and merely consistent anatomical structures respectively are presented. The algorithms are compared in terms of their practical aims, inputs, computational complexity and level of operator (e.g. diagnostician) interaction. In particular, the focus of the methods discussion is placed on the applications and practical benefits of medical image registration. Results of medical image registration on a number of different imaging modalities and anatomies are presented demonstrating the accuracy and robustness of their application. Medical image registration is quickly becoming ubiquitous in medical imaging departments with the results of such algorithms increasingly used in complex medical image analysis and diagnostics. This paper aims to demonstrate at least part of the reason why

  9. Multi-clues image retrieval based on improved color invariants

    Science.gov (United States)

    Liu, Liu; Li, Jian-Xun

    2012-05-01

    At present, image retrieval has a great progress in indexing efficiency and memory usage, which mainly benefits from the utilization of the text retrieval technology, such as the bag-of-features (BOF) model and the inverted-file structure. Meanwhile, because the robust local feature invariants are selected to establish BOF, the retrieval precision of BOF is enhanced, especially when it is applied to a large-scale database. However, these local feature invariants mainly consider the geometric variance of the objects in the images, and thus the color information of the objects fails to be made use of. Because of the development of the information technology and Internet, the majority of our retrieval objects is color images. Therefore, retrieval performance can be further improved through proper utilization of the color information. We propose an improved method through analyzing the flaw of shadow-shading quasi-invariant. The response and performance of shadow-shading quasi-invariant for the object edge with the variance of lighting are enhanced. The color descriptors of the invariant regions are extracted and integrated into BOF based on the local feature. The robustness of the algorithm and the improvement of the performance are verified in the final experiments.

  10. Recent advances in intelligent image search and video retrieval

    CERN Document Server

    2017-01-01

    This book initially reviews the major feature representation and extraction methods and effective learning and recognition approaches, which have broad applications in the context of intelligent image search and video retrieval. It subsequently presents novel methods, such as improved soft assignment coding, Inheritable Color Space (InCS) and the Generalized InCS framework, the sparse kernel manifold learner method, the efficient Support Vector Machine (eSVM), and the Scale-Invariant Feature Transform (SIFT) features in multiple color spaces. Lastly, the book presents clothing analysis for subject identification and retrieval, and performance evaluation methods of video analytics for traffic monitoring. Digital images and videos are proliferating at an amazing speed in the fields of science, engineering and technology, media and entertainment. With the huge accumulation of such data, keyword searches and manual annotation schemes may no longer be able to meet the practical demand for retrieving relevant conte...

  11. Shared Medical Imaging Repositories.

    Science.gov (United States)

    Lebre, Rui; Bastião, Luís; Costa, Carlos

    2018-01-01

    This article describes the implementation of a solution for the integration of ownership concept and access control over medical imaging resources, making possible the centralization of multiple instances of repositories. The proposed architecture allows the association of permissions to repository resources and delegation of rights to third entities. It includes a programmatic interface for management of proposed services, made available through web services, with the ability to create, read, update and remove all components resulting from the architecture. The resulting work is a role-based access control mechanism that was integrated with Dicoogle Open-Source Project. The solution has several application scenarios like, for instance, collaborative platforms for research and tele-radiology services deployed at Cloud.

  12. AMARSI: Aerosol modeling and retrieval from multi-spectral imagers

    NARCIS (Netherlands)

    Leeuw, G. de; Curier, R.L.; Staroverova, A.; Kokhanovsky, A.; Hoyningen-Huene, W. van; Rozanov, V.V.; Burrows, J.P.; Hesselmans, G.; Gale, L.; Bouvet, M.

    2008-01-01

    The AMARSI project aims at the development and validation of aerosol retrieval algorithms over ocean. One algorithm will be developed for application with data from the Multi Spectral Imager (MSI) on EarthCARE. A second algorithm will be developed using the combined information from AATSR and MERIS,

  13. Content-based image retrieval: Color-selection exploited

    NARCIS (Netherlands)

    Broek, E.L. van den; Vuurpijl, L.G.; Kisters, P. M. F.; Schmid, J.C.M. von; Moens, M.F.; Busser, R. de; Hiemstra, D.; Kraaij, W.

    2002-01-01

    This research presents a new color selection interface that facilitates query-by-color in Content-Based Image Retrieval (CBIR). Existing CBIR color selection interfaces, are being judged as non-intuitive and difficult to use. Our interface copes with these problems of usability. It is based on 11

  14. Content-Based Image Retrieval: Color-selection exploited

    NARCIS (Netherlands)

    Moens, Marie-Francine; van den Broek, Egon; Vuurpijl, L.G.; de Brusser, Rik; Kisters, P.M.F.; Hiemstra, Djoerd; Kraaij, Wessel; von Schmid, J.C.M.

    2002-01-01

    This research presents a new color selection interface that facilitates query-by-color in Content-Based Image Retrieval (CBIR). Existing CBIR color selection interfaces, are being judged as non-intuitive and difficult to use. Our interface copes with these problems of usability. It is based on 11

  15. Signature detection and matching for document image retrieval.

    Science.gov (United States)

    Zhu, Guangyu; Zheng, Yefeng; Doermann, David; Jaeger, Stefan

    2009-11-01

    As one of the most pervasive methods of individual identification and document authentication, signatures present convincing evidence and provide an important form of indexing for effective document image processing and retrieval in a broad range of applications. However, detection and segmentation of free-form objects such as signatures from clustered background is currently an open document analysis problem. In this paper, we focus on two fundamental problems in signature-based document image retrieval. First, we propose a novel multiscale approach to jointly detecting and segmenting signatures from document images. Rather than focusing on local features that typically have large variations, our approach captures the structural saliency using a signature production model and computes the dynamic curvature of 2D contour fragments over multiple scales. This detection framework is general and computationally tractable. Second, we treat the problem of signature retrieval in the unconstrained setting of translation, scale, and rotation invariant nonrigid shape matching. We propose two novel measures of shape dissimilarity based on anisotropic scaling and registration residual error and present a supervised learning framework for combining complementary shape information from different dissimilarity metrics using LDA. We quantitatively study state-of-the-art shape representations, shape matching algorithms, measures of dissimilarity, and the use of multiple instances as query in document image retrieval. We further demonstrate our matching techniques in offline signature verification. Extensive experiments using large real-world collections of English and Arabic machine-printed and handwritten documents demonstrate the excellent performance of our approaches.

  16. Image Retrieval Algorithm Based on Discrete Fractional Transforms

    Science.gov (United States)

    Jindal, Neeru; Singh, Kulbir

    2013-06-01

    The discrete fractional transforms is a signal processing tool which suggests computational algorithms and solutions to various sophisticated applications. In this paper, a new technique to retrieve the encrypted and scrambled image based on discrete fractional transforms has been proposed. Two-dimensional image was encrypted using discrete fractional transforms with three fractional orders and two random phase masks placed in the two intermediate planes. The significant feature of discrete fractional transforms benefits from its extra degree of freedom that is provided by its fractional orders. Security strength was enhanced (1024!)4 times by scrambling the encrypted image. In decryption process, image retrieval is sensitive for both correct fractional order keys and scrambling algorithm. The proposed approach make the brute force attack infeasible. Mean square error and relative error are the recital parameters to verify validity of proposed method.

  17. Applying GA for Optimizing the User Query in Image and Video Retrieval

    OpenAIRE

    Ehsan Lotfi

    2014-01-01

    In an information retrieval system, the query can be made by user sketch. The new method presented here, optimizes the user sketch and applies the optimized query to retrieval the information. This optimization may be used in Content-Based Image Retrieval (CBIR) and Content-Based Video Retrieval (CBVR) which is based on trajectory extraction. To optimize the retrieval process, one stage of retrieval is performed by the user sketch. The retrieval criterion is based on the proposed distance met...

  18. Frontiers in medical imaging technology

    International Nuclear Information System (INIS)

    Iinuma, Takeshi

    1992-01-01

    At present many medical images are used for diagnostics and treatment. After the advent of X-ray computer tomography (XCT), the violent development of medical images has continued. Medical imaging technology can be defined as the field of technology that deals with the production, processing, display, transmission, evaluation and so on of medical images, and it can be said that the present development of medical imaging diagnostics has been led by medical imaging technology. In this report, the most advanced technology of medical imaging is explained. The principle of XCT is shown. The feature of XCT is that it can image the delicate difference in the X-ray absorption factor of the cross section being measured. The technical development has been advanced to reduce the time for imaging and to heighten the resolution. The technology which brings about a large impact to future imaging diagnostics is computed radiography. Magnetic resonance imaging is the method of imaging the distribution of protons in human bodies. Positron CT is the method of measurement by injecting a positron-emitting RI. These methods are explained. (K.I.)

  19. Medical alert bracelet (image)

    Science.gov (United States)

    People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will be able to find. Medical identification products can help ensure proper treatment in an ...

  20. Trends in medical image processing

    International Nuclear Information System (INIS)

    Robilotta, C.C.

    1987-01-01

    The function of medical image processing is analysed, mentioning the developments, the physical agents, and the main categories, as conection of distortion in image formation, detectability increase, parameters quantification, etc. (C.G.C.) [pt

  1. Image based book cover recognition and retrieval

    Science.gov (United States)

    Sukhadan, Kalyani; Vijayarajan, V.; Krishnamoorthi, A.; Bessie Amali, D. Geraldine

    2017-11-01

    In this we are developing a graphical user interface using MATLAB for the users to check the information related to books in real time. We are taking the photos of the book cover using GUI, then by using MSER algorithm it will automatically detect all the features from the input image, after this it will filter bifurcate non-text features which will be based on morphological difference between text and non-text regions. We implemented a text character alignment algorithm which will improve the accuracy of the original text detection. We will also have a look upon the built in MATLAB OCR recognition algorithm and an open source OCR which is commonly used to perform better detection results, post detection algorithm is implemented and natural language processing to perform word correction and false detection inhibition. Finally, the detection result will be linked to internet to perform online matching. More than 86% accuracy can be obtained by this algorithm.

  2. An open architecture for medical image workstation

    Science.gov (United States)

    Liang, Liang; Hu, Zhiqiang; Wang, Xiangyun

    2005-04-01

    Dealing with the difficulties of integrating various medical image viewing and processing technologies with a variety of clinical and departmental information systems and, in the meantime, overcoming the performance constraints in transferring and processing large-scale and ever-increasing image data in healthcare enterprise, we design and implement a flexible, usable and high-performance architecture for medical image workstations. This architecture is not developed for radiology only, but for any workstations in any application environments that may need medical image retrieving, viewing, and post-processing. This architecture contains an infrastructure named Memory PACS and different kinds of image applications built on it. The Memory PACS is in charge of image data caching, pre-fetching and management. It provides image applications with a high speed image data access and a very reliable DICOM network I/O. In dealing with the image applications, we use dynamic component technology to separate the performance-constrained modules from the flexibility-constrained modules so that different image viewing or processing technologies can be developed and maintained independently. We also develop a weakly coupled collaboration service, through which these image applications can communicate with each other or with third party applications. We applied this architecture in developing our product line and it works well. In our clinical sites, this architecture is applied not only in Radiology Department, but also in Ultrasonic, Surgery, Clinics, and Consultation Center. Giving that each concerned department has its particular requirements and business routines along with the facts that they all have different image processing technologies and image display devices, our workstations are still able to maintain high performance and high usability.

  3. Image processing in medical ultrasound

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian

    This Ph.D project addresses image processing in medical ultrasound and seeks to achieve two major scientific goals: First to develop an understanding of the most significant factors influencing image quality in medical ultrasound, and secondly to use this knowledge to develop image processing...... multiple imaging setups. This makes the system well suited for development of new processing methods and for clinical evaluations, where acquisition of the exact same scan location for multiple methods is important. The second project addressed implementation, development and evaluation of SASB using...... methods for enhancing the diagnostic value of medical ultrasound. The project is an industrial Ph.D project co-sponsored by BK Medical ApS., with the commercial goal to improve the image quality of BK Medicals scanners. Currently BK Medical employ a simple conventional delay-and-sum beamformer to generate...

  4. Advances in medical image computing.

    Science.gov (United States)

    Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P

    2009-01-01

    Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  5. Retrieval Architecture with Classified Query for Content Based Image Recognition

    Directory of Open Access Journals (Sweden)

    Rik Das

    2016-01-01

    Full Text Available The consumer behavior has been observed to be largely influenced by image data with increasing familiarity of smart phones and World Wide Web. Traditional technique of browsing through product varieties in the Internet with text keywords has been gradually replaced by the easy accessible image data. The importance of image data has portrayed a steady growth in application orientation for business domain with the advent of different image capturing devices and social media. The paper has described a methodology of feature extraction by image binarization technique for enhancing identification and retrieval of information using content based image recognition. The proposed algorithm was tested on two public datasets, namely, Wang dataset and Oliva and Torralba (OT-Scene dataset with 3688 images on the whole. It has outclassed the state-of-the-art techniques in performance measure and has shown statistical significance.

  6. Medical Imaging 4: Image formation

    International Nuclear Information System (INIS)

    Schneider, R.H.

    1990-01-01

    This book contains papers relating to the 1990 meeting of The International Society for Optical Engineering. Included are the following papers: Effect of protective layer on Resolution Properties of Photostimulable Phosphor Detector for Digital Radiographic System, Neural Network Scatter Correction Technique for Digital Radiography, Use of Computer Radiography for Portal Imaging

  7. Medical imaging 4

    International Nuclear Information System (INIS)

    Loew, M.H.

    1990-01-01

    This book is covered under the following topics: human visual pattern recognition, fractals, rules, and segments, three-dimensional image processing, MRI, MRI and mammography, clinical applications 1, angiography, image processing systems, image processing poster session

  8. Medical Imaging with Neural Networks

    International Nuclear Information System (INIS)

    Pattichis, C.; Cnstantinides, A.

    1994-01-01

    The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors)

  9. Medical Imaging with Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Pattichis, C [Department of Computer Science, University of Cyprus, Kallipoleos 75, P.O.Box 537, Nicosia (Cyprus); Cnstantinides, A [Department of Electrical Engineering, Imperial College of Science, Technology and Medicine, London SW7 2BT (United Kingdom)

    1994-12-31

    The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors). 61 refs, 4 tabs.

  10. Hybrid Histogram Descriptor: A Fusion Feature Representation for Image Retrieval.

    Science.gov (United States)

    Feng, Qinghe; Hao, Qiaohong; Chen, Yuqi; Yi, Yugen; Wei, Ying; Dai, Jiangyan

    2018-06-15

    Currently, visual sensors are becoming increasingly affordable and fashionable, acceleratingly the increasing number of image data. Image retrieval has attracted increasing interest due to space exploration, industrial, and biomedical applications. Nevertheless, designing effective feature representation is acknowledged as a hard yet fundamental issue. This paper presents a fusion feature representation called a hybrid histogram descriptor (HHD) for image retrieval. The proposed descriptor comprises two histograms jointly: a perceptually uniform histogram which is extracted by exploiting the color and edge orientation information in perceptually uniform regions; and a motif co-occurrence histogram which is acquired by calculating the probability of a pair of motif patterns. To evaluate the performance, we benchmarked the proposed descriptor on RSSCN7, AID, Outex-00013, Outex-00014 and ETHZ-53 datasets. Experimental results suggest that the proposed descriptor is more effective and robust than ten recent fusion-based descriptors under the content-based image retrieval framework. The computational complexity was also analyzed to give an in-depth evaluation. Furthermore, compared with the state-of-the-art convolutional neural network (CNN)-based descriptors, the proposed descriptor also achieves comparable performance, but does not require any training process.

  11. Medical image segmentation using improved FCM

    Institute of Scientific and Technical Information of China (English)

    ZHANG XiaoFeng; ZHANG CaiMing; TANG WenJing; WEI ZhenWen

    2012-01-01

    Image segmentation is one of the most important problems in medical image processing,and the existence of partial volume effect and other phenomena makes the problem much more complex. Fuzzy Cmeans,as an effective tool to deal with PVE,however,is faced with great challenges in efficiency.Aiming at this,this paper proposes one improved FCM algorithm based on the histogram of the given image,which will be denoted as HisFCM and divided into two phases.The first phase will retrieve several intervals on which to compute cluster centroids,and the second one will perform image segmentation based on improved FCM algorithm.Compared with FCM and other improved algorithms,HisFCM is of much higher efficiency with satisfying results.Experiments on medical images show that HisFCM can achieve good segmentation results in less than 0.1 second,and can satisfy real-time requirements of medical image processing.

  12. Research of image retrieval technology based on color feature

    Science.gov (United States)

    Fu, Yanjun; Jiang, Guangyu; Chen, Fengying

    2009-10-01

    Recently, with the development of the communication and the computer technology and the improvement of the storage technology and the capability of the digital image equipment, more and more image resources are given to us than ever. And thus the solution of how to locate the proper image quickly and accurately is wanted.The early method is to set up a key word for searching in the database, but now the method has become very difficult when we search much more picture that we need. In order to overcome the limitation of the traditional searching method, content based image retrieval technology was aroused. Now, it is a hot research subject.Color image retrieval is the important part of it. Color is the most important feature for color image retrieval. Three key questions on how to make use of the color characteristic are discussed in the paper: the expression of color, the abstraction of color characteristic and the measurement of likeness based on color. On the basis, the extraction technology of the color histogram characteristic is especially discussed. Considering the advantages and disadvantages of the overall histogram and the partition histogram, a new method based the partition-overall histogram is proposed. The basic thought of it is to divide the image space according to a certain strategy, and then calculate color histogram of each block as the color feature of this block. Users choose the blocks that contain important space information, confirming the right value. The system calculates the distance between the corresponding blocks that users choosed. Other blocks merge into part overall histograms again, and the distance should be calculated. Then accumulate all the distance as the real distance between two pictures. The partition-overall histogram comprehensive utilizes advantages of two methods above, by choosing blocks makes the feature contain more spatial information which can improve performance; the distances between partition-overall histogram

  13. Color-Based Image Retrieval from High-Similarity Image Databases

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Carstensen, Jens Michael

    2003-01-01

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce...... a method for HSID retrieval using a similarity measure based on a linear combination of Jeffreys-Matusita (JM) distances between distributions of color (and color derivatives) estimated from a set of automatically extracted image regions. The weight coefficients are estimated based on optimal retrieval...... performance. Experimental results on the difficult task of visually identifying clones of fungal colonies grown in a petri dish and categorization of pelts show a high retrieval accuracy of the method when combined with standardized sample preparation and image acquisition....

  14. Visual perception and medical imaging

    International Nuclear Information System (INIS)

    Jaffe, C.C.

    1985-01-01

    Medical imaging represents a particularly distinct discipline for image processing since it uniquely depends on the ''expert observer'' and yet models of the human visual system are totally inadequate at the complex level to allow satisfactory prediction of observer response to a given image modification. An illustration of the difficulties in assessing observer performance is shown by a series of optical illustrations which demonstrate that net cognitive behavior is not readily predictable. Although many of these phenomena are often considered as exceptional visual events, the setting of complex images makes it difficult to entirely exclude at least partial operation of these impairments during performance of the diagnostic medical imaging task

  15. Automated medical image segmentation techniques

    Directory of Open Access Journals (Sweden)

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  16. Medical hyperspectral imaging: a review

    Science.gov (United States)

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:24441941

  17. Topics in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2013-01-01

      The sixteen chapters included in this book were written by invited experts of international recognition and address important issues in Medical Image Processing and Computational Vision, including: Object Recognition, Object Detection, Object Tracking, Pose Estimation, Facial Expression Recognition, Image Retrieval, Data Mining, Automatic Video Understanding and Management, Edges Detection, Image Segmentation, Modelling and Simulation, Medical thermography, Database Systems, Synthetic Aperture Radar and Satellite Imagery.   Different applications are addressed and described throughout the book, comprising: Object Recognition and Tracking, Facial Expression Recognition, Image Database, Plant Disease Classification, Video Understanding and Management, Image Processing, Image Segmentation, Bio-structure Modelling and Simulation, Medical Imaging, Image Classification, Medical Diagnosis, Urban Areas Classification, Land Map Generation.   The book brings together the current state-of-the-art in the various mul...

  18. A visual perceptual descriptor with depth feature for image retrieval

    Science.gov (United States)

    Wang, Tianyang; Qin, Zhengrui

    2017-07-01

    This paper proposes a visual perceptual descriptor (VPD) and a new approach to extract perceptual depth feature for 2D image retrieval. VPD mimics human visual system, which can easily distinguish regions that have different textures, whereas for regions which have similar textures, color features are needed for further differentiation. We apply VPD on the gradient direction map of an image, capture texture-similar regions to generate a VPD map. We then impose the VPD map on a quantized color map and extract color features only from the overlapped regions. To reflect the nature of perceptual distance in single 2D image, we propose and extract the perceptual depth feature by computing the nuclear norm of the sparse depth map of an image. Extracted color features and the perceptual depth feature are both incorporated to a feature vector, we utilize this vector to represent an image and measure similarity. We observe that the proposed VPD + depth method achieves a promising result, and extensive experiments prove that it outperforms other typical methods on 2D image retrieval.

  19. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili, E-mail: wangnsrl@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Zhang, Kai [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Peiping; Wu, Ziyu, E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.

  20. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili; Zhang, Kai; Zhu, Peiping; Wu, Ziyu

    2015-01-01

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations

  1. Region-Based Color Image Indexing and Retrieval

    DEFF Research Database (Denmark)

    Kompatsiaris, Ioannis; Triantafyllou, Evangelia; Strintzis, Michael G.

    2001-01-01

    In this paper a region-based color image indexing and retrieval algorithm is presented. As a basis for the indexing, a novel K-Means segmentation algorithm is used, modified so as to take into account the coherence of the regions. A new color distance is also defined for this algorithm. Based on ....... Experimental results demonstrate the performance of the algorithm. The development of an intelligent image content-based search engine for the World Wide Web is also presented, as a direct application of the presented algorithm....

  2. [Design and implementation of medical instrument standard information retrieval system based on APS.NET].

    Science.gov (United States)

    Yu, Kaijun

    2010-07-01

    This paper Analys the design goals of Medical Instrumentation standard information retrieval system. Based on the B /S structure,we established a medical instrumentation standard retrieval system with ASP.NET C # programming language, IIS f Web server, SQL Server 2000 database, in the. NET environment. The paper also Introduces the system structure, retrieval system modules, system development environment and detailed design of the system.

  3. Interactive classification and content-based retrieval of tissue images

    Science.gov (United States)

    Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof

    2002-11-01

    We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.

  4. Medical image processing

    CERN Document Server

    Dougherty, Geoff

    2011-01-01

    This book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. This book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to e

  5. The application of similar image retrieval in electronic commerce.

    Science.gov (United States)

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei

    2014-01-01

    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system.

  6. The Application of Similar Image Retrieval in Electronic Commerce

    Directory of Open Access Journals (Sweden)

    YuPing Hu

    2014-01-01

    Full Text Available Traditional online shopping platform (OSP, which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers’ experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system.

  7. The Application of Similar Image Retrieval in Electronic Commerce

    Science.gov (United States)

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei

    2014-01-01

    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system. PMID:24883411

  8. Generative Interpretation of Medical Images

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille

    2004-01-01

    This thesis describes, proposes and evaluates methods for automated analysis and quantification of medical images. A common theme is the usage of generative methods, which draw inference from unknown images by synthesising new images having shape, pose and appearance similar to the analysed images......, handling of non-Gaussian variation by means of cluster analysis, correction of respiratory noise in cardiac MRI, and the extensions to multi-slice two-dimensional time-series and bi-temporal three-dimensional models. The medical applications include automated estimation of: left ventricular ejection...

  9. WFIRST: Retrieval Studies of Directly Imaged Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark; Lupu, Roxana; Lewis, Nikole K.; WFIRST Coronagraph SITs

    2018-01-01

    The typical direct imaging and spectroscopy target for the WFIRST Coronagraph will be a mature Jupiter-mass giant planet at a few AU from an FGK star. The spectra of such planets is expected to be shaped primarily by scattering from H2O clouds and absorption by gaseous NH3 and CH4. We have computed forward model spectra of such typical planets and applied noise models to understand the quality of photometry and spectra we can expect. Using such simulated datasets we have conducted Markov Chain Monte Carlo and MultiNest retrievals to derive atmospheric abundance of CH4, cloud scattering properties, gravity, and other parameters for various planets and observing modes. Our focus has primarily been to understand which combinations of photometry and spectroscopy at what SNR allow retrievals of atmospheric methane mixing ratios to within a factor of ten of the true value. This is a challenging task for directly imaged planets as the planet mass and radius--and thus surface gravity--are not as well constrained as in the case of transiting planets. We find that for plausible planets and datasets of the quality expected to be obtained by WFIRST it should be possible to place such constraints, at least for some planets. We present some examples of our retrieval results and explain how they have been utilized to help set design requirements on the coronagraph camera and integrated field spectrometer.

  10. Development of digital dashboard system for medical practice: maximizing efficiency of medical information retrieval and communication.

    Science.gov (United States)

    Lee, Kee Hyuck; Yoo, Sooyoung; Shin, HoGyun; Baek, Rong-Min; Chung, Chin Youb; Hwang, Hee

    2013-01-01

    It is reported that digital dashboard systems in hospitals provide a user interface (UI) that can centrally manage and retrieve various information related to patients in a single screen, support the decision-making of medical professionals on a real time basis by integrating the scattered medical information systems and core work flows, enhance the competence and decision-making ability of medical professionals, and reduce the probability of misdiagnosis. However, the digital dashboard systems of hospitals reported to date have some limitations when medical professionals use them to generally treat inpatients, because those were limitedly used for the work process of certain departments or developed to improve specific disease-related indicators. Seoul National University Bundang Hospital developed a new concept of EMR system to overcome such limitations. The system allows medical professionals to easily access all information on inpatients and effectively retrieve important information from any part of the hospital by displaying inpatient information in the form of digital dashboard. In this study, we would like to introduce the structure, development methodology and the usage of our new concept.

  11. [Medical image compression: a review].

    Science.gov (United States)

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings.

  12. A cloud-based framework for large-scale traditional Chinese medical record retrieval.

    Science.gov (United States)

    Liu, Lijun; Liu, Li; Fu, Xiaodong; Huang, Qingsong; Zhang, Xianwen; Zhang, Yin

    2018-01-01

    Electronic medical records are increasingly common in medical practice. The secondary use of medical records has become increasingly important. It relies on the ability to retrieve the complete information about desired patient populations. How to effectively and accurately retrieve relevant medical records from large- scale medical big data is becoming a big challenge. Therefore, we propose an efficient and robust framework based on cloud for large-scale Traditional Chinese Medical Records (TCMRs) retrieval. We propose a parallel index building method and build a distributed search cluster, the former is used to improve the performance of index building, and the latter is used to provide high concurrent online TCMRs retrieval. Then, a real-time multi-indexing model is proposed to ensure the latest relevant TCMRs are indexed and retrieved in real-time, and a semantics-based query expansion method and a multi- factor ranking model are proposed to improve retrieval quality. Third, we implement a template-based visualization method for displaying medical reports. The proposed parallel indexing method and distributed search cluster can improve the performance of index building and provide high concurrent online TCMRs retrieval. The multi-indexing model can ensure the latest relevant TCMRs are indexed and retrieved in real-time. The semantics expansion method and the multi-factor ranking model can enhance retrieval quality. The template-based visualization method can enhance the availability and universality, where the medical reports are displayed via friendly web interface. In conclusion, compared with the current medical record retrieval systems, our system provides some advantages that are useful in improving the secondary use of large-scale traditional Chinese medical records in cloud environment. The proposed system is more easily integrated with existing clinical systems and be used in various scenarios. Copyright © 2017. Published by Elsevier Inc.

  13. Machine Learning for Medical Imaging.

    Science.gov (United States)

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. © RSNA, 2017.

  14. Medical imaging and the Internet

    International Nuclear Information System (INIS)

    Jones, D.N.; Carr, P.

    1995-01-01

    A brief introduction to the INTERNET and its benefits for those involved in nuclear medical imaging is given. In Australia, depending on the type of institution/department involved, connection to the INTERNET may be obtained via the Australian Academic and Research Network or through a commercial provider. The recent proliferation of WWW servers has also resulted in multiple medical imaging databases and teaching resources becoming available to the user. Some Newsgroups and WWW addresses related to radiology are provided. 3 refs

  15. Medical image archive node simulation and architecture

    Science.gov (United States)

    Chiang, Ted T.; Tang, Yau-Kuo

    1996-05-01

    It is a well known fact that managed care and new treatment technologies are revolutionizing the health care provider world. Community Health Information Network and Computer-based Patient Record projects are underway throughout the United States. More and more hospitals are installing digital, `filmless' radiology (and other imagery) systems. They generate a staggering amount of information around the clock. For example, a typical 500-bed hospital might accumulate more than 5 terabytes of image data in a period of 30 years for conventional x-ray images and digital images such as Magnetic Resonance Imaging and Computer Tomography images. With several hospitals contributing to the archive, the storage required will be in the hundreds of terabytes. Systems for reliable, secure, and inexpensive storage and retrieval of digital medical information do not exist today. In this paper, we present a Medical Image Archive and Distribution Service (MIADS) concept. MIADS is a system shared by individual and community hospitals, laboratories, and doctors' offices that need to store and retrieve medical images. Due to the large volume and complexity of the data, as well as the diversified user access requirement, implementation of the MIADS will be a complex procedure. One of the key challenges to implementing a MIADS is to select a cost-effective, scalable system architecture to meet the ingest/retrieval performance requirements. We have performed an in-depth system engineering study, and developed a sophisticated simulation model to address this key challenge. This paper describes the overall system architecture based on our system engineering study and simulation results. In particular, we will emphasize system scalability and upgradability issues. Furthermore, we will discuss our simulation results in detail. The simulations study the ingest/retrieval performance requirements based on different system configurations and architectures for variables such as workload, tape

  16. Java advanced medical image toolkit

    International Nuclear Information System (INIS)

    Saunder, T.H.C.; O'Keefe, G.J.; Scott, A.M.

    2002-01-01

    Full text: The Java Advanced Medical Image Toolkit (jAMIT) has been developed at the Center for PET and Department of Nuclear Medicine in an effort to provide a suite of tools that can be utilised in applications required to perform analysis, processing and visualisation of medical images. jAMIT uses Java Advanced Imaging (JAI) to combine the platform independent nature of Java with the speed benefits associated with native code. The object-orientated nature of Java allows the production of an extensible and robust package which is easily maintained. In addition to jAMIT, a Medical Image VO API called Sushi has been developed to provide access to many commonly used image formats. These include DICOM, Analyze, MINC/NetCDF, Trionix, Beat 6.4, Interfile 3.2/3.3 and Odyssey. This allows jAMIT to access data and study information contained in different medical image formats transparently. Additional formats can be added at any time without any modification to the jAMIT package. Tools available in jAMIT include 2D ROI Analysis, Palette Thresholding, Image Groping, Image Transposition, Scaling, Maximum Intensity Projection, Image Fusion, Image Annotation and Format Conversion. Future tools may include 2D Linear and Non-linear Registration, PET SUV Calculation, 3D Rendering and 3D ROI Analysis. Applications currently using JAMIT include Antibody Dosimetry Analysis, Mean Hemispheric Blood Flow Analysis, QuickViewing of PET Studies for Clinical Training, Pharamcodynamic Modelling based on Planar Imaging, and Medical Image Format Conversion. The use of jAMIT and Sushi for scripting and analysis in Matlab v6.1 and Jython is currently being explored. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  17. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  18. Content-based histopathology image retrieval using CometCloud.

    Science.gov (United States)

    Qi, Xin; Wang, Daihou; Rodero, Ivan; Diaz-Montes, Javier; Gensure, Rebekah H; Xing, Fuyong; Zhong, Hua; Goodell, Lauri; Parashar, Manish; Foran, David J; Yang, Lin

    2014-08-26

    The development of digital imaging technology is creating extraordinary levels of accuracy that provide support for improved reliability in different aspects of the image analysis, such as content-based image retrieval, image segmentation, and classification. This has dramatically increased the volume and rate at which data are generated. Together these facts make querying and sharing non-trivial and render centralized solutions unfeasible. Moreover, in many cases this data is often distributed and must be shared across multiple institutions requiring decentralized solutions. In this context, a new generation of data/information driven applications must be developed to take advantage of the national advanced cyber-infrastructure (ACI) which enable investigators to seamlessly and securely interact with information/data which is distributed across geographically disparate resources. This paper presents the development and evaluation of a novel content-based image retrieval (CBIR) framework. The methods were tested extensively using both peripheral blood smears and renal glomeruli specimens. The datasets and performance were evaluated by two pathologists to determine the concordance. The CBIR algorithms that were developed can reliably retrieve the candidate image patches exhibiting intensity and morphological characteristics that are most similar to a given query image. The methods described in this paper are able to reliably discriminate among subtle staining differences and spatial pattern distributions. By integrating a newly developed dual-similarity relevance feedback module into the CBIR framework, the CBIR results were improved substantially. By aggregating the computational power of high performance computing (HPC) and cloud resources, we demonstrated that the method can be successfully executed in minutes on the Cloud compared to weeks using standard computers. In this paper, we present a set of newly developed CBIR algorithms and validate them using two

  19. Video retrieval by still-image analysis with ImageMiner

    Science.gov (United States)

    Kreyss, Jutta; Roeper, M.; Alshuth, Peter; Hermes, Thorsten; Herzog, Otthein

    1997-01-01

    The large amount of available multimedia information (e.g. videos, audio, images) requires efficient and effective annotation and retrieval methods. As videos start playing a more important role in the frame of multimedia, we want to make these available for content-based retrieval. The ImageMiner-System, which was developed at the University of Bremen in the AI group, is designed for content-based retrieval of single images by a new combination of techniques and methods from computer vision and artificial intelligence. In our approach to make videos available for retrieval in a large database of videos and images there are two necessary steps: First, the detection and extraction of shots from a video, which is done by a histogram based method and second, the construction of the separate frames in a shot to one still single images. This is performed by a mosaicing-technique. The resulting mosaiced image gives a one image visualization of the shot and can be analyzed by the ImageMiner-System. ImageMiner has been tested on several domains, (e.g. landscape images, technical drawings), which cover a wide range of applications.

  20. Introduction to Medical Image Analysis

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Moeslund, Thomas B.

    of the book is to present the fascinating world of medical image analysis in an easy and interesting way. Compared to many standard books on image analysis, the approach we have chosen is less mathematical and more casual. Some of the key algorithms are exemplified in C-code. Please note that the code...

  1. Medical image telecommunication

    International Nuclear Information System (INIS)

    Handmaker, H.; Bennington, J.L.; Lloyd, R.W.; Caspe, R.A.

    1986-01-01

    After years of waiting for Picture Archiving and Communication Systems (PACS) to become technologically mature and readily available at competitive costs, it appears that the ingredients are now available for producing at least the telecommunication component of the PACS. They are as follows: 1. A variety of pathways now exist for long-distance high-speed digital data transmission at acceptable costs. 2. Developments in computer technology and keen competition in the microcomputer and video display markets have markedly reduced to costs for components of digital data terminals. 3. The volume of native digitally acquired images is expanding yearly, whereas at the same time the pressure for converting images acquired in analog format to digital format is increasing. 4. The advantages of and potential for processing and storing imaging data in digital format are becoming more widely recognized. These factors, individually and collectively, favor the successful applications of image telecommunication to the field of diagnostic imaging. The authors have attempted to provide an overview of the subject and the basics of this emerging technology

  2. Rotation invariant deep binary hashing for fast image retrieval

    Science.gov (United States)

    Dai, Lai; Liu, Jianming; Jiang, Aiwen

    2017-07-01

    In this paper, we study how to compactly represent image's characteristics for fast image retrieval. We propose supervised rotation invariant compact discriminative binary descriptors through combining convolutional neural network with hashing. In the proposed network, binary codes are learned by employing a hidden layer for representing latent concepts that dominate on class labels. A loss function is proposed to minimize the difference between binary descriptors that describe reference image and the rotated one. Compared with some other supervised methods, the proposed network doesn't have to require pair-wised inputs for binary code learning. Experimental results show that our method is effective and achieves state-of-the-art results on the CIFAR-10 and MNIST datasets.

  3. Developments in medical imaging techniques

    International Nuclear Information System (INIS)

    Kramer, Cornelis

    1979-01-01

    A review of the developments in medical imaging in the past 25 years shows a strong increase in the number of physical methods which have become available for obtaining images of diagnostic value. It is shown that despite this proliferation of methods the equipment used for obtaining the images can be based on a common structure. Also the resulting images can be characterized by a few relevant parameters which indicate their information content. On the basis of this common architecture a study is made of the potential capabilities of the large number of medical imaging techniques available now and in the future. Also the requirements and possibilities for handling the images obtained and for controlling the diagnostic systems are investigated [fr

  4. Evaluation Of Medical Fluoroscopy Imaging

    International Nuclear Information System (INIS)

    Hartana, Budi; Santoso

    2000-01-01

    It has been done to evaluate image system of medical fluoroscopic machine by Leeds Test Object (LTO). Two x-ray potentials of 70 kV and 40-60 kV were used to evaluate image by LTO on monitor and oscilloscope. Performance of imaging system decreased for some parameters of video signal, linearity of television scan, contras threshold of 4.5%, distortion integral of 65.1%, and focus uniformity decrease to edge image. Comparison of field diameter of television image to intensifier field vertically and horizontally were respectively 221:230 and 205:230, symmetrically vignetting, spatial resolution limit is 1.26 lp/mm

  5. Imaging techniques for medical diagnosis

    International Nuclear Information System (INIS)

    Gudden, F.

    1982-01-01

    In the last few decades, science, engineering and medicine have combinded to improve the quality of our lives to a level previously unimagined. Within the framework of medical engineering - the field of activity of the Medical Engineering Group of Siemens AG - diagnostic image-generating systems have played an important role in effecting these changes and improvements. The importance of these systems to the success of the Group is clearly evident. Diagnostic imaging systems account for 65% of the sales achieved by this Group. In this article an overview is presented of the major innovations and the aims of developments in the field of imaging systems. (orig.)

