WorldWideScience

Sample records for medical image databases

  1. Quantitative imaging features: extension of the oncology medical image database

    Patel, M. N.; Looney, P. T.; Young, K. C.; Halling-Brown, M. D.

    2015-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. With the advent of digital imaging modalities and the rapid growth in both diagnostic and therapeutic imaging, the ability to be able to harness this large influx of data is of paramount importance. The Oncology Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, and annotations and where applicable expert determined ground truths describing features of interest. Medical imaging provides the ability to detect and localize many changes that are important to determine whether a disease is present or a therapy is effective by depicting alterations in anatomic, physiologic, biochemical or molecular processes. Quantitative imaging features are sensitive, specific, accurate and reproducible imaging measures of these changes. Here, we describe an extension to the OMI-DB whereby a range of imaging features and descriptors are pre-calculated using a high throughput approach. The ability to calculate multiple imaging features and data from the acquired images would be valuable and facilitate further research applications investigating detection, prognosis, and classification. The resultant data store contains more than 10 million quantitative features as well as features derived from CAD predictions. Theses data can be used to build predictive models to aid image classification, treatment response assessment as well as to identify prognostic imaging biomarkers.

  2. Combined semantic and similarity search in medical image databases

    Seifert, Sascha; Thoma, Marisa; Stegmaier, Florian; Hammon, Matthias; Kramer, Martin; Huber, Martin; Kriegel, Hans-Peter; Cavallaro, Alexander; Comaniciu, Dorin

    2011-03-01

    The current diagnostic process at hospitals is mainly based on reviewing and comparing images coming from multiple time points and modalities in order to monitor disease progression over a period of time. However, for ambiguous cases the radiologist deeply relies on reference literature or second opinion. Although there is a vast amount of acquired images stored in PACS systems which could be reused for decision support, these data sets suffer from weak search capabilities. Thus, we present a search methodology which enables the physician to fulfill intelligent search scenarios on medical image databases combining ontology-based semantic and appearance-based similarity search. It enabled the elimination of 12% of the top ten hits which would arise without taking the semantic context into account.

  3. Multimodality medical image database for temporal lobe epilepsy

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-05-01

    This paper presents the development of a human brain multi-modality database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as non-verbal Wechsler memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication matches the neurosurgeons expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  4. Wavelet optimization for content-based image retrieval in medical databases.

    Quellec, G; Lamard, M; Cazuguel, G; Cochener, B; Roux, C

    2010-04-01

    We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize the distribution of wavelet coefficients in each subband of the decomposition. A distance measure is then defined to compare two image signatures and thus retrieve the most similar images in a database when a query image is submitted by a physician. To retrieve relevant images from a medical database, the signatures and the distance measure must be related to the medical interpretation of images. As a consequence, we introduce several degrees of freedom in the system so that it can be tuned to any pathology and image modality. In particular, we propose to adapt the wavelet basis, within the lifting scheme framework, and to use a custom decomposition scheme. Weights are also introduced between subbands. All these parameters are tuned by an optimization procedure, using the medical grading of each image in the database to define a performance measure. The system is assessed on two medical image databases: one for diabetic retinopathy follow up and one for screening mammography, as well as a general purpose database. Results are promising: a mean precision of 56.50%, 70.91% and 96.10% is achieved for these three databases, when five images are returned by the system. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy

    Tomi Kauppi

    2013-01-01

    Full Text Available We address the performance evaluation practices for developing medical image analysis methods, in particular, how to establish and share databases of medical images with verified ground truth and solid evaluation protocols. Such databases support the development of better algorithms, execution of profound method comparisons, and, consequently, technology transfer from research laboratories to clinical practice. For this purpose, we propose a framework consisting of reusable methods and tools for the laborious task of constructing a benchmark database. We provide a software tool for medical image annotation helping to collect class label, spatial span, and expert's confidence on lesions and a method to appropriately combine the manual segmentations from multiple experts. The tool and all necessary functionality for method evaluation are provided as public software packages. As a case study, we utilized the framework and tools to establish the DiaRetDB1 V2.1 database for benchmarking diabetic retinopathy detection algorithms. The database contains a set of retinal images, ground truth based on information from multiple experts, and a baseline algorithm for the detection of retinopathy lesions.

  6. A Medical Image Backup Architecture Based on a NoSQL Database and Cloud Computing Services.

    Santos Simões de Almeida, Luan Henrique; Costa Oliveira, Marcelo

    2015-01-01

    The use of digital systems for storing medical images generates a huge volume of data. Digital images are commonly stored and managed on a Picture Archiving and Communication System (PACS), under the DICOM standard. However, PACS is limited because it is strongly dependent on the server's physical space. Alternatively, Cloud Computing arises as an extensive, low cost, and reconfigurable resource. However, medical images contain patient information that can not be made available in a public cloud. Therefore, a mechanism to anonymize these images is needed. This poster presents a solution for this issue by taking digital images from PACS, converting the information contained in each image file to a NoSQL database, and using cloud computing to store digital images.

  7. Development of educational image databases and e-books for medical physics training.

    Tabakov, S; Roberts, V C; Jonsson, B-A; Ljungberg, M; Lewis, C A; Wirestam, R; Strand, S-E; Lamm, I-L; Milano, F; Simmons, A; Deane, C; Goss, D; Aitken, V; Noel, A; Giraud, J-Y; Sherriff, S; Smith, P; Clarke, G; Almqvist, M; Jansson, T

    2005-09-01

    Medical physics education and training requires the use of extensive imaging material and specific explanations. These requirements provide an excellent background for application of e-Learning. The EU projects Consortia EMERALD and EMIT developed five volumes of such materials, now used in 65 countries. EMERALD developed e-Learning materials in three areas of medical physics (X-ray diagnostic radiology, nuclear medicine and radiotherapy). EMIT developed e-Learning materials in two further areas: ultrasound and magnetic resonance imaging. This paper describes the development of these e-Learning materials (consisting of e-books and educational image databases). The e-books include tasks helping studying of various equipment and methods. The text of these PDF e-books is hyperlinked with respective images. The e-books are used through the readers' own Internet browser. Each Image Database (IDB) includes a browser, which displays hundreds of images of equipment, block diagrams and graphs, image quality examples, artefacts, etc. Both the e-books and IDB are engraved on five separate CD-ROMs. Demo of these materials can be taken from www.emerald2.net.

  8. Establishing an international reference image database for research and development in medical image processing

    Horsch, A.D.; Prinz, M.; Schneider, S.; Sipilä, O; Spinnler, K.; Vallée, J-P; Verdonck-de Leeuw, I; Vogl, R.; Wittenberg, T.; Zahlmann, G.

    2004-01-01

    INTRODUCTION: The lack of comparability of evaluation results is one of the major obstacles of research and development in Medical Image Processing (MIP). The main reason for that is the usage of different image datasets with different quality, size and Gold standard. OBJECTIVES: Therefore, one of

  9. Review of interdisciplinary online-image-databases and their usability in medical education

    Kammerer, Ferdinand J.

    2006-11-01

    Full Text Available Images play a significant role in medical teaching. They can get prospective physicians acquainted with specific pathological changes as early as possible and they support training their diagnostic eye. The latest improvements in Web-Based-Training offer extensive features for cost-effective studying adjustable to the individual student's requirements. However, many web-sites provide only qualitatively heterogeneous data and a limited inventory of images. This generally complicates any systematic access to the information the student requires.During the last years, several projects were initiated trying to overcome these difficulties. Web-Portals should provide access to large sets of images in a centralized manner while encompassing several medical subjects. For five of these portals their applicability for medical education was investigated considering structure, navigation and search mechanisms. Some notable approaches to implementing the various search functions were observed. However, some sites have room for improvement concerning quality of content as well as clarity of presentation and navigation. Based on the problems discovered and the approaches found, a catalogue of requirements was compiled for creating a Web-Portal to optimally support medical education.

  10. Medical Imaging.

    Barker, M. C. J.

    1996-01-01

    Discusses four main types of medical imaging (x-ray, radionuclide, ultrasound, and magnetic resonance) and considers their relative merits. Describes important recent and possible future developments in image processing. (Author/MKR)

  11. Draft secure medical database standard.

    Pangalos, George

    2002-01-01

    Medical database security is a particularly important issue for all Healthcare establishments. Medical information systems are intended to support a wide range of pertinent health issues today, for example: assure the quality of care, support effective management of the health services institutions, monitor and contain the cost of care, implement technology into care without violating social values, ensure the equity and availability of care, preserve humanity despite the proliferation of technology etc.. In this context, medical database security aims primarily to support: high availability, accuracy and consistency of the stored data, the medical professional secrecy and confidentiality, and the protection of the privacy of the patient. These properties, though of technical nature, basically require that the system is actually helpful for medical care and not harmful to patients. These later properties require in turn not only that fundamental ethical principles are not violated by employing database systems, but instead, are effectively enforced by technical means. This document reviews the existing and emerging work on the security of medical database systems. It presents in detail the related problems and requirements related to medical database security. It addresses the problems of medical database security policies, secure design methodologies and implementation techniques. It also describes the current legal framework and regulatory requirements for medical database security. The issue of medical database security guidelines is also examined in detailed. The current national and international efforts in the area are studied. It also gives an overview of the research work in the area. The document also presents in detail the most complete to our knowledge set of security guidelines for the development and operation of medical database systems.

  12. Medical imaging

    Loshkajian, A.

    2000-01-01

    This didactical book presents the medical imaging techniques: radiography, scanner, nuclear magnetic resonance (NMR). Examples are given for the most common pathologies in all domains of medicine. (J.S.)

  13. Medical imaging

    Townsend, David W

    1996-01-01

    Since the introduction of the X-ray scanner into radiology almost 25 years ago, non-invasive imaging has become firmly established as an essential tool in the diagnosis of disease. Fully three-dimensional imaging of internal organs is now possible, b and for studies which explore the functional status of the body. Powerful techniques to correlate anatomy and function are available, and scanners which combine anatomical and functional imaging in a single device are under development. Such techniques have been made possible through r ecent technological and mathematical advances. This series of lectures will review both the physical basis of medical imaging techniques using X-rays, gamma and positron emitting radiosiotopes, and nuclear magnetic resonance, and the mathematical methods used to reconstruct three-dimentional distributions from projection data. The lectures will trace the development of medical imaging from simple radiographs to the present-day non-invasive measurement of in vivo biochemistry. They ...

  14. Medical imaging

    Elliott, Alex

    2005-01-01

    Diagnostic medical imaging is a fundamental part of the practice of modern medicine and is responsible for the expenditure of considerable amounts of capital and revenue monies in healthcare systems around the world. Much research and development work is carried out, both by commercial companies and the academic community. This paper reviews briefly each of the major diagnostic medical imaging techniques-X-ray (planar and CT), ultrasound, nuclear medicine (planar, SPECT and PET) and magnetic resonance. The technical challenges facing each are highlighted, with some of the most recent developments. In terms of the future, interventional/peri-operative imaging, the advancement of molecular medicine and gene therapy are identified as potential areas of expansion

  15. An XCT image database system

    Komori, Masaru; Minato, Kotaro; Koide, Harutoshi; Hirakawa, Akina; Nakano, Yoshihisa; Itoh, Harumi; Torizuka, Kanji; Yamasaki, Tetsuo; Kuwahara, Michiyoshi.

    1984-01-01

    In this paper, an expansion of X-ray CT (XCT) examination history database to XCT image database is discussed. The XCT examination history database has been constructed and used for daily examination and investigation in our hospital. This database consists of alpha-numeric information (locations, diagnosis and so on) of more than 15,000 cases, and for some of them, we add tree structured image data which has a flexibility for various types of image data. This database system is written by MUMPS database manipulation language. (author)

  16. Datamining on distributed medical databases

    Have, Anna Szynkowiak

    2004-01-01

    This Ph.D. thesis focuses on clustering techniques for Knowledge Discovery in Databases. Various data mining tasks relevant for medical applications are described and discussed. A general framework which combines data projection and data mining and interpretation is presented. An overview...... is available. If data is unlabeled, then it is possible to generate keywords (in case of textual data) or key-patterns, as an informative representation of the obtained clusters. The methods are applied on simple artificial data sets, as well as collections of textual and medical data. In Danish: Denne ph...

  17. Intelligent distributed medical image management

    Garcia, Hong-Mei C.; Yun, David Y.

    1995-05-01

    The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.

  18. Database for radiation therapy images

    Shalev, S.; Cosby, S.; Leszczynski, K.; Chu, T.

    1989-01-01

    The authors have developed a database for images acquired during simulation and verification of radiation treatments. Simulation images originate as planning films that are digitized with a video camera, or through direct digitization of fluoroscopic images. Verification images may also be digitized from portal films or acquired with an on-line portal imaging system. Images are classified by the patient, the fraction, the field direction, static or dynamic (movie) sequences, and the type of processing applied. Additional parameters indicate whether the source is a simulation or treatment, whether images are digitized film or real-time acquisitions, and whether treatment is portal or double exposure for beam localization. Examples are presented for images acquired, processed, stored, and displayed with on-line portal imaging system (OPIUM) and digital simulation system (FLIP)

  19. Medical imaging and the Internet

    Jones, D.N.; Carr, P.

    1995-01-01

    A brief introduction to the INTERNET and its benefits for those involved in nuclear medical imaging is given. In Australia, depending on the type of institution/department involved, connection to the INTERNET may be obtained via the Australian Academic and Research Network or through a commercial provider. The recent proliferation of WWW servers has also resulted in multiple medical imaging databases and teaching resources becoming available to the user. Some Newsgroups and WWW addresses related to radiology are provided. 3 refs

  20. Common hyperspectral image database design

    Tian, Lixun; Liao, Ningfang; Chai, Ali

    2009-11-01

    This paper is to introduce Common hyperspectral image database with a demand-oriented Database design method (CHIDB), which comprehensively set ground-based spectra, standardized hyperspectral cube, spectral analysis together to meet some applications. The paper presents an integrated approach to retrieving spectral and spatial patterns from remotely sensed imagery using state-of-the-art data mining and advanced database technologies, some data mining ideas and functions were associated into CHIDB to make it more suitable to serve in agriculture, geological and environmental areas. A broad range of data from multiple regions of the electromagnetic spectrum is supported, including ultraviolet, visible, near-infrared, thermal infrared, and fluorescence. CHIDB is based on dotnet framework and designed by MVC architecture including five main functional modules: Data importer/exporter, Image/spectrum Viewer, Data Processor, Parameter Extractor, and On-line Analyzer. The original data were all stored in SQL server2008 for efficient search, query and update, and some advance Spectral image data Processing technology are used such as Parallel processing in C#; Finally an application case is presented in agricultural disease detecting area.

  1. Medical Imaging System

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  2. Digital medical imaging

    Goeringer, F.; Mun, S.K.; Kerlin, B.D.

    1989-01-01

    In formulating an implementation strategy for digital medical imaging, three interrelated thrusts have emerged for the defense medical establishment. These thrusts: totally filmless medical imaging on the battlefield, teleradiology, and DIN/PACS for peacetime military health care are discussed. They have implications in their fully developed form as resource savers and quality improvers for the unique aspects of military health care

  3. Medical ultrasound imaging

    Jensen, Jørgen Arendt

    2007-01-01

    The paper gives an introduction to current medical ultrasound imaging systems. The basics of anatomic and blood flow imaging are described. The properties of medical ultrasound and its focusing are described, and the various methods for two- and three-dimensional imaging of the human anatomy...

  4. Database Description - Open TG-GATEs Pathological Image Database | LSDB Archive [Life Science Database Archive metadata

    Full Text Available List Contact us Open TG-GATEs Pathological Image Database Database Description General information of database Database... name Open TG-GATEs Pathological Image Database Alternative name - DOI 10.18908/lsdba.nbdc00954-0...iomedical Innovation 7-6-8, Saito-asagi, Ibaraki-city, Osaka 567-0085, Japan TEL:81-72-641-9826 Email: Database... classification Toxicogenomics Database Organism Taxonomy Name: Rattus norvegi... Article title: Author name(s): Journal: External Links: Original website information Database

  5. Processing of medical images

    Restrepo, A.

    1998-01-01

    Thanks to the innovations in the technology for the processing of medical images, to the high development of better and cheaper computers, and, additionally, to the advances in the systems of communications of medical images, the acquisition, storage and handling of digital images has acquired great importance in all the branches of the medicine. It is sought in this article to introduce some fundamental ideas of prosecution of digital images that include such aspects as their representation, storage, improvement, visualization and understanding

  6. Solutions for medical databases optimal exploitation.

    Branescu, I; Purcarea, V L; Dobrescu, R

    2014-03-15

    The paper discusses the methods to apply OLAP techniques for multidimensional databases that leverage the existing, performance-enhancing technique, known as practical pre-aggregation, by making this technique relevant to a much wider range of medical applications, as a logistic support to the data warehousing techniques. The transformations have practically low computational complexity and they may be implemented using standard relational database technology. The paper also describes how to integrate the transformed hierarchies in current OLAP systems, transparently to the user and proposes a flexible, "multimodel" federated system for extending OLAP querying to external object databases.

  7. Medical imaging technology

    Haidekker, Mark A

    2013-01-01

    Biomedical imaging is a relatively young discipline that started with Conrad Wilhelm Roentgen’s discovery of the x-ray in 1885. X-ray imaging was rapidly adopted in hospitals around the world. However, it was the advent of computerized data and image processing that made revolutionary new imaging modalities possible. Today, cross-sections and three-dimensional reconstructions of the organs inside the human body is possible with unprecedented speed, detail and quality. This book provides an introduction into the principles of image formation of key medical imaging modalities: X-ray projection imaging, x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, and radionuclide imaging. Recent developments in optical imaging are also covered. For each imaging modality, the introduction into the physical principles and sources of contrast is provided, followed by the methods of image formation, engineering aspects of the imaging devices, and a discussion of strengths and limitations of the modal...

  8. Medical imaging systems

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  9. Classification in Medical Imaging

    Chen, Chen

    Classification is extensively used in the context of medical image analysis for the purpose of diagnosis or prognosis. In order to classify image content correctly, one needs to extract efficient features with discriminative properties and build classifiers based on these features. In addition...... on characterizing human faces and emphysema disease in lung CT images....

  10. A digital library for medical imaging activities

    dos Santos, Marcelo; Furuie, Sérgio S.

    2007-03-01

    This work presents the development of an electronic infrastructure to make available a free, online, multipurpose and multimodality medical image database. The proposed infrastructure implements a distributed architecture for medical image database, authoring tools, and a repository for multimedia documents. Also it includes a peer-reviewed model that assures quality of dataset. This public repository provides a single point of access for medical images and related information to facilitate retrieval tasks. The proposed approach has been used as an electronic teaching system in Radiology as well.

  11. Transformation invariant image indexing and retrieval for image databases

    Gevers, Th.; Smeulders, A.W.M.

    1994-01-01

    This paper presents a novel design of an image database system which supports storage, indexing and retrieval of images by content. The image retrieval methodology is based on the observation that images can be discriminated by the presence of image objects and their spatial relations. Images in the

  12. DEIMOS – an Open Source Image Database

    M. Blazek

    2011-12-01

    Full Text Available The DEIMOS (DatabasE of Images: Open Source is created as an open-source database of images and videos for testing, verification and comparing of various image and/or video processing techniques such as enhancing, compression and reconstruction. The main advantage of DEIMOS is its orientation to various application fields – multimedia, television, security, assistive technology, biomedicine, astronomy etc. The DEIMOS is/will be created gradually step-by-step based upon the contributions of team members. The paper is describing basic parameters of DEIMOS database including application examples.

  13. Drug interaction databases in medical literature

    Kongsholm, Gertrud Gansmo; Nielsen, Anna Katrine Toft; Damkier, Per

    2015-01-01

    PURPOSE: It is well documented that drug-drug interaction databases (DIDs) differ substantially with respect to classification of drug-drug interactions (DDIs). The aim of this study was to study online available transparency of ownership, funding, information, classifications, staff training...... available transparency of ownership, funding, information, classifications, staff training, and underlying documentation varies substantially among various DIDs. Open access DIDs had a statistically lower score on parameters assessed....... and the three most commonly used subscription DIDs in the medical literature. The following parameters were assessed for each of the databases: Ownership, classification of interactions, primary information sources, and staff qualification. We compared the overall proportion of yes/no answers from open access...

  14. Document image database indexing with pictorial dictionary

    Akbari, Mohammad; Azimi, Reza

    2010-02-01

    In this paper we introduce a new approach for information retrieval from Persian document image database without using Optical Character Recognition (OCR).At first an attribute called subword upper contour label is defined then, a pictorial dictionary is constructed based on this attribute for the subwords. By this approach we address two issues in document image retrieval: keyword spotting and retrieval according to the document similarities. The proposed methods have been evaluated on a Persian document image database. The results have proved the ability of this approach in document image information retrieval.

  15. Medical Care Cost Recovery National Database (MCCR NDB)

    Department of Veterans Affairs — The Medical Care Cost Recovery National Database (MCCR NDB) provides a repository of summary Medical Care Collections Fund (MCCF) billing and collection information...

  16. Medical Imaging and Infertility.

    Peterson, Rebecca

    2016-11-01

    Infertility affects many couples, and medical imaging plays a vital role in its diagnosis and treatment. Radiologic technologists benefit from having a broad understanding of infertility risk factors and causes. This article describes the typical structure and function of the male and female reproductive systems, as well as congenital and acquired conditions that could lead to a couple's inability to conceive. Medical imaging procedures performed for infertility diagnosis are discussed, as well as common interventional options available to patients. © 2016 American Society of Radiologic Technologists.

  17. BIRD: Bio-Image Referral Database. Design and implementation of a new web based and patient multimedia data focused system for effective medical diagnosis and therapy.

    Pinciroli, Francesco; Masseroli, Marco; Acerbo, Livio A; Bonacina, Stefano; Ferrari, Roberto; Marchente, Mario

    2004-01-01

    This paper presents a low cost software platform prototype supporting health care personnel in retrieving patient referral multimedia data. These information are centralized in a server machine and structured by using a flexible eXtensible Markup Language (XML) Bio-Image Referral Database (BIRD). Data are distributed on demand to requesting client in an Intranet network and transformed via eXtensible Stylesheet Language (XSL) to be visualized in an uniform way on market browsers. The core server operation software has been developed in PHP Hypertext Preprocessor scripting language, which is very versatile and useful for crafting a dynamic Web environment.

  18. Superconductors and medical imaging

    Aubert, Guy

    2011-01-01

    After difficult beginnings in the 1970's, magnetic resonance imaging (MRI) has evolved to become nowadays the jewel in the crown of medical technology. Superconductors have been a key factor for the extraordinary expansion of MRI which in turn represents about 75 % of their total market. After recalling some basic principles, this article traces their common history and refers to future developments. (author)

  19. Access database application in medical treatment management platform

    Wu Qingming

    2014-01-01

    For timely, accurate and flexible access to medical expenses data, we applied Microsoft Access 2003 database management software, and we finished the establishment of a management platform for medical expenses. By developing management platform for medical expenses, overall hospital costs for medical expenses can be controlled to achieve a real-time monitoring of medical expenses. Using the Access database management platform for medical expenses not only changes the management model, but also promotes a sound management system for medical expenses. (authors)

  20. An image database structure for pediatric radiology

    Mankovich, N.J.

    1987-01-01

    The operation of the Clinical Radiology Imaging System (CRIS) in Pediatric Radiology at UCLA relies on the orderly flow of text and image data among the three basic subsystems including acquisition, storage, and display. CRIS provides the radiologist, clinician, and technician with data at clinical image workstations by maintaining comprehensive database. CRIS is made up of sub-systems, each composed of one more programs or tasks which operate in parallel on a VAX-11/750 microcomputer in Pediatric Radiology. Tasks are coordinated through dynamic data structures that include system event flags and disk-resident queues. This report outlines: (1) the CRIS data model, (2) the flow of information among CRIS components, (3) the underlying database structures which support the acquisition, display, and storage of text and image information, and (4) current database statistics

  1. Mobile medical image retrieval

    Duc, Samuel; Depeursinge, Adrien; Eggel, Ivan; Müller, Henning

    2011-03-01

    Images are an integral part of medical practice for diagnosis, treatment planning and teaching. Image retrieval has gained in importance mainly as a research domain over the past 20 years. Both textual and visual retrieval of images are essential. In the process of mobile devices becoming reliable and having a functionality equaling that of formerly desktop clients, mobile computing has gained ground and many applications have been explored. This creates a new field of mobile information search & access and in this context images can play an important role as they often allow understanding complex scenarios much quicker and easier than free text. Mobile information retrieval in general has skyrocketed over the past year with many new applications and tools being developed and all sorts of interfaces being adapted to mobile clients. This article describes constraints of an information retrieval system including visual and textual information retrieval from the medical literature of BioMedCentral and of the RSNA journals Radiology and Radiographics. Solutions for mobile data access with an example on an iPhone in a web-based environment are presented as iPhones are frequently used and the operating system is bound to become the most frequent smartphone operating system in 2011. A web-based scenario was chosen to allow for a use by other smart phone platforms such as Android as well. Constraints of small screens and navigation with touch screens are taken into account in the development of the application. A hybrid choice had to be taken to allow for taking pictures with the cell phone camera and upload them for visual similarity search as most producers of smart phones block this functionality to web applications. Mobile information access and in particular access to images can be surprisingly efficient and effective on smaller screens. Images can be read on screen much faster and relevance of documents can be identified quickly through the use of images contained in

  2. Interactive searching of facial image databases

    Nicholls, Robert A.; Shepherd, John W.; Shepherd, Jean

    1995-09-01

    A set of psychological facial descriptors has been devised to enable computerized searching of criminal photograph albums. The descriptors have been used to encode image databased of up to twelve thousand images. Using a system called FACES, the databases are searched by translating a witness' verbal description into corresponding facial descriptors. Trials of FACES have shown that this coding scheme is more productive and efficient than searching traditional photograph albums. An alternative method of searching the encoded database using a genetic algorithm is currenly being tested. The genetic search method does not require the witness to verbalize a description of the target but merely to indicate a degree of similarity between the target and a limited selection of images from the database. The major drawback of FACES is that is requires a manual encoding of images. Research is being undertaken to automate the process, however, it will require an algorithm which can predict human descriptive values. Alternatives to human derived coding schemes exist using statistical classifications of images. Since databases encoded using statistical classifiers do not have an obvious direct mapping to human derived descriptors, a search method which does not require the entry of human descriptors is required. A genetic search algorithm is being tested for such a purpose.

  3. Medical imaging systems

    Frangioni, John V [Wayland, MA

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  4. Wavelets in medical imaging

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-01-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  5. Wavelets in medical imaging

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  6. Medical image informatics infrastructure design and applications.

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  7. Machine learning and medical imaging

    Shen, Dinggang; Sabuncu, Mert

    2016-01-01

    Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, a...

  8. The reference ballistic imaging database revisited.

    De Ceuster, Jan; Dujardin, Sylvain

    2015-03-01

    A reference ballistic image database (RBID) contains images of cartridge cases fired in firearms that are in circulation: a ballistic fingerprint database. The performance of an RBID was investigated a decade ago by De Kinder et al. using IBIS(®) Heritage™ technology. The results of that study were published in this journal, issue 214. Since then, technologies have evolved quite significantly and novel apparatus have become available on the market. The current research article investigates the efficiency of another automated ballistic imaging system, Evofinder(®) using the same database as used by De Kinder et al. The results demonstrate a significant increase in correlation efficiency: 38% of all matches were on first position of the Evofinder correlation list in comparison to IBIS(®) Heritage™ where only 19% were on the first position. Average correlation times are comparable to the IBIS(®) Heritage™ system. While Evofinder(®) demonstrates specific improvement for mutually correlating different ammunition brands, ammunition dependence of the markings is still strongly influencing the correlation result because the markings may vary considerably. As a consequence a great deal of potential hits (36%) was still far down in the correlation lists (positions 31 and lower). The large database was used to examine the probability of finding a match as a function of correlation list verification. As an example, the RBID study on Evofinder(®) demonstrates that to find at least 90% of all potential matches, at least 43% of the items in the database need to be compared on screen and this for breech face markings and firing pin impression separately. These results, although a clear improvement to the original RBID study, indicate that the implementation of such a database should still not be considered nowadays. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Medical image registration for analysis

    Petrovic, V.

    2006-01-01

    Full text: Image registration techniques represent a rich family of image processing and analysis tools that aim to provide spatial correspondences across sets of medical images of similar and disparate anatomies and modalities. Image registration is a fundamental and usually the first step in medical image analysis and this paper presents a number of advanced techniques as well as demonstrates some of the advanced medical image analysis techniques they make possible. A number of both rigid and non-rigid medical image alignment algorithms of equivalent and merely consistent anatomical structures respectively are presented. The algorithms are compared in terms of their practical aims, inputs, computational complexity and level of operator (e.g. diagnostician) interaction. In particular, the focus of the methods discussion is placed on the applications and practical benefits of medical image registration. Results of medical image registration on a number of different imaging modalities and anatomies are presented demonstrating the accuracy and robustness of their application. Medical image registration is quickly becoming ubiquitous in medical imaging departments with the results of such algorithms increasingly used in complex medical image analysis and diagnostics. This paper aims to demonstrate at least part of the reason why

  10. Development of a personalized training system using the Lung Image Database Consortium and Image Database resource Initiative Database.

    Lin, Hongli; Wang, Weisheng; Luo, Jiawei; Yang, Xuedong

    2014-12-01

    The aim of this study was to develop a personalized training system using the Lung Image Database Consortium (LIDC) and Image Database resource Initiative (IDRI) Database, because collecting, annotating, and marking a large number of appropriate computed tomography (CT) scans, and providing the capability of dynamically selecting suitable training cases based on the performance levels of trainees and the characteristics of cases are critical for developing a efficient training system. A novel approach is proposed to develop a personalized radiology training system for the interpretation of lung nodules in CT scans using the Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) database, which provides a Content-Boosted Collaborative Filtering (CBCF) algorithm for predicting the difficulty level of each case of each trainee when selecting suitable cases to meet individual needs, and a diagnostic simulation tool to enable trainees to analyze and diagnose lung nodules with the help of an image processing tool and a nodule retrieval tool. Preliminary evaluation of the system shows that developing a personalized training system for interpretation of lung nodules is needed and useful to enhance the professional skills of trainees. The approach of developing personalized training systems using the LIDC/IDRL database is a feasible solution to the challenges of constructing specific training program in terms of cost and training efficiency. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  11. Design and implementation of typical target image database system

    Qin Kai; Zhao Yingjun

    2010-01-01

    It is necessary to provide essential background data and thematic data timely in image processing and application. In fact, application is an integrating and analyzing procedure with different kinds of data. In this paper, the authors describe an image database system which classifies, stores, manages and analyzes database of different types, such as image database, vector database, spatial database, spatial target characteristics database, its design and structure. (authors)

  12. Shared Medical Imaging Repositories.

    Lebre, Rui; Bastião, Luís; Costa, Carlos

    2018-01-01

    This article describes the implementation of a solution for the integration of ownership concept and access control over medical imaging resources, making possible the centralization of multiple instances of repositories. The proposed architecture allows the association of permissions to repository resources and delegation of rights to third entities. It includes a programmatic interface for management of proposed services, made available through web services, with the ability to create, read, update and remove all components resulting from the architecture. The resulting work is a role-based access control mechanism that was integrated with Dicoogle Open-Source Project. The solution has several application scenarios like, for instance, collaborative platforms for research and tele-radiology services deployed at Cloud.

  13. Internet-accessible radiographic database of Vietnam War casualties for medical student education.

    Critchley, Eric P; Smirniotopoulos, James G

    2003-04-01

    The purpose of this study was to determine the feasibility of archiving radiographic images from Vietnam era conflict casualties into a personal computer-based electronic database of text and images and displaying the data using an Internet-accessible database for preservation and educational purposes. Thirty-two patient cases were selected at random from a pool of 1,000 autopsy reports in which radiographs were available. A total of 74 radiographs from these cases were digitized using a commercial image scanner and then uploaded into an Internet accessible database. The quality of the digitized images was assessed by administering an image-based test to a group of 12 medical students. No statistically significant (p > 0.05) differences were found between test scores when using the original radiographs versus using the digitized radiographs on the Internet-accessible database. An Internet-accessible database is capable of effectively archiving Vietnam era casualty radiographs for educational purposes.

  14. Exploring Human Cognition Using Large Image Databases.

    Griffiths, Thomas L; Abbott, Joshua T; Hsu, Anne S

    2016-07-01

    Most cognitive psychology experiments evaluate models of human cognition using a relatively small, well-controlled set of stimuli. This approach stands in contrast to current work in neuroscience, perception, and computer vision, which have begun to focus on using large databases of natural images. We argue that natural images provide a powerful tool for characterizing the statistical environment in which people operate, for better evaluating psychological theories, and for bringing the insights of cognitive science closer to real applications. We discuss how some of the challenges of using natural images as stimuli in experiments can be addressed through increased sample sizes, using representations from computer vision, and developing new experimental methods. Finally, we illustrate these points by summarizing recent work using large image databases to explore questions about human cognition in four different domains: modeling subjective randomness, defining a quantitative measure of representativeness, identifying prior knowledge used in word learning, and determining the structure of natural categories. Copyright © 2016 Cognitive Science Society, Inc.

  15. Frontiers in medical imaging technology

    Iinuma, Takeshi

    1992-01-01

    At present many medical images are used for diagnostics and treatment. After the advent of X-ray computer tomography (XCT), the violent development of medical images has continued. Medical imaging technology can be defined as the field of technology that deals with the production, processing, display, transmission, evaluation and so on of medical images, and it can be said that the present development of medical imaging diagnostics has been led by medical imaging technology. In this report, the most advanced technology of medical imaging is explained. The principle of XCT is shown. The feature of XCT is that it can image the delicate difference in the X-ray absorption factor of the cross section being measured. The technical development has been advanced to reduce the time for imaging and to heighten the resolution. The technology which brings about a large impact to future imaging diagnostics is computed radiography. Magnetic resonance imaging is the method of imaging the distribution of protons in human bodies. Positron CT is the method of measurement by injecting a positron-emitting RI. These methods are explained. (K.I.)

  16. Medical alert bracelet (image)

    People with diabetes should always wear a medical alert bracelet or necklace that emergency medical workers will be able to find. Medical identification products can help ensure proper treatment in an ...

  17. Trends in medical image processing

    Robilotta, C.C.

    1987-01-01

    The function of medical image processing is analysed, mentioning the developments, the physical agents, and the main categories, as conection of distortion in image formation, detectability increase, parameters quantification, etc. (C.G.C.) [pt

  18. Radiology and Enterprise Medical Imaging Extensions (REMIX).

    Erdal, Barbaros S; Prevedello, Luciano M; Qian, Songyue; Demirer, Mutlu; Little, Kevin; Ryu, John; O'Donnell, Thomas; White, Richard D

    2018-02-01

    Radiology and Enterprise Medical Imaging Extensions (REMIX) is a platform originally designed to both support the medical imaging-driven clinical and clinical research operational needs of Department of Radiology of The Ohio State University Wexner Medical Center. REMIX accommodates the storage and handling of "big imaging data," as needed for large multi-disciplinary cancer-focused programs. The evolving REMIX platform contains an array of integrated tools/software packages for the following: (1) server and storage management; (2) image reconstruction; (3) digital pathology; (4) de-identification; (5) business intelligence; (6) texture analysis; and (7) artificial intelligence. These capabilities, along with documentation and guidance, explaining how to interact with a commercial system (e.g., PACS, EHR, commercial database) that currently exists in clinical environments, are to be made freely available.

  19. The Orthanc Ecosystem for Medical Imaging.

    Jodogne, Sébastien

    2018-05-03

    This paper reviews the components of Orthanc, a free and open-source, highly versatile ecosystem for medical imaging. At the core of the Orthanc ecosystem, the Orthanc server is a lightweight vendor neutral archive that provides PACS managers with a powerful environment to automate and optimize the imaging flows that are very specific to each hospital. The Orthanc server can be extended with plugins that provide solutions for teleradiology, digital pathology, or enterprise-ready databases. It is shown how software developers and research engineers can easily develop external software or Web portals dealing with medical images, with minimal knowledge of the DICOM standard, thanks to the advanced programming interface of the Orthanc server. The paper concludes by introducing the Stone of Orthanc, an innovative toolkit for the cross-platform rendering of medical images.

  20. Low dose CT image restoration using a database of image patches

    Ha, Sungsoo; Mueller, Klaus

    2015-01-01

    Reducing the radiation dose in CT imaging has become an active research topic and many solutions have been proposed to remove the significant noise and streak artifacts in the reconstructed images. Most of these methods operate within the domain of the image that is subject to restoration. This, however, poses limitations on the extent of filtering possible. We advocate to take into consideration the vast body of external knowledge that exists in the domain of already acquired medical CT images, since after all, this is what radiologists do when they examine these low quality images. We can incorporate this knowledge by creating a database of prior scans, either of the same patient or a diverse corpus of different patients, to assist in the restoration process. Our paper follows up on our previous work that used a database of images. Using images, however, is challenging since it requires tedious and error prone registration and alignment. Our new method eliminates these problems by storing a diverse set of small image patches in conjunction with a localized similarity matching scheme. We also empirically show that it is sufficient to store these patches without anatomical tags since their statistics are sufficiently strong to yield good similarity matches from the database and as a direct effect, produce image restorations of high quality. A final experiment demonstrates that our global database approach can recover image features that are difficult to preserve with conventional denoising approaches.

  1. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    NONE

    2011-02-15

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule{>=}3 mm,''''nodule<3 mm,'' and ''non-nodule{>=}3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked &apos

  2. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    2011-01-01

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule≥3 mm,''''nodule<3 mm,'' and ''non-nodule≥3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked ''nodule≥3 mm'' by at least one radiologist, of which 928 (34.7%) received such marks from all

  3. Image processing in medical ultrasound

    Hemmsen, Martin Christian

    This Ph.D project addresses image processing in medical ultrasound and seeks to achieve two major scientific goals: First to develop an understanding of the most significant factors influencing image quality in medical ultrasound, and secondly to use this knowledge to develop image processing...... multiple imaging setups. This makes the system well suited for development of new processing methods and for clinical evaluations, where acquisition of the exact same scan location for multiple methods is important. The second project addressed implementation, development and evaluation of SASB using...... methods for enhancing the diagnostic value of medical ultrasound. The project is an industrial Ph.D project co-sponsored by BK Medical ApS., with the commercial goal to improve the image quality of BK Medicals scanners. Currently BK Medical employ a simple conventional delay-and-sum beamformer to generate...

  4. Advances in medical image computing.

    Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P

    2009-01-01

    Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  5. Medical Imaging 4: Image formation

    Schneider, R.H.

    1990-01-01

    This book contains papers relating to the 1990 meeting of The International Society for Optical Engineering. Included are the following papers: Effect of protective layer on Resolution Properties of Photostimulable Phosphor Detector for Digital Radiographic System, Neural Network Scatter Correction Technique for Digital Radiography, Use of Computer Radiography for Portal Imaging

  6. Medical imaging 4

    Loew, M.H.

    1990-01-01

    This book is covered under the following topics: human visual pattern recognition, fractals, rules, and segments, three-dimensional image processing, MRI, MRI and mammography, clinical applications 1, angiography, image processing systems, image processing poster session

  7. Medical Imaging with Neural Networks

    Pattichis, C.; Cnstantinides, A.

    1994-01-01

    The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors)

  8. Medical Imaging with Neural Networks

    Pattichis, C [Department of Computer Science, University of Cyprus, Kallipoleos 75, P.O.Box 537, Nicosia (Cyprus); Cnstantinides, A [Department of Electrical Engineering, Imperial College of Science, Technology and Medicine, London SW7 2BT (United Kingdom)

    1994-12-31

    The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors). 61 refs, 4 tabs.

  9. Visual perception and medical imaging

    Jaffe, C.C.

    1985-01-01

    Medical imaging represents a particularly distinct discipline for image processing since it uniquely depends on the ''expert observer'' and yet models of the human visual system are totally inadequate at the complex level to allow satisfactory prediction of observer response to a given image modification. An illustration of the difficulties in assessing observer performance is shown by a series of optical illustrations which demonstrate that net cognitive behavior is not readily predictable. Although many of these phenomena are often considered as exceptional visual events, the setting of complex images makes it difficult to entirely exclude at least partial operation of these impairments during performance of the diagnostic medical imaging task

  10. Automated medical image segmentation techniques

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  11. Medical hyperspectral imaging: a review

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:24441941

  12. A hierarchical SVG image abstraction layer for medical imaging

    Kim, Edward; Huang, Xiaolei; Tan, Gang; Long, L. Rodney; Antani, Sameer

    2010-03-01

    As medical imaging rapidly expands, there is an increasing need to structure and organize image data for efficient analysis, storage and retrieval. In response, a large fraction of research in the areas of content-based image retrieval (CBIR) and picture archiving and communication systems (PACS) has focused on structuring information to bridge the "semantic gap", a disparity between machine and human image understanding. An additional consideration in medical images is the organization and integration of clinical diagnostic information. As a step towards bridging the semantic gap, we design and implement a hierarchical image abstraction layer using an XML based language, Scalable Vector Graphics (SVG). Our method encodes features from the raw image and clinical information into an extensible "layer" that can be stored in a SVG document and efficiently searched. Any feature extracted from the raw image including, color, texture, orientation, size, neighbor information, etc., can be combined in our abstraction with high level descriptions or classifications. And our representation can natively characterize an image in a hierarchical tree structure to support multiple levels of segmentation. Furthermore, being a world wide web consortium (W3C) standard, SVG is able to be displayed by most web browsers, interacted with by ECMAScript (standardized scripting language, e.g. JavaScript, JScript), and indexed and retrieved by XML databases and XQuery. Using these open source technologies enables straightforward integration into existing systems. From our results, we show that the flexibility and extensibility of our abstraction facilitates effective storage and retrieval of medical images.

  13. Topics in medical image processing and computational vision

    Jorge, Renato

    2013-01-01

      The sixteen chapters included in this book were written by invited experts of international recognition and address important issues in Medical Image Processing and Computational Vision, including: Object Recognition, Object Detection, Object Tracking, Pose Estimation, Facial Expression Recognition, Image Retrieval, Data Mining, Automatic Video Understanding and Management, Edges Detection, Image Segmentation, Modelling and Simulation, Medical thermography, Database Systems, Synthetic Aperture Radar and Satellite Imagery.   Different applications are addressed and described throughout the book, comprising: Object Recognition and Tracking, Facial Expression Recognition, Image Database, Plant Disease Classification, Video Understanding and Management, Image Processing, Image Segmentation, Bio-structure Modelling and Simulation, Medical Imaging, Image Classification, Medical Diagnosis, Urban Areas Classification, Land Map Generation.   The book brings together the current state-of-the-art in the various mul...

  14. Medical image processing

    Dougherty, Geoff

    2011-01-01

    This book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. This book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to e

  15. ASTER 2002-2003 Kansas Satellite Image Database (KSID)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2002-2003 consists of image data gathered by three sensors. The first image data are terrain-corrected, precision...

  16. MODIS 2002-2003 Kansas Satellite Image Database (KSID)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2002-2003 consists of image data gathered by three sensors. The first image data are terrain-corrected, precision...

  17. Genetic databases and consent for use of medical records

    Gevers, J. K. M.

    2004-01-01

    The legislation on the Icelandic genetic database provides for an opting-out system for the collection of encoded medical information from individual medical records. From the beginning this has raised criticism, in Iceland itself and abroad. The Supreme Court has now decided that this approach of

  18. Generative Interpretation of Medical Images

    Stegmann, Mikkel Bille

    2004-01-01

    This thesis describes, proposes and evaluates methods for automated analysis and quantification of medical images. A common theme is the usage of generative methods, which draw inference from unknown images by synthesising new images having shape, pose and appearance similar to the analysed images......, handling of non-Gaussian variation by means of cluster analysis, correction of respiratory noise in cardiac MRI, and the extensions to multi-slice two-dimensional time-series and bi-temporal three-dimensional models. The medical applications include automated estimation of: left ventricular ejection...

  19. [Medical image compression: a review].

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings.

  20. Medical databases in studies of drug teratogenicity: methodological issues

    Vera Ehrenstein

    2010-03-01

    Full Text Available Vera Ehrenstein1, Henrik T Sørensen1, Leiv S Bakketeig1,2, Lars Pedersen11Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark; 2Norwegian Institute of Public Health, Oslo, NorwayAbstract: More than half of all pregnant women take prescription medications, raising concerns about fetal safety. Medical databases routinely collecting data from large populations are potentially valuable resources for cohort studies addressing teratogenicity of drugs. These include electronic medical records, administrative databases, population health registries, and teratogenicity information services. Medical databases allow estimation of prevalences of birth defects with enhanced precision, but systematic error remains a potentially serious problem. In this review, we first provide a brief description of types of North American and European medical databases suitable for studying teratogenicity of drugs and then discuss manifestation of systematic errors in teratogenicity studies based on such databases. Selection bias stems primarily from the inability to ascertain all reproductive outcomes. Information bias (misclassification may be caused by paucity of recorded clinical details or incomplete documentation of medication use. Confounding, particularly confounding by indication, can rarely be ruled out. Bias that either masks teratogenicity or creates false appearance thereof, may have adverse consequences for the health of the child and the mother. Biases should be quantified and their potential impact on the study results should be assessed. Both theory and software are available for such estimation. Provided that methodological problems are understood and effectively handled, computerized medical databases are a valuable source of data for studies of teratogenicity of drugs.Keywords: databases, birth defects, epidemiologic methods, pharmacoepidemiology

  1. Machine Learning for Medical Imaging.

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. © RSNA, 2017.

