WorldWideScience

Sample records for medical devices radiology

  1. 75 FR 68200 - Medical Devices; Radiology Devices; Reclassification of Full-Field Digital Mammography System

    Science.gov (United States)

    2010-11-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 892 [Docket No. FDA-2008-N-0273] Medical Devices; Radiology Devices; Reclassification of Full- Field Digital... and Drugs, 21 CFR part 892 is amended as follows: PART 892--RADIOLOGY DEVICES 0 1. The authority...

  2. FDA (Food and Drug Administration) Compliance Program Guidance Manual (FY 88). Section 4. Medical and radiological devices

    International Nuclear Information System (INIS)

    1988-01-01

    The FDA Compliance Program Guidance Manual provides a system for issuing and filing program plans and instructions directed to Food and Drug Administration Field operations for project implementation. Section IV provides those chapters of the Compliance Program Guidance Manual which pertain to the areas of medical and radiological devices. Some of the areas of coverage include laser and sunlamp standards inspections, compliance testing of various radiation-emitting products such as television receivers and microwave ovens, emergency response planning and policy, premarket approval and device manufacturers inspections, device problem reporting, sterilization of devices, and consumer education programs on medical and radiological devices

  3. Radiological Medical Device Innovation: Approvals via the Premarket Approval Pathway From 2000 to 2015.

    Science.gov (United States)

    Ghobadi, Comeron W; Hayman, Emily L; Finkle, Joshua H; Walter, Jessica R; Xu, Shuai

    2017-01-01

    The aim of this study was to critically assess the clinical evidence leading to radiologic medical device approvals via the premarket approval pathway from 2000 to 2015. This study used the publically available FDA premarket database for radiologic device approvals over the past 15 years (September 1, 2000, to August 31, 2015). Approval characteristics were collected for each device, and statistical analysis was performed on the data for each pivotal trial. Additionally, methodological quality of the pivotal trial was determined using the Quality Assessment of Diagnostic Accuracy Studies tool. Twenty-three class III radiologic device approvals were identified, with breast imaging accounting for 16 (70%) and computer-aided detection software accounting for 9 (39%) approvals. The median premarket approval time was 475 days (range, 180-1,116). Twenty-one devices were approved on the basis of multireader, multicenter studies, one on the basis of a randomized controlled trial, and one on the basis of a preclinical technical equivalence trial. The median number of patients per pivotal trial was 201 (range, 25-3,946). Twenty-six of the 34 pivotal trials (76%) had at least one methodologic bias. Breast imaging devices had a greater number of patients per pivotal trial (P = .009) and more prospective studies. With regard to all modalities, increased time to device approval correlated with weaker trial quality (r = 0.600, P assessing diagnostic technologies. Given that radiologic devices play a key role in modern medicine, further efforts should be made to increase transparency of clinical data leading to approval. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  4. Recent advances in medical device triage technologies for chemical, biological, radiological, and nuclear events.

    Science.gov (United States)

    Lansdowne, Krystal; Scully, Christopher G; Galeotti, Loriano; Schwartz, Suzanne; Marcozzi, David; Strauss, David G

    2015-06-01

    In 2010, the US Food and Drug Administration (Silver Spring, Maryland USA) created the Medical Countermeasures Initiative with the mission of development and promoting medical countermeasures that would be needed to protect the nation from identified, high-priority chemical, biological, radiological, or nuclear (CBRN) threats and emerging infectious diseases. The aim of this review was to promote regulatory science research of medical devices and to analyze how the devices can be employed in different CBRN scenarios. Triage in CBRN scenarios presents unique challenges for first responders because the effects of CBRN agents and the clinical presentations of casualties at each triage stage can vary. The uniqueness of a CBRN event can render standard patient monitoring medical device and conventional triage algorithms ineffective. Despite the challenges, there have been recent advances in CBRN triage technology that include: novel technologies; mobile medical applications ("medical apps") for CBRN disasters; electronic triage tags, such as eTriage; diagnostic field devices, such as the Joint Biological Agent Identification System; and decision support systems, such as the Chemical Hazards Emergency Medical Management Intelligent Syndromes Tool (CHEMM-IST). Further research and medical device validation can help to advance prehospital triage technology for CBRN events.

  5. FDA (Food and Drug Administration) compliance program guidance manual and updates (FY 86). Section 4. Medical and radiological devices. Irregular report

    International Nuclear Information System (INIS)

    1986-01-01

    The FDA Compliance Program Guidance Manual provides a system for issuing and filing program plans and instructions directed to Food and Drug Administration Field operations for project implementation. Section IV provides those chapters of the Compliance Program Guidance Manual which pertain to the areas of medical and radiological devices. Some of the areas of coverage include laser and sunlamp standards inspections, compliance testing of various radiation-emitting products such as television receivers and microwave ovens, emergency response planning and policy, premarket approval and device manufacturers inspections, device problem reporting, sterilization of devices, and consumer education programs on medical and radiological devices

  6. Center for Devices and Radiological Health Publications Index, August 1988

    International Nuclear Information System (INIS)

    1988-08-01

    This is the first Publications Index to be published by the Center for Devices and Radiological Health. Previous indexes, titled 'Bureau of Radiological Health Publications Index', were published before the Center was formed in 1982 through the merger of the Bureau of Radiological Health and the Bureau of Medical Devices; the last of these indexes was published in October 1980. The 1988 edition contains records of medical device and radiological health documents authored or published by the Center from 1978 through 1986. It should not be considered all-inclusive since those documents for which bibliographic information was not available have been excluded. The Publications Index is being distributed to Center staff, state radiological health programs, and libraries on the Center's publication mailing list. The Center plans to update and publish the Index every other year to provide a convenient record of published Center documents

  7. 21 CFR 892.2040 - Medical image hardcopy device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image hardcopy device. 892.2040 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2040 Medical image hardcopy device. (a) Identification. A medical image hardcopy device is a device that produces a visible printed record of a medical...

  8. Main radiation protection actions for medical personnel as primary responders front of an event with radiological dispersive device

    International Nuclear Information System (INIS)

    Duque, Hildanielle Ramos

    2015-01-01

    After the terrorist attack in New York, USA, in 2001, there was a worldwide concern about possible attacks using radioactive material in conventional detonators, called as Radiological Dispersal Device (RDD) or 'dirty bomb'. Several studies have been and are being made to form a global knowledge about this type of event. As until now, fortunately, there has not been an event with RDD, the Goiania Radiological Accident in Brazil, 1987, is used as a reference for decision-making. Several teams with technical experts should act in an event with RDD, but the medical staffs who respond quickly to the event must be properly protected from the harmful effects of radiation. Based on the radiological protection experts performance during the Goiania accident and the knowledge from lessons learned of many radiological accidents worldwide, this work presents an adaptation of the radiation protection actions for an event with RDD that helps a medical team as primary responders. The following aspects are presented: the problem of radioactive contamination from the explosion of the device in underground environment, the actions of the first responders and evaluation of health radiation effects. This work was based on specialized articles and papers about radiological accidents and RDD; as well as personal communication and academic information of the Institute of Radiation Protection and Dosimetry. The radiation protection actions, adapted to a terrorist attack event with RDD, have as a scenario a subway station in the capital. The main results are: the use of the basic radiation protection principle of time because there is no condition to take care of a patient keeping distance or using a shielding; the use of full appropriate protection cloths for contaminating materials ensuring the physical safety of professionals, and the medical team monitoring at the end of a medical procedure, checking for surface contamination. The main conclusion is that all medical actions

  9. 78 FR 41937 - Joint Meeting of the Gastroenterology-Urology Panel and the Radiological Devices Panel of the...

    Science.gov (United States)

    2013-07-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0816] Joint Meeting of the Gastroenterology-Urology Panel and the Radiological Devices Panel of the Medical...: Gastroenterology-Urology Panel and Radiological Devices Panel of the Medical Devices Advisory Committee. General...