  6. A new method for the automatic retrieval of medical cases based on the RadLex ontology.

    Science.gov (United States)

    Spanier, A B; Cohen, D; Joskowicz, L

    2017-03-01

    The goal of medical case-based image retrieval (M-CBIR) is to assist radiologists in the clinical decision-making process by finding medical cases in large archives that most resemble a given case. Cases are described by radiology reports comprised of radiological images and textual information on the anatomy and pathology findings. The textual information, when available in standardized terminology, e.g., the RadLex ontology, and used in conjunction with the radiological images, provides a substantial advantage for M-CBIR systems. We present a new method for incorporating textual radiological findings from medical case reports in M-CBIR. The input is a database of medical cases, a query case, and the number of desired relevant cases. The output is an ordered list of the most relevant cases in the database. The method is based on a new case formulation, the Augmented RadLex Graph and an Anatomy-Pathology List. It uses a new case relatedness metric [Formula: see text] that prioritizes more specific medical terms in the RadLex tree over less specific ones and that incorporates the length of the query case. An experimental study on 8 CT queries from the 2015 VISCERAL 3D Case Retrieval Challenge database consisting of 1497 volumetric CT scans shows that our method has accuracy rates of 82 and 70% on the first 10 and 30 most relevant cases, respectively, thereby outperforming six other methods. The increasing amount of medical imaging data acquired in clinical practice constitutes a vast database of untapped diagnostically relevant information. This paper presents a new hybrid approach to retrieving the most relevant medical cases based on textual and image information.

  7. Intelligent retrieval of chest X-ray image database using sketches

    International Nuclear Information System (INIS)

    Hasegawa, Jun-ichi; Okada, Noritake; Toriwaki, Jun-ichiro

    1988-01-01

    This paper presents further experiments on intelligent retrieval in our chest X-ray image database system using 'sketches'. First, in the previous sketch extraction procedure, vertical-location-invariant thresholding and shape-oriented smoothing are newly developed to improve the precision of lung borders and rib images in each sketch, respectively. Then, two new ways for image retrieval using sketches; (1) image-description retrieval and (2) pattern-matching retrieval, are proposed. In each retrieval way, a procedure for understanding picture queries input through a sketch is described in detail. (author)

  8. Novel medical image enhancement algorithms

    Science.gov (United States)

    Agaian, Sos; McClendon, Stephen A.

    2010-01-01

    In this paper, we present two novel medical image enhancement algorithms. The first, a global image enhancement algorithm, utilizes an alpha-trimmed mean filter as its backbone to sharpen images. The second algorithm uses a cascaded unsharp masking technique to separate the high frequency components of an image in order for them to be enhanced using a modified adaptive contrast enhancement algorithm. Experimental results from enhancing electron microscopy, radiological, CT scan and MRI scan images, using the MATLAB environment, are then compared to the original images as well as other enhancement methods, such as histogram equalization and two forms of adaptive contrast enhancement. An image processing scheme for electron microscopy images of Purkinje cells will also be implemented and utilized as a comparison tool to evaluate the performance of our algorithm.

  9. Medical imaging V

    International Nuclear Information System (INIS)

    Loew, M.H.

    1991-01-01

    This book is covered under the following topics: preprocessing and enhancement 1-3; segmentation, feature extraction, and detection 1-2; hardware and software systems for display; and user interface; MRI; MRI and PET; 3-D; image reconstruction, modeling, description, and coding; and knowledge-based methods

  10. Medical Imaging Informatics.

    Science.gov (United States)

    Hsu, William; El-Saden, Suzie; Taira, Ricky K

    2016-01-01

    Imaging is one of the most important sources of clinically observable evidence that provides broad coverage, can provide insight on low-level scale properties, is noninvasive, has few side effects, and can be performed frequently. Thus, imaging data provides a viable observable that can facilitate the instantiation of a theoretical understanding of a disease for a particular patient context by connecting imaging findings to other biologic parameters in the model (e.g., genetic, molecular, symptoms, and patient survival). These connections can help inform their possible states and/or provide further coherent evidence. The field of radiomics is particularly dedicated to this task and seeks to extract quantifiable measures wherever possible. Example properties of investigation include genotype characterization, histopathology parameters, metabolite concentrations, vascular proliferation, necrosis, cellularity, and oxygenation. Important issues within the field include: signal calibration, spatial calibration, preprocessing methods (e.g., noise suppression, motion correction, and field bias correction), segmentation of target anatomic/pathologic entities, extraction of computed features, and inferencing methods connecting imaging features to biological states.

  11. Relevance Feedback in Content Based Image Retrieval: A Review

    Directory of Open Access Journals (Sweden)

    Manesh B. Kokare

    2011-01-01

    Full Text Available This paper provides an overview of the technical achievements in the research area of relevance feedback (RF in content-based image retrieval (CBIR. Relevance feedback is a powerful technique in CBIR systems, in order to improve the performance of CBIR effectively. It is an open research area to the researcher to reduce the semantic gap between low-level features and high level concepts. The paper covers the current state of art of the research in relevance feedback in CBIR, various relevance feedback techniques and issues in relevance feedback are discussed in detail.

  12. Luminescence in medical image science

    Energy Technology Data Exchange (ETDEWEB)

    Kandarakis, I.S., E-mail: kandarakis@teiath.gr

    2016-01-15

    Radiation detection in Medical Imaging is mostly based on the use of luminescent materials (scintillators and phosphors) coupled to optical sensors. Materials are employed in the form of granular screens, structured (needle-like) crystals and single crystal transparent blocks. Storage phosphors are also incorporated in some x-ray imaging plates. Description of detector performance is currently based on quality metrics, such as the Luminescence efficiency, the Modulation Transfer Function (MTF), the Noise Power Spectrum (NPS) and the Detective Quantum Efficiency (DQE) can be defined and evaluated. The aforementioned metrics are experimental evaluated for various materials in the form of screens. A software was designed (MINORE v1) to present image quality measurements in a graphical user interface (GUI) environment. Luminescence efficiency, signal and noise analysis are valuable tools for the evaluation of luminescent materials as candidates for medical imaging detectors. - Highlights: • Luminescence based medical imaging detectors. • Image science: MTF, NPS, DQE. • Phosphors screens light emission efficiency experimental evaluation. • Theoretical models for estimation of phosphor screen properties. • Software for medical image quality metrics.

  13. Medical gamma ray imaging

    Science.gov (United States)

    Osborne, Louis S.; Lanza, Richard C.

    1984-01-01

    A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.

  14. Content-based image retrieval with ontological ranking

    Science.gov (United States)

    Tsai, Shen-Fu; Tsai, Min-Hsuan; Huang, Thomas S.

    2010-02-01

    Images are a much more powerful medium of expression than text, as the adage says: "One picture is worth a thousand words." It is because compared with text consisting of an array of words, an image has more degrees of freedom and therefore a more complicated structure. However, the less limited structure of images presents researchers in the computer vision community a tough task of teaching machines to understand and organize images, especially when a limit number of learning examples and background knowledge are given. The advance of internet and web technology in the past decade has changed the way human gain knowledge. People, hence, can exchange knowledge with others by discussing and contributing information on the web. As a result, the web pages in the internet have become a living and growing source of information. One is therefore tempted to wonder whether machines can learn from the web knowledge base as well. Indeed, it is possible to make computer learn from the internet and provide human with more meaningful knowledge. In this work, we explore this novel possibility on image understanding applied to semantic image search. We exploit web resources to obtain links from images to keywords and a semantic ontology constituting human's general knowledge. The former maps visual content to related text in contrast to the traditional way of associating images with surrounding text; the latter provides relations between concepts for machines to understand to what extent and in what sense an image is close to the image search query. With the aid of these two tools, the resulting image search system is thus content-based and moreover, organized. The returned images are ranked and organized such that semantically similar images are grouped together and given a rank based on the semantic closeness to the input query. The novelty of the system is twofold: first, images are retrieved not only based on text cues but their actual contents as well; second, the grouping

  15. A single-image method of aberration retrieval for imaging systems under partially coherent illumination

    International Nuclear Information System (INIS)

    Xu, Shuang; Liu, Shiyuan; Zhang, Chuanwei; Wei, Haiqing

    2014-01-01

    We propose a method for retrieving small lens aberrations in optical imaging systems under partially coherent illumination, which only requires to measure one single defocused image of intensity. By deriving a linear theory of imaging systems, we obtain a generalized formulation of aberration sensitivity in a matrix form, which provides a set of analytic kernels that relate the measured intensity distribution directly to the unknown Zernike coefficients. Sensitivity analysis is performed and test patterns are optimized to ensure well-posedness of the inverse problem. Optical lithography simulations have validated the theoretical derivation and confirmed its simplicity and superior performance in retrieving small lens aberrations. (fast track communication)

  16. Recent progress in medical imaging technology

    International Nuclear Information System (INIS)

    Endo, Masahiro

    2004-01-01

    Medical imaging is name of methods for diagnosis and therapy, which make visible with physical media such as X-ray, structures and functions of man's inside those are usually invisible. These methods are classified by the physical media into ultrasound imaging, magnetic resonance imaging, nuclear medicine imaging and X-ray imaging etc. Having characteristics different from one another, these are used complementarily in medical fields though in some case being competitive. Medical imaging is supported by highly progressed technology, which is called medical imaging technology. This paper describes a survey of recent progress of medical imaging technology in magnetic resonance imaging, nuclear medicine imaging and X-ray imaging. (author)

  17. Stereoscopic medical imaging collaboration system

    Science.gov (United States)

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  18. Quantitative information in medical imaging

    International Nuclear Information System (INIS)

    Deconinck, F.

    1985-01-01

    When developing new imaging or image processing techniques, one constantly has in mind that the new technique should provide a better, or more optimal answer to medical tasks than existing techniques do 'Better' or 'more optimal' imply some kind of standard by which one can measure imaging or image processing performance. The choice of a particular imaging modality to answer a diagnostic task, such as the detection of coronary artery stenosis is also based on an implicit optimalisation of performance criteria. Performance is measured by the ability to provide information about an object (patient) to the person (referring doctor) who ordered a particular task. In medical imaging the task is generally to find quantitative information on bodily function (biochemistry, physiology) and structure (histology, anatomy). In medical imaging, a wide range of techniques is available. Each technique has it's own characteristics. The techniques discussed in this paper are: nuclear magnetic resonance, X-ray fluorescence, scintigraphy, positron emission tomography, applied potential tomography, computerized tomography, and compton tomography. This paper provides a framework for the comparison of imaging performance, based on the way the quantitative information flow is altered by the characteristics of the modality

  19. Medical Image Data Compression

    OpenAIRE

    Šebek, Jiří

    2012-01-01

    Práce zkoumá, jak se projeví účinek různých komprimačních algoritmů na obrazových datech v medicíně. Snaží se najít algoritmus nebo skupinu algoritmů, které budou mít největší kompresní účinek. Kromě použití klasických algoritmů je snaha využít vlastností medicínských dat (tj. že obsahují hodně podobných obrazových bodů) pro jejich lepší kompresi. Ověříme si účinnek delta kódování na výsledný kompresní poměr a na závěr uvedeme naši nejlepší nalezenou metodu. The efficiency of various compr...

  20. Model-based magnetization retrieval from holographic phase images

    Energy Technology Data Exchange (ETDEWEB)

    Röder, Falk, E-mail: f.roeder@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Vogel, Karin [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Wolf, Daniel [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Hellwig, Olav [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); AG Magnetische Funktionsmaterialien, Institut für Physik, Technische Universität Chemnitz, D-09126 Chemnitz (Germany); HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wee, Sung Hun [HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wicht, Sebastian; Rellinghaus, Bernd [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-05-15

    The phase shift of the electron wave is a useful measure for the projected magnetic flux density of magnetic objects at the nanometer scale. More important for materials science, however, is the knowledge about the magnetization in a magnetic nano-structure. As demonstrated here, a dominating presence of stray fields prohibits a direct interpretation of the phase in terms of magnetization modulus and direction. We therefore present a model-based approach for retrieving the magnetization by considering the projected shape of the nano-structure and assuming a homogeneous magnetization therein. We apply this method to FePt nano-islands epitaxially grown on a SrTiO{sub 3} substrate, which indicates an inclination of their magnetization direction relative to the structural easy magnetic [001] axis. By means of this real-world example, we discuss prospects and limits of this approach. - Highlights: • Retrieval of the magnetization from holographic phase images. • Magnetostatic model constructed for a magnetic nano-structure. • Decomposition into homogeneously magnetized components. • Discretization of a each component by elementary cuboids. • Analytic solution for the phase of a magnetized cuboid considered. • Fitting a set of magnetization vectors to experimental phase images.

  1. Extraction of Lesion-Partitioned Features and Retrieval of Contrast-Enhanced Liver Images

    Directory of Open Access Journals (Sweden)

    Mei Yu

    2012-01-01

    Full Text Available The most critical step in grayscale medical image retrieval systems is feature extraction. Understanding the interrelatedness between the characteristics of lesion images and corresponding imaging features is crucial for image training, as well as for features extraction. A feature-extraction algorithm is developed based on different imaging properties of lesions and on the discrepancy in density between the lesions and their surrounding normal liver tissues in triple-phase contrast-enhanced computed tomographic (CT scans. The algorithm includes mainly two processes: (1 distance transformation, which is used to divide the lesion into distinct regions and represents the spatial structure distribution and (2 representation using bag of visual words (BoW based on regions. The evaluation of this system based on the proposed feature extraction algorithm shows excellent retrieval results for three types of liver lesions visible on triple-phase scans CT images. The results of the proposed feature extraction algorithm show that although single-phase scans achieve the average precision of 81.9%, 80.8%, and 70.2%, dual- and triple-phase scans achieve 86.3% and 88.0%.

  2. Implementação e avaliação de um sistema de gerenciamento de imagens médicas com suporte à recuperação baseada em conteúdo Implementation and evaluation of a medical image management system with content-based retrieval support

    Directory of Open Access Journals (Sweden)

    Edilson Carlos Caritá

    2008-10-01

    Full Text Available OBJETIVO: Neste artigo são descritas a implementação e avaliação de um sistema de gerenciamento de imagens médicas com suporte à recuperação baseada em conteúdo (PACS-CBIR, integrando módulos voltados para a aquisição, armazenamento e distribuição de imagens, e a recuperação de informação textual por palavras-chave e de imagens por similaridade. MATERIAIS E MÉTODOS: O sistema foi implementado com tecnologias para Internet, utilizando-se programas livres, plataforma Linux e linguagem de programação C++, PHP e Java. Há um módulo de gerenciamento de imagens compatível com o padrão DICOM e outros dois módulos de busca, um baseado em informações textuais e outro na similaridade de atributos de textura de imagens. RESULTADOS: Os resultados obtidos indicaram que as imagens são gerenciadas e armazenadas corretamente e que o tempo de retorno das imagens, sempre menor do que 15 segundos, foi considerado bom pelos usuários. As avaliações da recuperação por similaridade demonstraram que o extrator escolhido possibilitou a separação das imagens por região anatômica. CONCLUSÃO: Com os resultados obtidos pode-se concluir que é viável a implementação de um PACS-CBIR. O sistema apresentou-se compatível com as funcionalidades do DICOM e integrável ao sistema de informação local. A funcionalidade de recuperação de imagens similares pode ser melhorada com a inclusão de outros descritores.OBJECTIVE: The present paper describes the implementation and evaluation of a medical images management system with content-based retrieval support (PACS-CBIR integrating modules focused on images acquisition, storage and distribution, and text retrieval by keyword and images retrieval by similarity. MATERIALS AND METHODS: Internet-compatible technologies were utilized for the system implementation with freeware, and C++, PHP and Java languages on a Linux platform. There is a DICOM-compatible image management module and two query

  3. Army medical imaging system: ARMIS

    International Nuclear Information System (INIS)

    Siedband, M.P.; Kramp, D.C.

    1987-01-01

    Recent advances of stimulable phosphor screens, data cards using optical storage means, and new personal computers with image processing capability have made possible the design of economical filmless medical imaging systems. The addition of communication links means that remote interpretation of images is also possible. The Army Medical Imaging System uses stimulable phosphor screens, digital readout, a small computer, an optical digital data card device, and a DIN/PACS link. Up to 200 images can be stored in the computer hard disk for rapid recall and reading by the radiologist. The computer permits image processing, annotation, insertion of text, and control of the system. Each device contains an image storage RAM and communicates with the computer via the small computer systems interface. Data compression is used to reduce the required storage capacity and transmission times of the 1-mB images. The credit card-size optical data cards replace film and can store 12 or more images. The data cards can be read on an independent viewer. The research is supported by the U.S. Army Biomedical Research and Development Laboratory

  4. Invitation to medical image processing

    International Nuclear Information System (INIS)

    Kitasaka, Takayuki; Suenaga, Yasuhito; Mori, Kensaku

    2010-01-01

    This medical essay explains the present state of CT image processing technology about its recognition, acquisition and visualization for computer-assisted diagnosis (CAD) and surgery (CAS), and future view. Medical image processing has a series of history of its original start from the discovery of X-ray to its application to diagnostic radiography, its combination with the computer for CT, multi-detector raw CT, leading to 3D/4D images for CAD and CAS. CAD is performed based on the recognition of normal anatomical structure of human body, detection of possible abnormal lesion and visualization of its numerical figure into image. Actual instances of CAD images are presented here for chest (lung cancer), abdomen (colorectal cancer) and future body atlas (models of organs and diseases for imaging), a recent national project: computer anatomy. CAS involves the surgical planning technology based on 3D images, navigation of the actual procedure and of endoscopy. As guidance to beginning technological image processing, described are the national and international community like related academic societies, regularly conducting congresses, textbooks and workshops, and topics in the field like computed anatomy of an individual patient for CAD and CAS, its data security and standardization. In future, protective medicine is in authors' view based on the imaging technology, e.g., daily life CAD of individuals ultimately, as exemplified in the present body thermometer and home sphygmometer, to monitor one's routine physical conditions. (T.T.)

  5. ImageGrouper: a group-oriented user interface for content-based image retrieval and digital image arrangement

    NARCIS (Netherlands)

    Nakazato, Munehiro; Manola, L.; Huang, Thomas S.

    In content-based image retrieval (CBIR), experimental (trial-and-error) query with relevance feedback is essential for successful retrieval. Unfortunately, the traditional user interfaces are not suitable for trying different combinations of query examples. This is because first, these systems

  6. Biased discriminant euclidean embedding for content-based image retrieval.

    Science.gov (United States)

    Bian, Wei; Tao, Dacheng

    2010-02-01

    With many potential multimedia applications, content-based image retrieval (CBIR) has recently gained more attention for image management and web search. A wide variety of relevance feedback (RF) algorithms have been developed in recent years to improve the performance of CBIR systems. These RF algorithms capture user's preferences and bridge the semantic gap. However, there is still a big room to further the RF performance, because the popular RF algorithms ignore the manifold structure of image low-level visual features. In this paper, we propose the biased discriminative Euclidean embedding (BDEE) which parameterises samples in the original high-dimensional ambient space to discover the intrinsic coordinate of image low-level visual features. BDEE precisely models both the intraclass geometry and interclass discrimination and never meets the undersampled problem. To consider unlabelled samples, a manifold regularization-based item is introduced and combined with BDEE to form the semi-supervised BDEE, or semi-BDEE for short. To justify the effectiveness of the proposed BDEE and semi-BDEE, we compare them against the conventional RF algorithms and show a significant improvement in terms of accuracy and stability based on a subset of the Corel image gallery.

  7. System for digitalization of medical images based on DICOM standard

    Directory of Open Access Journals (Sweden)

    Čabarkapa Slobodan

    2009-01-01

    Full Text Available According to DICOM standard, which defines both medical image information and user information, a new system for digitalizing medical images is involved as a part of the main system for archiving and retrieving medical databases. The basic characteristics of this system are described in this paper. Furthermore, the analysis of some important DICOM header's tags which are used in this system, are presented, too. Having chosen the appropriate tags in order to preserve important information, the efficient system has been created. .

  8. STUDY COMPARISON OF SVM-, K-NN- AND BACKPROPAGATION-BASED CLASSIFIER FOR IMAGE RETRIEVAL

    Directory of Open Access Journals (Sweden)

    Muhammad Athoillah

    2015-03-01

    Full Text Available Classification is a method for compiling data systematically according to the rules that have been set previously. In recent years classification method has been proven to help many people’s work, such as image classification, medical biology, traffic light, text classification etc. There are many methods to solve classification problem. This variation method makes the researchers find it difficult to determine which method is best for a problem. This framework is aimed to compare the ability of classification methods, such as Support Vector Machine (SVM, K-Nearest Neighbor (K-NN, and Backpropagation, especially in study cases of image retrieval with five category of image dataset. The result shows that K-NN has the best average result in accuracy with 82%. It is also the fastest in average computation time with 17,99 second during retrieve session for all categories class. The Backpropagation, however, is the slowest among three of them. In average it needed 883 second for training session and 41,7 second for retrieve session.

  9. Physics instrumentation for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, D. W. [Geneva University Hospital, Geneva (Switzerland)

    1993-04-15

    The first Nobel Physics Prize, awarded in 1901, went to Wilhelm Röntgen for his discovery of X-rays in 1895. This, and the most recent physics Nobel, to Georges Charpak last year for his detector developments, span several generations of applied science. As well as helping to launch the science of atomic physics, Röntgen's discovery also marked the dawn of a medical science - radiography - using beams of various kinds to image what otherwise cannot be seen. Ever since, physicists and radiologists have worked hand in hand to improve imaging techniques and widen their medical applications.

  10. Physics instrumentation for medical imaging

    International Nuclear Information System (INIS)

    Townsend, D.W.

    1993-01-01

    The first Nobel Physics Prize, awarded in 1901, went to Wilhelm Röntgen for his discovery of X-rays in 1895. This, and the most recent physics Nobel, to Georges Charpak last year for his detector developments, span several generations of applied science. As well as helping to launch the science of atomic physics, Röntgen's discovery also marked the dawn of a medical science - radiography - using beams of various kinds to image what otherwise cannot be seen. Ever since, physicists and radiologists have worked hand in hand to improve imaging techniques and widen their medical applications

  11. Evidence based medical imaging (EBMI)

    International Nuclear Information System (INIS)

    Smith, Tony

    2008-01-01

    Background: The evidence based paradigm was first described about a decade ago. Previous authors have described a framework for the application of evidence based medicine which can be readily adapted to medical imaging practice. Purpose: This paper promotes the application of the evidence based framework in both the justification of the choice of examination type and the optimisation of the imaging technique used. Methods: The framework includes five integrated steps: framing a concise clinical question; searching for evidence to answer that question; critically appraising the evidence; applying the evidence in clinical practice; and, evaluating the use of revised practices. Results: This paper illustrates the use of the evidence based framework in medical imaging (that is, evidence based medical imaging) using the examples of two clinically relevant case studies. In doing so, a range of information technology and other resources available to medical imaging practitioners are identified with the intention of encouraging the application of the evidence based paradigm in radiography and radiology. Conclusion: There is a perceived need for radiographers and radiologists to make greater use of valid research evidence from the literature to inform their clinical practice and thus provide better quality services

  12. Motion correction in medical imaging.

    OpenAIRE

    Smith, Rhodri

    2017-01-01

    It is estimated that over half of current adults within Great Britain under the age of 65 will be diagnosed with cancer at some point in their lifetime. Medical Imaging forms an essential part of cancer clinical protocols and is able to furnish morphological, metabolic and functional information. The imaging of molecular interactions of biological processes in vivo with Positron Emission Tomography (PET) is informative not only for disease detection but also therapeutic response. The qualitat...

  13. Retrieving high-resolution images over the Internet from an anatomical image database

    Science.gov (United States)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  14. A framework for integration of heterogeneous medical imaging networks.

    Science.gov (United States)

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS.

  15. High Bit-Depth Medical Image Compression With HEVC.

    Science.gov (United States)

    Parikh, Saurin S; Ruiz, Damian; Kalva, Hari; Fernandez-Escribano, Gerardo; Adzic, Velibor

    2018-03-01

    Efficient storing and retrieval of medical images has direct impact on reducing costs and improving access in cloud-based health care services. JPEG 2000 is currently the commonly used compression format for medical images shared using the DICOM standard. However, new formats such as high efficiency video coding (HEVC) can provide better compression efficiency compared to JPEG 2000. Furthermore, JPEG 2000 is not suitable for efficiently storing image series and 3-D imagery. Using HEVC, a single format can support all forms of medical images. This paper presents the use of HEVC for diagnostically acceptable medical image compression, focusing on compression efficiency compared to JPEG 2000. Diagnostically acceptable lossy compression and complexity of high bit-depth medical image compression are studied. Based on an established medically acceptable compression range for JPEG 2000, this paper establishes acceptable HEVC compression range for medical imaging applications. Experimental results show that using HEVC can increase the compression performance, compared to JPEG 2000, by over 54%. Along with this, a new method for reducing computational complexity of HEVC encoding for medical images is proposed. Results show that HEVC intra encoding complexity can be reduced by over 55% with negligible increase in file size.

  16. Coupled binary embedding for large-scale image retrieval.

    Science.gov (United States)

    Zheng, Liang; Wang, Shengjin; Tian, Qi

    2014-08-01

    Visual matching is a crucial step in image retrieval based on the bag-of-words (BoW) model. In the baseline method, two keypoints are considered as a matching pair if their SIFT descriptors are quantized to the same visual word. However, the SIFT visual word has two limitations. First, it loses most of its discriminative power during quantization. Second, SIFT only describes the local texture feature. Both drawbacks impair the discriminative power of the BoW model and lead to false positive matches. To tackle this problem, this paper proposes to embed multiple binary features at indexing level. To model correlation between features, a multi-IDF scheme is introduced, through which different binary features are coupled into the inverted file. We show that matching verification methods based on binary features, such as Hamming embedding, can be effectively incorporated in our framework. As an extension, we explore the fusion of binary color feature into image retrieval. The joint integration of the SIFT visual word and binary features greatly enhances the precision of visual matching, reducing the impact of false positive matches. Our method is evaluated through extensive experiments on four benchmark datasets (Ukbench, Holidays, DupImage, and MIR Flickr 1M). We show that our method significantly improves the baseline approach. In addition, large-scale experiments indicate that the proposed method requires acceptable memory usage and query time compared with other approaches. Further, when global color feature is integrated, our method yields competitive performance with the state-of-the-arts.

  17. A novel method for efficient archiving and retrieval of biomedical images using MPEG-7

    Science.gov (United States)

    Meyer, Joerg; Pahwa, Ash

    2004-10-01

    Digital archiving and efficient retrieval of radiological scans have become critical steps in contemporary medical diagnostics. Since more and more images and image sequences (single scans or video) from various modalities (CT/MRI/PET/digital X-ray) are now available in digital formats (e.g., DICOM-3), hospitals and radiology clinics need to implement efficient protocols capable of managing the enormous amounts of data generated daily in a typical clinical routine. We present a method that appears to be a viable way to eliminate the tedious step of manually annotating image and video material for database indexing. MPEG-7 is a new framework that standardizes the way images are characterized in terms of color, shape, and other abstract, content-related criteria. A set of standardized descriptors that are automatically generated from an image is used to compare an image to other images in a database, and to compute the distance between two images for a given application domain. Text-based database queries can be replaced with image-based queries using MPEG-7. Consequently, image queries can be conducted without any prior knowledge of the keys that were used as indices in the database. Since the decoding and matching steps are not part of the MPEG-7 standard, this method also enables searches that were not planned by the time the keys were generated.

  18. Large-Scale Partial-Duplicate Image Retrieval and Its Applications

    Science.gov (United States)

    2016-04-23

    tree based image retrieval , a semantic-aware co-indexing algorithm is proposed to jointly embed two strong cues into the inverted indexes: 1) local...based image retrieval , a semantic-aware co-indexing algorithm is proposed to jointly embed two strong cues into the inverted indexes: 1) local...Distribution Unlimited UU UU UU UU 23-04-2016 23-Jan-2012 22-Jan-2016 Final Report: Large-Scale Partial-Duplicate Image Retrieval and Its Applications

  19. Introduction to Medical Image Analysis

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Moeslund, Thomas B.

    This book is a result of a collaboration between DTU Informatics at the Technical University of Denmark and the Laboratory of Computer Vision and Media Technology at Aalborg University. It is partly based on the book ”Image and Video Processing”, second edition by Thomas Moeslund. The aim...... of the book is to present the fascinating world of medical image analysis in an easy and interesting way. Compared to many standard books on image analysis, the approach we have chosen is less mathematical and more casual. Some of the key algorithms are exemplified in C-code. Please note that the code...

  20. Design Guidelines for a Content-Based Image Retrieval Color-Selection Interface

    NARCIS (Netherlands)

    Eggen, Berry; van den Broek, Egon; van der Veer, Gerrit C.; Kisters, Peter M.F.; Willems, Rob; Vuurpijl, Louis G.

    2004-01-01

    In Content-Based Image Retrieval (CBIR) two query-methods exist: query-by-example and query-by-memory. The user either selects an example image or selects image features retrieved from memory (such as color, texture, spatial attributes, and shape) to define his query. Hitherto, research on CBIR

  1. The future of medical imaging

    International Nuclear Information System (INIS)

    Maidment, A. D. A.

    2010-01-01

    The organisers of this conference have kindly provided me with the forum to look forward and examine the future of medical imaging. My view of the future is informed by my own research directions; thus, I illustrate my vision of the future with results from my own research, and from the research that has motivated me over the last few years. As such, the results presented are specific to the field of breast imaging; however, I believe that the trends presented have general applicability, and hope that this discourse will motivate new research. My vision of the future can be summarised in accordance with three broad trends: (1) increased prevalence of low-dose tomographic X-ray imaging; (2) continuing advances in functional and molecular X-ray imaging; and (3) novel image-based bio-marker discovery. (authors)

  2. Standardized access, display, and retrieval of medical video

    Science.gov (United States)

    Bellaire, Gunter; Steines, Daniel; Graschew, Georgi; Thiel, Andreas; Bernarding, Johannes; Tolxdorff, Thomas; Schlag, Peter M.

    1999-05-01

    The system presented here enhances documentation and data- secured, second-opinion facilities by integrating video sequences into DICOM 3.0. We present an implementation for a medical video server extended by a DICOM interface. Security mechanisms conforming with DICOM are integrated to enable secure internet access. Digital video documents of diagnostic and therapeutic procedures should be examined regarding the clip length and size necessary for second opinion and manageable with today's hardware. Image sources relevant for this paper include 3D laparoscope, 3D surgical microscope, 3D open surgery camera, synthetic video, and monoscopic endoscopes, etc. The global DICOM video concept and three special workplaces of distinct applications are described. Additionally, an approach is presented to analyze the motion of the endoscopic camera for future automatic video-cutting. Digital stereoscopic video sequences are especially in demand for surgery . Therefore DSVS are also integrated into the DICOM video concept. Results are presented describing the suitability of stereoscopic display techniques for the operating room.

  3. Moonshot Acceleration Factor: Medical Imaging.

    Science.gov (United States)

    Sevick-Muraca, Eva M; Frank, Richard A; Giger, Maryellen L; Mulshine, James L

    2017-11-01

    Medical imaging is essential to screening, early diagnosis, and monitoring responses to cancer treatments and, when used with other diagnostics, provides guidance for clinicians in choosing the most effective patient management plan that maximizes survivorship and quality of life. At a gathering of agency officials, patient advocacy organizations, industry/professional stakeholder groups, and clinical/basic science academicians, recommendations were made on why and how one should build a "cancer knowledge network" that includes imaging. Steps to accelerate the translation and clinical adoption of cancer discoveries to meet the goals of the Cancer Moonshot include harnessing computational power and architectures, developing data sharing policies, and standardizing medical imaging and in vitro diagnostics. Cancer Res; 77(21); 5717-20. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Content-based image retrieval applied to bone age assessment

    Science.gov (United States)

    Fischer, Benedikt; Brosig, André; Welter, Petra; Grouls, Christoph; Günther, Rolf W.; Deserno, Thomas M.

    2010-03-01

    Radiological bone age assessment is based on local image regions of interest (ROI), such as the epiphysis or the area of carpal bones. These are compared to a standardized reference and scores determining the skeletal maturity are calculated. For computer-aided diagnosis, automatic ROI extraction and analysis is done so far mainly by heuristic approaches. Due to high variations in the imaged biological material and differences in age, gender and ethnic origin, automatic analysis is difficult and frequently requires manual interactions. On the contrary, epiphyseal regions (eROIs) can be compared to previous cases with known age by content-based image retrieval (CBIR). This requires a sufficient number of cases with reliable positioning of the eROI centers. In this first approach to bone age assessment by CBIR, we conduct leaving-oneout experiments on 1,102 left hand radiographs and 15,428 metacarpal and phalangeal eROIs from the USC hand atlas. The similarity of the eROIs is assessed by cross-correlation of 16x16 scaled eROIs. The effects of the number of eROIs, two age computation methods as well as the number of considered CBIR references are analyzed. The best results yield an error rate of 1.16 years and a standard deviation of 0.85 years. As the appearance of the hand varies naturally by up to two years, these results clearly demonstrate the applicability of the CBIR approach for bone age estimation.

  5. Annotating image ROIs with text descriptions for multimodal biomedical document retrieval

    Science.gov (United States)

    You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-01-01

    Regions of interest (ROIs) that are pointed to by overlaid markers (arrows, asterisks, etc.) in biomedical images are expected to contain more important and relevant information than other regions for biomedical article indexing and retrieval. We have developed several algorithms that localize and extract the ROIs by recognizing markers on images. Cropped ROIs then need to be annotated with contents describing them best. In most cases accurate textual descriptions of the ROIs can be found from figure captions, and these need to be combined with image ROIs for annotation. The annotated ROIs can then be used to, for example, train classifiers that separate ROIs into known categories (medical concepts), or to build visual ontologies, for indexing and retrieval of biomedical articles. We propose an algorithm that pairs visual and textual ROIs that are extracted from images and figure captions, respectively. This algorithm based on dynamic time warping (DTW) clusters recognized pointers into groups, each of which contains pointers with identical visual properties (shape, size, color, etc.). Then a rule-based matching algorithm finds the best matching group for each textual ROI mention. Our method yields a precision and recall of 96% and 79%, respectively, when ground truth textual ROI data is used.

  6. Medical imaging, PACS, and imaging informatics: retrospective.

    Science.gov (United States)

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  7. Machine Learning in Medical Imaging.

    Science.gov (United States)

    Giger, Maryellen L

    2018-03-01

    Advances in both imaging and computers have synergistically led to a rapid rise in the potential use of artificial intelligence in various radiological imaging tasks, such as risk assessment, detection, diagnosis, prognosis, and therapy response, as well as in multi-omics disease discovery. A brief overview of the field is given here, allowing the reader to recognize the terminology, the various subfields, and components of machine learning, as well as the clinical potential. Radiomics, an expansion of computer-aided diagnosis, has been defined as the conversion of images to minable data. The ultimate benefit of quantitative radiomics is to (1) yield predictive image-based phenotypes of disease for precision medicine or (2) yield quantitative image-based phenotypes for data mining with other -omics for discovery (ie, imaging genomics). For deep learning in radiology to succeed, note that well-annotated large data sets are needed since deep networks are complex, computer software and hardware are evolving constantly, and subtle differences in disease states are more difficult to perceive than differences in everyday objects. In the future, machine learning in radiology is expected to have a substantial clinical impact with imaging examinations being routinely obtained in clinical practice, providing an opportunity to improve decision support in medical image interpretation. The term of note is decision support, indicating that computers will augment human decision making, making it more effective and efficient. The clinical impact of having computers in the routine clinical practice may allow radiologists to further integrate their knowledge with their clinical colleagues in other medical specialties and allow for precision medicine. Copyright © 2018. Published by Elsevier Inc.

  8. INTEGRATION OF SPATIAL INFORMATION WITH COLOR FOR CONTENT RETRIEVAL OF REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    Bikesh Kumar Singh

    2010-08-01

    Full Text Available There is rapid increase in image databases of remote sensing images due to image satellites with high resolution, commercial applications of remote sensing & high available bandwidth in last few years. The problem of content-based image retrieval (CBIR of remotely sensed images presents a major challenge not only because of the surprisingly increasing volume of images acquired from a wide range of sensors but also because of the complexity of images themselves. In this paper, a software system for content-based retrieval of remote sensing images using RGB and HSV color spaces is presented. Further, we also compare our results with spatiogram based content retrieval which integrates spatial information along with color histogram. Experimental results show that the integration of spatial information in color improves the image analysis of remote sensing data. In general, retrievals in HSV color space showed better performance than in RGB color space.

  9. Imaging systems for medical diagnostics

    International Nuclear Information System (INIS)

    Krestel, E.

    1990-01-01

    This book provides physicians and clinical physicists with detailed information on today's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in X-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. (orig.)

  10. Blind phase retrieval for aberrated linear shift-invariant imaging systems

    International Nuclear Information System (INIS)

    Yu, Rotha P; Paganin, David M

    2010-01-01

    We develop a means to reconstruct an input complex coherent scalar wavefield, given a through focal series (TFS) of three intensity images output from a two-dimensional (2D) linear shift-invariant optical imaging system with unknown aberrations. This blind phase retrieval technique unites two methods, namely (i) TFS phase retrieval and (ii) iterative blind deconvolution. The efficacy of our blind phase retrieval procedure has been demonstrated using simulated data, for a variety of Poisson noise levels.

  11. Scalable Integrated Region-Based Image Retrieval Using IRM and Statistical Clustering.

    Science.gov (United States)

    Wang, James Z.; Du, Yanping

    Statistical clustering is critical in designing scalable image retrieval systems. This paper presents a scalable algorithm for indexing and retrieving images based on region segmentation. The method uses statistical clustering on region features and IRM (Integrated Region Matching), a measure developed to evaluate overall similarity between images…

  12. Learning effective color features for content based image retrieval in dermatology

    NARCIS (Netherlands)

    Bunte, Kerstin; Biehl, Michael; Jonkman, Marcel F.; Petkov, Nicolai

    We investigate the extraction of effective color features for a content-based image retrieval (CBIR) application in dermatology. Effectiveness is measured by the rate of correct retrieval of images from four color classes of skin lesions. We employ and compare two different methods to learn

  13. A Fast, Background-Independent Retrieval Strategy for Color Image Databases

    National Research Council Canada - National Science Library

    Das, M; Draper, B. A; Lim, W. J; Manmatha, R; Riseman, E. M

    1996-01-01

    We describe an interactive, multi-phase color-based image retrieval system which is capable of identifying query objects specified by the user in an image in the presence of significant, interfering backgrounds...