  2. Java advanced medical image toolkit

    Saunder, T.H.C.; O'Keefe, G.J.; Scott, A.M.

    2002-01-01

    Full text: The Java Advanced Medical Image Toolkit (jAMIT) has been developed at the Center for PET and Department of Nuclear Medicine in an effort to provide a suite of tools that can be utilised in applications required to perform analysis, processing and visualisation of medical images. jAMIT uses Java Advanced Imaging (JAI) to combine the platform independent nature of Java with the speed benefits associated with native code. The object-orientated nature of Java allows the production of an extensible and robust package which is easily maintained. In addition to jAMIT, a Medical Image VO API called Sushi has been developed to provide access to many commonly used image formats. These include DICOM, Analyze, MINC/NetCDF, Trionix, Beat 6.4, Interfile 3.2/3.3 and Odyssey. This allows jAMIT to access data and study information contained in different medical image formats transparently. Additional formats can be added at any time without any modification to the jAMIT package. Tools available in jAMIT include 2D ROI Analysis, Palette Thresholding, Image Groping, Image Transposition, Scaling, Maximum Intensity Projection, Image Fusion, Image Annotation and Format Conversion. Future tools may include 2D Linear and Non-linear Registration, PET SUV Calculation, 3D Rendering and 3D ROI Analysis. Applications currently using JAMIT include Antibody Dosimetry Analysis, Mean Hemispheric Blood Flow Analysis, QuickViewing of PET Studies for Clinical Training, Pharamcodynamic Modelling based on Planar Imaging, and Medical Image Format Conversion. The use of jAMIT and Sushi for scripting and analysis in Matlab v6.1 and Jython is currently being explored. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  3. Compressive sensing in medical imaging.

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  4. Introduction to Medical Image Analysis

    Paulsen, Rasmus Reinhold; Moeslund, Thomas B.

    of the book is to present the fascinating world of medical image analysis in an easy and interesting way. Compared to many standard books on image analysis, the approach we have chosen is less mathematical and more casual. Some of the key algorithms are exemplified in C-code. Please note that the code...

  5. Medical image telecommunication

    Handmaker, H.; Bennington, J.L.; Lloyd, R.W.; Caspe, R.A.

    1986-01-01

    After years of waiting for Picture Archiving and Communication Systems (PACS) to become technologically mature and readily available at competitive costs, it appears that the ingredients are now available for producing at least the telecommunication component of the PACS. They are as follows: 1. A variety of pathways now exist for long-distance high-speed digital data transmission at acceptable costs. 2. Developments in computer technology and keen competition in the microcomputer and video display markets have markedly reduced to costs for components of digital data terminals. 3. The volume of native digitally acquired images is expanding yearly, whereas at the same time the pressure for converting images acquired in analog format to digital format is increasing. 4. The advantages of and potential for processing and storing imaging data in digital format are becoming more widely recognized. These factors, individually and collectively, favor the successful applications of image telecommunication to the field of diagnostic imaging. The authors have attempted to provide an overview of the subject and the basics of this emerging technology

  6. Developments in medical imaging techniques

    Kramer, Cornelis

    1979-01-01

    A review of the developments in medical imaging in the past 25 years shows a strong increase in the number of physical methods which have become available for obtaining images of diagnostic value. It is shown that despite this proliferation of methods the equipment used for obtaining the images can be based on a common structure. Also the resulting images can be characterized by a few relevant parameters which indicate their information content. On the basis of this common architecture a study is made of the potential capabilities of the large number of medical imaging techniques available now and in the future. Also the requirements and possibilities for handling the images obtained and for controlling the diagnostic systems are investigated [fr

  7. Evaluation Of Medical Fluoroscopy Imaging

    Hartana, Budi; Santoso

    2000-01-01

    It has been done to evaluate image system of medical fluoroscopic machine by Leeds Test Object (LTO). Two x-ray potentials of 70 kV and 40-60 kV were used to evaluate image by LTO on monitor and oscilloscope. Performance of imaging system decreased for some parameters of video signal, linearity of television scan, contras threshold of 4.5%, distortion integral of 65.1%, and focus uniformity decrease to edge image. Comparison of field diameter of television image to intensifier field vertically and horizontally were respectively 221:230 and 205:230, symmetrically vignetting, spatial resolution limit is 1.26 lp/mm

  8. Mobile object retrieval in server-based image databases

    Manger, D.; Pagel, F.; Widak, H.

    2013-05-01

    The increasing number of mobile phones equipped with powerful cameras leads to huge collections of user-generated images. To utilize the information of the images on site, image retrieval systems are becoming more and more popular to search for similar objects in an own image database. As the computational performance and the memory capacity of mobile devices are constantly increasing, this search can often be performed on the device itself. This is feasible, for example, if the images are represented with global image features or if the search is done using EXIF or textual metadata. However, for larger image databases, if multiple users are meant to contribute to a growing image database or if powerful content-based image retrieval methods with local features are required, a server-based image retrieval backend is needed. In this work, we present a content-based image retrieval system with a client server architecture working with local features. On the server side, the scalability to large image databases is addressed with the popular bag-of-word model with state-of-the-art extensions. The client end of the system focuses on a lightweight user interface presenting the most similar images of the database highlighting the visual information which is common with the query image. Additionally, new images can be added to the database making it a powerful and interactive tool for mobile contentbased image retrieval.

  9. Imaging techniques for medical diagnosis

    Gudden, F.

    1982-01-01

    In the last few decades, science, engineering and medicine have combinded to improve the quality of our lives to a level previously unimagined. Within the framework of medical engineering - the field of activity of the Medical Engineering Group of Siemens AG - diagnostic image-generating systems have played an important role in effecting these changes and improvements. The importance of these systems to the success of the Group is clearly evident. Diagnostic imaging systems account for 65% of the sales achieved by this Group. In this article an overview is presented of the major innovations and the aims of developments in the field of imaging systems. (orig.)

  10. Novel medical image enhancement algorithms

    Agaian, Sos; McClendon, Stephen A.

    2010-01-01

    In this paper, we present two novel medical image enhancement algorithms. The first, a global image enhancement algorithm, utilizes an alpha-trimmed mean filter as its backbone to sharpen images. The second algorithm uses a cascaded unsharp masking technique to separate the high frequency components of an image in order for them to be enhanced using a modified adaptive contrast enhancement algorithm. Experimental results from enhancing electron microscopy, radiological, CT scan and MRI scan images, using the MATLAB environment, are then compared to the original images as well as other enhancement methods, such as histogram equalization and two forms of adaptive contrast enhancement. An image processing scheme for electron microscopy images of Purkinje cells will also be implemented and utilized as a comparison tool to evaluate the performance of our algorithm.

  11. Medical imaging V

    Loew, M.H.

    1991-01-01

    This book is covered under the following topics: preprocessing and enhancement 1-3; segmentation, feature extraction, and detection 1-2; hardware and software systems for display; and user interface; MRI; MRI and PET; 3-D; image reconstruction, modeling, description, and coding; and knowledge-based methods

  12. Medical Imaging Informatics.

    Hsu, William; El-Saden, Suzie; Taira, Ricky K

    2016-01-01

    Imaging is one of the most important sources of clinically observable evidence that provides broad coverage, can provide insight on low-level scale properties, is noninvasive, has few side effects, and can be performed frequently. Thus, imaging data provides a viable observable that can facilitate the instantiation of a theoretical understanding of a disease for a particular patient context by connecting imaging findings to other biologic parameters in the model (e.g., genetic, molecular, symptoms, and patient survival). These connections can help inform their possible states and/or provide further coherent evidence. The field of radiomics is particularly dedicated to this task and seeks to extract quantifiable measures wherever possible. Example properties of investigation include genotype characterization, histopathology parameters, metabolite concentrations, vascular proliferation, necrosis, cellularity, and oxygenation. Important issues within the field include: signal calibration, spatial calibration, preprocessing methods (e.g., noise suppression, motion correction, and field bias correction), segmentation of target anatomic/pathologic entities, extraction of computed features, and inferencing methods connecting imaging features to biological states.

  13. Image Reference Database in Teleradiology: Migrating to WWW

    Pasqui, Valdo

    The paper presents a multimedia Image Reference Data Base (IRDB) used in Teleradiology. The application was developed at the University of Florence in the framework of the European Community TELEMED Project. TELEMED overall goals and IRDB requirements are outlined and the resulting architecture is described. IRDB is a multisite database containing radiological images, selected because their scientific interest, and their related information. The architecture consists of a set of IRDB Installations which are accessed from Viewing Stations (VS) located at different medical sites. The interaction between VS and IRDB Installations follows the client-server paradigm and uses an OSI level-7 protocol, named Telemed Communication Language. After reviewing Florence prototype implementation and experimentation, IRDB migration to World Wide Web (WWW) is discussed. A possible scenery to implement IRDB on the basis of WWW model is depicted in order to exploit WWW servers and browsers capabilities. Finally, the advantages of this conversion are outlined.

  14. Luminescence in medical image science

    Kandarakis, I.S., E-mail: kandarakis@teiath.gr

    2016-01-15

    Radiation detection in Medical Imaging is mostly based on the use of luminescent materials (scintillators and phosphors) coupled to optical sensors. Materials are employed in the form of granular screens, structured (needle-like) crystals and single crystal transparent blocks. Storage phosphors are also incorporated in some x-ray imaging plates. Description of detector performance is currently based on quality metrics, such as the Luminescence efficiency, the Modulation Transfer Function (MTF), the Noise Power Spectrum (NPS) and the Detective Quantum Efficiency (DQE) can be defined and evaluated. The aforementioned metrics are experimental evaluated for various materials in the form of screens. A software was designed (MINORE v1) to present image quality measurements in a graphical user interface (GUI) environment. Luminescence efficiency, signal and noise analysis are valuable tools for the evaluation of luminescent materials as candidates for medical imaging detectors. - Highlights: • Luminescence based medical imaging detectors. • Image science: MTF, NPS, DQE. • Phosphors screens light emission efficiency experimental evaluation. • Theoretical models for estimation of phosphor screen properties. • Software for medical image quality metrics.

  15. Medical gamma ray imaging

    Osborne, Louis S.; Lanza, Richard C.

    1984-01-01

    A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.

  16. Recent progress in medical imaging technology

    Endo, Masahiro

    2004-01-01

    Medical imaging is name of methods for diagnosis and therapy, which make visible with physical media such as X-ray, structures and functions of man's inside those are usually invisible. These methods are classified by the physical media into ultrasound imaging, magnetic resonance imaging, nuclear medicine imaging and X-ray imaging etc. Having characteristics different from one another, these are used complementarily in medical fields though in some case being competitive. Medical imaging is supported by highly progressed technology, which is called medical imaging technology. This paper describes a survey of recent progress of medical imaging technology in magnetic resonance imaging, nuclear medicine imaging and X-ray imaging. (author)

  17. Stereoscopic medical imaging collaboration system

    Okuyama, Fumio; Hirano, Takenori; Nakabayasi, Yuusuke; Minoura, Hirohito; Tsuruoka, Shinji

    2007-02-01

    The computerization of the clinical record and the realization of the multimedia have brought improvement of the medical service in medical facilities. It is very important for the patients to obtain comprehensible informed consent. Therefore, the doctor should plainly explain the purpose and the content of the diagnoses and treatments for the patient. We propose and design a Telemedicine Imaging Collaboration System which presents a three dimensional medical image as X-ray CT, MRI with stereoscopic image by using virtual common information space and operating the image from a remote location. This system is composed of two personal computers, two 15 inches stereoscopic parallax barrier type LCD display (LL-151D, Sharp), one 1Gbps router and 1000base LAN cables. The software is composed of a DICOM format data transfer program, an operation program of the images, the communication program between two personal computers and a real time rendering program. Two identical images of 512×768 pixcels are displayed on two stereoscopic LCD display, and both images show an expansion, reduction by mouse operation. This system can offer a comprehensible three-dimensional image of the diseased part. Therefore, the doctor and the patient can easily understand it, depending on their needs.

  18. Quantitative information in medical imaging

    Deconinck, F.

    1985-01-01

    When developing new imaging or image processing techniques, one constantly has in mind that the new technique should provide a better, or more optimal answer to medical tasks than existing techniques do 'Better' or 'more optimal' imply some kind of standard by which one can measure imaging or image processing performance. The choice of a particular imaging modality to answer a diagnostic task, such as the detection of coronary artery stenosis is also based on an implicit optimalisation of performance criteria. Performance is measured by the ability to provide information about an object (patient) to the person (referring doctor) who ordered a particular task. In medical imaging the task is generally to find quantitative information on bodily function (biochemistry, physiology) and structure (histology, anatomy). In medical imaging, a wide range of techniques is available. Each technique has it's own characteristics. The techniques discussed in this paper are: nuclear magnetic resonance, X-ray fluorescence, scintigraphy, positron emission tomography, applied potential tomography, computerized tomography, and compton tomography. This paper provides a framework for the comparison of imaging performance, based on the way the quantitative information flow is altered by the characteristics of the modality

  19. Medical Image Data Compression

    Šebek, Jiří

    2012-01-01

    Práce zkoumá, jak se projeví účinek různých komprimačních algoritmů na obrazových datech v medicíně. Snaží se najít algoritmus nebo skupinu algoritmů, které budou mít největší kompresní účinek. Kromě použití klasických algoritmů je snaha využít vlastností medicínských dat (tj. že obsahují hodně podobných obrazových bodů) pro jejich lepší kompresi. Ověříme si účinnek delta kódování na výsledný kompresní poměr a na závěr uvedeme naši nejlepší nalezenou metodu. The efficiency of various compr...

  20. An end to end secure CBIR over encrypted medical database.

    Bellafqira, Reda; Coatrieux, Gouenou; Bouslimi, Dalel; Quellec, Gwenole

    2016-08-01

    In this paper, we propose a new secure content based image retrieval (SCBIR) system adapted to the cloud framework. This solution allows a physician to retrieve images of similar content within an outsourced and encrypted image database, without decrypting them. Contrarily to actual CBIR approaches in the encrypted domain, the originality of the proposed scheme stands on the fact that the features extracted from the encrypted images are themselves encrypted. This is achieved by means of homomorphic encryption and two non-colluding servers, we however both consider as honest but curious. In that way an end to end secure CBIR process is ensured. Experimental results carried out on a diabetic retinopathy database encrypted with the Paillier cryptosystem indicate that our SCBIR achieves retrieval performance as good as if images were processed in their non-encrypted form.

  1. Experience with CANDID: Comparison algorithm for navigating digital image databases

    Kelly, P.; Cannon, M.

    1994-10-01

    This paper presents results from the authors experience with CANDID (Comparison Algorithm for Navigating Digital Image Databases), which was designed to facilitate image retrieval by content using a query-by-example methodology. A global signature describing the texture, shape, or color content is first computed for every image stored in a database, and a normalized similarity measure between probability density functions of feature vectors is used to match signatures. This method can be used to retrieve images from a database that are similar to a user-provided example image. Results for three test applications are included.

  2. Army medical imaging system: ARMIS

    Siedband, M.P.; Kramp, D.C.

    1987-01-01

    Recent advances of stimulable phosphor screens, data cards using optical storage means, and new personal computers with image processing capability have made possible the design of economical filmless medical imaging systems. The addition of communication links means that remote interpretation of images is also possible. The Army Medical Imaging System uses stimulable phosphor screens, digital readout, a small computer, an optical digital data card device, and a DIN/PACS link. Up to 200 images can be stored in the computer hard disk for rapid recall and reading by the radiologist. The computer permits image processing, annotation, insertion of text, and control of the system. Each device contains an image storage RAM and communicates with the computer via the small computer systems interface. Data compression is used to reduce the required storage capacity and transmission times of the 1-mB images. The credit card-size optical data cards replace film and can store 12 or more images. The data cards can be read on an independent viewer. The research is supported by the U.S. Army Biomedical Research and Development Laboratory

  3. Invitation to medical image processing

    Kitasaka, Takayuki; Suenaga, Yasuhito; Mori, Kensaku

    2010-01-01

    This medical essay explains the present state of CT image processing technology about its recognition, acquisition and visualization for computer-assisted diagnosis (CAD) and surgery (CAS), and future view. Medical image processing has a series of history of its original start from the discovery of X-ray to its application to diagnostic radiography, its combination with the computer for CT, multi-detector raw CT, leading to 3D/4D images for CAD and CAS. CAD is performed based on the recognition of normal anatomical structure of human body, detection of possible abnormal lesion and visualization of its numerical figure into image. Actual instances of CAD images are presented here for chest (lung cancer), abdomen (colorectal cancer) and future body atlas (models of organs and diseases for imaging), a recent national project: computer anatomy. CAS involves the surgical planning technology based on 3D images, navigation of the actual procedure and of endoscopy. As guidance to beginning technological image processing, described are the national and international community like related academic societies, regularly conducting congresses, textbooks and workshops, and topics in the field like computed anatomy of an individual patient for CAD and CAS, its data security and standardization. In future, protective medicine is in authors' view based on the imaging technology, e.g., daily life CAD of individuals ultimately, as exemplified in the present body thermometer and home sphygmometer, to monitor one's routine physical conditions. (T.T.)

  4. Physics instrumentation for medical imaging

    Townsend, D. W. [Geneva University Hospital, Geneva (Switzerland)

    1993-04-15

    The first Nobel Physics Prize, awarded in 1901, went to Wilhelm Röntgen for his discovery of X-rays in 1895. This, and the most recent physics Nobel, to Georges Charpak last year for his detector developments, span several generations of applied science. As well as helping to launch the science of atomic physics, Röntgen's discovery also marked the dawn of a medical science - radiography - using beams of various kinds to image what otherwise cannot be seen. Ever since, physicists and radiologists have worked hand in hand to improve imaging techniques and widen their medical applications.

  5. Physics instrumentation for medical imaging

    Townsend, D.W.

    1993-01-01

    The first Nobel Physics Prize, awarded in 1901, went to Wilhelm Röntgen for his discovery of X-rays in 1895. This, and the most recent physics Nobel, to Georges Charpak last year for his detector developments, span several generations of applied science. As well as helping to launch the science of atomic physics, Röntgen's discovery also marked the dawn of a medical science - radiography - using beams of various kinds to image what otherwise cannot be seen. Ever since, physicists and radiologists have worked hand in hand to improve imaging techniques and widen their medical applications

  6. Evidence based medical imaging (EBMI)

    Smith, Tony

    2008-01-01

    Background: The evidence based paradigm was first described about a decade ago. Previous authors have described a framework for the application of evidence based medicine which can be readily adapted to medical imaging practice. Purpose: This paper promotes the application of the evidence based framework in both the justification of the choice of examination type and the optimisation of the imaging technique used. Methods: The framework includes five integrated steps: framing a concise clinical question; searching for evidence to answer that question; critically appraising the evidence; applying the evidence in clinical practice; and, evaluating the use of revised practices. Results: This paper illustrates the use of the evidence based framework in medical imaging (that is, evidence based medical imaging) using the examples of two clinically relevant case studies. In doing so, a range of information technology and other resources available to medical imaging practitioners are identified with the intention of encouraging the application of the evidence based paradigm in radiography and radiology. Conclusion: There is a perceived need for radiographers and radiologists to make greater use of valid research evidence from the literature to inform their clinical practice and thus provide better quality services

  7. Motion correction in medical imaging.

    Smith, Rhodri

    2017-01-01

    It is estimated that over half of current adults within Great Britain under the age of 65 will be diagnosed with cancer at some point in their lifetime. Medical Imaging forms an essential part of cancer clinical protocols and is able to furnish morphological, metabolic and functional information. The imaging of molecular interactions of biological processes in vivo with Positron Emission Tomography (PET) is informative not only for disease detection but also therapeutic response. The qualitat...

  8. Medication errors detected in non-traditional databases

    Perregaard, Helene; Aronson, Jeffrey K; Dalhoff, Kim

    2015-01-01

    AIMS: We have looked for medication errors involving the use of low-dose methotrexate, by extracting information from Danish sources other than traditional pharmacovigilance databases. We used the data to establish the relative frequencies of different types of errors. METHODS: We searched four...... errors, whereas knowledge-based errors more often resulted in near misses. CONCLUSIONS: The medication errors in this survey were most often action-based (50%) and knowledge-based (34%), suggesting that greater attention should be paid to education and surveillance of medical personnel who prescribe...

  9. Supporting ontology-based keyword search over medical databases.

    Kementsietsidis, Anastasios; Lim, Lipyeow; Wang, Min

    2008-11-06

    The proliferation of medical terms poses a number of challenges in the sharing of medical information among different stakeholders. Ontologies are commonly used to establish relationships between different terms, yet their role in querying has not been investigated in detail. In this paper, we study the problem of supporting ontology-based keyword search queries on a database of electronic medical records. We present several approaches to support this type of queries, study the advantages and limitations of each approach, and summarize the lessons learned as best practices.

  10. Images - RPSD | LSDB Archive [Life Science Database Archive metadata

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...ta file File name: rpsd_images.zip File URL: ftp://ftp.biosciencedbc.jp/archive/rpsd/LATEST/rpsd_images.zip ... History of This Database Site Policy | Contact Us Images - RPSD | LSDB Archive ...

  11. Kingfisher: a system for remote sensing image database management

    Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.

    2003-04-01

    At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.

  12. Introduction to Medical Image Analysis

    Paulsen, Rasmus Reinhold; Moeslund, Thomas B.

    This book is a result of a collaboration between DTU Informatics at the Technical University of Denmark and the Laboratory of Computer Vision and Media Technology at Aalborg University. It is partly based on the book ”Image and Video Processing”, second edition by Thomas Moeslund. The aim...... of the book is to present the fascinating world of medical image analysis in an easy and interesting way. Compared to many standard books on image analysis, the approach we have chosen is less mathematical and more casual. Some of the key algorithms are exemplified in C-code. Please note that the code...

  13. CANDID: Comparison algorithm for navigating digital image databases

    Kelly, P.M.; Cannon, T.M.

    1994-02-21

    In this paper, we propose a method for calculating the similarity between two digital images. A global signature describing the texture, shape, or color content is first computed for every image stored in a database, and a normalized distance between probability density functions of feature vectors is used to match signatures. This method can be used to retrieve images from a database that are similar to an example target image. This algorithm is applied to the problem of search and retrieval for database containing pulmonary CT imagery, and experimental results are provided.

  14. The future of medical imaging

    Maidment, A. D. A.

    2010-01-01

    The organisers of this conference have kindly provided me with the forum to look forward and examine the future of medical imaging. My view of the future is informed by my own research directions; thus, I illustrate my vision of the future with results from my own research, and from the research that has motivated me over the last few years. As such, the results presented are specific to the field of breast imaging; however, I believe that the trends presented have general applicability, and hope that this discourse will motivate new research. My vision of the future can be summarised in accordance with three broad trends: (1) increased prevalence of low-dose tomographic X-ray imaging; (2) continuing advances in functional and molecular X-ray imaging; and (3) novel image-based bio-marker discovery. (authors)

  15. Moonshot Acceleration Factor: Medical Imaging.

    Sevick-Muraca, Eva M; Frank, Richard A; Giger, Maryellen L; Mulshine, James L

    2017-11-01

    Medical imaging is essential to screening, early diagnosis, and monitoring responses to cancer treatments and, when used with other diagnostics, provides guidance for clinicians in choosing the most effective patient management plan that maximizes survivorship and quality of life. At a gathering of agency officials, patient advocacy organizations, industry/professional stakeholder groups, and clinical/basic science academicians, recommendations were made on why and how one should build a "cancer knowledge network" that includes imaging. Steps to accelerate the translation and clinical adoption of cancer discoveries to meet the goals of the Cancer Moonshot include harnessing computational power and architectures, developing data sharing policies, and standardizing medical imaging and in vitro diagnostics. Cancer Res; 77(21); 5717-20. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. Evaluating parallel relational databases for medical data analysis.

    Rintoul, Mark Daniel; Wilson, Andrew T.

    2012-03-01

    Hospitals have always generated and consumed large amounts of data concerning patients, treatment and outcomes. As computers and networks have permeated the hospital environment it has become feasible to collect and organize all of this data. This raises naturally the question of how to deal with the resulting mountain of information. In this report we detail a proof-of-concept test using two commercially available parallel database systems to analyze a set of real, de-identified medical records. We examine database scalability as data sizes increase as well as responsiveness under load from multiple users.

  17. A cloud collaborative medical image platform oriented by social network

    Muniz, Frederico B.; Araújo, Luciano V.; Nunes, Fátima L. S.

    2017-03-01

    Computer-aided diagnosis systems using medical images and three-dimensional models as input data have greatly expanded and developed, but in terms of building suitable image databases to assess them, the challenge remains. Although there are some image databases available for this purpose, they are generally limited to certain types of exams or contain a limited number of medical cases. The objective of this work is to present the concepts and the development of a collaborative platform for sharing medical images and three-dimensional models, providing a resource to share and increase the number of images available for researchers. The collaborative cloud platform, called CATALYZER, aims to increase the availability and sharing of graphic objects, including 3D images, and their reports that are essential for research related to medical images. A survey conducted with researchers and health professionals indicated that this could be an innovative approach in the creation of medical image databases, providing a wider variety of cases together with a considerable amount of shared information among its users.

  18. Medical imaging, PACS, and imaging informatics: retrospective.

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  19. Machine Learning in Medical Imaging.

    Giger, Maryellen L

    2018-03-01

    Advances in both imaging and computers have synergistically led to a rapid rise in the potential use of artificial intelligence in various radiological imaging tasks, such as risk assessment, detection, diagnosis, prognosis, and therapy response, as well as in multi-omics disease discovery. A brief overview of the field is given here, allowing the reader to recognize the terminology, the various subfields, and components of machine learning, as well as the clinical potential. Radiomics, an expansion of computer-aided diagnosis, has been defined as the conversion of images to minable data. The ultimate benefit of quantitative radiomics is to (1) yield predictive image-based phenotypes of disease for precision medicine or (2) yield quantitative image-based phenotypes for data mining with other -omics for discovery (ie, imaging genomics). For deep learning in radiology to succeed, note that well-annotated large data sets are needed since deep networks are complex, computer software and hardware are evolving constantly, and subtle differences in disease states are more difficult to perceive than differences in everyday objects. In the future, machine learning in radiology is expected to have a substantial clinical impact with imaging examinations being routinely obtained in clinical practice, providing an opportunity to improve decision support in medical image interpretation. The term of note is decision support, indicating that computers will augment human decision making, making it more effective and efficient. The clinical impact of having computers in the routine clinical practice may allow radiologists to further integrate their knowledge with their clinical colleagues in other medical specialties and allow for precision medicine. Copyright © 2018. Published by Elsevier Inc.

  20. Image files - RPD | LSDB Archive [Life Science Database Archive metadata

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...ftp://ftp.biosciencedbc.jp/archive/rpd/LATEST/rpd_gel_image.zip File size: 38.5 MB Simple search URL - Data ... License Update History of This Database Site Policy | Contact Us Image files - RPD | LSDB Archive ...

  1. Density-based retrieval from high-similarity image databases

    Hansen, Michael Edberg; Carstensen, Jens Michael

    2004-01-01

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce a me...

  2. Imaging systems for medical diagnostics

    Krestel, E.

    1990-01-01

    This book provides physicians and clinical physicists with detailed information on today's imaging modalities and assists them in selecting the optimal system for each clinical application. Physicists, engineers and computer specialists engaged in research and development and sales departments will also find this book to be of considerable use. It may also be employed at universities, training centers and in technical seminars. The physiological and physical fundamentals are explained in part 1. The technical solutions contained in part 2 illustrate the numerous possibilities available in X-ray diagnostics, computed tomography, nuclear medical diagnostics, magnetic resonance imaging, sonography and biomagnetic diagnostics. (orig.)

  3. Diagnostic information management system for the evaluation of medical images

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina

    1985-04-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions.

  4. Diagnostic information management system for the evaluation of medical images

    Higa, Toshiaki; Torizuka, Kanji; Minato, Kotaro; Komori, Masaru; Hirakawa, Akina.

    1985-01-01

    A practical, small and low-cost diagnostic information management system has been developed for a comparative study of various medical imaging procedures, including ordinary radiography, X-ray computed tomography, emission computed tomography, and so forth. The purpose of the system is to effectively manage the original image data files and diagnostic descriptions during the various imaging procedures. A diagnostic description of each imaging procedure for each patient is made on a hand-sort punched-card with line-drawings and ordinary medical terminology and then coded and computerized using Index for Roentgen Diagnoses (American College of Radiology). A database management software (DB Master) on a personal computer (Apple II) is used for searching for patients' records on hand-sort punched-cards and finally original medical images. Discussed are realistic use of medical images and an effective form of diagnostic descriptions. (author)

  5. Structural analysis in medical imaging

    Dellepiane, S.; Serpico, S.B.; Venzano, L.; Vernazza, G.

    1987-01-01

    The conventional techniques in Pattern Recognition (PR) have been greatly improved by the introduction of Artificial Intelligence (AI) approaches, in particular for knowledge representation, inference mechanism and control structure. The purpose of this paper is to describe an image understanding system, based on the integrated approach (AI - PR), developed in the author's Department to interpret Nuclear Magnetic Resonance (NMR) images. The system is characterized by a heterarchical control structure and a blackboard model for the global data-base. The major aspects of the system are pointed out, with particular reference to segmentation, knowledge representation and error recovery (backtracking). The eye slices obtained in the case of two patients have been analyzed and the related results are discussed

  6. Effective Image Database Search via Dimensionality Reduction

    Dahl, Anders Bjorholm; Aanæs, Henrik

    2008-01-01

    Image search using the bag-of-words image representation is investigated further in this paper. This approach has shown promising results for large scale image collections making it relevant for Internet applications. The steps involved in the bag-of-words approach are feature extraction, vocabul......Image search using the bag-of-words image representation is investigated further in this paper. This approach has shown promising results for large scale image collections making it relevant for Internet applications. The steps involved in the bag-of-words approach are feature extraction......, vocabulary building, and searching with a query image. It is important to keep the computational cost low through all steps. In this paper we focus on the efficiency of the technique. To do that we substantially reduce the dimensionality of the features by the use of PCA and addition of color. Building...... of the visual vocabulary is typically done using k-means. We investigate a clustering algorithm based on the leader follower principle (LF-clustering), in which the number of clusters is not fixed. The adaptive nature of LF-clustering is shown to improve the quality of the visual vocabulary using this...

  7. Landsat TM and ETM+ Kansas Satellite Image Database (KSID)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2000-2001 consists of terrain-corrected, precision rectified spring, summer, and fall Landsat 5 Thematic Mapper (TM) and...

  8. Kansas Satellite Image Database (KSID) 2004-2005

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID) 2004-2005 consists of terrain-corrected, precision rectified spring, summer, and fall Landsat 5 Thematic Mapper (TM)...

  9. Radioisotopes and medical imaging in Sri Lanka

    Jayasinghe, J.M.A.C.

    1993-01-01

    The article deals with the use of X-rays and magnetic resonance imaging in medical diagnosis in its introduction. Then it elaborates on the facilities in the field of medical imaging for diagnosis, in Sri Lanka. The use of Technetium-99m in diagnostic medicine as well as the future of medical imaging in Sri Lanka is also dealt with

  10. Software for Distributed Computation on Medical Databases: A Demonstration Project

    Balasubramanian Narasimhan

    2017-05-01

    Full Text Available Bringing together the information latent in distributed medical databases promises to personalize medical care by enabling reliable, stable modeling of outcomes with rich feature sets (including patient characteristics and treatments received. However, there are barriers to aggregation of medical data, due to lack of standardization of ontologies, privacy concerns, proprietary attitudes toward data, and a reluctance to give up control over end use. Aggregation of data is not always necessary for model fitting. In models based on maximizing a likelihood, the computations can be distributed, with aggregation limited to the intermediate results of calculations on local data, rather than raw data. Distributed fitting is also possible for singular value decomposition. There has been work on the technical aspects of shared computation for particular applications, but little has been published on the software needed to support the "social networking" aspect of shared computing, to reduce the barriers to collaboration. We describe a set of software tools that allow the rapid assembly of a collaborative computational project, based on the flexible and extensible R statistical software and other open source packages, that can work across a heterogeneous collection of database environments, with full transparency to allow local officials concerned with privacy protections to validate the safety of the method. We describe the principles, architecture, and successful test results for the site-stratified Cox model and rank-k singular value decomposition.

  11. Construction of image database for newspapaer articles using CTS

    Kamio, Tatsuo

    Nihon Keizai Shimbun, Inc. developed a system of making articles' image database automatically by use of CTS (Computer Typesetting System). Besides the articles and the headlines inputted in CTS, it reproduces the image of elements of such as photography and graphs by article in accordance with information of position on the paper. So to speak, computer itself clips the articles out of the newspaper. Image database is accumulated in magnetic file and optical file and is output to the facsimile of users. With diffusion of CTS, newspaper companies which start to have structure of articles database are increased rapidly, the said system is the first attempt to make database automatically. This paper describes the device of CTS which supports this system and outline.

  12. Structure of the medical digital image

    Baltadzhiev, D.

    1997-01-01

    In up-to-date medical practice diagnostic imaging techniques are the most powerful tools available to clinicians. The modern medical equipment is entirely based on digital technology. In this article the principle of generating medical images is presented. The concept for gray scale where medical images are commonly presented is described. The patterns of gray images transformation into colour scale are likewise outlined. Basic notions from medical imaging terminology such as image matrix, pixel, spatial and contrast resolution power, bit, byte and the like are explained. Also an example is given of how the binary system treats images. On the basis of digital technology the obtained medical images lend themselves readily to additional processing, reconstruction (including 3D) and storage for subsequent utilization. The ceaseless progress of computerized communications promote easy and prompt access for clinicians to the diagnostic images needed as well as realization of expert consultations by teleconference contact (author)

  13. Medical Imaging Informatics in Nuclear Medicine

    van Ooijen, Peter; Glaudemans, Andor W.J.M.; Medema, Jitze; van Zanten, Annie K.; Dierckx, Rudi A.J.O.; Ahaus, C.T.B. (Kees)

    2016-01-01

    Medical imaging informatics is gaining importance in medicine both in clinical practice and in scientific research. Besides radiology, nuclear medicine is also a major stakeholder in medical imaging informatics because of the variety of available imaging modalities and the imaging-oriented operation

  14. Cloud computing in medical imaging.

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

  15. Medical imaging informatics simulators: a tutorial.

    Huang, H K; Deshpande, Ruchi; Documet, Jorge; Le, Anh H; Lee, Jasper; Ma, Kevin; Liu, Brent J

    2014-05-01

    A medical imaging informatics infrastructure (MIII) platform is an organized method of selecting tools and synthesizing data from HIS/RIS/PACS/ePR systems with the aim of developing an imaging-based diagnosis or treatment system. Evaluation and analysis of these systems can be made more efficient by designing and implementing imaging informatics simulators. This tutorial introduces the MIII platform and provides the definition of treatment/diagnosis systems, while primarily focusing on the development of the related simulators. A medical imaging informatics (MII) simulator in this context is defined as a system integration of many selected imaging and data components from the MIII platform and clinical treatment protocols, which can be used to simulate patient workflow and data flow starting from diagnostic procedures to the completion of treatment. In these processes, DICOM and HL-7 standards, IHE workflow profiles, and Web-based tools are emphasized. From the information collected in the database of a specific simulator, evidence-based medicine can be hypothesized to choose and integrate optimal clinical decision support components. Other relevant, selected clinical resources in addition to data and tools from the HIS/RIS/PACS and ePRs platform may also be tailored to develop the simulator. These resources can include image content indexing, 3D rendering with visualization, data grid and cloud computing, computer-aided diagnosis (CAD) methods, specialized image-assisted surgical, and radiation therapy technologies. Five simulators will be discussed in this tutorial. The PACS-ePR simulator with image distribution is the cradle of the other simulators. It supplies the necessary PACS-based ingredients and data security for the development of four other simulators: the data grid simulator for molecular imaging, CAD-PACS, radiation therapy simulator, and image-assisted surgery simulator. The purpose and benefits of each simulator with respect to its clinical relevance

  16. System for digitalization of medical images based on DICOM standard

    Čabarkapa Slobodan

    2009-01-01

    Full Text Available According to DICOM standard, which defines both medical image information and user information, a new system for digitalizing medical images is involved as a part of the main system for archiving and retrieving medical databases. The basic characteristics of this system are described in this paper. Furthermore, the analysis of some important DICOM header's tags which are used in this system, are presented, too. Having chosen the appropriate tags in order to preserve important information, the efficient system has been created. .

  17. Roles of medical image processing in medical physics

    Arimura, Hidetaka

    2011-01-01

    Image processing techniques including pattern recognition techniques play important roles in high precision diagnosis and radiation therapy. The author reviews a symposium on medical image information, which was held in the 100th Memorial Annual Meeting of the Japan Society of Medical Physics from September 23rd to 25th. In this symposium, we had three invited speakers, Dr. Akinobu Shimizu, Dr. Hideaki Haneishi, and Dr. Hirohito Mekata, who are active engineering researchers of segmentation, image registration, and pattern recognition, respectively. In this paper, the author reviews the roles of the medical imaging processing in medical physics field, and the talks of the three invited speakers. (author)

  18. Infant feeding practices within a large electronic medical record database.

    Bartsch, Emily; Park, Alison L; Young, Jacqueline; Ray, Joel G; Tu, Karen

    2018-01-02

    The emerging adoption of the electronic medical record (EMR) in primary care enables clinicians and researchers to efficiently examine epidemiological trends in child health, including infant feeding practices. We completed a population-based retrospective cohort study of 8815 singleton infants born at term in Ontario, Canada, April 2002 to March 2013. Newborn records were linked to the Electronic Medical Record Administrative data Linked Database (EMRALD™), which uses patient-level information from participating family practice EMRs across Ontario. We assessed exclusive breastfeeding patterns using an automated electronic search algorithm, with manual review of EMRs when the latter was not possible. We examined the rate of breastfeeding at visits corresponding to 2, 4 and 6 months of age, as well as sociodemographic factors associated with exclusive breastfeeding. Of the 8815 newborns, 1044 (11.8%) lacked breastfeeding information in their EMR. Rates of exclusive breastfeeding were 39.5% at 2 months, 32.4% at 4 months and 25.1% at 6 months. At age 6 months, exclusive breastfeeding rates were highest among mothers aged ≥40 vs. database.

  19. Medical imaging and augmented reality. Proceedings

    Dohi, Takeyoshi; Sakuma, Ichiro; Liao, Hongen

    2008-01-01

    This book constitutes the refereed proceedings of the 4th International Workshop on Medical Imaging and Augmented Reality, MIAR 2008, held in Tokyo, Japan, in August 2008. The 44 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on surgical planning and simulation, medical image computing, image analysis, shape modeling and morphometry, image-guided robotics, image-guided intervention, interventional imaging, image registration, augmented reality, and image segmentation. (orig.)

  20. Medical imaging and augmented reality. Proceedings

    Dohi, Takeyoshi [Tokyo Univ. (Japan). Dept. of Mechano-Informatics; Sakuma, Ichiro [Tokyo Univ. (Japan). Dept. of Precision Engineering; Liao, Hongen (eds.) [Tokyo Univ. (Japan). Dept. of Bioengineering

    2008-07-01

    This book constitutes the refereed proceedings of the 4th International Workshop on Medical Imaging and Augmented Reality, MIAR 2008, held in Tokyo, Japan, in August 2008. The 44 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on surgical planning and simulation, medical image computing, image analysis, shape modeling and morphometry, image-guided robotics, image-guided intervention, interventional imaging, image registration, augmented reality, and image segmentation. (orig.)

  1. Medical Image Tamper Detection Based on Passive Image Authentication.

    Ulutas, Guzin; Ustubioglu, Arda; Ustubioglu, Beste; V Nabiyev, Vasif; Ulutas, Mustafa

    2017-12-01

    Telemedicine has gained popularity in recent years. Medical images can be transferred over the Internet to enable the telediagnosis between medical staffs and to make the patient's history accessible to medical staff from anywhere. Therefore, integrity protection of the medical image is a serious concern due to the broadcast nature of the Internet. Some watermarking techniques are proposed to control the integrity of medical images. However, they require embedding of extra information (watermark) into image before transmission. It decreases visual quality of the medical image and can cause false diagnosis. The proposed method uses passive image authentication mechanism to detect the tampered regions on medical images. Structural texture information is obtained from the medical image by using local binary pattern rotation invariant (LBPROT) to make the keypoint extraction techniques more successful. Keypoints on the texture image are obtained with scale invariant feature transform (SIFT). Tampered regions are detected by the method by matching the keypoints. The method improves the keypoint-based passive image authentication mechanism (they do not detect tampering when the smooth region is used for covering an object) by using LBPROT before keypoint extraction because smooth regions also have texture information. Experimental results show that the method detects tampered regions on the medical images even if the forged image has undergone some attacks (Gaussian blurring/additive white Gaussian noise) or the forged regions are scaled/rotated before pasting.

  2. Animal Detection in Natural Images: Effects of Color and Image Database

    Zhu, Weina; Drewes, Jan; Gegenfurtner, Karl R.

    2013-01-01

    The visual system has a remarkable ability to extract categorical information from complex natural scenes. In order to elucidate the role of low-level image features for the recognition of objects in natural scenes, we recorded saccadic eye movements and event-related potentials (ERPs) in two experiments, in which human subjects had to detect animals in previously unseen natural images. We used a new natural image database (ANID) that is free of some of the potential artifacts that have plagued the widely used COREL images. Color and grayscale images picked from the ANID and COREL databases were used. In all experiments, color images induced a greater N1 EEG component at earlier time points than grayscale images. We suggest that this influence of color in animal detection may be masked by later processes when measuring reation times. The ERP results of go/nogo and forced choice tasks were similar to those reported earlier. The non-animal stimuli induced bigger N1 than animal stimuli both in the COREL and ANID databases. This result indicates ultra-fast processing of animal images is possible irrespective of the particular database. With the ANID images, the difference between color and grayscale images is more pronounced than with the COREL images. The earlier use of the COREL images might have led to an underestimation of the contribution of color. Therefore, we conclude that the ANID image database is better suited for the investigation of the processing of natural scenes than other databases commonly used. PMID:24130744

  3. Tooling Techniques Enhance Medical Imaging

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  4. Applications of VLSI circuits to medical imaging

    O'Donnell, M.

    1988-01-01

    In this paper the application of advanced VLSI circuits to medical imaging is explored. The relationship of both general purpose signal processing chips and custom devices to medical imaging is discussed using examples of fabricated chips. In addition, advanced CAD tools for silicon compilation are presented. Devices built with these tools represent a possible alternative to custom devices and general purpose signal processors for the next generation of medical imaging systems

  5. Machine Learning Interface for Medical Image Analysis.

    Zhang, Yi C; Kagen, Alexander C

    2017-10-01

    TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.

  6. Mesh Processing in Medical Image Analysis

    The following topics are dealt with: mesh processing; medical image analysis; interactive freeform modeling; statistical shape analysis; clinical CT images; statistical surface recovery; automated segmentation; cerebral aneurysms; and real-time particle-based representation....

  7. Distributed data collection for a database of radiological image interpretations

    Long, L. Rodney; Ostchega, Yechiam; Goh, Gin-Hua; Thoma, George R.

    1997-01-01

    The National Library of Medicine, in collaboration with the National Center for Health Statistics and the National Institute for Arthritis and Musculoskeletal and Skin Diseases, has built a system for collecting radiological interpretations for a large set of x-ray images acquired as part of the data gathered in the second National Health and Nutrition Examination Survey. This system is capable of delivering across the Internet 5- and 10-megabyte x-ray images to Sun workstations equipped with X Window based 2048 X 2560 image displays, for the purpose of having these images interpreted for the degree of presence of particular osteoarthritic conditions in the cervical and lumbar spines. The collected interpretations can then be stored in a database at the National Library of Medicine, under control of the Illustra DBMS. This system is a client/server database application which integrates (1) distributed server processing of client requests, (2) a customized image transmission method for faster Internet data delivery, (3) distributed client workstations with high resolution displays, image processing functions and an on-line digital atlas, and (4) relational database management of the collected data.

  8. [Research and development of medical case database: a novel medical case information system integrating with biospecimen management].