  10. Radiology and the mobile device: Radiology in motion

    Directory of Open Access Journals (Sweden)

    Sridhar G Panughpath

    2012-01-01

    Full Text Available The use of mobile devices is revolutionizing the way we communicate, interact, are entertained, and organize our lives. With healthcare in general and radiology in particular becoming increasingly digital, the use of such devices in radiologic practice is inevitable. This article reviews the current status of the use of mobile devices in the clinical practice of radiology, namely in emergency teleradiology. Technical parameters such as luminance and resolution are discussed. The article also discusses the benefits of such mobility vis-à-vis the current limitations of the technologies available.

  11. Radiology and the mobile device: Radiology in motion

    International Nuclear Information System (INIS)

    Panughpath, Sridhar G; Kalyanpur, Arjun

    2012-01-01

    The use of mobile devices is revolutionizing the way we communicate, interact, are entertained, and organize our lives. With healthcare in general and radiology in particular becoming increasingly digital, the use of such devices in radiologic practice is inevitable. This article reviews the current status of the use of mobile devices in the clinical practice of radiology, namely in emergency teleradiology. Technical parameters such as luminance and resolution are discussed. The article also discusses the benefits of such mobility vis-à-vis the current limitations of the technologies available

  12. Medical Ethics in Radiology

    International Nuclear Information System (INIS)

    Kim, Kyung Won; Park, Jae Hyung; Yoon, Soon Ho

    2010-01-01

    According to the recent developments in radiological techniques, the role of radiology in the clinical management of patients is ever increasing and in turn, so is the importance of radiology in patient management. Thus far, there have been few open discussions about medical ethics related to radiology in Korea. Hence, concern about medical ethics as an essential field of radiology should be part of an improved resident training program and patient management. The categories of medical ethics related with radiology are ethics in the radiological management of patient, the relationship of radiologists with other medical professionals or companies, the hazard level of radiation for patients and radiologists, quality assurance of image products and modalities, research ethics, and other ethics issues related to teleradiology and fusion imaging. In order to achieve the goal of respectful progress in radiology as well as minimizing any adverse reaction from other medical professions or society, we should establish a strong basis of medical ethics through the continuous concern and self education

  13. RADRELAY RADIOLOGICAL DATA LINK DEVICE

    International Nuclear Information System (INIS)

    Harpring, L.; Frank Heckendorn, F.

    2007-01-01

    The RadRelay effort developed small, field appropriate, portable prototype devices that allow radiological spectra to be downloaded from field radiological detectors, like the identiFINDER-U, and transmitted to land based experts. This communications capability was designed for the U. S. Coast Guard (USCG) but is also applicable to the Customs and Border Protection (CBP) personnel working in remote locations. USCG Level II personnel currently use the identiFINDER-U Hand-Held Radioisotope ID Devices (HHRIID) to detect radiological materials during specific boarding operations. These devices will detect not only radiological emissions but will also evaluate those emissions against a table of known radiological spectra. The RadRelay has been developed to significantly improve the functionality of HHRIID, by providing the capability to download radiological spectra and then transmit them using satellite or cell phone technology. This remote wireless data transfer reduces the current lengthy delay often encountered between the shipboard detection of unknown radiological material and the evaluation of that data by technical and command personnel. That delay is reduced from hours to minutes and allows the field located personnel to remain on station during the inspection and evaluation process

  14. Radiology education: a radiology curriculum for all medical students?

    Science.gov (United States)

    Zwaan, Laura; Kok, Ellen M; van der Gijp, Anouk

    2017-09-26

    Diagnostic errors in radiology are frequent and can cause severe patient harm. Despite large performance differences between radiologists and non-radiology physicians, the latter often interpret medical images because electronic health records make images available throughout the hospital. Some people argue that non-radiologists should not diagnose medical images at all, and that medical school should focus on teaching ordering skills instead of image interpretation skills. We agree that teaching ordering skills is crucial as most physicians will need to order medical images in their professional life. However, we argue that the availability of medical images is so ubiquitous that it is important that non-radiologists are also trained in the basics of medical image interpretation and, additionally in recognizing when radiological consultancy should be sought. In acute situations, basic image interpretations skills can be life-saving. We plead for a radiology curriculum for all medical students. This should include the interpretation of common abnormalities on chest and skeletal radiographs and a basic distinction of normal from abnormal images. Furthermore, substantial attention should be given to the correct ordering of radiological images. Finally, it is critical that students are trained in deciding when to consult a radiologist.

  15. Pediatric radiology for medical-technical radiology assistants/radiologists

    International Nuclear Information System (INIS)

    Oppelt, Birgit

    2010-01-01

    The book on pediatric radiology includes the following chapter: differences between adults and children; psycho-social aspects concerning the patient child in radiology; relevant radiation doses in radiology; help for self-help: simple phantoms for image quality estimation in pediatric radiology; general information; immobilization of the patient; pediatric features for radiological settings; traumatology; contrast agents; biomedical radiography; computerized tomography; NMR imaging; diagnostic ultrasonography; handling of stress practical recommendations; medical displays.

  16. Radiological response of ceramic and polymeric devices for breast brachytherapy

    International Nuclear Information System (INIS)

    Batista Nogueira, Luciana; Passos Ribeiro de Campos, Tarcisio

    2012-01-01

    In the present study, the radiological visibility of ceramic and polymeric devices implanted in breast phantom was investigated for future applications in brachytherapy. The main goal was to determine the radiological viability of ceramic and polymeric devices in vitro by performing simple radiological diagnostic methods such as conventional X-ray analysis and mammography due to its easy access to the population. The radiological response of ceramic and polymeric devices implanted in breast phantom was determined using conventional X-ray, mammography and CT analysis. - Highlights: ► Radiological visibility of ceramic and polymeric devices implanted in breast phantom. ► The barium incorporation in the seed improves the radiological contrast. ► Radiological monitoring shows the position, orientation and degradation of devices. ► Simple radiological methods such as X-ray and mammography were used for radiological monitoring.

  17. Radiological attacks and accidents. Medical consequences

    International Nuclear Information System (INIS)

    Sakuta, Hidenari

    2007-01-01

    Probability of the occurrence of radiological attacks appears to be elevated after the terrorist attacks against the United States on September 11 in 2001. There are a lot of scenarios of radiological attack: simple radiological device, radiological disperse device (RDD or dirty bomb), attacks against nuclear reactor, improvised nuclear device, and nuclear weapons. Of these, RDD attack is the most probable scenario, because it can be easily made and can generate enormous psychological and economic damages. Radiological incidents are occurring to and fro in the world, including several cases of theft to nuclear facilities and unsuccessful terrorist attacks against them. Recently, a former Russian spy has allegedly been killed using polonium-210. In addition, serious radiological accidents have occurred in Chernobyl, Goiania, and Tokai-mura. Planning, preparation, education, and training exercise appear to be essential factors to cope with radiological attacks and accidents effectively without feeling much anxiety. Triage and psychological first aid are prerequisite to manage and provide effective medial care for mass casualties without inducing panic. (author)

  18. Hospital management of mass radiological casualties: reassessing exposures from contaminated victims of an exploded radiological dispersal device (RDD)

    International Nuclear Information System (INIS)

    Ansari, Armin; Harper, Frederick Taylor; Smith, James M.

    2005-01-01

    One of the key issues in the aftermath of an exploded radiological dispersal device from a terrorist event is that of the contaminated victim and the concern among healthcare providers for the harmful exposures they may receive in treating patients, especially if the patient has not been thoroughly decontaminated. This is critically important in the event of mass casualties from a nuclear or radiological incident because of the essential rapidity of acute medical decisions and that those who have life- or limb-threatening injuries may have treatment unduly delayed by a decontamination process that may be unnecessary for protecting the health and safety of the patient or the healthcare provider. To estimate potential contamination of those exposed in a radiological dispersal device event, results were used from explosive aerosolization tests of surrogate radionuclides detonated with high explosives at the Sandia National Laboratories. Computer modeling was also used to assess radiation dose rates to surgical personnel treating patients with blast injuries who are contaminated with any of a variety of common radionuclides. It is demonstrated that exceptional but plausible cases may require special precautions by the healthcare provider, even while managing life-threatening injuries of a contaminated victim from a radiological dispersal device event.