  14. Face Image Retrieval of Efficient Sparse Code words and Multiple Attribute in Binning Image

    Directory of Open Access Journals (Sweden)

    Suchitra S

    2017-08-01

    Full Text Available ABSTRACT In photography, face recognition and face retrieval play an important role in many applications such as security, criminology and image forensics. Advancements in face recognition make easier for identity matching of an individual with attributes. Latest development in computer vision technologies enables us to extract facial attributes from the input image and provide similar image results. In this paper, we propose a novel LOP and sparse codewords method to provide similar matching results with respect to input query image. To improve accuracy in image results with input image and dynamic facial attributes, Local octal pattern algorithm [LOP] and Sparse codeword applied in offline and online. The offline and online procedures in face image binning techniques apply with sparse code. Experimental results with Pubfig dataset shows that the proposed LOP along with sparse codewords able to provide matching results with increased accuracy of 90%.

  15. Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval

    NARCIS (Netherlands)

    Li, X.; Uricchio, T.; Ballan, L.; Bertini, M.; Snoek, C.G.M.; Del Bimbo, A.

    2016-01-01

    Where previous reviews on content-based image retrieval emphasize what can be seen in an image to bridge the semantic gap, this survey considers what people tag about an image. A comprehensive treatise of three closely linked problems (i.e., image tag assignment, refinement, and tag-based image

  16. Image retrieval by information fusion based on scalable vocabulary tree and robust Hausdorff distance

    Science.gov (United States)

    Che, Chang; Yu, Xiaoyang; Sun, Xiaoming; Yu, Boyang

    2017-12-01

    In recent years, Scalable Vocabulary Tree (SVT) has been shown to be effective in image retrieval. However, for general images where the foreground is the object to be recognized while the background is cluttered, the performance of the current SVT framework is restricted. In this paper, a new image retrieval framework that incorporates a robust distance metric and information fusion is proposed, which improves the retrieval performance relative to the baseline SVT approach. First, the visual words that represent the background are diminished by using a robust Hausdorff distance between different images. Second, image matching results based on three image signature representations are fused, which enhances the retrieval precision. We conducted intensive experiments on small-scale to large-scale image datasets: Corel-9, Corel-48, and PKU-198, where the proposed Hausdorff metric and information fusion outperforms the state-of-the-art methods by about 13, 15, and 15%, respectively.

  17. Content-Based Image Retrieval Based on Electromagnetism-Like Mechanism

    Directory of Open Access Journals (Sweden)

    Hamid A. Jalab

    2013-01-01

    Full Text Available Recently, many researchers in the field of automatic content-based image retrieval have devoted a remarkable amount of research looking for methods to retrieve the best relevant images to the query image. This paper presents a novel algorithm for increasing the precision in content-based image retrieval based on electromagnetism optimization technique. The electromagnetism optimization is a nature-inspired technique that follows the collective attraction-repulsion mechanism by considering each image as an electrical charge. The algorithm is composed of two phases: fitness function measurement and electromagnetism optimization technique. It is implemented on a database with 8,000 images spread across 80 classes with 100 images in each class. Eight thousand queries are fired on the database, and the overall average precision is computed. Experimental results of the proposed approach have shown significant improvement in the retrieval performance in regard to precision.

  18. Radioisotopes and medical imaging in Sri Lanka

    International Nuclear Information System (INIS)

    Jayasinghe, J.M.A.C.

    1993-01-01

    The article deals with the use of X-rays and magnetic resonance imaging in medical diagnosis in its introduction. Then it elaborates on the facilities in the field of medical imaging for diagnosis, in Sri Lanka. The use of Technetium-99m in diagnostic medicine as well as the future of medical imaging in Sri Lanka is also dealt with

  19. A Novel Technique for Shape Feature Extraction Using Content Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    Dhanoa Jaspreet Singh

    2016-01-01

    Full Text Available With the advent of technology and multimedia information, digital images are increasing very quickly. Various techniques are being developed to retrieve/search digital information or data contained in the image. Traditional Text Based Image Retrieval System is not plentiful. Since it is time consuming as it require manual image annotation. Also, the image annotation differs with different peoples. An alternate to this is Content Based Image Retrieval (CBIR system. It retrieves/search for image using its contents rather the text, keywords etc. A lot of exploration has been compassed in the range of Content Based Image Retrieval (CBIR with various feature extraction techniques. Shape is a significant image feature as it reflects the human perception. Moreover, Shape is quite simple to use by the user to define object in an image as compared to other features such as Color, texture etc. Over and above, if applied alone, no descriptor will give fruitful results. Further, by combining it with an improved classifier, one can use the positive features of both the descriptor and classifier. So, a tryout will be made to establish an algorithm for accurate feature (Shape extraction in Content Based Image Retrieval (CBIR. The main objectives of this project are: (a To propose an algorithm for shape feature extraction using CBIR, (b To evaluate the performance of proposed algorithm and (c To compare the proposed algorithm with state of art techniques.

  20. Robustness of phase retrieval methods in x-ray phase contrast imaging: A comparison

    International Nuclear Information System (INIS)

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2011-01-01

    Purpose: The robustness of the phase retrieval methods is of critical importance for limiting and reducing radiation doses involved in x-ray phase contrast imaging. This work is to compare the robustness of two phase retrieval methods by analyzing the phase maps retrieved from the experimental images of a phantom. Methods: Two phase retrieval methods were compared. One method is based on the transport of intensity equation (TIE) for phase contrast projections, and the TIE-based method is the most commonly used method for phase retrieval in the literature. The other is the recently developed attenuation-partition based (AP-based) phase retrieval method. The authors applied these two methods to experimental projection images of an air-bubble wrap phantom for retrieving the phase map of the bubble wrap. The retrieved phase maps obtained by using the two methods are compared. Results: In the wrap's phase map retrieved by using the TIE-based method, no bubble is recognizable, hence, this method failed completely for phase retrieval from these bubble wrap images. Even with the help of the Tikhonov regularization, the bubbles are still hardly visible and buried in the cluttered background in the retrieved phase map. The retrieved phase values with this method are grossly erroneous. In contrast, in the wrap's phase map retrieved by using the AP-based method, the bubbles are clearly recovered. The retrieved phase values with the AP-based method are reasonably close to the estimate based on the thickness-based measurement. The authors traced these stark performance differences of the two methods to their different techniques employed to deal with the singularity problem involved in the phase retrievals. Conclusions: This comparison shows that the conventional TIE-based phase retrieval method, regardless if Tikhonov regularization is used or not, is unstable against the noise in the wrap's projection images, while the AP-based phase retrieval method is shown in these

  1. Structure of the medical digital image

    International Nuclear Information System (INIS)

    Baltadzhiev, D.

    1997-01-01

    In up-to-date medical practice diagnostic imaging techniques are the most powerful tools available to clinicians. The modern medical equipment is entirely based on digital technology. In this article the principle of generating medical images is presented. The concept for gray scale where medical images are commonly presented is described. The patterns of gray images transformation into colour scale are likewise outlined. Basic notions from medical imaging terminology such as image matrix, pixel, spatial and contrast resolution power, bit, byte and the like are explained. Also an example is given of how the binary system treats images. On the basis of digital technology the obtained medical images lend themselves readily to additional processing, reconstruction (including 3D) and storage for subsequent utilization. The ceaseless progress of computerized communications promote easy and prompt access for clinicians to the diagnostic images needed as well as realization of expert consultations by teleconference contact (author)

  2. Medical Imaging Informatics in Nuclear Medicine

    NARCIS (Netherlands)

    van Ooijen, Peter; Glaudemans, Andor W.J.M.; Medema, Jitze; van Zanten, Annie K.; Dierckx, Rudi A.J.O.; Ahaus, C.T.B. (Kees)

    2016-01-01

    Medical imaging informatics is gaining importance in medicine both in clinical practice and in scientific research. Besides radiology, nuclear medicine is also a major stakeholder in medical imaging informatics because of the variety of available imaging modalities and the imaging-oriented operation

  3. Cloud computing in medical imaging.

    Science.gov (United States)

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

  4. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  5. How to Retrieve Knowledge from Medical Texts Effectively

    Czech Academy of Sciences Publication Activity Database

    Kolesa, Petr; Antolík, Ján; Ďurovec, Ján

    2005-01-01

    Roč. 11, - (2005), s. 1-6 ISSN 1727-1983. [EMBEC'05. European Medical and Biomedical Conference /3./. Prague, 20.11.2005-25.11.2005] R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : information extraction * natural language processing * machine learning Subject RIV: BD - Theory of Information

  6. Creating New Medical Ontologies for Image Annotation A Case Study

    CERN Document Server

    Stanescu, Liana; Brezovan, Marius; Mihai, Cristian Gabriel

    2012-01-01

    Creating New Medical Ontologies for Image Annotation focuses on the problem of the medical images automatic annotation process, which is solved in an original manner by the authors. All the steps of this process are described in detail with algorithms, experiments and results. The original algorithms proposed by authors are compared with other efficient similar algorithms. In addition, the authors treat the problem of creating ontologies in an automatic way, starting from Medical Subject Headings (MESH). They have presented some efficient and relevant annotation models and also the basics of the annotation model used by the proposed system: Cross Media Relevance Models. Based on a text query the system will retrieve the images that contain objects described by the keywords.

  7. Indexing, learning and content-based retrieval for special purpose image databases

    NARCIS (Netherlands)

    M.J. Huiskes (Mark); E.J. Pauwels (Eric)

    2005-01-01

    textabstractThis chapter deals with content-based image retrieval in special purpose image databases. As image data is amassed ever more effortlessly, building efficient systems for searching and browsing of image databases becomes increasingly urgent. We provide an overview of the current

  8. Image Retrieval based on Integration between Color and Geometric Moment Features

    International Nuclear Information System (INIS)

    Saad, M.H.; Saleh, H.I.; Konbor, H.; Ashour, M.

    2012-01-01

    Content based image retrieval is the retrieval of images based on visual features such as colour, texture and shape. .the Current approaches to CBIR differ in terms of which image features are extracted; recent work deals with combination of distances or scores from different and usually independent representations in an attempt to induce high level semantics from the low level descriptors of the images. content-based image retrieval has many application areas such as, education, commerce, military, searching, commerce, and biomedicine and Web image classification. This paper proposes a new image retrieval system, which uses color and geometric moment feature to form the feature vectors. Bhattacharyya distance and histogram intersection are used to perform feature matching. This framework integrates the color histogram which represents the global feature and geometric moment as local descriptor to enhance the retrieval results. The proposed technique is proper for precisely retrieving images even in deformation cases such as geometric deformations and noise. It is tested on a standard the results shows that a combination of our approach as a local image descriptor with other global descriptors outperforms other approaches.

  9. Roles of medical image processing in medical physics

    International Nuclear Information System (INIS)

    Arimura, Hidetaka

    2011-01-01

    Image processing techniques including pattern recognition techniques play important roles in high precision diagnosis and radiation therapy. The author reviews a symposium on medical image information, which was held in the 100th Memorial Annual Meeting of the Japan Society of Medical Physics from September 23rd to 25th. In this symposium, we had three invited speakers, Dr. Akinobu Shimizu, Dr. Hideaki Haneishi, and Dr. Hirohito Mekata, who are active engineering researchers of segmentation, image registration, and pattern recognition, respectively. In this paper, the author reviews the roles of the medical imaging processing in medical physics field, and the talks of the three invited speakers. (author)

  10. Performance analysis of algorithms for retrieval of magnetic resonance images for interactive teleradiology

    Science.gov (United States)

    Atkins, M. Stella; Hwang, Robert; Tang, Simon

    2001-05-01

    We have implemented a prototype system consisting of a Java- based image viewer and a web server extension component for transmitting Magnetic Resonance Images (MRI) to an image viewer, to test the performance of different image retrieval techniques. We used full-resolution images, and images compressed/decompressed using the Set Partitioning in Hierarchical Trees (SPIHT) image compression algorithm. We examined the SPIHT decompression algorithm using both non- progressive and progressive transmission, focusing on the running times of the algorithm, client memory usage and garbage collection. We also compared the Java implementation with a native C++ implementation of the non- progressive SPIHT decompression variant. Our performance measurements showed that for uncompressed image retrieval using a 10Mbps Ethernet, a film of 16 MR images can be retrieved and displayed almost within interactive times. The native C++ code implementation of the client-side decoder is twice as fast as the Java decoder. If the network bandwidth is low, the high communication time for retrieving uncompressed images may be reduced by use of SPIHT-compressed images, although the image quality is then degraded. To provide diagnostic quality images, we also investigated the retrieval of up to 3 images on a MR film at full-resolution, using progressive SPIHT decompression. The Java-based implementation of progressive decompression performed badly, mainly due to the memory requirements for maintaining the image states, and the high cost of execution of the Java garbage collector. Hence, in systems where the bandwidth is high, such as found in a hospital intranet, SPIHT image compression does not provide advantages for image retrieval performance.

  11. Low-dose multiple-information retrieval algorithm for X-ray grating-based imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Huang Zhifeng; Chen Zhiqiang; Zhang Li; Jiang Xiaolei; Kang Kejun; Yin Hongxia; Wang Zhenchang; Stampanoni, Marco

    2011-01-01

    The present work proposes a low dose information retrieval algorithm for X-ray grating-based multiple-information imaging (GB-MII) method, which can retrieve the attenuation, refraction and scattering information of samples by only three images. This algorithm aims at reducing the exposure time and the doses delivered to the sample. The multiple-information retrieval problem in GB-MII is solved by transforming a nonlinear equations set to a linear equations and adopting the nature of the trigonometric functions. The proposed algorithm is validated by experiments both on conventional X-ray source and synchrotron X-ray source, and compared with the traditional multiple-image-based retrieval algorithm. The experimental results show that our algorithm is comparable with the traditional retrieval algorithm and especially suitable for high Signal-to-Noise system.

  12. A Novel Optimization-Based Approach for Content-Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    Manyu Xiao

    2013-01-01

    Full Text Available Content-based image retrieval is nowadays one of the possible and promising solutions to manage image databases effectively. However, with the large number of images, there still exists a great discrepancy between the users’ expectations (accuracy and efficiency and the real performance in image retrieval. In this work, new optimization strategies are proposed on vocabulary tree building, retrieval, and matching methods. More precisely, a new clustering strategy combining classification and conventional K-Means method is firstly redefined. Then a new matching technique is built to eliminate the error caused by large-scaled scale-invariant feature transform (SIFT. Additionally, a new unit mechanism is proposed to reduce the cost of indexing time. Finally, the numerical results show that excellent performances are obtained in both accuracy and efficiency based on the proposed improvements for image retrieval.

  13. The Potential of User Feedback Through the Iterative Refining of Queries in an Image Retrieval System

    NARCIS (Netherlands)

    Ben Moussa, Maher; Pasch, Marco; Hiemstra, Djoerd; van der Vet, P.E.; Huibers, Theo W.C.; Marchand-Maillet, Stephane; Bruno, Eric; Nürnberger, Andreas; Detyniecki, Marcin

    2007-01-01

    Inaccurate or ambiguous expressions in queries lead to poor results in information retrieval. We assume that iterative user feedback can improve the quality of queries. To this end we developed a system for image retrieval that utilizes user feedback to refine the user’s search query. This is done

  14. Joint Textual And Visual Cues For Retrieving Images Using Latent Semantic Indexing

    OpenAIRE

    Pecenovic, Zoran; Ayer, Serge; Vetterli, Martin

    2001-01-01

    In this article we present a novel approach of integrating textual and visual descriptors of images in a unified retrieval structure. The methodology, inspired from text retrieval and information filtering is based on Latent Semantic Indexing (LS1).

  15. Design of a web portal for interdisciplinary image retrieval from multiple online image resources.

    Science.gov (United States)

    Kammerer, F J; Frankewitsch, T; Prokosch, H-U

    2009-01-01

    Images play an important role in medicine. Finding the desired images within the multitude of online image databases is a time-consuming and frustrating process. Existing websites do not meet all the requirements for an ideal learning environment for medical students. This work intends to establish a new web portal providing a centralized access point to a selected number of online image databases. A back-end system locates images on given websites and extracts relevant metadata. The images are indexed using UMLS and the MetaMap system provided by the US National Library of Medicine. Specially developed functions allow to create individual navigation structures. The front-end system suits the specific needs of medical students. A navigation structure consisting of several medical fields, university curricula and the ICD-10 was created. The images may be accessed via the given navigation structure or using different search functions. Cross-references are provided by the semantic relations of the UMLS. Over 25,000 images were identified and indexed. A pilot evaluation among medical students showed good first results concerning the acceptance of the developed navigation structures and search features. The integration of the images from different sources into the UMLS semantic network offers a quick and an easy-to-use learning environment.

  16. A Multimodal Search Engine for Medical Imaging Studies.

    Science.gov (United States)

    Pinho, Eduardo; Godinho, Tiago; Valente, Frederico; Costa, Carlos

    2017-02-01

    The use of digital medical imaging systems in healthcare institutions has increased significantly, and the large amounts of data in these systems have led to the conception of powerful support tools: recent studies on content-based image retrieval (CBIR) and multimodal information retrieval in the field hold great potential in decision support, as well as for addressing multiple challenges in healthcare systems, such as computer-aided diagnosis (CAD). However, the subject is still under heavy research, and very few solutions have become part of Picture Archiving and Communication Systems (PACS) in hospitals and clinics. This paper proposes an extensible platform for multimodal medical image retrieval, integrated in an open-source PACS software with profile-based CBIR capabilities. In this article, we detail a technical approach to the problem by describing its main architecture and each sub-component, as well as the available web interfaces and the multimodal query techniques applied. Finally, we assess our implementation of the engine with computational performance benchmarks.

  17. Medical imaging and augmented reality. Proceedings

    International Nuclear Information System (INIS)

    Dohi, Takeyoshi; Sakuma, Ichiro; Liao, Hongen

    2008-01-01

    This book constitutes the refereed proceedings of the 4th International Workshop on Medical Imaging and Augmented Reality, MIAR 2008, held in Tokyo, Japan, in August 2008. The 44 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on surgical planning and simulation, medical image computing, image analysis, shape modeling and morphometry, image-guided robotics, image-guided intervention, interventional imaging, image registration, augmented reality, and image segmentation. (orig.)

  18. Medical imaging and augmented reality. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Dohi, Takeyoshi [Tokyo Univ. (Japan). Dept. of Mechano-Informatics; Sakuma, Ichiro [Tokyo Univ. (Japan). Dept. of Precision Engineering; Liao, Hongen (eds.) [Tokyo Univ. (Japan). Dept. of Bioengineering

    2008-07-01

    This book constitutes the refereed proceedings of the 4th International Workshop on Medical Imaging and Augmented Reality, MIAR 2008, held in Tokyo, Japan, in August 2008. The 44 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on surgical planning and simulation, medical image computing, image analysis, shape modeling and morphometry, image-guided robotics, image-guided intervention, interventional imaging, image registration, augmented reality, and image segmentation. (orig.)

  19. Using Fuzzy SOM Strategy for Satellite Image Retrieval and Information Mining

    Directory of Open Access Journals (Sweden)

    Yo-Ping Huang

    2008-02-01

    Full Text Available This paper proposes an efficient satellite image retrieval and knowledge discovery model. The strategy comprises two major parts. First, a computational algorithm is used for off-line satellite image feature extraction, image data representation and image retrieval. Low level features are automatically extracted from the segmented regions of satellite images. A self-organization feature map is used to construct a two-layer satellite image concept hierarchy. The events are stored in one layer and the corresponding feature vectors are categorized in the other layer. Second, a user friendly interface is provided that retrieves images of interest and mines useful information based on the events in the concept hierarchy. The proposed system is evaluated with prominent features such as typhoons or high-pressure masses.

  20. FRR: fair remote retrieval of outsourced private medical records in electronic health networks.

    Science.gov (United States)

    Wang, Huaqun; Wu, Qianhong; Qin, Bo; Domingo-Ferrer, Josep

    2014-08-01

    Cloud computing is emerging as the next-generation IT architecture. However, cloud computing also raises security and privacy concerns since the users have no physical control over the outsourced data. This paper focuses on fairly retrieving encrypted private medical records outsourced to remote untrusted cloud servers in the case of medical accidents and disputes. Our goal is to enable an independent committee to fairly recover the original private medical records so that medical investigation can be carried out in a convincing way. We achieve this goal with a fair remote retrieval (FRR) model in which either t investigation committee members cooperatively retrieve the original medical data or none of them can get any information on the medical records. We realize the first FRR scheme by exploiting fair multi-member key exchange and homomorphic privately verifiable tags. Based on the standard computational Diffie-Hellman (CDH) assumption, our scheme is provably secure in the random oracle model (ROM). A detailed performance analysis and experimental results show that our scheme is efficient in terms of communication and computation. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Retrieval of bilingual autobiographical memories: effects of cue language and cue imageability.

    Science.gov (United States)

    Mortensen, Linda; Berntsen, Dorthe; Bohn, Ocke-Schwen

    2015-01-01

    An important issue in theories of bilingual autobiographical memory is whether linguistically encoded memories are represented in language-specific stores or in a common language-independent store. Previous research has found that autobiographical memory retrieval is facilitated when the language of the cue is the same as the language of encoding, consistent with language-specific memory stores. The present study examined whether this language congruency effect is influenced by cue imageability. Danish-English bilinguals retrieved autobiographical memories in response to Danish and English high- or low-imageability cues. Retrieval latencies were shorter to Danish than English cues and shorter to high- than low-imageability cues. Importantly, the cue language effect was stronger for low-than high-imageability cues. To examine the relationship between cue language and the language of internal retrieval, participants identified the language in which the memories were internally retrieved. More memories were retrieved when the cue language was the same as the internal language than when the cue was in the other language, and more memories were identified as being internally retrieved in Danish than English, regardless of the cue language. These results provide further evidence for language congruency effects in bilingual memory and suggest that this effect is influenced by cue imageability.

  2. Medical Image Tamper Detection Based on Passive Image Authentication.

    Science.gov (United States)

    Ulutas, Guzin; Ustubioglu, Arda; Ustubioglu, Beste; V Nabiyev, Vasif; Ulutas, Mustafa

    2017-12-01

    Telemedicine has gained popularity in recent years. Medical images can be transferred over the Internet to enable the telediagnosis between medical staffs and to make the patient's history accessible to medical staff from anywhere. Therefore, integrity protection of the medical image is a serious concern due to the broadcast nature of the Internet. Some watermarking techniques are proposed to control the integrity of medical images. However, they require embedding of extra information (watermark) into image before transmission. It decreases visual quality of the medical image and can cause false diagnosis. The proposed method uses passive image authentication mechanism to detect the tampered regions on medical images. Structural texture information is obtained from the medical image by using local binary pattern rotation invariant (LBPROT) to make the keypoint extraction techniques more successful. Keypoints on the texture image are obtained with scale invariant feature transform (SIFT). Tampered regions are detected by the method by matching the keypoints. The method improves the keypoint-based passive image authentication mechanism (they do not detect tampering when the smooth region is used for covering an object) by using LBPROT before keypoint extraction because smooth regions also have texture information. Experimental results show that the method detects tampered regions on the medical images even if the forged image has undergone some attacks (Gaussian blurring/additive white Gaussian noise) or the forged regions are scaled/rotated before pasting.

  3. A Fast, Background-Independent Retrieval Strategy for Color Image Databases

    National Research Council Canada - National Science Library

    Das, M; Draper, B. A; Lim, W. J; Manmatha, R; Riseman, E. M

    1996-01-01

    .... The method is fast and has low storage overhead. Good retrieval results are obtained with multi-colored query objects even when they occur in arbitrary sizes, rotations and locations in the database images...

  4. High resolution satellite image indexing and retrieval using SURF features and bag of visual words

    Science.gov (United States)

    Bouteldja, Samia; Kourgli, Assia

    2017-03-01

    In this paper, we evaluate the performance of SURF descriptor for high resolution satellite imagery (HRSI) retrieval through a BoVW model on a land-use/land-cover (LULC) dataset. Local feature approaches such as SIFT and SURF descriptors can deal with a large variation of scale, rotation and illumination of the images, providing, therefore, a better discriminative power and retrieval efficiency than global features, especially for HRSI which contain a great range of objects and spatial patterns. Moreover, we combine SURF and color features to improve the retrieval accuracy, and we propose to learn a category-specific dictionary for each image category which results in a more discriminative image representation and boosts the image retrieval performance.

  5. A novel biomedical image indexing and retrieval system via deep preference learning.

    Science.gov (United States)

    Pang, Shuchao; Orgun, Mehmet A; Yu, Zhezhou

    2018-05-01

    The traditional biomedical image retrieval methods as well as content-based image retrieval (CBIR) methods originally designed for non-biomedical images either only consider using pixel and low-level features to describe an image or use deep features to describe images but still leave a lot of room for improving both accuracy and efficiency. In this work, we propose a new approach, which exploits deep learning technology to extract the high-level and compact features from biomedical images. The deep feature extraction process leverages multiple hidden layers to capture substantial feature structures of high-resolution images and represent them at different levels of abstraction, leading to an improved performance for indexing and retrieval of biomedical images. We exploit the current popular and multi-layered deep neural networks, namely, stacked denoising autoencoders (SDAE) and convolutional neural networks (CNN) to represent the discriminative features of biomedical images by transferring the feature representations and parameters of pre-trained deep neural networks from another domain. Moreover, in order to index all the images for finding the similarly referenced images, we also introduce preference learning technology to train and learn a kind of a preference model for the query image, which can output the similarity ranking list of images from a biomedical image database. To the best of our knowledge, this paper introduces preference learning technology for the first time into biomedical image retrieval. We evaluate the performance of two powerful algorithms based on our proposed system and compare them with those of popular biomedical image indexing approaches and existing regular image retrieval methods with detailed experiments over several well-known public biomedical image databases. Based on different criteria for the evaluation of retrieval performance, experimental results demonstrate that our proposed algorithms outperform the state

  6. Tooling Techniques Enhance Medical Imaging

    Science.gov (United States)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  7. The Role of the Medical Students’ Emotional Mood in Information Retrieval from the Web

    Directory of Open Access Journals (Sweden)

    Marzieh Yari Zanganeh

    2018-04-01

    Full Text Available Background: Online information retrieval is a process the result of which is influenced by the changes in the emotional moods of the user. It seems reasonable to include emotional aspects in developing information retrieval systems in order to optimize the experience of the users. Therefore, this study aimed to identify the role of positive and negative affects in the information seeking process on the web among students of medical sciences. Methods: From the methodological perspective, the present study was an experimental and applied research. According to the nature of the experimental method, observation and questionnaire were used. The participants were the students of various fields of Medical Sciences. The research sample included 50 students of Shiraz University of Medical Sciences selected through purposeful sampling method; they regularly used World Wide Web and google engine for information retrieval in educational, Research, personal, or managerial activities. In order to collect the data, search tasks were characterized by the topic, sequence in a search process, difficulty level, and searcher’s interest (simple in a task. Face and content validity of the questionnaire were confirmed by the experts. Reliability of the questionnaire was tested by Alpha Cronbach. Cronbach’s alpha coefficient (PA=0.777, NA=0.754 showed a high rate of reliability in a PANAS questionnaire. The collected data were analyzed using SPSS, version 20.0; also, to test the research hypothesis, T-Test and pair Samples T-Test were used. The P0.05. Conclusion: Information retrieval systems in the Web should identify positive and negative affects in the information seeking process in a set of perceiving signs in human interaction with the computer. The automatic identification of the users’ affect opens new dimensions into users moderators and information retrieval systems for successful retrieval from the Web.

  8. Large-Scale Query-by-Image Video Retrieval Using Bloom Filters

    OpenAIRE

    Araujo, Andre; Chaves, Jason; Lakshman, Haricharan; Angst, Roland; Girod, Bernd

    2016-01-01

    We consider the problem of using image queries to retrieve videos from a database. Our focus is on large-scale applications, where it is infeasible to index each database video frame independently. Our main contribution is a framework based on Bloom filters, which can be used to index long video segments, enabling efficient image-to-video comparisons. Using this framework, we investigate several retrieval architectures, by considering different types of aggregation and different functions to ...

  9. Applications of VLSI circuits to medical imaging

    International Nuclear Information System (INIS)

    O'Donnell, M.

    1988-01-01

    In this paper the application of advanced VLSI circuits to medical imaging is explored. The relationship of both general purpose signal processing chips and custom devices to medical imaging is discussed using examples of fabricated chips. In addition, advanced CAD tools for silicon compilation are presented. Devices built with these tools represent a possible alternative to custom devices and general purpose signal processors for the next generation of medical imaging systems

  10. An improved ptychographical phase retrieval algorithm for diffractive imaging

    International Nuclear Information System (INIS)

    Maiden, Andrew M.; Rodenburg, John M.

    2009-01-01

    The ptychographical iterative engine (or PIE) is a recently developed phase retrieval algorithm that employs a series of diffraction patterns recorded as a known illumination function is translated to a set of overlapping positions relative to a target sample. The technique has been demonstrated successfully at optical and X-ray wavelengths and has been shown to be robust to detector noise and to converge considerably faster than support-based phase retrieval methods. In this paper, the PIE is extended so that the requirement for an accurate model of the illumination function is removed.

  11. A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF.

    Directory of Open Access Journals (Sweden)

    Nouman Ali

    Full Text Available With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR, high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT and Speeded-Up Robust Features (SURF. The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration.

  12. Cluster-based query expansion using external collections in medical information retrieval.

    Science.gov (United States)

    Oh, Heung-Seon; Jung, Yuchul

    2015-12-01

    Utilizing external collections to improve retrieval performance is challenging research because various test collections are created for different purposes. Improving medical information retrieval has also gained much attention as various types of medical documents have become available to researchers ever since they started storing them in machine processable formats. In this paper, we propose an effective method of utilizing external collections based on the pseudo relevance feedback approach. Our method incorporates the structure of external collections in estimating individual components in the final feedback model. Extensive experiments on three medical collections (TREC CDS, CLEF eHealth, and OHSUMED) were performed, and the results were compared with a representative expansion approach utilizing the external collections to show the superiority of our method. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Mesh Processing in Medical Image Analysis

    DEFF Research Database (Denmark)

    The following topics are dealt with: mesh processing; medical image analysis; interactive freeform modeling; statistical shape analysis; clinical CT images; statistical surface recovery; automated segmentation; cerebral aneurysms; and real-time particle-based representation....

  14. Diversification in an image retrieval system based on text and image processing

    Directory of Open Access Journals (Sweden)

    Adrian Iftene

    2014-11-01

    Full Text Available In this paper we present an image retrieval system created within the research project MUCKE (Multimedia and User Credibility Knowledge Extraction, a CHIST-ERA research project where UAIC{\\footnote{"Alexandru Ioan Cuza" University of Iasi}} is one of the partners{\\footnote{Together with Technical University from Wienna, Austria, CEA-LIST Institute from Paris, France and BILKENT University from Ankara, Turkey}}. Our discussion in this work will focus mainly on components that are part of our image retrieval system proposed in MUCKE, and we present the work done by the UAIC group. MUCKE incorporates modules for processing multimedia content in different modes and languages (like English, French, German and Romanian and UAIC is responsible with text processing tasks (for Romanian and English. One of the problems addressed by our work is related to search results diversification. In order to solve this problem, we first process the user queries in both languages and secondly, we create clusters of similar images.

  15. The state of the art of medical imaging technology: from creation to archive and back.

    Science.gov (United States)

    Gao, Xiaohong W; Qian, Yu; Hui, Rui

    2011-01-01

    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations.

  16. Quantifying the margin sharpness of lesions on radiological images for content-based image retrieval

    International Nuclear Information System (INIS)

    Xu Jiajing; Napel, Sandy; Greenspan, Hayit; Beaulieu, Christopher F.; Agrawal, Neeraj; Rubin, Daniel

    2012-01-01

    . Equivalence across deformations was assessed using Schuirmann's paired two one-sided tests. Results: In simulated images, the concordance correlation between measured gradient and actual gradient was 0.994. The mean (s.d.) and standard deviation NDCG score for the retrieval of K images, K = 5, 10, and 15, were 84% (8%), 85% (7%), and 85% (7%) for CT images containing liver lesions, and 82% (7%), 84% (6%), and 85% (4%) for CT images containing lung nodules, respectively. The authors’ proposed method outperformed the two existing margin characterization methods in average NDCG scores over all K, by 1.5% and 3% in datasets containing liver lesion, and 4.5% and 5% in datasets containing lung nodules. Equivalence testing showed that the authors’ feature is more robust across all margin deformations (p < 0.05) than the two existing methods for margin sharpness characterization in both simulated and clinical datasets. Conclusions: The authors have described a new image feature to quantify the margin sharpness of lesions. It has strong correlation with known margin sharpness in simulated images and in clinical CT images containing liver lesions and lung nodules. This image feature has excellent performance for retrieving images with similar margin characteristics, suggesting potential utility, in conjunction with other lesion features, for content-based image retrieval applications.

  17. Pleasant/Unpleasant Filtering for Affective Image Retrieval Based on Cross-Correlation of EEG Features

    Directory of Open Access Journals (Sweden)

    Keranmu Xielifuguli

    2014-01-01

    Full Text Available People often make decisions based on sensitivity rather than rationality. In the field of biological information processing, methods are available for analyzing biological information directly based on electroencephalogram: EEG to determine the pleasant/unpleasant reactions of users. In this study, we propose a sensitivity filtering technique for discriminating preferences (pleasant/unpleasant for images using a sensitivity image filtering system based on EEG. Using a set of images retrieved by similarity retrieval, we perform the sensitivity-based pleasant/unpleasant classification of images based on the affective features extracted from images with the maximum entropy method: MEM. In the present study, the affective features comprised cross-correlation features obtained from EEGs produced when an individual observed an image. However, it is difficult to measure the EEG when a subject visualizes an unknown image. Thus, we propose a solution where a linear regression method based on canonical correlation is used to estimate the cross-correlation features from image features. Experiments were conducted to evaluate the validity of sensitivity filtering compared with image similarity retrieval methods based on image features. We found that sensitivity filtering using color correlograms was suitable for the classification of preferred images, while sensitivity filtering using local binary patterns was suitable for the classification of unpleasant images. Moreover, sensitivity filtering using local binary patterns for unpleasant images had a 90% success rate. Thus, we conclude that the proposed method is efficient for filtering unpleasant images.

  18. Improving information retrieval using Medical Subject Headings Concepts: a test case on rare and chronic diseases.

    Science.gov (United States)

    Darmoni, Stéfan J; Soualmia, Lina F; Letord, Catherine; Jaulent, Marie-Christine; Griffon, Nicolas; Thirion, Benoît; Névéol, Aurélie

    2012-07-01

    As more scientific work is published, it is important to improve access to the biomedical literature. Since 2000, when Medical Subject Headings (MeSH) Concepts were introduced, the MeSH Thesaurus has been concept based. Nevertheless, information retrieval is still performed at the MeSH Descriptor or Supplementary Concept level. The study assesses the benefit of using MeSH Concepts for indexing and information retrieval. Three sets of queries were built for thirty-two rare diseases and twenty-two chronic diseases: (1) using PubMed Automatic Term Mapping (ATM), (2) using Catalog and Index of French-language Health Internet (CISMeF) ATM, and (3) extrapolating the MEDLINE citations that should be indexed with a MeSH Concept. Type 3 queries retrieve significantly fewer results than type 1 or type 2 queries (about 18,000 citations versus 200,000 for rare diseases; about 300,000 citations versus 2,000,000 for chronic diseases). CISMeF ATM also provides better precision than PubMed ATM for both disease categories. Using MeSH Concept indexing instead of ATM is theoretically possible to improve retrieval performance with the current indexing policy. However, using MeSH Concept information retrieval and indexing rules would be a fundamentally better approach. These modifications have already been implemented in the CISMeF search engine.

  19. On the Performance of Medical Information Retrieval using MeSH Terms – A Survey

    Directory of Open Access Journals (Sweden)

    Swetha S

    2014-09-01

    Full Text Available Internet users have increased everywhere. Searching and retrieving documents is a common thing nowadays. Retrieving related documents from the search engines are difficult task. To retrieve correct documents, knowledge about the search topic is essential. Even though separate search engines are there to retrieve medical documents the users are not familiar with MeSH terms (Medical Subject Heading. So, both the search browser and the MeSH terms have to be integrated to make the search effective and efficient. To implement this integration, SimpleMed and MeSHMed were introduced. The MeSH terms have to be ranked to know how frequently it has been used and to know the importance of the MeSH terms. To rank it a semi – automated tool called MeSHy was developed. The terms were extracted, filtered, ranked and displayed to the user. Classifiers have to be constructed to label the documents as health and non – health. Three strategies were used to classify them. The errors that are commonly done by the users have to be found out. It was calculated based on the queries presented by the user to the search browser.

  20. Artificial intelligence and medical imaging. Expert systems and image analysis

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zoellner, G.; Horviller, S.; Jacqmain, T.

    1987-01-01

    This paper gives an overview on the existing systems for automated image analysis and interpretation in medical imaging, especially in radiology. The example of ORFEVRE, the system for the analysis of CAT-scan images of the cervical triplet (c3-c5) by image analysis and subsequent expert-system is given and discussed in detail. Possible extensions are described [fr

  1. Content-based image retrieval using a signature graph and a self-organizing map

    Directory of Open Access Journals (Sweden)

    Van Thanh The

    2016-06-01

    Full Text Available In order to effectively retrieve a large database of images, a method of creating an image retrieval system CBIR (contentbased image retrieval is applied based on a binary index which aims to describe features of an image object of interest. This index is called the binary signature and builds input data for the problem of matching similar images. To extract the object of interest, we propose an image segmentation method on the basis of low-level visual features including the color and texture of the image. These features are extracted at each block of the image by the discrete wavelet frame transform and the appropriate color space. On the basis of a segmented image, we create a binary signature to describe the location, color and shape of the objects of interest. In order to match similar images, we provide a similarity measure between the images based on binary signatures. Then, we present a CBIR model which combines a signature graph and a self-organizing map to cluster and store similar images. To illustrate the proposed method, experiments on image databases are reported, including COREL,Wang and MSRDI.