    Pan, Shiyang; Mu, Yuan; Wang, Hong; Wang, Tong; Huang, Peijun; Ma, Jianfeng; Jiang, Li; Zhang, Jie; Gu, Bing; Yi, Lujiang

    2010-04-01

    To meet the needs of management of medical case information and biospecimen simultaneously, we developed a novel medical case information system integrating with biospecimen management. The database established by MS SQL Server 2000 covered, basic information, clinical diagnosis, imaging diagnosis, pathological diagnosis and clinical treatment of patient; physicochemical property, inventory management and laboratory analysis of biospecimen; users log and data maintenance. The client application developed by Visual C++ 6.0 was used to implement medical case and biospecimen management, which was based on Client/Server model. This system can perform input, browse, inquest, summary of case and related biospecimen information, and can automatically synthesize case-records based on the database. Management of not only a long-term follow-up on individual, but also of grouped cases organized according to the aim of research can be achieved by the system. This system can improve the efficiency and quality of clinical researches while biospecimens are used coordinately. It realizes synthesized and dynamic management of medical case and biospecimen, which may be considered as a new management platform.

  9. Teaching medical anatomy: what is the role of imaging today?

    Grignon, Bruno; Oldrini, Guillaume; Walter, Frédéric

    2016-03-01

    Medical anatomy instruction has been an important issue of debate for many years and imaging anatomy has become an increasingly important component in the field, the role of which has not yet been clearly defined. The aim of the paper was to assess the current deployment of medical imaging in the teaching of anatomy by means of a review of the literature. A systematic search was performed using the electronic database PubMed, ScienceDirect and various publisher databases, with combinations of the relevant MeSH terms. A manual research was added. In most academic curricula, imaging anatomy has been integrated as a part of anatomical education, taught using a very wide variety of strategies. Considerable variation in the time allocation, content and delivery of medical imaging in teaching human anatomy was identified. Given this considerable variation, an objective assessment remains quite difficult. In most publications, students' perceptions regarding anatomical courses including imaging anatomy were investigated by means of questionnaires and, regardless of the method of teaching, it was globally concluded that imaging anatomy enhanced the quality and efficiency of instruction in human anatomy. More objective evaluation based on an increase in students' performance on course examinations or on specific tests performed before and after teaching sessions showed positive results in numerous cases, while mixed results were also indicated by other studies. A relative standardization could be useful in improving the teaching of imaging anatomy, to facilitate its assessment and reinforce its effectiveness.

  10. Image storage, cataloguing and retrieval using a personal computer database software application

    Lewis, G.; Howman-Giles, R.

    1999-01-01

    Full text: Interesting images and cases are collected and collated by most nuclear medicine practitioners throughout the world. Changing imaging technology has altered the way in which images may be presented and are reported, with less reliance on 'hard copy' for both reporting and archiving purposes. Digital image generation and storage is rapidly replacing film in both radiological and nuclear medicine practice. A personal computer database based interesting case filing system is described and demonstrated. The digital image storage format allows instant access to both case information (e.g. history and examination, scan report or teaching point) and the relevant images. The database design allows rapid selection of cases and images appropriate to a particular diagnosis, scan type, age or other search criteria. Correlative X-ray, CT, MRI and ultrasound images can also be stored and accessed. The application is in use at The New Children's Hospital as an aid to postgraduate medical education, with new cases being regularly added to the database

  11. A review of m-health in medical imaging.

    Perera, Chandrashan Mahendra; Chakrabarti, Rahul

    2015-02-01

    The increasing capabilities of camera-equipped mobile phones have led to a growing body of evidence regarding their use in medical imaging across a broad range of medical specialties. This article reviews the current evidence for the use of mobile health (m-health) in medical imaging. We performed a structured review of the published literature regarding m-health in medical imaging using the Medline, PubMed, and Web of Science databases (January 2002-August 2013). The two authors independently extracted data regarding type of specialty, purpose, and study design of publications. In total, 235 articles were identified. The majority of studies were case reports or noncomparative product validation studies. The greatest volume of publications originated in the fields of radiology (21%), dermatology (15%), laboratory techniques (15%), and plastic surgery (12%). Among these studies, m-health was used as diagnostic aids, for patient monitoring, and to improve communication between health practitioners. With the growing use of mobile phones for medical imaging, considerations need to be given to informed consent, privacy, image storage and transfer, and guidelines for healthcare workers and patients. There are several novel uses of mobile devices for medical imaging that show promise across a variety of areas and subspecialties of healthcare. Currently, studies are mostly exploratory in nature. To validate these devices, studies with higher methodological rigor are required.

  12. Artificial intelligence and medical imaging. Expert systems and image analysis

    Wackenheim, A.; Zoellner, G.; Horviller, S.; Jacqmain, T.

    1987-01-01

    This paper gives an overview on the existing systems for automated image analysis and interpretation in medical imaging, especially in radiology. The example of ORFEVRE, the system for the analysis of CAT-scan images of the cervical triplet (c3-c5) by image analysis and subsequent expert-system is given and discussed in detail. Possible extensions are described [fr

  13. Image registration method for medical image sequences

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  14. Standardized food images : A photographing protocol and image database

    Charbonnier, Lisette; van Meer, Floor; van der Laan, Laura N.; Viergever, Max A.; Smeets, Paul A M

    2015-01-01

    The regulation of food intake has gained much research interest because of the current obesity epidemic. For research purposes, food images are a good and convenient alternative for real food because many dietary decisions are made based on the sight of foods. Food pictures are assumed to elicit

  15. Standardized food images: A photographing protocol and image database

    Charbonnier, L.; Meer, van der F.; Laan, van der L.N.; Viergever, M.A.; Smeets, P.A.M.

    2016-01-01

    The regulation of food intake has gained much research interest because of the current obesity epidemic. For research purposes, food images are a good and convenient alternative for real food because many dietary decisions are made based on the sight of foods. Food pictures are assumed to elicit

  16. Medical emergencies in the imaging department of a university hospital: event and imaging characteristics.

    van Tonder, F C; Sutherland, T; Smith, R J; Chock, J M E; Santamaria, J D

    2013-01-01

    We aimed to describe the characteristics of medical emergencies that occurred in the medical imaging department (MID) of a university hospital in Melbourne, Australia. A database of 'Respond Medical Emergency Team (MET)' and 'Respond Blue' calls was retrospectively examined for the period June 2003 to November 2010 in relation to events that occurred in the MID. The hospital medical imaging database was also examined in relation to these events and, where necessary, patients' notes were reviewed. Ethics approval was granted by the hospital ethics review board. There were 124 medical emergency calls in the MID during the study period, 28% Respond Blue and 72% Respond MET. Of these 124 calls, 26% occurred outside of usual work hours and 12% involved cardiac arrest. The most common reasons for the emergency calls were seizures (14%) and altered conscious state (13%). Contrast anaphylaxis precipitated the emergency in 4% of cases. In 83% of cases the emergency calls were for patients attending the MID for diagnostic imaging, the remainder being for a procedure. Of the scheduled imaging techniques, 45% were for computed tomography. The scheduled imaging was abandoned due to the emergency in 12% of cases. When performed, imaging informed patient management in 34% of cases in diagnostic imaging and in all cases in the context of image-guided procedures. Medical emergency calls in the MID often occurred outside usual work hours and were attributed to a range of medical problems. The emergencies occurred in relation to all imaging techniques and imaging informed patient management in many cases. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  17. A survey of medical diagnostic imaging technologies

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  18. A survey of medical diagnostic imaging technologies

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today`s more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  19. A survey of medical diagnostic imaging technologies

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities

  20. [Image fusion in medical radiology].

    Burger, C

    1996-07-20

    Image fusion supports the correlation between images of two or more studies of the same organ. First, the effect of differing geometries during image acquisitions, such as a head tilt, is compensated for. As a consequence, congruent images can easily be obtained. Instead of merely putting them side by side in a static manner and burdening the radiologist with the whole correlation task, image fusion supports him with interactive visualization techniques. This is especially worthwhile for small lesions as they can be more precisely located. Image fusion is feasible today. Easy and robust techniques are readily available, and furthermore DICOM, a rapidly evolving data exchange standard, diminishes the once severe compatibility problems for image data originating from systems of different manufacturers. However, the current solutions for image fusion are not yet established enough for a high throughput of fusion studies. Thus, for the time being image fusion is most appropriately confined to clinical research studies.

  1. Computerized comprehensive data analysis of Lung Imaging Database Consortium (LIDC)

    Tan Jun; Pu Jiantao; Zheng Bin; Wang Xingwei; Leader, Joseph K.

    2010-01-01

    Purpose: Lung Image Database Consortium (LIDC) is the largest public CT image database of lung nodules. In this study, the authors present a comprehensive and the most updated analysis of this dynamically growing database under the help of a computerized tool, aiming to assist researchers to optimally use this database for lung cancer related investigations. Methods: The authors developed a computer scheme to automatically match the nodule outlines marked manually by radiologists on CT images. A large variety of characteristics regarding the annotated nodules in the database including volume, spiculation level, elongation, interobserver variability, as well as the intersection of delineated nodule voxels and overlapping ratio between the same nodules marked by different radiologists are automatically calculated and summarized. The scheme was applied to analyze all 157 examinations with complete annotation data currently available in LIDC dataset. Results: The scheme summarizes the statistical distributions of the abovementioned geometric and diagnosis features. Among the 391 nodules, (1) 365 (93.35%) have principal axis length ≤20 mm; (2) 120, 75, 76, and 120 were marked by one, two, three, and four radiologists, respectively; and (3) 122 (32.48%) have the maximum volume overlapping ratios ≥80% for the delineations of two radiologists, while 198 (50.64%) have the maximum volume overlapping ratios <60%. The results also showed that 72.89% of the nodules were assessed with malignancy score between 2 and 4, and only 7.93% of these nodules were considered as severely malignant (malignancy ≥4). Conclusions: This study demonstrates that LIDC contains examinations covering a diverse distribution of nodule characteristics and it can be a useful resource to assess the performance of the nodule detection and/or segmentation schemes.

  2. Machine learning approaches in medical image analysis

    de Bruijne, Marleen

    2016-01-01

    Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols......, learning from weak labels, and interpretation and evaluation of results....

  3. An overview of medical image data base

    Nishihara, Eitaro

    1992-01-01

    Recently, the systematization using computers in medical institutions has advanced, and the introduction of hospital information system has been almost completed in the large hospitals with more than 500 beds. But the objects of the management of the hospital information system are text information, and do not include the management of images of enormous quantity. By the progress of image diagnostic equipment, the digitization of medical images has advanced, but the management of images in hospitals does not utilize the merits of digital images. For the purpose of solving these problems, the picture archiving and communication system (PACS) was proposed about ten years ago, which makes medical images into a data base, and enables the on-line access to images from various places in hospitals. The studies have been continued to realize it. The features of medical image data, the present status of utilizing medical image data, the outline of the PACS, the image data base for the PACS, the problems in the realization of the data base and the technical trend, and the state of actual construction of the PACS are reported. (K.I.)

  4. The Center for Integrated Molecular Brain Imaging (Cimbi) database

    Knudsen, Gitte M.; Jensen, Peter S.; Erritzoe, David

    2016-01-01

    We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions rela...... currently contains blood and in some instances saliva samples from about 500 healthy volunteers and 300 patients with e.g., major depression, dementia, substance abuse, obesity, and impulsive aggression. Data continue to be added to the Cimbi database and biobank....

  5. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICS

    O. Ye. Prokopchenko

    2015-10-01

    Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article and based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematics may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve  the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

  6. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICA

    О. E. Prokopchenko

    2015-09-01

    Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article & based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematica may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

  7. Animal detection in natural images: effects of color and image database.

    Weina Zhu

    Full Text Available The visual system has a remarkable ability to extract categorical information from complex natural scenes. In order to elucidate the role of low-level image features for the recognition of objects in natural scenes, we recorded saccadic eye movements and event-related potentials (ERPs in two experiments, in which human subjects had to detect animals in previously unseen natural images. We used a new natural image database (ANID that is free of some of the potential artifacts that have plagued the widely used COREL images. Color and grayscale images picked from the ANID and COREL databases were used. In all experiments, color images induced a greater N1 EEG component at earlier time points than grayscale images. We suggest that this influence of color in animal detection may be masked by later processes when measuring reation times. The ERP results of go/nogo and forced choice tasks were similar to those reported earlier. The non-animal stimuli induced bigger N1 than animal stimuli both in the COREL and ANID databases. This result indicates ultra-fast processing of animal images is possible irrespective of the particular database. With the ANID images, the difference between color and grayscale images is more pronounced than with the COREL images. The earlier use of the COREL images might have led to an underestimation of the contribution of color. Therefore, we conclude that the ANID image database is better suited for the investigation of the processing of natural scenes than other databases commonly used.

  8. Retrieving high-resolution images over the Internet from an anatomical image database

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  9. Mathematics and computer science in medical imaging

    Viergever, M.A.; Todd-Pokroper, A.E.

    1987-01-01

    The book is divided into two parts. Part 1 gives an introduction to and an overview of the field in ten tutorial chapters. Part 2 contains a selection of invited and proffered papers reporting on current research. Subjects covered in depth are: analytical image reconstruction, regularization, iterative methods, image structure, 3-D display, compression, architectures for image processing, statistical pattern recognition, and expert systems in medical imaging

  10. Medical imaging technology reviews and computational applications

    Dewi, Dyah

    2015-01-01

    This book presents the latest research findings and reviews in the field of medical imaging technology, covering ultrasound diagnostics approaches for detecting osteoarthritis, breast carcinoma and cardiovascular conditions, image guided biopsy and segmentation techniques for detecting lung cancer, image fusion, and simulating fluid flows for cardiovascular applications. It offers a useful guide for students, lecturers and professional researchers in the fields of biomedical engineering and image processing.

  11. Medical imaging and augmented reality. Proceedings

    Yang Guang-Zhong; Jiang Tianzi; Shen Dinggang; Gu Lixu; Yang Jie

    2006-01-01

    This book constitutes the refereed proceedings of the Third International Workshop on Medical Imaging and Augmented Reality, MIAR 2006, held in Shanghai, China, in August 2006. The 45 revised full papers presented together with 4 invited papers were carefully reviewed and selected from 87 submissions. The papers are organized in topical sections on shape modeling and morphometry, patient specific modeling and quantification, surgical simulation and skills assessment, surgical guidance and navigation, image registration, PET image reconstruction, and image segmentation. (orig.)

  12. Adaptive Beamforming for Medical Ultrasound Imaging

    Holfort, Iben Kraglund

    This dissertation investigates the application of adaptive beamforming for medical ultrasound imaging. The investigations have been concentrated primarily on the Minimum Variance (MV) beamformer. A broadband implementation of theMV beamformer is described, and simulated data have been used...... to demonstrate the performance. The MV beamformer has been applied to different sets of ultrasound imaging sequences; synthetic aperture ultrasound imaging and plane wave ultrasound imaging. And an approach for applying MV optimized apodization weights on both the transmitting and the receiving apertures...

  13. Applied medical image processing a basic course

    Birkfellner, Wolfgang

    2014-01-01

    A widely used, classroom-tested text, Applied Medical Image Processing: A Basic Course delivers an ideal introduction to image processing in medicine, emphasizing the clinical relevance and special requirements of the field. Avoiding excessive mathematical formalisms, the book presents key principles by implementing algorithms from scratch and using simple MATLAB®/Octave scripts with image data and illustrations on an accompanying CD-ROM or companion website. Organized as a complete textbook, it provides an overview of the physics of medical image processing and discusses image formats and data storage, intensity transforms, filtering of images and applications of the Fourier transform, three-dimensional spatial transforms, volume rendering, image registration, and tomographic reconstruction.

  14. Image processing for medical diagnosis using CNN

    Arena, Paolo; Basile, Adriano; Bucolo, Maide; Fortuna, Luigi

    2003-01-01

    Medical diagnosis is one of the most important area in which image processing procedures are usefully applied. Image processing is an important phase in order to improve the accuracy both for diagnosis procedure and for surgical operation. One of these fields is tumor/cancer detection by using Microarray analysis. The research studies in the Cancer Genetics Branch are mainly involved in a range of experiments including the identification of inherited mutations predisposing family members to malignant melanoma, prostate and breast cancer. In bio-medical field the real-time processing is very important, but often image processing is a quite time-consuming phase. Therefore techniques able to speed up the elaboration play an important rule. From this point of view, in this work a novel approach to image processing has been developed. The new idea is to use the Cellular Neural Networks to investigate on diagnostic images, like: Magnetic Resonance Imaging, Computed Tomography, and fluorescent cDNA microarray images

  15. Physics for Medical Imaging Applications

    Caner, Alesssandra; Rahal, Ghita

    2007-01-01

    The book introduces the fundamental aspects of digital imaging and covers four main themes: Ultrasound techniques and imaging applications; Magnetic resonance and MPJ in hospital; Digital imaging with X-rays; and Emission tomography (PET and SPECT). Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advancements in the field. Some issues specific to the individual techniques are also treated, e.g. choice of radioisotopes or contrast agents, optimisation of data acquisition and st

  16. Leadership and power in medical imaging

    Yielder, Jill [School of Health and Community Studies, Unitec New Zealand, Private Bag 92 025, Mt Albert, Auckland (New Zealand)]. E-mail: jyielder@unitec.ac.nz

    2006-11-15

    This article examines the concept of professional leadership in medical imaging. It explores the context of power issues in which such leadership is located, the differences between leadership and management, the qualities needed for effective leadership and how an individual's psychology may affect it. The article concludes that in the current climate of change and development, the medical imaging profession needs strong and appropriate leadership to profile the profession effectively and to lead it through to a more autonomous future.

  17. Leadership and power in medical imaging

    Yielder, Jill

    2006-01-01

    This article examines the concept of professional leadership in medical imaging. It explores the context of power issues in which such leadership is located, the differences between leadership and management, the qualities needed for effective leadership and how an individual's psychology may affect it. The article concludes that in the current climate of change and development, the medical imaging profession needs strong and appropriate leadership to profile the profession effectively and to lead it through to a more autonomous future

  18. Multispectral imaging for medical diagnosis

    Anselmo, V. J.

    1977-01-01

    Photography technique determines amount of morbidity present in tissue. Imaging apparatus incorporates numerical filtering. Overall system operates in near-real time. Information gained from this system enables physician to understand extent of injury and leads to accelerated treatment.

  19. Feature Detector and Descriptor for Medical Images

    Sargent, Dusty; Chen, Chao-I.; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Daniel

    2009-02-01

    The ability to detect and match features across multiple views of a scene is a crucial first step in many computer vision algorithms for dynamic scene analysis. State-of-the-art methods such as SIFT and SURF perform successfully when applied to typical images taken by a digital camera or camcorder. However, these methods often fail to generate an acceptable number of features when applied to medical images, because such images usually contain large homogeneous regions with little color and intensity variation. As a result, tasks like image registration and 3D structure recovery become difficult or impossible in the medical domain. This paper presents a scale, rotation and color/illumination invariant feature detector and descriptor for medical applications. The method incorporates elements of SIFT and SURF while optimizing their performance on medical data. Based on experiments with various types of medical images, we combined, adjusted, and built on methods and parameter settings employed in both algorithms. An approximate Hessian based detector is used to locate scale invariant keypoints and a dominant orientation is assigned to each keypoint using a gradient orientation histogram, providing rotation invariance. Finally, keypoints are described with an orientation-normalized distribution of gradient responses at the assigned scale, and the feature vector is normalized for contrast invariance. Experiments show that the algorithm detects and matches far more features than SIFT and SURF on medical images, with similar error levels.

  20. Overview of deep learning in medical imaging.

    Suzuki, Kenji

    2017-09-01

    The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a

  1. Multi-channel medical imaging system

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  2. Segmentation of elongated structures in medical images

    Staal, Jozef Johannes

    2004-01-01

    The research described in this thesis concerns the automatic detection, recognition and segmentation of elongated structures in medical images. For this purpose techniques have been developed to detect subdimensional pointsets (e.g. ridges, edges) in images of arbitrary dimension. These

  3. Improved Interactive Medical-Imaging System

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  4. Use of organoboranes in modern medical imaging

    Kabalka, G.W.

    1991-01-01

    Isotopically labeled materials have proven to be invaluable in chemical, medical, and biological research. Organoboranes are beginning to play a significant role in the synthesis of medically important materials which contain both stable and short-lived isotopes. The organic compounds of boron possess characteristics which make them ideal intermediates in radiopharmaceutical pathways; these include the facts that boron reactions tolerate a wide variety of physiologically active functionality and that the reactions proceed rapidly and in high yields. Boranes have found important applications in modern medical imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI). (author)

  5. Cascaded Window Memoization for Medical Imaging

    Khalvati , Farzad; Kianpour , Mehdi; Tizhoosh , Hamid ,

    2011-01-01

    Part 12: Medical Applications of ANN and Ethics of AI; International audience; Window Memoization is a performance improvement technique for image processing algorithms. It is based on removing computational redundancy in an algorithm applied to a single image, which is inherited from data redundancy in the image. The technique employs a fuzzy reuse mechanism to eliminate unnecessary computations. This paper extends the window memoization technique such that in addition to exploiting the data...

  6. Quantification of heterogeneity observed in medical images

    Brooks, Frank J; Grigsby, Perry W

    2013-01-01

    Background There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging mod...

  7. Hello World Deep Learning in Medical Imaging.

    Lakhani, Paras; Gray, Daniel L; Pett, Carl R; Nagy, Paul; Shih, George

    2018-05-03

    There is recent popularity in applying machine learning to medical imaging, notably deep learning, which has achieved state-of-the-art performance in image analysis and processing. The rapid adoption of deep learning may be attributed to the availability of machine learning frameworks and libraries to simplify their use. In this tutorial, we provide a high-level overview of how to build a deep neural network for medical image classification, and provide code that can help those new to the field begin their informatics projects.

  8. The use of web internet technologies to distribute medical images

    Deller, A.L.; Cheal, D.; Field, J.

    1999-01-01

    Full text: In the past, internet browsers were considered ineffective for image distribution. Today we have the technology to use internet standards for picture archive and communication systems (PACS) and teleradiology effectively. Advanced wavelet compression and state-of-the-art JAVA software allows us to distribute images on normal computer hardware. The use of vendor and database neutral software and industry-standard hardware has many advantages. This standards base approach avoids the costly rapid obsolescence of proprietary PACS and is cheaper to purchase and maintain. Images can be distributed around a hospital site, as well as outside the campus, quickly and inexpensively. It also allows integration between the Hospital Information System (HIS) and the Radiology Information System (RIS). Being able to utilize standard internet technologies and computer hardware for PACS is a cost-effective alternative. A system based on this technology can be used for image distribution, archiving, teleradiology and RIS integration. This can be done without expensive specialized imaging workstations and telecommunication systems. Web distribution of images allows you to send images to multiple places concurrently. A study can be within your Medical Imaging Department, as well as in the ward and on the desktop of referring clinicians - with a report. As long as there is a computer with an internet access account, high-quality images can be at your disposal 24 h a day. The importance of medical images for patient management makes them a valuable component of the patient's medical record. Therefore, an efficient system for displaying and distributing images can improve patient management and make your workplace more effective

  9. New substances for medical imaging

    Carrard, G [comp.

    1982-03-01

    AAEC scientists have developed a new radiopharmaceutical of commerical potential which can be applied to the diagnosis of diseases involving abnormal functioning of the liver, bile duct or gall bladder. It is technetium-bromo-BIMIDA. Other investigations include the enhancement of images from gallium-67 citrate in tumours and the interaction between iron dextran and technetium-pyro-phosphate.

  10. Medical image segmentation using genetic algorithms.

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.

  11. Deep Learning in Medical Image Analysis.

    Shen, Dinggang; Wu, Guorong; Suk, Heung-Il

    2017-06-21

    This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.

  12. Compression-Based Tools for Navigation with an Image Database

    Giovanni Motta

    2012-01-01

    Full Text Available We present tools that can be used within a larger system referred to as a passive assistant. The system receives information from a mobile device, as well as information from an image database such as Google Street View, and employs image processing to provide useful information about a local urban environment to a user who is visually impaired. The first stage acquires and computes accurate location information, the second stage performs texture and color analysis of a scene, and the third stage provides specific object recognition and navigation information. These second and third stages rely on compression-based tools (dimensionality reduction, vector quantization, and coding that are enhanced by knowledge of (approximate location of objects.

  13. Use of mobile devices for medical imaging.

    Hirschorn, David S; Choudhri, Asim F; Shih, George; Kim, Woojin

    2014-12-01

    Mobile devices have fundamentally changed personal computing, with many people forgoing the desktop and even laptop computer altogether in favor of a smaller, lighter, and cheaper device with a touch screen. Doctors and patients are beginning to expect medical images to be available on these devices for consultative viewing, if not actual diagnosis. However, this raises serious concerns with regard to the ability of existing mobile devices and networks to quickly and securely move these images. Medical images often come in large sets, which can bog down a network if not conveyed in an intelligent manner, and downloaded data on a mobile device are highly vulnerable to a breach of patient confidentiality should that device become lost or stolen. Some degree of regulation is needed to ensure that the software used to view these images allows all relevant medical information to be visible and manipulated in a clinically acceptable manner. There also needs to be a quality control mechanism to ensure that a device's display accurately conveys the image content without loss of contrast detail. Furthermore, not all mobile displays are appropriate for all types of images. The smaller displays of smart phones, for example, are not well suited for viewing entire chest radiographs, no matter how small and numerous the pixels of the display may be. All of these factors should be taken into account when deciding where, when, and how to use mobile devices for the display of medical images. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  14. An open architecture for medical image workstation

    Liang, Liang; Hu, Zhiqiang; Wang, Xiangyun

    2005-04-01

    Dealing with the difficulties of integrating various medical image viewing and processing technologies with a variety of clinical and departmental information systems and, in the meantime, overcoming the performance constraints in transferring and processing large-scale and ever-increasing image data in healthcare enterprise, we design and implement a flexible, usable and high-performance architecture for medical image workstations. This architecture is not developed for radiology only, but for any workstations in any application environments that may need medical image retrieving, viewing, and post-processing. This architecture contains an infrastructure named Memory PACS and different kinds of image applications built on it. The Memory PACS is in charge of image data caching, pre-fetching and management. It provides image applications with a high speed image data access and a very reliable DICOM network I/O. In dealing with the image applications, we use dynamic component technology to separate the performance-constrained modules from the flexibility-constrained modules so that different image viewing or processing technologies can be developed and maintained independently. We also develop a weakly coupled collaboration service, through which these image applications can communicate with each other or with third party applications. We applied this architecture in developing our product line and it works well. In our clinical sites, this architecture is applied not only in Radiology Department, but also in Ultrasonic, Surgery, Clinics, and Consultation Center. Giving that each concerned department has its particular requirements and business routines along with the facts that they all have different image processing technologies and image display devices, our workstations are still able to maintain high performance and high usability.

  15. The state of the art of medical imaging technology: from creation to archive and back.

    Gao, Xiaohong W; Qian, Yu; Hui, Rui

    2011-01-01

    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations.

  16. Integrating heterogeneous databases in clustered medic care environments using object-oriented technology

    Thakore, Arun K.; Sauer, Frank

    1994-05-01

    The organization of modern medical care environments into disease-related clusters, such as a cancer center, a diabetes clinic, etc., has the side-effect of introducing multiple heterogeneous databases, often containing similar information, within the same organization. This heterogeneity fosters incompatibility and prevents the effective sharing of data amongst applications at different sites. Although integration of heterogeneous databases is now feasible, in the medical arena this is often an ad hoc process, not founded on proven database technology or formal methods. In this paper we illustrate the use of a high-level object- oriented semantic association method to model information found in different databases into an integrated conceptual global model that integrates the databases. We provide examples from the medical domain to illustrate an integration approach resulting in a consistent global view, without attacking the autonomy of the underlying databases.

  17. Medical images storage using discrete cosine transform

    Arhouma, Ali M.; Ajaal, Tawfik; Marghani, Khaled

    2010-01-01

    The advances in technology during the last decades have made the use of digital images as one of the common things in everyday life. While the application of digital images in communicating information is very important, the cost of storing and transmitting images is much larger compared to storage and transmission of text. The main problem with all of the images was the fact that they take large size of memory space, large transmission bandwidth and long transmission time. Image data compression is needed to reduce the storage space,transmission bandwidth and transmission time. Medical image compression plays a key role as hospitals move towards filmless imaging and go completely digital. Image compression allows Picture Archiving and Communication Systems (PACS) to reduce the file size on their storage requirements while maintaining relevant diagnostic information. The reduced image file size yield reduced transmission times. Even as the capacity of storage media continues to increase, it is expected that the volume of uncompressed data produced by hospitals will exceed capacity of storage and drive up costs. This paper proposes a Discrete Cosine Transform (DCT) algorithm which can help to solve the image storage and transmission time problem in hospitals. Discrete cosine transform (DCT) has become the most popular technique for image compression over the past several years. One of the major reasons for its popularity is its selection as the standard for JPEG. DCTs are most commonly used for non-analytical applications such as image processing and digital signal-processing (DSP) applications such as video conferencing, fax systems, video disks, and high-definition television HDTV. They also can be used on a matrix of practically any dimension. The proposed (DCT) algorithm improves the performance of medical image compression while satisfying both the medical image quality, and the high compression ratio. Application of DCT coding algorithm to actual still images

  18. Hybrid Imaging: A New Frontier in Medical Imaging

    Bijan Bijan

    2010-01-01

    Introduction of hybrid imaging in the arena of medical imaging calls for re-strategizing in current practice. Operating PET-CT and upcoming PET-MRI is a turf battle between Radiologists, Nuclear Medicine Physicians, Oncologists, Cardiologists and other related fields.

  19. Physics and engineering of medical imaging

    Guzzardi, R.

    1987-01-01

    The ever-developing technology of medical imaging has a continuous and significant impact on the practice of medicine as well as on clinical research activity. The information and level of accuracy obtained by an imaging methodology is a complex result of a multidisciplinary effort of physics, engineering, electronics, chemistry and medicine. In this book, the state of the art is described for NMR, ultrasound, X-ray CT, nuclear medicine, positron tomography and other imaging modalities. For every imaging modality, the most important clinical applications are described together with the delineation of problems and future needs. Furthermore, specific sections of the book are devoted to general aspects of medical imaging, such as reconstruction techniques, 2-D and 3-D display, quality control, archiving, market trends and correlative assessment

  20. Physics and engineering of medical imaging

    Guzzardi, R.

    1987-01-01

    The ever-growing development in the technology of Medical Imaging has a continuous and significant impact in the practice of Medicine as well as in the clinical research activity. The information and accuracy obtained by whatever imaging methodology is a complex result of a multidisciplinary effort of several sciences, such as Physics, Engineering, Electronics, Chemistry and Medicine. In this book, the state-of-the-art is described of the technology at the base of NMR, Ultrasound, X-ray CT, Nuclear Medicine, Positron Tomography and other Imaging Modalities such as Thermography or Biomagnetism, considering both the research and industrial point of view. For every imaging modality the most important clinical applications are described, together with the delineation of problems and future needs. Furthermore, specific sections of the book are devoted to general aspects of Medical Imaging, such as Reconstruction Techniques, 2-D and 3-D Display, Quality Control, Archiving, Market Trends and Correlative Assessment. (Auth.)

  1. Nonreference Medical Image Edge Map Measure

    Karen Panetta

    2014-01-01

    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  2. Radiation biology of medical imaging

    Kelsey, Charles A; Sandoval, Daniel J; Chambers, Gregory D; Adolphi, Natalie L; Paffett, Kimberly S

    2014-01-01

    This book provides a thorough yet concise introduction to quantitative radiobiology and radiation physics, particularly the practical and medical application. Beginning with a discussion of the basic science of radiobiology, the book explains the fast processes that initiate damage in irradiated tissue and the kinetic patterns in which such damage is expressed at the cellular level. The final section is presented in a highly practical handbook style and offers application-based discussions in radiation oncology, fractionated radiotherapy, and protracted radiation among others. The text is also supplemented by a Web site.

  3. A Hybrid Technique for Medical Image Segmentation

    Alamgir Nyma

    2012-01-01

    Full Text Available Medical image segmentation is an essential and challenging aspect in computer-aided diagnosis and also in pattern recognition research. This paper proposes a hybrid method for magnetic resonance (MR image segmentation. We first remove impulsive noise inherent in MR images by utilizing a vector median filter. Subsequently, Otsu thresholding is used as an initial coarse segmentation method that finds the homogeneous regions of the input image. Finally, an enhanced suppressed fuzzy c-means is used to partition brain MR images into multiple segments, which employs an optimal suppression factor for the perfect clustering in the given data set. To evaluate the robustness of the proposed approach in noisy environment, we add different types of noise and different amount of noise to T1-weighted brain MR images. Experimental results show that the proposed algorithm outperforms other FCM based algorithms in terms of segmentation accuracy for both noise-free and noise-inserted MR images.

  4. Multispectral system for medical fluorescence imaging

    Andersson, P.S.; Montan, S.; Svanberg, S.

    1987-01-01

    The principles of a powerful multicolor imaging system for tissue fluorescence diagnostics are discussed. Four individually spectrally filtered images are formed on a matrix detector by means of a split-mirror arrangement. The four images are processed in a computer, pixel by pixel, by means of mathematical operations, leading to an optimized contrast image, which enhances a selected feature. The system is being developed primarily for medical fluorescence imaging, but has wide applications in fluorescence, reflectance, and transmission monitoring related to a wide range of industrial and environmental problems. The system operation is described for the case of linear imaging on a diode array detector. Laser-induced fluorescence is used for cancer tumor and arteriosclerotic plaque demarcation using the contrast enhancement capabilities of this imaging system. Further examples of applications include fluorescing minerals and flames

  5. [Discussion of the implementation of MIMIC database in emergency medical study].

    Li, Kaiyuan; Feng, Cong; Jia, Lijing; Chen, Li; Pan, Fei; Li, Tanshi

    2018-05-01

    To introduce Medical Information Mart for Intensive Care (MIMIC) database and elaborate the approach of critically emergent research with big data based on the feature of MIMIC and updated studies both domestic and overseas, we put forward the feasibility and necessity of introducing medical big data to research in emergency. Then we discuss the role of MIMIC database in emergency clinical study, as well as the principles and key notes of experimental design and implementation under the medical big data circumstance. The implementation of MIMIC database in emergency medical research provides a brand new field for the early diagnosis, risk warning and prognosis of critical illness, however there are also limitations. To meet the era of big data, emergency medical database which is in accordance with our national condition is needed, which will provide new energy to the development of emergency medicine.

  6. Imaging methods in medical diagnosis

    Krestel, E.

    1981-01-01

    Pictures of parts of the human body or of the human body (views, superposition pictures, pictures of body layers, or photographs) are considerable helps for the medical diagnostics. Physics, electrotechnique, and machine construction make the picture production possible. Modern electronics and optics offer facilities of picture processing which influences the picture quality. Picture interpretation is the the physican's task. The picture-delivering methods applied in medicine include the conventional X-ray diagnostics, X-ray computer tomography, nuclear diagnostics, sonography with ultas sound, and endoscopy. Their rapid development and immprovement was caused by the development of electronics during the past 20 years. A method presently in discussion and development is the Kernspin-tomography. (orig./MG) [de

  7. Databases

    Kunte, P.D.

    Information on bibliographic as well as numeric/textual databases relevant to coastal geomorphology has been included in a tabular form. Databases cover a broad spectrum of related subjects like coastal environment and population aspects, coastline...

  8. Intelligent medical image processing by simulated annealing

    Ohyama, Nagaaki

    1992-01-01

    Image processing is being widely used in the medical field and already has become very important, especially when used for image reconstruction purposes. In this paper, it is shown that image processing can be classified into 4 categories; passive, active, intelligent and visual image processing. These 4 classes are explained at first through the use of several examples. The results show that the passive image processing does not give better results than the others. Intelligent image processing, then, is addressed, and the simulated annealing method is introduced. Due to the flexibility of the simulated annealing, formulated intelligence is shown to be easily introduced in an image reconstruction problem. As a practical example, 3D blood vessel reconstruction from a small number of projections, which is insufficient for conventional method to give good reconstruction, is proposed, and computer simulation clearly shows the effectiveness of simulated annealing method. Prior to the conclusion, medical file systems such as IS and C (Image Save and Carry) is pointed out to have potential for formulating knowledge, which is indispensable for intelligent image processing. This paper concludes by summarizing the advantages of simulated annealing. (author)

  9. Shape analysis in medical image analysis

    Tavares, João

    2014-01-01

    This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification, and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students, and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computationa...

  10. Medical Image Registration and Surgery Simulation

    Bro-Nielsen, Morten

    1996-01-01

    This thesis explores the application of physical models in medical image registration and surgery simulation. The continuum models of elasticity and viscous fluids are described in detail, and this knowledge is used as a basis for most of the methods described here. Real-time deformable models......, and the use of selective matrix vector multiplication. Fluid medical image registration A new and faster algorithm for non-rigid registration using viscous fluid models is presented. This algorithm replaces the core part of the original algorithm with multi-resolution convolution using a new filter, which...... growth is also presented. Using medical knowledge about the growth processes of the mandibular bone, a registration algorithm for time sequence images of the mandible is developed. Since this registration algorithm models the actual development of the mandible, it is possible to simulate the development...

  11. Indexing, learning and content-based retrieval for special purpose image databases

    M.J. Huiskes (Mark); E.J. Pauwels (Eric)

    2005-01-01

    textabstractThis chapter deals with content-based image retrieval in special purpose image databases. As image data is amassed ever more effortlessly, building efficient systems for searching and browsing of image databases becomes increasingly urgent. We provide an overview of the current

  12. An intelligent framework for medical image retrieval using MDCT and multi SVM.

    Balan, J A Alex Rajju; Rajan, S Edward

    2014-01-01

    Volumes of medical images are rapidly generated in medical field and to manage them effectively has become a great challenge. This paper studies the development of innovative medical image retrieval based on texture features and accuracy. The objective of the paper is to analyze the image retrieval based on diagnosis of healthcare management systems. This paper traces the development of innovative medical image retrieval to estimate both the image texture features and accuracy. The texture features of medical images are extracted using MDCT and multi SVM. Both the theoretical approach and the simulation results revealed interesting observations and they were corroborated using MDCT coefficients and SVM methodology. All attempts to extract the data about the image in response to the query has been computed successfully and perfect image retrieval performance has been obtained. Experimental results on a database of 100 trademark medical images show that an integrated texture feature representation results in 98% of the images being retrieved using MDCT and multi SVM. Thus we have studied a multiclassification technique based on SVM which is prior suitable for medical images. The results show the retrieval accuracy of 98%, 99% for different sets of medical images with respect to the class of image.

  13. 21 CFR 892.2040 - Medical image hardcopy device.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a medical...

  14. Smart travel guide: from internet image database to intelligent system

    Chareyron, Ga"l.; Da Rugna, Jérome; Cousin, Saskia

    2011-02-01

    To help the tourist to discover a city, a region or a park, many options are provided by public tourism travel centers, by free online guides or by dedicated book guides. Nonetheless, these guides provide only mainstream information which are not conform to a particular tourist behavior. On the other hand, we may find several online image databases allowing users to upload their images and to localize each image on a map. These websites are representative of tourism practices and constitute a proxy to analyze tourism flows. Then, this work intends to answer this question: knowing what I have visited and what other people have visited, where should I go now? This process needs to profile users, sites and photos. our paper presents the acquired data and relationship between photographers, sites and photos and introduces the model designed to correctly estimate the site interest of each tourism point. The third part shows an application of our schema: a smart travel guide on geolocated mobile devices. This android application is a travel guide truly matching the user wishes.

  15. Aligning Islamic Spirituality to Medical Imaging.

    Zainuddin, Zainul Ibrahim

    2017-10-01

    This paper attempts to conceptualize Islamic spirituality in medical imaging that deals with the humanistic and technical dimensions. It begins with establishing an understanding concerning spirituality, an area that now accepted as part of patient-centred care. This is followed by discussions pertaining to Islamic spirituality, related to the practitioner, patient care and the practice. Possible avenues towards applying Islamic spirituality in medical imaging are proposed. It is hoped that the resultant harmonization between Islamic spirituality and the practice will trigger awareness and interests pertaining to the role of a Muslim practitioner in advocating and enhancing Islamic spirituality.

  16. APES Beamforming Applied to Medical Ultrasound Imaging

    Blomberg, Ann E. A.; Holfort, Iben Kraglund; Austeng, Andreas

    2009-01-01

    Recently, adaptive beamformers have been introduced to medical ultrasound imaging. The primary focus has been on the minimum variance (MV) (or Capon) beamformer. This work investigates an alternative but closely related beamformer, the Amplitude and Phase Estimation (APES) beamformer. APES offers...... added robustness at the expense of a slightly lower resolution. The purpose of this study was to evaluate the performance of the APES beamformer on medical imaging data, since correct amplitude estimation often is just as important as spatial resolution. In our simulations we have used a 3.5 MHz, 96...... element linear transducer array. When imaging two closely spaced point targets, APES displays nearly the same resolution as the MV, and at the same time improved amplitude control. When imaging cysts in speckle, APES offers speckle statistics similar to that of the DAS, without the need for temporal...

  17. Reducing noise component on medical images

    Semenishchev, Evgeny; Voronin, Viacheslav; Dub, Vladimir; Balabaeva, Oksana

    2018-04-01

    Medical visualization and analysis of medical data is an actual direction. Medical images are used in microbiology, genetics, roentgenology, oncology, surgery, ophthalmology, etc. Initial data processing is a major step towards obtaining a good diagnostic result. The paper considers the approach allows an image filtering with preservation of objects borders. The algorithm proposed in this paper is based on sequential data processing. At the first stage, local areas are determined, for this purpose the method of threshold processing, as well as the classical ICI algorithm, is applied. The second stage uses a method based on based on two criteria, namely, L2 norm and the first order square difference. To preserve the boundaries of objects, we will process the transition boundary and local neighborhood the filtering algorithm with a fixed-coefficient. For example, reconstructed images of CT, x-ray, and microbiological studies are shown. The test images show the effectiveness of the proposed algorithm. This shows the applicability of analysis many medical imaging applications.

  18. Medical Image Denoising Using Mixed Transforms

    Jaleel Sadoon Jameel

    2018-02-01

    Full Text Available  In this paper,  a mixed transform method is proposed based on a combination of wavelet transform (WT and multiwavelet transform (MWT in order to denoise medical images. The proposed method consists of WT and MWT in cascade form to enhance the denoising performance of image processing. Practically, the first step is to add a noise to Magnetic Resonance Image (MRI or Computed Tomography (CT images for the sake of testing. The noisy image is processed by WT to achieve four sub-bands and each sub-band is treated individually using MWT before the soft/hard denoising stage. Simulation results show that a high peak signal to noise ratio (PSNR is improved significantly and the characteristic features are well preserved by employing mixed transform of WT and MWT due to their capability of separating noise signals from image signals. Moreover, the corresponding mean square error (MSE is decreased accordingly compared to other available methods.

  19. HVS-based medical image compression

    Kai Xie [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)]. E-mail: xie_kai2001@sjtu.edu.cn; Jie Yang [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China); Min Zhuyue [CREATIS-CNRS Research Unit 5515 and INSERM Unit 630, 69621 Villeurbanne (France); Liang Lixiao [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)

    2005-07-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time.

  20. HVS-based medical image compression

    Kai Xie; Jie Yang; Min Zhuyue; Liang Lixiao

    2005-01-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time

  1. Landsat TM and ETM+ 2002-2003 Kansas Satellite Image Database (KSID)

    Kansas Data Access and Support Center — The Kansas Satellite Image Database (KSID):2002-2003 consists of image data gathered by three sensors. The first image data are terrain-corrected, precision...

  2. Medical image segmentation using improved FCM

    ZHANG XiaoFeng; ZHANG CaiMing; TANG WenJing; WEI ZhenWen

    2012-01-01

    Image segmentation is one of the most important problems in medical image processing,and the existence of partial volume effect and other phenomena makes the problem much more complex. Fuzzy Cmeans,as an effective tool to deal with PVE,however,is faced with great challenges in efficiency.Aiming at this,this paper proposes one improved FCM algorithm based on the histogram of the given image,which will be denoted as HisFCM and divided into two phases.The first phase will retrieve several intervals on which to compute cluster centroids,and the second one will perform image segmentation based on improved FCM algorithm.Compared with FCM and other improved algorithms,HisFCM is of much higher efficiency with satisfying results.Experiments on medical images show that HisFCM can achieve good segmentation results in less than 0.1 second,and can satisfy real-time requirements of medical image processing.

  3. Resolution enhancement in medical ultrasound imaging.

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve the

  4. The FoodCast Research Image Database (FRIDa

    Francesco eForoni

    2013-03-01

    Full Text Available In recent years we have witnessed to an increasing interest in food processing and eating behaviors. This is probably due to several reasons. The biological relevance of food choices, the complexity of the food-rich environment in which we presently live (making food-intake regulation difficult, and the increasing health care cost due to illness associated with food (food hazards, food contamination, and aberrant food-intake. Despite the importance of the issues and the relevance of this research, comprehensive and validated databases of stimuli are rather limited, outdated, or not available for noncommercial purposes to independent researchers who aim at developing their own research program. The FoodCast Research Image Database (FRIDa we present here is comprised of 877 images from eight different categories: natural-food (e.g., strawberry, transformed-food (e.g., French fries, rotten-food (e.g., moldy banana, natural-nonfood items (e.g., pinecone, artificial food-related objects (e.g., teacup, artificial objects (e.g., guitar, animals (e.g., camel, and scenes (e.g., airport. FRIDa has been validated on a sample of healthy participants (N=73 on standard variables (e.g., valence, familiarity etc. as well as on other variables specifically related to food items (e.g., perceived calorie content; it also includes data on the visual features of the stimuli (e.g., brightness, high frequency power etc.. FRIDa is a well-controlled, flexible, validated, and freely available (http://foodcast.sissa.it/neuroscience/ tool for researchers in a wide range of academic fields and industry.