  19. Radiological Dispersion Devices: are we prepared?

    Energy Technology Data Exchange (ETDEWEB)

    Sohier, Alain [Decision Strategy Research Department (Radiation Protection Division), Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium)]. E-mail: asohier@sckcen.be; Hardeman, Frank [Decision Strategy Research Department (Radiation Protection Division), Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium)

    2006-07-01

    Already before the events of September 11th 2001 concern was raised about the spread of orphan sources and their potential use in Radiological Dispersion Devices by terrorist groups. Although most of the simulated scenarios foresee a rather limited direct health impact on the population, the affected region would suffer from the indirect consequences such as social disruption, cleanup requirements and economic costs. The nature of such a radiological attack would anyway be different compared to conventional radiological accidents, basically because it can happen anywhere at any time. Part of the response resides in a general preparedness scheme incorporating attacks with Radiological Dispersion Devices. Training of different potential intervention teams is essential. The response would consist of a prioritised list of actions adapted to the circumstances. As the psychosocial dimension of the crisis could be worse than the purely radiological one, an adapted communication strategy with the public aspect would be a key issue.

  20. Radiological Dispersion Devices: are we prepared?

    International Nuclear Information System (INIS)

    Sohier, Alain; Hardeman, Frank

    2006-01-01

    Already before the events of September 11th 2001 concern was raised about the spread of orphan sources and their potential use in Radiological Dispersion Devices by terrorist groups. Although most of the simulated scenarios foresee a rather limited direct health impact on the population, the affected region would suffer from the indirect consequences such as social disruption, cleanup requirements and economic costs. The nature of such a radiological attack would anyway be different compared to conventional radiological accidents, basically because it can happen anywhere at any time. Part of the response resides in a general preparedness scheme incorporating attacks with Radiological Dispersion Devices. Training of different potential intervention teams is essential. The response would consist of a prioritised list of actions adapted to the circumstances. As the psychosocial dimension of the crisis could be worse than the purely radiological one, an adapted communication strategy with the public aspect would be a key issue

  1. 21 CFR 892.1980 - Radiologic table.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic table. 892.1980 Section 892.1980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1980 Radiologic table. (a) Identification. A radiologic...

  2. Radiology education: a radiology curriculum for all medical students?

    NARCIS (Netherlands)

    Zwaan, Laura; Kok, E.M.; van der Gijp, Anouk

    2017-01-01

    Diagnostic errors in radiology are frequent and can cause severe patient harm. Despite large performance differences between radiologists and non-radiology physicians, the latter often interpret medical images because electronic health records make images available throughout the hospital. Some

  3. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    Science.gov (United States)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  4. Radiological accidents in medical practice

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan

    2012-01-01

    Different radiological accidents that may occur in medical practice are shown. The following topics are focused: accident statistics for medical exposure, accidental medical exposures, radiotherapy accidents and potential accidental scenarios [es

  5. Education and training of medical physicists in radiology

    International Nuclear Information System (INIS)

    Todorov, V.; Vassileva, J.

    2006-01-01

    Full text: Medical radiology is chronologically the first and widest field of work of medical physicists. Therefore the education and training of medical radiological physicists is of big importance for both diagnostics and therapy. The education of medical radiological physicists in Bulgaria is organized in two levels: university and postgraduate, which is a good achievement of Bulgarian educational system. University education is in the framework of the M. Sc. program in Medical physics with a prevalent training in medical radiological physics. Three universities in the country have been carrying out this education since more than ten years. Postgraduate education covers specialties Medical Radiological Physics and Radiation Hygiene. It is organized by the Medical University but the training is opened also to specialists outside the health care system. The interests in both levels of education and training in Medical Physics is increasing with about 40 trainees in last years. The university and postgraduate education has good quality in theory but still inadequate in practical aspects. The continuous training and qualification of medical physicists has also difficulties; the main reasons are insufficient technical and financial resources as well as the lack of interest of the staff of the training centers. The responsibilities for education and training of medical physicists in radiology should be shared between physicists and physicians in the country

  6. 21 CFR 892.1830 - Radiologic patient cradle.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic patient cradle. 892.1830 Section 892.1830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1830 Radiologic patient cradle. (a...

  7. Use of mobile devices for medical imaging.

    Science.gov (United States)

    Hirschorn, David S; Choudhri, Asim F; Shih, George; Kim, Woojin

    2014-12-01

    Mobile devices have fundamentally changed personal computing, with many people forgoing the desktop and even laptop computer altogether in favor of a smaller, lighter, and cheaper device with a touch screen. Doctors and patients are beginning to expect medical images to be available on these devices for consultative viewing, if not actual diagnosis. However, this raises serious concerns with regard to the ability of existing mobile devices and networks to quickly and securely move these images. Medical images often come in large sets, which can bog down a network if not conveyed in an intelligent manner, and downloaded data on a mobile device are highly vulnerable to a breach of patient confidentiality should that device become lost or stolen. Some degree of regulation is needed to ensure that the software used to view these images allows all relevant medical information to be visible and manipulated in a clinically acceptable manner. There also needs to be a quality control mechanism to ensure that a device's display accurately conveys the image content without loss of contrast detail. Furthermore, not all mobile displays are appropriate for all types of images. The smaller displays of smart phones, for example, are not well suited for viewing entire chest radiographs, no matter how small and numerous the pixels of the display may be. All of these factors should be taken into account when deciding where, when, and how to use mobile devices for the display of medical images. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. Terrorism: the threat of a radiological device

    International Nuclear Information System (INIS)

    Kingshott, B.F.

    2005-01-01

    Full text: This paper will discuss terrorism from the perspective of a terrorist organization building and detonating a 'dirty bomb' with a radiological component. The paper will discuss how such devices are made and how security of radiological material world wide will minimize the risk of such devices being used. It will discuss the threat assessments against nuclear waste processing and storage sites, threats to nuclear plants and other sites and the adequacy of current security. It will also discuss the phenomenon of suicide attacks by the bomb carriers and the role of the media in informing and educating the general public of the consequences should such a device be detonated. (author)

  9. Training first responders on Radiological Dispersal Devices (RDDs) and Improvised Nuclear Devices (INDs) events

    International Nuclear Information System (INIS)

    Groves, Ken L.

    2008-01-01

    Full text: This paper will present an overview of the current training the author is presenting to First Responders (fire-fighters, emergency medical technicians, law enforcement and others) who may encounter either a Radiological Dispersal Device (RDD or Dirty Bomb) or an Improvised Nuclear Device (IND) as a part of their Emergency Response activities. The emphasis of the training is putting the radiological/nuclear material in perspective as compared with other Weapons of Mass Destruction (WMD) materials such as chemical and/or biological weapon agents. A goal of the training is to help this First Responder Community understand that under almost all conditions, they can perform their primary mission of 'putting out fires', rescuing and treating injured persons, and chasing 'bad guys' even in the presence of relatively large amount of radiological/nuclear contamination. The rare cases of high activity unshielded sources will be reviewed and explained. Current International guidance on dose 'limits' will be discussed. A discussion of the use of Time, Distance and Shielding as well as appropriate Personal Protective Clothing and how it will provide the needed protection while immediate actions take place early in an RDD/IND event, will take place. The use of appropriate radiation detection instrumentation, documented Standard Operating Procedures along with realistic training, drills and exercises are the key to a successful response to an RDD/IND event for this community of critical emergency responders. (author)

  10. Journal of Medical Chemical, Biological and Radiological Defense

    International Nuclear Information System (INIS)

    Price, B.