  2. Image registration method for medical image sequences

    Science.gov (United States)

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  3. Retrieve polarization aberration from image degradation: a new measurement method in DUV lithography

    Science.gov (United States)

    Xiang, Zhongbo; Li, Yanqiu

    2017-10-01

    Detailed knowledge of polarization aberration (PA) of projection lens in higher-NA DUV lithographic imaging is necessary due to its impact to imaging degradations, and precise measurement of PA is conductive to computational lithography techniques such as RET and OPC. Current in situ measurement method of PA thorough the detection of degradations of aerial images need to do linear approximation and apply the assumption of 3-beam/2-beam interference condition. The former approximation neglects the coupling effect of the PA coefficients, which would significantly influence the accuracy of PA retrieving. The latter assumption restricts the feasible pitch of test masks in higher-NA system, conflicts with the Kirhhoff diffraction model of test mask used in retrieving model, and introduces 3D mask effect as a source of retrieving error. In this paper, a new in situ measurement method of PA is proposed. It establishes the analytical quadratic relation between the PA coefficients and the degradations of aerial images of one-dimensional dense lines in coherent illumination through vector aerial imaging, which does not rely on the assumption of 3-beam/2- beam interference and linear approximation. In this case, the retrieval of PA from image degradation can be convert from the nonlinear system of m-quadratic equations to a multi-objective quadratic optimization problem, and finally be solved by nonlinear least square method. Some preliminary simulation results are given to demonstrate the correctness and accuracy of the new PA retrieving model.

  4. Bat-Inspired Algorithm Based Query Expansion for Medical Web Information Retrieval.

    Science.gov (United States)

    Khennak, Ilyes; Drias, Habiba

    2017-02-01

    With the increasing amount of medical data available on the Web, looking for health information has become one of the most widely searched topics on the Internet. Patients and people of several backgrounds are now using Web search engines to acquire medical information, including information about a specific disease, medical treatment or professional advice. Nonetheless, due to a lack of medical knowledge, many laypeople have difficulties in forming appropriate queries to articulate their inquiries, which deem their search queries to be imprecise due the use of unclear keywords. The use of these ambiguous and vague queries to describe the patients' needs has resulted in a failure of Web search engines to retrieve accurate and relevant information. One of the most natural and promising method to overcome this drawback is Query Expansion. In this paper, an original approach based on Bat Algorithm is proposed to improve the retrieval effectiveness of query expansion in medical field. In contrast to the existing literature, the proposed approach uses Bat Algorithm to find the best expanded query among a set of expanded query candidates, while maintaining low computational complexity. Moreover, this new approach allows the determination of the length of the expanded query empirically. Numerical results on MEDLINE, the on-line medical information database, show that the proposed approach is more effective and efficient compared to the baseline.

  5. Chinese Herbal Medicine Image Recognition and Retrieval by Convolutional Neural Network.

    Science.gov (United States)

    Sun, Xin; Qian, Huinan

    2016-01-01

    Chinese herbal medicine image recognition and retrieval have great potential of practical applications. Several previous studies have focused on the recognition with hand-crafted image features, but there are two limitations in them. Firstly, most of these hand-crafted features are low-level image representation, which is easily affected by noise and background. Secondly, the medicine images are very clean without any backgrounds, which makes it difficult to use in practical applications. Therefore, designing high-level image representation for recognition and retrieval in real world medicine images is facing a great challenge. Inspired by the recent progress of deep learning in computer vision, we realize that deep learning methods may provide robust medicine image representation. In this paper, we propose to use the Convolutional Neural Network (CNN) for Chinese herbal medicine image recognition and retrieval. For the recognition problem, we use the softmax loss to optimize the recognition network; then for the retrieval problem, we fine-tune the recognition network by adding a triplet loss to search for the most similar medicine images. To evaluate our method, we construct a public database of herbal medicine images with cluttered backgrounds, which has in total 5523 images with 95 popular Chinese medicine categories. Experimental results show that our method can achieve the average recognition precision of 71% and the average retrieval precision of 53% over all the 95 medicine categories, which are quite promising given the fact that the real world images have multiple pieces of occluded herbal and cluttered backgrounds. Besides, our proposed method achieves the state-of-the-art performance by improving previous studies with a large margin.

  6. A survey of medical diagnostic imaging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  7. A survey of medical diagnostic imaging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today`s more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  8. A survey of medical diagnostic imaging technologies

    International Nuclear Information System (INIS)

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities

  9. [Image fusion in medical radiology].

    Science.gov (United States)

    Burger, C

    1996-07-20

    Image fusion supports the correlation between images of two or more studies of the same organ. First, the effect of differing geometries during image acquisitions, such as a head tilt, is compensated for. As a consequence, congruent images can easily be obtained. Instead of merely putting them side by side in a static manner and burdening the radiologist with the whole correlation task, image fusion supports him with interactive visualization techniques. This is especially worthwhile for small lesions as they can be more precisely located. Image fusion is feasible today. Easy and robust techniques are readily available, and furthermore DICOM, a rapidly evolving data exchange standard, diminishes the once severe compatibility problems for image data originating from systems of different manufacturers. However, the current solutions for image fusion are not yet established enough for a high throughput of fusion studies. Thus, for the time being image fusion is most appropriately confined to clinical research studies.

  10. Context-based adaptive filtering of interest points in image retrieval

    DEFF Research Database (Denmark)

    Nguyen, Phuong Giang; Andersen, Hans Jørgen

    2009-01-01

    Interest points have been used as local features with success in many computer vision applications such as image/video retrieval and object recognition. However, a major issue when using this approach is a large number of interest points detected from each image and created a dense feature space...... a subset of features. Our approach differs from others in a fact that selected feature is based on the context of the given image. Our experimental results show a significant reduction rate of features while preserving the retrieval performance....

  11. Optical multiple-image encryption based on multiplane phase retrieval and interference

    International Nuclear Information System (INIS)

    Chen, Wen; Chen, Xudong

    2011-01-01

    In this paper, we propose a new method for optical multiple-image encryption based on multiplane phase retrieval and interference. An optical encoding system is developed in the Fresnel domain. A phase-only map is iteratively extracted based on a multiplane phase retrieval algorithm, and multiple plaintexts are simultaneously encrypted. Subsequently, the extracted phase-only map is further encrypted into two phase-only masks based on a non-iterative interference algorithm. During image decryption, the advantages and security of the proposed optical cryptosystem are analyzed. Numerical results are presented to demonstrate the validity of the proposed optical multiple-image encryption method

  12. Curvature histogram features for retrieval of images of smooth 3D objects

    International Nuclear Information System (INIS)

    Zhdanov, I; Scherbakov, O; Potapov, A; Peterson, M

    2014-01-01

    We consider image features on the base of histograms of oriented gradients (HOG) with addition of contour curvature histogram (HOG-CH), and also compare it with results of known scale-invariant feature transform (SIFT) approach in application to retrieval of images of smooth 3D objects.

  13. Using an Ishikawa diagram as a tool to assist memory and retrieval of relevant medical cases from the medical literature.

    Science.gov (United States)

    Wong, Kam Cheong

    2011-03-29

    Studying medical cases is an effective way to enhance clinical reasoning skills and reinforce clinical knowledge. An Ishikawa diagram, also known as a cause-and-effect diagram or fishbone diagram, is often used in quality management in manufacturing industries.In this report, an Ishikawa diagram is used to demonstrate how to relate potential causes of a major presenting problem in a clinical setting. This tool can be used by teams in problem-based learning or in self-directed learning settings.An Ishikawa diagram annotated with references to relevant medical cases and literature can be continually updated and can assist memory and retrieval of relevant medical cases and literature. It could also be used to cultivate a lifelong learning habit in medical professionals.

  14. Using an Ishikawa diagram as a tool to assist memory and retrieval of relevant medical cases from the medical literature

    Directory of Open Access Journals (Sweden)

    Wong Kam Cheong

    2011-03-01

    Full Text Available Abstract Studying medical cases is an effective way to enhance clinical reasoning skills and reinforce clinical knowledge. An Ishikawa diagram, also known as a cause-and-effect diagram or fishbone diagram, is often used in quality management in manufacturing industries. In this report, an Ishikawa diagram is used to demonstrate how to relate potential causes of a major presenting problem in a clinical setting. This tool can be used by teams in problem-based learning or in self-directed learning settings. An Ishikawa diagram annotated with references to relevant medical cases and literature can be continually updated and can assist memory and retrieval of relevant medical cases and literature. It could also be used to cultivate a lifelong learning habit in medical professionals.

  15. Medical image informatics infrastructure design and applications.

    Science.gov (United States)

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  16. Machine learning approaches in medical image analysis

    DEFF Research Database (Denmark)

    de Bruijne, Marleen

    2016-01-01

    Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols......, learning from weak labels, and interpretation and evaluation of results....

  17. An overview of medical image data base

    International Nuclear Information System (INIS)

    Nishihara, Eitaro

    1992-01-01

    Recently, the systematization using computers in medical institutions has advanced, and the introduction of hospital information system has been almost completed in the large hospitals with more than 500 beds. But the objects of the management of the hospital information system are text information, and do not include the management of images of enormous quantity. By the progress of image diagnostic equipment, the digitization of medical images has advanced, but the management of images in hospitals does not utilize the merits of digital images. For the purpose of solving these problems, the picture archiving and communication system (PACS) was proposed about ten years ago, which makes medical images into a data base, and enables the on-line access to images from various places in hospitals. The studies have been continued to realize it. The features of medical image data, the present status of utilizing medical image data, the outline of the PACS, the image data base for the PACS, the problems in the realization of the data base and the technical trend, and the state of actual construction of the PACS are reported. (K.I.)

  18. Comparison of the effectiveness of alternative feature sets in shape retrieval of multicomponent images

    Science.gov (United States)

    Eakins, John P.; Edwards, Jonathan D.; Riley, K. Jonathan; Rosin, Paul L.

    2001-01-01

    Many different kinds of features have been used as the basis for shape retrieval from image databases. This paper investigates the relative effectiveness of several types of global shape feature, both singly and in combination. The features compared include well-established descriptors such as Fourier coefficients and moment invariants, as well as recently-proposed measures of triangularity and ellipticity. Experiments were conducted within the framework of the ARTISAN shape retrieval system, and retrieval effectiveness assessed on a database of over 10,000 images, using 24 queries and associated ground truth supplied by the UK Patent Office . Our experiments revealed only minor differences in retrieval effectiveness between different measures, suggesting that a wide variety of shape feature combinations can provide adequate discriminating power for effective shape retrieval in multi-component image collections such as trademark registries. Marked differences between measures were observed for some individual queries, suggesting that there could be considerable scope for improving retrieval effectiveness by providing users with an improved framework for searching multi-dimensional feature space.

  19. Barriers to retrieving patient information from electronic health record data: failure analysis from the TREC Medical Records Track.

    Science.gov (United States)

    Edinger, Tracy; Cohen, Aaron M; Bedrick, Steven; Ambert, Kyle; Hersh, William

    2012-01-01

    Secondary use of electronic health record (EHR) data relies on the ability to retrieve accurate and complete information about desired patient populations. The Text Retrieval Conference (TREC) 2011 Medical Records Track was a challenge evaluation allowing comparison of systems and algorithms to retrieve patients eligible for clinical studies from a corpus of de-identified medical records, grouped by patient visit. Participants retrieved cohorts of patients relevant to 35 different clinical topics, and visits were judged for relevance to each topic. This study identified the most common barriers to identifying specific clinic populations in the test collection. Using the runs from track participants and judged visits, we analyzed the five non-relevant visits most often retrieved and the five relevant visits most often overlooked. Categories were developed iteratively to group the reasons for incorrect retrieval for each of the 35 topics. Reasons fell into nine categories for non-relevant visits and five categories for relevant visits. Non-relevant visits were most often retrieved because they contained a non-relevant reference to the topic terms. Relevant visits were most often infrequently retrieved because they used a synonym for a topic term. This failure analysis provides insight into areas for future improvement in EHR-based retrieval with techniques such as more widespread and complete use of standardized terminology in retrieval and data entry systems.

  20. Similarity estimation for reference image retrieval in mammograms using convolutional neural network

    Science.gov (United States)

    Muramatsu, Chisako; Higuchi, Shunichi; Morita, Takako; Oiwa, Mikinao; Fujita, Hiroshi

    2018-02-01

    Periodic breast cancer screening with mammography is considered effective in decreasing breast cancer mortality. For screening programs to be successful, an intelligent image analytic system may support radiologists' efficient image interpretation. In our previous studies, we have investigated image retrieval schemes for diagnostic references of breast lesions on mammograms and ultrasound images. Using a machine learning method, reliable similarity measures that agree with radiologists' similarity were determined and relevant images could be retrieved. However, our previous method includes a feature extraction step, in which hand crafted features were determined based on manual outlines of the masses. Obtaining the manual outlines of masses is not practical in clinical practice and such data would be operator-dependent. In this study, we investigated a similarity estimation scheme using a convolutional neural network (CNN) to skip such procedure and to determine data-driven similarity scores. By using CNN as feature extractor, in which extracted features were employed in determination of similarity measures with a conventional 3-layered neural network, the determined similarity measures were correlated well with the subjective ratings and the precision of retrieving diagnostically relevant images was comparable with that of the conventional method using handcrafted features. By using CNN for determination of similarity measure directly, the result was also comparable. By optimizing the network parameters, results may be further improved. The proposed method has a potential usefulness in determination of similarity measure without precise lesion outlines for retrieval of similar mass images on mammograms.

  1. Significant wave height retrieval from synthetic radar images

    NARCIS (Netherlands)

    Wijaya, Andreas Parama; van Groesen, Embrecht W.C.

    2014-01-01

    In many offshore activities radar imagery is used to observe and predict ocean waves. An important issue in analyzing the radar images is to resolve the significant wave height. Different from 3DFFT methods that use an estimate related to the square root of the signal-to-noise ratio of radar images,

  2. Multiscale Distance Coherence Vector Algorithm for Content-Based Image Retrieval

    Science.gov (United States)

    Jiexian, Zeng; Xiupeng, Liu

    2014-01-01

    Multiscale distance coherence vector algorithm for content-based image retrieval (CBIR) is proposed due to the same descriptor with different shapes and the shortcomings of antinoise performance of the distance coherence vector algorithm. By this algorithm, the image contour curve is evolved by Gaussian function first, and then the distance coherence vector is, respectively, extracted from the contour of the original image and evolved images. Multiscale distance coherence vector was obtained by reasonable weight distribution of the distance coherence vectors of evolved images contour. This algorithm not only is invariable to translation, rotation, and scaling transformation but also has good performance of antinoise. The experiment results show us that the algorithm has a higher recall rate and precision rate for the retrieval of images polluted by noise. PMID:24883416

  3. Three-dimensional imaging using phase retrieval with two focus planes

    Science.gov (United States)

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh; Meir, Rinat; Zalevsky, Zeev

    2016-03-01

    This work presents a technique for a full 3D imaging of biological samples tagged with gold-nanoparticles (GNPs) using only two images, rather than many images per volume as is currently needed for 3D optical sectioning microscopy. The proposed approach is based on the Gerchberg-Saxton (GS) phase retrieval algorithm. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. In addition, since the method requires the capturing of two images only, it can be suitable for 3D live cell imaging. The proposed concept is presented and validated both on simulated data as well as experimentally.

  4. Mathematics and computer science in medical imaging

    International Nuclear Information System (INIS)

    Viergever, M.A.; Todd-Pokroper, A.E.

    1987-01-01

    The book is divided into two parts. Part 1 gives an introduction to and an overview of the field in ten tutorial chapters. Part 2 contains a selection of invited and proffered papers reporting on current research. Subjects covered in depth are: analytical image reconstruction, regularization, iterative methods, image structure, 3-D display, compression, architectures for image processing, statistical pattern recognition, and expert systems in medical imaging

  5. Medical imaging technology reviews and computational applications

    CERN Document Server

    Dewi, Dyah

    2015-01-01

    This book presents the latest research findings and reviews in the field of medical imaging technology, covering ultrasound diagnostics approaches for detecting osteoarthritis, breast carcinoma and cardiovascular conditions, image guided biopsy and segmentation techniques for detecting lung cancer, image fusion, and simulating fluid flows for cardiovascular applications. It offers a useful guide for students, lecturers and professional researchers in the fields of biomedical engineering and image processing.

  6. Medical imaging and augmented reality. Proceedings

    International Nuclear Information System (INIS)

    Yang Guang-Zhong; Jiang Tianzi; Shen Dinggang; Gu Lixu; Yang Jie

    2006-01-01

    This book constitutes the refereed proceedings of the Third International Workshop on Medical Imaging and Augmented Reality, MIAR 2006, held in Shanghai, China, in August 2006. The 45 revised full papers presented together with 4 invited papers were carefully reviewed and selected from 87 submissions. The papers are organized in topical sections on shape modeling and morphometry, patient specific modeling and quantification, surgical simulation and skills assessment, surgical guidance and navigation, image registration, PET image reconstruction, and image segmentation. (orig.)

  7. Adaptive Beamforming for Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund

    This dissertation investigates the application of adaptive beamforming for medical ultrasound imaging. The investigations have been concentrated primarily on the Minimum Variance (MV) beamformer. A broadband implementation of theMV beamformer is described, and simulated data have been used...... to demonstrate the performance. The MV beamformer has been applied to different sets of ultrasound imaging sequences; synthetic aperture ultrasound imaging and plane wave ultrasound imaging. And an approach for applying MV optimized apodization weights on both the transmitting and the receiving apertures...

  8. Algorithm for image retrieval based on edge gradient orientation statistical code.

    Science.gov (United States)

    Zeng, Jiexian; Zhao, Yonggang; Li, Weiye; Fu, Xiang

    2014-01-01

    Image edge gradient direction not only contains important information of the shape, but also has a simple, lower complexity characteristic. Considering that the edge gradient direction histograms and edge direction autocorrelogram do not have the rotation invariance, we put forward the image retrieval algorithm which is based on edge gradient orientation statistical code (hereinafter referred to as EGOSC) by sharing the application of the statistics method in the edge direction of the chain code in eight neighborhoods to the statistics of the edge gradient direction. Firstly, we construct the n-direction vector and make maximal summation restriction on EGOSC to make sure this algorithm is invariable for rotation effectively. Then, we use Euclidean distance of edge gradient direction entropy to measure shape similarity, so that this method is not sensitive to scaling, color, and illumination change. The experimental results and the algorithm analysis demonstrate that the algorithm can be used for content-based image retrieval and has good retrieval results.

  9. Multi-instance learning based on instance consistency for image retrieval

    Science.gov (United States)

    Zhang, Miao; Wu, Zhize; Wan, Shouhong; Yue, Lihua; Yin, Bangjie

    2017-07-01

    Multiple-instance learning (MIL) has been successfully utilized in image retrieval. Existing approaches cannot select positive instances correctly from positive bags which may result in a low accuracy. In this paper, we propose a new image retrieval approach called multiple instance learning based on instance-consistency (MILIC) to mitigate such issue. First, we select potential positive instances effectively in each positive bag by ranking instance-consistency (IC) values of instances. Then, we design a feature representation scheme, which can represent the relationship among bags and instances, based on potential positive instances to convert a bag into a single instance. Finally, we can use a standard single-instance learning strategy, such as the support vector machine, for performing object-based image retrieval. Experimental results on two challenging data sets show the effectiveness of our proposal in terms of accuracy and run time.

  10. Large Scale Hierarchical K-Means Based Image Retrieval With MapReduce

    Science.gov (United States)

    2014-03-27

    flat vocabulary on MapReduce. In 2013, Moise and Shestakov [32, 40], have been researching large scale indexing and search with MapReduce. They...time will be greatly reduced, however image retrieval performance will almost certainly suffer. Moise and Shestakov ran tests with 100M images on 108...43–72, 2005. [32] Diana Moise , Denis Shestakov, Gylfi Gudmundsson, and Laurent Amsaleg. Indexing and searching 100m images with map-reduce. In

  11. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC)

    Science.gov (United States)

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2018-01-01

    This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (clouds the error is mostly limited to within 10%, although for thin clouds (COT cloud masking and cloud temperature retrievals are not considered in this study. PMID:29619116

  12. A fully automatic end-to-end method for content-based image retrieval of CT scans with similar liver lesion annotations.

    Science.gov (United States)

    Spanier, A B; Caplan, N; Sosna, J; Acar, B; Joskowicz, L

    2018-01-01

    The goal of medical content-based image retrieval (M-CBIR) is to assist radiologists in the decision-making process by retrieving medical cases similar to a given image. One of the key interests of radiologists is lesions and their annotations, since the patient treatment depends on the lesion diagnosis. Therefore, a key feature of M-CBIR systems is the retrieval of scans with the most similar lesion annotations. To be of value, M-CBIR systems should be fully automatic to handle large case databases. We present a fully automatic end-to-end method for the retrieval of CT scans with similar liver lesion annotations. The input is a database of abdominal CT scans labeled with liver lesions, a query CT scan, and optionally one radiologist-specified lesion annotation of interest. The output is an ordered list of the database CT scans with the most similar liver lesion annotations. The method starts by automatically segmenting the liver in the scan. It then extracts a histogram-based features vector from the segmented region, learns the features' relative importance, and ranks the database scans according to the relative importance measure. The main advantages of our method are that it fully automates the end-to-end querying process, that it uses simple and efficient techniques that are scalable to large datasets, and that it produces quality retrieval results using an unannotated CT scan. Our experimental results on 9 CT queries on a dataset of 41 volumetric CT scans from the 2014 Image CLEF Liver Annotation Task yield an average retrieval accuracy (Normalized Discounted Cumulative Gain index) of 0.77 and 0.84 without/with annotation, respectively. Fully automatic end-to-end retrieval of similar cases based on image information alone, rather that on disease diagnosis, may help radiologists to better diagnose liver lesions.

  13. Applied medical image processing a basic course

    CERN Document Server

    Birkfellner, Wolfgang

    2014-01-01

    A widely used, classroom-tested text, Applied Medical Image Processing: A Basic Course delivers an ideal introduction to image processing in medicine, emphasizing the clinical relevance and special requirements of the field. Avoiding excessive mathematical formalisms, the book presents key principles by implementing algorithms from scratch and using simple MATLAB®/Octave scripts with image data and illustrations on an accompanying CD-ROM or companion website. Organized as a complete textbook, it provides an overview of the physics of medical image processing and discusses image formats and data storage, intensity transforms, filtering of images and applications of the Fourier transform, three-dimensional spatial transforms, volume rendering, image registration, and tomographic reconstruction.

  14. Image processing for medical diagnosis using CNN

    International Nuclear Information System (INIS)

    Arena, Paolo; Basile, Adriano; Bucolo, Maide; Fortuna, Luigi

    2003-01-01

    Medical diagnosis is one of the most important area in which image processing procedures are usefully applied. Image processing is an important phase in order to improve the accuracy both for diagnosis procedure and for surgical operation. One of these fields is tumor/cancer detection by using Microarray analysis. The research studies in the Cancer Genetics Branch are mainly involved in a range of experiments including the identification of inherited mutations predisposing family members to malignant melanoma, prostate and breast cancer. In bio-medical field the real-time processing is very important, but often image processing is a quite time-consuming phase. Therefore techniques able to speed up the elaboration play an important rule. From this point of view, in this work a novel approach to image processing has been developed. The new idea is to use the Cellular Neural Networks to investigate on diagnostic images, like: Magnetic Resonance Imaging, Computed Tomography, and fluorescent cDNA microarray images

  15. Physics for Medical Imaging Applications

    CERN Document Server

    Caner, Alesssandra; Rahal, Ghita

    2007-01-01

    The book introduces the fundamental aspects of digital imaging and covers four main themes: Ultrasound techniques and imaging applications; Magnetic resonance and MPJ in hospital; Digital imaging with X-rays; and Emission tomography (PET and SPECT). Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advancements in the field. Some issues specific to the individual techniques are also treated, e.g. choice of radioisotopes or contrast agents, optimisation of data acquisition and st

  16. Leadership and power in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yielder, Jill [School of Health and Community Studies, Unitec New Zealand, Private Bag 92 025, Mt Albert, Auckland (New Zealand)]. E-mail: jyielder@unitec.ac.nz

    2006-11-15

    This article examines the concept of professional leadership in medical imaging. It explores the context of power issues in which such leadership is located, the differences between leadership and management, the qualities needed for effective leadership and how an individual's psychology may affect it. The article concludes that in the current climate of change and development, the medical imaging profession needs strong and appropriate leadership to profile the profession effectively and to lead it through to a more autonomous future.

  17. Leadership and power in medical imaging

    International Nuclear Information System (INIS)

    Yielder, Jill

    2006-01-01

    This article examines the concept of professional leadership in medical imaging. It explores the context of power issues in which such leadership is located, the differences between leadership and management, the qualities needed for effective leadership and how an individual's psychology may affect it. The article concludes that in the current climate of change and development, the medical imaging profession needs strong and appropriate leadership to profile the profession effectively and to lead it through to a more autonomous future

  18. Automated Region of Interest Retrieval of Metallographic Images for Quality Classification in Industry

    Directory of Open Access Journals (Sweden)

    Petr Kotas

    2012-01-01

    Full Text Available The aim of the research is development and testing of new methods to classify the quality of metallographic samples of steels with high added value (for example grades X70 according API. In this paper, we address the development of methods to classify the quality of slab samples images with the main emphasis on the quality of the image center called as segregation area. For this reason, we introduce an alternative method for automated retrieval of region of interest. In the first step, the metallographic image is segmented using both spectral method and thresholding. Then, the extracted macrostructure of the metallographic image is automatically analyzed by statistical methods. Finally, automatically extracted region of interests are compared with results of human experts.  Practical experience with retrieval of non-homogeneous noised digital images in industrial environment is discussed as well.

  19. Multispectral imaging for medical diagnosis

    Science.gov (United States)

    Anselmo, V. J.

    1977-01-01

    Photography technique determines amount of morbidity present in tissue. Imaging apparatus incorporates numerical filtering. Overall system operates in near-real time. Information gained from this system enables physician to understand extent of injury and leads to accelerated treatment.

  20. Feature Detector and Descriptor for Medical Images

    Science.gov (United States)

    Sargent, Dusty; Chen, Chao-I.; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Daniel

    2009-02-01

    The ability to detect and match features across multiple views of a scene is a crucial first step in many computer vision algorithms for dynamic scene analysis. State-of-the-art methods such as SIFT and SURF perform successfully when applied to typical images taken by a digital camera or camcorder. However, these methods often fail to generate an acceptable number of features when applied to medical images, because such images usually contain large homogeneous regions with little color and intensity variation. As a result, tasks like image registration and 3D structure recovery become difficult or impossible in the medical domain. This paper presents a scale, rotation and color/illumination invariant feature detector and descriptor for medical applications. The method incorporates elements of SIFT and SURF while optimizing their performance on medical data. Based on experiments with various types of medical images, we combined, adjusted, and built on methods and parameter settings employed in both algorithms. An approximate Hessian based detector is used to locate scale invariant keypoints and a dominant orientation is assigned to each keypoint using a gradient orientation histogram, providing rotation invariance. Finally, keypoints are described with an orientation-normalized distribution of gradient responses at the assigned scale, and the feature vector is normalized for contrast invariance. Experiments show that the algorithm detects and matches far more features than SIFT and SURF on medical images, with similar error levels.

  1. Overview of deep learning in medical imaging.

    Science.gov (United States)

    Suzuki, Kenji

    2017-09-01

    The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a

  2. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Science.gov (United States)

    Verrelst, Jochem; Malenovský, Zbyněk; Van der Tol, Christiaan; Camps-Valls, Gustau; Gastellu-Etchegorry, Jean-Philippe; Lewis, Philip; North, Peter; Moreno, Jose

    2018-06-01

    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given.

  3. Multi-Spectral Cloud Retrievals from Moderate Image Spectrometer (MODIS)

    Science.gov (United States)

    Platnick, Steven

    2004-01-01

    MODIS observations from the NASA EOS Terra spacecraft (1030 local time equatorial sun-synchronous crossing) launched in December 1999 have provided a unique set of Earth observation data. With the launch of the NASA EOS Aqua spacecraft (1330 local time crossing! in May 2002: two MODIS daytime (sunlit) and nighttime observations are now available in a 24-hour period allowing some measure of diurnal variability. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate modeling, climate change studies, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. An overview of the instrument and cloud algorithms will be presented along with various examples, including an initial analysis of several operational global gridded (Level-3) cloud products from the two platforms. Statistics of cloud optical and microphysical properties as a function of latitude for land and Ocean regions will be shown. Current algorithm research efforts will also be discussed.

  4. Multi-channel medical imaging system

    Science.gov (United States)

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  5. Words Matter: Scene Text for Image Classification and Retrieval

    NARCIS (Netherlands)

    Karaoglu, S.; Tao, R.; Gevers, T.; Smeulders, A.W.M.

    Text in natural images typically adds meaning to an object or scene. In particular, text specifies which business places serve drinks (e.g., cafe, teahouse) or food (e.g., restaurant, pizzeria), and what kind of service is provided (e.g., massage, repair). The mere presence of text, its words, and

  6. Aspect-based Relevance Learning for Image Retrieval

    NARCIS (Netherlands)

    M.J. Huiskes (Mark)

    2005-01-01

    htmlabstractWe analyze the special structure of the relevance feedback learning problem, focusing particularly on the effects of image selection by partial relevance on the clustering behavior of feedback examples. We propose a scheme, aspect-based relevance learning, which guarantees that feedback

  7. Segmentation of elongated structures in medical images

    NARCIS (Netherlands)

    Staal, Jozef Johannes

    2004-01-01

    The research described in this thesis concerns the automatic detection, recognition and segmentation of elongated structures in medical images. For this purpose techniques have been developed to detect subdimensional pointsets (e.g. ridges, edges) in images of arbitrary dimension. These

  8. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  9. Neural mechanism of lmplicit and explicit memory retrieval: functional MR imaging

    International Nuclear Information System (INIS)

    Kang, Heoung Keun; Jeong, Gwang Woo; Park, Tae Jin; Seo, Jeong Jin; Kim, Hyung Joong; Eun, Sung Jong; Chung, Tae Woong

    2003-01-01

    To identify, using functional MR imaging, distinct cerebral centers and to evaluate the neural mechanism associated with implicit and explicit retrieval of words during conceptual processing. Seven healthy volunteers aged 21-25 (mean, 22) years underwent BOLD-based fMR imaging using a 1.5T signa horizon echospeed MR system. To activate the cerebral cortices, a series of tasks was performed as follows: the encoding of two-syllable words, and implicit and explicit retrieval of previously learned words during conceptual processing. The activation paradigm consisted of a cycle of alternating periods of 30 seconds of stimulation and 30 seconds of rest. Stimulation was accomplished by encoding eight two-syllable words and the retrieval of previously presented words, while the control condition was a white screen with a small fixed cross. During the tasks we acquired ten slices (6 mm slice thickness, 1 mm gap) parallel to the AC-PC line, and the resulting functional activation maps were reconstructed using a statistical parametric mapping program (SPM99). A comparison of activation ratios (percentages), based on the number of volunteers, showed that activation of Rhs-35, PoCiG-23 and ICiG-26·30 was associated with explicit retrieval only; other brain areas were activated during the performance of both implicit and explicit retrieval tasks. Activation ratios were higher for explicit tasks than for implicit; in the cingulate gyrus and temporal lobe they were 30% and 10% greater, respectively. During explicit retrieval, a distinct brain activation index (percentage) was seen in the temporal, parietal, and occipital lobe and cingulate gyrus, and PrCeG-4, Pr/ PoCeG-43 in the frontal lobe. During implicit retrieval, on the other hand, activity was greater in the frontal lobe, including the areas of SCA-25, SFG/MFG-10, IFG-44·45, OrbG-11·47, SFG-6·8 and MFG-9·46. Overall, activation was lateralized mainly in the left hemisphere during both implicit and explicit retrieval

  10. Neural mechanism of lmplicit and explicit memory retrieval: functional MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Heoung Keun; Jeong, Gwang Woo; Park, Tae Jin; Seo, Jeong Jin; Kim, Hyung Joong; Eun, Sung Jong; Chung, Tae Woong [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2003-03-01

    To identify, using functional MR imaging, distinct cerebral centers and to evaluate the neural mechanism associated with implicit and explicit retrieval of words during conceptual processing. Seven healthy volunteers aged 21-25 (mean, 22) years underwent BOLD-based fMR imaging using a 1.5T signa horizon echospeed MR system. To activate the cerebral cortices, a series of tasks was performed as follows: the encoding of two-syllable words, and implicit and explicit retrieval of previously learned words during conceptual processing. The activation paradigm consisted of a cycle of alternating periods of 30 seconds of stimulation and 30 seconds of rest. Stimulation was accomplished by encoding eight two-syllable words and the retrieval of previously presented words, while the control condition was a white screen with a small fixed cross. During the tasks we acquired ten slices (6 mm slice thickness, 1 mm gap) parallel to the AC-PC line, and the resulting functional activation maps were reconstructed using a statistical parametric mapping program (SPM99). A comparison of activation ratios (percentages), based on the number of volunteers, showed that activation of Rhs-35, PoCiG-23 and ICiG-26{center_dot}30 was associated with explicit retrieval only; other brain areas were activated during the performance of both implicit and explicit retrieval tasks. Activation ratios were higher for explicit tasks than for implicit; in the cingulate gyrus and temporal lobe they were 30% and 10% greater, respectively. During explicit retrieval, a distinct brain activation index (percentage) was seen in the temporal, parietal, and occipital lobe and cingulate gyrus, and PrCeG-4, Pr/ PoCeG-43 in the frontal lobe. During implicit retrieval, on the other hand, activity was greater in the frontal lobe, including the areas of SCA-25, SFG/MFG-10, IFG-44{center_dot}45, OrbG-11{center_dot}47, SFG-6{center_dot}8 and MFG-9{center_dot}46. Overall, activation was lateralized mainly in the left

  11. Improved Interactive Medical-Imaging System

    Science.gov (United States)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  12. Design and simulation of a totally digital image system for medical image applications

    International Nuclear Information System (INIS)

    Archwamety, C.

    1987-01-01

    The Totally Digital Imaging System (TDIS) is based on system requirements information from the Radiology Department, University of Arizona Health Science Center. This dissertation presents the design of this complex system, the TDIS specification, the system performance requirements, and the evaluation of the system using the computer-simulation programs. Discrete-event simulation models were developed for the TDIS subsystems, including an image network, imaging equipment, storage migration algorithm, data base archive system, and a control and management network. The simulation system uses empirical data generation and retrieval rates measured at the University Medical Center hospital. The entire TDIS system was simulated in Simscript II.5 using a VAX 8600 computer system. Simulation results show the fiber-optical-image network to be suitable; however, the optical-disk-storage system represents a performance bottleneck

  13. Use of organoboranes in modern medical imaging

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1991-01-01

    Isotopically labeled materials have proven to be invaluable in chemical, medical, and biological research. Organoboranes are beginning to play a significant role in the synthesis of medically important materials which contain both stable and short-lived isotopes. The organic compounds of boron possess characteristics which make them ideal intermediates in radiopharmaceutical pathways; these include the facts that boron reactions tolerate a wide variety of physiologically active functionality and that the reactions proceed rapidly and in high yields. Boranes have found important applications in modern medical imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI). (author)

  14. Cascaded Window Memoization for Medical Imaging

    OpenAIRE

    Khalvati , Farzad; Kianpour , Mehdi; Tizhoosh , Hamid ,

    2011-01-01

    Part 12: Medical Applications of ANN and Ethics of AI; International audience; Window Memoization is a performance improvement technique for image processing algorithms. It is based on removing computational redundancy in an algorithm applied to a single image, which is inherited from data redundancy in the image. The technique employs a fuzzy reuse mechanism to eliminate unnecessary computations. This paper extends the window memoization technique such that in addition to exploiting the data...

  15. Quantification of heterogeneity observed in medical images

    OpenAIRE

    Brooks, Frank J; Grigsby, Perry W

    2013-01-01

    Background There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging mod...

  16. Supporting Keyword Search for Image Retrieval with Integration of Probabilistic Annotation

    Directory of Open Access Journals (Sweden)

    Tie Hua Zhou

    2015-05-01

    Full Text Available The ever-increasing quantities of digital photo resources are annotated with enriching vocabularies to form semantic annotations. Photo-sharing social networks have boosted the need for efficient and intuitive querying to respond to user requirements in large-scale image collections. In order to help users formulate efficient and effective image retrieval, we present a novel integration of a probabilistic model based on keyword query architecture that models the probability distribution of image annotations: allowing users to obtain satisfactory results from image retrieval via the integration of multiple annotations. We focus on the annotation integration step in order to specify the meaning of each image annotation, thus leading to the most representative annotations of the intent of a keyword search. For this demonstration, we show how a probabilistic model has been integrated to semantic annotations to allow users to intuitively define explicit and precise keyword queries in order to retrieve satisfactory image results distributed in heterogeneous large data sources. Our experiments on SBU (collected by Stony Brook University database show that (i our integrated annotation contains higher quality representatives and semantic matches; and (ii the results indicating annotation integration can indeed improve image search result quality.

  17. 4D reconstruction of the past: the image retrieval and 3D model construction pipeline

    Science.gov (United States)

    Hadjiprocopis, Andreas; Ioannides, Marinos; Wenzel, Konrad; Rothermel, Mathias; Johnsons, Paul S.; Fritsch, Dieter; Doulamis, Anastasios; Protopapadakis, Eftychios; Kyriakaki, Georgia; Makantasis, Kostas; Weinlinger, Guenther; Klein, Michael; Fellner, Dieter; Stork, Andre; Santos, Pedro

    2014-08-01

    One of the main characteristics of the Internet era we are living in, is the free and online availability of a huge amount of data. This data is of varied reliability and accuracy and exists in various forms and formats. Often, it is cross-referenced and linked to other data, forming a nexus of text, images, animation and audio enabled by hypertext and, recently, by the Web3.0 standard. Our main goal is to enable historians, architects, archaeolo- gists, urban planners and affiliated professionals to reconstruct views of historical monuments from thousands of images floating around the web. This paper aims to provide an update of our progress in designing and imple- menting a pipeline for searching, filtering and retrieving photographs from Open Access Image Repositories and social media sites and using these images to build accurate 3D models of archaeological monuments as well as enriching multimedia of cultural / archaeological interest with metadata and harvesting the end products to EU- ROPEANA. We provide details of how our implemented software searches and retrieves images of archaeological sites from Flickr and Picasa repositories as well as strategies on how to filter the results, on two levels; a) based on their built-in metadata including geo-location information and b) based on image processing and clustering techniques. We also describe our implementation of a Structure from Motion pipeline designed for producing 3D models using the large collection of 2D input images (>1000) retrieved from Internet Repositories.