  5. A generic method for improving the spatial interoperability of medical and ecological databases.

    Ghenassia, A; Beuscart, J B; Ficheur, G; Occelli, F; Babykina, E; Chazard, E; Genin, M

    2017-10-03

    The availability of big data in healthcare and the intensive development of data reuse and georeferencing have opened up perspectives for health spatial analysis. However, fine-scale spatial studies of ecological and medical databases are limited by the change of support problem and thus a lack of spatial unit interoperability. The use of spatial disaggregation methods to solve this problem introduces errors into the spatial estimations. Here, we present a generic, two-step method for merging medical and ecological databases that avoids the use of spatial disaggregation methods, while maximizing the spatial resolution. Firstly, a mapping table is created after one or more transition matrices have been defined. The latter link the spatial units of the original databases to the spatial units of the final database. Secondly, the mapping table is validated by (1) comparing the covariates contained in the two original databases, and (2) checking the spatial validity with a spatial continuity criterion and a spatial resolution index. We used our novel method to merge a medical database (the French national diagnosis-related group database, containing 5644 spatial units) with an ecological database (produced by the French National Institute of Statistics and Economic Studies, and containing with 36,594 spatial units). The mapping table yielded 5632 final spatial units. The mapping table's validity was evaluated by comparing the number of births in the medical database and the ecological databases in each final spatial unit. The median [interquartile range] relative difference was 2.3% [0; 5.7]. The spatial continuity criterion was low (2.4%), and the spatial resolution index was greater than for most French administrative areas. Our innovative approach improves interoperability between medical and ecological databases and facilitates fine-scale spatial analyses. We have shown that disaggregation models and large aggregation techniques are not necessarily the best ways to

  6. Nuclear imaging in the realm of medical imaging

    Deconinck, Frank

    2003-01-01

    In medical imaging, information concerning the anatomy or biological processes of a patient is detected and presented on film or screen for interpretation by a reader. The information flow from patient to reader optimally implies: - the emission, transmission or reflection of information carriers, typically photons or sound waves, which have to be correctly modulated by patient information through interactions in the patient; - their detection by adequate imaging equipment preserving essential spectral, spatial and/or temporal information; - the presentation of the information in the most perceivable way; - the observation by an unbiased and trained expert. In reality, only an approximation to this optimal situation is achieved. It is the goal of R and D in the medical imaging field to approach the optimum as much as possible within societal constraints such as patient risk and comfort, economics, etc. First, the basic physical concepts underlying the imaging process will be introduced. Different imaging modalities will then be situated in the realm of medical imaging with some emphasis on nuclear imaging

  7. Database Capture of Natural Language Echocardiographic Reports: A Unified Medical Language System Approach

    Canfield, K.; Bray, B.; Huff, S.; Warner, H.

    1989-01-01

    We describe a prototype system for semi-automatic database capture of free-text echocardiography reports. The system is very simple and uses a Unified Medical Language System compatible architecture. We use this system and a large body of texts to create a patient database and develop a comprehensive hierarchical dictionary for echocardiography.

  8. Med-records: an ADD database of AAEC medical records since 1966

    Barry, J.M.; Pollard, J.P.; Tucker, A.D.

    1986-08-01

    Since its inception in 1958 most of the staff of the AAEC Research Establishment at Lucas Heights have had annual medical examinations. Medical information accrued since 1966 has been collected as an ADD database to allow ad hoc enquiries to be made against the data. Details are given of the database schema and numerous support routines ranging from the integrity checking of input data to analysis and plotting of the summary results

  9. Standardizing terminology and definitions of medication adherence and persistence in research employing electronic databases.

    Raebel, Marsha A; Schmittdiel, Julie; Karter, Andrew J; Konieczny, Jennifer L; Steiner, John F

    2013-08-01

    To propose a unifying set of definitions for prescription adherence research utilizing electronic health record prescribing databases, prescription dispensing databases, and pharmacy claims databases and to provide a conceptual framework to operationalize these definitions consistently across studies. We reviewed recent literature to identify definitions in electronic database studies of prescription-filling patterns for chronic oral medications. We then develop a conceptual model and propose standardized terminology and definitions to describe prescription-filling behavior from electronic databases. The conceptual model we propose defines 2 separate constructs: medication adherence and persistence. We define primary and secondary adherence as distinct subtypes of adherence. Metrics for estimating secondary adherence are discussed and critiqued, including a newer metric (New Prescription Medication Gap measure) that enables estimation of both primary and secondary adherence. Terminology currently used in prescription adherence research employing electronic databases lacks consistency. We propose a clear, consistent, broadly applicable conceptual model and terminology for such studies. The model and definitions facilitate research utilizing electronic medication prescribing, dispensing, and/or claims databases and encompasses the entire continuum of prescription-filling behavior. Employing conceptually clear and consistent terminology to define medication adherence and persistence will facilitate future comparative effectiveness research and meta-analytic studies that utilize electronic prescription and dispensing records.

  10. Grid Databases for Shared Image Analysis in the MammoGrid Project

    Amendolia, S R; Hauer, T; Manset, D; McClatchey, R; Odeh, M; Reading, T; Rogulin, D; Schottlander, D; Solomonides, T

    2004-01-01

    The MammoGrid project aims to prove that Grid infrastructures can be used for collaborative clinical analysis of database-resident but geographically distributed medical images. This requires: a) the provision of a clinician-facing front-end workstation and b) the ability to service real-world clinician queries across a distributed and federated database. The MammoGrid project will prove the viability of the Grid by harnessing its power to enable radiologists from geographically dispersed hospitals to share standardized mammograms, to compare diagnoses (with and without computer aided detection of tumours) and to perform sophisticated epidemiological studies across national boundaries. This paper outlines the approach taken in MammoGrid to seamlessly connect radiologist workstations across a Grid using an "information infrastructure" and a DICOM-compliant object model residing in multiple distributed data stores in Italy and the UK

  11. The semiotics of medical image Segmentation.

    Baxter, John S H; Gibson, Eli; Eagleson, Roy; Peters, Terry M

    2018-02-01

    As the interaction between clinicians and computational processes increases in complexity, more nuanced mechanisms are required to describe how their communication is mediated. Medical image segmentation in particular affords a large number of distinct loci for interaction which can act on a deep, knowledge-driven level which complicates the naive interpretation of the computer as a symbol processing machine. Using the perspective of the computer as dialogue partner, we can motivate the semiotic understanding of medical image segmentation. Taking advantage of Peircean semiotic traditions and new philosophical inquiry into the structure and quality of metaphors, we can construct a unified framework for the interpretation of medical image segmentation as a sign exchange in which each sign acts as an interface metaphor. This allows for a notion of finite semiosis, described through a schematic medium, that can rigorously describe how clinicians and computers interpret the signs mediating their interaction. Altogether, this framework provides a unified approach to the understanding and development of medical image segmentation interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Gestalt descriptions embodiments and medical image interpretation

    Friis, Jan Kyrre Berg Olsen

    2017-01-01

    In this paper I will argue that medical specialists interpret and diagnose through technological mediations like X-ray and fMRI images, and by actualizing embodied skills tacitly they are determining the identity of objects in the perceptual field. The initial phase of human interpretation of vis...

  13. A virtual laboratory for medical image analysis

    Olabarriaga, Sílvia D.; Glatard, Tristan; de Boer, Piter T.

    2010-01-01

    This paper presents the design, implementation, and usage of a virtual laboratory for medical image analysis. It is fully based on the Dutch grid, which is part of the Enabling Grids for E-sciencE (EGEE) production infrastructure and driven by the gLite middleware. The adopted service-oriented

  14. Fast fluid registration of medical images

    Bro-Nielsen, Morten; Gramkow, Claus

    1996-01-01

    This paper offers a new fast algorithm for non-rigid viscous fluid registration of medical images that is at least an order of magnitude faster than the previous method by (Christensen et al., 1994). The core algorithm in the fluid registration method is based on a linear elastic deformation...

  15. Beat-Frequency/Microsphere Medical Ultrasonic Imaging

    Yost, William T.; Cantrell, John H.; Pretlow, Robert A., III

    1995-01-01

    Medical ultrasonic imaging system designed to provide quantitative data on various flows of blood in chambers, blood vessels, muscles, and tissues of heart. Sensitive enough to yield readings on flows of blood in heart even when microspheres used as ultrasonic contrast agents injected far from heart and diluted by circulation of blood elsewhere in body.

  16. Curve Matching with Applications in Medical Imaging

    Bauer, Martin; Bruveris, Martins; Harms, Philipp

    2015-01-01

    In the recent years, Riemannian shape analysis of curves and surfaces has found several applications in medical image analysis. In this paper we present a numerical discretization of second order Sobolev metrics on the space of regular curves in Euclidean space. This class of metrics has several...

  17. Lesion Contrast Enhancement in Medical Ultrasound Imaging

    Stetson, Paul F.; Sommer, F.G.; Macovski, A.

    1997-01-01

    Methods for improving the contrast-to-noise ratio (CNR) of low-contrast lesions in medical ultrasound imaging are described. Differences in the frequency spectra and amplitude distributions of the lesion and its surroundings can be used to increase the CNR of the lesion relative to the background...

  18. Databases

    Nick Ryan

    2004-01-01

    Full Text Available Databases are deeply embedded in archaeology, underpinning and supporting many aspects of the subject. However, as well as providing a means for storing, retrieving and modifying data, databases themselves must be a result of a detailed analysis and design process. This article looks at this process, and shows how the characteristics of data models affect the process of database design and implementation. The impact of the Internet on the development of databases is examined, and the article concludes with a discussion of a range of issues associated with the recording and management of archaeological data.

  19. Medical image reconstruction. A conceptual tutorial

    Zeng, Gengsheng Lawrence

    2010-01-01

    ''Medical Image Reconstruction: A Conceptual Tutorial'' introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l 0 -minimization are also included. (orig.)

  20. A study on the optimization of referring method about medical images using MIH (Medical Image History)

    Kim, Sun Chil; Kim, Jung Min

    2002-01-01

    The recent development of embodiment technology of the medical images makes most medical institutions introduce PACS (Picture Archiving and Communication System) in haste. However lots of PACS solutions, currently developed and distributed, haven't been able to serve the convenience of users and to satisfy user's demand because of economic limitations and administrator-oriented con-siderations in the process of development. So we have developed MIH (Medical Image History), by which we can search and refer to the patient's medical images and information with few restrictions of time and space for diagnosis and treatment. The program will contribute to the improvement in the medical environment and meet the clients' need. We'll make more effort to develop the application which insures the better quality of medical images. MIH manages the patient's image files and medical records like film chart in connection with time. This trial will contribute to the reduction of the economical loss caused by unnecessary references and improve the quality in the medical services. The demand on the development of the program which refers to the medical data quickly and keeps them stable will be continued by the medical institute. This will satisfy the client's demand and improve the service to the patients in that the program will be modified from the standpoint of the users. MIH is trying to keep user-oriented policy and to apply the benefit of the analog system to the digital environment. It is necessary to lead the public to the better understanding that the systematic management and referring of the medical images is as important as the quality of the images

  1. A study on the optimization of referring method about medical images using MIH (Medical Image History)

    Kim, Sun Chil; Kim, Jung Min [College of Health Sciences, Korea University, Seoul (Korea, Republic of)

    2002-09-15

    The recent development of embodiment technology of the medical images makes most medical institutions introduce PACS (Picture Archiving and Communication System) in haste. However lots of PACS solutions, currently developed and distributed, haven't been able to serve the convenience of users and to satisfy user's demand because of economic limitations and administrator-oriented con-siderations in the process of development. So we have developed MIH (Medical Image History), by which we can search and refer to the patient's medical images and information with few restrictions of time and space for diagnosis and treatment. The program will contribute to the improvement in the medical environment and meet the clients' need. We'll make more effort to develop the application which insures the better quality of medical images. MIH manages the patient's image files and medical records like film chart in connection with time. This trial will contribute to the reduction of the economical loss caused by unnecessary references and improve the quality in the medical services. The demand on the development of the program which refers to the medical data quickly and keeps them stable will be continued by the medical institute. This will satisfy the client's demand and improve the service to the patients in that the program will be modified from the standpoint of the users. MIH is trying to keep user-oriented policy and to apply the benefit of the analog system to the digital environment. It is necessary to lead the public to the better understanding that the systematic management and referring of the medical images is as important as the quality of the images.

  2. Neural networks: Application to medical imaging

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  3. Spectral Skyline Separation: Extended Landmark Databases and Panoramic Imaging

    Dario Differt

    2016-09-01

    in the skyline databases, increasing, due to the increased variety of ground objects, the validity of our findings for novel environments. Third, we collected omnidirectional images, as often used for visual navigation tasks, of skylines using an UV-reflective hyperbolic mirror. We could show that “local” separation techniques can be adapted to the use of panoramic images by splitting the image into segments and finding individual thresholds for each segment. Contrarily, this is not possible for ‘global’ separation techniques.

  4. Large-Scale medical image analytics: Recent methodologies, applications and Future directions.

    Zhang, Shaoting; Metaxas, Dimitris

    2016-10-01

    Despite the ever-increasing amount and complexity of annotated medical image data, the development of large-scale medical image analysis algorithms has not kept pace with the need for methods that bridge the semantic gap between images and diagnoses. The goal of this position paper is to discuss and explore innovative and large-scale data science techniques in medical image analytics, which will benefit clinical decision-making and facilitate efficient medical data management. Particularly, we advocate that the scale of image retrieval systems should be significantly increased at which interactive systems can be effective for knowledge discovery in potentially large databases of medical images. For clinical relevance, such systems should return results in real-time, incorporate expert feedback, and be able to cope with the size, quality, and variety of the medical images and their associated metadata for a particular domain. The design, development, and testing of the such framework can significantly impact interactive mining in medical image databases that are growing rapidly in size and complexity and enable novel methods of analysis at much larger scales in an efficient, integrated fashion. Copyright © 2016. Published by Elsevier B.V.

  5. Data Mining on Distributed Medical Databases: Recent Trends and Future Directions

    Atilgan, Yasemin; Dogan, Firat

    As computerization in healthcare services increase, the amount of available digital data is growing at an unprecedented rate and as a result healthcare organizations are much more able to store data than to extract knowledge from it. Today the major challenge is to transform these data into useful information and knowledge. It is important for healthcare organizations to use stored data to improve quality while reducing cost. This paper first investigates the data mining applications on centralized medical databases, and how they are used for diagnostic and population health, then introduces distributed databases. The integration needs and issues of distributed medical databases are described. Finally the paper focuses on data mining studies on distributed medical databases.

  6. Medical Students? Confidence Judgments Using a Factual Database and Personal Memory: A Comparison.

    O'Keefe, Karen M.; Wildemuth, Barbara M.; Friedman, Charles P.

    1999-01-01

    This study examined the quality of medical students' confidence estimates in answering questions in bacteriology based on personal knowledge alone and what they retrieved from a factual database in microbiology, in order to determine whether medical students can recognize when an information need has been fulfilled and when it has not. (Author/LRW)

  7. A special designed library for medical imaging applications

    Lymberopoulos, D.; Kotsopoulos, S.; Zoupas, V.; Yoldassis, N.; Spyropoulos, C.

    1994-01-01

    The present paper deals with a sophisticated and flexible library of medical purpose image processing routines. It contains modules for simple as well as advanced gray or colour image processing. This library offers powerful features for medical image processing and analysis applications, thus providing the physician with a means of analyzing and estimating medical images in order to accomplish their diagnostic procedures

  8. Color-Based Image Retrieval from High-Similarity Image Databases

    Hansen, Michael Adsetts Edberg; Carstensen, Jens Michael

    2003-01-01

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce...... a method for HSID retrieval using a similarity measure based on a linear combination of Jeffreys-Matusita (JM) distances between distributions of color (and color derivatives) estimated from a set of automatically extracted image regions. The weight coefficients are estimated based on optimal retrieval...... performance. Experimental results on the difficult task of visually identifying clones of fungal colonies grown in a petri dish and categorization of pelts show a high retrieval accuracy of the method when combined with standardized sample preparation and image acquisition....

  9. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-28

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

  10. An Intelligent Terminal for Access to a Medical Database

    Womble, M. E.; Wilson, S. D.; Keiser, H. N.; Tworek, M. L.

    1978-01-01

    Very powerful data base management systems (DBMS) now exist which allow medical personnel access to patient record data bases. DBMS's make it easy to retrieve either complete or abbreviated records of patients with similar characteristics. In addition, statistics on data base records are immediately accessible. However, the price of this power is a large computer with the inherent problems of access, response time, and reliability. If a general purpose, time-shared computer is used to get this power, the response time to a request can be either rapid or slow, depending upon loading by other users. Furthermore, if the computer is accessed via dial-up telephone lines, there is competition with other users for telephone ports. If either the DBMS or the host machine is replaced, the medical users, who are typically not sophisticated in computer usage, are forced to learn the new system. Microcomputers, because of their low cost and adaptability, lend themselves to a solution of these problems. A microprocessor-based intelligent terminal has been designed and implemented at the USAF School of Aerospace Medicine to provide a transparent interface between the user and his data base. The intelligent terminal system includes multiple microprocessors, floppy disks, a CRT terminal, and a printer. Users interact with the system at the CRT terminal using menu selection (framing). The system translates the menu selection into the query language of the DBMS and handles all actual communication with the DBMS and its host computer, including telephone dialing and sign on procedures, as well as the actual data base query and response. Retrieved information is stored locally for CRT display, hard copy production, and/or permanent retention. Microprocessor-based communication units provide security for sensitive medical data through encryption/decryption algorithms and high reliability error detection transmission schemes. Highly modular software design permits adapation to a

  11. Medical image transmission via communication satellite: evaluation of ultrasonographic images.

    Suzuki, H; Horikoshi, H; Shiba, H; Shimamoto, S

    1996-01-01

    As compared with terrestrial circuits, communication satellites possess superior characteristics such as wide area coverage, broadcasting functions, high capacity, and resistance to disasters. Utilizing the narrow band channel (64 kbps) of the stationary communication satellite JCSAT1 located at an altitude of 36,000 km above the equator, we investigated satelliterelayed dynamic medical images transmitted by video signals, using hepatic ultrasonography as a model. We conclude that the "variable playing speed transmission scheme" proposed by us is effective for the transmission of dynamic images in the narrow band channel. This promises to permit diverse utilization and applications for purposes such as the transmission of other types of ultrasonic images as well as remotely directed medical diagnosis and treatment.

  12. Advantages of semiconductor CZT for medical imaging

    Wagenaar, Douglas J.; Parnham, Kevin; Sundal, Bjorn; Maehlum, Gunnar; Chowdhury, Samir; Meier, Dirk; Vandehei, Thor; Szawlowski, Marek; Patt, Bradley E.

    2007-09-01

    Cadmium zinc telluride (CdZnTe, or CZT) is a room-temperature semiconductor radiation detector that has been developed in recent years for a variety of applications. CZT has been investigated for many potential uses in medical imaging, especially in the field of single photon emission computed tomography (SPECT). CZT can also be used in positron emission tomography (PET) as well as photon-counting and integration-mode x-ray radiography and computed tomography (CT). The principal advantages of CZT are 1) direct conversion of x-ray or gamma-ray energy into electron-hole pairs; 2) energy resolution; 3) high spatial resolution and hence high space-bandwidth product; 4) room temperature operation, stable performance, high density, and small volume; 5) depth-of-interaction (DOI) available through signal processing. These advantages will be described in detail with examples from our own CZT systems. The ability to operate at room temperature, combined with DOI and very small pixels, make the use of multiple, stationary CZT "mini-gamma cameras" a realistic alternative to today's large Anger-type cameras that require motion to obtain tomographic sampling. The compatibility of CZT with Magnetic Resonance Imaging (MRI)-fields is demonstrated for a new type of multi-modality medical imaging, namely SPECT/MRI. For pre-clinical (i.e., laboratory animal) imaging, the advantages of CZT lie in spatial and energy resolution, small volume, automated quality control, and the potential for DOI for parallax removal in pinhole imaging. For clinical imaging, the imaging of radiographically dense breasts with CZT enables scatter rejection and hence improved contrast. Examples of clinical breast images with a dual-head CZT system are shown.

  13. Data Analysis Strategies in Medical Imaging.

    Parmar, Chintan; Barry, Joseph D; Hosny, Ahmed; Quackenbush, John; Aerts, Hugo Jwl

    2018-03-26

    Radiographic imaging continues to be one of the most effective and clinically useful tools within oncology. Sophistication of artificial intelligence (AI) has allowed for detailed quantification of radiographic characteristics of tissues using predefined engineered algorithms or deep learning methods. Precedents in radiology as well as a wealth of research studies hint at the clinical relevance of these characteristics. However, there are critical challenges associated with the analysis of medical imaging data. While some of these challenges are specific to the imaging field, many others like reproducibility and batch effects are generic and have already been addressed in other quantitative fields such as genomics. Here, we identify these pitfalls and provide recommendations for analysis strategies of medical imaging data including data normalization, development of robust models, and rigorous statistical analyses. Adhering to these recommendations will not only improve analysis quality, but will also enhance precision medicine by allowing better integration of imaging data with other biomedical data sources. Copyright ©2018, American Association for Cancer Research.

  14. Design and implementation of a biomedical image database (BDIM).

    Aubry, F; Badaoui, S; Kaplan, H; Di Paola, R

    1988-01-01

    We developed a biomedical image database (BDIM) which proposes a standardized representation of value arrays such as images and curves, and of their associated parameters, independently of their acquisition mode to make their transmission and processing easier. It includes three kinds of interactions, oriented to the users. The network concept was kept as a constraint to incorporate the BDIM in a distributed structure and we maintained compatibility with the ACR/NEMA communication protocol. The management of arrays and their associated parameters includes two distinct bases of objects, linked together via a gateway. The first one manages arrays according to their storage mode: long term storage on optionally on-line mass storage devices, and, for consultations, partial copies of long term stored arrays on hard disk. The second one manages the associated parameters and the gateway by means of the relational DBMS ORACLE. Parameters are grouped into relations. Some of them are in agreement with groups defined by the ACR/NEMA. The other relations describe objects resulting from processed initial objects. These new objects are not described by the ACR/NEMA but they can be inserted as shadow groups of ACR/NEMA description. The relations describing the storage and their pathname constitute the gateway. ORACLE distributed tools and the two-level storage technique will allow the integration of the BDIM into a distributed structure, Queries and array (alone or in sequences) retrieval module has access to the relations via a level in which a dictionary managed by ORACLE is included. This dictionary translates ACR/NEMA objects into objects that can be handled by the DBMS.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. HEP technologies to address medical imaging challenges

    CERN. Geneva

    2016-01-01

    Developments in detector technologies aimed at solving challenges in present and future CERN experiments, particularly at the LHC, have triggered exceptional advances in the performance of medical imaging devices, allowing for a spectacular progress in in-vivo molecular imaging procedures, which are opening the way for tailored therapies of major diseases. This talk will briefly review the recent history of this prime example of technology transfer from HEP experiments to society, will describe the technical challenges being addressed by some ongoing projects, and will present a few new ideas for further developments and their foreseeable impact.

  16. Medical Imaging Informatics: Towards a Personalized Computational Patient.

    Ayache, N

    2016-05-20

    Medical Imaging Informatics has become a fast evolving discipline at the crossing of Informatics, Computational Sciences, and Medicine that is profoundly changing medical practices, for the patients' benefit.

  17. Deep learning in medical imaging: General overview

    Lee, June Goo; Jun, Sang Hoon; Cho, Young Won; Lee, Hyun Na; KIm, Guk Bae; Seo, Joon Beom; Kim, Nam Kug [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-08-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and health care, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.

  18. Deep learning in medical imaging: General overview

    Lee, June Goo; Jun, Sang Hoon; Cho, Young Won; Lee, Hyun Na; KIm, Guk Bae; Seo, Joon Beom; Kim, Nam Kug

    2017-01-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and health care, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging

  19. Instrumentation of the ESRF medical imaging facility

    Elleaume, H; Berkvens, P; Berruyer, G; Brochard, T; Dabin, Y; Domínguez, M C; Draperi, A; Fiedler, S; Goujon, G; Le Duc, G; Mattenet, M; Nemoz, C; Pérez, M; Renier, M; Schulze, C; Spanne, P; Suortti, P; Thomlinson, W; Estève, F; Bertrand, B; Le Bas, J F

    1999-01-01

    At the European Synchrotron Radiation Facility (ESRF) a beamport has been instrumented for medical research programs. Two facilities have been constructed for alternative operation. The first one is devoted to medical imaging and is focused on intravenous coronary angiography and computed tomography (CT). The second facility is dedicated to pre-clinical microbeam radiotherapy (MRT). This paper describes the instrumentation for the imaging facility. Two monochromators have been designed, both are based on bent silicon crystals in the Laue geometry. A versatile scanning device has been built for pre-alignment and scanning of the patient through the X-ray beam in radiography or CT modes. An intrinsic germanium detector is used together with large dynamic range electronics (16 bits) to acquire the data. The beamline is now at the end of its commissioning phase; intravenous coronary angiography is intended to start in 1999 with patients and the CT pre-clinical program is underway on small animals. The first in viv...

  20. Statistical physics of medical ultrasonic images

    Wagner, R.F.; Insana, M.F.; Brown, D.G.; Smith, S.W.

    1987-01-01

    The physical and statistical properties of backscattered signals in medical ultrasonic imaging are reviewed in terms of: 1) the radiofrequency signal; 2) the envelope (video or magnitude) signal; and 3) the density of samples in simple and in compounded images. There is a wealth of physical information in backscattered signals in medical ultrasound. This information is contained in the radiofrequency spectrum - which is not typically displayed to the viewer - as well as in the higher statistical moments of the envelope or video signal - which are not readily accessed by the human viewer of typical B-scans. This information may be extracted from the detected backscattered signals by straightforward signal processing techniques at low resolution

  1. Deep Learning in Medical Imaging: General Overview

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae

    2017-01-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging. PMID:28670152

  2. Deep Learning in Medical Imaging: General Overview.

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae; Seo, Joon Beom; Kim, Namkug

    2017-01-01

    The artificial neural network (ANN)-a machine learning technique inspired by the human neuronal synapse system-was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.

  3. A comparative study of six European databases of medically oriented Web resources.

    Abad García, Francisca; González Teruel, Aurora; Bayo Calduch, Patricia; de Ramón Frias, Rosa; Castillo Blasco, Lourdes

    2005-10-01

    The paper describes six European medically oriented databases of Web resources, pertaining to five quality-controlled subject gateways, and compares their performance. The characteristics, coverage, procedure for selecting Web resources, record structure, searching possibilities, and existence of user assistance were described for each database. Performance indicators for each database were obtained by means of searches carried out using the key words, "myocardial infarction." Most of the databases originated in the 1990s in an academic or library context and include all types of Web resources of an international nature. Five databases use Medical Subject Headings. The number of fields per record varies between three and nineteen. The language of the search interfaces is mostly English, and some of them allow searches in other languages. In some databases, the search can be extended to Pubmed. Organizing Medical Networked Information, Catalogue et Index des Sites Médicaux Francophones, and Diseases, Disorders and Related Topics produced the best results. The usefulness of these databases as quick reference resources is clear. In addition, their lack of content overlap means that, for the user, they complement each other. Their continued survival faces three challenges: the instability of the Internet, maintenance costs, and lack of use in spite of their potential usefulness.

  4. A recommender system for medical imaging diagnostic.

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision.

  5. CERN crystals used in medical imaging

    Maximilien Brice

    2004-01-01

    This crystal is a type of material known as a scintillator. When a high energy charged particle or photon passes through a scintillator it glows. These materials are widely used in particle physics for particle detection, but their uses are being realized in further fields, such as Positron Emission Tomography (PET), an area of medical imaging that monitors the regions of energy use in the body.

  6. Image-based query-by-example for big databases of galaxy images

    Shamir, Lior; Kuminski, Evan

    2017-01-01

    Very large astronomical databases containing millions or even billions of galaxy images have been becoming increasingly important tools in astronomy research. However, in many cases the very large size makes it more difficult to analyze these data manually, reinforcing the need for computer algorithms that can automate the data analysis process. An example of such task is the identification of galaxies of a certain morphology of interest. For instance, if a rare galaxy is identified it is reasonable to expect that more galaxies of similar morphology exist in the database, but it is virtually impossible to manually search these databases to identify such galaxies. Here we describe computer vision and pattern recognition methodology that receives a galaxy image as an input, and searches automatically a large dataset of galaxies to return a list of galaxies that are visually similar to the query galaxy. The returned list is not necessarily complete or clean, but it provides a substantial reduction of the original database into a smaller dataset, in which the frequency of objects visually similar to the query galaxy is much higher. Experimental results show that the algorithm can identify rare galaxies such as ring galaxies among datasets of 10,000 astronomical objects.

  7. Bayesian image restoration for medical images using radon transform

    Shouno, Hayaru; Okada, Masato

    2010-01-01

    We propose an image reconstruction algorithm using Bayesian inference for Radon transformed observation data, which often appears in the field of medical image reconstruction known as computed tomography (CT). In order to apply our Bayesian reconstruction method, we introduced several hyper-parameters that control the ratio between prior information and the fidelity of the observation process. Since the quality of the reconstructed image is influenced by the estimation accuracy of these hyper-parameters, we propose an inference method for them based on the marginal likelihood maximization principle as well as the image reconstruction method. We are able to demonstrate a reconstruction result superior to that obtained using the conventional filtered back projection method. (author)

  8. Quantification of heterogeneity observed in medical images

    Brooks, Frank J; Grigsby, Perry W

    2013-01-01

    There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging modalities. In this work, we motivate and derive a statistical measure of image heterogeneity. This statistic measures the distance-dependent average deviation from the smoothest intensity gradation feasible. We show how this statistic may be used to automatically rank images of in vivo human tumors in order of increasing heterogeneity. We test this method against the current practice of ranking images via expert visual inspection. We find that this statistic provides a means of heterogeneity quantification beyond that given by other statistics traditionally used for the same purpose. We demonstrate the effect of tumor shape upon our ranking method and find the method applicable to a wide variety of clinically relevant tumor images. We find that the automated heterogeneity rankings agree very closely with those performed visually by experts. These results indicate that our automated method may be used reliably to rank, in order of increasing heterogeneity, tumor images whether or not object shape is considered to contribute to that heterogeneity. Automated heterogeneity ranking yields objective results which are more consistent than visual rankings. Reducing variability in image interpretation will enable more researchers to better study potential clinical implications of observed tumor heterogeneity

  9. Quantification of heterogeneity observed in medical images.

    Brooks, Frank J; Grigsby, Perry W

    2013-03-02

    There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging modalities. In this work, we motivate and derive a statistical measure of image heterogeneity. This statistic measures the distance-dependent average deviation from the smoothest intensity gradation feasible. We show how this statistic may be used to automatically rank images of in vivo human tumors in order of increasing heterogeneity. We test this method against the current practice of ranking images via expert visual inspection. We find that this statistic provides a means of heterogeneity quantification beyond that given by other statistics traditionally used for the same purpose. We demonstrate the effect of tumor shape upon our ranking method and find the method applicable to a wide variety of clinically relevant tumor images. We find that the automated heterogeneity rankings agree very closely with those performed visually by experts. These results indicate that our automated method may be used reliably to rank, in order of increasing heterogeneity, tumor images whether or not object shape is considered to contribute to that heterogeneity. Automated heterogeneity ranking yields objective results which are more consistent than visual rankings. Reducing variability in image interpretation will enable more researchers to better study potential clinical implications of observed tumor heterogeneity.

  10. Development of technology for medical image fusion

    Yamaguchi, Takashi; Amano, Daizou

    2012-01-01

    With entry into a field of medical diagnosis in mind, we have developed positron emission tomography (PET) ''MIP-100'' system, of which spatial resolution is far higher than the conventional one, using semiconductor detectors for preclinical imaging for small animals. In response to the recently increasing market demand to fuse functional images by PET and anatomical ones by CT or MRI, we have been developing software to implement image fusion function that enhances marketability of the PET Camera. This paper describes the method of fusing with high accuracy the PET images and anatomical ones by CT system. It also explains that a computer simulation proved the image overlay accuracy to be ±0.3 mm as a result of the development, and that effectiveness of the developed software is confirmed in case of experiment to obtain measured data. Achieving such high accuracy as ±0.3 mm by the software allows us to present fusion images with high resolution (<0.6 mm) without degrading the spatial resolution (<0.5 mm) of the PET system using semiconductor detectors. (author)

  11. Medical Imaging for the Tracking of Micromotors.

    Vilela, Diana; Cossío, Unai; Parmar, Jemish; Martínez-Villacorta, Angel M; Gómez-Vallejo, Vanessa; Llop, Jordi; Sánchez, Samuel

    2018-02-27

    Micro/nanomotors are useful tools for several biomedical applications, including targeted drug delivery and minimally invasive microsurgeries. However, major challenges such as in vivo imaging need to be addressed before they can be safely applied on a living body. Here, we show that positron emission tomography (PET), a molecular imaging technique widely used in medical imaging, can also be used to track a large population of tubular Au/PEDOT/Pt micromotors. Chemisorption of an iodine isotope onto the micromotor's Au surface rendered them detectable by PET, and we could track their movements in a tubular phantom over time frames of up to 15 min. In a second set of experiments, micromotors and the bubbles released during self-propulsion were optically tracked by video imaging and bright-field microscopy. The results from direct optical tracking agreed with those from PET tracking, demonstrating that PET is a suitable technique for the imaging of large populations of active micromotors in opaque environments, thus opening opportunities for the use of this mature imaging technology for the in vivo localization of artificial swimmers.

  12. The quest for standards in medical imaging

    Gibaud, Bernard, E-mail: bernard.gibaud@irisa.fr [INSERM, VisAGeS U746 Unit/Project, Faculty of Medicine, Campus de Villejean, F-35043 Rennes (France); INRIA, VisAGeS U746 Unit/Project, IRISA, Campus de Beaulieu, F-35042 Rennes (France); University of Rennes I-CNRS UMR 6074, IRISA, Campus de Beaulieu, F-35042 Rennes (France)

    2011-05-15

    This article focuses on standards supporting interoperability and system integration in the medical imaging domain. We introduce the basic concepts and actors and we review the most salient achievements in this domain, especially with the DICOM standard, and the definition of IHE integration profiles. We analyze and discuss what was successful, and what could still be more widely adopted by industry. We then sketch out a perspective of what should be done next, based on our vision of new requirements for the next decade. In particular, we discuss the challenges of a more explicit sharing of image and image processing semantics, and we discuss the help that semantic web technologies (and especially ontologies) may bring to achieving this goal.

  13. The quest for standards in medical imaging

    Gibaud, Bernard

    2011-01-01

    This article focuses on standards supporting interoperability and system integration in the medical imaging domain. We introduce the basic concepts and actors and we review the most salient achievements in this domain, especially with the DICOM standard, and the definition of IHE integration profiles. We analyze and discuss what was successful, and what could still be more widely adopted by industry. We then sketch out a perspective of what should be done next, based on our vision of new requirements for the next decade. In particular, we discuss the challenges of a more explicit sharing of image and image processing semantics, and we discuss the help that semantic web technologies (and especially ontologies) may bring to achieving this goal.

  14. Development of 3-D Medical Image VIsualization System

    User

    uses standard 2-D medical imaging inputs and generates medical images of human body parts ... light wave from points on the 3-D object(s) in ... tools, and communication bandwidth cannot .... locations along the track that correspond with.

  15. Radically Reducing Radiation Exposure during Routine Medical Imaging

    Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.

  16. Twofold processing for denoising ultrasound medical images.

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.

  17. Lossy image compression for digital medical imaging systems

    Wilhelm, Paul S.; Haynor, David R.; Kim, Yongmin; Nelson, Alan C.; Riskin, Eve A.

    1990-07-01

    Image compression at rates of 10:1 or greater could make PACS much more responsive and economically attractive. This paper describes a protocol for subjective and objective evaluation of the fidelity of compressed/decompressed images to the originals and presents the results ofits application to four representative and promising compression methods. The methods examined are predictive pruned tree-structured vector quantization, fractal compression, the discrete cosine transform with equal weighting of block bit allocation, and the discrete cosine transform with human visual system weighting of block bit allocation. Vector quantization is theoretically capable of producing the best compressed images, but has proven to be difficult to effectively implement. It has the advantage that it can reconstruct images quickly through a simple lookup table. Disadvantages are that codebook training is required, the method is computationally intensive, and achieving the optimum performance would require prohibitively long vector dimensions. Fractal compression is a relatively new compression technique, but has produced satisfactory results while being computationally simple. It is fast at both image compression and image reconstruction. Discrete cosine iransform techniques reproduce images well, but have traditionally been hampered by the need for intensive computing to compress and decompress images. A protocol was developed for side-by-side observer comparison of reconstructed images with originals. Three 1024 X 1024 CR (Computed Radiography) images and two 512 X 512 X-ray CT images were viewed at six bit rates (0.2, 0.4, 0.6, 0.9, 1.2, and 1.5 bpp for CR, and 1.0, 1.3, 1.6, 1.9, 2.2, 2.5 bpp for X-ray CT) by nine radiologists at the University of Washington Medical Center. The CR images were viewed on a Pixar II Megascan (2560 X 2048) monitor and the CT images on a Sony (1280 X 1024) monitor. The radiologists' subjective evaluations of image fidelity were compared to

  18. Improvement of medication event interventions through use of an electronic database.

    Merandi, Jenna; Morvay, Shelly; Lewe, Dorcas; Stewart, Barb; Catt, Char; Chanthasene, Phillip P; McClead, Richard; Kappeler, Karl; Mirtallo, Jay M

    2013-10-01

    Patient safety enhancements achieved through the use of an electronic Web-based system for responding to adverse drug events (ADEs) are described. A two-phase initiative was carried out at an academic pediatric hospital to improve processes related to "medication event huddles" (interdisciplinary meetings focused on ADE interventions). Phase 1 of the initiative entailed a review of huddles and interventions over a 16-month baseline period during which multiple databases were used to manage the huddle process and staff interventions were assigned via manually generated e-mail reminders. Phase 1 data collection included ADE details (e.g., medications and staff involved, location and date of event) and the types and frequencies of interventions. Based on the phase 1 analysis, an electronic database was created to eliminate the use of multiple systems for huddle scheduling and documentation and to automatically generate e-mail reminders on assigned interventions. In phase 2 of the initiative, the impact of the database during a 5-month period was evaluated; the primary outcome was the percentage of interventions documented as completed after database implementation. During the postimplementation period, 44.7% of assigned interventions were completed, compared with a completion rate of 21% during the preimplementation period, and interventions documented as incomplete decreased from 77% to 43.7% (p Process changes, education, and medication order improvements were the most frequently documented categories of interventions. Implementation of a user-friendly electronic database improved intervention completion and documentation after medication event huddles.

  19. Medical image archive node simulation and architecture

    Chiang, Ted T.; Tang, Yau-Kuo

    1996-05-01

    It is a well known fact that managed care and new treatment technologies are revolutionizing the health care provider world. Community Health Information Network and Computer-based Patient Record projects are underway throughout the United States. More and more hospitals are installing digital, `filmless' radiology (and other imagery) systems. They generate a staggering amount of information around the clock. For example, a typical 500-bed hospital might accumulate more than 5 terabytes of image data in a period of 30 years for conventional x-ray images and digital images such as Magnetic Resonance Imaging and Computer Tomography images. With several hospitals contributing to the archive, the storage required will be in the hundreds of terabytes. Systems for reliable, secure, and inexpensive storage and retrieval of digital medical information do not exist today. In this paper, we present a Medical Image Archive and Distribution Service (MIADS) concept. MIADS is a system shared by individual and community hospitals, laboratories, and doctors' offices that need to store and retrieve medical images. Due to the large volume and complexity of the data, as well as the diversified user access requirement, implementation of the MIADS will be a complex procedure. One of the key challenges to implementing a MIADS is to select a cost-effective, scalable system architecture to meet the ingest/retrieval performance requirements. We have performed an in-depth system engineering study, and developed a sophisticated simulation model to address this key challenge. This paper describes the overall system architecture based on our system engineering study and simulation results. In particular, we will emphasize system scalability and upgradability issues. Furthermore, we will discuss our simulation results in detail. The simulations study the ingest/retrieval performance requirements based on different system configurations and architectures for variables such as workload, tape

  20. Novel gaseous detectors for medical imaging

    Danielsson, M.; Fonte, P.; Francke, T.; Iacobaeus, C.; Ostling, J.; Peskov, V.

    2004-01-01

    We have developed and successfully tested prototypes of two new types of gaseous detectors for medical imaging purposes. The first one is called the Electronic Portal Imaging Device (EPID). It is oriented on monitoring and the precise alignment of the therapeutic cancer treatment beam (pulsed gamma radiation) with respect to the patient's tumor position. The latest will be determined from an X-ray image of the patient obtained in the time intervals between the gamma pulses. The detector is based on a 'sandwich' of hole-type gaseous detectors (GEM and glass microcapillary plates) with metallic gamma and X-ray converters coated with CsI layers. The second detector is an X-ray image scanner oriented on mammography and other radiographic applications. It is based on specially developed by us high rate RPCs that are able to operate at rates of 10 5 Hz/mm 2 with a position resolution better than 50 μm at 1 atm. The quality of the images obtained with the latest version of this device were in most cases more superior than those obtained from commercially available detectors

  1. X-ray detectors in medical imaging

    Spahn, Martin

    2013-01-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd 2 O 2 S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications

  2. Cerenkov luminescence imaging of medical isotopes.

    Ruggiero, Alessandro; Holland, Jason P; Lewis, Jason S; Grimm, Jan

    2010-07-01

    The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters (18)F, (64)Cu, (89)Zr, and (124)I; beta-emitter (131)I; and alpha-particle emitter (225)Ac for potential use in CLI. The novel radiolabeled monoclonal antibody (89)Zr-desferrioxamine B [DFO]-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-, beta-, and alpha-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of (89)Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear

  3. Rice8987 Array: Gel images - RMOS | LSDB Archive [Life Science Database Archive metadata

    Full Text Available List Contact us RMOS Rice8987 Array: Gel images Data detail Data name Rice8987 Array: Gel images DOI 10.1890...e by Wako), was used to other Dplate. Gel images were scanned by scanner (Molecular Dynamics Co.). Number of...Database Site Policy | Contact Us Rice8987 Array: Gel images - RMOS | LSDB Archive ...

  4. Software for medical image based phantom modelling

    Possani, R.G.; Massicano, F.; Coelho, T.S.; Yoriyaz, H.

    2011-01-01

    Latest treatment planning systems depends strongly on CT images, so the tendency is that the dosimetry procedures in nuclear medicine therapy be also based on images, such as magnetic resonance imaging (MRI) or computed tomography (CT), to extract anatomical and histological information, as well as, functional imaging or activities map as PET or SPECT. This information associated with the simulation of radiation transport software is used to estimate internal dose in patients undergoing treatment in nuclear medicine. This work aims to re-engineer the software SCMS, which is an interface software between the Monte Carlo code MCNP, and the medical images, that carry information from the patient in treatment. In other words, the necessary information contained in the images are interpreted and presented in a specific format to the Monte Carlo MCNP code to perform the simulation of radiation transport. Therefore, the user does not need to understand complex process of inputting data on MCNP, as the SCMS is responsible for automatically constructing anatomical data from the patient, as well as the radioactive source data. The SCMS was originally developed in Fortran- 77. In this work it was rewritten in an object-oriented language (JAVA). New features and data options have also been incorporated into the software. Thus, the new software has a number of improvements, such as intuitive GUI and a menu for the selection of the energy spectra correspondent to a specific radioisotope stored in a XML data bank. The new version also supports new materials and the user can specify an image region of interest for the calculation of absorbed dose. (author)

  5. Appropriateness of the food-pics image database for experimental eating and appetite research with adolescents.

    Jensen, Chad D; Duraccio, Kara M; Barnett, Kimberly A; Stevens, Kimberly S

    2016-12-01

    Research examining effects of visual food cues on appetite-related brain processes and eating behavior has proliferated. Recently investigators have developed food image databases for use across experimental studies examining appetite and eating behavior. The food-pics image database represents a standardized, freely available image library originally validated in a large sample primarily comprised of adults. The suitability of the images for use with adolescents has not been investigated. The aim of the present study was to evaluate the appropriateness of the food-pics image library for appetite and eating research with adolescents. Three hundred and seven adolescents (ages 12-17) provided ratings of recognizability, palatability, and desire to eat, for images from the food-pics database. Moreover, participants rated the caloric content (high vs. low) and healthiness (healthy vs. unhealthy) of each image. Adolescents rated approximately 75% of the food images as recognizable. Approximately 65% of recognizable images were correctly categorized as high vs. low calorie and 63% were correctly classified as healthy vs. unhealthy in 80% or more of image ratings. These results suggest that a smaller subset of the food-pics image database is appropriate for use with adolescents. With some modifications to included images, the food-pics image database appears to be appropriate for use in experimental appetite and eating-related research conducted with adolescents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Medical image information system 2001. Development of the medical image information system to risk management- Medical exposure management

    Kuranishi, Makoto; Kumagai, Michitomo; Shintani, Mitsuo

    2000-01-01

    This paper discusses the methods and systems for optimizing the following supplements 10 and 17 for national health and medical care. The supplements 10 and 17 of DICOM (digital imaging and communications in medicine) system, which is now under progress for the purpose to keep compatibility within medical image information system as an international standard, are important for making the cooperation between HIS (hospital information system)/RIS (radiation information system) and modality (imaging instruments). Supplement 10 concerns the system to send the information of patients and their orders through HIS/RIS to modality and 17, the information of modality performed procedure step (MPPS) to HIS/RIS. The latter defines to document patients' exposure, a part of which has not been recognized in Japan. Thus the medical information system can be useful for risk-management of medical exposure in future. (K.H.)