    2007-01-01

    The Journal of Medical Chemical, Biological, and Radiological Defense is a free, on-line journal dedicated to providing an international, peer-reviewed journal of original scientific research and clinical and doctrinal knowledge in the area of medical treatment and countermeasures for chemical, biological and radiological defense; and to developing and maintaining an archive of current research and development information on training, doctrine, and professional discussions of problems related to chemical, biological and radiological casualties. The Journal, www.JMedCBR.org, now in its fifth year, is sponsored by the US Defense Threat Reduction Agency. Areas of interest include, but are not limited to: Neuroprotectants; Bioscavengers for Nerve Agents; Medical Diagnostic Systems and Technologies; Medical Effects of Low Level Exposures; Toxicology and Biological Effects of TICs and TIMs; Broad Spectrum Medical Countermeasures; Treatments and Therapeutics for Bacterial, Viral and Toxin Agents; Radiological Medical Countermeasures; Clinical Treatment of Chemical, Biological or Radiological Casualties; Toxins Structures and Treatments. The Journal is supported by an editorial advisory board of distinguished scientists and researchers in the fields of CBR defense and medical treatment and countermeasures in eleven countries.(author)

  11. Medical radiology terminology

    International Nuclear Information System (INIS)

    1986-01-01

    Standardization achievements in the field of radiology induced the IEC to compile the terminology used in its safety and application standards and present it in publication 788 (1984 issue), entitled 'Medical radiology terminology'. The objective pursued is to foster the use of standard terminology in the radiology standards. The value of publication 788 lies in the fact that it presents definitions of terms used in the French and English versions of IEC standards in the field of radiology, and thus facilitates adequate translation of these terms into other languages. In the glossary in hand, German-language definitions have been adopted from the DIN standards in cases where the French or English versions of definitions are identical with the German wording or meaning. The numbers of DIN standards or sections are then given without brackets, ahead of the text of the definition. In cases where correspondance of the various texts is not so good, or reference should be made to a term in a DIN standard, the numbers are given in brackets. (orig./HP) [de

  12. Active pixel as dosimetric device for interventional radiology

    International Nuclear Information System (INIS)

    Servoli, L.; Baldaccini, F.; Biasini, M.; Checcucci, B.; Chiocchini, S.; Cicioni, R.; Conti, E.; Di Lorenzo, R.; Dipilato, A.C.; Esposito, A.; Fanó, L.; Paolucci, M.; Passeri, D.; Pentiricci, A.

    2013-01-01

    Interventional Radiology (IR) is a subspecialty of radiology comprehensive of all minimally invasive diagnostic and therapeutic procedures performed using radiological devices to obtain image guidance. The interventional procedures are potentially harmful for interventional radiologists and medical staff due to the X-ray diffusion by the patient's body. The characteristic energy range of the diffused photons spans few tens of keV. In this work we will present a proposal for a new X-ray sensing element in the energy range of interest for IR procedures. The sensing element will then be assembled in a dosimeter prototype, capable of real-time measurement, packaged in a small form-factor, with wireless communication and no external power supply to be used for individual operators dosimetry for IR procedures. For the sensor, which is the heart of the system, we considered three different Active Pixel Sensors (APS). They have shown a good capability as single X-ray photon detectors, up to several tens keV photon energy. Two dosimetric quantities have been considered, the number of detected photons and the measured energy deposition. Both observables have a linear dependence with the dose, as measured by commercial dosimeters. The uncertainties in the measurement are dominated by statistic and can be pushed at ∼5% for all the sensors under test

  13. 21 CFR 892.1940 - Radiologic quality assurance instrument.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiologic quality assurance instrument. 892.1940 Section 892.1940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1940 Radiologic quality assurance...

  14. Quality index of radiological devices: results of one year of use.

    Science.gov (United States)

    Tofani, Alessandro; Imbordino, Patrizia; Lecci, Antonio; Bonannini, Claudia; Del Corona, Alberto; Pizzi, Stefano

    2003-01-01

    The physical quality index (QI) of radiological devices summarises in a single numerical value between 0 and 1 the results of constancy tests. The aim of this paper is to illustrate the results of the use of such an index on all public radiological devices in the Livorno province over one year. The quality index was calculated for 82 radiological devices of a wide range of types by implementing its algorithm in a spreadsheet-based software for the automatic handling of quality control data. The distribution of quality index values was computed together with the associated statistical quantities. This distribution is strongly asymmetrical, with a sharp peak near the highest QI values. The mean quality index values for the different types of device show some inhomogeneity: in particular, mammography and panoramic dental radiography devices show far lower quality than other devices. In addition, our analysis has identified the parameters that most frequently do not pass the quality tests for each type of device. Finally, we sought some correlation between quality and age of the device, but this was poorly significant. The quality index proved to be a useful tool providing an overview of the physical conditions of radiological devices. By selecting adequate QI threshold values for, it also helps to decide whether a given device should be upgraded or replaced. The identification of critical parameters for each type of device may be used to improve the definition of the QI by attributing greater weights to critical parameters, so as to better address the maintenance of radiological devices.

  15. Medical intervention in radiological emergencies, formation and training

    International Nuclear Information System (INIS)

    Cardenas H, J.

    2006-01-01

    The work exposes the national experience in the development of training programs in medical aspects of the radiological emergencies. Implemented after valuing the existent situation, identified the necessities and the reach of the training, additionally it was elaborated the content of the training program whose purpose is guided to the invigoration of the medical answer capacity in radiological emergencies The content of the modular program it approaches theoretical- practical aspects on preparation and medical answer in radiological emergencies. The program includes an exercise that simulates a radiological accident, to evaluate during the same one, the answer capacity before this situation. The training concludes with the design of a strategy for the preparation and answer in radiological emergencies in correspondence with the potential accidental scenarios that the participants can face. (Author)

  16. Emergency radiology curriculum at Medical University - Plovdiv

    International Nuclear Information System (INIS)

    Velkova, K.; Hilendarov, A.; Cvetkova, S.; Stoeva, M.; Petrova, A.; Stefanov, P.; Simova, E.; Georgieva, V.; Sirakov, N.

    2012-01-01

    Full text: Introduction: Recent advances in contemporary radiology turn it into one of the major sources for patient information with improved emergency techniques. Emergency Radiology (EP) focuses on acute diagnosing conditions in ER patients. Objectives: The main objective of this paper is to present the ER curriculum at Medical Imaging Department, Medical University - Plovdiv, aiming to deliver knowledge about the indications, possibilities and diagnostic value of the contemporary imaging methods in ER cases. Material and methods: The curriculum covers various aspects of ER Radiology - diagnostic imaging methods, contrast enhanced examinations, imaging topography, traumatic and acute conditions, physical and technical aspects. It includes 6 lectures and 12 practical classes. Results and discussion: The educational course in Emergency Radiology is available for medical students in their 8-th and 9-th semester. Therapeutic methods under imaging control are also covered by the course. Conclusion: Being one of the most advanced areas of radiology, ER improves the quality of care and treatment of patients and of the emergency medicine as a whole

  17. Portrayal of radiology in a major medical television series: How does it influence the perception of radiology among patients and radiology professionals?

    International Nuclear Information System (INIS)

    Heye, T.; Merkle, E.M.; Boll, D.T.; Leyendecker, J.R.; Gupta, R.T.

    2016-01-01

    To assess how the portrayal of Radiology on medical TV shows is perceived by patients and radiology professionals. In this IRB-approved study with patient consent waived, surveys were conducted among adult patients scheduled for radiological examinations and radiology professionals. The questionnaire investigated medical TV watching habits including interest in medical TV shows, appearance of radiological examination/staff, radiology's role in diagnosis-making, and rating of the shows' accuracy in portraying radiology relative to reality. One hundred and twenty-six patients and 240 professionals (133 technologists, 107 radiologists) participated. 63.5 % patients and 63.2 % technologists rated interest in medical TV shows ≥5 (scale 1-10) versus 38.3 % of radiologists. All groups noted regular (every 2nd/3rd show) to >1/show appearance of radiological examinations in 58.5-88.2 % compared to 21.0-46.2 % for radiological staff appearance. Radiology played a role in diagnosis-making regularly to >1/show in 45.3-52.6 %. There is a positive correlation for interest in medical TV and the perception that radiology is accurately portrayed for patients (r = 0.49; P = 0.001) and technologists (r = 0.38; P = 0.001) but not for radiologists (r = 0.01). The majority of patients perceive the portrayed content as accurate. Radiologists should be aware of this cultivation effect to understand their patients' behaviour which may create false expectations towards radiological examinations and potential safety hazards. (orig.)