  18. Hello World Deep Learning in Medical Imaging.

    Science.gov (United States)

    Lakhani, Paras; Gray, Daniel L; Pett, Carl R; Nagy, Paul; Shih, George

    2018-05-03

    There is recent popularity in applying machine learning to medical imaging, notably deep learning, which has achieved state-of-the-art performance in image analysis and processing. The rapid adoption of deep learning may be attributed to the availability of machine learning frameworks and libraries to simplify their use. In this tutorial, we provide a high-level overview of how to build a deep neural network for medical image classification, and provide code that can help those new to the field begin their informatics projects.

  19. New substances for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Carrard, G [comp.

    1982-03-01

    AAEC scientists have developed a new radiopharmaceutical of commerical potential which can be applied to the diagnosis of diseases involving abnormal functioning of the liver, bile duct or gall bladder. It is technetium-bromo-BIMIDA. Other investigations include the enhancement of images from gallium-67 citrate in tumours and the interaction between iron dextran and technetium-pyro-phosphate.

  20. Quantitative imaging features: extension of the oncology medical image database

    Science.gov (United States)

    Patel, M. N.; Looney, P. T.; Young, K. C.; Halling-Brown, M. D.

    2015-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. With the advent of digital imaging modalities and the rapid growth in both diagnostic and therapeutic imaging, the ability to be able to harness this large influx of data is of paramount importance. The Oncology Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, and annotations and where applicable expert determined ground truths describing features of interest. Medical imaging provides the ability to detect and localize many changes that are important to determine whether a disease is present or a therapy is effective by depicting alterations in anatomic, physiologic, biochemical or molecular processes. Quantitative imaging features are sensitive, specific, accurate and reproducible imaging measures of these changes. Here, we describe an extension to the OMI-DB whereby a range of imaging features and descriptors are pre-calculated using a high throughput approach. The ability to calculate multiple imaging features and data from the acquired images would be valuable and facilitate further research applications investigating detection, prognosis, and classification. The resultant data store contains more than 10 million quantitative features as well as features derived from CAD predictions. Theses data can be used to build predictive models to aid image classification, treatment response assessment as well as to identify prognostic imaging biomarkers.

  1. Qualification of a Null Lens Using Image-Based Phase Retrieval

    Science.gov (United States)

    Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.

    2012-01-01

    In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.

  2. Content-Based Image Retrieval Benchmarking: Utilizing color categories and color distributions

    NARCIS (Netherlands)

    van den Broek, Egon; Kisters, Peter M.F.; Vuurpijl, Louis G.

    From a human centered perspective three ingredients for Content-Based Image Retrieval (CBIR) were developed. First, with their existence confirmed by experimental data, 11 color categories were utilized for CBIR and used as input for a new color space segmentation technique. The complete HSI color

  3. The utilization of human color categorization for content-based image retrieval

    NARCIS (Netherlands)

    van den Broek, Egon; Rogowitz, Bernice E.; Kisters, Peter M.F.; Pappas, Thrasyvoulos N.; Vuurpijl, Louis G.

    2004-01-01

    We present the concept of intelligent Content-Based Image Retrieval (iCBIR), which incorporates knowledge concerning human cognition in system development. The present research focuses on the utilization of color categories (or focal colors) for CBIR purposes, in particularly considered to be useful

  4. Research on Techniques of Multifeatures Extraction for Tongue Image and Its Application in Retrieval

    Directory of Open Access Journals (Sweden)

    Liyan Chen

    2017-01-01

    Full Text Available Tongue diagnosis is one of the important methods in the Chinese traditional medicine. Doctors can judge the disease’s situation by observing patient’s tongue color and texture. This paper presents a novel approach to extract color and texture features of tongue images. First, we use improved GLA (Generalized Lloyd Algorithm to extract the main color of tongue image. Considering that the color feature cannot fully express tongue image information, the paper analyzes tongue edge’s texture features and proposes an algorithm to extract them. Then, we integrate the two features in retrieval by different weight. Experimental results show that the proposed method can improve the detection rate of lesion in tongue image relative to single feature retrieval.

  5. Radiology and Enterprise Medical Imaging Extensions (REMIX).

    Science.gov (United States)

    Erdal, Barbaros S; Prevedello, Luciano M; Qian, Songyue; Demirer, Mutlu; Little, Kevin; Ryu, John; O'Donnell, Thomas; White, Richard D

    2018-02-01

    Radiology and Enterprise Medical Imaging Extensions (REMIX) is a platform originally designed to both support the medical imaging-driven clinical and clinical research operational needs of Department of Radiology of The Ohio State University Wexner Medical Center. REMIX accommodates the storage and handling of "big imaging data," as needed for large multi-disciplinary cancer-focused programs. The evolving REMIX platform contains an array of integrated tools/software packages for the following: (1) server and storage management; (2) image reconstruction; (3) digital pathology; (4) de-identification; (5) business intelligence; (6) texture analysis; and (7) artificial intelligence. These capabilities, along with documentation and guidance, explaining how to interact with a commercial system (e.g., PACS, EHR, commercial database) that currently exists in clinical environments, are to be made freely available.

  6. The Orthanc Ecosystem for Medical Imaging.

    Science.gov (United States)

    Jodogne, Sébastien

    2018-05-03

    This paper reviews the components of Orthanc, a free and open-source, highly versatile ecosystem for medical imaging. At the core of the Orthanc ecosystem, the Orthanc server is a lightweight vendor neutral archive that provides PACS managers with a powerful environment to automate and optimize the imaging flows that are very specific to each hospital. The Orthanc server can be extended with plugins that provide solutions for teleradiology, digital pathology, or enterprise-ready databases. It is shown how software developers and research engineers can easily develop external software or Web portals dealing with medical images, with minimal knowledge of the DICOM standard, thanks to the advanced programming interface of the Orthanc server. The paper concludes by introducing the Stone of Orthanc, an innovative toolkit for the cross-platform rendering of medical images.

  7. Medical image segmentation using genetic algorithms.

    Science.gov (United States)

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.

  8. Deep Learning in Medical Image Analysis.

    Science.gov (United States)

    Shen, Dinggang; Wu, Guorong; Suk, Heung-Il

    2017-06-21

    This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.

  9. Use of mobile devices for medical imaging.

    Science.gov (United States)

    Hirschorn, David S; Choudhri, Asim F; Shih, George; Kim, Woojin

    2014-12-01

    Mobile devices have fundamentally changed personal computing, with many people forgoing the desktop and even laptop computer altogether in favor of a smaller, lighter, and cheaper device with a touch screen. Doctors and patients are beginning to expect medical images to be available on these devices for consultative viewing, if not actual diagnosis. However, this raises serious concerns with regard to the ability of existing mobile devices and networks to quickly and securely move these images. Medical images often come in large sets, which can bog down a network if not conveyed in an intelligent manner, and downloaded data on a mobile device are highly vulnerable to a breach of patient confidentiality should that device become lost or stolen. Some degree of regulation is needed to ensure that the software used to view these images allows all relevant medical information to be visible and manipulated in a clinically acceptable manner. There also needs to be a quality control mechanism to ensure that a device's display accurately conveys the image content without loss of contrast detail. Furthermore, not all mobile displays are appropriate for all types of images. The smaller displays of smart phones, for example, are not well suited for viewing entire chest radiographs, no matter how small and numerous the pixels of the display may be. All of these factors should be taken into account when deciding where, when, and how to use mobile devices for the display of medical images. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. Color image encryption using random transforms, phase retrieval, chaotic maps, and diffusion

    Science.gov (United States)

    Annaby, M. H.; Rushdi, M. A.; Nehary, E. A.

    2018-04-01

    The recent tremendous proliferation of color imaging applications has been accompanied by growing research in data encryption to secure color images against adversary attacks. While recent color image encryption techniques perform reasonably well, they still exhibit vulnerabilities and deficiencies in terms of statistical security measures due to image data redundancy and inherent weaknesses. This paper proposes two encryption algorithms that largely treat these deficiencies and boost the security strength through novel integration of the random fractional Fourier transforms, phase retrieval algorithms, as well as chaotic scrambling and diffusion. We show through detailed experiments and statistical analysis that the proposed enhancements significantly improve security measures and immunity to attacks.

  11. Structural analysis in medical imaging

    International Nuclear Information System (INIS)

    Dellepiane, S.; Serpico, S.B.; Venzano, L.; Vernazza, G.

    1987-01-01

    The conventional techniques in Pattern Recognition (PR) have been greatly improved by the introduction of Artificial Intelligence (AI) approaches, in particular for knowledge representation, inference mechanism and control structure. The purpose of this paper is to describe an image understanding system, based on the integrated approach (AI - PR), developed in the author's Department to interpret Nuclear Magnetic Resonance (NMR) images. The system is characterized by a heterarchical control structure and a blackboard model for the global data-base. The major aspects of the system are pointed out, with particular reference to segmentation, knowledge representation and error recovery (backtracking). The eye slices obtained in the case of two patients have been analyzed and the related results are discussed

  12. Medical images storage using discrete cosine transform

    International Nuclear Information System (INIS)

    Arhouma, Ali M.; Ajaal, Tawfik; Marghani, Khaled

    2010-01-01

    The advances in technology during the last decades have made the use of digital images as one of the common things in everyday life. While the application of digital images in communicating information is very important, the cost of storing and transmitting images is much larger compared to storage and transmission of text. The main problem with all of the images was the fact that they take large size of memory space, large transmission bandwidth and long transmission time. Image data compression is needed to reduce the storage space,transmission bandwidth and transmission time. Medical image compression plays a key role as hospitals move towards filmless imaging and go completely digital. Image compression allows Picture Archiving and Communication Systems (PACS) to reduce the file size on their storage requirements while maintaining relevant diagnostic information. The reduced image file size yield reduced transmission times. Even as the capacity of storage media continues to increase, it is expected that the volume of uncompressed data produced by hospitals will exceed capacity of storage and drive up costs. This paper proposes a Discrete Cosine Transform (DCT) algorithm which can help to solve the image storage and transmission time problem in hospitals. Discrete cosine transform (DCT) has become the most popular technique for image compression over the past several years. One of the major reasons for its popularity is its selection as the standard for JPEG. DCTs are most commonly used for non-analytical applications such as image processing and digital signal-processing (DSP) applications such as video conferencing, fax systems, video disks, and high-definition television HDTV. They also can be used on a matrix of practically any dimension. The proposed (DCT) algorithm improves the performance of medical image compression while satisfying both the medical image quality, and the high compression ratio. Application of DCT coding algorithm to actual still images

  13. Hybrid Imaging: A New Frontier in Medical Imaging

    OpenAIRE

    Bijan Bijan

    2010-01-01

    Introduction of hybrid imaging in the arena of medical imaging calls for re-strategizing in current practice. Operating PET-CT and upcoming PET-MRI is a turf battle between Radiologists, Nuclear Medicine Physicians, Oncologists, Cardiologists and other related fields.

  14. An efficient similarity measure for content based image retrieval using memetic algorithm

    Directory of Open Access Journals (Sweden)

    Mutasem K. Alsmadi

    2017-06-01

    Full Text Available Content based image retrieval (CBIR systems work by retrieving images which are related to the query image (QI from huge databases. The available CBIR systems extract limited feature sets which confine the retrieval efficacy. In this work, extensive robust and important features were extracted from the images database and then stored in the feature repository. This feature set is composed of color signature with the shape and color texture features. Where, features are extracted from the given QI in the similar fashion. Consequently, a novel similarity evaluation using a meta-heuristic algorithm called a memetic algorithm (genetic algorithm with great deluge is achieved between the features of the QI and the features of the database images. Our proposed CBIR system is assessed by inquiring number of images (from the test dataset and the efficiency of the system is evaluated by calculating precision-recall value for the results. The results were superior to other state-of-the-art CBIR systems in regard to precision.

  15. Physics and engineering of medical imaging

    International Nuclear Information System (INIS)

    Guzzardi, R.

    1987-01-01

    The ever-developing technology of medical imaging has a continuous and significant impact on the practice of medicine as well as on clinical research activity. The information and level of accuracy obtained by an imaging methodology is a complex result of a multidisciplinary effort of physics, engineering, electronics, chemistry and medicine. In this book, the state of the art is described for NMR, ultrasound, X-ray CT, nuclear medicine, positron tomography and other imaging modalities. For every imaging modality, the most important clinical applications are described together with the delineation of problems and future needs. Furthermore, specific sections of the book are devoted to general aspects of medical imaging, such as reconstruction techniques, 2-D and 3-D display, quality control, archiving, market trends and correlative assessment

  16. Physics and engineering of medical imaging

    International Nuclear Information System (INIS)

    Guzzardi, R.

    1987-01-01

    The ever-growing development in the technology of Medical Imaging has a continuous and significant impact in the practice of Medicine as well as in the clinical research activity. The information and accuracy obtained by whatever imaging methodology is a complex result of a multidisciplinary effort of several sciences, such as Physics, Engineering, Electronics, Chemistry and Medicine. In this book, the state-of-the-art is described of the technology at the base of NMR, Ultrasound, X-ray CT, Nuclear Medicine, Positron Tomography and other Imaging Modalities such as Thermography or Biomagnetism, considering both the research and industrial point of view. For every imaging modality the most important clinical applications are described, together with the delineation of problems and future needs. Furthermore, specific sections of the book are devoted to general aspects of Medical Imaging, such as Reconstruction Techniques, 2-D and 3-D Display, Quality Control, Archiving, Market Trends and Correlative Assessment. (Auth.)

  17. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  18. Radiation biology of medical imaging

    CERN Document Server

    Kelsey, Charles A; Sandoval, Daniel J; Chambers, Gregory D; Adolphi, Natalie L; Paffett, Kimberly S

    2014-01-01

    This book provides a thorough yet concise introduction to quantitative radiobiology and radiation physics, particularly the practical and medical application. Beginning with a discussion of the basic science of radiobiology, the book explains the fast processes that initiate damage in irradiated tissue and the kinetic patterns in which such damage is expressed at the cellular level. The final section is presented in a highly practical handbook style and offers application-based discussions in radiation oncology, fractionated radiotherapy, and protracted radiation among others. The text is also supplemented by a Web site.

  19. An Intelligent Cloud Storage Gateway for Medical Imaging.

    Science.gov (United States)

    Viana-Ferreira, Carlos; Guerra, António; Silva, João F; Matos, Sérgio; Costa, Carlos

    2017-09-01

    Historically, medical imaging repositories have been supported by indoor infrastructures. However, the amount of diagnostic imaging procedures has continuously increased over the last decades, imposing several challenges associated with the storage volume, data redundancy and availability. Cloud platforms are focused on delivering hardware and software services over the Internet, becoming an appealing solution for repository outsourcing. Although this option may bring financial and technological benefits, it also presents new challenges. In medical imaging scenarios, communication latency is a critical issue that still hinders the adoption of this paradigm. This paper proposes an intelligent Cloud storage gateway that optimizes data access times. This is achieved through a new cache architecture that combines static rules and pattern recognition for eviction and prefetching. The evaluation results, obtained from experiments over a real-world dataset, show that cache hit ratios can reach around 80%, leading to reductions of image retrieval times by over 60%. The combined use of eviction and prefetching policies proposed can significantly reduce communication latency, even when using a small cache in comparison to the total size of the repository. Apart from the performance gains, the proposed system is capable of adjusting to specific workflows of different institutions.

  20. A Hybrid Technique for Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Alamgir Nyma

    2012-01-01

    Full Text Available Medical image segmentation is an essential and challenging aspect in computer-aided diagnosis and also in pattern recognition research. This paper proposes a hybrid method for magnetic resonance (MR image segmentation. We first remove impulsive noise inherent in MR images by utilizing a vector median filter. Subsequently, Otsu thresholding is used as an initial coarse segmentation method that finds the homogeneous regions of the input image. Finally, an enhanced suppressed fuzzy c-means is used to partition brain MR images into multiple segments, which employs an optimal suppression factor for the perfect clustering in the given data set. To evaluate the robustness of the proposed approach in noisy environment, we add different types of noise and different amount of noise to T1-weighted brain MR images. Experimental results show that the proposed algorithm outperforms other FCM based algorithms in terms of segmentation accuracy for both noise-free and noise-inserted MR images.

  1. Multispectral system for medical fluorescence imaging

    International Nuclear Information System (INIS)

    Andersson, P.S.; Montan, S.; Svanberg, S.

    1987-01-01

    The principles of a powerful multicolor imaging system for tissue fluorescence diagnostics are discussed. Four individually spectrally filtered images are formed on a matrix detector by means of a split-mirror arrangement. The four images are processed in a computer, pixel by pixel, by means of mathematical operations, leading to an optimized contrast image, which enhances a selected feature. The system is being developed primarily for medical fluorescence imaging, but has wide applications in fluorescence, reflectance, and transmission monitoring related to a wide range of industrial and environmental problems. The system operation is described for the case of linear imaging on a diode array detector. Laser-induced fluorescence is used for cancer tumor and arteriosclerotic plaque demarcation using the contrast enhancement capabilities of this imaging system. Further examples of applications include fluorescing minerals and flames

  2. Benchmarking, Research, Development, and Support for ORNL Automated Image and Signature Retrieval (AIR/ASR) Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, K.W.

    2004-06-01

    This report describes the results of a Cooperative Research and Development Agreement (CRADA) with Applied Materials, Inc. (AMAT) of Santa Clara, California. This project encompassed the continued development and integration of the ORNL Automated Image Retrieval (AIR) technology, and an extension of the technology denoted Automated Signature Retrieval (ASR), and other related technologies with the Defect Source Identification (DSI) software system that was under development by AMAT at the time this work was performed. In the semiconductor manufacturing environment, defect imagery is used to diagnose problems in the manufacturing line, train yield management engineers, and examine historical data for trends. Image management in semiconductor data systems is a growing cause of concern in the industry as fabricators are now collecting up to 20,000 images each week. In response to this concern, researchers at the Oak Ridge National Laboratory (ORNL) developed a semiconductor-specific content-based image retrieval method and system, also known as AIR. The system uses an image-based query-by-example method to locate and retrieve similar imagery from a database of digital imagery using visual image characteristics. The query method is based on a unique architecture that takes advantage of the statistical, morphological, and structural characteristics of image data, generated by inspection equipment in industrial applications. The system improves the manufacturing process by allowing rapid access to historical records of similar events so that errant process equipment can be isolated and corrective actions can be quickly taken to improve yield. The combined ORNL and AMAT technology is referred to hereafter as DSI-AIR and DSI-ASR.

  3. Optical image encryption based on phase retrieval combined with three-dimensional particle-like distribution

    International Nuclear Information System (INIS)

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2012-01-01

    We propose a new phase retrieval algorithm for optical image encryption in three-dimensional (3D) space. The two-dimensional (2D) plaintext is considered as a series of particles distributed in 3D space, and an iterative phase retrieval algorithm is developed to encrypt the series of particles into phase-only masks. The feasibility and effectiveness of the proposed method are demonstrated by a numerical experiment, and the advantages and security of the proposed optical cryptosystems are also analyzed and discussed. (paper)

  4. Object-Location-Aware Hashing for Multi-Label Image Retrieval via Automatic Mask Learning.

    Science.gov (United States)

    Huang, Chang-Qin; Yang, Shang-Ming; Pan, Yan; Lai, Han-Jiang

    2018-09-01

    Learning-based hashing is a leading approach of approximate nearest neighbor search for large-scale image retrieval. In this paper, we develop a deep supervised hashing method for multi-label image retrieval, in which we propose to learn a binary "mask" map that can identify the approximate locations of objects in an image, so that we use this binary "mask" map to obtain length-limited hash codes which mainly focus on an image's objects but ignore the background. The proposed deep architecture consists of four parts: 1) a convolutional sub-network to generate effective image features; 2) a binary "mask" sub-network to identify image objects' approximate locations; 3) a weighted average pooling operation based on the binary "mask" to obtain feature representations and hash codes that pay most attention to foreground objects but ignore the background; and 4) the combination of a triplet ranking loss designed to preserve relative similarities among images and a cross entropy loss defined on image labels. We conduct comprehensive evaluations on four multi-label image data sets. The results indicate that the proposed hashing method achieves superior performance gains over the state-of-the-art supervised or unsupervised hashing baselines.

  5. Combining semantic technologies with a content-based image retrieval system - Preliminary considerations

    Science.gov (United States)

    Chmiel, P.; Ganzha, M.; Jaworska, T.; Paprzycki, M.

    2017-10-01

    Nowadays, as a part of systematic growth of volume, and variety, of information that can be found on the Internet, we observe also dramatic increase in sizes of available image collections. There are many ways to help users browsing / selecting images of interest. One of popular approaches are Content-Based Image Retrieval (CBIR) systems, which allow users to search for images that match their interests, expressed in the form of images (query by example). However, we believe that image search and retrieval could take advantage of semantic technologies. We have decided to test this hypothesis. Specifically, on the basis of knowledge captured in the CBIR, we have developed a domain ontology of residential real estate (detached houses, in particular). This allows us to semantically represent each image (and its constitutive architectural elements) represented within the CBIR. The proposed ontology was extended to capture not only the elements resulting from image segmentation, but also "spatial relations" between them. As a result, a new approach to querying the image database (semantic querying) has materialized, thus extending capabilities of the developed system.

  6. Parallel content-based sub-image retrieval using hierarchical searching.

    Science.gov (United States)

    Yang, Lin; Qi, Xin; Xing, Fuyong; Kurc, Tahsin; Saltz, Joel; Foran, David J

    2014-04-01

    The capacity to systematically search through large image collections and ensembles and detect regions exhibiting similar morphological characteristics is central to pathology diagnosis. Unfortunately, the primary methods used to search digitized, whole-slide histopathology specimens are slow and prone to inter- and intra-observer variability. The central objective of this research was to design, develop, and evaluate a content-based image retrieval system to assist doctors for quick and reliable content-based comparative search of similar prostate image patches. Given a representative image patch (sub-image), the algorithm will return a ranked ensemble of image patches throughout the entire whole-slide histology section which exhibits the most similar morphologic characteristics. This is accomplished by first performing hierarchical searching based on a newly developed hierarchical annular histogram (HAH). The set of candidates is then further refined in the second stage of processing by computing a color histogram from eight equally divided segments within each square annular bin defined in the original HAH. A demand-driven master-worker parallelization approach is employed to speed up the searching procedure. Using this strategy, the query patch is broadcasted to all worker processes. Each worker process is dynamically assigned an image by the master process to search for and return a ranked list of similar patches in the image. The algorithm was tested using digitized hematoxylin and eosin (H&E) stained prostate cancer specimens. We have achieved an excellent image retrieval performance. The recall rate within the first 40 rank retrieved image patches is ∼90%. Both the testing data and source code can be downloaded from http://pleiad.umdnj.edu/CBII/Bioinformatics/.

  7. Imaging methods in medical diagnosis

    International Nuclear Information System (INIS)

    Krestel, E.

    1981-01-01

    Pictures of parts of the human body or of the human body (views, superposition pictures, pictures of body layers, or photographs) are considerable helps for the medical diagnostics. Physics, electrotechnique, and machine construction make the picture production possible. Modern electronics and optics offer facilities of picture processing which influences the picture quality. Picture interpretation is the the physican's task. The picture-delivering methods applied in medicine include the conventional X-ray diagnostics, X-ray computer tomography, nuclear diagnostics, sonography with ultas sound, and endoscopy. Their rapid development and immprovement was caused by the development of electronics during the past 20 years. A method presently in discussion and development is the Kernspin-tomography. (orig./MG) [de

  8. Experiments with a novel content-based image retrieval software: can we eliminate classification systems in adolescent idiopathic scoliosis?

    Science.gov (United States)

    Menon, K Venugopal; Kumar, Dinesh; Thomas, Tessamma

    2014-02-01

    Study Design Preliminary evaluation of new tool. Objective To ascertain whether the newly developed content-based image retrieval (CBIR) software can be used successfully to retrieve images of similar cases of adolescent idiopathic scoliosis (AIS) from a database to help plan treatment without adhering to a classification scheme. Methods Sixty-two operated cases of AIS were entered into the newly developed CBIR database. Five new cases of different curve patterns were used as query images. The images were fed into the CBIR database that retrieved similar images from the existing cases. These were analyzed by a senior surgeon for conformity to the query image. Results Within the limits of variability set for the query system, all the resultant images conformed to the query image. One case had no similar match in the series. The other four retrieved several images that were matching with the query. No matching case was left out in the series. The postoperative images were then analyzed to check for surgical strategies. Broad guidelines for treatment could be derived from the results. More precise query settings, inclusion of bending films, and a larger database will enhance accurate retrieval and better decision making. Conclusion The CBIR system is an effective tool for accurate documentation and retrieval of scoliosis images. Broad guidelines for surgical strategies can be made from the postoperative images of the existing cases without adhering to any classification scheme.

  9. Content-based image retrieval using spatial layout information in brain tumor T1-weighted contrast-enhanced MR images.

    Science.gov (United States)

    Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Gao, Yang; Chen, Yang; Feng, Qianjin; Chen, Wufan; Lu, Zhentai

    2014-01-01

    This study aims to develop content-based image retrieval (CBIR) system for the retrieval of T1-weighted contrast-enhanced MR (CE-MR) images of brain tumors. When a tumor region is fed to the CBIR system as a query, the system attempts to retrieve tumors of the same pathological category. The bag-of-visual-words (BoVW) model with partition learning is incorporated into the system to extract informative features for representing the image contents. Furthermore, a distance metric learning algorithm called the Rank Error-based Metric Learning (REML) is proposed to reduce the semantic gap between low-level visual features and high-level semantic concepts. The effectiveness of the proposed method is evaluated on a brain T1-weighted CE-MR dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor). Using the BoVW model with partition learning, the mean average precision (mAP) of retrieval increases beyond 4.6% with the learned distance metrics compared with the spatial pyramid BoVW method. The distance metric learned by REML significantly outperforms three other existing distance metric learning methods in terms of mAP. The mAP of the CBIR system is as high as 91.8% using the proposed method, and the precision can reach 93.1% when the top 10 images are returned by the system. These preliminary results demonstrate that the proposed method is effective and feasible for the retrieval of brain tumors in T1-weighted CE-MR Images.

  10. Content-based image retrieval using spatial layout information in brain tumor T1-weighted contrast-enhanced MR images.

    Directory of Open Access Journals (Sweden)

    Meiyan Huang

    Full Text Available This study aims to develop content-based image retrieval (CBIR system for the retrieval of T1-weighted contrast-enhanced MR (CE-MR images of brain tumors. When a tumor region is fed to the CBIR system as a query, the system attempts to retrieve tumors of the same pathological category. The bag-of-visual-words (BoVW model with partition learning is incorporated into the system to extract informative features for representing the image contents. Furthermore, a distance metric learning algorithm called the Rank Error-based Metric Learning (REML is proposed to reduce the semantic gap between low-level visual features and high-level semantic concepts. The effectiveness of the proposed method is evaluated on a brain T1-weighted CE-MR dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor. Using the BoVW model with partition learning, the mean average precision (mAP of retrieval increases beyond 4.6% with the learned distance metrics compared with the spatial pyramid BoVW method. The distance metric learned by REML significantly outperforms three other existing distance metric learning methods in terms of mAP. The mAP of the CBIR system is as high as 91.8% using the proposed method, and the precision can reach 93.1% when the top 10 images are returned by the system. These preliminary results demonstrate that the proposed method is effective and feasible for the retrieval of brain tumors in T1-weighted CE-MR Images.

  11. Intelligent medical image processing by simulated annealing

    International Nuclear Information System (INIS)

    Ohyama, Nagaaki

    1992-01-01

    Image processing is being widely used in the medical field and already has become very important, especially when used for image reconstruction purposes. In this paper, it is shown that image processing can be classified into 4 categories; passive, active, intelligent and visual image processing. These 4 classes are explained at first through the use of several examples. The results show that the passive image processing does not give better results than the others. Intelligent image processing, then, is addressed, and the simulated annealing method is introduced. Due to the flexibility of the simulated annealing, formulated intelligence is shown to be easily introduced in an image reconstruction problem. As a practical example, 3D blood vessel reconstruction from a small number of projections, which is insufficient for conventional method to give good reconstruction, is proposed, and computer simulation clearly shows the effectiveness of simulated annealing method. Prior to the conclusion, medical file systems such as IS and C (Image Save and Carry) is pointed out to have potential for formulating knowledge, which is indispensable for intelligent image processing. This paper concludes by summarizing the advantages of simulated annealing. (author)

  12. Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Kandemir, Melih; Saarinen, Veli-Matti; Hirvenkari, Lotta; Parkkonen, Lauri; Klami, Arto; Hari, Riitta; Kaski, Samuel

    2015-05-15

    We hypothesize that brain activity can be used to control future information retrieval systems. To this end, we conducted a feasibility study on predicting the relevance of visual objects from brain activity. We analyze both magnetoencephalographic (MEG) and gaze signals from nine subjects who were viewing image collages, a subset of which was relevant to a predetermined task. We report three findings: i) the relevance of an image a subject looks at can be decoded from MEG signals with performance significantly better than chance, ii) fusion of gaze-based and MEG-based classifiers significantly improves the prediction performance compared to using either signal alone, and iii) non-linear classification of the MEG signals using Gaussian process classifiers outperforms linear classification. These findings break new ground for building brain-activity-based interactive image retrieval systems, as well as for systems utilizing feedback both from brain activity and eye movements. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Shape analysis in medical image analysis

    CERN Document Server

    Tavares, João

    2014-01-01

    This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification, and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students, and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computationa...

  14. Medical Image Registration and Surgery Simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This thesis explores the application of physical models in medical image registration and surgery simulation. The continuum models of elasticity and viscous fluids are described in detail, and this knowledge is used as a basis for most of the methods described here. Real-time deformable models......, and the use of selective matrix vector multiplication. Fluid medical image registration A new and faster algorithm for non-rigid registration using viscous fluid models is presented. This algorithm replaces the core part of the original algorithm with multi-resolution convolution using a new filter, which...... growth is also presented. Using medical knowledge about the growth processes of the mandibular bone, a registration algorithm for time sequence images of the mandible is developed. Since this registration algorithm models the actual development of the mandible, it is possible to simulate the development...

  15. Neighborhood Discriminant Hashing for Large-Scale Image Retrieval.

    Science.gov (United States)

    Tang, Jinhui; Li, Zechao; Wang, Meng; Zhao, Ruizhen

    2015-09-01

    With the proliferation of large-scale community-contributed images, hashing-based approximate nearest neighbor search in huge databases has aroused considerable interest from the fields of computer vision and multimedia in recent years because of its computational and memory efficiency. In this paper, we propose a novel hashing method named neighborhood discriminant hashing (NDH) (for short) to implement approximate similarity search. Different from the previous work, we propose to learn a discriminant hashing function by exploiting local discriminative information, i.e., the labels of a sample can be inherited from the neighbor samples it selects. The hashing function is expected to be orthogonal to avoid redundancy in the learned hashing bits as much as possible, while an information theoretic regularization is jointly exploited using maximum entropy principle. As a consequence, the learned hashing function is compact and nonredundant among bits, while each bit is highly informative. Extensive experiments are carried out on four publicly available data sets and the comparison results demonstrate the outperforming performance of the proposed NDH method over state-of-the-art hashing techniques.

  16. TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury

    Science.gov (United States)

    Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo

    2010-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.

  17. 21 CFR 892.2040 - Medical image hardcopy device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a medical...

  18. Conjunctive patches subspace learning with side information for collaborative image retrieval.

    Science.gov (United States)

    Zhang, Lining; Wang, Lipo; Lin, Weisi

    2012-08-01

    Content-Based Image Retrieval (CBIR) has attracted substantial attention during the past few years for its potential practical applications to image management. A variety of Relevance Feedback (RF) schemes have been designed to bridge the semantic gap between the low-level visual features and the high-level semantic concepts for an image retrieval task. Various Collaborative Image Retrieval (CIR) schemes aim to utilize the user historical feedback log data with similar and dissimilar pairwise constraints to improve the performance of a CBIR system. However, existing subspace learning approaches with explicit label information cannot be applied for a CIR task, although the subspace learning techniques play a key role in various computer vision tasks, e.g., face recognition and image classification. In this paper, we propose a novel subspace learning framework, i.e., Conjunctive Patches Subspace Learning (CPSL) with side information, for learning an effective semantic subspace by exploiting the user historical feedback log data for a CIR task. The CPSL can effectively integrate the discriminative information of labeled log images, the geometrical information of labeled log images and the weakly similar information of unlabeled images together to learn a reliable subspace. We formally formulate this problem into a constrained optimization problem and then present a new subspace learning technique to exploit the user historical feedback log data. Extensive experiments on both synthetic data sets and a real-world image database demonstrate the effectiveness of the proposed scheme in improving the performance of a CBIR system by exploiting the user historical feedback log data.

  19. Aligning Islamic Spirituality to Medical Imaging.

    Science.gov (United States)

    Zainuddin, Zainul Ibrahim

    2017-10-01

    This paper attempts to conceptualize Islamic spirituality in medical imaging that deals with the humanistic and technical dimensions. It begins with establishing an understanding concerning spirituality, an area that now accepted as part of patient-centred care. This is followed by discussions pertaining to Islamic spirituality, related to the practitioner, patient care and the practice. Possible avenues towards applying Islamic spirituality in medical imaging are proposed. It is hoped that the resultant harmonization between Islamic spirituality and the practice will trigger awareness and interests pertaining to the role of a Muslim practitioner in advocating and enhancing Islamic spirituality.

  20. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC).

    Science.gov (United States)

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2016-01-01

    This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.

  1. Retrieval of Sentence Sequences for an Image Stream via Coherence Recurrent Convolutional Networks.

    Science.gov (United States)

    Park, Cesc Chunseong; Kim, Youngjin; Kim, Gunhee

    2018-04-01

    We propose an approach for retrieving a sequence of natural sentences for an image stream. Since general users often take a series of pictures on their experiences, much online visual information exists in the form of image streams, for which it would better take into consideration of the whole image stream to produce natural language descriptions. While almost all previous studies have dealt with the relation between a single image and a single natural sentence, our work extends both input and output dimension to a sequence of images and a sequence of sentences. For retrieving a coherent flow of multiple sentences for a photo stream, we propose a multimodal neural architecture called coherence recurrent convolutional network (CRCN), which consists of convolutional neural networks, bidirectional long short-term memory (LSTM) networks, and an entity-based local coherence model. Our approach directly learns from vast user-generated resource of blog posts as text-image parallel training data. We collect more than 22 K unique blog posts with 170 K associated images for the travel topics of NYC, Disneyland , Australia, and Hawaii. We demonstrate that our approach outperforms other state-of-the-art image captioning methods for text sequence generation, using both quantitative measures and user studies via Amazon Mechanical Turk.

  2. APES Beamforming Applied to Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Blomberg, Ann E. A.; Holfort, Iben Kraglund; Austeng, Andreas

    2009-01-01

    Recently, adaptive beamformers have been introduced to medical ultrasound imaging. The primary focus has been on the minimum variance (MV) (or Capon) beamformer. This work investigates an alternative but closely related beamformer, the Amplitude and Phase Estimation (APES) beamformer. APES offers...... added robustness at the expense of a slightly lower resolution. The purpose of this study was to evaluate the performance of the APES beamformer on medical imaging data, since correct amplitude estimation often is just as important as spatial resolution. In our simulations we have used a 3.5 MHz, 96...... element linear transducer array. When imaging two closely spaced point targets, APES displays nearly the same resolution as the MV, and at the same time improved amplitude control. When imaging cysts in speckle, APES offers speckle statistics similar to that of the DAS, without the need for temporal...

  3. Reducing noise component on medical images

    Science.gov (United States)

    Semenishchev, Evgeny; Voronin, Viacheslav; Dub, Vladimir; Balabaeva, Oksana

    2018-04-01

    Medical visualization and analysis of medical data is an actual direction. Medical images are used in microbiology, genetics, roentgenology, oncology, surgery, ophthalmology, etc. Initial data processing is a major step towards obtaining a good diagnostic result. The paper considers the approach allows an image filtering with preservation of objects borders. The algorithm proposed in this paper is based on sequential data processing. At the first stage, local areas are determined, for this purpose the method of threshold processing, as well as the classical ICI algorithm, is applied. The second stage uses a method based on based on two criteria, namely, L2 norm and the first order square difference. To preserve the boundaries of objects, we will process the transition boundary and local neighborhood the filtering algorithm with a fixed-coefficient. For example, reconstructed images of CT, x-ray, and microbiological studies are shown. The test images show the effectiveness of the proposed algorithm. This shows the applicability of analysis many medical imaging applications.

  4. Medical Image Denoising Using Mixed Transforms

    Directory of Open Access Journals (Sweden)

    Jaleel Sadoon Jameel

    2018-02-01

    Full Text Available  In this paper,  a mixed transform method is proposed based on a combination of wavelet transform (WT and multiwavelet transform (MWT in order to denoise medical images. The proposed method consists of WT and MWT in cascade form to enhance the denoising performance of image processing. Practically, the first step is to add a noise to Magnetic Resonance Image (MRI or Computed Tomography (CT images for the sake of testing. The noisy image is processed by WT to achieve four sub-bands and each sub-band is treated individually using MWT before the soft/hard denoising stage. Simulation results show that a high peak signal to noise ratio (PSNR is improved significantly and the characteristic features are well preserved by employing mixed transform of WT and MWT due to their capability of separating noise signals from image signals. Moreover, the corresponding mean square error (MSE is decreased accordingly compared to other available methods.