  7. Medical image information system 2001. Development of the medical image information system to risk management- Medical exposure management

    Kuranishi, Makoto; Kumagai, Michitomo; Shintani, Mitsuo [Toyama Medical and Pharmaceutical Univ. (Japan). Hospital

    2000-12-01

    This paper discusses the methods and systems for optimizing the following supplements 10 and 17 for national health and medical care. The supplements 10 and 17 of DICOM (digital imaging and communications in medicine) system, which is now under progress for the purpose to keep compatibility within medical image information system as an international standard, are important for making the cooperation between HIS (hospital information system)/RIS (radiation information system) and modality (imaging instruments). Supplement 10 concerns the system to send the information of patients and their orders through HIS/RIS to modality and 17, the information of modality performed procedure step (MPPS) to HIS/RIS. The latter defines to document patients' exposure, a part of which has not been recognized in Japan. Thus the medical information system can be useful for risk-management of medical exposure in future. (K.H.)

  8. Wavelet versus DCT-based spread spectrum watermarking of image databases

    Mitrea, Mihai P.; Zaharia, Titus B.; Preteux, Francoise J.; Vlad, Adriana

    2004-05-01

    This paper addresses the issue of oblivious robust watermarking, within the framework of colour still image database protection. We present an original method which complies with all the requirements nowadays imposed to watermarking applications: robustness (e.g. low-pass filtering, print & scan, StirMark), transparency (both quality and fidelity), low probability of false alarm, obliviousness and multiple bit recovering. The mark is generated from a 64 bit message (be it a logo, a serial number, etc.) by means of a Spread Spectrum technique and is embedded into DWT (Discrete Wavelet Transform) domain, into certain low frequency coefficients, selected according to the hierarchy of their absolute values. The best results were provided by the (9,7) bi-orthogonal transform. The experiments were carried out on 1200 image sequences, each of them of 32 images. Note that these sequences represented several types of images: natural, synthetic, medical, etc. and each time we obtained the same good results. These results are compared with those we already obtained for the DCT domain, the differences being pointed out and discussed.

  9. Unique identification code for medical fundus images using blood vessel pattern for tele-ophthalmology applications.

    Singh, Anushikha; Dutta, Malay Kishore; Sharma, Dilip Kumar

    2016-10-01

    Identification of fundus images during transmission and storage in database for tele-ophthalmology applications is an important issue in modern era. The proposed work presents a novel accurate method for generation of unique identification code for identification of fundus images for tele-ophthalmology applications and storage in databases. Unlike existing methods of steganography and watermarking, this method does not tamper the medical image as nothing is embedded in this approach and there is no loss of medical information. Strategic combination of unique blood vessel pattern and patient ID is considered for generation of unique identification code for the digital fundus images. Segmented blood vessel pattern near the optic disc is strategically combined with patient ID for generation of a unique identification code for the image. The proposed method of medical image identification is tested on the publically available DRIVE and MESSIDOR database of fundus image and results are encouraging. Experimental results indicate the uniqueness of identification code and lossless recovery of patient identity from unique identification code for integrity verification of fundus images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Quantification of Structure from Medical Images

    Qazi, Arish Asif

    based on diffusion tensor imaging, a technique widely used for analysis of the white matter of the central nervous system in the living human brain. An inherent drawback of the traditional diffusion tensor model is its limited ability to provide detailed information about multi-directional fiber......In this thesis, we present automated methods that quantify information from medical images; information that is intended to assist and enable clinicians gain a better understanding of the underlying pathology. The first part of the thesis presents methods that analyse the articular cartilage......, and information beyond that of traditional morphometric measures. The thesis also proposes a fully automatic and generic statistical framework for identifying biologically interpretable regions of difference (ROD) between two groups of biological objects, attributed by anatomical differences or changes relating...

  11. Medical imaging projects meet at CERN

    CERN Bulletin

    2013-01-01

    ENTERVISION, the Research Training Network in 3D Digital Imaging for Cancer Radiation Therapy, successfully passed its mid-term review held at CERN on 11 January. This multidisciplinary project aims at qualifying experts in medical imaging techniques for improved hadron therapy.   ENTERVISION provides training in physics, medicine, electronics, informatics, radiobiology and engineering, as well as a wide range of soft skills, to 16 researchers of different backgrounds and nationalities. The network is funded by the European Commission within the Marie Curie Initial Training Network, and relies on the EU-funded research project ENVISION to provide a training platform for the Marie Curie researchers. The two projects hold their annual meetings jointly, allowing the young researchers to meet senior scientists and to have a full picture of the latest developments in the field beyond their individual research project. ENVISION and ENTERVISION are both co-ordinated by CERN, and the Laboratory hosts t...

  12. Viewpoints on Medical Image Processing: From Science to Application.

    Deserno Né Lehmann, Thomas M; Handels, Heinz; Maier-Hein Né Fritzsche, Klaus H; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-05-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.

  13. Viewpoints on Medical Image Processing: From Science to Application

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  14. A comparative study on medical image segmentation methods

    Praylin Selva Blessy SELVARAJ ASSLEY

    2014-03-01

    Full Text Available Image segmentation plays an important role in medical images. It has been a relevant research area in computer vision and image analysis. Many segmentation algorithms have been proposed for medical images. This paper makes a review on segmentation methods for medical images. In this survey, segmentation methods are divided into five categories: region based, boundary based, model based, hybrid based and atlas based. The five different categories with their principle ideas, advantages and disadvantages in segmenting different medical images are discussed.

  15. Interpretation of medical imaging data with a mobile application: a mobile digital imaging processing environment

    Meng Kuan eLin

    2013-07-01

    Full Text Available Digital Imaging Processing (DIP requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and digital imaging processing service, called M-DIP. The objective of the system is to (1 automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC, Neuroimaging Informatics Technology Initiative (NIFTI to RAW formats; (2 speed up querying of imaging measurement; and (3 display high level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle- layer database, a stand-alone DIP server and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data a multiple zoom levels and to increase its quality to meet users expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services.

  16. Medical image diagnosis of liver cancer using artificial intelligence

    Kondo, Tadashi; Ueno, Junji; Takao, Shoichiro

    2010-01-01

    A revised Group Method of Data Handling (GMDH)-type neural network algorithm using artificial intelligence technology for medical image diagnosis is proposed and is applied to medical image diagnosis of liver cancer. In this algorithm, the knowledge base for medical image diagnosis are used for organizing the neural network architecture for medical image diagnosis. Furthermore, the revised GMDH-type neural network algorithm has a feedback loop and can identify the characteristics of the medical images accurately using feedback loop calculations. The optimum neural network architecture fitting the complexity of the medical images is automatically organized so as to minimize the prediction error criterion defined as Prediction Sum of Squares (PSS). It is shown that the revised GMDH-type neural network can be easily applied to the medical image diagnosis. (author)

  17. Diagnostic imaging in undergraduate medical education: an expanding role

    Miles, K.A.

    2005-01-01

    Radiologists have been involved in anatomy instruction for medical students for decades. However, recent technical advances in radiology, such as multiplanar imaging, 'virtual endoscopy', functional and molecular imaging, and spectroscopy, offer new ways in which to use imaging for teaching basic sciences to medical students. The broad dissemination of picture archiving and communications systems is making such images readily available to medical schools, providing new opportunities for the incorporation of diagnostic imaging into the undergraduate medical curriculum. Current reforms in the medical curriculum and the establishment of new medical schools in the UK further underline the prospects for an expanding role for imaging in medical education. This article reviews the methods by which diagnostic imaging can be used to support the learning of anatomy and other basic sciences

  18. Diagnostic reference levels in medical imaging

    Rosenstein, M.

    2001-01-01

    The paper proposes additional advice to national or local authorities and the clinical community on the application of diagnostic reference levels as a practical tool to manage radiation doses to patients in diagnostic radiology and nuclear medicine. A survey was made of the various approaches that have been taken by authoritative bodies to establish diagnostic reference levels for medical imaging tasks. There are a variety of ways to implement the idea of diagnostic reference levels, depending on the medical imaging task of interest, the national or local state of practice and the national or local preferences for technical implementation. The existing International Commission on Radiological Protection (ICRP) guidance is reviewed, the survey information is summarized, a set of unifying principles is espoused and a statement of additional advice that has been proposed to ICRP Committee 3 is presented. The proposed advice would meet a need for a unifying set of principles to provide a framework for diagnostic reference levels but would allow flexibility in their selection and use. While some illustrative examples are given, the proposed advice does not specify the specific quantities to be used, the numerical values to be set for the quantities or the technical details of how national or local authorities should implement diagnostic reference levels. (author)

  19. [Development and evaluation of the medical imaging distribution system with dynamic web application and clustering technology].

    Yokohama, Noriya; Tsuchimoto, Tadashi; Oishi, Masamichi; Itou, Katsuya

    2007-01-20

    It has been noted that the downtime of medical informatics systems is often long. Many systems encounter downtimes of hours or even days, which can have a critical effect on daily operations. Such systems remain especially weak in the areas of database and medical imaging data. The scheme design shows the three-layer architecture of the system: application, database, and storage layers. The application layer uses the DICOM protocol (Digital Imaging and Communication in Medicine) and HTTP (Hyper Text Transport Protocol) with AJAX (Asynchronous JavaScript+XML). The database is designed to decentralize in parallel using cluster technology. Consequently, restoration of the database can be done not only with ease but also with improved retrieval speed. In the storage layer, a network RAID (Redundant Array of Independent Disks) system, it is possible to construct exabyte-scale parallel file systems that exploit storage spread. Development and evaluation of the test-bed has been successful in medical information data backup and recovery in a network environment. This paper presents a schematic design of the new medical informatics system that can be accommodated from a recovery and the dynamic Web application for medical imaging distribution using AJAX.

  20. The present and future of medical imaging physics

    Bao Shanglian; Zhang Huailing; Huang Feizeng

    2004-01-01

    The physics of medical imaging is one of the main branches of medical physics, which trains medical physicists for the R and D of medical imaging equipment, clinical application of this equipment as well as R and D in medical physics. The development of medical imaging physics is one of the biggest programs aimed at making China a world manufacturer both in hardware and software. However, there is no formal medical physics in China as yet. The scale of education and training, and the level of manufacture of medical imaging equipment are very low compared with developed countries. It is therefore imperative for China to accelerate the rate of development to satisfy her requirements. Amongst other priorities, building up the education and training system in medical physics and setting up a staff of medical physicists in hospitals is the most urgent thing

  1. HOMED-homicides eastern Denmark: an introduction to a forensic medical homicide database.

    Colville-Ebeling, Bonnie; Frisch, Morten; Lynnerup, Niels; Theilade, Peter

    2014-11-01

    An introduction to a forensic medical homicide database established at the Department of Forensic Medicine in Copenhagen. The database contains substantial clinical and demographic data obtained in conjunction with medico-legal autopsies of victims and forensic clinical examinations of perpetrators in homicide cases in eastern Denmark. The database contains information on all homicide cases investigated at the Department of Forensic Medicine in Copenhagen since 1971. Coverage for the catchment area of the department is assumed to be very good because of a medico-legal homicide autopsy rate close to 100%. Regional differences might exist however, due to the fact that the catchment area of the department is dominated by the city of Copenhagen. The strength of the database includes a long running time, near complete regional coverage and an exhaustive list of registered variables it is useful for research purposes, although specific data limitations apply. © 2014 the Nordic Societies of Public Health.

  2. A special designed library for medical imaging applications

    Lymberopoulos, D; Kotsopoulos, S; Zoupas, V; Yoldassis, N [Departmeent of Electrical Engineering, University of Patras, Patras 26 110 Greece (Greece); Spyropoulos, C [School of Medicine, Regional University Hospital, University of Patras, Patras 26 110 Greece (Greece)

    1994-12-31

    The present paper deals with a sophisticated and flexible library of medical purpose image processing routines. It contains modules for simple as well as advanced gray or colour image processing. This library offers powerful features for medical image processing and analysis applications, thus providing the physician with a means of analyzing and estimating medical images in order to accomplish their diagnostic procedures. 6 refs, 1 figs.

  3. Contributions to HEVC Prediction for Medical Image Compression

    Guarda, André Filipe Rodrigues

    2016-01-01

    Medical imaging technology and applications are continuously evolving, dealing with images of increasing spatial and temporal resolutions, which allow easier and more accurate medical diagnosis. However, this increase in resolution demands a growing amount of data to be stored and transmitted. Despite the high coding efficiency achieved by the most recent image and video coding standards in lossy compression, they are not well suited for quality-critical medical image compressi...

  4. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  5. Development of prostate cancer research database with the clinical data warehouse technology for direct linkage with electronic medical record system.

    Choi, In Young; Park, Seungho; Park, Bumjoon; Chung, Byung Ha; Kim, Choung-Soo; Lee, Hyun Moo; Byun, Seok-Soo; Lee, Ji Youl

    2013-01-01

    In spite of increased prostate cancer patients, little is known about the impact of treatments for prostate cancer patients and outcome of different treatments based on nationwide data. In order to obtain more comprehensive information for Korean prostate cancer patients, many professionals urged to have national system to monitor the quality of prostate cancer care. To gain its objective, the prostate cancer database system was planned and cautiously accommodated different views from various professions. This prostate cancer research database system incorporates information about a prostate cancer research including demographics, medical history, operation information, laboratory, and quality of life surveys. And, this system includes three different ways of clinical data collection to produce a comprehensive data base; direct data extraction from electronic medical record (EMR) system, manual data entry after linking EMR documents like magnetic resonance imaging findings and paper-based data collection for survey from patients. We implemented clinical data warehouse technology to test direct EMR link method with St. Mary's Hospital system. Using this method, total number of eligible patients were 2,300 from 1997 until 2012. Among them, 538 patients conducted surgery and others have different treatments. Our database system could provide the infrastructure for collecting error free data to support various retrospective and prospective studies.

  6. Towards adapting a normal patient database for SPECT brain perfusion imaging

    Smith, N D; Soleimani, M; Mitchell, C N; Holmes, R B; Evans, M J; Cade, S C

    2012-01-01

    Single-photon emission computerized tomography (SPECT) is a tool which can be used to image perfusion in the brain. Clinicians can use such images to help diagnose dementias such as Alzheimer's disease. Due to the intrinsic stochasticity in the photon imaging system, some form of statistical comparison of an individual image with a 'normal' patient database gives a clinician additional confidence in interpreting the image. Due to the variations between SPECT camera systems, ideally a normal patient database is required for each individual system. However, cost or ethical considerations often prohibit the collection of such a database for each new camera system. Some method of adapting existing normal patient databases to new camera systems would be beneficial. This paper introduces a method which may be regarded as a 'first-pass' attempt based on 2-norm regularization and a codebook of discrete spatially stationary convolutional kernels. Some preliminary illustrative results are presented, together with discussion on limitations and possible improvements

  7. Crystal diffraction lens for medical imaging

    Smither, R. K.; Roa, D. E.

    2000-01-01

    A crystal diffraction lens for focusing energetic gamma rays has been developed at Argonne National Laboratory for use in medical imaging of radioactivity in the human body. A common method for locating possible cancerous growths in the body is to inject radioactivity into the blood stream of the patient and then look for any concentration of radioactivity that could be associated with the fast growing cancer cells. Often there are borderline indications of possible cancers that could be due to statistical functions in the measured counting rates. In order to determine if these indications are false or real, one must resort to surgical means and take tissue samples in the suspect area. They are developing a system of crystal diffraction lenses that will be incorporated into a 3-D imaging system with better sensitivity (factors of 10 to 100) and better spatial resolution (a few mm in both vertical and horizontal directions) than most systems presently in use. The use of this new imaging system will allow one to eliminate 90% of the false indications and both locate and determine the size of the cancer with mm precision. The lens consists of 900 single crystals of copper, 4 mm x 4 mm on a side and 2--4 mm thick, mounted in 13 concentric rings

  8. Interpretation of medical imaging data with a mobile application: a mobile digital imaging processing environment.

    Lin, Meng Kuan; Nicolini, Oliver; Waxenegger, Harald; Galloway, Graham J; Ullmann, Jeremy F P; Janke, Andrew L

    2013-01-01

    Digital Imaging Processing (DIP) requires data extraction and output from a visualization tool to be consistent. Data handling and transmission between the server and a user is a systematic process in service interpretation. The use of integrated medical services for management and viewing of imaging data in combination with a mobile visualization tool can be greatly facilitated by data analysis and interpretation. This paper presents an integrated mobile application and DIP service, called M-DIP. The objective of the system is to (1) automate the direct data tiling, conversion, pre-tiling of brain images from Medical Imaging NetCDF (MINC), Neuroimaging Informatics Technology Initiative (NIFTI) to RAW formats; (2) speed up querying of imaging measurement; and (3) display high-level of images with three dimensions in real world coordinates. In addition, M-DIP provides the ability to work on a mobile or tablet device without any software installation using web-based protocols. M-DIP implements three levels of architecture with a relational middle-layer database, a stand-alone DIP server, and a mobile application logic middle level realizing user interpretation for direct querying and communication. This imaging software has the ability to display biological imaging data at multiple zoom levels and to increase its quality to meet users' expectations. Interpretation of bioimaging data is facilitated by an interface analogous to online mapping services using real world coordinate browsing. This allows mobile devices to display multiple datasets simultaneously from a remote site. M-DIP can be used as a measurement repository that can be accessed by any network environment, such as a portable mobile or tablet device. In addition, this system and combination with mobile applications are establishing a virtualization tool in the neuroinformatics field to speed interpretation services.

  9. Visual servoing in medical robotics: a survey. Part II: tomographic imaging modalities--techniques and applications.

    Azizian, Mahdi; Najmaei, Nima; Khoshnam, Mahta; Patel, Rajni

    2015-03-01

    Intraoperative application of tomographic imaging techniques provides a means of visual servoing for objects beneath the surface of organs. The focus of this survey is on therapeutic and diagnostic medical applications where tomographic imaging is used in visual servoing. To this end, a comprehensive search of the electronic databases was completed for the period 2000-2013. Existing techniques and products are categorized and studied, based on the imaging modality and their medical applications. This part complements Part I of the survey, which covers visual servoing techniques using endoscopic imaging and direct vision. The main challenges in using visual servoing based on tomographic images have been identified. 'Supervised automation of medical robotics' is found to be a major trend in this field and ultrasound is the most commonly used tomographic modality for visual servoing. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Automation of PCXMC and ImPACT for NASA Astronaut Medical Imaging Dose and Risk Tracking

    Bahadori, Amir; Picco, Charles; Flores-McLaughlin, John; Shavers, Mark; Semones, Edward

    2011-01-01

    To automate astronaut organ and effective dose calculations from occupational X-ray and computed tomography (CT) examinations incorporating PCXMC and ImPACT tools and to estimate the associated lifetime cancer risk per the National Council on Radiation Protection & Measurements (NCRP) using MATLAB(R). Methods: NASA follows guidance from the NCRP on its operational radiation safety program for astronauts. NCRP Report 142 recommends that astronauts be informed of the cancer risks from reported exposures to ionizing radiation from medical imaging. MATLAB(R) code was written to retrieve exam parameters for medical imaging procedures from a NASA database, calculate associated dose and risk, and return results to the database, using the Microsoft .NET Framework. This code interfaces with the PCXMC executable and emulates the ImPACT Excel spreadsheet to calculate organ doses from X-rays and CTs, respectively, eliminating the need to utilize the PCXMC graphical user interface (except for a few special cases) and the ImPACT spreadsheet. Results: Using MATLAB(R) code to interface with PCXMC and replicate ImPACT dose calculation allowed for rapid evaluation of multiple medical imaging exams. The user inputs the exam parameter data into the database and runs the code. Based on the imaging modality and input parameters, the organ doses are calculated. Output files are created for record, and organ doses, effective dose, and cancer risks associated with each exam are written to the database. Annual and post-flight exposure reports, which are used by the flight surgeon to brief the astronaut, are generated from the database. Conclusions: Automating PCXMC and ImPACT for evaluation of NASA astronaut medical imaging radiation procedures allowed for a traceable and rapid method for tracking projected cancer risks associated with over 12,000 exposures. This code will be used to evaluate future medical radiation exposures, and can easily be modified to accommodate changes to the risk

  11. Tissues segmentation based on multi spectral medical images

    Li, Ya; Wang, Ying

    2017-11-01

    Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.

  12. Three dimensional image presentation techniques in medical imaging

    Pizer, S.M.; Fuchs, H.

    1987-01-01

    Medical images can be presented three-dimensionally by techniques that either calculate the effect of reflections from surfaces predefined from slices or project a three-space of luminosities computed from voxel intensities onto the visual receptors. Sliced-based reflective displays are the most common type. Means of producing surface descriptions both via voxel sets and via slice contours are reviewed. Advantages of and means of transparent display to allow the appreciation of the 3D relationships among objects are set forth. Ways to produce additional depth cues by stereoscopy and the kinetic depth effect are discussed, and the importance of interactive modification of viewpoint, clipping plane, displayed objects, etc. are explained. A new device, UNC's Pixel-planes, for accomplishing this in real time are illustrated. Voxel intensity based display methods avoid the need for time-consuming predefinition of object surfaces and thus can allow exploration of 3D image data. Varifocal mirror hardware and fast computation of one or more projections based on object probabilities are two of the more important approaches. While 3D display provides important information about 3D relationships, it cannot provide the kind of appreciation of subtle grey-scale changes that 2D display can. Methods that can combine these two kinds of information by superimposing 2D grey-scale slices on or in the context of 3D displays are discussed. Applications of these techniques for both diagnosis and radiotherapy planning are used as illustrations and guides to the usefulness of these techniques with CT, MRI, and other 3D medical imaging modalities. 24 refs.; 5 figs

  13. Semi-Automated Annotation of Biobank Data Using Standard Medical Terminologies in a Graph Database.

    Hofer, Philipp; Neururer, Sabrina; Goebel, Georg

    2016-01-01

    Data describing biobank resources frequently contains unstructured free-text information or insufficient coding standards. (Bio-) medical ontologies like Orphanet Rare Diseases Ontology (ORDO) or the Human Disease Ontology (DOID) provide a high number of concepts, synonyms and entity relationship properties. Such standard terminologies increase quality and granularity of input data by adding comprehensive semantic background knowledge from validated entity relationships. Moreover, cross-references between terminology concepts facilitate data integration across databases using different coding standards. In order to encourage the use of standard terminologies, our aim is to identify and link relevant concepts with free-text diagnosis inputs within a biobank registry. Relevant concepts are selected automatically by lexical matching and SPARQL queries against a RDF triplestore. To ensure correctness of annotations, proposed concepts have to be confirmed by medical data administration experts before they are entered into the registry database. Relevant (bio-) medical terminologies describing diseases and phenotypes were identified and stored in a graph database which was tied to a local biobank registry. Concept recommendations during data input trigger a structured description of medical data and facilitate data linkage between heterogeneous systems.

  14. Assessment of COPD-related outcomes via a national electronic medical record database.

    Asche, Carl; Said, Quayyim; Joish, Vijay; Hall, Charles Oaxaca; Brixner, Diana

    2008-01-01

    The technology and sophistication of healthcare utilization databases have expanded over the last decade to include results of lab tests, vital signs, and other clinical information. This review provides an assessment of the methodological and analytical challenges of conducting chronic obstructive pulmonary disease (COPD) outcomes research in a national electronic medical records (EMR) dataset and its potential application towards the assessment of national health policy issues, as well as a description of the challenges or limitations. An EMR database and its application to measuring outcomes for COPD are described. The ability to measure adherence to the COPD evidence-based practice guidelines, generated by the NIH and HEDIS quality indicators, in this database was examined. Case studies, before and after their publication, were used to assess the adherence to guidelines and gauge the conformity to quality indicators. EMR was the only source of information for pulmonary function tests, but low frequency in ordering by primary care was an issue. The EMR data can be used to explore impact of variation in healthcare provision on clinical outcomes. The EMR database permits access to specific lab data and biometric information. The richness and depth of information on "real world" use of health services for large population-based analytical studies at relatively low cost render such databases an attractive resource for outcomes research. Various sources of information exist to perform outcomes research. It is important to understand the desired endpoints of such research and choose the appropriate database source.

  15. Medical applications: a database and characterization of apps in Apple iOS and Android platforms.

    Seabrook, Heather J; Stromer, Julie N; Shevkenek, Cole; Bharwani, Aleem; de Grood, Jill; Ghali, William A

    2014-08-27

    Medical applications (apps) for smart phones and tablet computers are growing in number and are commonly used in healthcare. In this context, there is a need for a diverse community of app users, medical researchers, and app developers to better understand the app landscape. In mid-2012, we undertook an environmental scan and classification of the medical app landscape in the two dominant platforms by searching the medical category of the Apple iTunes and Google Play app download sites. We identified target audiences, functions, costs and content themes using app descriptions and captured these data in a database. We only included apps released or updated between October 1, 2011 and May 31, 2012, with a primary "medical" app store categorization, in English, that contained health or medical content. Our sample of Android apps was limited to the most popular apps in the medical category. Our final sample of Apple iOS (n = 4561) and Android (n = 293) apps illustrate a diverse medical app landscape. The proportion of Apple iOS apps for the public (35%) and for physicians (36%) is similar. Few Apple iOS apps specifically target nurses (3%). Within the Android apps, those targeting the public dominated in our sample (51%). The distribution of app functions is similar in both platforms with reference being the most common function. Most app functions and content themes vary considerably by target audience. Social media apps are more common for patients and the public, while conference apps target physicians. We characterized existing medical apps and illustrated their diversity in terms of target audience, main functions, cost and healthcare topic. The resulting app database is a resource for app users, app developers and health informatics researchers.

  16. Application of stereo-imaging technology to medical field.

    Nam, Kyoung Won; Park, Jeongyun; Kim, In Young; Kim, Kwang Gi

    2012-09-01

    There has been continuous development in the area of stereoscopic medical imaging devices, and many stereoscopic imaging devices have been realized and applied in the medical field. In this article, we review past and current trends pertaining to the application stereo-imaging technologies in the medical field. We describe the basic principles of stereo vision and visual issues related to it, including visual discomfort, binocular disparities, vergence-accommodation mismatch, and visual fatigue. We also present a brief history of medical applications of stereo-imaging techniques, examples of recently developed stereoscopic medical devices, and patent application trends as they pertain to stereo-imaging medical devices. Three-dimensional (3D) stereo-imaging technology can provide more realistic depth perception to the viewer than conventional two-dimensional imaging technology. Therefore, it allows for a more accurate understanding and analysis of the morphology of an object. Based on these advantages, the significance of stereoscopic imaging in the medical field increases in accordance with the increase in the number of laparoscopic surgeries, and stereo-imaging technology plays a key role in the diagnoses of the detailed morphologies of small biological specimens. The application of 3D stereo-imaging technology to the medical field will help improve surgical accuracy, reduce operation times, and enhance patient safety. Therefore, it is important to develop more enhanced stereoscopic medical devices.

  17. A Fast, Background-Independent Retrieval Strategy for Color Image Databases

    Das, M; Draper, B. A; Lim, W. J; Manmatha, R; Riseman, E. M

    1996-01-01

    .... The method is fast and has low storage overhead. Good retrieval results are obtained with multi-colored query objects even when they occur in arbitrary sizes, rotations and locations in the database images...

  18. Saharasar: An Interactive SAR Image Database for Desert Mapping

    Lopez, S.; Paillou, Ph.

    2017-06-01

    We present a dedicated tool for accessing radar images acquired by the ALOS/PALSAR mission over Sahara and Arabia. We developed a dedicated web site, using the Mapserver web mapping server and the Cesium javascript library.

  19. Automated collection of medical images for research from heterogeneous systems: trials and tribulations

    Patel, M. N.; Looney, P.; Young, K.; Halling-Brown, M. D.

    2014-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. Over the past two decades both diagnostic and therapeutic imaging have undergone a rapid growth, the ability to be able to harness this large influx of medical images can provide an essential resource for research and training. Traditionally, the systematic collection of medical images for research from heterogeneous sites has not been commonplace within the NHS and is fraught with challenges including; data acquisition, storage, secure transfer and correct anonymisation. Here, we describe a semi-automated system, which comprehensively oversees the collection of both unprocessed and processed medical images from acquisition to a centralised database. The provision of unprocessed images within our repository enables a multitude of potential research possibilities that utilise the images. Furthermore, we have developed systems and software to integrate these data with their associated clinical data and annotations providing a centralised dataset for research. Currently we regularly collect digital mammography images from two sites and partially collect from a further three, with efforts to expand into other modalities and sites currently ongoing. At present we have collected 34,014 2D images from 2623 individuals. In this paper we describe our medical image collection system for research and discuss the wide spectrum of challenges faced during the design and implementation of such systems.

  20. Energy functionals for medical image segmentation: choices and consequences

    McIntosh, Christopher

    2011-01-01

    Medical imaging continues to permeate the practice of medicine, but automated yet accurate segmentation and labeling of anatomical structures continues to be a major obstacle to computerized medical image analysis. Though there exists numerous approaches for medical image segmentation, one in particular has gained increasing popularity: energy minimization-based techniques, and the large set of methods encompassed therein. With these techniques an energy function must be chosen, segmentations...

  1. Developments in medical image processing and computational vision

    Jorge, Renato

    2015-01-01

    This book presents novel and advanced topics in Medical Image Processing and Computational Vision in order to solidify knowledge in the related fields and define their key stakeholders. It contains extended versions of selected papers presented in VipIMAGE 2013 – IV International ECCOMAS Thematic Conference on Computational Vision and Medical Image, which took place in Funchal, Madeira, Portugal, 14-16 October 2013.  The twenty-two chapters were written by invited experts of international recognition and address important issues in medical image processing and computational vision, including: 3D vision, 3D visualization, colour quantisation, continuum mechanics, data fusion, data mining, face recognition, GPU parallelisation, image acquisition and reconstruction, image and video analysis, image clustering, image registration, image restoring, image segmentation, machine learning, modelling and simulation, object detection, object recognition, object tracking, optical flow, pattern recognition, pose estimat...

  2. A high performance parallel approach to medical imaging

    Frieder, G.; Frieder, O.; Stytz, M.R.

    1988-01-01

    Research into medical imaging using general purpose parallel processing architectures is described and a review of the performance of previous medical imaging machines is provided. Results demonstrating that general purpose parallel architectures can achieve performance comparable to other, specialized, medical imaging machine architectures is presented. A new back-to-front hidden-surface removal algorithm is described. Results demonstrating the computational savings obtained by using the modified back-to-front hidden-surface removal algorithm are presented. Performance figures for forming a full-scale medical image on a mesh interconnected multiprocessor are presented

  3. Computer-aided diagnosis workstation and database system for chest diagnosis based on multi-helical CT images

    Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru; Sasagawa, Michizou

    2006-03-01

    Multi-helical CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system. The results of this study indicate that our computer-aided diagnosis workstation and network system can increase diagnostic speed, diagnostic accuracy and safety of medical information.

  4. Registration of deformed multimodality medical images

    Moshfeghi, M.; Naidich, D.

    1989-01-01

    The registration and combination of images from different modalities have several potential applications, such as functional and anatomic studies, 3D radiation treatment planning, surgical planning, and retrospective studies. Image registration algorithms should correct for any local deformations caused by respiration, heart beat, imaging device distortions, and so forth. This paper reports on an elastic matching technique for registering deformed multimodality images. Correspondences between contours in the two images are used to stretch the deformed image toward its goal image. This process is repeated a number of times, with decreasing image stiffness. As the iterations continue, the stretched image better approximates its goal image

  5. Signal Processing in Medical Ultrasound B-mode Imaging

    Song, Tai Kyong

    2000-01-01

    Ultrasonic imaging is the most widely used modality among modern imaging device for medical diagnosis and the system performance has been improved dramatically since early 90's due to the rapid advances in DSP performance and VLSI technology that made it possible to employ more sophisticated algorithms. This paper describes 'main stream' digital signal processing functions along with the associated implementation considerations in modern medical ultrasound imaging systems. Topics covered include signal processing methods for resolution improvement, ultrasound imaging system architectures, roles and necessity of the applications of DSP and VLSI technology in the development of the medical ultrasound imaging systems, and array signal processing techniques for ultrasound focusing

  6. Digital fluoroscopy: a new development in medical imaging

    Maher, K.P.; Malone, J.F.; Dublin Inst. of Technology

    1986-01-01

    Medical fluoroscopy is briefly reviewed and video-image digitization is described. Image processing requirements and image processors available for digital fluoroscopy are discussed in detail. Specific reference is made to an application of digital fluoroscopy in the imaging of blood-vessels. This application involves an image substraction technique which is referred to as digital subtraction angiography (DSA). A number of DSA images of relevance to the discussion are included. (author)

  7. Near-infrared spectroscopic tissue imaging for medical applications

    Demos, Stavros [Livermore, CA; Staggs, Michael C [Tracy, CA

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  8. Method for Surface Scanning in Medical Imaging and Related Apparatus

    2015-01-01

    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...

  9. Text mining facilitates database curation - extraction of mutation-disease associations from Bio-medical literature.

    Ravikumar, Komandur Elayavilli; Wagholikar, Kavishwar B; Li, Dingcheng; Kocher, Jean-Pierre; Liu, Hongfang

    2015-06-06

    Advances in the next generation sequencing technology has accelerated the pace of individualized medicine (IM), which aims to incorporate genetic/genomic information into medicine. One immediate need in interpreting sequencing data is the assembly of information about genetic variants and their corresponding associations with other entities (e.g., diseases or medications). Even with dedicated effort to capture such information in biological databases, much of this information remains 'locked' in the unstructured text of biomedical publications. There is a substantial lag between the publication and the subsequent abstraction of such information into databases. Multiple text mining systems have been developed, but most of them focus on the sentence level association extraction with performance evaluation based on gold standard text annotations specifically prepared for text mining systems. We developed and evaluated a text mining system, MutD, which extracts protein mutation-disease associations from MEDLINE abstracts by incorporating discourse level analysis, using a benchmark data set extracted from curated database records. MutD achieves an F-measure of 64.3% for reconstructing protein mutation disease associations in curated database records. Discourse level analysis component of MutD contributed to a gain of more than 10% in F-measure when compared against the sentence level association extraction. Our error analysis indicates that 23 of the 64 precision errors are true associations that were not captured by database curators and 68 of the 113 recall errors are caused by the absence of associated disease entities in the abstract. After adjusting for the defects in the curated database, the revised F-measure of MutD in association detection reaches 81.5%. Our quantitative analysis reveals that MutD can effectively extract protein mutation disease associations when benchmarking based on curated database records. The analysis also demonstrates that incorporating

  10. Submillimeter medical imaging in emission tomography

    Lang, C.; Thirolf, P.G. [LMU, Muenchen (Germany); Habs, D. [LMU, Muenchen (Germany); MPQ, Garching (Germany); Zoglauer, A. [SSL, Berkeley (United States)

    2012-07-01

    We present a nuclear medical imaging technique, capable to reach submillimeter spatial resolution in 3 dimensions with a short exposure time and a low radioactive dose compared to conventional PET. This '{gamma}-PET' technique takes advantage of specific e{sup +} sources which simultaneously with the {beta}{sup +} decay emit an additional photon. Exploiting the triple coincidence between the positron annihilation and the additional emitted {gamma}, it is possible to separate the reconstructed 'true' events from background. Thus the spatial uncertainty introduced by the motion of the e{sup +} or by Compton scattering within the patient can be strongly reduced in the direction normal to the annihilation. MC-simulations and image reconstruction studies have been performed using the library MEGAlib, which we modified to realize an event reconstruction using the {beta}{sup +}{gamma} coincidences. The simulated geometry consists of 4 LaBr{sub 3} scintillator crystals (5 x 5 x 3 cm{sup 3}) read out by a 2D-segmented photomultiplier (64 pixels, each 6 x 6 mm{sup 2}) and 4 double-sided silicon strip detectors (each with 2 x 128 strips, active area of 5 x 5 cm{sup 2}, thickness 0.5 mm), positioned around an H{sub 2}O sphere of 6 cm diameter. Inside are two {sup 22}Na point-like test sources, placed at a distance of 0.4 mm. The resolution results in 0.2 mm (FWHM) in each direction, surpassing the performance of conventional PET by about an order of magnitude.

  11. An Improved FCM Medical Image Segmentation Algorithm Based on MMTD

    Ningning Zhou

    2014-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.

  12. General physicians: born or made? The use of a tracking database to answer medical workforce questions.

    Poole, P; McHardy, K; Janssen, A

    2009-07-01

    The aim of the study was to use a tracking database to investigate the perceived influence of various factors on career choices of New Zealand medical graduates and to examine specifically whether experiences at medical school may have an effect on a decision to become a general physician. Questionnaires were distributed to medical students in the current University of Auckland programme at entry and exit points. The surveys have been completed by two entry cohorts and an exit one since 2006. The response rates were 70 and 88% in the entry and exit groups, respectively. More than 75% of exiting students reported an interest in pursuing a career in general internal medicine. In 42%, this is a 'strong interest' in general medicine compared with 23% in the entry cohort (P Auckland medical students. Only 11% of study respondents reported that student loan burden has a significant influence on career decisions. Quality experiences on attachments seem essential for undergraduates to promote interest in general medicine. There is potential for curriculum design and clinical experiences to be formulated to promote the 'making' of these doctors. Tracking databases will assist in answering some of these questions.

  13. A data model and database for high-resolution pathology analytical image informatics

    Fusheng Wang

    2011-01-01

    Full Text Available Background: The systematic analysis of imaged pathology specimens often results in a vast amount of morphological information at both the cellular and sub-cellular scales. While microscopy scanners and computerized analysis are capable of capturing and analyzing data rapidly, microscopy image data remain underutilized in research and clinical settings. One major obstacle which tends to reduce wider adoption of these new technologies throughout the clinical and scientific communities is the challenge of managing, querying, and integrating the vast amounts of data resulting from the analysis of large digital pathology datasets. This paper presents a data model, which addresses these challenges, and demonstrates its implementation in a relational database system. Context: This paper describes a data model, referred to as Pathology Analytic Imaging Standards (PAIS, and a database implementation, which are designed to support the data management and query requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines on whole-slide images and tissue microarrays (TMAs. Aims: (1 Development of a data model capable of efficiently representing and storing virtual slide related image, annotation, markup, and feature information. (2 Development of a database, based on the data model, capable of supporting queries for data retrieval based on analysis and image metadata, queries for comparison of results from different analyses, and spatial queries on segmented regions, features, and classified objects. Settings and Design: The work described in this paper is motivated by the challenges associated with characterization of micro-scale features for comparative and correlative analyses involving whole-slides tissue images and TMAs. Technologies for digitizing tissues have advanced significantly in the past decade. Slide scanners are capable of producing high-magnification, high-resolution images from whole

  14. A data model and database for high-resolution pathology analytical image informatics.

    Wang, Fusheng; Kong, Jun; Cooper, Lee; Pan, Tony; Kurc, Tahsin; Chen, Wenjin; Sharma, Ashish; Niedermayr, Cristobal; Oh, Tae W; Brat, Daniel; Farris, Alton B; Foran, David J; Saltz, Joel

    2011-01-01

    The systematic analysis of imaged pathology specimens often results in a vast amount of morphological information at both the cellular and sub-cellular scales. While microscopy scanners and computerized analysis are capable of capturing and analyzing data rapidly, microscopy image data remain underutilized in research and clinical settings. One major obstacle which tends to reduce wider adoption of these new technologies throughout the clinical and scientific communities is the challenge of managing, querying, and integrating the vast amounts of data resulting from the analysis of large digital pathology datasets. This paper presents a data model, which addresses these challenges, and demonstrates its implementation in a relational database system. This paper describes a data model, referred to as Pathology Analytic Imaging Standards (PAIS), and a database implementation, which are designed to support the data management and query requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines on whole-slide images and tissue microarrays (TMAs). (1) Development of a data model capable of efficiently representing and storing virtual slide related image, annotation, markup, and feature information. (2) Development of a database, based on the data model, capable of supporting queries for data retrieval based on analysis and image metadata, queries for comparison of results from different analyses, and spatial queries on segmented regions, features, and classified objects. The work described in this paper is motivated by the challenges associated with characterization of micro-scale features for comparative and correlative analyses involving whole-slides tissue images and TMAs. Technologies for digitizing tissues have advanced significantly in the past decade. Slide scanners are capable of producing high-magnification, high-resolution images from whole slides and TMAs within several minutes. Hence, it is becoming

  15. The Establishment of the SAR images database System Based on Oracle and ArcSDE

    Zhou, Jijin; Li, Zhen; Chen, Quan; Tian, Bangsen

    2014-01-01

    Synthetic aperture radar is a kind of microwave imaging system, and has the advantages of multi-band, multi-polarization and multi-angle. At present, there is no SAR images database system based on typical features. For solving problems in interpretation and identification, a new SAR images database system of the typical features is urgent in the current development need. In this article, a SAR images database system based on Oracle and ArcSDE was constructed. The main works involving are as follows: (1) SAR image data was calibrated and corrected geometrically and geometrically. Besides, the fully polarimetric image was processed as the coherency matrix[T] to preserve the polarimetric information. (2) After analyzing multiple space borne SAR images, the metadata table was defined as: IMAGEID; Name of features; Latitude and Longitude; Sensor name; Range and Azimuth resolution etc. (3) Through the comparison between GeoRaster and ArcSDE, result showed ArcSDE is a more appropriate technology to store images in a central database. The System stores and manages multisource SAR image data well, reflects scattering, geometry, polarization, band and angle characteristics, and combines with analysis of the managed objects and service objects of the database as well as focuses on constructing SAR image system in the aspects of data browse and data retrieval. According the analysis of characteristics of SAR images such as scattering, polarization, incident angle and wave band information, different weights can be given to these characteristics. Then an interpreted tool is formed to provide an efficient platform for interpretation

  16. A Public Image Database for Benchmark of Plant Seedling Classification Algorithms

    Giselsson, Thomas Mosgaard; Nyholm Jørgensen, Rasmus; Jensen, Peter Kryger

    A database of images of approximately 960 unique plants belonging to 12 species at several growth stages is made publicly available. It comprises annotated RGB images with a physical resolution of roughly 10 pixels per mm. To standardise the evaluation of classification results obtained...

  17. An online database for plant image analysis software tools

    Lobet, Guillaume; Draye, Xavier; Périlleux, Claire

    2013-01-01

    Background: Recent years have seen an increase in methods for plant phenotyping using image analyses. These methods require new software solutions for data extraction and treatment. These solutions are instrumental in supporting various research pipelines, ranging from the localisation of cellular compounds to the quantification of tree canopies. However, due to the variety of existing tools and the lack of central repository, it is challenging for researchers to identify the software that is...

  18. Medical image of the week: moyamoya disease

    Pak S

    2017-11-01

    Full Text Available No abstract available. Article truncated at 150 words. A 52-year-old, right-handed, Caucasian woman with a history of hypertension and morbid obesity presented with acute onset of word-finding difficulty and slurred speech. Her medical and family history was negative for cerebral vascular event, coronary artery disease or smoking. Computed tomography of the patient's brain showed narrow caliber middle cerebral artery vasculature bilaterally. This abnormal finding prompted further investigation with cerebral angiogram. The angiogram showed bilateral high-grade stenosis of the anterior and middle cerebral arteries, worse on the left (Figure 1. Magnetic resonance imaging revealed multiple left sided punctate infarcts in the frontal and parietal lobes (Figure 2. Diagnosis of ischemic stroke secondary to moyamoya disease was established. This patient was not a candidate for fibrinolytic therapy since it had been more than 4 hours from initial presentation. She was treated with aspirin, clopidogrel, and atorvastatin for secondary prevention of ischemic stroke. Two months after her discharge date, the patient …

  19. Medical image of the week: disseminated coccidioidomycosis

    Ynosencio T

    2017-02-01

    Full Text Available No abstract available. Article truncated at 150 words. A 67-year-old African American man with no significant past medical history presented with shortness of breath and flu-like symptoms. On exam, he was noted to be profoundly hypoxemic with imaging showing diffuse thoracic changes (Figure 1 and a diffuse papular rash (Figure 2. Initial workup included coccidioidomycosis serologies which returned positive with a titer of 1:128. While exposure to coccidioidomycosis is very common in southern Arizona, dissemination is a rare occurrence. The incidence is estimated between 0.2 and 4.7 percent. Patients at highest risk include those that are immunosuppressed or that are of African or Filipino ancestry. Common extra-pulmonary sites include skin or subcutaneous tissue, meninges of brain or spinal cord, and bones. Even rarer sites include the eyes, liver, prostate, mediastinum, and kidneys. Treatment is usually the same as with pulmonary infection which is an azole agent. However, if the patient’s symptoms are severe or if the lesions involve …

  20. Elastix : a toolbox for intensity-based medical image registration

    Klein, S.; Staring, M.; Murphy, K.; Viergever, M.A.; Pluim, J.P.W.