  18. Worker radiological protection: occupational medical aspects

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan; Fernandez Gomez, Isis Maria

    2008-01-01

    Radiation exposures experienced by workers are widely explained. The first evidences of biological effects, the implications for human health and the radiological protection have been covered. The conceptual structure that covers the radiological protection and adequate protection without limiting benefits, the scientific basis of radiology, the benefits and risks of the radiological protection are specified. The effective per capita doses are exposed in medical uses both for Latin America and for other regions in the average radiology, dental radiology, nuclear medicine and radiotherapy. The manners of occupational exposures in the medicine are presented. Industrial uses have also its average effective dose in the industrial irradiation, industrial radiography and radioisotopes production. Within the natural radiation the natural sources can significantly contribute to occupational exposure and have their average effective dose. Occupational medical surveillance to be taken into industrial sites is detailed. In addition, the plan of international action for the solution of dilemmas of occupational exposures is mentioned and the different dilemmas of radioactive exposure are showed. The external irradiation, the acute diseases by radiations, the cutaneous syndrome of the chronic radiation, the radioactive contamination, the internal radioactive contamination, the combined lesion and accidental exposures are also treated [es

  19. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2015-01-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed. - Highlights: • The hazards associated to the use of radioactive sources must be taken into account. • Security issues are of paramount importance in the use of radioactive sources. • Radiation sources can be used to perpetrate terrorist acts (RDDs, INDs, REDs). • DSRS and orphan sources trigger radiological protection, safety and security concerns. • Regulatory control, from cradle to grave, of radioactive sources is mandatory.

  20. ESR paper on the proper use of mobile devices in radiology.

    Science.gov (United States)

    2018-04-01

    Mobile devices (smartphones, tablets, etc.) have become key methods of communication, data access and data sharing for the population in the past decade. The technological capabilities of these devices have expanded very rapidly; for example, their in-built cameras have largely replaced conventional cameras. Their processing power is often sufficient to handle the large data sets of radiology studies and to manipulate images and studies directly on hand-held devices. Thus, they can be used to transmit and view radiology studies, often in locations remote from the source of the imaging data. They are not recommended for primary interpretation of radiology studies, but they facilitate sharing of studies for second opinions, viewing of studies and reports by clinicians at the bedside, etc. Other potential applications include remote participation in educational activity (e.g. webinars) and consultation of online educational content, e-books, journals and reference sources. Social-networking applications can be used for exchanging professional information and teaching. Users of mobile device must be aware of the vulnerabilities and dangers of their use, in particular regarding the potential for inappropriate sharing of confidential patient information, and must take appropriate steps to protect confidential data. • Mobile devices have revolutionized communication in the past decade, and are now ubiquitous. • Mobile devices have sufficient processing power to manipulate and display large data sets of radiological images. • Mobile devices allow transmission & sharing of radiologic studies for purposes of second opinions, bedside review of images, teaching, etc. • Mobile devices are currently not recommended as tools for primary interpretation of radiologic studies. • The use of mobile devices for image and data transmission carries risks, especially regarding confidentiality, which must be considered.

  1. Radiology in Medical Education: A Pediatric Radiology Elective as a Template for Other Radiology Courses.

    Science.gov (United States)

    Hilmes, Melissa A; Hyatt, Eddie; Penrod, Cody H; Fleming, Amy E; Singh, Sudha P

    2016-03-01

    Traditionally, the pediatric radiology elective for medical students and pediatric residents constituted a morning teaching session focused mainly on radiography and fluoroscopy. A more structured elective was desired to broaden the exposure to more imaging modalities, create a more uniform educational experience, and include assessment tools. In 2012, an introductory e-mail and formal syllabus, including required reading assignments, were sent to participants before the start date. A rotating weekly schedule was expanded to include cross-sectional imaging (ultrasound, CT, MR) and nuclear medicine. The schedule could accommodate specific goals of the pediatric resident or medical student, as requested. Starting in 2013, an online pre-test and post-test were developed, as well as an online end-of-rotation survey specific to the pediatric radiology elective. Taking the Image Gently pledge was required. A scavenger hunt tool, cue cards, and electronic modules were added. Pre-test and post-test scores, averaged over 2 years, showed improvement in radiology knowledge, with scores increasing by 27% for medical students and 21% for pediatric residents. Surveys at the end of the elective were overwhelmingly positive, with constructive criticism and complimentary comments. We have successfully created an elective experience in radiology that dedicates time to education while preserving the workflow of radiologists. We have developed tools to provide a customized experience with many self-directed learning opportunities. Our tools and techniques are easily translatable to a general or adult radiology elective. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  2. Survey on medical information education for radiologic technologists working at hospitals

    International Nuclear Information System (INIS)

    Ikeda, Ryuji; Ogasawara, Katsuhiko; Okuda, Yasuo; Konishi, Yasuhiko; Ohoba, Hisateru; Hoshino, Shuhei; Hosoba, Minoru

    2011-01-01

    Recently, the importance of medical information for radiologic technologists has increased. The purpose of this questionnaire survey was to clarify the method of acquiring skill in medical information for radiologic technologists from the point of view of the managers of radiology departments. The questionnaire was sent to 260 hospitals that had introduced picture archiving and communication systems (PACSs) for the person responsible for medical information in the radiology department. The response rate was 35.4% (92 hospitals). The results of this survey clarified that few hospital have staff for medical information in the radiology department. Nevertheless, the excellent staff who have the skills to troubleshoot and develop systems are earnestly needed in radiology departments. To solve this problem, many technologists should understand the content, work load, and necessity of medical information. In addition, cooperation between radiologic technologist schools and hospitals is important in the field of medical information education. (author)

  3. French Sizing of Medical Devices is not Fit for Purpose

    International Nuclear Information System (INIS)

    Kibriya, Nabil; Hall, Rebecca; Powell, Steven; How, Thien; McWilliams, Richard G.

    2013-01-01

    PurposeThe purpose of the study is to quantify the variation in the metric equivalent of French size in a range of medical devices, from various manufacturers, used in interventional radiology.MethodsThe labelling of a range of catheters, introducers, drains, balloons, stents, and endografts was examined. Products were chosen to achieve a broad range of French sizes from several manufacturers. To assess manufacturing accuracy, eight devices were selected for measurement using a laser micrometer. The external diameters of three specimens of each device were measured at centimeter intervals along the length of the device to ensure uniformity.ResultsA total of 200 labels of interventional radiology equipment were scrutinized. The results demonstrate a wide variation in the metric equivalent of French sizing. Labelled products can vary in diameter across the product range by up to 0.79 mm.The devices selected for measurement with the non-contact laser micrometer demonstrate acceptable manufacturing consistency. The external diameter differed by 0.05 mm on average.ConclusionsOur results demonstrate wide variation in the interpretation of the French scale by different manufacturers of medical devices. This has the potential to lead to problems using coaxial systems especially when the products are from different manufacturers. It is recommended that standard labelling should be employed by all manufacturers conveying specific details of the equipment. Given the wide variation in the interpretation of the French scale, our opinion is that this scale either needs to be abandoned or be strictly defined and followed

  4. SU-E-E-06: Teaching Medical Physics in a Radiology Museum

    Energy Technology Data Exchange (ETDEWEB)

    Bednarek, D; Rudin, S [University at Buffalo, Buffalo, NY (United States)

    2014-06-01

    Purpose: To enhance the learning process in the teaching of medical physics by providing a venue to experience the historical equipment and devices of radiology. Methods: We have created a museum by assembling a large collection of equipment and artifacts related to radiology and medical physics. As part of a learning-in-context educational approach, classes for a survey course in medical physics are held in the museum so that students are able to visually and tangibly experience the implements of radiology, while related topics are discussed. The students learn how x-ray equipment and techniques evolved throughout the years and they learn to appreciate the differences and similarities between current x-ray technology and that of the early days. The collection contains items dating from the era of the discovery of x-rays up to recent times and includes gas x-ray tubes, hand-held fluoroscopes, generators, spark-gap kV meters, stereoscopes, glass-plate radiographs, a photofluorographic unit, wood-interspaced grid, flat-panel detector, linear-accelerator klystron, and brachytherapy radium applicators, as well as an extensive library containing some of the seminal literature of the field so that students can delve deeper into the technology. In addition to the classes, guided tours are provided for radiologic-technology, bioengineering, physics and medical students, as well as group and individual tours for the general public. Results: Student course assessments have consistently included positive expressions of their experience in the museum. Numerous students have volunteered to assist with display preparation and have learned by researching the content. Many individuals have been attracted on a walk-in basis and have expressed a deep curiosity in the technology, with positive feedback. Conclusion: The museum and its artifacts have been invaluable in stimulating interest in the history and technology of medical physics. Students and visitors alike obtain a deeper