  5. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup

    Energy Technology Data Exchange (ETDEWEB)

    Diemoz, Paul C., E-mail: p.diemoz@ucl.ac.uk; Vittoria, Fabio A. [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); Hagen, Charlotte K.; Endrizzi, Marco [University College London, London WC1 E6BT (United Kingdom); Coan, Paola [Ludwig-Maximilians-University, Munich 81377 (Germany); Ludwig-Maximilians-University, Garching 85748 (Germany); Brun, Emmanuel [Ludwig-Maximilians-University, Garching 85748 (Germany); European Synchrotron Radiation Facility, Grenoble 38043 (France); Wagner, Ulrich H.; Rau, Christoph [Diamond Light Source, Harwell Oxford Campus, Didcot OX11 0DE (United Kingdom); Robinson, Ian K. [Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); London Centre for Nanotechnology, London WC1 H0AH (United Kingdom); Bravin, Alberto [European Synchrotron Radiation Facility, Grenoble 38043 (France); Olivo, Alessandro [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom)

    2015-06-25

    A method enabling the retrieval of thickness or projected electron density of a sample from a single input image is derived theoretically and successfully demonstrated on experimental data. A method is proposed which enables the retrieval of the thickness or of the projected electron density of a sample from a single input image acquired with an edge illumination phase-contrast imaging setup. The method assumes the case of a quasi-homogeneous sample, i.e. a sample with a constant ratio between the real and imaginary parts of its complex refractive index. Compared with current methods based on combining two edge illumination images acquired in different configurations of the setup, this new approach presents advantages in terms of simplicity of acquisition procedure and shorter data collection time, which are very important especially for applications such as computed tomography and dynamical imaging. Furthermore, the fact that phase information is directly extracted, instead of its derivative, can enable a simpler image interpretation and be beneficial for subsequent processing such as segmentation. The method is first theoretically derived and its conditions of applicability defined. Quantitative accuracy in the case of homogeneous objects as well as enhanced image quality for the imaging of complex biological samples are demonstrated through experiments at two synchrotron radiation facilities. The large range of applicability, the robustness against noise and the need for only one input image suggest a high potential for investigations in various research subjects.

  6. Unsupervised symmetrical trademark image retrieval in soccer telecast using wavelet energy and quadtree decomposition

    Science.gov (United States)

    Ong, Swee Khai; Lim, Wee Keong; Soo, Wooi King

    2013-04-01

    Trademark, a distinctive symbol, is used to distinguish products or services provided by a particular person, group or organization from other similar entries. As trademark represents the reputation and credit standing of the owner, it is important to differentiate one trademark from another. Many methods have been proposed to identify, classify and retrieve trademarks. However, most methods required features database and sample sets for training prior to recognition and retrieval process. In this paper, a new feature on wavelet coefficients, the localized wavelet energy, is introduced to extract features of trademarks. With this, unsupervised content-based symmetrical trademark image retrieval is proposed without the database and prior training set. The feature analysis is done by an integration of the proposed localized wavelet energy and quadtree decomposed regional symmetrical vector. The proposed framework eradicates the dependence on query database and human participation during the retrieval process. In this paper, trademarks for soccer games sponsors are the intended trademark category. Video frames from soccer telecast are extracted and processed for this study. Reasonably good localization and retrieval results on certain categories of trademarks are achieved. A distinctive symbol is used to distinguish products or services provided by a particular person, group or organization from other similar entries.

  7. Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes

    Science.gov (United States)

    Cecil, Daniel J.; Biswas, Sayak K.

    2018-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.

  8. HVS-based medical image compression

    Energy Technology Data Exchange (ETDEWEB)

    Kai Xie [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)]. E-mail: xie_kai2001@sjtu.edu.cn; Jie Yang [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China); Min Zhuyue [CREATIS-CNRS Research Unit 5515 and INSERM Unit 630, 69621 Villeurbanne (France); Liang Lixiao [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)

    2005-07-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time.

  9. HVS-based medical image compression

    International Nuclear Information System (INIS)

    Kai Xie; Jie Yang; Min Zhuyue; Liang Lixiao

    2005-01-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time

  10. Resolution enhancement in medical ultrasound imaging.

    Science.gov (United States)

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve the

  11. Functional imaging of the semantic system: retrieval of sensory-experienced and verbally learned knowledge.

    Science.gov (United States)

    Noppeney, Uta; Price, Cathy J

    2003-01-01

    This paper considers how functional neuro-imaging can be used to investigate the organization of the semantic system and the limitations associated with this technique. The majority of the functional imaging studies of the semantic system have looked for divisions by varying stimulus category. These studies have led to divergent results and no clear anatomical hypotheses have emerged to account for the dissociations seen in behavioral studies. Only a few functional imaging studies have used task as a variable to differentiate the neural correlates of semantic features more directly. We extend these findings by presenting a new study that contrasts tasks that differentially weight sensory (color and taste) and verbally learned (origin) semantic features. Irrespective of the type of semantic feature retrieved, a common semantic system was activated as demonstrated in many previous studies. In addition, the retrieval of verbally learned, but not sensory-experienced, features enhanced activation in medial and lateral posterior parietal areas. We attribute these "verbally learned" effects to differences in retrieval strategy and conclude that evidence for segregation of semantic features at an anatomical level remains weak. We believe that functional imaging has the potential to increase our understanding of the neuronal infrastructure that sustains semantic processing but progress may require multiple experiments until a consistent explanatory framework emerges.

  12. Hurricane Imaging Radiometer Wind Speed and Rain Rate Retrievals during the 2010 GRIP Flight Experiment

    Science.gov (United States)

    Sahawneh, Saleem; Farrar, Spencer; Johnson, James; Jones, W. Linwood; Roberts, Jason; Biswas, Sayak; Cecil, Daniel

    2014-01-01

    Microwave remote sensing observations of hurricanes, from NOAA and USAF hurricane surveillance aircraft, provide vital data for hurricane research and operations, for forecasting the intensity and track of tropical storms. The current operational standard for hurricane wind speed and rain rate measurements is the Stepped Frequency Microwave Radiometer (SFMR), which is a nadir viewing passive microwave airborne remote sensor. The Hurricane Imaging Radiometer, HIRAD, will extend the nadir viewing SFMR capability to provide wide swath images of wind speed and rain rate, while flying on a high altitude aircraft. HIRAD was first flown in the Genesis and Rapid Intensification Processes, GRIP, NASA hurricane field experiment in 2010. This paper reports on geophysical retrieval results and provides hurricane images from GRIP flights. An overview of the HIRAD instrument and the radiative transfer theory based, wind speed/rain rate retrieval algorithm is included. Results are presented for hurricane wind speed and rain rate for Earl and Karl, with comparison to collocated SFMR retrievals and WP3D Fuselage Radar images for validation purposes.

  13. Deep Hashing Based Fusing Index Method for Large-Scale Image Retrieval

    Directory of Open Access Journals (Sweden)

    Lijuan Duan

    2017-01-01

    Full Text Available Hashing has been widely deployed to perform the Approximate Nearest Neighbor (ANN search for the large-scale image retrieval to solve the problem of storage and retrieval efficiency. Recently, deep hashing methods have been proposed to perform the simultaneous feature learning and the hash code learning with deep neural networks. Even though deep hashing has shown the better performance than traditional hashing methods with handcrafted features, the learned compact hash code from one deep hashing network may not provide the full representation of an image. In this paper, we propose a novel hashing indexing method, called the Deep Hashing based Fusing Index (DHFI, to generate a more compact hash code which has stronger expression ability and distinction capability. In our method, we train two different architecture’s deep hashing subnetworks and fuse the hash codes generated by the two subnetworks together to unify images. Experiments on two real datasets show that our method can outperform state-of-the-art image retrieval applications.

  14. Nuclear imaging in the realm of medical imaging

    International Nuclear Information System (INIS)

    Deconinck, Frank

    2003-01-01

    In medical imaging, information concerning the anatomy or biological processes of a patient is detected and presented on film or screen for interpretation by a reader. The information flow from patient to reader optimally implies: - the emission, transmission or reflection of information carriers, typically photons or sound waves, which have to be correctly modulated by patient information through interactions in the patient; - their detection by adequate imaging equipment preserving essential spectral, spatial and/or temporal information; - the presentation of the information in the most perceivable way; - the observation by an unbiased and trained expert. In reality, only an approximation to this optimal situation is achieved. It is the goal of R and D in the medical imaging field to approach the optimum as much as possible within societal constraints such as patient risk and comfort, economics, etc. First, the basic physical concepts underlying the imaging process will be introduced. Different imaging modalities will then be situated in the realm of medical imaging with some emphasis on nuclear imaging

  15. Psychophysical studies of the performance of an image database retrieval system

    Science.gov (United States)

    Papathomas, Thomas V.; Conway, Tiffany E.; Cox, Ingemar J.; Ghosn, Joumana; Miller, Matt L.; Minka, Thomas P.; Yianilos, Peter N.

    1998-07-01

    We describe psychophysical experiments conducted to study PicHunter, a content-based image retrieval (CBIR) system. Experiment 1 studies the importance of using (a) semantic information, (2) memory of earlier input and (3) relative, rather than absolute, judgements of image similarity. The target testing paradigm is used in which a user must search for an image identical to a target. We find that the best performance comes from a version of PicHunter that uses only semantic cues, with memory and relative similarity judgements. Second best is use of both pictorial and semantic cues, with memory and relative similarity judgements. Most reports of CBIR systems provide only qualitative measures of performance based on how similar retrieved images are to a target. Experiment 2 puts PicHunter into this context with a more rigorous test. We first establish a baseline for our database by measuring the time required to find an image that is similar to a target when the images are presented in random order. Although PicHunter's performance is measurably better than this, the test is weak because even random presentation of images yields reasonably short search times. This casts doubt on the strength of results given in other reports where no baseline is established.

  16. Knowledge retrieval from PubMed abstracts and electronic medical records with the Multiple Sclerosis Ontology.

    Science.gov (United States)

    Malhotra, Ashutosh; Gündel, Michaela; Rajput, Abdul Mateen; Mevissen, Heinz-Theodor; Saiz, Albert; Pastor, Xavier; Lozano-Rubi, Raimundo; Martinez-Lapiscina, Elena H; Martinez-Lapsicina, Elena H; Zubizarreta, Irati; Mueller, Bernd; Kotelnikova, Ekaterina; Toldo, Luca; Hofmann-Apitius, Martin; Villoslada, Pablo

    2015-01-01

    In order to retrieve useful information from scientific literature and electronic medical records (EMR) we developed an ontology specific for Multiple Sclerosis (MS). The MS Ontology was created using scientific literature and expert review under the Protégé OWL environment. We developed a dictionary with semantic synonyms and translations to different languages for mining EMR. The MS Ontology was integrated with other ontologies and dictionaries (diseases/comorbidities, gene/protein, pathways, drug) into the text-mining tool SCAIView. We analyzed the EMRs from 624 patients with MS using the MS ontology dictionary in order to identify drug usage and comorbidities in MS. Testing competency questions and functional evaluation using F statistics further validated the usefulness of MS ontology. Validation of the lexicalized ontology by means of named entity recognition-based methods showed an adequate performance (F score = 0.73). The MS Ontology retrieved 80% of the genes associated with MS from scientific abstracts and identified additional pathways targeted by approved disease-modifying drugs (e.g. apoptosis pathways associated with mitoxantrone, rituximab and fingolimod). The analysis of the EMR from patients with MS identified current usage of disease modifying drugs and symptomatic therapy as well as comorbidities, which are in agreement with recent reports. The MS Ontology provides a semantic framework that is able to automatically extract information from both scientific literature and EMR from patients with MS, revealing new pathogenesis insights as well as new clinical information.

  17. The semiotics of medical image Segmentation.

    Science.gov (United States)

    Baxter, John S H; Gibson, Eli; Eagleson, Roy; Peters, Terry M

    2018-02-01

    As the interaction between clinicians and computational processes increases in complexity, more nuanced mechanisms are required to describe how their communication is mediated. Medical image segmentation in particular affords a large number of distinct loci for interaction which can act on a deep, knowledge-driven level which complicates the naive interpretation of the computer as a symbol processing machine. Using the perspective of the computer as dialogue partner, we can motivate the semiotic understanding of medical image segmentation. Taking advantage of Peircean semiotic traditions and new philosophical inquiry into the structure and quality of metaphors, we can construct a unified framework for the interpretation of medical image segmentation as a sign exchange in which each sign acts as an interface metaphor. This allows for a notion of finite semiosis, described through a schematic medium, that can rigorously describe how clinicians and computers interpret the signs mediating their interaction. Altogether, this framework provides a unified approach to the understanding and development of medical image segmentation interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Gestalt descriptions embodiments and medical image interpretation

    DEFF Research Database (Denmark)

    Friis, Jan Kyrre Berg Olsen

    2017-01-01

    In this paper I will argue that medical specialists interpret and diagnose through technological mediations like X-ray and fMRI images, and by actualizing embodied skills tacitly they are determining the identity of objects in the perceptual field. The initial phase of human interpretation of vis...

  19. A virtual laboratory for medical image analysis

    NARCIS (Netherlands)

    Olabarriaga, Sílvia D.; Glatard, Tristan; de Boer, Piter T.

    2010-01-01

    This paper presents the design, implementation, and usage of a virtual laboratory for medical image analysis. It is fully based on the Dutch grid, which is part of the Enabling Grids for E-sciencE (EGEE) production infrastructure and driven by the gLite middleware. The adopted service-oriented

  20. Fast fluid registration of medical images

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus

    1996-01-01

    This paper offers a new fast algorithm for non-rigid viscous fluid registration of medical images that is at least an order of magnitude faster than the previous method by (Christensen et al., 1994). The core algorithm in the fluid registration method is based on a linear elastic deformation...

  1. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  2. Curve Matching with Applications in Medical Imaging

    DEFF Research Database (Denmark)

    Bauer, Martin; Bruveris, Martins; Harms, Philipp

    2015-01-01

    In the recent years, Riemannian shape analysis of curves and surfaces has found several applications in medical image analysis. In this paper we present a numerical discretization of second order Sobolev metrics on the space of regular curves in Euclidean space. This class of metrics has several...

  3. Lesion Contrast Enhancement in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Sommer, F.G.; Macovski, A.

    1997-01-01

    Methods for improving the contrast-to-noise ratio (CNR) of low-contrast lesions in medical ultrasound imaging are described. Differences in the frequency spectra and amplitude distributions of the lesion and its surroundings can be used to increase the CNR of the lesion relative to the background...

  4. Medical image reconstruction. A conceptual tutorial

    International Nuclear Information System (INIS)

    Zeng, Gengsheng Lawrence

    2010-01-01

    ''Medical Image Reconstruction: A Conceptual Tutorial'' introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l 0 -minimization are also included. (orig.)

  5. A study on the optimization of referring method about medical images using MIH (Medical Image History)

    International Nuclear Information System (INIS)

    Kim, Sun Chil; Kim, Jung Min

    2002-01-01

    The recent development of embodiment technology of the medical images makes most medical institutions introduce PACS (Picture Archiving and Communication System) in haste. However lots of PACS solutions, currently developed and distributed, haven't been able to serve the convenience of users and to satisfy user's demand because of economic limitations and administrator-oriented con-siderations in the process of development. So we have developed MIH (Medical Image History), by which we can search and refer to the patient's medical images and information with few restrictions of time and space for diagnosis and treatment. The program will contribute to the improvement in the medical environment and meet the clients' need. We'll make more effort to develop the application which insures the better quality of medical images. MIH manages the patient's image files and medical records like film chart in connection with time. This trial will contribute to the reduction of the economical loss caused by unnecessary references and improve the quality in the medical services. The demand on the development of the program which refers to the medical data quickly and keeps them stable will be continued by the medical institute. This will satisfy the client's demand and improve the service to the patients in that the program will be modified from the standpoint of the users. MIH is trying to keep user-oriented policy and to apply the benefit of the analog system to the digital environment. It is necessary to lead the public to the better understanding that the systematic management and referring of the medical images is as important as the quality of the images

  6. A study on the optimization of referring method about medical images using MIH (Medical Image History)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Chil; Kim, Jung Min [College of Health Sciences, Korea University, Seoul (Korea, Republic of)

    2002-09-15

    The recent development of embodiment technology of the medical images makes most medical institutions introduce PACS (Picture Archiving and Communication System) in haste. However lots of PACS solutions, currently developed and distributed, haven't been able to serve the convenience of users and to satisfy user's demand because of economic limitations and administrator-oriented con-siderations in the process of development. So we have developed MIH (Medical Image History), by which we can search and refer to the patient's medical images and information with few restrictions of time and space for diagnosis and treatment. The program will contribute to the improvement in the medical environment and meet the clients' need. We'll make more effort to develop the application which insures the better quality of medical images. MIH manages the patient's image files and medical records like film chart in connection with time. This trial will contribute to the reduction of the economical loss caused by unnecessary references and improve the quality in the medical services. The demand on the development of the program which refers to the medical data quickly and keeps them stable will be continued by the medical institute. This will satisfy the client's demand and improve the service to the patients in that the program will be modified from the standpoint of the users. MIH is trying to keep user-oriented policy and to apply the benefit of the analog system to the digital environment. It is necessary to lead the public to the better understanding that the systematic management and referring of the medical images is as important as the quality of the images.

  7. Coincident Aerosol and H2O Retrievals versus HSI Imager Field Campaign ReportH2O Retrievals versus HSI Imager Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Gail P. [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Cipar, John [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Armstrong, Peter S. [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); van den Bosch, J. [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States)

    2016-05-01

    Two spectrally calibrated tarpaulins (tarps) were co-located at a fixed Global Positioning System (GPS) position on the gravel antenna field at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site. Their placement was timed to coincide with the overflight of a new hyperspectral imaging satellite. The intention was to provide an analysis of the data obtained, including the measured and retrieved spectral albedos for the calibration tarps. Subsequently, a full suite of retrieved values of H2O column, and the aerosol overburden, were to be compared to those determined by alternate SGP ground truth assets. To the extent possible, the down-looking cloud images would be assessed against the all-sky images. Because cloud contamination above a certain level precludes the inversion processing of the satellite data, coupled with infrequent targeting opportunities, clear-sky conditions were imposed. The SGP site was chosen not only as a target of opportunity for satellite validation, but as perhaps the best coincident field measurement site, as established by DOE’s ARM Facility. The satellite team had every expectation of using the information obtained from the SGP to improve the inversion products for all subsequent satellite images, including the cloud and radiative models and parameterizations and, thereby, the performance assessment for subsequent and historic image collections. Coordinating with the SGP onsite team, four visits, all in 2009, to the Central Facility occurred: • June 6-8 (successful exploratory visit to plan tarp placements, etc.) • July 18-24 (canceled because of forecast for heavy clouds) • Sep 9-12 (ground tarps placed, onset of clouds) • Nov 7-9 (visit ultimately canceled because of weather predictions). As noted, in each instance, any significant overcast prediction precluded image collection from the satellite. Given the long task-scheduling procedures

  8. Optical image encryption using password key based on phase retrieval algorithm

    Science.gov (United States)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-04-01

    A novel optical image encryption system is proposed using password key based on phase retrieval algorithm (PRA). In the encryption process, a shared image is taken as a symmetric key and the plaintext is encoded into the phase-only mask based on the iterative PRA. The linear relationship between the plaintext and ciphertext is broken using the password key, which can resist the known plaintext attack. The symmetric key and the retrieved phase are imported into the input plane and Fourier plane of 4f system during the decryption, respectively, so as to obtain the plaintext on the CCD. Finally, we analyse the key space of the password key, and the results show that the proposed scheme can resist a brute force attack due to the flexibility of the password key.

  9. Development of an Aerosol Opacity Retrieval Algorithm for Use with Multi-Angle Land Surface Images

    Science.gov (United States)

    Diner, D.; Paradise, S.; Martonchik, J.

    1994-01-01

    In 1998, the Multi-angle Imaging SpectroRadiometer (MISR) will fly aboard the EOS-AM1 spacecraft. MISR will enable unique methods for retrieving the properties of atmospheric aerosols, by providing global imagery of the Earth at nine viewing angles in four visible and near-IR spectral bands. As part of the MISR algorithm development, theoretical methods of analyzing multi-angle, multi-spectral data are being tested using images acquired by the airborne Advanced Solid-State Array Spectroradiometer (ASAS). In this paper we derive a method to be used over land surfaces for retrieving the change in opacity between spectral bands, which can then be used in conjunction with an aerosol model to derive a bound on absolute opacity.

  10. Neural networks: Application to medical imaging

    Science.gov (United States)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  11. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer

    Czech Academy of Sciences Publication Activity Database

    Malenovský, Z.; Homolová, L.; Zurita-Milla, R.; Lukeš, Petr; Kaplan, Věroslav; Hanuš, Jan; Gastellu-Etchegory, J.P.; Schaepman, M.E.

    2013-01-01

    Roč. 131, APR (2013), s. 85-102 ISSN 0034-4257 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) LM2010007 Institutional support: RVO:67179843 Keywords : Chlorophyll retrieval * Imaging spectroscopy * Continuum removal * Radiative transfer * PROSPECT * DART * Optical indices * Norway spruce * High spatial resolution * AISA Subject RIV: EH - Ecology, Behaviour Impact factor: 4.769, year: 2013

  12. Semantics-Based Intelligent Indexing and Retrieval of Digital Images - A Case Study

    Science.gov (United States)

    Osman, Taha; Thakker, Dhavalkumar; Schaefer, Gerald

    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they typically rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this chapter we present a semantically enabled image annotation and retrieval engine that is designed to satisfy the requirements of commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as presenting our initial thoughts on exploiting lexical databases for explicit semantic-based query expansion.

  13. Region-Based Image Retrieval Using an Object Ontology and Relevance Feedback

    Directory of Open Access Journals (Sweden)

    Kompatsiaris Ioannis

    2004-01-01

    Full Text Available An image retrieval methodology suited for search in large collections of heterogeneous images is presented. The proposed approach employs a fully unsupervised segmentation algorithm to divide images into regions and endow the indexing and retrieval system with content-based functionalities. Low-level descriptors for the color, position, size, and shape of each region are subsequently extracted. These arithmetic descriptors are automatically associated with appropriate qualitative intermediate-level descriptors, which form a simple vocabulary termed object ontology. The object ontology is used to allow the qualitative definition of the high-level concepts the user queries for (semantic objects, each represented by a keyword and their relations in a human-centered fashion. When querying for a specific semantic object (or objects, the intermediate-level descriptor values associated with both the semantic object and all image regions in the collection are initially compared, resulting in the rejection of most image regions as irrelevant. Following that, a relevance feedback mechanism, based on support vector machines and using the low-level descriptors, is invoked to rank the remaining potentially relevant image regions and produce the final query results. Experimental results and comparisons demonstrate, in practice, the effectiveness of our approach.

  14. Hybrid phase retrieval algorithm for solving the twin image problem in in-line digital holography

    Science.gov (United States)

    Zhao, Jie; Wang, Dayong; Zhang, Fucai; Wang, Yunxin

    2010-10-01

    For the reconstruction in the in-line digital holography, there are three terms overlapping with each other on the image plane, named the zero order term, the real image and the twin image respectively. The unwanted twin image degrades the real image seriously. A hybrid phase retrieval algorithm is presented to address this problem, which combines the advantages of two popular phase retrieval algorithms. One is the improved version of the universal iterative algorithm (UIA), called the phase flipping-based UIA (PFB-UIA). The key point of this algorithm is to flip the phase of the object iteratively. It is proved that the PFB-UIA is able to find the support of the complicated object. Another one is the Fienup algorithm, which is a kind of well-developed algorithm and uses the support of the object as the constraint among the iteration procedure. Thus, by following the Fienup algorithm immediately after the PFB-UIA, it is possible to produce the amplitude and the phase distributions of the object with high fidelity. The primary simulated results showed that the proposed algorithm is powerful for solving the twin image problem in the in-line digital holography.

  15. Adaptation of machine translation for multilingual information retrieval in the medical domain.

    Science.gov (United States)

    Pecina, Pavel; Dušek, Ondřej; Goeuriot, Lorraine; Hajič, Jan; Hlaváčová, Jaroslava; Jones, Gareth J F; Kelly, Liadh; Leveling, Johannes; Mareček, David; Novák, Michal; Popel, Martin; Rosa, Rudolf; Tamchyna, Aleš; Urešová, Zdeňka

    2014-07-01

    We investigate machine translation (MT) of user search queries in the context of cross-lingual information retrieval (IR) in the medical domain. The main focus is on techniques to adapt MT to increase translation quality; however, we also explore MT adaptation to improve effectiveness of cross-lingual IR. Our MT system is Moses, a state-of-the-art phrase-based statistical machine translation system. The IR system is based on the BM25 retrieval model implemented in the Lucene search engine. The MT techniques employed in this work include in-domain training and tuning, intelligent training data selection, optimization of phrase table configuration, compound splitting, and exploiting synonyms as translation variants. The IR methods include morphological normalization and using multiple translation variants for query expansion. The experiments are performed and thoroughly evaluated on three language pairs: Czech-English, German-English, and French-English. MT quality is evaluated on data sets created within the Khresmoi project and IR effectiveness is tested on the CLEF eHealth 2013 data sets. The search query translation results achieved in our experiments are outstanding - our systems outperform not only our strong baselines, but also Google Translate and Microsoft Bing Translator in direct comparison carried out on all the language pairs. The baseline BLEU scores increased from 26.59 to 41.45 for Czech-English, from 23.03 to 40.82 for German-English, and from 32.67 to 40.82 for French-English. This is a 55% improvement on average. In terms of the IR performance on this particular test collection, a significant improvement over the baseline is achieved only for French-English. For Czech-English and German-English, the increased MT quality does not lead to better IR results. Most of the MT techniques employed in our experiments improve MT of medical search queries. Especially the intelligent training data selection proves to be very successful for domain adaptation of

  16. Large-Scale medical image analytics: Recent methodologies, applications and Future directions.

    Science.gov (United States)

    Zhang, Shaoting; Metaxas, Dimitris

    2016-10-01

    Despite the ever-increasing amount and complexity of annotated medical image data, the development of large-scale medical image analysis algorithms has not kept pace with the need for methods that bridge the semantic gap between images and diagnoses. The goal of this position paper is to discuss and explore innovative and large-scale data science techniques in medical image analytics, which will benefit clinical decision-making and facilitate efficient medical data management. Particularly, we advocate that the scale of image retrieval systems should be significantly increased at which interactive systems can be effective for knowledge discovery in potentially large databases of medical images. For clinical relevance, such systems should return results in real-time, incorporate expert feedback, and be able to cope with the size, quality, and variety of the medical images and their associated metadata for a particular domain. The design, development, and testing of the such framework can significantly impact interactive mining in medical image databases that are growing rapidly in size and complexity and enable novel methods of analysis at much larger scales in an efficient, integrated fashion. Copyright © 2016. Published by Elsevier B.V.

  17. Phase retrieval for X-ray in-line phase contrast imaging

    International Nuclear Information System (INIS)

    Scattarella, F.; Bellotti, R.; Tangaro, S.; Gargano, G.; Giannini, C.

    2011-01-01

    A review article about phase retrieval problem in X-ray phase contrast imaging is presented. A simple theoretical framework of Fresnel diffraction imaging by X-rays is introduced. A review of the most important methods for phase retrieval in free-propagation-based X-ray imaging and a new method developed by our collaboration are shown. The proposed algorithm, Combined Mixed Approach (CMA) is based on a mixed transfer function and transport of intensity approach, and it requires at most an initial approximate estimate of the average phase shift introduced by the object as prior knowledge. The accuracy with which this initial estimate is known determines the convenience speed of algorithm. The new proposed algorithm is based on the retrieval of both the object phase and its complex conjugate. The results obtained by the algorithm on simulated data have shown that the obtained reconstructed phase maps are characterized by particularly low normalized mean square errors. The algorithm was also tested on noisy experimental phase contrast data, showing a good efficiency in recovering phase information and enhancing the visibility of details inside soft tissues.

  18. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  19. Does the mind map learning strategy facilitate information retrieval and critical thinking in medical students?

    Science.gov (United States)

    D'Antoni, Anthony V; Zipp, Genevieve Pinto; Olson, Valerie G; Cahill, Terrence F

    2010-09-16

    A learning strategy underutilized in medical education is mind mapping. Mind maps are multi-sensory tools that may help medical students organize, integrate, and retain information. Recent work suggests that using mind mapping as a note-taking strategy facilitates critical thinking. The purpose of this study was to investigate whether a relationship existed between mind mapping and critical thinking, as measured by the Health Sciences Reasoning Test (HSRT), and whether a relationship existed between mind mapping and recall of domain-based information. In this quasi-experimental study, 131 first-year medical students were randomly assigned to a standard note-taking (SNT) group or mind map (MM) group during orientation. Subjects were given a demographic survey and pre-HSRT. They were then given an unfamiliar text passage, a pre-quiz based upon the passage, and a 30-minute break, during which time subjects in the MM group were given a presentation on mind mapping. After the break, subjects were given the same passage and wrote notes based on their group (SNT or MM) assignment. A post-quiz based upon the passage was administered, followed by a post-HSRT. Differences in mean pre- and post-quiz scores between groups were analyzed using independent samples t-tests, whereas differences in mean pre- and post-HSRT total scores and subscores between groups were analyzed using ANOVA. Mind map depth was assessed using the Mind Map Assessment Rubric (MMAR). There were no significant differences in mean scores on both the pre- and post-quizzes between note-taking groups. And, no significant differences were found between pre- and post-HSRT mean total scores and subscores. Although mind mapping was not found to increase short-term recall of domain-based information or critical thinking compared to SNT, a brief introduction to mind mapping allowed novice MM subjects to perform similarly to SNT subjects. This demonstrates that medical students using mind maps can successfully

  20. apART: system for the acquisition, processing, archiving, and retrieval of digital images in an open, distributed imaging environment

    Science.gov (United States)

    Schneider, Uwe; Strack, Ruediger

    1992-04-01

    apART reflects the structure of an open, distributed environment. According to the general trend in the area of imaging, network-capable, general purpose workstations with capabilities of open system image communication and image input are used. Several heterogeneous components like CCD cameras, slide scanners, and image archives can be accessed. The system is driven by an object-oriented user interface where devices (image sources and destinations), operators (derived from a commercial image processing library), and images (of different data types) are managed and presented uniformly to the user. Browsing mechanisms are used to traverse devices, operators, and images. An audit trail mechanism is offered to record interactive operations on low-resolution image derivatives. These operations are processed off-line on the original image. Thus, the processing of extremely high-resolution raster images is possible, and the performance of resolution dependent operations is enhanced significantly during interaction. An object-oriented database system (APRIL), which can be browsed, is integrated into the system. Attribute retrieval is supported by the user interface. Other essential features of the system include: implementation on top of the X Window System (X11R4) and the OSF/Motif widget set; a SUN4 general purpose workstation, inclusive ethernet, magneto optical disc, etc., as the hardware platform for the user interface; complete graphical-interactive parametrization of all operators; support of different image interchange formats (GIF, TIFF, IIF, etc.); consideration of current IPI standard activities within ISO/IEC for further refinement and extensions.

  1. A special designed library for medical imaging applications

    International Nuclear Information System (INIS)

    Lymberopoulos, D.; Kotsopoulos, S.; Zoupas, V.; Yoldassis, N.; Spyropoulos, C.

    1994-01-01

    The present paper deals with a sophisticated and flexible library of medical purpose image processing routines. It contains modules for simple as well as advanced gray or colour image processing. This library offers powerful features for medical image processing and analysis applications, thus providing the physician with a means of analyzing and estimating medical images in order to accomplish their diagnostic procedures

  2. Computer-aided diagnosis of mammographic masses using geometric verification-based image retrieval

    Science.gov (United States)

    Li, Qingliang; Shi, Weili; Yang, Huamin; Zhang, Huimao; Li, Guoxin; Chen, Tao; Mori, Kensaku; Jiang, Zhengang

    2017-03-01

    Computer-Aided Diagnosis of masses in mammograms is an important indicator of breast cancer. The use of retrieval systems in breast examination is increasing gradually. In this respect, the method of exploiting the vocabulary tree framework and the inverted file in the mammographic masse retrieval have been proved high accuracy and excellent scalability. However it just considered the features in each image as a visual word and had ignored the spatial configurations of features. It greatly affect the retrieval performance. To overcome this drawback, we introduce the geometric verification method to retrieval in mammographic masses. First of all, we obtain corresponding match features based on the vocabulary tree framework and the inverted file. After that, we grasps the main point of local similarity characteristic of deformations in the local regions by constructing the circle regions of corresponding pairs. Meanwhile we segment the circle to express the geometric relationship of local matches in the area and generate the spatial encoding strictly. Finally we judge whether the matched features are correct or not, based on verifying the all spatial encoding are whether satisfied the geometric consistency. Experiments show the promising results of our approach.

  3. Target-oriented retrieval of subsurface wave fields - Pushing the resolution limits in seismic imaging

    Science.gov (United States)

    Vasconcelos, Ivan; Ozmen, Neslihan; van der Neut, Joost; Cui, Tianci

    2017-04-01

    Travelling wide-bandwidth seismic waves have long been used as a primary tool in exploration seismology because they can probe the subsurface over large distances, while retaining relatively high spatial resolution. The well-known Born resolution limit often seems to be the lower bound on spatial imaging resolution in real life examples. In practice, data acquisition cost, time constraints and other factors can worsen the resolution achieved by wavefield imaging. Could we obtain images whose resolution beats the Born limits? Would it be practical to achieve it, and what are we missing today to achieve this? In this talk, we will cover aspects of linear and nonlinear seismic imaging to understand elements that play a role in obtaining "super-resolved" seismic images. New redatuming techniques, such as the Marchenko method, enable the retrieval of subsurface fields that include multiple scattering interactions, while requiring relatively little knowledge of model parameters. Together with new concepts in imaging, such as Target-Enclosing Extended Images, these new redatuming methods enable new targeted imaging frameworks. We will make a case as to why target-oriented approaches to reconstructing subsurface-domain wavefields from surface data may help in increasing the resolving power of seismic imaging, and in pushing the limits on parameter estimation. We will illustrate this using a field data example. Finally, we will draw connections between seismic and other imaging modalities, and discuss how this framework could be put to use in other applications

  4. Segmentation Technique for Image Indexing and Retrieval on Discrete Cosines Domain

    Directory of Open Access Journals (Sweden)

    Suhendro Yusuf Irianto

    2013-03-01

    Full Text Available This paper uses region growing segmentation technique to segment the Discrete Cosines (DC  image. The problem of content Based image retrieval (CBIR is the luck of accuracy in matching between image query and image in the database as it matches object and background in the same time.   This the reason previous CBIR techniques inaccurate and time consuming. The CBIR   based on the segmented region proposed in this work  separates object from background as CBIR need only match the object not the background.  By using region growing technique on DC image, it reduces the number of image       regions.    The proposed of recursive region growing is not new technique but its application on DC images to build    indexing keys is quite new and not yet presented by many     authors. The experimental results show  that the proposed methods on   segmented images present good precision which are higher than 0.60 on all classes . It can be concluded that  region growing segmented based CBIR more efficient    compare to DC images  in term of their precision 0.59 and 0.75, respectively. Moreover,  DC based CBIR  can save time and simplify algorithm compare to DCT images.

  5. Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.

    Science.gov (United States)

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-10-23

    A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.

  6. Medical image transmission via communication satellite: evaluation of ultrasonographic images.

    Science.gov (United States)

    Suzuki, H; Horikoshi, H; Shiba, H; Shimamoto, S

    1996-01-01

    As compared with terrestrial circuits, communication satellites possess superior characteristics such as wide area coverage, broadcasting functions, high capacity, and resistance to disasters. Utilizing the narrow band channel (64 kbps) of the stationary communication satellite JCSAT1 located at an altitude of 36,000 km above the equator, we investigated satelliterelayed dynamic medical images transmitted by video signals, using hepatic ultrasonography as a model. We conclude that the "variable playing speed transmission scheme" proposed by us is effective for the transmission of dynamic images in the narrow band channel. This promises to permit diverse utilization and applications for purposes such as the transmission of other types of ultrasonic images as well as remotely directed medical diagnosis and treatment.

  7. Optimizing top precision performance measure of content-based image retrieval by learning similarity function

    KAUST Repository

    Liang, Ru-Ze

    2017-04-24

    In this paper we study the problem of content-based image retrieval. In this problem, the most popular performance measure is the top precision measure, and the most important component of a retrieval system is the similarity function used to compare a query image against a database image. However, up to now, there is no existing similarity learning method proposed to optimize the top precision measure. To fill this gap, in this paper, we propose a novel similarity learning method to maximize the top precision measure. We model this problem as a minimization problem with an objective function as the combination of the losses of the relevant images ranked behind the top-ranked irrelevant image, and the squared Frobenius norm of the similarity function parameter. This minimization problem is solved as a quadratic programming problem. The experiments over two benchmark data sets show the advantages of the proposed method over other similarity learning methods when the top precision is used as the performance measure.

  8. Optimizing top precision performance measure of content-based image retrieval by learning similarity function

    KAUST Repository

    Liang, Ru-Ze; Shi, Lihui; Wang, Haoxiang; Meng, Jiandong; Wang, Jim Jing-Yan; Sun, Qingquan; Gu, Yi

    2017-01-01

    In this paper we study the problem of content-based image retrieval. In this problem, the most popular performance measure is the top precision measure, and the most important component of a retrieval system is the similarity function used to compare a query image against a database image. However, up to now, there is no existing similarity learning method proposed to optimize the top precision measure. To fill this gap, in this paper, we propose a novel similarity learning method to maximize the top precision measure. We model this problem as a minimization problem with an objective function as the combination of the losses of the relevant images ranked behind the top-ranked irrelevant image, and the squared Frobenius norm of the similarity function parameter. This minimization problem is solved as a quadratic programming problem. The experiments over two benchmark data sets show the advantages of the proposed method over other similarity learning methods when the top precision is used as the performance measure.

  9. Advantages of semiconductor CZT for medical imaging

    Science.gov (United States)

    Wagenaar, Douglas J.; Parnham, Kevin; Sundal, Bjorn; Maehlum, Gunnar; Chowdhury, Samir; Meier, Dirk; Vandehei, Thor; Szawlowski, Marek; Patt, Bradley E.