    2010-01-01

    Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of

  1. A Survey on Deep Learning in Medical Image Analysis

    Litjens, G.J.; Kooi, T.; Ehteshami Bejnordi, B.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Laak, J.A.W.M. van der; Ginneken, B. van; Sanchez, C.I.

    2017-01-01

    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared

  2. A framework for integration of heterogeneous medical imaging networks.

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS.

  3. High Bit-Depth Medical Image Compression With HEVC.

    Parikh, Saurin S; Ruiz, Damian; Kalva, Hari; Fernandez-Escribano, Gerardo; Adzic, Velibor

    2018-03-01

    Efficient storing and retrieval of medical images has direct impact on reducing costs and improving access in cloud-based health care services. JPEG 2000 is currently the commonly used compression format for medical images shared using the DICOM standard. However, new formats such as high efficiency video coding (HEVC) can provide better compression efficiency compared to JPEG 2000. Furthermore, JPEG 2000 is not suitable for efficiently storing image series and 3-D imagery. Using HEVC, a single format can support all forms of medical images. This paper presents the use of HEVC for diagnostically acceptable medical image compression, focusing on compression efficiency compared to JPEG 2000. Diagnostically acceptable lossy compression and complexity of high bit-depth medical image compression are studied. Based on an established medically acceptable compression range for JPEG 2000, this paper establishes acceptable HEVC compression range for medical imaging applications. Experimental results show that using HEVC can increase the compression performance, compared to JPEG 2000, by over 54%. Along with this, a new method for reducing computational complexity of HEVC encoding for medical images is proposed. Results show that HEVC intra encoding complexity can be reduced by over 55% with negligible increase in file size.

  4. Image analysis and modeling in medical image computing. Recent developments and advances.

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body

  5. Driving change in rural workforce planning: the medical schools outcomes database.

    Gerber, Jonathan P; Landau, Louis I

    2010-01-01

    The Medical Schools Outcomes Database (MSOD) is an ongoing longitudinal tracking project ofmedical students from all medical schools in Australia and New Zealand. It was established in 2005 to track the career trajectories of medical students and will directly help develop models of workforce flow, particularly with respect to rural and remote shortages. This paper briefly outlines the MSOD project and reports on key methodological factors in tracking medical students. Finally, the potential impact of the MSOD on understanding changes in rural practice intentions is illustrated using data from the 2005 pilot cohort (n = 112). Rural placements were associated with a shift towards rural practice intentions, while those who intended to practice rurally at both the start and end of medical school tended to be older and interested in a generalist career. Continuing work will track these and future students as they progress through the workforce, as well as exploring issues such as the career trajectories of international fee-paying students, workforce succession planning, and the evaluation of medical education initiatives.

  6. Application of the STOPP/START criteria to a medical record database.

    Nauta, Katinka J; Groenhof, Feikje; Schuling, Jan; Hugtenburg, Jacqueline G; van Hout, Hein P J; Haaijer-Ruskamp, Flora M; Denig, Petra

    2017-10-01

    The STOPP/START criteria are increasingly used to assess prescribing quality in elderly patients at practice level. Our aim was to test computerized algorithms for applying these criteria to a medical record database. STOPP/START criteria-based computerized algorithms were defined using Anatomical-Therapeutic-Chemical (ATC) codes for medication and International Classification of Primary Care (ICPC) codes for diagnoses. The algorithms were applied to a Dutch primary care database, including patients aged ≥65 years using ≥5 chronic drugs. We tested for associations with patient characteristics that have previously shown a relationship with the original STOPP/START criteria, using multivariate logistic regression models. Included were 1187 patients with a median age of 75 years. In total, 39 of the 62 STOPP and 18 of the 26 START criteria could be converted to a computerized algorithm. The main reasons for inapplicability were lack of information on the severity of a condition and insufficient covering of ICPC-codes. We confirmed a positive association between the occurrence of both the STOPP and the START criteria and the number of chronic drugs (adjusted OR ranging from 1.37, 95% CI 1.04-1.82 to 3.19, 95% CI 2.33-4.36) as well as the patient's age (adjusted OR for STOPP 1.30, 95% CI 1.01-1.67; for START 1.73, 95% CI 1.35-2.21), and also between female gender and the occurrence of STOPP criteria (adjusted OR 1.41, 95% CI 1.09-1.82). Sixty-five percent of the STOPP/START criteria could be applied with computerized algorithms to a medical record database with ATC-coded medication and ICPC-coded diagnoses. Copyright © 2017 John Wiley & Sons, Ltd.

  7. A Study of NetCDF as an Approach for High Performance Medical Image Storage

    Magnus, Marcone; Prado, Thiago Coelho; Von Wangenhein, Aldo; De Macedo, Douglas D J; Dantas, M A R

    2012-01-01

    The spread of telemedicine systems increases every day. The systems and PACS based on DICOM images has become common. This rise reflects the need to develop new storage systems, more efficient and with lower computational costs. With this in mind, this article discusses a study for application in NetCDF data format as the basic platform for storage of DICOM images. The study case comparison adopts an ordinary database, the HDF5 and the NetCDF to storage the medical images. Empirical results, using a real set of images, indicate that the time to retrieve images from the NetCDF for large scale images has a higher latency compared to the other two methods. In addition, the latency is proportional to the file size, which represents a drawback to a telemedicine system that is characterized by a large amount of large image files.

  8. Medical image processing on the GPU - past, present and future.

    Eklund, Anders; Dufort, Paul; Forsberg, Daniel; LaConte, Stephen M

    2013-12-01

    Graphics processing units (GPUs) are used today in a wide range of applications, mainly because they can dramatically accelerate parallel computing, are affordable and energy efficient. In the field of medical imaging, GPUs are in some cases crucial for enabling practical use of computationally demanding algorithms. This review presents the past and present work on GPU accelerated medical image processing, and is meant to serve as an overview and introduction to existing GPU implementations. The review covers GPU acceleration of basic image processing operations (filtering, interpolation, histogram estimation and distance transforms), the most commonly used algorithms in medical imaging (image registration, image segmentation and image denoising) and algorithms that are specific to individual modalities (CT, PET, SPECT, MRI, fMRI, DTI, ultrasound, optical imaging and microscopy). The review ends by highlighting some future possibilities and challenges. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Synthetic Aperture Imaging in Medical Ultrasound

    Nikolov, Svetoslav; Gammelmark, Kim; Pedersen, Morten

    2004-01-01

    with high precision, and the imaging is easily extended to real-time 3D scanning. This paper presents the work done at the Center for Fast Ultrasound Imaging in the area of SA imaging. Three areas that benefit from SA imaging are described. Firstly a preliminary in-vivo evaluation comparing conventional B...

  10. [Managing digital medical imaging projects in healthcare services: lessons learned].

    Rojas de la Escalera, D

    2013-01-01

    Medical imaging is one of the most important diagnostic instruments in clinical practice. The technological development of digital medical imaging has enabled healthcare services to undertake large scale projects that require the participation and collaboration of many professionals of varied backgrounds and interests as well as substantial investments in infrastructures. Rather than focusing on systems for dealing with digital medical images, this article deals with the management of projects for implementing these systems, reviewing various organizational, technological, and human factors that are critical to ensure the success of these projects and to guarantee the compatibility and integration of digital medical imaging systems with other health information systems. To this end, the author relates several lessons learned from a review of the literature and the author's own experience in the technical coordination of digital medical imaging projects. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  11. Medical Database for the Atomic-Bomb Survivors at Nagasaki University

    Mori, Hiroyuki; Mine, Mariko; Kondo, Hisayoshi; Okumura, Yutaka

    1992-01-01

    The Scientific Data Center for Atomic-Bomb Disasters at Nagasaki University was established in 1974. The database of atomicbomb survivors has been in operation since 1977. The database is composed of following 6 physical database : (1) Fundamental information database. (2) Atomic-Bomb Hospital database, (3) Pathological database, (4) Household reconstruction database, (5) Second generation database, and (6) Address database. We review the current contents of the database for its further appli...

  12. Detecting medication errors in the New Zealand pharmacovigilance database: a retrospective analysis.

    Kunac, Desireé L; Tatley, Michael V

    2011-01-01

    Despite the traditional focus being adverse drug reactions (ADRs), pharmacovigilance centres have recently been identified as a potentially rich and important source of medication error data. To identify medication errors in the New Zealand Pharmacovigilance database (Centre for Adverse Reactions Monitoring [CARM]), and to describe the frequency and characteristics of these events. A retrospective analysis of the CARM pharmacovigilance database operated by the New Zealand Pharmacovigilance Centre was undertaken for the year 1 January-31 December 2007. All reports, excluding those relating to vaccines, clinical trials and pharmaceutical company reports, underwent a preventability assessment using predetermined criteria. Those events deemed preventable were subsequently classified to identify the degree of patient harm, type of error, stage of medication use process where the error occurred and origin of the error. A total of 1412 reports met the inclusion criteria and were reviewed, of which 4.3% (61/1412) were deemed preventable. Not all errors resulted in patient harm: 29.5% (18/61) were 'no harm' errors but 65.5% (40/61) of errors were deemed to have been associated with some degree of patient harm (preventable adverse drug events [ADEs]). For 5.0% (3/61) of events, the degree of patient harm was unable to be determined as the patient outcome was unknown. The majority of preventable ADEs (62.5% [25/40]) occurred in adults aged 65 years and older. The medication classes most involved in preventable ADEs were antibacterials for systemic use and anti-inflammatory agents, with gastrointestinal and respiratory system disorders the most common adverse events reported. For both preventable ADEs and 'no harm' events, most errors were incorrect dose and drug therapy monitoring problems consisting of failures in detection of significant drug interactions, past allergies or lack of necessary clinical monitoring. Preventable events were mostly related to the prescribing and

  13. Gadgetron: An Open Source Framework for Medical Image Reconstruction

    Hansen, Michael Schacht; Sørensen, Thomas Sangild

    2013-01-01

    This work presents a new open source framework for medical image reconstruction called the “Gadgetron.” The framework implements a flexible system for creating streaming data processing pipelines where data pass through a series of modules or “Gadgets” from raw data to reconstructed images...... with a set of dedicated toolboxes in shared libraries for medical image reconstruction. This includes generic toolboxes for data-parallel (e.g., GPU-based) execution of compute-intensive components. The basic framework architecture is independent of medical imaging modality, but this article focuses on its...

  14. Lossless medical image compression with a hybrid coder

    Way, Jing-Dar; Cheng, Po-Yuen

    1998-10-01

    The volume of medical image data is expected to increase dramatically in the next decade due to the large use of radiological image for medical diagnosis. The economics of distributing the medical image dictate that data compression is essential. While there is lossy image compression, the medical image must be recorded and transmitted lossless before it reaches the users to avoid wrong diagnosis due to the image data lost. Therefore, a low complexity, high performance lossless compression schematic that can approach the theoretic bound and operate in near real-time is needed. In this paper, we propose a hybrid image coder to compress the digitized medical image without any data loss. The hybrid coder is constituted of two key components: an embedded wavelet coder and a lossless run-length coder. In this system, the medical image is compressed with the lossy wavelet coder first, and the residual image between the original and the compressed ones is further compressed with the run-length coder. Several optimization schemes have been used in these coders to increase the coding performance. It is shown that the proposed algorithm is with higher compression ratio than run-length entropy coders such as arithmetic, Huffman and Lempel-Ziv coders.

  15. Digital Signal Processing for Medical Imaging Using Matlab

    Gopi, E S

    2013-01-01

    This book describes medical imaging systems, such as X-ray, Computed tomography, MRI, etc. from the point of view of digital signal processing. Readers will see techniques applied to medical imaging such as Radon transformation, image reconstruction, image rendering, image enhancement and restoration, and more. This book also outlines the physics behind medical imaging required to understand the techniques being described. The presentation is designed to be accessible to beginners who are doing research in DSP for medical imaging. Matlab programs and illustrations are used wherever possible to reinforce the concepts being discussed.  ·         Acts as a “starter kit” for beginners doing research in DSP for medical imaging; ·         Uses Matlab programs and illustrations throughout to make content accessible, particularly with techniques such as Radon transformation and image rendering; ·         Includes discussion of the basic principles behind the various medical imaging tec...

  16. GenderMedDB: an interactive database of sex and gender-specific medical literature.

    Oertelt-Prigione, Sabine; Gohlke, Björn-Oliver; Dunkel, Mathias; Preissner, Robert; Regitz-Zagrosek, Vera

    2014-01-01

    Searches for sex and gender-specific publications are complicated by the absence of a specific algorithm within search engines and by the lack of adequate archives to collect the retrieved results. We previously addressed this issue by initiating the first systematic archive of medical literature containing sex and/or gender-specific analyses. This initial collection has now been greatly enlarged and re-organized as a free user-friendly database with multiple functions: GenderMedDB (http://gendermeddb.charite.de). GenderMedDB retrieves the included publications from the PubMed database. Manuscripts containing sex and/or gender-specific analysis are continuously screened and the relevant findings organized systematically into disciplines and diseases. Publications are furthermore classified by research type, subject and participant numbers. More than 11,000 abstracts are currently included in the database, after screening more than 40,000 publications. The main functions of the database include searches by publication data or content analysis based on pre-defined classifications. In addition, registrants are enabled to upload relevant publications, access descriptive publication statistics and interact in an open user forum. Overall, GenderMedDB offers the advantages of a discipline-specific search engine as well as the functions of a participative tool for the gender medicine community.

  17. Image-based querying of urban knowledge databases

    Cho, Peter; Bae, Soonmin; Durand, Fredo

    2009-05-01

    We extend recent automated computer vision algorithms to reconstruct the global three-dimensional structures for photos and videos shot at fixed points in outdoor city environments. Mosaics of digital stills and embedded videos are georegistered by matching a few of their 2D features with 3D counterparts in aerial ladar imagery. Once image planes are aligned with world maps, abstract urban knowledge can propagate from the latter into the former. We project geotagged annotations from a 3D map into a 2D video stream and demonstrate their tracking buildings and streets in a clip with significant panning motion. We also present an interactive tool which enables users to select city features of interest in video frames and retrieve their geocoordinates and ranges. Implications of this work for future augmented reality systems based upon mobile smart phones are discussed.

  18. Characteristics of pediatric chemotherapy medication errors in a national error reporting database.

    Rinke, Michael L; Shore, Andrew D; Morlock, Laura; Hicks, Rodney W; Miller, Marlene R

    2007-07-01

    Little is known regarding chemotherapy medication errors in pediatrics despite studies suggesting high rates of overall pediatric medication errors. In this study, the authors examined patterns in pediatric chemotherapy errors. The authors queried the United States Pharmacopeia MEDMARX database, a national, voluntary, Internet-accessible error reporting system, for all error reports from 1999 through 2004 that involved chemotherapy medications and patients aged error reports, 85% reached the patient, and 15.6% required additional patient monitoring or therapeutic intervention. Forty-eight percent of errors originated in the administering phase of medication delivery, and 30% originated in the drug-dispensing phase. Of the 387 medications cited, 39.5% were antimetabolites, 14.0% were alkylating agents, 9.3% were anthracyclines, and 9.3% were topoisomerase inhibitors. The most commonly involved chemotherapeutic agents were methotrexate (15.3%), cytarabine (12.1%), and etoposide (8.3%). The most common error types were improper dose/quantity (22.9% of 327 cited error types), wrong time (22.6%), omission error (14.1%), and wrong administration technique/wrong route (12.2%). The most common error causes were performance deficit (41.3% of 547 cited error causes), equipment and medication delivery devices (12.4%), communication (8.8%), knowledge deficit (6.8%), and written order errors (5.5%). Four of the 5 most serious errors occurred at community hospitals. Pediatric chemotherapy errors often reached the patient, potentially were harmful, and differed in quality between outpatient and inpatient areas. This study indicated which chemotherapeutic agents most often were involved in errors and that administering errors were common. Investigation is needed regarding targeted medication administration safeguards for these high-risk medications. Copyright (c) 2007 American Cancer Society.

  19. A Data Acquisition System for Medical Imaging

    Abellan, Carlos; Cachemiche, Jean-Pierre; Rethore, Frederic; Morel, Christian

    2013-06-01

    A data acquisition system for medical imaging applications is presented. Developed at CPPM, it provides high performance generic data acquisition and processing capabilities. The DAQ system is based on the PICMG xTCA standard and is composed of 1 up to 10 cards in a single rack, each one with 2 Altera Stratix IV FPGAs and a Fast Mezzanine Connector (FMC). Several mezzanines have been produced, each one with different functionalities. Some examples are: a mezzanine capable of receiving 36 optical fibres with up to 180 Gbps sustained data rates or a mezzanine with 12 x 5 Gbps input links, 12 x 5 Gbps output links and an SFP+ connector for control purposes. Several rack sizes are also available, thus making the system scalable from a one card desktop system useful for development purpose up to a full featured rack mounted DAQ for high end applications. Depending on the application, boards may exchange data at speeds of up to 25.6 Gbps bidirectional sustained rates in a double star topology through back-plane connections. Also, front panel optical fibres can be used when higher rates are required by the application. The system may be controlled by a standard Ethernet connection, thus providing easy integration with control computers and avoiding the need for drivers. Two control systems are foreseen. A Socket connection provides easy interaction with automation software regardless of the operating system used for the control PC. Moreover a web server may run on the Envision cards and provide an easy intuitive user interface. The system and its different components will be introduced. Some preliminary measurements with high speed signal links will be presented as well as the signal conditioning used to allow these rates. (authors)

  20. Multimedia human brain database system for surgical candidacy determination in temporal lobe epilepsy with content-based image retrieval

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-01-01

    This paper presents the development of a human brain multimedia database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted MRI and FLAIR MRI and ictal and interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication pretty much fits with the surgeons" expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  1. Medical image registration algorithms assesment Bronze Standard application enactment on grids using the MOTEUR workflow engine

    Glatard, T; Pennec, X

    2006-01-01

    Medical image registration is pre-processing needed for many medical image analysis procedures. A very large number of registration algorithms are available today, but their performance is often not known and very difficult to assess due to the lack of gold standard. The Bronze Standard algorithm is a very data and compute intensive statistical approach for quantifying registration algorithms accuracy. In this paper, we describe the Bronze Standard application and we discuss the need for grids to tackle such computations on medical image databases. We demonstrate MOTEUR, a service-based workflow engine optimized for dealing with data intensive applications. MOTEUR eases the enactment of the Bronze Standard and similar applications on the EGEE production grid infrastructure. It is a generic workflow engine, based on current standards and freely available, that can be used to instrument legacy application code at low cost.

  2. The future of three-dimensional medical imaging

    Peter, T.M.

    1996-01-01

    The past 15 years have witnessed an explosion in medical imaging technology, and none more so than in the tomographic imaging modalities of CT and MRI. Prior to 1975, 3-D imaging was largely performed in the minds of radiologists and surgeons, assisted by the modalities of conventional x-ray tomography and stereoscopic radiography. However today, with the advent of imaging techniques which ower their existence to computer technology, three-dimensional image acquisition is fast becoming the norm and the clinician finally has access to sets of data that represent the entire imaged volume. Stereoscopic image visualization has already begun to reappear as a viable means of visualizing 3 D medical images. The future of 3-D imaging is exciting and will undoubtedly move further in the direction of virtual reality. (author)

  3. Performance evaluation of emerging JPEGXR compression standard for medical images

    Basit, M.A.

    2012-01-01

    Medical images require loss less compression as a small error due to lossy compression may be considered as a diagnostic error. JPEG XR is the latest image compression standard designed for variety of applications and has a support for lossy and loss less modes. This paper provides in-depth performance evaluation of latest JPEGXR with existing image coding standards for medical images using loss less compression. Various medical images are used for evaluation and ten images of each organ are tested. Performance of JPEGXR is compared with JPEG2000 and JPEGLS using mean square error, peak signal to noise ratio, mean absolute error and structural similarity index. JPEGXR shows improvement of 20.73 dB and 5.98 dB over JPEGLS and JPEG2000 respectively for various test images used in experimentation. (author)

  4. An efficient similarity measure technique for medical image registration

    In this paper, an efficient similarity measure technique is proposed for medical image registration. The proposed approach is based on the Gerschgorin circles theorem. In this approach, image registration is carried out by considering Gerschgorin bounds of a covariance matrix of two compared images with normalized ...

  5. High-performance method of morphological medical image processing

    Ryabykh M. S.

    2016-07-01

    Full Text Available the article shows the implementation of grayscale morphology vHGW algorithm for selection borders in the medical image. Image processing is executed using OpenMP and NVIDIA CUDA technology for images with different resolution and different size of the structuring element.

  6. Mesh Processing in Medical-Image Analysis-a Tutorial

    Levine, Joshua A.; Paulsen, Rasmus Reinhold; Zhang, Yongjie

    2012-01-01

    Medical-image analysis requires an understanding of sophisticated scanning modalities, constructing geometric models, building meshes to represent domains, and downstream biological applications. These four steps form an image-to-mesh pipeline. For research in this field to progress, the imaging...

  7. Intrasubject registration for change analysis in medical imaging

    Staring, M.

    2008-01-01

    Image matching is important for the comparison of medical images. Comparison is of clinical relevance for the analysis of differences due to changes in the health of a patient. For example, when a disease is imaged at two time points, then one wants to know if it is stable, has regressed, or

  8. Personalizing Medicine Through Hybrid Imaging and Medical Big Data Analysis

    Laszlo Papp

    2018-06-01

    Full Text Available Medical imaging has evolved from a pure visualization tool to representing a primary source of analytic approaches toward in vivo disease characterization. Hybrid imaging is an integral part of this approach, as it provides complementary visual and quantitative information in the form of morphological and functional insights into the living body. As such, non-invasive imaging modalities no longer provide images only, but data, as stated recently by pioneers in the field. Today, such information, together with other, non-imaging medical data creates highly heterogeneous data sets that underpin the concept of medical big data. While the exponential growth of medical big data challenges their processing, they inherently contain information that benefits a patient-centric personalized healthcare. Novel machine learning approaches combined with high-performance distributed cloud computing technologies help explore medical big data. Such exploration and subsequent generation of knowledge require a profound understanding of the technical challenges. These challenges increase in complexity when employing hybrid, aka dual- or even multi-modality image data as input to big data repositories. This paper provides a general insight into medical big data analysis in light of the use of hybrid imaging information. First, hybrid imaging is introduced (see further contributions to this special Research Topic, also in the context of medical big data, then the technological background of machine learning as well as state-of-the-art distributed cloud computing technologies are presented, followed by the discussion of data preservation and data sharing trends. Joint data exploration endeavors in the context of in vivo radiomics and hybrid imaging will be presented. Standardization challenges of imaging protocol, delineation, feature engineering, and machine learning evaluation will be detailed. Last, the paper will provide an outlook into the future role of hybrid

  9. Current status on image processing in medical fields in Japan

    Atsumi, Kazuhiko

    1979-01-01

    Information on medical images are classified in the two patterns. 1) off-line images on films-x-ray films, cell image, chromosome image etc. 2) on-line images detected through sensors, RI image, ultrasonic image, thermogram etc. These images are divided into three characteristic, two dimensional three dimensional and dynamic images. The research on medical image processing have been reported in several meeting in Japan and many fields on images have been studied on RI, thermogram, x-ray film, x-ray-TV image, cancer cell, blood cell, bacteria, chromosome, ultrasonics, and vascular image. Processing on TI image useful and easy because of their digital displays. Software on smoothing, restoration (iterative approximation), fourier transformation, differentiation and subtration. Image on stomach and chest x-ray films have been processed automatically utilizing computer system. Computed Tomography apparatuses have been already developed in Japan and automated screening instruments on cancer cells and recently on blood cells classification have been also developed. Acoustical holography imaging and moire topography have been also studied in Japan. (author)

  10. Overview of intelligent data retrieval methods for waveforms and images in massive fusion databases

    Vega, J. [JET-EFDA, Culham Science Center, OX14 3DB Abingdon (United Kingdom); Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: jesus.vega@ciemat.es; Murari, A. [JET-EFDA, Culham Science Center, OX14 3DB Abingdon (United Kingdom); Consorzio RFX-Associazione EURATOM ENEA per la Fusione, I-35127 Padua (Italy); Pereira, A.; Portas, A.; Ratta, G.A.; Castro, R. [JET-EFDA, Culham Science Center, OX14 3DB Abingdon (United Kingdom); Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain)

    2009-06-15

    JET database contains more than 42 Tbytes of data (waveforms and images) and it doubles its size about every 2 years. ITER database is expected to be orders of magnitude above this quantity. Therefore, data access in such huge databases can no longer be efficiently based on shot number or temporal interval. Taking into account that diagnostics generate reproducible signal patterns (structural shapes) for similar physical behaviour, high level data access systems can be developed. In these systems, the input parameter is a pattern and the outputs are the shot numbers and the temporal locations where similar patterns appear inside the database. These pattern oriented techniques can be used for first data screening of any type of morphological aspect of waveforms and images. The article shows a new technique to look for similar images in huge databases in a fast an efficient way. Also, previous techniques to search for similar waveforms and to retrieve time-series data or images containing any kind of patterns are reviewed.

  11. Medical physics personnel for medical imaging: requirements, conditions of involvement and staffing levels-French recommendations

    Isambert, Aurelie; Valero, Marc; Rousse, Carole; Blanchard, Vincent; Le Du, Dominique; Guilhem, Marie-Therese; Dieudonne, Arnaud; Pierrat, Noelle; Salvat, Cecile

    2015-01-01

    The French regulations concerning the involvement of medical physicists in medical imaging procedures are relatively vague. In May 2013, the ASN and the SFPM issued recommendations regarding Medical Physics Personnel for Medical Imaging: Requirements, Conditions of Involvement and Staffing Levels. In these recommendations, the various areas of activity of medical physicists in radiology and nuclear medicine have been identified and described, and the time required to perform each task has been evaluated. Criteria for defining medical physics staffing levels are thus proposed. These criteria are defined according to the technical platform, the procedures and techniques practised on it, the number of patients treated and the number of persons in the medical and paramedical teams requiring periodic training. The result of this work is an aid available to each medical establishment to determine their own needs in terms of medical physics. (authors)

  12. Medical physics personnel for medical imaging: requirements, conditions of involvement and staffing levels-French recommendations.

    Isambert, Aurélie; Le Du, Dominique; Valéro, Marc; Guilhem, Marie-Thérèse; Rousse, Carole; Dieudonné, Arnaud; Blanchard, Vincent; Pierrat, Noëlle; Salvat, Cécile

    2015-04-01

    The French regulations concerning the involvement of medical physicists in medical imaging procedures are relatively vague. In May 2013, the ASN and the SFPM issued recommendations regarding Medical Physics Personnel for Medical Imaging: Requirements, Conditions of Involvement and Staffing Levels. In these recommendations, the various areas of activity of medical physicists in radiology and nuclear medicine have been identified and described, and the time required to perform each task has been evaluated. Criteria for defining medical physics staffing levels are thus proposed. These criteria are defined according to the technical platform, the procedures and techniques practised on it, the number of patients treated and the number of persons in the medical and paramedical teams requiring periodic training. The result of this work is an aid available to each medical establishment to determine their own needs in terms of medical physics. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Practical guide to quality assurance in medical imaging

    Moores, M.; Watkinson, S.; Pearcy, J.; Henshaw, E.T.

    1987-01-01

    This volume forms an important part of the response to a growing need to ensure the same and cost-effective use of ionizing radiations for the benefit of both staff and patients. The authors provide guidance to implementing and running quality assurance programs in medical imaging departments. The treatment provides an overview of all the tests which need to be carried out in medical imaging, and the text contains step-by-step guidance as to how to perform and interpret the results of medical imaging

  14. Use of medical imaging as an epidemiologic tracer

    Dartigues, J.F.

    1987-01-01

    Medical imaging is a source of data for clinical and epidemiological research just like any other factual information obtained during medical treatment. Medical imaging data, like any other information, are not really useful unless they are obtained in rigorously controlled and determined conditions, defined a priori in the research protocol. In order to be use as an epidemiologic tracer (that is, as a meaning of finding a given pathology in a given population and during a given time period), the imaging data have to be valid, reliable, and representative, of easy access and obtained at a low cost [fr

  15. Population Pharmacokinetics of Tracers: A New Tool for Medical Imaging?

    Gandia, Peggy; Jaudet, Cyril; Chatelut, Etienne; Concordet, Didier

    2017-02-01

    Positron emission tomography-computed tomography is a medical imaging method measuring the activity of a radiotracer chosen to accumulate in cancer cells. A recent trend of medical imaging analysis is to account for the radiotracer's pharmacokinetic properties at a voxel (three-dimensional-pixel) level to separate the different tissues. These analyses are closely linked to population pharmacokinetic-pharmacodynamic modelling. Kineticists possess the cultural background to improve medical imaging analysis. This article stresses the common points with population pharmacokinetics and highlights the methodological locks that need to be lifted.

  16. Intelligent retrieval of chest X-ray image database using sketches

    Hasegawa, Jun-ichi; Okada, Noritake; Toriwaki, Jun-ichiro

    1988-01-01

    This paper presents further experiments on intelligent retrieval in our chest X-ray image database system using 'sketches'. First, in the previous sketch extraction procedure, vertical-location-invariant thresholding and shape-oriented smoothing are newly developed to improve the precision of lung borders and rib images in each sketch, respectively. Then, two new ways for image retrieval using sketches; (1) image-description retrieval and (2) pattern-matching retrieval, are proposed. In each retrieval way, a procedure for understanding picture queries input through a sketch is described in detail. (author)

  17. The image database management system of teaching file using personal computer

    Shin, M. J.; Kim, G. W.; Chun, T. J.; Ahn, W. H.; Baik, S. K.; Choi, H. Y.; Kim, B. G.

    1995-01-01

    For the systemic management and easy using of teaching file in radiology department, the authors tried to do the setup of a database management system of teaching file using personal computer. We used a personal computer (IBM PC compatible, 486DX2) including a image capture card(Window vision, Dooin Elect, Seoul, Korea) and video camera recorder (8mm, CCD-TR105, Sony, Tokyo, Japan) for the acquisition and storage of images. We developed the database program by using Foxpro for Window 2.6(Microsoft, Seattle, USA) executed in the Window 3.1 (Microsoft, Seattle, USA). Each datum consisted of hospital number, name, sex, age, examination date, keyword, radiologic examination modalities, final diagnosis, radiologic findings, references and representative images. The images were acquired and stored as bitmap format (8 bitmap, 540 X 390 ∼ 545 X 414, 256 gray scale) and displayed on the 17 inch-flat monitor(1024 X 768, Samtron, Seoul, Korea). Without special devices, the images acquisition and storage could be done on the reading viewbox, simply. The image quality on the computer's monitor was less than the one of original film on the viewbox, but generally the characteristics of each lesions could be differentiated. Easy retrieval of data was possible for the purpose of teaching file system. Without high cost appliances, we could consummate the image database system of teaching file using personal computer with relatively inexpensive method

  18. An implementation of wireless medical image transmission system on mobile devices.

    Lee, SangBock; Lee, Taesoo; Jin, Gyehwan; Hong, Juhyun

    2008-12-01

    The advanced technology of computing system was followed by the rapid improvement of medical instrumentation and patient record management system. The typical examples are hospital information system (HIS) and picture archiving and communication system (PACS), which computerized the management procedure of medical records and images in hospital. Because these systems were built and used in hospitals, doctors out of hospital have problems to access them immediately on emergent cases. To solve these problems, this paper addressed the realization of system that could transmit the images acquired by medical imaging systems in hospital to the remote doctors' handheld PDA's using CDMA cellular phone network. The system consists of server and PDA. The server was developed to manage the accounts of doctors and patients and allocate the patient images to each doctor. The PDA was developed to display patient images through remote server connection. To authenticate the personal user, remote data access (RDA) method was used in PDA accessing the server database and file transfer protocol (FTP) was used to download patient images from the remove server. In laboratory experiments, it was calculated to take ninety seconds to transmit thirty images with 832 x 488 resolution and 24 bit depth and 0.37 Mb size. This result showed that the developed system has no problems for remote doctors to receive and review the patient images immediately on emergent cases.

  19. Signal and image processing in medical applications

    Kumar, Amit; Rahim, B Abdul; Kumar, D Sravan

    2016-01-01

    This book highlights recent findings on and analyses conducted on signals and images in the area of medicine. The experimental investigations involve a variety of signals and images and their methodologies range from very basic to sophisticated methods. The book explains how signal and image processing methods can be used to detect and forecast abnormalities in an easy-to-follow manner, offering a valuable resource for researchers, engineers, physicians and bioinformatics researchers alike.

  20. An approach for access differentiation design in medical distributed applications built on databases.

    Shoukourian, S K; Vasilyan, A M; Avagyan, A A; Shukurian, A K

    1999-01-01

    A formalized "top to bottom" design approach was described in [1] for distributed applications built on databases, which were considered as a medium between virtual and real user environments for a specific medical application. Merging different components within a unified distributed application posits new essential problems for software. Particularly protection tools, which are sufficient separately, become deficient during the integration due to specific additional links and relationships not considered formerly. E.g., it is impossible to protect a shared object in the virtual operating room using only DBMS protection tools, if the object is stored as a record in DB tables. The solution of the problem should be found only within the more general application framework. Appropriate tools are absent or unavailable. The present paper suggests a detailed outline of a design and testing toolset for access differentiation systems (ADS) in distributed medical applications which use databases. The appropriate formal model as well as tools for its mapping to a DMBS are suggested. Remote users connected via global networks are considered too.

  1. The UK medical education database (UKMED) what is it? Why and how might you use it?

    Dowell, Jon; Cleland, Jennifer; Fitzpatrick, Siobhan; McManus, Chris; Nicholson, Sandra; Oppé, Thomas; Petty-Saphon, Katie; King, Olga Sierocinska; Smith, Daniel; Thornton, Steve; White, Kirsty

    2018-01-05

    Educating doctors is expensive and poor performance by future graduates can literally cost lives. Whilst the practice of medicine is highly evidence based, medical education is much less so. Research on medical school selection, undergraduate progression, Fitness to Practise (FtP) and postgraduate careers has been hampered across the globe by the challenges of uniting the data required. This paper describes the creation, structure and access arrangements for the first UK-wide attempt to do so. A collaborative approach has created a research database commencing with all entrants to UK medical schools in 2007 and 2008 (UKMED Phase 1). Here the content is outlined, governance arrangements considered, system access explained, and the potential implications of this new resource discussed. The data currently include achievements prior to medical school entry, admissions tests, graduation point information and also all subsequent data collected by the General Medical Council, including FtP, career progression, annual National Training Survey (NTS) responses, career choice and postgraduate exam performance data. UKMED has grown since the pilot phase with additional datasets; all subsequent years of students/trainees and stronger governance processes. The inclusion of future cohorts and additional information such as admissions scores or bespoke surveys or assessments is now being piloted. Thus, for instance, new scrutiny can be applied to selection techniques and the effectiveness of educational interventions. Data are available free of charge for approved studies from suitable research groups worldwide. It is anticipated that UKMED will continue on a rolling basis. This has the potential to radically change the volume and types of research that can be envisaged and, therefore, to improve standards, facilitate workforce planning and support the regulation of medical education and training. This paper aspires to encourage proposals to utilise this exciting resource.

  2. EMITEL: E-Encyclopaedia and E-Dictionary of Medical Imaging Technologies

    Medvedec, M.; Kovacevic, N.; Magjarevic, R.

    2011-01-01

    EMITEL (European Medical Imaging Technology e-Encyclopaedia for Lifelong Learning) is an electronic encyclopaedia and multilingual dictionary related to medical imaging technologies. It is a result of the multi-annual international project which involved more than 250 contributors from 35 countries, aiming to foster development of medical physics and biomedical/clinical engineering by a lifelong e-learning web tool for all interested individuals or groups. Currently, the encyclopaedia is equivalent to about 2100 hard copy pages and includes about 3300 terms with an explanatory article for each term. The dictionary provides bidirectional cross-translation of terms between any two among 28 languages from its current database. Dictionary entries are divided into seven groups: diagnostic radiology, nuclear medicine, radiotherapy, magnetic resonance imaging, ultrasound imaging, radiation protection and general terms. Croatian language was implemented in EMITEL dictionary in April 2010. There were 17 Croatian translators and reviewers from 8 institutions and 3 cities, ranging from medical physics experts to linguist. The basic terminological principles of translation were final intelligibility of terms, desirable Croatian origin and linguistic appropriateness. Croatian contribution in the actual phase of EMITEL project attempted to improve the quality and efficiency of the specific professional, scientific and teaching terminology. A sort of novel, consistent and verified pool of terms of emerging medical imaging technologies was built up, as a one small part of the process of developing information technologies and socio-cultural transition from the industrial society into the society of knowledge. (author)

  3. A facial expression image database and norm for Asian population: a preliminary report

    Chen, Chien-Chung; Cho, Shu-ling; Horszowska, Katarzyna; Chen, Mei-Yen; Wu, Chia-Ching; Chen, Hsueh-Chih; Yeh, Yi-Yu; Cheng, Chao-Min

    2009-01-01

    We collected 6604 images of 30 models in eight types of facial expression: happiness, anger, sadness, disgust, fear, surprise, contempt and neutral. Among them, 406 most representative images from 12 models were rated by more than 200 human raters for perceived emotion category and intensity. Such large number of emotion categories, models and raters is sufficient for most serious expression recognition research both in psychology and in computer science. All the models and raters are of Asian background. Hence, this database can also be used when the culture background is a concern. In addition, 43 landmarks each of the 291 rated frontal view images were identified and recorded. This information should facilitate feature based research of facial expression. Overall, the diversity in images and richness in information should make our database and norm useful for a wide range of research.

  4. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    Fusheng Wang

    2013-01-01

    Full Text Available Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS data model. Aims: (1 Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2 Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3 Develop a set of queries to support data sampling and result comparisons; (4 Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1 algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2 algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The

  5. A high-performance spatial database based approach for pathology imaging algorithm evaluation.

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A D; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J; Saltz, Joel H

    2013-01-01

    Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. WE HAVE CONSIDERED TWO SCENARIOS FOR ALGORITHM EVALUATION: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and

  6. Ordering of diagnostic information in encoded medical images. Accuracy progression

    Przelaskowski, A.; Jóźwiak, R.; Krzyżewski, T.; Wróblewska, A.

    2008-03-01

    A concept of diagnostic accuracy progression for embedded coding of medical images was presented. Implementation of JPEG2000 encoder with a modified PCRD optimization algorithm was realized and initially verified as a tool for accurate medical image streaming. Mean square error as a distortion measure was replaced by other numerical measures to revise quality progression according to diagnostic importance of successively encoded image information. A faster increment of image diagnostic importance during reconstruction of initial packets of code stream was reached. Modified Jasper code was initially tested on a set of mammograms containing clusters of microcalcifications and malignant masses, and other radiograms. Teleradiologic applications were considered as the first area of interests.

  7. Watermarking patient data in encrypted medical images

    Due to the advancement of technology, internet has become an ... area including important information and must be stored without any distortion. .... Although someone with the knowledge of encryption key can obtain a decrypted image and ... ical image management, in: Engineering in Medicine and Biology Society.

  8. The patient experience of high technology medical imaging: A systematic review of the qualitative evidence

    Munn, Zachary; Jordan, Zoe

    2011-01-01

    Background: When presenting to an imaging department, the person who is to be imaged is often in a vulnerable state, and can experience the scan in a number of ways. It is the role of the radiographer to produce a high quality image and facilitate patient care throughout the imaging process. A qualitative systematic review was performed to synthesise the existent evidence on the patient experience of high technology medical imaging. Only papers relating to Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) were identified. Inclusion criteria: Studies that were of a qualitative design that explored the phenomenon of interest, the patient experience of high technology medical imaging. Participants included anyone who had undergone one of these procedures. Methods: A systematic search of medical and allied health databases was conducted. Articles identified during the search process that met the inclusion criteria were then critically appraised for methodological quality independently by two reviewers. Results: During the search and inclusion process, 15 studies were found that were deemed of suitable quality to be included in the review. From the 15 studies, 127 findings were extracted from the included studies. These were analysed in more detail to observe common themes, and then grouped into 33 categories. From these 33 categories, 11 synthesised findings were produced. The 11 synthesised findings highlight the diverse, unique and challenging ways in which people experience imaging with MRI and CT scanners. Conclusion: The results of the review demonstrate the diverse ways in which people experience medical imaging. All health professionals involved in imaging need to be aware of the different ways each patient may experience imaging.

  9. An interactive medical image segmentation framework using iterative refinement.

    Kalshetti, Pratik; Bundele, Manas; Rahangdale, Parag; Jangra, Dinesh; Chattopadhyay, Chiranjoy; Harit, Gaurav; Elhence, Abhay

    2017-04-01

    Segmentation is often performed on medical images for identifying diseases in clinical evaluation. Hence it has become one of the major research areas. Conventional image segmentation techniques are unable to provide satisfactory segmentation results for medical images as they contain irregularities. They need to be pre-processed before segmentation. In order to obtain the most suitable method for medical image segmentation, we propose MIST (Medical Image Segmentation Tool), a two stage algorithm. The first stage automatically generates a binary marker image of the region of interest using mathematical morphology. This marker serves as the mask image for the second stage which uses GrabCut to yield an efficient segmented result. The obtained result can be further refined by user interaction, which can be done using the proposed Graphical User Interface (GUI). Experimental results show that the proposed method is accurate and provides satisfactory segmentation results with minimum user interaction on medical as well as natural images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Methodology for quantitative evaluation of diagnostic medical imaging

    Metz, C.

    1980-01-01

    This report deals with the evaluation of the performance of diagnostic medical imaging procedures using the Receiver Operating Characteristic or ROC analysis. The development of new tests for the statistical significance of apparent differences between ROC curves is discussed

  11. FUZZY BASED CONTRAST STRETCHING FOR MEDICAL IMAGE ENHANCEMENT

    T.C. Raja Kumar

    2011-07-01

    Full Text Available Contrast Stretching is an important part in medical image processing applications. Contrast is the difference between two adjacent pixels. Fuzzy statistical values are analyzed and better results are produced in the spatial domain of the input image. The histogram mapping produces the resultant image with less impulsive noise and smooth nature. The probabilities of gray values are generated and the fuzzy set is determined from the position of the input image pixel. The result indicates the good performance of the proposed fuzzy based stretching. The inverse transform of the real values are mapped with the input image to generate the fuzzy statistics. This approach gives a flexible image enhancement for medical images in the presence of noises.

  12. On the Perceptual Organization of Image Databases Using Cognitive Discriminative Biplots

    Spiros Fotopoulos

    2007-01-01

    Full Text Available A human-centered approach to image database organization is presented in this study. The management of a generic image database is pursued using a standard psychophysical experimental procedure followed by a well-suited data analysis methodology that is based on simple geometrical concepts. The end result is a cognitive discriminative biplot, which is a visualization of the intrinsic organization of the image database best reflecting the user's perception. The discriminating power of the introduced cognitive biplot constitutes an appealing tool for image retrieval and a flexible interface for visual data mining tasks. These ideas were evaluated in two ways. First, the separability of semantically distinct image classes was measured according to their reduced representations on the biplot. Then, a nearest-neighbor retrieval scheme was run on the emerged low-dimensional terrain to measure the suitability of the biplot for performing content-based image retrieval (CBIR. The achieved organization performance when compared with the performance of a contemporary system was found superior. This promoted the further discussion of packing these ideas into a realizable algorithmic procedure for an efficient and effective personalized CBIR system.

  13. A Kalman filter technique applied for medical image reconstruction

    Goliaei, S.; Ghorshi, S.; Manzuri, M. T.; Mortazavi, M.

    2011-01-01

    Medical images contain information about vital organic tissues inside of human body and are widely used for diagnoses of disease or for surgical purposes. Image reconstruction is essential for medical images for some applications such as suppression of noise or de-blurring the image in order to provide images with better quality and contrast. Due to vital rule of image reconstruction in medical sciences the corresponding algorithms with better efficiency and higher speed is desirable. Most algorithms in image reconstruction are operated on frequency domain such as the most popular one known as filtered back projection. In this paper we introduce a Kalman filter technique which is operated in time domain for medical image reconstruction. Results indicated that as the number of projection increases in both normal collected ray sum and the collected ray sum corrupted by noise the quality of reconstructed image becomes better in terms of contract and transparency. It is also seen that as the number of projection increases the error index decreases.