  5. SU-E-E-06: Teaching Medical Physics in a Radiology Museum

    International Nuclear Information System (INIS)

    Bednarek, D; Rudin, S

    2014-01-01

    Purpose: To enhance the learning process in the teaching of medical physics by providing a venue to experience the historical equipment and devices of radiology. Methods: We have created a museum by assembling a large collection of equipment and artifacts related to radiology and medical physics. As part of a learning-in-context educational approach, classes for a survey course in medical physics are held in the museum so that students are able to visually and tangibly experience the implements of radiology, while related topics are discussed. The students learn how x-ray equipment and techniques evolved throughout the years and they learn to appreciate the differences and similarities between current x-ray technology and that of the early days. The collection contains items dating from the era of the discovery of x-rays up to recent times and includes gas x-ray tubes, hand-held fluoroscopes, generators, spark-gap kV meters, stereoscopes, glass-plate radiographs, a photofluorographic unit, wood-interspaced grid, flat-panel detector, linear-accelerator klystron, and brachytherapy radium applicators, as well as an extensive library containing some of the seminal literature of the field so that students can delve deeper into the technology. In addition to the classes, guided tours are provided for radiologic-technology, bioengineering, physics and medical students, as well as group and individual tours for the general public. Results: Student course assessments have consistently included positive expressions of their experience in the museum. Numerous students have volunteered to assist with display preparation and have learned by researching the content. Many individuals have been attracted on a walk-in basis and have expressed a deep curiosity in the technology, with positive feedback. Conclusion: The museum and its artifacts have been invaluable in stimulating interest in the history and technology of medical physics. Students and visitors alike obtain a deeper

  6. Lack of security of networked medical equipment in radiology.

    Science.gov (United States)

    Moses, Vinu; Korah, Ipeson

    2015-02-01

    OBJECTIVE. There are few articles in the literature describing the security and safety aspects of networked medical equipment in radiology departments. Most radiologists are unaware of the security issues. We review the security of the networked medical equipment of a typical radiology department. MATERIALS AND METHODS. All networked medical equipment in a radiology department was scanned for vulnerabilities with a port scanner and a network vulnerability scanner, and the vulnerabilities were classified using the Common Vulnerability Scoring System. A network sniffer was used to capture and analyze traffic on the radiology network for exposure of confidential patient data. We reviewed the use of antivirus software and firewalls on the networked medical equipment. USB ports and CD and DVD drives in the networked medical equipment were tested to see whether they allowed unauthorized access. Implementation of the virtual private network (VPN) that vendors use to access the radiology network was reviewed. RESULTS. Most of the networked medical equipment in our radiology department used vulnerable software with open ports and services. Of the 144 items scanned, 64 (44%) had at least one critical vulnerability, and 119 (83%) had at least one high-risk vulnerability. Most equipment did not encrypt traffic and allowed capture of confidential patient data. Of the 144 items scanned, two (1%) used antivirus software and three (2%) had a firewall enabled. The USB ports were not secure on 49 of the 58 (84%) items with USB ports, and the CD or DVD drive was not secure on 17 of the 31 (55%) items with a CD or DVD drive. One of three vendors had an insecure implementation of VPN access. CONCLUSION. Radiologists and the medical industry need to urgently review and rectify the security issues in existing networked medical equipment. We hope that the results of our study and this article also raise awareness among radiologists about the security issues of networked medical equipment.

  7. Medical rescue for nuclear or radiologic emergencies

    International Nuclear Information System (INIS)

    Chen Xiaohua; Nie Suifeng

    2011-01-01

    Nuclear or radiologic emergencies are defined as incidents that are caused by radioactive substance or by other sources of radiation and can pose a serious hazard to public health. In case of nuclear or radiologic emergencies, radioactive rays will damage the human body and bring about psychological and mental stress, resulting in a series of social psychological effects. The key to medical rescue for nuclear or radiologic emergencies is to take effective measures which can minimize the body harm resulting from nuclear or radiologic emergencies and maintain social stability. This article reviews the personnel protection, on-the-spot salvage, treatments of various harm, and prevention of public psychological effect following nuclear or radiologic emergencies. (authors)

  8. Medical Device Safety

    Science.gov (United States)

    A medical device is any product used to diagnose, cure, or treat a condition, or to prevent disease. They ... may need one in a hospital. To use medical devices safely Know how your device works. Keep ...

  9. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  10. Implantable Medical Devices

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Implantable Medical Devices Updated:Sep 16,2016 For Rhythm Control ... a Heart Attack Introduction Medications Surgical Procedures Implantable Medical Devices • Life After a Heart Attack • Heart Attack ...

  11. A study on the civil liability of radiological technologist in medical malpractice

    International Nuclear Information System (INIS)

    Lim, Chang Seon

    1995-01-01

    Recently the suits for medical malpractice are gradually increasing in this country. The main purpose of this study is to excavate the most suitable theories about civil liabilities on medical malpractice by radiological technologist. To solve the above-mentioned problems in medical malpractice, I have proceeded to make a survey of traditional theories and tried to excavate the most suitable theories for our medical circumstances among those theories. Both domestic and foreign relevant professional literatures and legal cases were investigated in this study. Several important findings of this study are as follows. First, the nature of legal interrelationship between radiological technologist and physician(or the representative of a hospital) is to define the content of employment. But in the eye of medical law, the interrelationship between radiological technologist and physician is written that radiological technologist should be directed by physician. Second, the nature of legal interrelationship between patient and physician(or the representative of a hospital) is to define the content of legal obligation of physician(or the representative of a hospital), and radiological technologist execute his obligation as proxy for physician. Therefore, patient can not clame any legal right to radiological technologist. Third, radiological technologist has the obligation of Due Care in medical practice. Fourth, on the medical malpractice by radiological technologist the civil liability can be treated as either tortious liability or contractual liability, and physician (or the representative of hospital) take the responsibility for the damage compensation. In this case, physician has the right of indemnity to radiological technologist. But it should be dinied or extremely limited

  12. Evaluation of radiological medical practice during night duty

    International Nuclear Information System (INIS)

    Tasu, J.P.; Rocher, L.; Miquel, A.; Rondeau, Y.; Blery, M.; Nguyen, D.T.; Spira, A.; Livartowski, J.; Ellrodt, A.

    2000-01-01

    To evaluate the radiological activity during night duty, in a University Hospital, during 100 days, the radiological activity has been evaluated from examinations requiring radiologist (including US and CT, special X-ray examinations). The urgent nature and the agreement between the suspected disease and the final diagnose have been compared with the level of the clinician (medical student, resident, senior). 981 radiological examinations were performed on an emergency basis. In 39%, the examination was urgent or very urgent and for 61% little urgent or non-urgent. The level of the clinician was correlated with the degree of emergency evaluated by the radiologist and with the agreement between suspected disease and the final diagnose (p<0.0001). During night duty, the medical activity in radiology is not justified only be emergency, but also the continuous hospital activities. Better formation of the physician is required to limit the number of examinations. (authors)

  13. Planning the medical response to radiological accidents

    International Nuclear Information System (INIS)

    1998-01-01

    Radioactive substances and other sources of ionizing radiation are used to assist in diagnosing and treating diseases, improving agricultural yields, producing electricity and expanding scientific knowledge. The application of sources of radiation is growing daily, and consequently the need to plan for radiological accidents is growing. While the risk of such accidents cannot be entirely eliminated, experience shows that most of the rare cases that have occurred could have been prevented, as they are often caused by human error. Recent radiological accidents such as those at Chernobyl (Ukraine 1986), Goiania (Brazil 1987), San Salvador (El Salvador 1989), Sor-Van (Israel 1990), Hanoi (Viet Nam 1992) and Tammiku (Estonia 1994) have demonstrated the importance of adequate preparation for dealing with such emergencies. Medical preparedness for radiological accidents must be considered an integral part of general emergency planning and preparedness and established within the national framework for radiation protection and safety. An IAEA Technical Committee meeting held in Istanbul in 1988 produced some initial guidance on the subject, which was subsequently developed, reviewed and updated by groups of consultants in 1989, 1992 and 1996. Special comments were provided by WHO, as co-sponsor of this publication, in 1997. This Safety Report outlines the roles and tasks of health authorities and hospital administrators in emergency preparedness for radiological accidents. Health authorities may use this document as the basis for their medical management in a radiological emergency, bearing in mind that adaptations will almost certainly be necessary to take into account the local conditions. This publication also provides information relevant to the integration of medical preparedness into emergency plans

  14. Medical Student Perceptions of Radiology Use in Anatomy Teaching

    Science.gov (United States)

    Murphy, Kevin P.; Crush, Lee; O'Malley, Eoin; Daly, Fergus E.; Twomey, Maria; O'Tuathaigh, Colm M. P.; Maher, Michael M.; Cryan, John F.; O'Connor, Owen J.