    2007-09-01

    Cadmium zinc telluride (CdZnTe, or CZT) is a room-temperature semiconductor radiation detector that has been developed in recent years for a variety of applications. CZT has been investigated for many potential uses in medical imaging, especially in the field of single photon emission computed tomography (SPECT). CZT can also be used in positron emission tomography (PET) as well as photon-counting and integration-mode x-ray radiography and computed tomography (CT). The principal advantages of CZT are 1) direct conversion of x-ray or gamma-ray energy into electron-hole pairs; 2) energy resolution; 3) high spatial resolution and hence high space-bandwidth product; 4) room temperature operation, stable performance, high density, and small volume; 5) depth-of-interaction (DOI) available through signal processing. These advantages will be described in detail with examples from our own CZT systems. The ability to operate at room temperature, combined with DOI and very small pixels, make the use of multiple, stationary CZT "mini-gamma cameras" a realistic alternative to today's large Anger-type cameras that require motion to obtain tomographic sampling. The compatibility of CZT with Magnetic Resonance Imaging (MRI)-fields is demonstrated for a new type of multi-modality medical imaging, namely SPECT/MRI. For pre-clinical (i.e., laboratory animal) imaging, the advantages of CZT lie in spatial and energy resolution, small volume, automated quality control, and the potential for DOI for parallax removal in pinhole imaging. For clinical imaging, the imaging of radiographically dense breasts with CZT enables scatter rejection and hence improved contrast. Examples of clinical breast images with a dual-head CZT system are shown.

  10. Beyond information retrieval and electronic health record use: competencies in clinical informatics for medical education

    Directory of Open Access Journals (Sweden)

    Hersh WR

    2014-07-01

    Full Text Available William R Hersh,1 Paul N Gorman,1 Frances E Biagioli,2 Vishnu Mohan,1 Jeffrey A Gold,3 George C Mejicano4 1Department of Medical Informatics and Clinical Epidemiology, 2Department of Family Medicine, 3Department of Medicine, 4School of Medicine, Oregon Health & Science University, Portland, OR, USA Abstract: Physicians in the 21st century will increasingly interact in diverse ways with information systems, requiring competence in many aspects of clinical informatics. In recent years, many medical school curricula have added content in information retrieval (search and basic use of the electronic health record. However, this omits the growing number of other ways that physicians are interacting with information that includes activities such as clinical decision support, quality measurement and improvement, personal health records, telemedicine, and personalized medicine. We describe a process whereby six faculty members representing different perspectives came together to define competencies in clinical informatics for a curriculum transformation process occurring at Oregon Health & Science University. From the broad competencies, we also developed specific learning objectives and milestones, an implementation schedule, and mapping to general competency domains. We present our work to encourage debate and refinement as well as facilitate evaluation in this area. Keywords: curriculum transformation, clinical decision support, patient safety, health care quality, patient engagement

  11. Data Analysis Strategies in Medical Imaging.

    Science.gov (United States)

    Parmar, Chintan; Barry, Joseph D; Hosny, Ahmed; Quackenbush, John; Aerts, Hugo Jwl

    2018-03-26

    Radiographic imaging continues to be one of the most effective and clinically useful tools within oncology. Sophistication of artificial intelligence (AI) has allowed for detailed quantification of radiographic characteristics of tissues using predefined engineered algorithms or deep learning methods. Precedents in radiology as well as a wealth of research studies hint at the clinical relevance of these characteristics. However, there are critical challenges associated with the analysis of medical imaging data. While some of these challenges are specific to the imaging field, many others like reproducibility and batch effects are generic and have already been addressed in other quantitative fields such as genomics. Here, we identify these pitfalls and provide recommendations for analysis strategies of medical imaging data including data normalization, development of robust models, and rigorous statistical analyses. Adhering to these recommendations will not only improve analysis quality, but will also enhance precision medicine by allowing better integration of imaging data with other biomedical data sources. Copyright ©2018, American Association for Cancer Research.

  12. HEP technologies to address medical imaging challenges

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Developments in detector technologies aimed at solving challenges in present and future CERN experiments, particularly at the LHC, have triggered exceptional advances in the performance of medical imaging devices, allowing for a spectacular progress in in-vivo molecular imaging procedures, which are opening the way for tailored therapies of major diseases. This talk will briefly review the recent history of this prime example of technology transfer from HEP experiments to society, will describe the technical challenges being addressed by some ongoing projects, and will present a few new ideas for further developments and their foreseeable impact.

  13. Medical Imaging Informatics: Towards a Personalized Computational Patient.

    Science.gov (United States)

    Ayache, N

    2016-05-20

    Medical Imaging Informatics has become a fast evolving discipline at the crossing of Informatics, Computational Sciences, and Medicine that is profoundly changing medical practices, for the patients' benefit.

  14. Deep learning in medical imaging: General overview

    Energy Technology Data Exchange (ETDEWEB)

    Lee, June Goo; Jun, Sang Hoon; Cho, Young Won; Lee, Hyun Na; KIm, Guk Bae; Seo, Joon Beom; Kim, Nam Kug [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-08-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and health care, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.

  15. Deep learning in medical imaging: General overview

    International Nuclear Information System (INIS)

    Lee, June Goo; Jun, Sang Hoon; Cho, Young Won; Lee, Hyun Na; KIm, Guk Bae; Seo, Joon Beom; Kim, Nam Kug

    2017-01-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and health care, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging

  16. Instrumentation of the ESRF medical imaging facility

    CERN Document Server

    Elleaume, H; Berkvens, P; Berruyer, G; Brochard, T; Dabin, Y; Domínguez, M C; Draperi, A; Fiedler, S; Goujon, G; Le Duc, G; Mattenet, M; Nemoz, C; Pérez, M; Renier, M; Schulze, C; Spanne, P; Suortti, P; Thomlinson, W; Estève, F; Bertrand, B; Le Bas, J F

    1999-01-01

    At the European Synchrotron Radiation Facility (ESRF) a beamport has been instrumented for medical research programs. Two facilities have been constructed for alternative operation. The first one is devoted to medical imaging and is focused on intravenous coronary angiography and computed tomography (CT). The second facility is dedicated to pre-clinical microbeam radiotherapy (MRT). This paper describes the instrumentation for the imaging facility. Two monochromators have been designed, both are based on bent silicon crystals in the Laue geometry. A versatile scanning device has been built for pre-alignment and scanning of the patient through the X-ray beam in radiography or CT modes. An intrinsic germanium detector is used together with large dynamic range electronics (16 bits) to acquire the data. The beamline is now at the end of its commissioning phase; intravenous coronary angiography is intended to start in 1999 with patients and the CT pre-clinical program is underway on small animals. The first in viv...

  17. Statistical physics of medical ultrasonic images

    International Nuclear Information System (INIS)

    Wagner, R.F.; Insana, M.F.; Brown, D.G.; Smith, S.W.

    1987-01-01

    The physical and statistical properties of backscattered signals in medical ultrasonic imaging are reviewed in terms of: 1) the radiofrequency signal; 2) the envelope (video or magnitude) signal; and 3) the density of samples in simple and in compounded images. There is a wealth of physical information in backscattered signals in medical ultrasound. This information is contained in the radiofrequency spectrum - which is not typically displayed to the viewer - as well as in the higher statistical moments of the envelope or video signal - which are not readily accessed by the human viewer of typical B-scans. This information may be extracted from the detected backscattered signals by straightforward signal processing techniques at low resolution

  18. Deep Learning in Medical Imaging: General Overview

    Science.gov (United States)

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae

    2017-01-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging. PMID:28670152

  19. Deep Learning in Medical Imaging: General Overview.

    Science.gov (United States)

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae; Seo, Joon Beom; Kim, Namkug

    2017-01-01

    The artificial neural network (ANN)-a machine learning technique inspired by the human neuronal synapse system-was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.

  20. SHRIF, a General-Purpose System for Heuristic Retrieval of Information and Facts, Applied to Medical Knowledge Processing.

    Science.gov (United States)

    Findler, Nicholas V.; And Others

    1992-01-01

    Describes SHRIF, a System for Heuristic Retrieval of Information and Facts, and the medical knowledge base that was used in its development. Highlights include design decisions; the user-machine interface, including the language processor; and the organization of the knowledge base in an artificial intelligence (AI) project like this one. (57…

  1. CERN crystals used in medical imaging

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    This crystal is a type of material known as a scintillator. When a high energy charged particle or photon passes through a scintillator it glows. These materials are widely used in particle physics for particle detection, but their uses are being realized in further fields, such as Positron Emission Tomography (PET), an area of medical imaging that monitors the regions of energy use in the body.

  2. Effectiveness of Mind Mapping Technique in Information Retrieval Among Medical College Students in Puducherry-A Pilot Study

    OpenAIRE

    Kalyanasundaram, Madhanraj; Abraham, Sherin Billy; Ramachandran, Divija; Jayaseelan, Venkatachalam; Bazroy, Joy; Singh, Zile; Purty, Anil Jacob

    2017-01-01

    Background: The traditional teaching learning methods involve a one way process of transmission of knowledge leaving the students lacking behind in creative abilities. Medical schools need to change their teaching strategies to keep the interest of students and empower them for future self- learning and critical thinking. Objective: To assess the impact of mind mapping technique in information retrieval among medical college students in Puducherry. Methods: A pilot study was conducted using e...

  3. Image encryption using fingerprint as key based on phase retrieval algorithm and public key cryptography

    Science.gov (United States)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2015-09-01

    In this paper, a novel image encryption system with fingerprint used as a secret key is proposed based on the phase retrieval algorithm and RSA public key algorithm. In the system, the encryption keys include the fingerprint and the public key of RSA algorithm, while the decryption keys are the fingerprint and the private key of RSA algorithm. If the users share the fingerprint, then the system will meet the basic agreement of asymmetric cryptography. The system is also applicable for the information authentication. The fingerprint as secret key is used in both the encryption and decryption processes so that the receiver can identify the authenticity of the ciphertext by using the fingerprint in decryption process. Finally, the simulation results show the validity of the encryption scheme and the high robustness against attacks based on the phase retrieval technique.

  4. Efficient random access high resolution region-of-interest (ROI) image retrieval using backward coding of wavelet trees (BCWT)

    Science.gov (United States)

    Corona, Enrique; Nutter, Brian; Mitra, Sunanda; Guo, Jiangling; Karp, Tanja

    2008-03-01

    Efficient retrieval of high quality Regions-Of-Interest (ROI) from high resolution medical images is essential for reliable interpretation and accurate diagnosis. Random access to high quality ROI from codestreams is becoming an essential feature in many still image compression applications, particularly in viewing diseased areas from large medical images. This feature is easier to implement in block based codecs because of the inherent spatial independency of the code blocks. This independency implies that the decoding order of the blocks is unimportant as long as the position for each is properly identified. In contrast, wavelet-tree based codecs naturally use some interdependency that exploits the decaying spectrum model of the wavelet coefficients. Thus one must keep track of the decoding order from level to level with such codecs. We have developed an innovative multi-rate image subband coding scheme using "Backward Coding of Wavelet Trees (BCWT)" which is fast, memory efficient, and resolution scalable. It offers far less complexity than many other existing codecs including both, wavelet-tree, and block based algorithms. The ROI feature in BCWT is implemented through a transcoder stage that generates a new BCWT codestream containing only the information associated with the user-defined ROI. This paper presents an efficient technique that locates a particular ROI within the BCWT coded domain, and decodes it back to the spatial domain. This technique allows better access and proper identification of pathologies in high resolution images since only a small fraction of the codestream is required to be transmitted and analyzed.

  5. Bayesian image restoration for medical images using radon transform

    International Nuclear Information System (INIS)

    Shouno, Hayaru; Okada, Masato

    2010-01-01

    We propose an image reconstruction algorithm using Bayesian inference for Radon transformed observation data, which often appears in the field of medical image reconstruction known as computed tomography (CT). In order to apply our Bayesian reconstruction method, we introduced several hyper-parameters that control the ratio between prior information and the fidelity of the observation process. Since the quality of the reconstructed image is influenced by the estimation accuracy of these hyper-parameters, we propose an inference method for them based on the marginal likelihood maximization principle as well as the image reconstruction method. We are able to demonstrate a reconstruction result superior to that obtained using the conventional filtered back projection method. (author)

  6. Learning Low Dimensional Convolutional Neural Networks for High-Resolution Remote Sensing Image Retrieval

    Directory of Open Access Journals (Sweden)

    Weixun Zhou

    2017-05-01

    Full Text Available Learning powerful feature representations for image retrieval has always been a challenging task in the field of remote sensing. Traditional methods focus on extracting low-level hand-crafted features which are not only time-consuming but also tend to achieve unsatisfactory performance due to the complexity of remote sensing images. In this paper, we investigate how to extract deep feature representations based on convolutional neural networks (CNNs for high-resolution remote sensing image retrieval (HRRSIR. To this end, several effective schemes are proposed to generate powerful feature representations for HRRSIR. In the first scheme, a CNN pre-trained on a different problem is treated as a feature extractor since there are no sufficiently-sized remote sensing datasets to train a CNN from scratch. In the second scheme, we investigate learning features that are specific to our problem by first fine-tuning the pre-trained CNN on a remote sensing dataset and then proposing a novel CNN architecture based on convolutional layers and a three-layer perceptron. The novel CNN has fewer parameters than the pre-trained and fine-tuned CNNs and can learn low dimensional features from limited labelled images. The schemes are evaluated on several challenging, publicly available datasets. The results indicate that the proposed schemes, particularly the novel CNN, achieve state-of-the-art performance.

  7. Quantification of heterogeneity observed in medical images

    International Nuclear Information System (INIS)

    Brooks, Frank J; Grigsby, Perry W

    2013-01-01

    There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging modalities. In this work, we motivate and derive a statistical measure of image heterogeneity. This statistic measures the distance-dependent average deviation from the smoothest intensity gradation feasible. We show how this statistic may be used to automatically rank images of in vivo human tumors in order of increasing heterogeneity. We test this method against the current practice of ranking images via expert visual inspection. We find that this statistic provides a means of heterogeneity quantification beyond that given by other statistics traditionally used for the same purpose. We demonstrate the effect of tumor shape upon our ranking method and find the method applicable to a wide variety of clinically relevant tumor images. We find that the automated heterogeneity rankings agree very closely with those performed visually by experts. These results indicate that our automated method may be used reliably to rank, in order of increasing heterogeneity, tumor images whether or not object shape is considered to contribute to that heterogeneity. Automated heterogeneity ranking yields objective results which are more consistent than visual rankings. Reducing variability in image interpretation will enable more researchers to better study potential clinical implications of observed tumor heterogeneity

  8. Quantification of heterogeneity observed in medical images.

    Science.gov (United States)

    Brooks, Frank J; Grigsby, Perry W

    2013-03-02

    There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging modalities. In this work, we motivate and derive a statistical measure of image heterogeneity. This statistic measures the distance-dependent average deviation from the smoothest intensity gradation feasible. We show how this statistic may be used to automatically rank images of in vivo human tumors in order of increasing heterogeneity. We test this method against the current practice of ranking images via expert visual inspection. We find that this statistic provides a means of heterogeneity quantification beyond that given by other statistics traditionally used for the same purpose. We demonstrate the effect of tumor shape upon our ranking method and find the method applicable to a wide variety of clinically relevant tumor images. We find that the automated heterogeneity rankings agree very closely with those performed visually by experts. These results indicate that our automated method may be used reliably to rank, in order of increasing heterogeneity, tumor images whether or not object shape is considered to contribute to that heterogeneity. Automated heterogeneity ranking yields objective results which are more consistent than visual rankings. Reducing variability in image interpretation will enable more researchers to better study potential clinical implications of observed tumor heterogeneity.

  9. Development of technology for medical image fusion

    International Nuclear Information System (INIS)

    Yamaguchi, Takashi; Amano, Daizou

    2012-01-01

    With entry into a field of medical diagnosis in mind, we have developed positron emission tomography (PET) ''MIP-100'' system, of which spatial resolution is far higher than the conventional one, using semiconductor detectors for preclinical imaging for small animals. In response to the recently increasing market demand to fuse functional images by PET and anatomical ones by CT or MRI, we have been developing software to implement image fusion function that enhances marketability of the PET Camera. This paper describes the method of fusing with high accuracy the PET images and anatomical ones by CT system. It also explains that a computer simulation proved the image overlay accuracy to be ±0.3 mm as a result of the development, and that effectiveness of the developed software is confirmed in case of experiment to obtain measured data. Achieving such high accuracy as ±0.3 mm by the software allows us to present fusion images with high resolution (<0.6 mm) without degrading the spatial resolution (<0.5 mm) of the PET system using semiconductor detectors. (author)

  10. Medical Imaging for the Tracking of Micromotors.

    Science.gov (United States)

    Vilela, Diana; Cossío, Unai; Parmar, Jemish; Martínez-Villacorta, Angel M; Gómez-Vallejo, Vanessa; Llop, Jordi; Sánchez, Samuel

    2018-02-27

    Micro/nanomotors are useful tools for several biomedical applications, including targeted drug delivery and minimally invasive microsurgeries. However, major challenges such as in vivo imaging need to be addressed before they can be safely applied on a living body. Here, we show that positron emission tomography (PET), a molecular imaging technique widely used in medical imaging, can also be used to track a large population of tubular Au/PEDOT/Pt micromotors. Chemisorption of an iodine isotope onto the micromotor's Au surface rendered them detectable by PET, and we could track their movements in a tubular phantom over time frames of up to 15 min. In a second set of experiments, micromotors and the bubbles released during self-propulsion were optically tracked by video imaging and bright-field microscopy. The results from direct optical tracking agreed with those from PET tracking, demonstrating that PET is a suitable technique for the imaging of large populations of active micromotors in opaque environments, thus opening opportunities for the use of this mature imaging technology for the in vivo localization of artificial swimmers.

  11. The quest for standards in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gibaud, Bernard, E-mail: bernard.gibaud@irisa.fr [INSERM, VisAGeS U746 Unit/Project, Faculty of Medicine, Campus de Villejean, F-35043 Rennes (France); INRIA, VisAGeS U746 Unit/Project, IRISA, Campus de Beaulieu, F-35042 Rennes (France); University of Rennes I-CNRS UMR 6074, IRISA, Campus de Beaulieu, F-35042 Rennes (France)

    2011-05-15

    This article focuses on standards supporting interoperability and system integration in the medical imaging domain. We introduce the basic concepts and actors and we review the most salient achievements in this domain, especially with the DICOM standard, and the definition of IHE integration profiles. We analyze and discuss what was successful, and what could still be more widely adopted by industry. We then sketch out a perspective of what should be done next, based on our vision of new requirements for the next decade. In particular, we discuss the challenges of a more explicit sharing of image and image processing semantics, and we discuss the help that semantic web technologies (and especially ontologies) may bring to achieving this goal.

  12. The quest for standards in medical imaging

    International Nuclear Information System (INIS)

    Gibaud, Bernard

    2011-01-01

    This article focuses on standards supporting interoperability and system integration in the medical imaging domain. We introduce the basic concepts and actors and we review the most salient achievements in this domain, especially with the DICOM standard, and the definition of IHE integration profiles. We analyze and discuss what was successful, and what could still be more widely adopted by industry. We then sketch out a perspective of what should be done next, based on our vision of new requirements for the next decade. In particular, we discuss the challenges of a more explicit sharing of image and image processing semantics, and we discuss the help that semantic web technologies (and especially ontologies) may bring to achieving this goal.

  13. Medical imaging informatics simulators: a tutorial.

    Science.gov (United States)

    Huang, H K; Deshpande, Ruchi; Documet, Jorge; Le, Anh H; Lee, Jasper; Ma, Kevin; Liu, Brent J

    2014-05-01

    A medical imaging informatics infrastructure (MIII) platform is an organized method of selecting tools and synthesizing data from HIS/RIS/PACS/ePR systems with the aim of developing an imaging-based diagnosis or treatment system. Evaluation and analysis of these systems can be made more efficient by designing and implementing imaging informatics simulators. This tutorial introduces the MIII platform and provides the definition of treatment/diagnosis systems, while primarily focusing on the development of the related simulators. A medical imaging informatics (MII) simulator in this context is defined as a system integration of many selected imaging and data components from the MIII platform and clinical treatment protocols, which can be used to simulate patient workflow and data flow starting from diagnostic procedures to the completion of treatment. In these processes, DICOM and HL-7 standards, IHE workflow profiles, and Web-based tools are emphasized. From the information collected in the database of a specific simulator, evidence-based medicine can be hypothesized to choose and integrate optimal clinical decision support components. Other relevant, selected clinical resources in addition to data and tools from the HIS/RIS/PACS and ePRs platform may also be tailored to develop the simulator. These resources can include image content indexing, 3D rendering with visualization, data grid and cloud computing, computer-aided diagnosis (CAD) methods, specialized image-assisted surgical, and radiation therapy technologies. Five simulators will be discussed in this tutorial. The PACS-ePR simulator with image distribution is the cradle of the other simulators. It supplies the necessary PACS-based ingredients and data security for the development of four other simulators: the data grid simulator for molecular imaging, CAD-PACS, radiation therapy simulator, and image-assisted surgery simulator. The purpose and benefits of each simulator with respect to its clinical relevance

  14. Development of 3-D Medical Image VIsualization System

    African Journals Online (AJOL)

    User

    uses standard 2-D medical imaging inputs and generates medical images of human body parts ... light wave from points on the 3-D object(s) in ... tools, and communication bandwidth cannot .... locations along the track that correspond with.

  15. Radically Reducing Radiation Exposure during Routine Medical Imaging

    Science.gov (United States)

    Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.

  16. Twofold processing for denoising ultrasound medical images.

    Science.gov (United States)

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.

  17. A robust pointer segmentation in biomedical images toward building a visual ontology for biomedical article retrieval

    Science.gov (United States)

    You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-01-01

    Pointers (arrows and symbols) are frequently used in biomedical images to highlight specific image regions of interest (ROIs) that are mentioned in figure captions and/or text discussion. Detection of pointers is the first step toward extracting relevant visual features from ROIs and combining them with textual descriptions for a multimodal (text and image) biomedical article retrieval system. Recently we developed a pointer recognition algorithm based on an edge-based pointer segmentation method, and subsequently reported improvements made on our initial approach involving the use of Active Shape Models (ASM) for pointer recognition and region growing-based method for pointer segmentation. These methods contributed to improving the recall of pointer recognition but not much to the precision. The method discussed in this article is our recent effort to improve the precision rate. Evaluation performed on two datasets and compared with other pointer segmentation methods show significantly improved precision and the highest F1 score.

  18. Simultaneous optical image compression and encryption using error-reduction phase retrieval algorithm

    International Nuclear Information System (INIS)

    Liu, Wei; Liu, Shutian; Liu, Zhengjun

    2015-01-01

    We report a simultaneous image compression and encryption scheme based on solving a typical optical inverse problem. The secret images to be processed are multiplexed as the input intensities of a cascaded diffractive optical system. At the output plane, a compressed complex-valued data with a lot fewer measurements can be obtained by utilizing error-reduction phase retrieval algorithm. The magnitude of the output image can serve as the final ciphertext while its phase serves as the decryption key. Therefore the compression and encryption are simultaneously completed without additional encoding and filtering operations. The proposed strategy can be straightforwardly applied to the existing optical security systems that involve diffraction and interference. Numerical simulations are performed to demonstrate the validity and security of the proposal. (paper)

  19. A Novel Medical Freehand Sketch 3D Model Retrieval Method by Dimensionality Reduction and Feature Vector Transformation

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2016-01-01

    Full Text Available To assist physicians to quickly find the required 3D model from the mass medical model, we propose a novel retrieval method, called DRFVT, which combines the characteristics of dimensionality reduction (DR and feature vector transformation (FVT method. The DR method reduces the dimensionality of feature vector; only the top M low frequency Discrete Fourier Transform coefficients are retained. The FVT method does the transformation of the original feature vector and generates a new feature vector to solve the problem of noise sensitivity. The experiment results demonstrate that the DRFVT method achieves more effective and efficient retrieval results than other proposed methods.

  20. Lossy image compression for digital medical imaging systems

    Science.gov (United States)

    Wilhelm, Paul S.; Haynor, David R.; Kim, Yongmin; Nelson, Alan C.; Riskin, Eve A.

    1990-07-01

    Image compression at rates of 10:1 or greater could make PACS much more responsive and economically attractive. This paper describes a protocol for subjective and objective evaluation of the fidelity of compressed/decompressed images to the originals and presents the results ofits application to four representative and promising compression methods. The methods examined are predictive pruned tree-structured vector quantization, fractal compression, the discrete cosine transform with equal weighting of block bit allocation, and the discrete cosine transform with human visual system weighting of block bit allocation. Vector quantization is theoretically capable of producing the best compressed images, but has proven to be difficult to effectively implement. It has the advantage that it can reconstruct images quickly through a simple lookup table. Disadvantages are that codebook training is required, the method is computationally intensive, and achieving the optimum performance would require prohibitively long vector dimensions. Fractal compression is a relatively new compression technique, but has produced satisfactory results while being computationally simple. It is fast at both image compression and image reconstruction. Discrete cosine iransform techniques reproduce images well, but have traditionally been hampered by the need for intensive computing to compress and decompress images. A protocol was developed for side-by-side observer comparison of reconstructed images with originals. Three 1024 X 1024 CR (Computed Radiography) images and two 512 X 512 X-ray CT images were viewed at six bit rates (0.2, 0.4, 0.6, 0.9, 1.2, and 1.5 bpp for CR, and 1.0, 1.3, 1.6, 1.9, 2.2, 2.5 bpp for X-ray CT) by nine radiologists at the University of Washington Medical Center. The CR images were viewed on a Pixar II Megascan (2560 X 2048) monitor and the CT images on a Sony (1280 X 1024) monitor. The radiologists' subjective evaluations of image fidelity were compared to

  1. Attention-based image similarity measure with application to content-based information retrieval

    Science.gov (United States)

    Stentiford, Fred W. M.

    2003-01-01

    Whilst storage and capture technologies are able to cope with huge numbers of images, image retrieval is in danger of rendering many repositories valueless because of the difficulty of access. This paper proposes a similarity measure that imposes only very weak assumptions on the nature of the features used in the recognition process. This approach does not make use of a pre-defined set of feature measurements which are extracted from a query image and used to match those from database images, but instead generates features on a trial and error basis during the calculation of the similarity measure. This has the significant advantage that features that determine similarity can match whatever image property is important in a particular region whether it be a shape, a texture, a colour or a combination of all three. It means that effort is expended searching for the best feature for the region rather than expecting that a fixed feature set will perform optimally over the whole area of an image and over every image in a database. The similarity measure is evaluated on a problem of distinguishing similar shapes in sets of black and white symbols.

  2. Fast DCNN based on FWT, intelligent dropout and layer skipping for image retrieval.

    Science.gov (United States)

    ElAdel, Asma; Zaied, Mourad; Amar, Chokri Ben

    2017-11-01

    Deep Convolutional Neural Network (DCNN) can be marked as a powerful tool for object and image classification and retrieval. However, the training stage of such networks is highly consuming in terms of storage space and time. Also, the optimization is still a challenging subject. In this paper, we propose a fast DCNN based on Fast Wavelet Transform (FWT), intelligent dropout and layer skipping. The proposed approach led to improve the image retrieval accuracy as well as the searching time. This was possible thanks to three key advantages: First, the rapid way to compute the features using FWT. Second, the proposed intelligent dropout method is based on whether or not a unit is efficiently and not randomly selected. Third, it is possible to classify the image using efficient units of earlier layer(s) and skipping all the subsequent hidden layers directly to the output layer. Our experiments were performed on CIFAR-10 and MNIST datasets and the obtained results are very promising. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. INFLUENCE OF THE VIEWING GEOMETRY WITHIN HYPERSPECTRAL IMAGES RETRIEVED FROM UAV SNAPSHOT CAMERAS

    Directory of Open Access Journals (Sweden)

    H. Aasen

    2016-06-01

    Full Text Available Hyperspectral data has great potential for vegetation parameter retrieval. However, due to angular effects resulting from different sun-surface-sensor geometries, objects might appear differently depending on the position of an object within the field of view of a sensor. Recently, lightweight snapshot cameras have been introduced, which capture hyperspectral information in two spatial and one spectral dimension and can be mounted on unmanned aerial vehicles. This study investigates the influence of the different viewing geometries within an image on the apparent hyperspectral reflection retrieved by these sensors. Additionally, it is evaluated how hyperspectral vegetation indices like the NDVI are effected by the angular effects within a single image and if the viewing geometry influences the apparent heterogeneity with an area of interest. The study is carried out for a barley canopy at booting stage. The results show significant influences of the position of the area of interest within the image. The red region of the spectrum is more influenced by the position than the near infrared. The ability of the NDVI to compensate these effects was limited to the capturing positions close to nadir. The apparent heterogeneity of the area of interest is the highest close to a nadir.

  4. Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval.

    Science.gov (United States)

    Zhang, Yu; Wu, Jianxin; Cai, Jianfei

    2016-05-01

    In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.

  5. Novel gaseous detectors for medical imaging

    International Nuclear Information System (INIS)

    Danielsson, M.; Fonte, P.; Francke, T.; Iacobaeus, C.; Ostling, J.; Peskov, V.

    2004-01-01

    We have developed and successfully tested prototypes of two new types of gaseous detectors for medical imaging purposes. The first one is called the Electronic Portal Imaging Device (EPID). It is oriented on monitoring and the precise alignment of the therapeutic cancer treatment beam (pulsed gamma radiation) with respect to the patient's tumor position. The latest will be determined from an X-ray image of the patient obtained in the time intervals between the gamma pulses. The detector is based on a 'sandwich' of hole-type gaseous detectors (GEM and glass microcapillary plates) with metallic gamma and X-ray converters coated with CsI layers. The second detector is an X-ray image scanner oriented on mammography and other radiographic applications. It is based on specially developed by us high rate RPCs that are able to operate at rates of 10 5 Hz/mm 2 with a position resolution better than 50 μm at 1 atm. The quality of the images obtained with the latest version of this device were in most cases more superior than those obtained from commercially available detectors

  6. X-ray detectors in medical imaging

    International Nuclear Information System (INIS)

    Spahn, Martin

    2013-01-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd 2 O 2 S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications

  7. Cerenkov luminescence imaging of medical isotopes.

    Science.gov (United States)

    Ruggiero, Alessandro; Holland, Jason P; Lewis, Jason S; Grimm, Jan

    2010-07-01

    The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters (18)F, (64)Cu, (89)Zr, and (124)I; beta-emitter (131)I; and alpha-particle emitter (225)Ac for potential use in CLI. The novel radiolabeled monoclonal antibody (89)Zr-desferrioxamine B [DFO]-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-, beta-, and alpha-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of (89)Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear

  8. Moderate Imaging Resolution Spectroradiometer (MODIS) Aerosol Optical Depth Retrieval for Aerosol Radiative Forcing

    Science.gov (United States)

    Asmat, A.; Jalal, K. A.; Ahmad, N.

    2018-02-01

    The present study uses the Aerosol Optical Depth (AOD) retrieved from Moderate Imaging Resolution Spectroradiometer (MODIS) data for the period from January 2011 until December 2015 over an urban area in Kuching, Sarawak. The results show the minimum AOD value retrieved from MODIS is -0.06 and the maximum value is 6.0. High aerosol loading with high AOD value observed during dry seasons and low AOD monitored during wet seasons. Multi plane regression technique used to retrieve AOD from MODIS (AODMODIS) and different statistics parameter is proposed by using relative absolute error for accuracy assessment in spatial and temporal averaging approach. The AODMODIS then compared with AOD derived from Aerosol Robotic Network (AERONET) Sunphotometer (AODAERONET) and the results shows high correlation coefficient (R2) for AODMODIS and AODAERONET with 0.93. AODMODIS used as an input parameters into Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model to estimate urban radiative forcing at Kuching. The observed hourly averaged for urban radiative forcing is -0.12 Wm-2 for top of atmosphere (TOA), -2.13 Wm-2 at the surface and 2.00 Wm-2 in the atmosphere. There is a moderate relationship observed between urban radiative forcing calculated using SBDART and AERONET which are 0.75 at the surface, 0.65 at TOA and 0.56 in atmosphere. Overall, variation in AOD tends to cause large bias in the estimated urban radiative forcing.

  9. Data-driven Green's function retrieval and application to imaging with multidimensional deconvolution

    Science.gov (United States)

    Broggini, Filippo; Wapenaar, Kees; van der Neut, Joost; Snieder, Roel

    2014-01-01

    An iterative method is presented that allows one to retrieve the Green's function originating from a virtual source located inside a medium using reflection data measured only at the acquisition surface. In addition to the reflection response, an estimate of the travel times corresponding to the direct arrivals is required. However, no detailed information about the heterogeneities in the medium is needed. The iterative scheme generalizes the Marchenko equation for inverse scattering to the seismic reflection problem. To give insight in the mechanism of the iterative method, its steps for a simple layered medium are analyzed using physical arguments based on the stationary phase method. The retrieved Green's wavefield is shown to correctly contain the multiples due to the inhomogeneities present in the medium. Additionally, a variant of the iterative scheme enables decomposition of the retrieved wavefield into its downgoing and upgoing components. These wavefields then enable creation of a ghost-free image of the medium with either cross correlation or multidimensional deconvolution, presenting an advantage over standard prestack migration.

  10. Nonlinear approaches for phase retrieval in the Fresnel region for hard X-ray imaging

    International Nuclear Information System (INIS)

    Davidoiu, Valentina

    2013-01-01

    The development of highly coherent X-ray sources offers new possibilities to image biological structures at different scales exploiting the refraction of X-rays. The coherence properties of the third-generation synchrotron radiation sources enables efficient implementations of phase contrast techniques. One of the first measurements of the intensity variations due to phase contrast has been reported in 1995 at the European Synchrotron Radiation Facility (ESRF). Phase imaging coupled to tomography acquisition allows three dimensional imaging with an increased sensitivity compared to absorption CT. This technique is particularly attractive to image samples with low absorption constituents. Phase contrast has many applications, ranging from material science, paleontology, bone research to medicine and biology. Several methods to achieve X-ray phase contrast have been proposed during the last years. In propagation based phase contrast, the measurements are made at different sample-to-detector distances. While the intensity data can be acquired and recorded, the phase information of the signal has to be 'retrieved' from the modulus data only. Phase retrieval is thus an ill-posed nonlinear problem and regularization techniques including a priori knowledge are necessary to obtain stable solutions. Several phase recovery methods have been developed in recent years. These approaches generally formulate the phase retrieval problem as a linear one. Nonlinear treatments have not been much investigated. The main purpose of this work was to propose and evaluate new algorithms, in particularly taking into account the nonlinearity of the direct problem. In the first part of this work, we present a Landweber type nonlinear iterative scheme to solve the propagation based phase retrieval problem. This approach uses the analytic expression of the Frechet derivative of the phase-intensity relationship and of its adjoint, which are presented in detail. We also study the effect of

  11. Retrieval of ion distributions in RC from TWINS ENA images by CT technique

    Science.gov (United States)

    Ma, S.; Yan, W.; Xu, L.; Goldstein, J.; McComas, D. J.

    2010-12-01

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission is the first constellation to employ imagers on two separate spacecraft to measure energetic neutral atoms (ENA) produced by charge exchange between ring current energetic ions and cold exospheric neutral atoms. By applying the 3-D volumetric pixel (voxel) computed tomography (CT) inversion method to TWINS images, parent ion populations in the ring current (RC) and auroral regions are retrieved from their ENA signals. This methodology is implemented for data obtained during the main phase of a moderate geomagnetic storm on 11 October 2008. For this storm the two TWINS satellites were located in nearly the same meridian plane at vantage points widely separated in magnetic local time, and both more than 5 RE geocentric distance from the Earth. In the retrieval process, the energetic ion fluxes to be retrieved are assumed being isotropic with respect to pitch angle. The ENA data used in this study are differential fluxes averaged over 12 sweeps (corresponding to an interval of 16 min.) at different energy levels ranging throughout the full 1--100 keV energy range of TWINS. The ENA signals have two main components: (1) a low-latitude/ high-altitude signal from trapped RC ions and (2) a low-altitude signal from precipitating ions in the auroral/subauroral ionosphere. In the retrieved ion distributions, the main part of the RC component is located around midnight toward dawn sector with L from 3 to 7 or farther, while the subauroral low-altitude component is mainly at pre-midnight. It seems that the dominant energy of the RC ions for this storm is at the lowest energy level of 1-2 keV, with another important energy band centered about 44 keV. The low-altitude component is consistent with in situ observations by DMSP/SSJ4. The result of this study demonstrates that with satellite constellations such as TWINS, using all-sky ENA imagers deployed at multiple vantage points, 3-D distribution of RC ion

  12. A Study of NetCDF as an Approach for High Performance Medical Image Storage

    International Nuclear Information System (INIS)

    Magnus, Marcone; Prado, Thiago Coelho; Von Wangenhein, Aldo; De Macedo, Douglas D J; Dantas, M A R

    2012-01-01

    The spread of telemedicine systems increases every day. The systems and PACS based on DICOM images has become common. This rise reflects the need to develop new storage systems, more efficient and with lower computational costs. With this in mind, this article discusses a study for application in NetCDF data format as the basic platform for storage of DICOM images. The study case comparison adopts an ordinary database, the HDF5 and the NetCDF to storage the medical images. Empirical results, using a real set of images, indicate that the time to retrieve images from the NetCDF for large scale images has a higher latency compared to the other two methods. In addition, the latency is proportional to the file size, which represents a drawback to a telemedicine system that is characterized by a large amount of large image files.

  13. Software for medical image based phantom modelling

    International Nuclear Information System (INIS)

    Possani, R.G.; Massicano, F.; Coelho, T.S.; Yoriyaz, H.