  14. MEDICAL IMAGE COMPRESSION USING HYBRID CODER WITH FUZZY EDGE DETECTION

    K. Vidhya

    2011-02-01

    Full Text Available Medical imaging techniques produce prohibitive amounts of digitized clinical data. Compression of medical images is a must due to large memory space required for transmission and storage. This paper presents an effective algorithm to compress and to reconstruct medical images. The proposed algorithm first extracts edge information of medical images by using fuzzy edge detector. The images are decomposed using Cohen-Daubechies-Feauveau (CDF wavelet. The hybrid technique utilizes the efficient wavelet based compression algorithms such as JPEG2000 and Set Partitioning In Hierarchical Trees (SPIHT. The wavelet coefficients in the approximation sub band are encoded using tier 1 part of JPEG2000. The wavelet coefficients in the detailed sub bands are encoded using SPIHT. Consistent quality images are produced by this method at a lower bit rate compared to other standard compression algorithms. Two main approaches to assess image quality are objective testing and subjective testing. The image quality is evaluated by objective quality measures. Objective measures correlate well with the perceived image quality for the proposed compression algorithm.

  15. Synchrotrons and their applications in medical imaging and therapy

    Lewis, R.

    2004-01-01

    Full text: Australasia's first synchrotron is being built on the campus of Monash University near Melbourne. Is it of any relevance to the medical imaging and radiation therapy communities? The answer is an unequivocal yes. Synchrotrons overcome many of the problems with conventional X-ray sources and as a result make it possible to demonstrate extraordinary advances in both X-ray imaging and indeed in radio-therapy. Synchrotron imaging offers us a window into what is possible and the results are spectacular. Specific examples include lung images that reveal alveolar structure and computed tomography of single cells. For therapy treatments are being pioneered that seem to be effective on high grade gliomas. An overview of the status of medical applications using synchrotrons will be given and the proposed Australian medical imaging and therapy facilities will be described and some of the proposed research highlighted. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  16. Segmentation of medical images using explicit anatomical knowledge

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  17. Medical imaging and the principal phacomatoses

    Bertrand, J.L.; Salamand, P.; Arnault, G.; Solacroup, J.C.; Martin, J.P.; Proust, J.

    1988-01-01

    Because of involvement of several or more embryonic tissue layers, manifestations of phacomatoses are widely variable. Different imaging methods can be used to determine the various localizations of these conditions: cerebral, thoracic and abdominal [fr

  18. Getting a Clear Picture on Medical Imaging

    Madsen, Michael Amdi

    2014-01-01

    Diseases take on all shapes and forms, and some are easier to detect than others. Obvious outward growths like rashes and warts are quick to spot, but for some diseases and conditions more information is needed. Fortunately, nuclear medicine doctors today can use a wide range of modern imaging and diagnosis techniques and technologies to identify a variety of health conditions. SPECT, PET, MRI, CT, ECHO, fluoroscopy — the list of diagnosis techniques go on, but do you know what they actually are? Imaging techniques can be broken down into two basic categories: those that simply show the anatomy, known as radiology, and those that look at the physiology, on how the body functions, which is known as functional imaging. This article presents a breakdown of the two imaging disciplines and how some of the most common techniques work

  19. Ontology modularization to improve semantic medical image annotation.

    Wennerberg, Pinar; Schulz, Klaus; Buitelaar, Paul

    2011-02-01

    Searching for medical images and patient reports is a significant challenge in a clinical setting. The contents of such documents are often not described in sufficient detail thus making it difficult to utilize the inherent wealth of information contained within them. Semantic image annotation addresses this problem by describing the contents of images and reports using medical ontologies. Medical images and patient reports are then linked to each other through common annotations. Subsequently, search algorithms can more effectively find related sets of documents on the basis of these semantic descriptions. A prerequisite to realizing such a semantic search engine is that the data contained within should have been previously annotated with concepts from medical ontologies. One major challenge in this regard is the size and complexity of medical ontologies as annotation sources. Manual annotation is particularly time consuming labor intensive in a clinical environment. In this article we propose an approach to reducing the size of clinical ontologies for more efficient manual image and text annotation. More precisely, our goal is to identify smaller fragments of a large anatomy ontology that are relevant for annotating medical images from patients suffering from lymphoma. Our work is in the area of ontology modularization, which is a recent and active field of research. We describe our approach, methods and data set in detail and we discuss our results. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants.

    Steven C Bagley

    2016-04-01

    Full Text Available Patterns of disease co-occurrence that deviate from statistical independence may represent important constraints on biological mechanism, which sometimes can be explained by shared genetics. In this work we study the relationship between disease co-occurrence and commonly shared genetic architecture of disease. Records of pairs of diseases were combined from two different electronic medical systems (Columbia, Stanford, and compared to a large database of published disease-associated genetic variants (VARIMED; data on 35 disorders were available across all three sources, which include medical records for over 1.2 million patients and variants from over 17,000 publications. Based on the sources in which they appeared, disease pairs were categorized as having predominant clinical, genetic, or both kinds of manifestations. Confounding effects of age on disease incidence were controlled for by only comparing diseases when they fall in the same cluster of similarly shaped incidence patterns. We find that disease pairs that are overrepresented in both electronic medical record systems and in VARIMED come from two main disease classes, autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared within these disease groups.

  1. View interpolation for medical images on autostereoscopic displays

    Zinger, S.; Ruijters, D.; Do, Q.L.; With, de P.H.N.

    2012-01-01

    We present an approach for efficient rendering and transmitting views to a high-resolution autostereoscopic display for medical purposes. Displaying biomedical images on an autostereoscopic display poses different requirements than in a consumer case. For medical usage, it is essential that the

  2. Medical image of the week: prozac eyes

    Shetty S

    2015-12-01

    Full Text Available A 59-year-old man with a past medical history significant for hypertension, obesity and depression underwent an overnight polysomnogram for high clinical suspicion for obstructive sleep apnea. His current medications include doxepin, fluoxetine, bupropion, ambien and amlodipine. A snapshot during NREM sleep is shown (Figure 1. Fluoxetine (Prozac® is a potent selective serotonin reuptake inhibitor (SSRI.“Omnipause” neurons in the brainstem inhibit saccadic eye movements. NREM eye movements result from the potentiation of serotonergic neurons that inhibit these neurons (1. These eye movements occur during all stages of NREM sleep. These atypical eye movements have been reported to be present with a lower incidence with use of other antidepressants, benzodiazepines and neuroleptics and they tend to persist even after discontinuation of the medication (2. The clinical significance of these eye movements is unknown.

  3. Organization and visualization of medical images in radiotherapy

    Lorang, T.

    2001-05-01

    In modern radiotherapy, various imaging equipment is used to acquire views from inside human bodies. Tomographic imaging equipment is acquiring stacks of cross-sectional images, software implementations derive three-dimensional volumes from planar images to allow for visualization of reconstructed cross-sections at any orientation and location and higher-level visualization systems allow for transparent views and surface rendering. Of upcoming interest in radiotherapy is mutual information, the integration of information from multiple imaging equipment res. from the same imaging equipment at different time stamps and varying acquisition parameters. Huge amounts of images are acquired nowadays at radiotherapy centers, requiring organization of images with respect to patient, acquisition and equipment to allow for visualization of images in a comparative and integrative manner. Especially for integration of image information from different equipment, geometrical information is required to allow for registration of images res. volumes. DICOM 3.0 has been introduced as a standard for information interchange with respect to medical imaging. Geometric information of cross-sections, demographic information of patients and medical information of acquisitions and equipment are covered by this standard, allowing for a high-level automation with respect to organization and visualization of medical images. Reconstructing cross-sectional images from volumes at any orientation and location is required for the purpose of registration and multi-planar views. Resampling and addressing of discrete volume data need be implemented efficiently to allow for simultaneous visualization of multiple cross-sectional images, especially with respect to multiple, non-isotropy volume data sets. (author)

  4. Design and Implementation of CNEOST Image Database Based on NoSQL System

    Wang, Xin

    2014-04-01

    The China Near Earth Object Survey Telescope is the largest Schmidt telescope in China, and it has acquired more than 3 TB astronomical image data since it saw the first light in 2006. After the upgrade of the CCD camera in 2013, over 10 TB data will be obtained every year. The management of the massive images is not only an indispensable part of data processing pipeline but also the basis of data sharing. Based on the analysis of requirement, an image management system is designed and implemented by employing the non-relational database.

  5. Plane Wave Medical Ultrasound Imaging Using Adaptive Beamforming

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2008-01-01

    In this paper, the adaptive, minimum variance (MV) beamformer is applied to medical ultrasound imaging. The Significant resolution and contrast gain provided by the adaptive, minimum variance (MV) beamformer, introduces the possibility of plane wave (PW) ultrasound imaging. Data is obtained using...

  6. Improved Software to Browse the Serial Medical Images for Learning.

    Kwon, Koojoo; Chung, Min Suk; Park, Jin Seo; Shin, Byeong Seok; Chung, Beom Sun

    2017-07-01

    The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images. © 2017 The Korean Academy of Medical Sciences.

  7. Student Perspectives of Imaging Anatomy in Undergraduate Medical Education

    Machado, Jorge Americo Dinis; Barbosa, Joselina Maria Pinto; Ferreira, Maria Amelia Duarte

    2013-01-01

    Radiological imaging is gaining relevance in the acquisition of competencies in clinical anatomy. The aim of this study was to evaluate the perceptions of medical students on teaching/learning of imaging anatomy as an integrated part of anatomical education. A questionnaire was designed to evaluate the perceptions of second-year students…

  8. An overview of medical image processing methods

    USER

    2010-06-14

    Jun 14, 2010 ... Since human life is worthier than all things, efforts on virtual animation and visualization of human body's viscera, without surgical interference to diagnose a disease is very important. Recently, modern medical instruments are able to produce views which can be used for better diagnoses and accurate.

  9. Medical image security using modified chaos-based cryptography approach

    Talib Gatta, Methaq; Al-latief, Shahad Thamear Abd

    2018-05-01

    The progressive development in telecommunication and networking technologies have led to the increased popularity of telemedicine usage which involve storage and transfer of medical images and related information so security concern is emerged. This paper presents a method to provide the security to the medical images since its play a major role in people healthcare organizations. The main idea in this work based on the chaotic sequence in order to provide efficient encryption method that allows reconstructing the original image from the encrypted image with high quality and minimum distortion in its content and doesn’t effect in human treatment and diagnosing. Experimental results prove the efficiency of the proposed method using some of statistical measures and robust correlation between original image and decrypted image.

  10. In-vivo synthetic aperture flow imaging in medical ultrasound

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2003-01-01

    A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation.......2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of How in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions....

  11. Heuristics and Cognitive Error in Medical Imaging.

    Itri, Jason N; Patel, Sohil H

    2018-05-01

    The field of cognitive science has provided important insights into mental processes underlying the interpretation of imaging examinations. Despite these insights, diagnostic error remains a major obstacle in the goal to improve quality in radiology. In this article, we describe several types of cognitive bias that lead to diagnostic errors in imaging and discuss approaches to mitigate cognitive biases and diagnostic error. Radiologists rely on heuristic principles to reduce complex tasks of assessing probabilities and predicting values into simpler judgmental operations. These mental shortcuts allow rapid problem solving based on assumptions and past experiences. Heuristics used in the interpretation of imaging studies are generally helpful but can sometimes result in cognitive biases that lead to significant errors. An understanding of the causes of cognitive biases can lead to the development of educational content and systematic improvements that mitigate errors and improve the quality of care provided by radiologists.

  12. Medical research using governments' health claims databases: with or without patients' consent?

    Tsai, Feng-Jen; Junod, Valérie

    2018-03-01

    Taking advantage of its single-payer, universal insurance system, Taiwan has leveraged its exhaustive database of health claims data for research purposes. Researchers can apply to receive access to pseudonymized (coded) medical data about insured patients, notably their diagnoses, health status and treatments. In view of the strict safeguards implemented, the Taiwanese government considers that this research use does not require patients' consent (either in the form of an opt-in or in the form of an opt-out). A group of non-governmental organizations has challenged this view in the Taiwanese Courts, but to no avail. The present article reviews the arguments both against and in favor of patients' consent for re-use of their data in research. It concludes that offering patients an opt-out would be appropriate as it would best balance the important interests at issue.

  13. Food-pics: an image database for experimental research on eating and appetite.

    Blechert, Jens; Meule, Adrian; Busch, Niko A; Ohla, Kathrin

    2014-01-01

    Our current environment is characterized by the omnipresence of food cues. The sight and smell of real foods, but also graphically depictions of appetizing foods, can guide our eating behavior, for example, by eliciting food craving and influencing food choice. The relevance of visual food cues on human information processing has been demonstrated by a growing body of studies employing food images across the disciplines of psychology, medicine, and neuroscience. However, currently used food image sets vary considerably across laboratories and image characteristics (contrast, brightness, etc.) and food composition (calories, macronutrients, etc.) are often unspecified. These factors might have contributed to some of the inconsistencies of this research. To remedy this, we developed food-pics, a picture database comprising 568 food images and 315 non-food images along with detailed meta-data. A total of N = 1988 individuals with large variance in age and weight from German speaking countries and North America provided normative ratings of valence, arousal, palatability, desire to eat, recognizability and visual complexity. Furthermore, data on macronutrients (g), energy density (kcal), and physical image characteristics (color composition, contrast, brightness, size, complexity) are provided. The food-pics image database is freely available under the creative commons license with the hope that the set will facilitate standardization and comparability across studies and advance experimental research on the determinants of eating behavior.

  14. Medical Image Visual Appearance Improvement Using Bihistogram Bezier Curve Contrast Enhancement: Data from the Osteoarthritis Initiative

    Gan, Hong-Seng; Swee, Tan Tian; Abdul Karim, Ahmad Helmy; Sayuti, Khairil Amir; Abdul Kadir, Mohammed Rafiq; Tham, Weng-Kit; Wong, Liang-Xuan; Chaudhary, Kashif T.; Yupapin, Preecha P.

    2014-01-01

    Well-defined image can assist user to identify region of interest during segmentation. However, complex medical image is usually characterized by poor tissue contrast and low background luminance. The contrast improvement can lift image visual quality, but the fundamental contrast enhancement methods often overlook the sudden jump problem. In this work, the proposed bihistogram Bezier curve contrast enhancement introduces the concept of “adequate contrast enhancement” to overcome sudden jump problem in knee magnetic resonance image. Since every image produces its own intensity distribution, the adequate contrast enhancement checks on the image's maximum intensity distortion and uses intensity discrepancy reduction to generate Bezier transform curve. The proposed method improves tissue contrast and preserves pertinent knee features without compromising natural image appearance. Besides, statistical results from Fisher's Least Significant Difference test and the Duncan test have consistently indicated that the proposed method outperforms fundamental contrast enhancement methods to exalt image visual quality. As the study is limited to relatively small image database, future works will include a larger dataset with osteoarthritic images to assess the clinical effectiveness of the proposed method to facilitate the image inspection. PMID:24977191

  15. Processing of hyperspectral medical images applications in dermatology using Matlab

    Koprowski, Robert

    2017-01-01

    This book presents new methods of analyzing and processing hyperspectral medical images, which can be used in diagnostics, for example for dermatological images. The algorithms proposed are fully automatic and the results obtained are fully reproducible. Their operation was tested on a set of several thousands of hyperspectral images and they were implemented in Matlab. The presented source code can be used without licensing restrictions. This is a valuable resource for computer scientists, bioengineers, doctoral students, and dermatologists interested in contemporary analysis methods.

  16. Medical Imaging in Differentiating the Diabetic Charcot Foot from Osteomyelitis.

    Short, Daniel J; Zgonis, Thomas

    2017-01-01

    Diabetic Charcot neuroarthropathy (DCN) poses a great challenge to diagnose in the early stages and when plain radiographs do not depict any initial signs of osseous fragmentation or dislocation in a setting of a high clinical index of suspicion. Medical imaging, including magnetic resonance imaging, computed tomography, and advanced bone scintigraphy, has its own unique clinical indications when treating the DCN with or without concomitant osteomyelitis. This article reviews different clinical case scenarios for choosing the most accurate medical imaging in differentiating DCN from osteomyelitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Automatic medical image annotation and keyword-based image retrieval using relevance feedback.

    Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal

    2012-08-01

    This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.

  18. User Oriented Platform for Data Analytics in Medical Imaging Repositories.

    Valerio, Miguel; Godinho, Tiago Marques; Costa, Carlos

    2016-01-01

    The production of medical imaging studies and associated data has been growing in the last decades. Their primary use is to support medical diagnosis and treatment processes. However, the secondary use of the tremendous amount of stored data is generally more limited. Nowadays, medical imaging repositories have turned into rich databanks holding not only the images themselves, but also a wide range of metadata related to the medical practice. Exploring these repositories through data analysis and business intelligence techniques has the potential of increasing the efficiency and quality of the medical practice. Nevertheless, the continuous production of tremendous amounts of data makes their analysis difficult by conventional approaches. This article proposes a novel automated methodology to derive knowledge from medical imaging repositories that does not disrupt the regular medical practice. Our method is able to apply statistical analysis and business intelligence techniques directly on top of live institutional repositories. It is a Web-based solution that provides extensive dashboard capabilities, including complete charting and reporting options, combined with data mining components. Moreover, it enables the operator to set a wide multitude of query parameters and operators through the use of an intuitive graphical interface.

  19. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

  20. Patients radiation protection in medical imaging. Conference proceedings

    2011-12-01

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about patients radiation protection in medical imaging. Twelve presentations (slides) are compiled in this document and deal with: 1 - Medical exposure of the French population: methodology and results (Bernard Aubert, IRSN); 2 - What indicators for the medical exposure? (Cecile Etard, IRSN); 3 - Guidebook of correct usage of medical imaging examination (Philippe Grenier, Pitie-Salpetriere hospital); 4 - Radiation protection optimization in pediatric imaging (Hubert Ducou-Le-Pointe, Aurelien Bouette (Armand-Trousseau children hospital); 5 - Children's exposure to image scanners: epidemiological survey (Marie-Odile Bernier, IRSN); 6 - Management of patient's irradiation: from image quality to good practice (Thierry Solaire, General Electric); 7 - Dose optimization in radiology (Cecile Salvat (Lariboisiere hospital); 8 - Cancer detection in the breast cancer planned screening program - 2004-2009 era (Agnes Rogel, InVS); 9 - Mammographic exposures - radiobiological effects - radio-induced DNA damages (Catherine Colin, Lyon Sud hospital); 10 - Breast cancer screening program - importance of non-irradiating techniques (Anne Tardivon, Institut Curie); 11 - Radiation protection justification for the medical imaging of patients over the age of 50 (Michel Bourguignon, ASN); 12 - Search for a molecular imprint for the discrimination between radio-induced and sporadic tumors (Sylvie Chevillard, CEA)

  1. FAST: framework for heterogeneous medical image computing and visualization.

    Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank

    2015-11-01

    Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.

  2. GN Ramachandran's Contributions to Medical Imaging

    CT), MRI. ... It is now routinely employed in modernCT (Computed Tomography) and MRI (MagneticResonance Imaging) scans. In this article,we review the salient features of this technique,that allows the 'reconstruction of an object fromits ...

  3. Aliphatic polyesters for medical imaging and theranostic applications.

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Medical image of the week: polysomnogram artifact

    Bartell J

    2015-02-01

    Full Text Available A 54 year-old man with a past medical history of attention deficit hyperactivity disorder (ADHD, low back pain, and paroxysmal supraventricular tachycardia presented to the sleep laboratory for evaluation of sleep disordered breathing. Pertinent medications include fluoxetine, ambien, and clonazepam. His Epworth sleepiness score was 18. He had a total sleep time of 12 min. On the night of his sleep study, the patient was restless and repeatedly changed positions in bed. Figures 1 and 2 show the artifact determined to be lead displacement of O1M2 after the patient shifted in bed, inadvertently removing one of his scalp electrodes. The sine waves are 60 Hz in frequency. Once the problem was identified, the lead was quickly replaced to its proper position.

  5. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    Michail, C M; Fountos, G P; Kalyvas, N I; Valais, I G; Kandarakis, I S; Karpetas, G E; Martini, Niki; Koukou, Vaia

    2015-01-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations. (paper)

  6. A review on the application of medical infrared thermal imaging in hands

    Sousa, Elsa; Vardasca, Ricardo; Teixeira, Sérgio; Seixas, Adérito; Mendes, Joaquim; Costa-Ferreira, António

    2017-09-01

    Infrared Thermal (IRT) imaging is a medical imaging modality to study skin temperature in real time, providing physiological information about the underlining structures. One of the most accessible body sites to be investigated using such imaging method is the hands, which can reflect valuable information about conditions affecting the upper limbs. The aim of this review is to acquaint the successful applications of IRT in the hands with a medical scope, opening horizons for future applications based in the achieved results. A systematic literature review was performed in order to assess in which applications medical IRT imaging was applied to the hands. The literature search was conducted in the reference databases: PubMed, Scopus and ISI Web of Science, making use of keywords (hand, thermography, infrared imaging, thermal imaging) combination that were present at the title and abstract. No temporal restriction was made. As a result, 4260 articles were identified, after removal of duplicates, 3224 articles remained and from first title and abstract filtering, a total of 388 articles were considered. After application of exclusion criteria (non-availability, non-clinical applications, reviews, case studies, written in other languages than English and using liquid crystal thermography), 146 articles were considered for this review. It can be verified that thermography provides useful diagnostic and monitoring information of conditions that directly or indirectly related to hands, as well as aiding in the treatment assessment. Trends and future challenges for IRT applications on hands are provided to stimulate researchers and clinicians to explore and address them.

  7. Medical Image Registration by means of a Bio-Inspired Optimization Strategy

    Hariton Costin

    2012-07-01

    Full Text Available Medical imaging mainly treats and processes missing, ambiguous, complementary, redundant and distorted data. Biomedical image registration is the process of geometric overlaying or alignment of two or more 2D/3D images of the same scene, taken at different time slots, from different angles, and/or by different acquisition systems. In medical practice, it is becoming increasingly important in diagnosis, treatment planning, functional studies, computer-guided therapies, and in biomedical research. Technically, image registration implies a complex optimization of different parameters, performed at local or/and global levels. Local optimization methods frequently fail because functions of the involved metrics with respect to transformation parameters are generally nonconvex and irregular. Therefore, global methods are often required, at least at the beginning of the procedure. In this paper, a new evolutionary and bio-inspired approach -- bacterial foraging optimization -- is adapted for single-slice to 3-D PET and CT multimodal image registration. Preliminary results of optimizing the normalized mutual information similarity metric validated the efficacy of the proposed method by using a freely available medical image database.

  8. Medical image of the week: aspergilloma

    Hsu W

    2014-05-01

    Full Text Available No abstract available. Article truncated after 150 words. A 69-year-old woman, a current smoker, with very severe chronic obstructive pulmonary disease and prior atypical mycobacterium, was found unresponsive by her family and intubated in the field by emergency medical services for respiratory distress. Her CT thorax showed severe emphysematous disease, apical bullous disease, and a large left upper lobe cavitation with debris (Figure 1. She was treated with broad-spectrum antibiotics and anti-fungal medications. Hemoptysis was never seen. Sputum cultures over a span of two weeks repeatedly showed Aspergillus fumigatus and outside medical records confirmed the patient had a known history of stable aspergilloma not requiring therapy. Aspergillomas usually arises in cavitary areas of the lung damaged by previous infections. The fungus ball is a combination of colonization by Aspergillus hyphae and cellular debris. Individuals with aspergillomas are usually asymptomatic or have mild symptoms (chronic cough and do not require treatment unless it begins to invade into the cavity ...

  9. Blur Quantification of Medical Images: Dicom Media, Whole Slide Images, Generic Images and Videos

    D. Ameisen

    2016-10-01

    platform. The focus map may be displayed on the web interface next to the thumbnail link to the WSI, or in the viewer as a semi-transparent layer over the WSI, or over the WSI map. During the test phase and first integrations in laboratories and hospitals as well as in the FlexMIm project, more than 5000 whole slide images of multiple formats (Hamamatsu NDPI, Aperio SVS, Mirax MRXS, JPEG2000 … as well as hundreds of thousands of images of various formats (DICOM, TIFF, PNG, JPEG ... and videos (H264 have been analyzed using our standalone software or our C, C++, Java and Python libraries. Using default or customizable thresholds’ profiles, WSI are sorted as “accepted”, “to review”, “to rescan”. In order to target the samples contained inside each WSI, special attention was paid to detecting blank tiles. Dynamic blank tile detection based on statistical analysis of each WSI was built and successfully validated for all our samples. Results More than 20 trillion pixels have been analyzed at a 3.5 billion pixels per quad-core processor per minute speed rate. Quantified results can be stored in JSON formatted logs or inside a MySQL or MongoDB database or converted to any chosen data structure to be interoperable with existing software, each tile’s result being accessible in addition to the quality map and the global quality results. This solution is easily scalable as images can be stored at different locations, analysis can be distributed amongst local or remote servers, and quantified results can be stored in remote databases.

  10. Communication networks for medical image transmission

    Lemke, H.U.

    1993-01-01

    Digital communication networks are of increasing importance for data exchange in health care environments. They may be used to transmit multi-media data, such as text, images, graphics, signals and sound. The essential characteristics of modern network technologies are summarized in this article and are seen in the context of local, metropolitan and wide area networks. Standardized technologies discussed are Ethernet, token oriented systems, FDDI, DQDB and ATM. Off-line communication media based on magnetic optical disk, such as ISandC, are briefly introduced. The conclusion reached is that therapy planning for radiation therapy or hyperthermia can make use of communication technologies, for example, to transmit patient images, modelling data and results of distribution calculations of physical phenomena. (orig.) [de

  11. Medical Imaging of Mummies and Bog Bodies

    Lynnerup, Niels

    2010-01-01

    Mummies are human remains with preservation of non-bony tissue. Mummification by natural influences results in so-called natural mummies, while mummification induced by active (human) intervention results in so-called artificial mummies, although many cultures practiced burial rites which to some...... and bog bodies could be studied non-destructively. This article describes the history of mummy radiography and CT scanning, and some of the problems and opportunities involved in applying these techniques, derived for clinical use, on naturally and artificially preserved ancient human bodies. Unless...... severely degraded, bone is quite readily visualized, but accurate imaging of preserved soft tissues, and pathological lesions therein, may require considerable post-image capture processing of CT data....

  12. Evaluation of nuclear data for R and D projects; development of database for medical nuclear data

    Seo, Tae Suk [Catholic University, Seoul (Korea); Shin, D. O. [Kyung Hee University, Seoul (Korea); Joh, C. W.; Chang, J. S. [Ajou University, Suwon (Korea); Choi, Y. [Sungkyunkwan University, Seoul (Korea); Kim, S. H. [Hanyang University, Seoul (Korea); Park, S. Y. [National Cancer Center, Seoul (Korea); Shin, D. H.; Lee, S [Kyonggi University, Seoul (Korea)

    2002-04-01

    Medical nuclear data used in the country is not provided by academic associations and organizations concerned and even by government organizations concerned. This is aimed to investigate the diagnostic and therapeutic equipments in the clinical use and the domestic present status of nuclear data and physical properties of sealed or unsealed radioactive isotopes and to establish the nuclear database. About 120 domestic centers take nuclear medicine tests and 52 medical centers do radiotherapy. The 30-odd different kinds of radionuclides are usually used in nuclear medicine in the country. The 30-odd kinds of unsealed sources are used for diagnosis and therapy and 10-odd kinds of sealed sources for brachytherapy in the country. The special radiotherapy includes Gamma-knife, linac-based stereotactic radiosurgery, conformal radiotherapy and Intensity modulated radiotherapy. The nuclear data base has been completed on the basis of these data collected and the web site made is available with ease to anyone who want to get nuclear data. 39 refs., 20 figs., 8 tabs. (Author)

  13. Time Series Discord Detection in Medical Data using a Parallel Relational Database [PowerPoint

    Woodbridge, Diane; Wilson, Andrew T.; Rintoul, Mark Daniel; Goldstein, Richard H.

    2015-11-01

    Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients’ emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithms on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.

  14. Time Series Discord Detection in Medical Data using a Parallel Relational Database

    Woodbridge, Diane; Rintoul, Mark Daniel; Wilson, Andrew T.; Goldstein, Richard

    2015-10-01

    Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients’ emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithms on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.

  15. Blackboard architecture for medical image interpretation

    Davis, Darryl N.; Taylor, Christopher J.

    1991-06-01

    There is a growing interest in using sophisticated knowledge-based systems for biomedical image interpretation. We present a principled attempt to use artificial intelligence methodologies in interpreting lateral skull x-ray images. Such radiographs are routinely used in cephalometric analysis to provide quantitative measurements useful to clinical orthodontists. Manual and interactive methods of analysis are known to be error prone and previous attempts to automate this analysis typically fail to capture the expertise and adaptability required to cope with the variability in biological structure and image quality. An integrated model-based system has been developed which makes use of a blackboard architecture and multiple knowledge sources. A model definition interface allows quantitative models, of feature appearance and location, to be built from examples as well as more qualitative modelling constructs. Visual task definition and blackboard control modules allow task-specific knowledge sources to act on information available to the blackboard in a hypothesise and test reasoning cycle. Further knowledge-based modules include object selection, location hypothesis, intelligent segmentation, and constraint propagation systems. Alternative solutions to given tasks are permitted.

  16. Medical image of the week: Boerhaave syndrome

    Parsa N

    2016-06-01

    Full Text Available No abstract available. Article truncated at 150 words. A 41-year-old woman with a history of gastroesophageal reflux disease (GERD, asthma and iron deficiency anemia presented with complaints of right sided chest pain, nausea and emesis for several days prior to hospital presentation. She had also been experiencing progressive dysphagia to solids for a month preceding admission. CT chest imaging revealed mega-esophagus (Figure 1A with rupture into the right lung parenchyma and resultant abscess formation (Figure 1B and 1C. A subsequent echocardiogram also confirmed mitral valve endocarditis. An image-guided chest tube was placed in the abscess for drainage. Endoscopy was attempted but visualization was difficult due to the presence of retained food. Given her low albumin and poor nutritional state, a jejunostomy tube was placed. Follow up CT imaging with contrast through a nasogastric tube confirmed extravasation of esophageal contrast into the right lung parenchyma (Figure 1D. Blood and sputum cultures grew Candida glabrata. She was initially started on ...

  17. Medical image compression with fast Hartley transform

    Paik, C.H.; Fox, M.D.

    1988-01-01

    The purpose of data compression is storage and transmission of images with minimization of memory for storage and bandwidth for transmission, while maintaining robustness in the presence of transmission noise or storage medium errors. Here, the fast Hartley transform (FHT) is used for transformation and a new thresholding method is devised. The FHT is used instead of the fast Fourier transform (FFT), thus providing calculation at least as fast as that of the fastest algorithm of FFT. This real numbered transform requires only half the memory array space for saving of transform coefficients and allows for easy implementation on very large-scale integrated circuits because of the use of the same formula for both forward and inverse transformation and the conceptually straightforward algorithm. Threshold values were adaptively selected according to the correlation factor of each block of equally divided blocks of the image. Therefore, this approach provided a coding scheme that included maximum information with minimum image bandwidth. Overall, the results suggested that the Hartley transform adaptive thresholding approach results in improved fidelity, shorter decoding time, and greater robustness in the presence of noise than previous approaches

  18. Recent advances in radiology and medical imaging

    Steiner, R.E.; Sherwood, T.

    1986-01-01

    The first chapter, on the radiology of arthritis, is an overview. The second and seventh chapters are on the chest the former, on adult respiratory distress syndrome, is a brief summary, and the latter, on digital radiography of the chest with the prototype slit-scanning technique. The third chapter reviews computed tomography of the lumbar spine. The following two chapters are on MR imaging, one on the central nervous system (covering demyelinating diseases, cardiovascular disease, infections, and tumors), with excellent illustrations; and one on MR imaging of the body. The illustrations are good. The following chapter is on extracardiac digital subtraction angiography (DSA), with an interesting table comparing and contrasting conventional angiography with both intraveneous and intraarterial DSA. The eighth chapter on pediatric imaging fits a world of experience. Chapter 9 is an update on contrast media, while the next chapter is on barium infusion examination of the small intestine. The final three chapters are concerned with the present state of angioplasty, interventional radiology in the urinary tract

  19. Real-Time Implementation of Medical Ultrasound Strain Imaging System

    Jeong, Mok Kun; Kwon, Sung Jae; Bae, Moo Ho

    2008-01-01

    Strain imaging in a medical ultrasound imaging system can differentiate the cancer or tumor in a lesion that is stiffer than the surrounding tissue. In this paper, a strain imaging technique using quasistatic compression is implemented that estimates the displacement between pre- and postcompression ultrasound echoes and obtains strain by differentiating it in the spatial direction. Displacements are computed from the phase difference of complex baseband signals obtained using their autocorrelation, and errors associated with converting the phase difference into time or distance are compensated for by taking into the center frequency variation. Also, to reduce the effect of operator's hand motion, the displacements of all scanlines are normalized with the result that satisfactory strain image quality has been obtained. These techniques have been incorporated into implementing a medical ultrasound strain imaging system that operates in real time.

  20. Medical Image Visual Appearance Improvement Using Bihistogram Bezier Curve Contrast Enhancement: Data from the Osteoarthritis Initiative

    Hong-Seng Gan

    2014-01-01

    Full Text Available Well-defined image can assist user to identify region of interest during segmentation. However, complex medical image is usually characterized by poor tissue contrast and low background luminance. The contrast improvement can lift image visual quality, but the fundamental contrast enhancement methods often overlook the sudden jump problem. In this work, the proposed bihistogram Bezier curve contrast enhancement introduces the concept of “adequate contrast enhancement” to overcome sudden jump problem in knee magnetic resonance image. Since every image produces its own intensity distribution, the adequate contrast enhancement checks on the image’s maximum intensity distortion and uses intensity discrepancy reduction to generate Bezier transform curve. The proposed method improves tissue contrast and preserves pertinent knee features without compromising natural image appearance. Besides, statistical results from Fisher’s Least Significant Difference test and the Duncan test have consistently indicated that the proposed method outperforms fundamental contrast enhancement methods to exalt image visual quality. As the study is limited to relatively small image database, future works will include a larger dataset with osteoarthritic images to assess the clinical effectiveness of the proposed method to facilitate the image inspection.

  1. Adaptable pattern recognition system for discriminating Melanocytic Nevi from Malignant Melanomas using plain photography images from different image databases.

    Kostopoulos, Spiros A; Asvestas, Pantelis A; Kalatzis, Ioannis K; Sakellaropoulos, George C; Sakkis, Theofilos H; Cavouras, Dionisis A; Glotsos, Dimitris T

    2017-09-01

    The aim of this study was to propose features that evaluate pictorial differences between melanocytic nevus (mole) and melanoma lesions by computer-based analysis of plain photography images and to design a cross-platform, tunable, decision support system to discriminate with high accuracy moles from melanomas in different publicly available image databases. Digital plain photography images of verified mole and melanoma lesions were downloaded from (i) Edinburgh University Hospital, UK, (Dermofit, 330moles/70 melanomas, under signed agreement), from 5 different centers (Multicenter, 63moles/25 melanomas, publicly available), and from the Groningen University, Netherlands (Groningen, 100moles/70 melanomas, publicly available). Images were processed for outlining the lesion-border and isolating the lesion from the surrounding background. Fourteen features were generated from each lesion evaluating texture (4), structure (5), shape (4) and color (1). Features were subjected to statistical analysis for determining differences in pictorial properties between moles and melanomas. The Probabilistic Neural Network (PNN) classifier, the exhaustive search features selection, the leave-one-out (LOO), and the external cross-validation (ECV) methods were used to design the PR-system for discriminating between moles and melanomas. Statistical analysis revealed that melanomas as compared to moles were of lower intensity, of less homogenous surface, had more dark pixels with intensities spanning larger spectra of gray-values, contained more objects of different sizes and gray-levels, had more asymmetrical shapes and irregular outlines, had abrupt intensity transitions from lesion to background tissue, and had more distinct colors. The PR-system designed by the Dermofit images scored on the Dermofit images, using the ECV, 94.1%, 82.9%, 96.5% for overall accuracy, sensitivity, specificity, on the Multicenter Images 92.0%, 88%, 93.7% and on the Groningen Images 76.2%, 73.9%, 77

  2. Medical image of the week: sleep bruxism

    Bartell J

    2015-03-01

    Full Text Available No abstract available. Article truncated at 150 words. A 42 year-old man with a past medical history of insomnia, post-traumatic stress disorder, depression and both migraine and tension headaches was referred for an overnight sleep study. He had presented to the sleep clinic with symptoms of obstructive sleep apnea. Medications included sumatriptan, amitryptiline, sertraline, and trazodone. His sleep study showed: sleep efficiency of 58.2%, apnea-hypopnea index of 33 events per hour, and arousal index of 14.5/hr. Periodic limb movement index was 29.2/hr. The time spent in the sleep stages included N1 (3.6%, N2 (72.5%, N3 (12.9%, and REM (10.9%. Figure 1 is representative of the several brief waveforms seen on his EEG and chin EMG. Sleep bruxism (SB is a type of sleep-related movement disorder that is characterized by involuntary masticatory muscle contraction resulting in grinding and clenching of the teeth and typically associated with arousals from sleep (1,2. The American academy of sleep medicine (AASM criteria for ...

  3. The library without walls: images, medical dictionaries, atlases, medical encyclopedias free on web.

    Giglia, E

    2008-09-01

    The aim of this article was to present the ''reference room'' of the Internet, a real library without walls. The reader will find medical encyclopedias, dictionaries, atlases, e-books, images, and will also learn something useful about the use and reuse of images in a text and in a web site, according to the copyright law.

  4. The Handbook of Medical Image Perception and Techniques

    Samei, Ehsan; Krupinski, Elizabeth

    2014-07-01

    1. Medical image perception Ehsan Samei and Elizabeth Krupinski; Part I. Historical Reflections and Theoretical Foundations: 2. A short history of image perception in medical radiology Harold Kundel and Calvin Nodine; 3. Spatial vision research without noise Arthur Burgess; 4. Signal detection theory, a brief history Arthur Burgess; 5. Signal detection in radiology Arthur Burgess; 6. Lessons from dinners with the giants of modern image science Robert Wagner; Part II. Science of Image Perception: 7. Perceptual factors in reading medical images Elizabeth Krupinski; 8. Cognitive factors in reading medical images David Manning; 9. Satisfaction of search in traditional radiographic imaging Kevin Berbaum, Edmund Franken, Robert Caldwell and Kevin Schartz; 10. The role of expertise in radiologic image interpretation Calvin Nodine and Claudia Mello-Thoms; 11. A primer of image quality and its perceptual relevance Robert Saunders and Ehsan Samei; 12. Beyond the limitations of human vision Maria Petrou; Part III. Perception Metrology: 13. Logistical issues in designing perception experiments Ehsan Samei and Xiang Li; 14. ROC analysis: basic concepts and practical applications Georgia Tourassi; 15. Multi-reader ROC Steve Hillis; 16. Recent developments in FROC methodology Dev Chakraborty; 17. Observer models as a surrogate to perception experiments Craig Abbey and Miguel Eckstein; 18. Implementation of observer models Matthew Kupinski; Part IV. Decision Support and Computer Aided Detection: 19. CAD: an image perception perspective Maryellen Giger and Weijie Chen; 20. Common designs of CAD studies Yulei Jiang; 21. Perceptual effect of CAD in reading chest images Matthew Freedman and Teresa Osicka; 22. Perceptual issues in mammography and CAD Michael Ulissey; 23. How perceptual factors affect the use and accuracy of CAD for interpretation of CT images Ronald Summers; 24. CAD: risks and benefits for radiologists' decisions Eugenio Alberdi, Andrey Povyakalo, Lorenzo Strigini and

  5. Dictionary Pruning with Visual Word Significance for Medical Image Retrieval.

    Zhang, Fan; Song, Yang; Cai, Weidong; Hauptmann, Alexander G; Liu, Sidong; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Feng, David Dagan; Chen, Mei

    2016-02-12

    Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis and treatment but it can be problematic given the small visual variations between anatomical structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify discriminative characteristics between different medical images with Pruned Dictionary based on Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two main components. First, we calculate a topic-word significance value for each visual word given a certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are learnt, based on the relationship between the images and words, and are employed to bridge the gap between low-level visual features and high-level semantics. These latent topics describe the images and words semantically and can thus facilitate more meaningful comparisons between the words. Second, we compute an overall-word significance value to evaluate the significance of a visual word within the entire dictionary. We designed an iterative ranking method to measure overall-word significance by considering the relationship between all latent topics and words. The words with higher values are considered meaningful with more significant discriminative power in differentiating medical images. We evaluated our method on two public medical imaging datasets and it showed improved retrieval accuracy and efficiency.

  6. Principles of medical imaging with emphasis on tomography

    Kouris, K [Institute of Nuclear Medicine, University College, London Medical School, Mortimer Street, London W1N 8AA (United Kingdom)

    1994-12-31

    Medical imaging with ionizing and non-ionizing radiations belongs to the class of problems known as indirect sensing. This article is concerned with imaging methods known as image reconstruction from projections or computerized tomography. A brief comparative study of the theory is presented. Depending on the nature and modes of propagation of the employed radiation, methods are discussed either under transmission tomography (with gamma rays and X rays) or emission tomography (with gamma rays and positrons). Magnetic resonance Imaging (MRI) is described as resonant absorption and re-emission of radiofrequency energy. (author). 6 refs, 1 fig.

  7. SCEGRAM: An image database for semantic and syntactic inconsistencies in scenes.

    Öhlschläger, Sabine; Võ, Melissa Le-Hoa

    2017-10-01

    Our visual environment is not random, but follows compositional rules according to what objects are usually found where. Despite the growing interest in how such semantic and syntactic rules - a scene grammar - enable effective attentional guidance and object perception, no common image database containing highly-controlled object-scene modifications has been publically available. Such a database is essential in minimizing the risk that low-level features drive high-level effects of interest, which is being discussed as possible source of controversial study results. To generate the first database of this kind - SCEGRAM - we took photographs of 62 real-world indoor scenes in six consistency conditions that contain semantic and syntactic (both mild and extreme) violations as well as their combinations. Importantly, always two scenes were paired, so that an object was semantically consistent in one scene (e.g., ketchup in kitchen) and inconsistent in the other (e.g., ketchup in bathroom). Low-level salience did not differ between object-scene conditions and was generally moderate. Additionally, SCEGRAM contains consistency ratings for every object-scene condition, as well as object-absent scenes and object-only images. Finally, a cross-validation using eye-movements replicated previous results of longer dwell times for both semantic and syntactic inconsistencies compared to consistent controls. In sum, the SCEGRAM image database is the first to contain well-controlled semantic and syntactic object-scene inconsistencies that can be used in a broad range of cognitive paradigms (e.g., verbal and pictorial priming, change detection, object identification, etc.) including paradigms addressing developmental aspects of scene grammar. SCEGRAM can be retrieved for research purposes from http://www.scenegrammarlab.com/research/scegram-database/ .

  8. Web tools for effective retrieval, visualization, and evaluation of cardiology medical images and records

    Masseroli, Marco; Pinciroli, Francesco

    2000-12-01

    To provide easy retrieval, integration and evaluation of multimodal cardiology images and data in a web browser environment, distributed application technologies and java programming were used to implement a client-server architecture based on software agents. The server side manages secure connections and queries to heterogeneous remote databases and file systems containing patient personal and clinical data. The client side is a Java applet running in a web browser and providing a friendly medical user interface to perform queries on patient and medical test dat and integrate and visualize properly the various query results. A set of tools based on Java Advanced Imaging API enables to process and analyze the retrieved cardiology images, and quantify their features in different regions of interest. The platform-independence Java technology makes the developed prototype easy to be managed in a centralized form and provided in each site where an intranet or internet connection can be located. Giving the healthcare providers effective tools for querying, visualizing and evaluating comprehensively cardiology medical images and records in all locations where they can need them- i.e. emergency, operating theaters, ward, or even outpatient clinics- the developed prototype represents an important aid in providing more efficient diagnoses and medical treatments.

  9. A broadband multimedia collaborative system for advanced teleradiology and medical imaging diagnosis.

    Gómez, E J; del Pozo, F; Ortiz, E J; Malpica, N; Rahms, H

    1998-09-01

    This paper presents a new telemedicine system currently in routine clinical usage, developed within the European Union (EU) ACTS BONAPARTE project (1). The telemedicine system is developed on an asynchronous transfer mode (ATM) multimedia hardware/software platform comprising the following set of telemedicine services: synchronous cooperative work, high-quality video conference, multimedia mail, medical image digitizing, processing, storing and printing, and local and remote transparent database access. The medical information handled by the platform conforms to the Digital Imaging and Communications in Medicine (DICOM) 3.0 medical imaging standard. The telemedicine system has been installed for clinical routines in three Spanish hospitals since November 1997 and has been used in an average of one/two clinical sessions per week. At each clinical session, a usability and clinical evaluation of the system was carried out. Evaluation is carried out through direct observation of interactions and questionnaire-based subjective data. The usability evaluation methodology and the results of the system usability study are also presented in this article. The experience gained from the design, development, and evaluation of the telemedicine system is providing an indepth knowledge of the benefits and difficulties involved in the installation and clinical usage of this type of high-usability and advanced multimedia telemedicine system in the field of teleradiology and collaborative medical imaging diagnosis.