    2015-01-01

    The use of radiology in the teaching of anatomy to medical students is gaining in popularity; however, there is wide variation in how and when radiology is introduced into the curriculum. The authors sought to investigate students' perceptions regarding methods used to depict and teach anatomy and effects of integrated radiology instruction on…

  15. Radiology and Enterprise Medical Imaging Extensions (REMIX).

    Science.gov (United States)

    Erdal, Barbaros S; Prevedello, Luciano M; Qian, Songyue; Demirer, Mutlu; Little, Kevin; Ryu, John; O'Donnell, Thomas; White, Richard D

    2018-02-01

    Radiology and Enterprise Medical Imaging Extensions (REMIX) is a platform originally designed to both support the medical imaging-driven clinical and clinical research operational needs of Department of Radiology of The Ohio State University Wexner Medical Center. REMIX accommodates the storage and handling of "big imaging data," as needed for large multi-disciplinary cancer-focused programs. The evolving REMIX platform contains an array of integrated tools/software packages for the following: (1) server and storage management; (2) image reconstruction; (3) digital pathology; (4) de-identification; (5) business intelligence; (6) texture analysis; and (7) artificial intelligence. These capabilities, along with documentation and guidance, explaining how to interact with a commercial system (e.g., PACS, EHR, commercial database) that currently exists in clinical environments, are to be made freely available.

  16. Main radiation protection actions for medical personnel as primary responders front of an event with radiological dispersive device; Principais acoes de protecao radiologica para equipe medica como primeiros respondedores frente a um evento com dispositivo de dispersao radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Duque, Hildanielle Ramos

    2015-07-01

    After the terrorist attack in New York, USA, in 2001, there was a worldwide concern about possible attacks using radioactive material in conventional detonators, called as Radiological Dispersal Device (RDD) or 'dirty bomb'. Several studies have been and are being made to form a global knowledge about this type of event. As until now, fortunately, there has not been an event with RDD, the Goiania Radiological Accident in Brazil, 1987, is used as a reference for decision-making. Several teams with technical experts should act in an event with RDD, but the medical staffs who respond quickly to the event must be properly protected from the harmful effects of radiation. Based on the radiological protection experts performance during the Goiania accident and the knowledge from lessons learned of many radiological accidents worldwide, this work presents an adaptation of the radiation protection actions for an event with RDD that helps a medical team as primary responders. The following aspects are presented: the problem of radioactive contamination from the explosion of the device in underground environment, the actions of the first responders and evaluation of health radiation effects. This work was based on specialized articles and papers about radiological accidents and RDD; as well as personal communication and academic information of the Institute of Radiation Protection and Dosimetry. The radiation protection actions, adapted to a terrorist attack event with RDD, have as a scenario a subway station in the capital. The main results are: the use of the basic radiation protection principle of time because there is no condition to take care of a patient keeping distance or using a shielding; the use of full appropriate protection cloths for contaminating materials ensuring the physical safety of professionals, and the medical team monitoring at the end of a medical procedure, checking for surface contamination. The main conclusion is that all medical actions

  17. Medical management of radiological accidents in non-specialized clinics: mistakes and lessons

    International Nuclear Information System (INIS)

    Jikia, D.

    2009-01-01

    In 1996-2002 three radiological accidents were developed in Georgia. There were some people injured in those accidents. During medical management of the injured some mistakes and errors were revealed both in diagnostics and scheme of the treatment. The goal of this article is to summarize medical management of the mentioned radiological accidents, to estimate reasons of mistakes and errors, to present the lessons drawn in result of Georgia radiological accidents. There was no clinic with specialized profile and experience. Accordingly due to having no relevant experience late diagnosis can be considered as the main error. It had direct influence on the patients' health and results of treatment. Lessons to be drawn after analyzing Georgian radiological accidents: 1. informing medical staff about radiological injuries (pathogenesis, types, symptoms, clinical course, principles of treatment and etc.); 2. organization of training and meetings in non-specialized clinics or medical institutions for medical staff; 3. preparation of informational booklets and guidelines.(author)

  18. Paleontology investigations aided by medical radiology

    International Nuclear Information System (INIS)

    Lansu, M.J.; Carpenter, K.; Albano, J.; Meals, R.; Brady, L.W.

    1987-01-01

    Medical radiology instruments provide useful tools for nondestructive investigations in other scientific fields. To date, 15 paleontology specimens have been studied using conventional diagnostic units, therapy simulators, and CT scanners. Most specimens, individual marine animals or large dinosaur heads, needed a combination of studies to complete the investigation. Among the results shown are the inner ear of a Plesiosaurus, which is 76 million years old, and a pearl attached to an extinct clam species, which is 1 million years old. The results confirm the usefulness of radiology as a tool in the field of paleontology

  19. Training for the medical response in radiological emergency experiences and results

    International Nuclear Information System (INIS)

    Cardenas Herrera, J.; Lopez Forteza, Y.

    2003-01-01

    The use of the nuclear techniques int he social practice confers a special imporatnce to the relative aspects to the safety of the practices and radiationsources, for what the implementation of efficient programs of radiation protection constitutes a priority. However in spite of the will before expressed, regrettably radiological situations happen accidental assocaited to multiple causes taht suggest the creation of response capacities to intervention before these fortuitous facts. The experiences accumulated in the last decades related with accidental exposures have evidenced the convenience of having properly qualified human resources for the Medical Response in Radiological Emergencies. The training in the medical aspects of the radiological emergencies acquires a singular character. In such a sense when valuing the national situation put onof manifest deficiences as for the training in medical aspects of the radiological emergencies that advised the development of training programs in such aspects for the different response groups linked to the topic. After identified the training necessities and the scope of the same ones, the contents of the training program were elaborated. The program has as general purpose the invigoration of the capacity of the medical response in front of accidental radiological situations, by means of actions that they bear to prepare groups of medical response in the handling of people accident victims and to the identification of potentials,accidental scenarios, as well as of the necessary resources to confront them. The program content approaches theoretical and paractical aspects to the medical aspect to radiological emergencies. The program include the different topics about fundamental of physical biological to radiation protection, radiation protection during exposure of radiological accidents, medical care for overexposed or contaminated persons, drill, exercises and concludes with designation of a strategy as preparation and

  20. Device for direct digitized radiology of small objects

    International Nuclear Information System (INIS)

    Thomas, G.; Favier, C.; Brebant, C.; Mogavero, R.