    2011-01-01

    Latest treatment planning systems depends strongly on CT images, so the tendency is that the dosimetry procedures in nuclear medicine therapy be also based on images, such as magnetic resonance imaging (MRI) or computed tomography (CT), to extract anatomical and histological information, as well as, functional imaging or activities map as PET or SPECT. This information associated with the simulation of radiation transport software is used to estimate internal dose in patients undergoing treatment in nuclear medicine. This work aims to re-engineer the software SCMS, which is an interface software between the Monte Carlo code MCNP, and the medical images, that carry information from the patient in treatment. In other words, the necessary information contained in the images are interpreted and presented in a specific format to the Monte Carlo MCNP code to perform the simulation of radiation transport. Therefore, the user does not need to understand complex process of inputting data on MCNP, as the SCMS is responsible for automatically constructing anatomical data from the patient, as well as the radioactive source data. The SCMS was originally developed in Fortran- 77. In this work it was rewritten in an object-oriented language (JAVA). New features and data options have also been incorporated into the software. Thus, the new software has a number of improvements, such as intuitive GUI and a menu for the selection of the energy spectra correspondent to a specific radioisotope stored in a XML data bank. The new version also supports new materials and the user can specify an image region of interest for the calculation of absorbed dose. (author)

  14. Medical image information system 2001. Development of the medical image information system to risk management- Medical exposure management

    International Nuclear Information System (INIS)

    Kuranishi, Makoto; Kumagai, Michitomo; Shintani, Mitsuo

    2000-01-01

    This paper discusses the methods and systems for optimizing the following supplements 10 and 17 for national health and medical care. The supplements 10 and 17 of DICOM (digital imaging and communications in medicine) system, which is now under progress for the purpose to keep compatibility within medical image information system as an international standard, are important for making the cooperation between HIS (hospital information system)/RIS (radiation information system) and modality (imaging instruments). Supplement 10 concerns the system to send the information of patients and their orders through HIS/RIS to modality and 17, the information of modality performed procedure step (MPPS) to HIS/RIS. The latter defines to document patients' exposure, a part of which has not been recognized in Japan. Thus the medical information system can be useful for risk-management of medical exposure in future. (K.H.)

  15. Medical image information system 2001. Development of the medical image information system to risk management- Medical exposure management

    Energy Technology Data Exchange (ETDEWEB)

    Kuranishi, Makoto; Kumagai, Michitomo; Shintani, Mitsuo [Toyama Medical and Pharmaceutical Univ. (Japan). Hospital

    2000-12-01

    This paper discusses the methods and systems for optimizing the following supplements 10 and 17 for national health and medical care. The supplements 10 and 17 of DICOM (digital imaging and communications in medicine) system, which is now under progress for the purpose to keep compatibility within medical image information system as an international standard, are important for making the cooperation between HIS (hospital information system)/RIS (radiation information system) and modality (imaging instruments). Supplement 10 concerns the system to send the information of patients and their orders through HIS/RIS to modality and 17, the information of modality performed procedure step (MPPS) to HIS/RIS. The latter defines to document patients' exposure, a part of which has not been recognized in Japan. Thus the medical information system can be useful for risk-management of medical exposure in future. (K.H.)

  16. Synergistic Instance-Level Subspace Alignment for Fine-Grained Sketch-Based Image Retrieval.

    Science.gov (United States)

    Li, Ke; Pang, Kaiyue; Song, Yi-Zhe; Hospedales, Timothy M; Xiang, Tao; Zhang, Honggang

    2017-08-25

    We study the problem of fine-grained sketch-based image retrieval. By performing instance-level (rather than category-level) retrieval, it embodies a timely and practical application, particularly with the ubiquitous availability of touchscreens. Three factors contribute to the challenging nature of the problem: (i) free-hand sketches are inherently abstract and iconic, making visual comparisons with photos difficult, (ii) sketches and photos are in two different visual domains, i.e. black and white lines vs. color pixels, and (iii) fine-grained distinctions are especially challenging when executed across domain and abstraction-level. To address these challenges, we propose to bridge the image-sketch gap both at the high-level via parts and attributes, as well as at the low-level, via introducing a new domain alignment method. More specifically, (i) we contribute a dataset with 304 photos and 912 sketches, where each sketch and image is annotated with its semantic parts and associated part-level attributes. With the help of this dataset, we investigate (ii) how strongly-supervised deformable part-based models can be learned that subsequently enable automatic detection of part-level attributes, and provide pose-aligned sketch-image comparisons. To reduce the sketch-image gap when comparing low-level features, we also (iii) propose a novel method for instance-level domain-alignment, that exploits both subspace and instance-level cues to better align the domains. Finally (iv) these are combined in a matching framework integrating aligned low-level features, mid-level geometric structure and high-level semantic attributes. Extensive experiments conducted on our new dataset demonstrate effectiveness of the proposed method.

  17. Color Texture Image Retrieval Based on Local Extrema Features and Riemannian Distance

    Directory of Open Access Journals (Sweden)

    Minh-Tan Pham

    2017-10-01

    Full Text Available A novel efficient method for content-based image retrieval (CBIR is developed in this paper using both texture and color features. Our motivation is to represent and characterize an input image by a set of local descriptors extracted from characteristic points (i.e., keypoints within the image. Then, dissimilarity measure between images is calculated based on the geometric distance between the topological feature spaces (i.e., manifolds formed by the sets of local descriptors generated from each image of the database. In this work, we propose to extract and use the local extrema pixels as our feature points. Then, the so-called local extrema-based descriptor (LED is generated for each keypoint by integrating all color, spatial as well as gradient information captured by its nearest local extrema. Hence, each image is encoded by an LED feature point cloud and Riemannian distances between these point clouds enable us to tackle CBIR. Experiments performed on several color texture databases including Vistex, STex, color Brodazt, USPtex and Outex TC-00013 using the proposed approach provide very efficient and competitive results compared to the state-of-the-art methods.

  18. A unified framework for image retrieval using keyword and visual features.

    Science.gov (United States)

    Jing, Feng; Li, Mingling; Zhang, Hong-Jiang; Zhang, Bo

    2005-07-01

    In this paper, a unified image retrieval framework based on both keyword annotations and visual features is proposed. In this framework, a set of statistical models are built based on visual features of a small set of manually labeled images to represent semantic concepts and used to propagate keywords to other unlabeled images. These models are updated periodically when more images implicitly labeled by users become available through relevance feedback. In this sense, the keyword models serve the function of accumulation and memorization of knowledge learned from user-provided relevance feedback. Furthermore, two sets of effective and efficient similarity measures and relevance feedback schemes are proposed for query by keyword scenario and query by image example scenario, respectively. Keyword models are combined with visual features in these schemes. In particular, a new, entropy-based active learning strategy is introduced to improve the efficiency of relevance feedback for query by keyword. Furthermore, a new algorithm is proposed to estimate the keyword features of the search concept for query by image example. It is shown to be more appropriate than two existing relevance feedback algorithms. Experimental results demonstrate the effectiveness of the proposed framework.

  19. Quantification of Structure from Medical Images

    DEFF Research Database (Denmark)

    Qazi, Arish Asif

    based on diffusion tensor imaging, a technique widely used for analysis of the white matter of the central nervous system in the living human brain. An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multi-directional fiber......In this thesis, we present automated methods that quantify information from medical images; information that is intended to assist and enable clinicians gain a better understanding of the underlying pathology. The first part of the thesis presents methods that analyse the articular cartilage......, and information beyond that of traditional morphometric measures. The thesis also proposes a fully automatic and generic statistical framework for identifying biologically interpretable regions of difference (ROD) between two groups of biological objects, attributed by anatomical differences or changes relating...

  20. Medical imaging projects meet at CERN

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    ENTERVISION, the Research Training Network in 3D Digital Imaging for Cancer Radiation Therapy, successfully passed its mid-term review held at CERN on 11 January. This multidisciplinary project aims at qualifying experts in medical imaging techniques for improved hadron therapy.   ENTERVISION provides training in physics, medicine, electronics, informatics, radiobiology and engineering, as well as a wide range of soft skills, to 16 researchers of different backgrounds and nationalities. The network is funded by the European Commission within the Marie Curie Initial Training Network, and relies on the EU-funded research project ENVISION to provide a training platform for the Marie Curie researchers. The two projects hold their annual meetings jointly, allowing the young researchers to meet senior scientists and to have a full picture of the latest developments in the field beyond their individual research project. ENVISION and ENTERVISION are both co-ordinated by CERN, and the Laboratory hosts t...

  1. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.

    Science.gov (United States)

    Yang, Mengzhao; Song, Wei; Mei, Haibin

    2017-07-23

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient.

  2. Viewpoints on Medical Image Processing: From Science to Application.

    Science.gov (United States)

    Deserno Né Lehmann, Thomas M; Handels, Heinz; Maier-Hein Né Fritzsche, Klaus H; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-05-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.

  3. Viewpoints on Medical Image Processing: From Science to Application

    Science.gov (United States)

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  4. Retrieval of long and short lists from long term memory: a functional magnetic resonance imaging study with human subjects.

    Science.gov (United States)

    Zysset, S; Müller, K; Lehmann, C; Thöne-Otto, A I; von Cramon, D Y

    2001-11-13

    Previous studies have shown that reaction time in an item-recognition task with both short and long lists is a quadratic function of list length. This suggests that either different memory retrieval processes are implied for short and long lists or an adaptive process is involved. An event-related functional magnetic resonance imaging study with nine subjects and list lengths varying between 3 and 18 words was conducted to identify the underlying neuronal structures of retrieval from long and short lists. For the retrieval and processing of word-lists a single fronto-parietal network, including premotor, left prefrontal, left precuneal and left parietal regions, was activated. With increasing list length, no additional regions became involved in retrieving information from long-term memory, suggesting that not necessarily different, but highly adaptive retrieval processes are involved.

  5. A comparative study on medical image segmentation methods

    Directory of Open Access Journals (Sweden)

    Praylin Selva Blessy SELVARAJ ASSLEY

    2014-03-01

    Full Text Available Image segmentation plays an important role in medical images. It has been a relevant research area in computer vision and image analysis. Many segmentation algorithms have been proposed for medical images. This paper makes a review on segmentation methods for medical images. In this survey, segmentation methods are divided into five categories: region based, boundary based, model based, hybrid based and atlas based. The five different categories with their principle ideas, advantages and disadvantages in segmenting different medical images are discussed.

  6. Medical image diagnosis of liver cancer using artificial intelligence

    International Nuclear Information System (INIS)

    Kondo, Tadashi; Ueno, Junji; Takao, Shoichiro

    2010-01-01

    A revised Group Method of Data Handling (GMDH)-type neural network algorithm using artificial intelligence technology for medical image diagnosis is proposed and is applied to medical image diagnosis of liver cancer. In this algorithm, the knowledge base for medical image diagnosis are used for organizing the neural network architecture for medical image diagnosis. Furthermore, the revised GMDH-type neural network algorithm has a feedback loop and can identify the characteristics of the medical images accurately using feedback loop calculations. The optimum neural network architecture fitting the complexity of the medical images is automatically organized so as to minimize the prediction error criterion defined as Prediction Sum of Squares (PSS). It is shown that the revised GMDH-type neural network can be easily applied to the medical image diagnosis. (author)

  7. Diagnostic imaging in undergraduate medical education: an expanding role

    International Nuclear Information System (INIS)

    Miles, K.A.

    2005-01-01

    Radiologists have been involved in anatomy instruction for medical students for decades. However, recent technical advances in radiology, such as multiplanar imaging, 'virtual endoscopy', functional and molecular imaging, and spectroscopy, offer new ways in which to use imaging for teaching basic sciences to medical students. The broad dissemination of picture archiving and communications systems is making such images readily available to medical schools, providing new opportunities for the incorporation of diagnostic imaging into the undergraduate medical curriculum. Current reforms in the medical curriculum and the establishment of new medical schools in the UK further underline the prospects for an expanding role for imaging in medical education. This article reviews the methods by which diagnostic imaging can be used to support the learning of anatomy and other basic sciences

  8. An efficient and robutst method for shape-based image retrieval

    International Nuclear Information System (INIS)

    Salih, N.D.; Besar, R.; Abas, F.S.

    2007-01-01

    Shapes can be thought as being the words oft he visual language. Shape boundaries need to be simplified and estimated in a wide variety of image analysis applications. Representation and description of Shapes is one of the major problems in content-based image retrieval (CBIR). This paper present an a novel method for shape representation and description named block-based shape representation (BSR), which is capable of extracting reliable information of the object outline in a concise manner. Our technique is translation, scale, and rotation invariant. It works well on different types of shapes and fast enough for use in real-time. This technique has been implemented and evaluated in order to analyze its accuracy and Efficiency. Based on the experimental results, we urge that the proposed BSR is a compact and reliable shape representation method. (author)

  9. Multimodality medical image database for temporal lobe epilepsy

    Science.gov (United States)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-05-01

    This paper presents the development of a human brain multi-modality database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as non-verbal Wechsler memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication matches the neurosurgeons expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  10. Diagnostic reference levels in medical imaging

    International Nuclear Information System (INIS)

    Rosenstein, M.

    2001-01-01

    The paper proposes additional advice to national or local authorities and the clinical community on the application of diagnostic reference levels as a practical tool to manage radiation doses to patients in diagnostic radiology and nuclear medicine. A survey was made of the various approaches that have been taken by authoritative bodies to establish diagnostic reference levels for medical imaging tasks. There are a variety of ways to implement the idea of diagnostic reference levels, depending on the medical imaging task of interest, the national or local state of practice and the national or local preferences for technical implementation. The existing International Commission on Radiological Protection (ICRP) guidance is reviewed, the survey information is summarized, a set of unifying principles is espoused and a statement of additional advice that has been proposed to ICRP Committee 3 is presented. The proposed advice would meet a need for a unifying set of principles to provide a framework for diagnostic reference levels but would allow flexibility in their selection and use. While some illustrative examples are given, the proposed advice does not specify the specific quantities to be used, the numerical values to be set for the quantities or the technical details of how national or local authorities should implement diagnostic reference levels. (author)

  11. Model-based VQ for image data archival, retrieval and distribution

    Science.gov (United States)

    Manohar, Mareboyana; Tilton, James C.

    1995-01-01

    An ideal image compression technique for image data archival, retrieval and distribution would be one with the asymmetrical computational requirements of Vector Quantization (VQ), but without the complications arising from VQ codebooks. Codebook generation and maintenance are stumbling blocks which have limited the use of VQ as a practical image compression algorithm. Model-based VQ (MVQ), a variant of VQ described here, has the computational properties of VQ but does not require explicit codebooks. The codebooks are internally generated using mean removed error and Human Visual System (HVS) models. The error model assumed is the Laplacian distribution with mean, lambda-computed from a sample of the input image. A Laplacian distribution with mean, lambda, is generated with uniform random number generator. These random numbers are grouped into vectors. These vectors are further conditioned to make them perceptually meaningful by filtering the DCT coefficients from each vector. The DCT coefficients are filtered by multiplying by a weight matrix that is found to be optimal for human perception. The inverse DCT is performed to produce the conditioned vectors for the codebook. The only image dependent parameter used in the generation of codebook is the mean, lambda, that is included in the coded file to repeat the codebook generation process for decoding.

  12. The present and future of medical imaging physics

    International Nuclear Information System (INIS)

    Bao Shanglian; Zhang Huailing; Huang Feizeng

    2004-01-01

    The physics of medical imaging is one of the main branches of medical physics, which trains medical physicists for the R and D of medical imaging equipment, clinical application of this equipment as well as R and D in medical physics. The development of medical imaging physics is one of the biggest programs aimed at making China a world manufacturer both in hardware and software. However, there is no formal medical physics in China as yet. The scale of education and training, and the level of manufacture of medical imaging equipment are very low compared with developed countries. It is therefore imperative for China to accelerate the rate of development to satisfy her requirements. Amongst other priorities, building up the education and training system in medical physics and setting up a staff of medical physicists in hospitals is the most urgent thing

  13. A special designed library for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Lymberopoulos, D; Kotsopoulos, S; Zoupas, V; Yoldassis, N [Departmeent of Electrical Engineering, University of Patras, Patras 26 110 Greece (Greece); Spyropoulos, C [School of Medicine, Regional University Hospital, University of Patras, Patras 26 110 Greece (Greece)

    1994-12-31

    The present paper deals with a sophisticated and flexible library of medical purpose image processing routines. It contains modules for simple as well as advanced gray or colour image processing. This library offers powerful features for medical image processing and analysis applications, thus providing the physician with a means of analyzing and estimating medical images in order to accomplish their diagnostic procedures. 6 refs, 1 figs.

  14. Contributions to HEVC Prediction for Medical Image Compression

    OpenAIRE

    Guarda, André Filipe Rodrigues

    2016-01-01

    Medical imaging technology and applications are continuously evolving, dealing with images of increasing spatial and temporal resolutions, which allow easier and more accurate medical diagnosis. However, this increase in resolution demands a growing amount of data to be stored and transmitted. Despite the high coding efficiency achieved by the most recent image and video coding standards in lossy compression, they are not well suited for quality-critical medical image compressi...

  15. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    Science.gov (United States)

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  16. Machine Learning Interface for Medical Image Analysis.

    Science.gov (United States)

    Zhang, Yi C; Kagen, Alexander C

    2017-10-01

    TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.

  17. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction

    Science.gov (United States)

    Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.

    2017-06-01

    In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.

  18. Crystal diffraction lens for medical imaging

    International Nuclear Information System (INIS)

    Smither, R. K.; Roa, D. E.

    2000-01-01

    A crystal diffraction lens for focusing energetic gamma rays has been developed at Argonne National Laboratory for use in medical imaging of radioactivity in the human body. A common method for locating possible cancerous growths in the body is to inject radioactivity into the blood stream of the patient and then look for any concentration of radioactivity that could be associated with the fast growing cancer cells. Often there are borderline indications of possible cancers that could be due to statistical functions in the measured counting rates. In order to determine if these indications are false or real, one must resort to surgical means and take tissue samples in the suspect area. They are developing a system of crystal diffraction lenses that will be incorporated into a 3-D imaging system with better sensitivity (factors of 10 to 100) and better spatial resolution (a few mm in both vertical and horizontal directions) than most systems presently in use. The use of this new imaging system will allow one to eliminate 90% of the false indications and both locate and determine the size of the cancer with mm precision. The lens consists of 900 single crystals of copper, 4 mm x 4 mm on a side and 2--4 mm thick, mounted in 13 concentric rings

  19. Tissues segmentation based on multi spectral medical images

    Science.gov (United States)

    Li, Ya; Wang, Ying

    2017-11-01

    Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.

  20. Effects of Per-Pixel Variability on Uncertainties in Bathymetric Retrievals from High-Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Elizabeth J. Botha

    2016-05-01

    Full Text Available Increased sophistication of high spatial resolution multispectral satellite sensors provides enhanced bathymetric mapping capability. However, the enhancements are counter-acted by per-pixel variability in sunglint, atmospheric path length and directional effects. This case-study highlights retrieval errors from images acquired at non-optimal geometrical combinations. The effects of variations in the environmental noise on water surface reflectance and the accuracy of environmental variable retrievals were quantified. Two WorldView-2 satellite images were acquired, within one minute of each other, with Image 1 placed in a near-optimal sun-sensor geometric configuration and Image 2 placed close to the specular point of the Bidirectional Reflectance Distribution Function (BRDF. Image 2 had higher total environmental noise due to increased surface glint and higher atmospheric path-scattering. Generally, depths were under-estimated from Image 2, compared to Image 1. A partial improvement in retrieval error after glint correction of Image 2 resulted in an increase of the maximum depth to which accurate depth estimations were returned. This case-study indicates that critical analysis of individual images, accounting for the entire sun elevation and azimuth and satellite sensor pointing and geometry as well as anticipated wave height and direction, is required to ensure an image is fit for purpose for aquatic data analysis.

  1. Overview of intelligent data retrieval methods for waveforms and images in massive fusion databases

    Energy Technology Data Exchange (ETDEWEB)

    Vega, J. [JET-EFDA, Culham Science Center, OX14 3DB Abingdon (United Kingdom); Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: jesus.vega@ciemat.es; Murari, A. [JET-EFDA, Culham Science Center, OX14 3DB Abingdon (United Kingdom); Consorzio RFX-Associazione EURATOM ENEA per la Fusione, I-35127 Padua (Italy); Pereira, A.; Portas, A.; Ratta, G.A.; Castro, R. [JET-EFDA, Culham Science Center, OX14 3DB Abingdon (United Kingdom); Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain)

    2009-06-15

    JET database contains more than 42 Tbytes of data (waveforms and images) and it doubles its size about every 2 years. ITER database is expected to be orders of magnitude above this quantity. Therefore, data access in such huge databases can no longer be efficiently based on shot number or temporal interval. Taking into account that diagnostics generate reproducible signal patterns (structural shapes) for similar physical behaviour, high level data access systems can be developed. In these systems, the input parameter is a pattern and the outputs are the shot numbers and the temporal locations where similar patterns appear inside the database. These pattern oriented techniques can be used for first data screening of any type of morphological aspect of waveforms and images. The article shows a new technique to look for similar images in huge databases in a fast an efficient way. Also, previous techniques to search for similar waveforms and to retrieve time-series data or images containing any kind of patterns are reviewed.

  2. Multimedia human brain database system for surgical candidacy determination in temporal lobe epilepsy with content-based image retrieval

    Science.gov (United States)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-01-01

    This paper presents the development of a human brain multimedia database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted MRI and FLAIR MRI and ictal and interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication pretty much fits with the surgeons" expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  3. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.

    Science.gov (United States)

    Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong

    Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep

  4. Three dimensional image presentation techniques in medical imaging

    International Nuclear Information System (INIS)

    Pizer, S.M.; Fuchs, H.

    1987-01-01

    Medical images can be presented three-dimensionally by techniques that either calculate the effect of reflections from surfaces predefined from slices or project a three-space of luminosities computed from voxel intensities onto the visual receptors. Sliced-based reflective displays are the most common type. Means of producing surface descriptions both via voxel sets and via slice contours are reviewed. Advantages of and means of transparent display to allow the appreciation of the 3D relationships among objects are set forth. Ways to produce additional depth cues by stereoscopy and the kinetic depth effect are discussed, and the importance of interactive modification of viewpoint, clipping plane, displayed objects, etc. are explained. A new device, UNC's Pixel-planes, for accomplishing this in real time are illustrated. Voxel intensity based display methods avoid the need for time-consuming predefinition of object surfaces and thus can allow exploration of 3D image data. Varifocal mirror hardware and fast computation of one or more projections based on object probabilities are two of the more important approaches. While 3D display provides important information about 3D relationships, it cannot provide the kind of appreciation of subtle grey-scale changes that 2D display can. Methods that can combine these two kinds of information by superimposing 2D grey-scale slices on or in the context of 3D displays are discussed. Applications of these techniques for both diagnosis and radiotherapy planning are used as illustrations and guides to the usefulness of these techniques with CT, MRI, and other 3D medical imaging modalities. 24 refs.; 5 figs

  5. Data Retrieval Algorithms for Validating the Optical Transient Detector and the Lightning Imaging Sensor

    Science.gov (United States)

    Koshak, W. J.; Blakeslee, R. J.; Bailey, J. C.

    2000-01-01

    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing, and arrival time of lightning radio emissions. Solutions for the plane (i.e., no earth curvature) are provided that implement all of these measurements. The accuracy of the retrieval method is tested using computer-simulated datasets, and the relative influence of bearing and arrival time data an the outcome of the final solution is formally demonstrated. The algorithm is sufficiently accurate to validate NASA:s Optical Transient Detector and Lightning Imaging Sensor. A quadratic planar solution that is useful when only three arrival time measurements are available is also introduced. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in sc)iirce location, Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. For arbitrary noncollinear network geometries and in the absence of measurement errors, it is shown that the two quadratic roots are equivalent (no source location ambiguity) on the outer sensor baselines. The accuracy of the quadratic planar method is tested with computer-generated datasets, and the results are generally better than those obtained from the three-station linear planar method when bearing errors are about 2 deg.

  6. Learning binary code via PCA of angle projection for image retrieval

    Science.gov (United States)

    Yang, Fumeng; Ye, Zhiqiang; Wei, Xueqi; Wu, Congzhong

    2018-01-01

    With benefits of low storage costs and high query speeds, binary code representation methods are widely researched for efficiently retrieving large-scale data. In image hashing method, learning hashing function to embed highdimensions feature to Hamming space is a key step for accuracy retrieval. Principal component analysis (PCA) technical is widely used in compact hashing methods, and most these hashing methods adopt PCA projection functions to project the original data into several dimensions of real values, and then each of these projected dimensions is quantized into one bit by thresholding. The variances of different projected dimensions are different, and with real-valued projection produced more quantization error. To avoid the real-valued projection with large quantization error, in this paper we proposed to use Cosine similarity projection for each dimensions, the angle projection can keep the original structure and more compact with the Cosine-valued. We used our method combined the ITQ hashing algorithm, and the extensive experiments on the public CIFAR-10 and Caltech-256 datasets validate the effectiveness of the proposed method.

  7. Stochastic Optimized Relevance Feedback Particle Swarm Optimization for Content Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    Muhammad Imran

    2014-01-01

    Full Text Available One of the major challenges for the CBIR is to bridge the gap between low level features and high level semantics according to the need of the user. To overcome this gap, relevance feedback (RF coupled with support vector machine (SVM has been applied successfully. However, when the feedback sample is small, the performance of the SVM based RF is often poor. To improve the performance of RF, this paper has proposed a new technique, namely, PSO-SVM-RF, which combines SVM based RF with particle swarm optimization (PSO. The aims of this proposed technique are to enhance the performance of SVM based RF and also to minimize the user interaction with the system by minimizing the RF number. The PSO-SVM-RF was tested on the coral photo gallery containing 10908 images. The results obtained from the experiments showed that the proposed PSO-SVM-RF achieved 100% accuracy in 8 feedback iterations for top 10 retrievals and 80% accuracy in 6 iterations for 100 top retrievals. This implies that with PSO-SVM-RF technique high accuracy rate is achieved at a small number of iterations.

  8. Texture Retrieval from VHR Optical Remote Sensed Images Using the Local Extrema Descriptor with Application to Vineyard Parcel Detection

    Directory of Open Access Journals (Sweden)

    Minh-Tan Pham

    2016-04-01

    Full Text Available In this article, we develop a novel method for the detection of vineyard parcels in agricultural landscapes based on very high resolution (VHR optical remote sensing images. Our objective is to perform texture-based image retrieval and supervised classification algorithms. To do that, the local textural and structural features inside each image are taken into account to measure its similarity to other images. In fact, VHR images usually involve a variety of local textures and structures that may verify a weak stationarity hypothesis. Hence, an approach only based on characteristic points, not on all pixels of the image, is supposed to be relevant. This work proposes to construct the local extrema-based descriptor (LED by using the local maximum and local minimum pixels extracted from the image. The LED descriptor is formed based on the radiometric, geometric and gradient features from these local extrema. We first exploit the proposed LED descriptor for the retrieval task to evaluate its performance on texture discrimination. Then, it is embedded into a supervised classification framework to detect vine parcels using VHR satellite images. Experiments performed on VHR panchromatic PLEIADES image data prove the effectiveness of the proposed strategy. Compared to state-of-the-art methods, an enhancement of about 7% in retrieval rate is achieved. For the detection task, about 90% of vineyards are correctly detected.

  9. Application of stereo-imaging technology to medical field.

    Science.gov (United States)

    Nam, Kyoung Won; Park, Jeongyun; Kim, In Young; Kim, Kwang Gi

    2012-09-01

    There has been continuous development in the area of stereoscopic medical imaging devices, and many stereoscopic imaging devices have been realized and applied in the medical field. In this article, we review past and current trends pertaining to the application stereo-imaging technologies in the medical field. We describe the basic principles of stereo vision and visual issues related to it, including visual discomfort, binocular disparities, vergence-accommodation mismatch, and visual fatigue. We also present a brief history of medical applications of stereo-imaging techniques, examples of recently developed stereoscopic medical devices, and patent application trends as they pertain to stereo-imaging medical devices. Three-dimensional (3D) stereo-imaging technology can provide more realistic depth perception to the viewer than conventional two-dimensional imaging technology. Therefore, it allows for a more accurate understanding and analysis of the morphology of an object. Based on these advantages, the significance of stereoscopic imaging in the medical field increases in accordance with the increase in the number of laparoscopic surgeries, and stereo-imaging technology plays a key role in the diagnoses of the detailed morphologies of small biological specimens. The application of 3D stereo-imaging technology to the medical field will help improve surgical accuracy, reduce operation times, and enhance patient safety. Therefore, it is important to develop more enhanced stereoscopic medical devices.

  10. Database application of digital medical X-rays and labs: computerization, storage, retrieval, interpretation, and distribution.

    Science.gov (United States)

    Hatcher, Myron; Tabriziani, Hossein; Heetebry, Irene

    2005-08-01

    Stenter lets the health care worker order an X-ray that is produced as a computer image rather than on flat film. The health care provider can be in any location with the correct equipment, and view the digital image. The dimensions of this discussion are extensive. The cost savings because of reduced media and storage cost is substantial. Health care quality can be improved because of the ability to obtain consultation via telemedicine and the enhanced ability to track medical problems over time via trends. The major downside is the limited cost imbursement system to pay for technology. Unfortunately, this may impact on the improved quality of care. In simple terms someone needs to pay for the technology and the quality of health care needs to be maintained or improved. The real cost to the health care systems needs to be correctly calculated and inappropriate charging kept to a minimum. Specific costs need to be kept in mind and the first is the cost for new staff or staff training. The number of health care providers that are able to read the X-ray can be enlarged remembering that only American Board Certified Radiologists are allowed to give the final recommendation. How do we view the cost of missing something? It could be argued that this risk will be reduced because of improved technology for obtaining the digital X-ray and improved enhancement software. One way to view this situation is to include technology, management, and organization. The cost and benefits occur through the interplay of all three dimensions. The development of digital imaging hardware and artificial intelligence software will demand change in the management and organization. The organization will require changes in its design to accommodate the technology as to support and resources. Management will evolve to include methods for control and monitoring this technology. Business processes and standard operating procedures will change to integrate the technology into the organization in

  11. PROTOTYPE CONTENT BASED IMAGE RETRIEVAL UNTUK DETEKSI PEN YAKIT KULIT DENGAN METODE EDGE DETECTION

    Directory of Open Access Journals (Sweden)

    Erick Fernando

    2016-05-01

    Full Text Available Dokter spesialis kulit melakukan pemeriksa secara visual objek mata, capture objek dengan kamera digital dan menanyakan riwayat perjalanan penyakit pasien, tanpa melakukan perbandingan terhadap gejala dan tanda yang ada sebelummnya. Sehingga pemeriksaan dan perkiraan jenis penyakit kulit. Pengolahan data citra dalam bentuk digital khususnya citra medis sudah sangat dibutuhkan dengan pra-processing. Banyak pasien yang dilayani di rumah sakit masih menggunakan data citra analog. Data analog ini membutuhkan ruangan khusus untuk menyimpan guna menghindarkan kerusakan mekanis. Uraian mengatasi permasalahan ini, citra medis dibuat dalam bentuk digital dan disimpan dalam sistem database dan dapat melihat kesamaan citra kulit yang baru. Citra akan dapat ditampilkan dengan pra- processing dengan identifikasi kesamaan dengan Content Based Image Retrieval (CBIR bekerja dengan cara mengukur kemiripan citra query dengan semua citra yang ada dalam database sehingga query cost berbanding lurus dengan jumlah citra dalam database.

  12. Rotation-robust math symbol recognition and retrieval using outer contours and image subsampling

    Science.gov (United States)

    Zhu, Siyu; Hu, Lei; Zanibbi, Richard

    2013-01-01

    This paper presents an unified recognition and retrieval system for isolated offline printed mathematical symbols for the first time. The system is based on nearest neighbor scheme and uses modified Turning Function and Grid Features to calculate the distance between two symbols based on Sum of Squared Difference. An unwrap process and an alignment process are applied to modify Turning Function to deal with the horizontal and vertical shift caused by the changing of staring point and rotation. This modified Turning Function make our system robust against rotation of the symbol image. The system obtains top-1 recognition rate of 96.90% and 47.27% Area Under Curve (AUC) of precision/recall plot on the InftyCDB-3 dataset. Experiment result shows that the system with modified Turning Function performs significantly better than the system with original Turning Function on the rotated InftyCDB-3 dataset.

  13. Infectious Cognition: Risk Perception Affects Socially Shared Retrieval-Induced Forgetting of Medical Information.

    Science.gov (United States)

    Coman, Alin; Berry, Jessica N

    2015-12-01

    When speakers selectively retrieve previously learned information, listeners often concurrently, and covertly, retrieve their memories of that information. This concurrent retrieval typically enhances memory for mentioned information (the rehearsal effect) and impairs memory for unmentioned but related information (socially shared retrieval-induced forgetting, SSRIF), relative to memory for unmentioned and unrelated information. Building on research showing that anxiety leads to increased attention to threat-relevant information, we explored whether concurrent retrieval is facilitated in high-anxiety real-world contexts. Participants first learned category-exemplar facts about meningococcal disease. Following a manipulation of perceived risk of infection (low vs. high risk), they listened to a mock radio show in which some of the facts were selectively practiced. Final recall tests showed that the rehearsal effect was equivalent between the two risk conditions, but SSRIF was significantly larger in the high-risk than in the low-risk condition. Thus, the tendency to exaggerate consequences of news events was found to have deleterious consequences. © The Author(s) 2015.

  14. Image storage, cataloguing and retrieval using a personal computer database software application

    International Nuclear Information System (INIS)

    Lewis, G.; Howman-Giles, R.

    1999-01-01

    Full text: Interesting images and cases are collected and collated by most nuclear medicine practitioners throughout the world. Changing imaging technology has altered the way in which images may be presented and are reported, with less reliance on 'hard copy' for both reporting and archiving purposes. Digital image generation and storage is rapidly replacing film in both radiological and nuclear medicine practice. A personal computer database based interesting case filing system is described and demonstrated. The digital image storage format allows instant access to both case information (e.g. history and examination, scan report or teaching point) and the relevant images. The database design allows rapid selection of cases and images appropriate to a particular diagnosis, scan type, age or other search criteria. Correlative X-ray, CT, MRI and ultrasound images can also be stored and accessed. The application is in use at The New Children's Hospital as an aid to postgraduate medical education, with new cases being regularly added to the database

  15. Energy functionals for medical image segmentation: choices and consequences

    OpenAIRE

    McIntosh, Christopher

    2011-01-01

    Medical imaging continues to permeate the practice of medicine, but automated yet accurate segmentation and labeling of anatomical structures continues to be a major obstacle to computerized medical image analysis. Though there exists numerous approaches for medical image segmentation, one in particular has gained increasing popularity: energy minimization-based techniques, and the large set of methods encompassed therein. With these techniques an energy function must be chosen, segmentations...

  16. An Approach for Foliar Trait Retrieval from Airborne Imaging Spectroscopy of Tropical Forests

    Directory of Open Access Journals (Sweden)

    Roberta E. Martin

    2018-01-01

    Full Text Available Spatial information on forest functional composition is needed to inform management and conservation efforts, yet this information is lacking, particularly in tropical regions. Canopy foliar traits underpin the functional biodiversity of forests, and have been shown to be remotely measurable using airborne 350–2510 nm imaging spectrometers. We used newly acquired imaging spectroscopy data constrained with concurrent light detection and ranging (LiDAR measurements from the Carnegie Airborne Observatory (CAO, and field measurements, to test the performance of the Spectranomics approach for foliar trait retrieval. The method was previously developed in Neotropical forests, and was tested here in the humid tropical forests of Malaysian Borneo. Multiple foliar chemical traits, as well as leaf mass per area (LMA, were estimated with demonstrable precision and accuracy. The results were similar to those observed for Neotropical forests, suggesting a more general use of the Spectranomics approach for mapping canopy traits in tropical forests. Future mapping studies using this approach can advance scientific investigations and applications based on imaging spectroscopy.

  17. Developments in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2015-01-01

    This book presents novel and advanced topics in Medical Image Processing and Computational Vision in order to solidify knowledge in the related fields and define their key stakeholders. It contains extended versions of selected papers presented in VipIMAGE 2013 – IV International ECCOMAS Thematic Conference on Computational Vision and Medical Image, which took place in Funchal, Madeira, Portugal, 14-16 October 2013.  The twenty-two chapters were written by invited experts of international recognition and address important issues in medical image processing and computational vision, including: 3D vision, 3D visualization, colour quantisation, continuum mechanics, data fusion, data mining, face recognition, GPU parallelisation, image acquisition and reconstruction, image and video analysis, image clustering, image registration, image restoring, image segmentation, machine learning, modelling and simulation, object detection, object recognition, object tracking, optical flow, pattern recognition, pose estimat...

  18. A high performance parallel approach to medical imaging

    International Nuclear Information System (INIS)

    Frieder, G.; Frieder, O.; Stytz, M.R.

    1988-01-01

    Research into medical imaging using general purpose parallel processing architectures is described and a review of the performance of previous medical imaging machines is provided. Results demonstrating that general purpose parallel architectures can achieve performance comparable to other, specialized, medical imaging machine architectures is presented. A new back-to-front hidden-surface removal algorithm is described. Results demonstrating the computational savings obtained by using the modified back-to-front hidden-surface removal algorithm are presented. Performance figures for forming a full-scale medical image on a mesh interconnected multiprocessor are presented

  19. Content-Based High-Resolution Remote Sensing Image Retrieval via Unsupervised Feature Learning and Collaborative Affinity Metric Fusion

    Directory of Open Access Journals (Sweden)

    Yansheng Li

    2016-08-01

    Full Text Available With the urgent demand for automatic management of large numbers of high-resolution remote sensing images, content-based high-resolution remote sensing image retrieval (CB-HRRS-IR has attracted much research interest. Accordingly, this paper proposes a novel high-resolution remote sensing image retrieval approach via multiple feature representation and collaborative affinity metric fusion (IRMFRCAMF. In IRMFRCAMF, we design four unsupervised convolutional neural networks with different layers to generate four types of unsupervised features from the fine level to the coarse level. In addition to these four types of unsupervised features, we also implement four traditional feature descriptors, including local binary pattern (LBP, gray level co-occurrence (GLCM, maximal response 8 (MR8, and scale-invariant feature transform (SIFT. In order to fully incorporate the complementary information among multiple features of one image and the mutual information across auxiliary images in the image dataset, this paper advocates collaborative affinity metric fusion to measure the similarity between images. The performance evaluation of high-resolution remote sensing image retrieval is implemented on two public datasets, the UC Merced (UCM dataset and the Wuhan University (WH dataset. Large numbers of experiments show that our proposed IRMFRCAMF can significantly outperform the state-of-the-art approaches.

  20. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Tian Yang-Chao; Wu Zi-Yu; Zhu Pei-Ping

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method