  10. The Application of Use Case Modeling in Designing Medical Imaging Information Systems

    Safdari, Reza; Farzi, Jebraeil; Ghazisaeidi, Marjan; Mirzaee, Mahboobeh; Goodini, Azadeh

    2013-01-01

    Introduction. The essay at hand is aimed at examining the application of use case modeling in analyzing and designing information systems to support Medical Imaging services. Methods. The application of use case modeling in analyzing and designing health information systems was examined using electronic databases (Pubmed, Google scholar) resources and the characteristics of the modeling system and its effect on the development and design of the health information systems were analyzed. Results. Analyzing the subject indicated that Provident modeling of health information systems should provide for quick access to many health data resources in a way that patients' data can be used in order to expand distant services and comprehensive Medical Imaging advices. Also these experiences show that progress in the infrastructure development stages through gradual and repeated evolution process of user requirements is stronger and this can lead to a decline in the cycle of requirements engineering process in the design of Medical Imaging information systems. Conclusion. Use case modeling approach can be effective in directing the problems of health and Medical Imaging information systems towards understanding, focusing on the start and analysis, better planning, repetition, and control

  11. A similarity-based data warehousing environment for medical images.

    Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar

    2015-11-01

    A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology

    Doi, Kunio

    2006-01-01

    Over the last 50 years, diagnostic imaging has grown from a state of infancy to a high level of maturity. Many new imaging modalities have been developed. However, modern medical imaging includes not only image production but also image processing, computer-aided diagnosis (CAD), image recording and storage, and image transmission, most of which are included in a picture archiving and communication system (PACS). The content of this paper includes a short review of research and development in medical imaging science and technology, which covers (a) diagnostic imaging in the 1950s, (b) the importance of image quality and diagnostic performance, (c) MTF, Wiener spectrum, NEQ and DQE, (d) ROC analysis, (e) analogue imaging systems, (f) digital imaging systems, (g) image processing, (h) computer-aided diagnosis, (i) PACS, (j) 3D imaging and (k) future directions. Although some of the modalities are already very sophisticated, further improvements will be made in image quality for MRI, ultrasound and molecular imaging. The infrastructure of PACS is likely to be improved further in terms of its reliability, speed and capacity. However, CAD is currently still in its infancy, and is likely to be a subject of research for a long time. (review)

  13. Analysis of the journal articles of medical imaging by bibliometrics

    Li Mei; Xia Xu; Zhang Jiemin; Chen Mingfeng

    1998-01-01

    Purpose: To evaluate the development status, character and trends of medical imaging. Methods: The articles published on >, > and > from 1983 to 1996 were analyzed by bibliometrics and compared with the articles published on > and > of USA. Results: total numbers of the published articles were increasing gradually in these years. But, the rate of increase was not equal among different research fields. For example, the number of research articles of CT, MR and Interventional Radiography were increasing more quickly than that of X ray. It was also found that the development status and trends of medical imaging were different between China and America. Most research articles published in the journals of America in 1996 were about MR, whereas CT ranked first in china in the same year. Conclusion: Medical imaging develops very quickly in recent years. The emphasis of research and development has switched over from traditional X ray to new fields or techniques, such as Ct, MR and interventional radiology

  14. Challenges for data storage in medical imaging research.

    Langer, Steve G

    2011-04-01

    Researchers in medical imaging have multiple challenges for storing, indexing, maintaining viability, and sharing their data. Addressing all these concerns requires a constellation of tools, but not all of them need to be local to the site. In particular, the data storage challenges faced by researchers can begin to require professional information technology skills. With limited human resources and funds, the medical imaging researcher may be better served with an outsourcing strategy for some management aspects. This paper outlines an approach to manage the main objectives faced by medical imaging scientists whose work includes processing and data mining on non-standard file formats, and relating those files to the their DICOM standard descendents. The capacity of the approach scales as the researcher's need grows by leveraging the on-demand provisioning ability of cloud computing.

  15. Creating New Medical Ontologies for Image Annotation A Case Study

    Stanescu, Liana; Brezovan, Marius; Mihai, Cristian Gabriel

    2012-01-01

    Creating New Medical Ontologies for Image Annotation focuses on the problem of the medical images automatic annotation process, which is solved in an original manner by the authors. All the steps of this process are described in detail with algorithms, experiments and results. The original algorithms proposed by authors are compared with other efficient similar algorithms. In addition, the authors treat the problem of creating ontologies in an automatic way, starting from Medical Subject Headings (MESH). They have presented some efficient and relevant annotation models and also the basics of the annotation model used by the proposed system: Cross Media Relevance Models. Based on a text query the system will retrieve the images that contain objects described by the keywords.

  16. Medical image of the week: bronchogenic cysts

    Sears SP

    2018-03-01

    Full Text Available Bronchogenic cysts are congenital foregut malformations forming from abnormal budding of the bronchial tree between the 4th and 6th weeks of embryonic development. While identified primarily in children, the cysts are often asymptomatic and may not be identified until adulthood. Most (70% are within the middle mediastinum and contain fluid or proteinaceous material. When involving the parenchyma, they generally do not communicate with the tracheobronchial tree. Communication with the airways may develop following infection, procedures, or trauma and may result in lesions with an air-fluid level (Figures 1 and 2. Bronchogenic cysts may be complicated by infection, bleeding, fistula formation, or most concerning, by malignant transformation. Unless the cyst contains air, it may manifest as a solitary pulmonary nodule on plain radiographs. Computed tomography or T2-weighted MRI images are used to confirm the diagnosis.

  17. Three dimensional visualization of medical images

    Suto, Yasuzo

    1992-01-01

    Three dimensional visualization is a stereoscopic technique that allows the diagnosis and treatment of complicated anatomy site of the bone and organ. In this article, the current status and technical application of three dimensional visualization are introduced with special reference to X-ray CT and MRI. The surface display technique is the most common for three dimensional visualization, consisting of geometric model, voxel element, and stereographic composition techniques. Recent attention has been paid to display method of the content of the subject called as volume rendering, whereby information on the living body is provided accurately. The application of three dimensional visualization is described in terms of diagnostic imaging and surgical simulation. (N.K.)

  18. Medical image of the week: azygous lobe

    Bhupinder Natt

    2013-12-01

    Full Text Available No abstract available. Article truncated at 150 words. A 59 year old man underwent chest radiography for evaluation of fever and cough. Imaging showed an accessory azygous lobe. An azygos lobe is found in 1% of anatomic specimens and forms when the right posterior cardinal vein, one of the precursors of the azygos vein, fails to migrate over the apex of the lung (1. Instead, the vein penetrates the lung carrying along pleural layers that entrap a portion of the right upper lobe. The vein appears to run within the lung, but is actually surrounded by both parietal and visceral pleura. The azygos fissure therefore consists of four layers of pleura, two parietal layers and two visceral layers, which wrap around the vein giving the appearance of a tadpole. Apart from an interesting incidental radiological finding, it is of limited clinical importance except that its presence should be recognized during thoracoscopic procedures. This patient was found to have …

  19. Trends in the Use of Medical Imaging to Diagnose Appendicitis at an Academic Medical Center.

    Repplinger, Michael D; Weber, Andrew C; Pickhardt, Perry J; Rajamanickam, Victoria P; Svenson, James E; Ehlenbach, William J; Westergaard, Ryan P; Reeder, Scott B; Jacobs, Elizabeth A

    2016-09-01

    To quantify the trends in imaging use for the diagnosis of appendicitis. A retrospective study covering a 22-year period was conducted at an academic medical center. Patients were identified by International Classification of Diseases-9 diagnosis code for appendicitis. Medical record data extraction of these patients included imaging test used (ultrasound, CT, or MRI), gender, age, and body mass index (BMI). The proportion of patients undergoing each scan was calculated by year. Regression analysis was performed to determine whether age, gender, or BMI affected imaging choice. The study included a total of 2,108 patients, including 967 (43.5%) females and 599 (27%) children (imaging used for the diagnosis of appendicitis decreased over time (P medical center, CT use increased more than 20-fold. However, no statistically significant trend was found for increased use of ultrasound or MRI. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  20. Diagnostic Medical Imaging in Pediatric Patients and Subsequent Cancer Risk.

    Mulvihill, David J; Jhawar, Sachin; Kostis, John B; Goyal, Sharad

    2017-11-01

    The use of diagnostic medical imaging is becoming increasingly more commonplace in the pediatric setting. However, many medical imaging modalities expose pediatric patients to ionizing radiation, which has been shown to increase the risk of cancer development in later life. This review article provides a comprehensive overview of the available data regarding the risk of cancer development following exposure to ionizing radiation from diagnostic medical imaging. Attention is paid to modalities such as computed tomography scans and fluoroscopic procedures that can expose children to radiation doses orders of magnitude higher than standard diagnostic x-rays. Ongoing studies that seek to more precisely determine the relationship of diagnostic medical radiation in children and subsequent cancer development are discussed, as well as modern strategies to better quantify this risk. Finally, as cardiovascular imaging and intervention contribute substantially to medical radiation exposure, we discuss strategies to enhance radiation safety in these areas. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  1. Medical image of the week: fungus ball

    Rosen S

    2015-04-01

    Full Text Available No abstract available. Article truncated at 150 words. A 69 year-old Asian woman living in Arizona with a past medical history of nephrotic syndrome on high-dose steroids had worsening pulmonary symptoms. A computed tomography (CT of the chest (Figure 1 showed a 4.7 cm thin walled cavitary lesion in the right middle lobe compatible with mycetoma. She underwent thoracotomy for mycetoma resection. Surgical pathology confirmed an epithelial-lined cavity containing dense mycelia (Figure 2. Given the patient lived in an endemic area; the cavity was thought to be likely due to coccidioidomycosis. However, the mycetoma was of unclear etiology. No spherules were noted on GMS stain and tissue culture was negative. While of unclear clinical significance which fungus colonizes a pre-existing cavity, a Coccidioides PCR was performed and no Coccidioides genes were amplified making a Coccidioides mycetoma very unlikely. Pulmonary mycetoma or “fungus ball” consists of dense fungal elements and amorphous cellular material within a pre-existing pulmonary cavity. Classically ...

  2. Medical image of the week: eosphageal perforation

    Bilal J

    2015-04-01

    Full Text Available No abstract available. Article truncated after 150 words. A 74 year old man with a past medical history of esophageal strictures status post dilatation, coronary artery disease status post CABG, and atrial fibrillation presented to hospital with complaints of severe chest pain that began after the consumption of tortilla chips one hour prior to presentation. Electrocardiogram and cardiac enzymes were not consistent with acute coronary syndrome. Chest X-ray was consistent with a widened mediastinal silhouette. Contrast esophogram was negative for extra luminal extravasation. CT scan of the chest with oral contrast demonstrated thickening of the mid-thoracic esophagus with an extra-luminal focus of gas in the mediastinum along with fluid along the inferior aspect of the esophagus (Figures 1 and 2. These findings were concerning for esophageal perforation. The patient was taken to the operating room for endoscopy which showed micro perforation in mid-esophagus. Esophageal perforation remains a highly morbid condition. Mortality rates are based predominantly on time of ...

  3. Medical image of the week: lung entrapment

    Natt B

    2016-07-01

    Full Text Available No abstract available. Article truncated at 150 words. A 74-year-old woman with a history of breast cancer 10 years ago treated with lumpectomy and radiation presented for evaluation of shortness of breath. She was diagnosed with left sided pleural effusion which was recurrent requiring multiple thoracenteses. There was increased pleural fludeoxyglucose (FDG uptake on PET-CT indicative of recurrent metastatic disease. She underwent a medical pleuroscopy since the pleural effusion analysis did not reveal malignant cells although the suspicion was high and tunneled pleural catheter placement as adjuvant chemotherapy was initiated. Figure 1 shows a pleurscopic view of the collapsed left lung and the effusion in the left hemi thorax. Figure 2 shows extensive involvement of the visceral pleura with metastatic disease preventing complete lung inflation. Figure 3 shows persistent pneumothorax-ex-vacuo despite pleural catheter placement confirming the diagnosis of entrapment. Incomplete lung inflation can be due to pleural disease, endobronchial lesions or chronic telecasts. Lung entrapment and trapped lung ...

  4. Medical image of the week: phytobezoar

    Hansra A

    2016-01-01

    Full Text Available No abstract available. Article truncated after 150 words. A 10-year-old boy with a history of non-verbal autism presented to the hospital with symptoms of chronic malnourishment. He was recently started on a specific carbohydrate rich diet, as outlined by a popular mainstream nutrition book, with hopes of improvement in adverse behavior. Prior to the start of this new diet, he consistently demonstrated an increased craving for food and was described to have an insatiable appetite. Though he was relatively non-verbal at baseline, he intermittently voiced his hunger and associated abdominal pain. A supine abdominal radiograph obtained immediately after admission showed a moderate gastric distension with a significant stool burden. Follow-up radiographs of the abdomen were obtained after two days of medical attempts to clear out the gastrointestinal system. The supine frontal radiograph at this time showed a massively distended stomach with a mottled appearance and considerable mass effect on the transverse colon (Figure 1. The interpreting pediatric radiologist ...

  5. Medical image of the week: headcheese sign

    Adial A

    2018-04-01

    Full Text Available No abstract available. Article truncated at 150 words. A 95-year-old woman with a past medical history of breast cancer and mastectomy presented with fevers, cough productive of sputum and progressive dyspnea for 2 weeks. She denies any recent travel or sick contacts but has bird at home since last 10 years. She was afebrile but tachypneic with respiratory rate of 25 and sPO2 of 86% on room air. Her initial chest examination reveals coarse rhonchi in both lungs. Labs were significant for a sodium of 118 mEq/L, leukocytosis to 18,000 cells/mcL without peripheral eosinophilia. Arterial blood gas showed pO2 of 55 mm Hg, pCO2 of 48 mm Hg and pH of 7.44. An initial chest X-ray was positive for extensive bilateral pulmonary infiltrates predominantly in the mid and lower lungs with areas of airspace consolidation. Her urine Streptococcus pneumoniae antigen was negative as well as rapid influenza and a respiratory syncytial virus panel. The high resolution thoracic CT …

  6. Medical image of the week: splenic infarction

    Casey DJ

    2016-08-01

    Full Text Available No abstract available. Article truncated after 150 words. A 52-year-old Hispanic woman with a past medical history significant for Type 1 Diabetes Mellitus, hypertension, and rheumatoid arthritis presented with left upper quadrant pain for one day. Her review of systems was positive for bloating, severe epigastric and left upper quadrant tenderness that radiated to the back and left shoulder, nausea with non-bilious emesis, and diarrhea for one day prior to admission. Physical exam only revealed epigastric and left upper quadrant tenderness to light palpation without rebound or guarding. Abdominal computed tomography of the abdomen demonstrated a new acute or subacute splenic infarct with no clear evidence of an embolic source in the abdomen or pelvis (Figure 1. Echocardiogram with bubble study and contrast did not demonstrate valve abnormalities, cardiac mass, vegetation, valve or wall motion abnormalities and no evidence of patent foramen ovale. Splenic infarction should be suspected when patients present with sharp, acute left upper quadrant pain ...

  7. Medical image of the week: arachnoid cyst

    Erisman M

    2016-10-01

    Full Text Available No abstract available. Article truncated at 150 words. A 40 year-old woman with adult attention deficit hyperactive and bipolar 1 disorder presents with an altered mental status. Per her family, she had been non-verbal, with reduced oral intake, confusion and sedated for the past three days. Per her husband, she had episodes of diarrhea and abdominal discomfort. She was on multiple medications including ramelteon 8mg nightly, atomoxetine 40mg daily, hydroxyzine 25mg twice daily, bupropion 75mg twice daily and risperidone 2mg daily with recent addition of lithium ER 1200mg/daily started one month prior to presentation with unknown adherence. Upon arrival, vital signs were within normal limits. Physical exam revealed an overweight Caucasian woman with a significant coarse tremor visible at rest, restlessness and diaphoresis. Neurological examination was limited by patient hesitancy, however, it did not demonstrate focal deficits except for altered consciousness with Glasgow Coma Scale of 10. Notable laboratory findings were Na+ 134 mEq/L, K+ 3.2 mEq/L, and ...

  8. Spatio-Temporal Encoding in Medical Ultrasound Imaging

    Gran, Fredrik

    2005-01-01

    In this dissertation two methods for spatio-temporal encoding in medical ultrasound imaging are investigated. The first technique is based on a frequency division approach. Here, the available spectrum of the transducer is divided into a set of narrow bands. A waveform is designed for each band...... the signal to noise ratio and simultaneously the penetration depth so that the medical doctor can image deeper lying structures. The method is tested both experimentally and in simulation and has also evaluated for the purpose of blood flow estimation. The work presented is based on four papers which...

  9. Secure public cloud platform for medical images sharing.

    Pan, Wei; Coatrieux, Gouenou; Bouslimi, Dalel; Prigent, Nicolas

    2015-01-01

    Cloud computing promises medical imaging services offering large storage and computing capabilities for limited costs. In this data outsourcing framework, one of the greatest issues to deal with is data security. To do so, we propose to secure a public cloud platform devoted to medical image sharing by defining and deploying a security policy so as to control various security mechanisms. This policy stands on a risk assessment we conducted so as to identify security objectives with a special interest for digital content protection. These objectives are addressed by means of different security mechanisms like access and usage control policy, partial-encryption and watermarking.

  10. Image Format Conversion to DICOM and Lookup Table Conversion to Presentation Value of the Japanese Society of Radiological Technology (JSRT) Standard Digital Image Database.

    Yanagita, Satoshi; Imahana, Masato; Suwa, Kazuaki; Sugimura, Hitomi; Nishiki, Masayuki

    2016-01-01

    Japanese Society of Radiological Technology (JSRT) standard digital image database contains many useful cases of chest X-ray images, and has been used in many state-of-the-art researches. However, the pixel values of all the images are simply digitized as relative density values by utilizing a scanned film digitizer. As a result, the pixel values are completely different from the standardized display system input value of digital imaging and communications in medicine (DICOM), called presentation value (P-value), which can maintain a visual consistency when observing images using different display luminance. Therefore, we converted all the images from JSRT standard digital image database to DICOM format followed by the conversion of the pixel values to P-value using an original program developed by ourselves. Consequently, JSRT standard digital image database has been modified so that the visual consistency of images is maintained among different luminance displays.

  11. Real-time image mosaicing for medical applications.

    Loewke, Kevin E; Camarillo, David B; Jobst, Christopher A; Salisbury, J Kenneth

    2007-01-01

    In this paper we describe the development of a robotically-assisted image mosaicing system for medical applications. The processing occurs in real-time due to a fast initial image alignment provided by robotic position sensing. Near-field imaging, defined by relatively large camera motion, requires translations as well as pan and tilt orientations to be measured. To capture these measurements we use 5-d.o.f. sensing along with a hand-eye calibration to account for sensor offset. This sensor-based approach speeds up the mosaicing, eliminates cumulative errors, and readily handles arbitrary camera motions. Our results have produced visually satisfactory mosaics on a dental model but can be extended to other medical images.

  12. A Total Information Management System For All Medical Images

    Ouimette, Donald; Nudelman, Sol; Ramsby, Gale; Spackman, Thomas

    1985-09-01

    A PACS has been designed for the University of Connecticut Health Center to serve all departments acquiring images for diagnosis, surgery and therapy. It incorporates a multiple community communications architecture to provide complete information management for medical images, medical data and departmental administrative matter. The system is modular and expandable. It permits an initial installation for radiology and subsequent expansion to include other departments at the Health Center, beginning with internal medicine, surgery, ophthalmology and dentistry. The design permits sufficient expansion to offer the potential for accepting the additional burden of a hospital information system. Primary parameters that led to this system design were based on the anticipation that departments in time could achieve generating 60 to 90% of their images suited to insertion in a PACS, that a high network throughput for large block image transfers would be essen-tial and that total system reliability was fundamental to success.

  13. Automatic Image Alignment and Stitching of Medical Images with Seam Blending

    Abhinav Kumar; Raja Sekhar Bandaru; B Madhusudan Rao; Saket Kulkarni; Nilesh Ghatpande

    2010-01-01

    This paper proposes an algorithm which automatically aligns and stitches the component medical images (fluoroscopic) with varying degrees of overlap into a single composite image. The alignment method is based on similarity measure between the component images. As applied here the technique is intensity based rather than feature based. It works well in domains where feature based methods have difficulty, yet more robust than traditional correlation. Component images are stitched together usin...

  14. elastix: a toolbox for intensity-based medical image registration.

    Klein, Stefan; Staring, Marius; Murphy, Keelin; Viergever, Max A; Pluim, Josien P W

    2010-01-01

    Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of population studies). A large number of methods for image registration are described in the literature. Unfortunately, there is not one method that works for all applications. We have therefore developed elastix, a publicly available computer program for intensity-based medical image registration. The software consists of a collection of algorithms that are commonly used to solve medical image registration problems. The modular design of elastix allows the user to quickly configure, test, and compare different registration methods for a specific application. The command-line interface enables automated processing of large numbers of data sets, by means of scripting. The usage of elastix for comparing different registration methods is illustrated with three example experiments, in which individual components of the registration method are varied.

  15. Imaging requirements for medical applications of additive manufacturing.

    Huotilainen, Eero; Paloheimo, Markku; Salmi, Mika; Paloheimo, Kaija-Stiina; Björkstrand, Roy; Tuomi, Jukka; Markkola, Antti; Mäkitie, Antti

    2014-02-01

    Additive manufacturing (AM), formerly known as rapid prototyping, is steadily shifting its focus from industrial prototyping to medical applications as AM processes, bioadaptive materials, and medical imaging technologies develop, and the benefits of the techniques gain wider knowledge among clinicians. This article gives an overview of the main requirements for medical imaging affected by needs of AM, as well as provides a brief literature review from existing clinical cases concentrating especially on the kind of radiology they required. As an example application, a pair of CT images of the facial skull base was turned into 3D models in order to illustrate the significance of suitable imaging parameters. Additionally, the model was printed into a preoperative medical model with a popular AM device. Successful clinical cases of AM are recognized to rely heavily on efficient collaboration between various disciplines - notably operating surgeons, radiologists, and engineers. The single main requirement separating tangible model creation from traditional imaging objectives such as diagnostics and preoperative planning is the increased need for anatomical accuracy in all three spatial dimensions, but depending on the application, other specific requirements may be present as well. This article essentially intends to narrow the potential communication gap between radiologists and engineers who work with projects involving AM by showcasing the overlap between the two disciplines.

  16. Establishing advanced practice for medical imaging in New Zealand

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-01-01

    Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ

  17. Establishing advanced practice for medical imaging in New Zealand

    Yielder, Jill, E-mail: j.yielder@auckland.ac.nz [University of Auckland, Auckland (New Zealand); Young, Adrienne; Park, Shelley; Coleman, Karen [University of Otago, Wellington (New Zealand); University of Auckland, Auckland (New Zealand)

    2014-02-15

    Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ.

  18. Medical image of the week: thoracic splenosis

    Gardner G

    2018-05-01

    Full Text Available No abstract available. Article truncated after 150 words. A 38-year-old man with a history of a motor vehicle collision about 20 years prior to presentation which resulted in multiple left-sided rib fractures, a left-sided pneumothorax requiring chest tube placement, and a high-grade splenic laceration necessitating an emergent splenectomy that presents to outpatient pulmonary clinic for evaluation of pulmonary nodules at the request of his primary care physician. He is asymptomatic. He has a 20-pack-year of smoking history and currently smokes 6 cigarettes per day. He denies any significant exposures or recent infections. He has a family history significant for heart disease and depression, but no history of malignancy. His vital signs and physical examination are normal. He had a CT of the chest performed with representative images from the study shown in Figure 1. A nuclear medicine scan was subsequently requested which demonstrated uptake of the technetium 99m-labeled sulfur colloid in the soft tissue nodules adjacent to left …

  19. Medical Imaging for Understanding Sleep Regulation

    Wong, Kenneth

    2011-10-01

    Sleep is essential for the health of the nervous system. Lack of sleep has a profound negative effect on cognitive ability and task performance. During sustained military operations, soldiers often suffer from decreased quality and quantity of sleep, increasing their susceptibility to neurological problems and limiting their ability to perform the challenging mental tasks that their missions require. In the civilian sector, inadequate sleep and overt sleep pathology are becoming more common, with many detrimental impacts. There is a strong need for new, in vivo studies of human brains during sleep, particularly the initial descent from wakefulness. Our research team is investigating sleep using a combination of magnetic resonance imaging (MRI), positron emission tomography (PET), and electroencephalography (EEG). High resolution MRI combined with PET enables localization of biochemical processes (e.g., metabolism) to anatomical structures. MRI methods can also be used to examine functional connectivity among brain regions. Neural networks are dynamically reordered during different sleep stages, reflecting the disconnect with the waking world and the essential yet unconscious brain activity that occurs during sleep.[4pt] In collaboration with Linda Larson-Prior, Washington University; Alpay Ozcan, Virginia Tech; Seong Mun, Virginia Tech; and Zang-Hee Cho, Gachon University.

  20. Simulation of scintillating fiber gamma ray detectors for medical imaging

    Chaney, R.C.; Fenyves, E.J.; Antich, P.P.

    1990-01-01

    This paper reports on plastic scintillating fibers which have been shown to be effective for high spatial and time resolution of gamma rays. They may be expected to significantly improve the resolution of current medical imaging systems such as PET and SPECT. Monte Carlo simulation of imaging systems using these detectors, provides a means to optimize their performance in this application, as well as demonstrate their resolution and efficiency. Monte Carlo results are presented for PET and SPECT systems constructed using these detectors

  1. Graphical User Interfaces for Volume Rendering Applications in Medical Imaging

    Lindfors, Lisa; Lindmark, Hanna

    2002-01-01

    Volume rendering applications are used in medical imaging in order to facilitate the analysis of three-dimensional image data. This study focuses on how to improve the usability of graphical user interfaces of these systems, by gathering user requirements. This is achieved by evaluations of existing systems, together with interviews and observations at clinics in Sweden that use volume rendering to some extent. The usability of the applications of today is not sufficient, according to the use...

  2. Relative accuracy and availability of an Irish National Database of dispensed medication as a source of medication history information: observational study and retrospective record analysis.

    Grimes, T

    2013-01-27

    WHAT IS KNOWN AND OBJECTIVE: The medication reconciliation process begins by identifying which medicines a patient used before presentation to hospital. This is time-consuming, labour intensive and may involve interruption of clinicians. We sought to identify the availability and accuracy of data held in a national dispensing database, relative to other sources of medication history information. METHODS: For patients admitted to two acute hospitals in Ireland, a Gold Standard Pre-Admission Medication List (GSPAML) was identified and corroborated with the patient or carer. The GSPAML was compared for accuracy and availability to PAMLs from other sources, including the Health Service Executive Primary Care Reimbursement Scheme (HSE-PCRS) dispensing database. RESULTS: Some 1111 medication were assessed for 97 patients, who were median age 74 years (range 18-92 years), median four co-morbidities (range 1-9), used median 10 medications (range 3-25) and half (52%) were male. The HSE-PCRS PAML was the most accurate source compared to lists provided by the general practitioner, community pharmacist or cited in previous hospital documentation: the list agreed for 74% of the medications the patients actually used, representing complete agreement for all medications in 17% of patients. It was equally contemporaneous to other sources, but was less reliable for male than female patients, those using increasing numbers of medications and those using one or more item that was not reimbursable by the HSE. WHAT IS NEW AND CONCLUSION: The HSE-PCRS database is a relatively accurate, available and contemporaneous source of medication history information and could support acute hospital medication reconciliation.

  3. 3D surface reconstruction using optical flow for medical imaging

    Weng, Nan; Yang, Yee-Hong; Pierson, R.

    1996-01-01

    The recovery of a 3D model from a sequence of 2D images is very useful in medical image analysis. Image sequences obtained from the relative motion between the object and the camera or the scanner contain more 3D information than a single image. Methods to visualize the computed tomograms can be divided into two approaches: the surface rendering approach and the volume rendering approach. A new surface rendering method using optical flow is proposed. Optical flow is the apparent motion in the image plane produced by the projection of the real 3D motion onto 2D image. In this paper, the object remains stationary while the scanner undergoes translational motion. The 3D motion of an object can be recovered from the optical flow field using additional constraints. By extracting the surface information from 3D motion, it is possible to get an accurate 3D model of the object. Both synthetic and real image sequences have been used to illustrate the feasibility of the proposed method. The experimental results suggest that the proposed method is suitable for the reconstruction of 3D models from ultrasound medical images as well as other computed tomograms

  4. Medical X-ray Image Hierarchical Classification Using a Merging and Splitting Scheme in Feature Space.

    Fesharaki, Nooshin Jafari; Pourghassem, Hossein

    2013-07-01

    Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In the first level of the proposed structure, to improve the classification performance, similar classes with regard to shape contents are grouped based on merging measures and shape features into the general overlapped classes. In the next levels of this structure, the overlapped classes split in smaller classes based on the classification performance of combination of shape and texture features or texture features only. Ultimately, in the last levels, this procedure is also continued forming all the classes, separately. Moreover, to optimize the feature vector in the proposed structure, we use orthogonal forward selection algorithm according to Mahalanobis class separability measure as a feature selection and reduction algorithm. In other words, according to the complexity and inter-class distance of each class, a sub-space of the feature space is selected in each level and then a supervised merging and splitting scheme is applied to form the hierarchical classification. The proposed structure is evaluated on a database consisting of 2158 medical X-ray images of 18 classes (IMAGECLEF 2005 database) and accuracy rate of 93.6% in the last level of the hierarchical structure for an 18-class classification problem is obtained.

  5. MedXViewer: an extensible web-enabled software package for medical imaging

    Looney, P. T.; Young, K. C.; Mackenzie, Alistair; Halling-Brown, Mark D.

    2014-03-01

    MedXViewer (Medical eXtensible Viewer) is an application designed to allow workstation-independent, PACS-less viewing and interaction with anonymised medical images (e.g. observer studies). The application was initially implemented for use in digital mammography and tomosynthesis but the flexible software design allows it to be easily extended to other imaging modalities. Regions of interest can be identified by a user and any associated information about a mark, an image or a study can be added. The questions and settings can be easily configured depending on the need of the research allowing both ROC and FROC studies to be performed. The extensible nature of the design allows for other functionality and hanging protocols to be available for each study. Panning, windowing, zooming and moving through slices are all available while modality-specific features can be easily enabled e.g. quadrant zooming in mammographic studies. MedXViewer can integrate with a web-based image database allowing results and images to be stored centrally. The software and images can be downloaded remotely from this centralised data-store. Alternatively, the software can run without a network connection where the images and results can be encrypted and stored locally on a machine or external drive. Due to the advanced workstation-style functionality, the simple deployment on heterogeneous systems over the internet without a requirement for administrative access and the ability to utilise a centralised database, MedXViewer has been used for running remote paper-less observer studies and is capable of providing a training infrastructure and co-ordinating remote collaborative viewing sessions (e.g. cancer reviews, interesting cases).

  6. Food-pics: an image database for experimental research on eating and appetite

    Jens eBlechert

    2014-06-01

    Full Text Available Our current environment is characterized by the omnipresence of food cues. The sight and smell of real foods, but also graphically depictions of appetizing foods, can guide our eating behavior, for example, by eliciting food craving and influencing food choice. The relevance of visual food cues on human information processing has been demonstrated by a growing body of studies employing food images across the disciplines of psychology, medicine, and neuroscience. However, currently used food image sets vary considerably across laboratories and image characteristics (contrast, brightness, etc. and food composition (calories, macronutrients, etc. are often unspecified. These factors might have contributed to some of the inconsistencies of this research. To remedy this, we developed food-pics, a picture database comprising 568 food images and 315 non-food images along with detailed meta-data. A total of N = 1988 individuals with large variance in age and weight from German speaking countries and North America provided normative ratings of valence, arousal, palatability, desire to eat, recognizability and visual complexity. Furthermore, data on macronutrients (g, energy density (kcal, and physical image characteristics (color composition, contrast, brightness, size, complexity are provided. The food-pics image data base is freely available under the creative commons license with the hope that the set will facilitate standardization and comparability across studies and advance experimental research on the determinants of eating behavior.

  7. Psychophysical studies of the performance of an image database retrieval system

    Papathomas, Thomas V.; Conway, Tiffany E.; Cox, Ingemar J.; Ghosn, Joumana; Miller, Matt L.; Minka, Thomas P.; Yianilos, Peter N.

    1998-07-01

    We describe psychophysical experiments conducted to study PicHunter, a content-based image retrieval (CBIR) system. Experiment 1 studies the importance of using (a) semantic information, (2) memory of earlier input and (3) relative, rather than absolute, judgements of image similarity. The target testing paradigm is used in which a user must search for an image identical to a target. We find that the best performance comes from a version of PicHunter that uses only semantic cues, with memory and relative similarity judgements. Second best is use of both pictorial and semantic cues, with memory and relative similarity judgements. Most reports of CBIR systems provide only qualitative measures of performance based on how similar retrieved images are to a target. Experiment 2 puts PicHunter into this context with a more rigorous test. We first establish a baseline for our database by measuring the time required to find an image that is similar to a target when the images are presented in random order. Although PicHunter's performance is measurably better than this, the test is weak because even random presentation of images yields reasonably short search times. This casts doubt on the strength of results given in other reports where no baseline is established.

  8. Teaching the physics of medical imaging: an active learning approach involving imaging of biological tissue

    Wilhjelm, Jens E.; Pihl, Michael Johannes; Lonsdale, Markus Nowak

    2008-01-01

    Introduction to medical imaging is an experimentally oriented course in the physics of medical imaging, where the students record, process and analyse 3D data of an unknown piece of formalin fixed animal tissue embedded in agar in order to estimate the tissue types present. Planar X-ray, CT, MRI......, ultrasound and SPECT/PET images are recorded, showing the tissue in very different ways. In order for the students to estimate the tissue type, they need to study the physical principles of the imaging modalities. The “true” answer is subsequently revealed by slicing the tissue....

  9. A novel 3D shape descriptor for automatic retrieval of anatomical structures from medical images

    Nunes, Fátima L. S.; Bergamasco, Leila C. C.; Delmondes, Pedro H.; Valverde, Miguel A. G.; Jackowski, Marcel P.

    2017-03-01

    Content-based image retrieval (CBIR) aims at retrieving from a database objects that are similar to an object provided by a query, by taking into consideration a set of extracted features. While CBIR has been widely applied in the two-dimensional image domain, the retrieval of3D objects from medical image datasets using CBIR remains to be explored. In this context, the development of descriptors that can capture information specific to organs or structures is desirable. In this work, we focus on the retrieval of two anatomical structures commonly imaged by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques, the left ventricle of the heart and blood vessels. Towards this aim, we developed the Area-Distance Local Descriptor (ADLD), a novel 3D local shape descriptor that employs mesh geometry information, namely facet area and distance from centroid to surface, to identify shape changes. Because ADLD only considers surface meshes extracted from volumetric medical images, it substantially diminishes the amount of data to be analyzed. A 90% precision rate was obtained when retrieving both convex (left ventricle) and non-convex structures (blood vessels), allowing for detection of abnormalities associated with changes in shape. Thus, ADLD has the potential to aid in the diagnosis of a wide range of vascular and cardiac diseases.

  10. The virtual microscopy database-sharing digital microscope images for research and education.

    Lee, Lisa M J; Goldman, Haviva M; Hortsch, Michael

    2018-02-14

    Over the last 20 years, virtual microscopy has become the predominant modus of teaching the structural organization of cells, tissues, and organs, replacing the use of optical microscopes and glass slides in a traditional histology or pathology laboratory setting. Although virtual microscopy image files can easily be duplicated, creating them requires not only quality histological glass slides but also an expensive whole slide microscopic scanner and massive data storage devices. These resources are not available to all educators and researchers, especially at new institutions in developing countries. This leaves many schools without access to virtual microscopy resources. The Virtual Microscopy Database (VMD) is a new resource established to address this problem. It is a virtual image file-sharing website that allows researchers and educators easy access to a large repository of virtual histology and pathology image files. With the support from the American Association of Anatomists (Bethesda, MD) and MBF Bioscience Inc. (Williston, VT), registration and use of the VMD are currently free of charge. However, the VMD site is restricted to faculty and staff of research and educational institutions. Virtual Microscopy Database users can upload their own collection of virtual slide files, as well as view and download image files for their own non-profit educational and research purposes that have been deposited by other VMD clients. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  11. Non-Price Competition and the Structure of the Online Information Industry: Q-Analysis of Medical Databases and Hosts.

    Davies, Roy

    1987-01-01

    Discussion of the online information industry emphasizes the effects of non-price competition on its structure and the firms involved. Q-analysis is applied to data on medical databases and hosts, changes over a three-year period are identified, and an optimum structure for the industry based on economic theory is considered. (Author/LRW)

  12. Desktop publishing and medical imaging: paper as hardcopy medium for digital images.

    Denslow, S

    1994-08-01

    Desktop-publishing software and hardware has progressed to the point that many widely used word-processing programs are capable of printing high-quality digital images with many shades of gray from black to white. Accordingly, it should be relatively easy to print digital medical images on paper for reports, instructional materials, and in research notes. Components were assembled that were necessary for extracting image data from medical imaging devices and converting the data to a form usable by word-processing software. A system incorporating these components was implemented in a medical setting and has been operating for 18 months. The use of this system by medical staff has been monitored.

  13. A machine learning approach to quantifying noise in medical images

    Chowdhury, Aritra; Sevinsky, Christopher J.; Yener, Bülent; Aggour, Kareem S.; Gustafson, Steven M.

    2016-03-01

    As advances in medical imaging technology are resulting in significant growth of biomedical image data, new techniques are needed to automate the process of identifying images of low quality. Automation is needed because it is very time consuming for a domain expert such as a medical practitioner or a biologist to manually separate good images from bad ones. While there are plenty of de-noising algorithms in the literature, their focus is on designing filters which are necessary but not sufficient for determining how useful an image is to a domain expert. Thus a computational tool is needed to assign a score to each image based on its perceived quality. In this paper, we introduce a machine learning-based score and call it the Quality of Image (QoI) score. The QoI score is computed by combining the confidence values of two popular classification techniques—support vector machines (SVMs) and Naïve Bayes classifiers. We test our technique on clinical image data obtained from cancerous tissue samples. We used 747 tissue samples that are stained by four different markers (abbreviated as CK15, pck26, E_cad and Vimentin) leading to a total of 2,988 images. The results show that images can be classified as good (high QoI), bad (low QoI) or ugly (intermediate QoI) based on their QoI scores. Our automated labeling is in agreement with the domain experts with a bi-modal classification accuracy of 94%, on average. Furthermore, ugly images can be recovered and forwarded for further post-processing.

  14. Dual-tree complex wavelet for medical image watermarking

    Mavudila, K.R.; Ndaye, B.M.; Masmoudi, L.; Hassanain, N.; Cherkaoui, M.

    2010-01-01

    In order to transmit medical data between hospitals, we insert the information for each patient in the image and its diagnosis, the watermarking consist to insert a message in the image and try to find it with the maximum possible fidelity. This paper presents a blind watermarking scheme in wavelet transform domain dual tree (DTT), who increasing the robustness and preserves the image quality. This system is transparent to the user and allows image integrity control. In addition, it provides information on the location of potential alterations and an evaluation of image modifications which is of major importance in a medico-legal framework. An example using head magnetic resonance and mammography imaging illustrates the overall method. Wavelet techniques can be successfully applied in various image processing methods, namely in image de noising, segmentation, classification, watermarking and others. In this paper we discussed the application of dual tree complex wavelet transform (D T-CWT), which has significant advantages over classic discrete wavelet transform (DWT), for certain image processing problems. The D T-CWT is a form of discreet wavelet transform which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. The main part of the paper is devoted to profit the exceptional quality for D T-CWT, compared to classical DWT, for a blind medical image watermarking, our schemes are using for the performance bivariate shrinkage with local variance estimation and are robust of attacks and favourably preserves the visual quality. Experimental results show that embedded watermarks using CWT give good image quality and are robust in comparison with the classical DWT.

  15. Medical imaging was boosted by the discovery of artificial radioactivity

    Demarthon, F.; Dupuy-Maury, F.; Donnars, O.

    2002-01-01

    This article draws the history of medical imaging since the discovery of artificial radioactivity in 1934. The author reviews the PET (positron emission tomography) and MRI (magnetic resonance imaging) technologies and presents the recent progress in neuro-sciences that have been made possible by using these 2 technologies. Brain imaging has allowed to show: - the impact of emotions on logical mental processes and on mental performances, - the management of memory in the brain of talented quick reckoners, - the degeneration of neurons, and - the link between autism and the presence of structural and functional anomalies in the brain. (A.C.)

  16. Ultrasound introscopic image quantitative characteristics for medical diagnosis

    Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.

    1993-09-01

    The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.

  17. Plane-Wave Imaging Challenge in Medical Ultrasound

    Liebgott, Herve; Molares, Alfonso Rodriguez; Jensen, Jørgen Arendt

    2016-01-01

    for this effect, but comparing the different methods is difficult due to the lack of appropriate tools. PICMUS, the Plane-Wave Imaging Challenge in Medical Ultrasound aims to provide these tools. This paper describes the PICMUS challenge, its motivation, implementation, and metrics.......Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate...

  18. Implementation of Synthetic Aperture Imaging in Medical Ultrasound

    Jensen, Jørgen Arendt; Kortbek, Jacob; Nikolov, Svetoslav

    2010-01-01

    The main advantage of medical ultrasound imaging is its real time capability, which makes it possible to visualize dynamic structures in the human body. Real time synthetic aperture imaging puts very high demands on the hardware, which currently cannot be met. A method for reducing the number...... of calculations and still retain the many advantages of SA imaging is described. It consists of a dual stage beamformer, where the first can be a simple fixed focus analog beamformer and the second an ordinary digital ultrasound beamformer. The performance and constrictions of the approach is described....

  19. Interpretation of medical images by model guided analysis

    Karssemeijer, N.

    1989-01-01

    Progress in the development of digital pictorial information systems stimulates a growing interest in the use of image analysis techniques in medicine. Especially when precise quantitative information is required the use of fast and reproducable computer analysis may be more appropriate than relying on visual judgement only. Such quantitative information can be valuable, for instance, in diagnostics or in irradiation therapy planning. As medical images are mostly recorded in a prescribed way, human anatomy guarantees a common image structure for each particular type of exam. In this thesis it is investigated how to make use of this a priori knowledge to guide image analysis. For that purpose models are developed which are suited to capture common image structure. The first part of this study is devoted to an analysis of nuclear medicine images of myocardial perfusion. In ch. 2 a model of these images is designed in order to represent characteristic image properties. It is shown that for these relatively simple images a compact symbolic description can be achieved, without significant loss of diagnostically importance of several image properties. Possibilities for automatic interpretation of more complex images is investigated in the following chapters. The central topic is segmentation of organs. Two methods are proposed and tested on a set of abdominal X-ray CT scans. Ch. 3 describes a serial approach based on a semantic network and the use of search areas. Relational constraints are used to guide the image processing and to classify detected image segments. In teh ch.'s 4 and 5 a more general parallel approach is utilized, based on a markov random field image model. A stochastic model used to represent prior knowledge about the spatial arrangement of organs is implemented as an external field. (author). 66 refs.; 27 figs.; 6 tabs

  20. Database application of digital medical X-rays and labs: computerization, storage, retrieval, interpretation, and distribution.

    Hatcher, Myron; Tabriziani, Hossein; Heetebry, Irene

    2005-08-01

    Stenter lets the health care worker order an X-ray that is produced as a computer image rather than on flat film. The health care provider can be in any location with the correct equipment, and view the digital image. The dimensions of this discussion are extensive. The cost savings because of reduced media and storage cost is substantial. Health care quality can be improved because of the ability to obtain consultation via telemedicine and the enhanced ability to track medical problems over time via trends. The major downside is the limited cost imbursement system to pay for technology. Unfortunately, this may impact on the improved quality of care. In simple terms someone needs to pay for the technology and the quality of health care needs to be maintained or improved. The real cost to the health care systems needs to be correctly calculated and inappropriate charging kept to a minimum. Specific costs need to be kept in mind and the first is the cost for new staff or staff training. The number of health care providers that are able to read the X-ray can be enlarged remembering that only American Board Certified Radiologists are allowed to give the final recommendation. How do we view the cost of missing something? It could be argued that this risk will be reduced because of improved technology for obtaining the digital X-ray and improved enhancement software. One way to view this situation is to include technology, management, and organization. The cost and benefits occur through the interplay of all three dimensions. The development of digital imaging hardware and artificial intelligence software will demand change in the management and organization. The organization will require changes in its design to accommodate the technology as to support and resources. Management will evolve to include methods for control and monitoring this technology. Business processes and standard operating procedures will change to integrate the technology into the organization in