    1983-06-01

    A radiological device has been developed to obtain direct digitized views with a large integration time. A micro computer system with programs specially developed for the automatic materials defects evaluation is used. Some results concerning the weldings of electro-nuclear fuel pins are presented here [fr

  1. JOURNAL CLUB: Redefining the Radiology Curriculum in Medical School: Vertical Integration and Global Accessibility.

    Science.gov (United States)

    Retrouvey, Michele; Trace, Anthony Paul; Goodmurphy, Craig W; Shaves, Sarah

    2018-01-01

    Radiology interconnects medical disciplines given that a working understanding of imaging is essential to clinicians of every specialty. Using online education, we created a globally accessible, web-based undergraduate medical radiology curriculum modeled after the National Medical Student Curriculum in Radiology program of the Alliance of Medical Student Educators in Radiology. Seventy-four radiology faculty-mentored video modules were produced, 50 of which were integrated into the 1st-year anatomy course. We administered tests to medical students before and after students saw the videos to assess the effectiveness of the modules. We surveyed students on their interests in pursuing radiology as a career before and after participating in this curriculum. On the preexamination questions, the mean score was 58.0%, which increased to 83.6% on the pair-matched imaging-related questions on the actual examination. Before participating in the new curriculum, 88% of students did not express an interest in radiology, and 9% were undecided about radiology as a future career. There was an increase in students who reported that they would definitely or most likely pursue a career in radiology (7%) after they had viewed the lectures. Radiology education is now available to a greater number of multidisciplinary learners worldwide. This project produced a comprehensive, globally accessible radiology curriculum in a self-paced, flexible learning format for new generations of physicians.

  2. Class 1 devices case studies in medical devices design

    CERN Document Server

    Ogrodnik, Peter J

    2014-01-01

    The Case Studies in Medical Devices Design series consists of practical, applied case studies relating to medical device design in industry. These titles complement Ogrodnik's Medical Device Design and will assist engineers with applying the theory in practice. The case studies presented directly relate to Class I, Class IIa, Class IIb and Class III medical devices. Designers and companies who wish to extend their knowledge in a specific discipline related to their respective class of operation will find any or all of these titles a great addition to their library. Class 1 Devices is a companion text to Medical Devices Design: Innovation from Concept to Market. The intention of this book, and its sister books in the series, is to support the concepts presented in Medical Devices Design through case studies. In the context of this book the case studies consider Class I (EU) and 510(k) exempt (FDA) . This book covers classifications, the conceptual and embodiment phase, plus design from idea to PDS. These title...

  3. Integrating radiology vertically into an undergraduate medical education curriculum: a triphasic integration approach

    Directory of Open Access Journals (Sweden)

    Al Qahtani F

    2014-06-01

    Full Text Available Fahd Al Qahtani,1 Adel Abdelaziz2,31Radiology Department, Faculty of Medicine, Al-Baha University, Al-Baha, Saudi Arabia; 2Medical Education Development Unit, Faculty of Medicine, Al-Baha University, Al-Baha, Saudi Arabia; 3Medical Education Department, Faculty of Medicine, Suez Canal University, Ismailia, EgyptAbstract: Fulfilling the goal of integrating radiology into undergraduate medical curricula is a real challenge due to the enduring faith assuming that traditional medical disciplines are worthy of consuming the available study time. In this manner, radiology is addressed occasionally and with relevance to these traditional disciplines. In Al-Baha University Faculty of Medicine, Al-Baha, Saudi Arabia, efforts have been made to integrate radiology vertically and in a structured manner into the undergraduate curriculum from the first year to the sixth year. For achieving convenient integration of radiology, a triphasic approach to integration is adopted. This approach consists of the integration of radiology foundations into the basic sciences phase, development of a distinct 4-week module in year 4, and finally, integration of clinical applications of radiology in the clinical phase modules. Feedback of students and inferences obtained through assessment and program evaluation are in favor of this approach to integration. Minor reform and some improvement related to time allocated and content balancing are still indicated.Keywords: radiology foundations, radiology module, students assessment

  4. Case outsourcing medical device reprocessing.

    Science.gov (United States)

    Haley, Deborah

    2004-04-01

    IN THE INTEREST OF SAVING MONEY, many hospitals are considering extending the life of some single-use medical devices by using medical device reprocessing programs. FACILITIES OFTEN LACK the resources required to meet the US Food and Drug Administration's tough quality assurance standards. BY OUTSOURCING, hospitals can reap the benefits of medical device reprocessing without assuming additional staffing and compliance burdens. OUTSOURCING enables hospitals to implement a medical device reprocessing program quickly, with no capital investment and minimal effort.

  5. Study on the action guidelines for medical support team for nuclear and radiological emergency

    International Nuclear Information System (INIS)

    Liu Chang'an; Liu Ying; Geng Xiusheng

    2006-01-01

    Objective: To study the action guidelines for medical support team for nuclear and radiological emergency. Methods: It is based on the experience and lessons learned in the course of meeting the emergencies preparedness and response of nuclear and radiological emergencies in China and abroad with the reference of the relevant reports of International Atomic Energy Agency. Results: Essential requirements and practical recommendations for the roles, responsibilities, emergency preparedness, principles and procedures of medical assistance at the scene, as well as the radiological protection of medical support team were provided. Conclusion: The document mentioned above can be applied to direct the establishment, effective medical preparedness and response of the medical support team for nuclear and radiological emergency. (authors)

  6. The preference of radiology as a postgraduate medical specialty ...

    African Journals Online (AJOL)

    Background: Recruitment into medical specialties outside the core clinical departments remains a stumbling block to advancing medical practice in Nigeria. We set out to determine the factors influencing choice of diagnostic radiology as a field of specialization by the final year medical students in Usmanu Danfodiyo ...

  7. The Stability of Factors Influencing the Choice of Medical Specialty Among Medical Students and Postgraduate Radiology Trainees.

    Science.gov (United States)

    Yen, Adam J; Webb, Emily M; Jordan, Eric J; Kallianos, Kimberly; Naeger, David M

    2018-06-01

    To investigate whether general psychological motivating factors that guide career selection of a medical specialty differ over the course of medical school and to compare differences in motivating factors among students choosing "controllable" lifestyle specialties, students choosing "uncontrollable" lifestyle specialties, and a cohort of radiology residents. An anonymous survey was distributed to first- through fourth-year medical students and radiology residents at a single institution. Participants were asked to select their top three of seven factors that most influenced their choice of medical specialty. Fourth-year students were asked to designate the specialty to which they had applied. The survey was distributed to 259 students and 47 radiology residents with a response rate of 93.8% (243 of 259) and 95.7% (45 of 47), respectively. The top three factors indicated by medical students were finding the daily work fulfilling, work-life balance, and interest in the subject. These top three factors were common to all medical student classes and did not differ between students choosing "controllable" versus "uncontrollable" fields. The factors uncommonly selected were similar personality to others in the field, attending income, competitiveness or prestige, and job market conditions. For radiology residents, the top three motivating factors were the same as for medical students. Three out of seven motivating factors were universally important to trainees, regardless of their stage of medical training or their selection of a controllable versus uncontrollable lifestyle specialty. These data suggest the variety of career choices made by students may not derive from differing underlying values. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. Protective effect of lead aprons in medical radiology

    International Nuclear Information System (INIS)

    Huyskens, C.J.

    1995-01-01

    This article summarizes the results of an ongoing study regarding the protective effect that lead aprons, as used in medical radiology, have on the resulting effective dose for medical personnel. By means of model calculations we have analyzed the protection efficacy of lead aprons for various lead thicknesses, in function of tube potential and of variations in exposure geometry as they occur in practice. The degree of efficacy appears to be highly dependent on the fit of aprons because of the dominating influence of the equivalent dose of partially unshielded organs on the resulting effective dose. Also by model calculations we investigated the ratio between the effective dose and the operational quantify for personal dose monitoring. Our study enables the choice of appropriate correction factors for convering personal dosimetry measurements into effective dose, for typical exposure situations in medical radiology. (orig.) [de

  9. Undergraduate radiology education in the era of dynamism in medical curriculum: An educational perspective

    Energy Technology Data Exchange (ETDEWEB)

    Pascual, Thomas N.B., E-mail: T.Pascual@iaea.org [Section of Nuclear Medicine and Diagnostic Imaging, Division of Human Health, International Atomic Energy Agency (I.A.E.A.), Vienna International Centre, PO Box 100, Vienna (Austria); Chhem, Rethy, E-mail: R.Chhem@iaea.org [Division of Human Health, International Atomic Energy Agency, International Atomic Energy Agency (I.A.E.A.), Vienna International Centre, PO Box 100, Vienna (Austria); Wang, Shih-Chang, E-mail: shih-chang.wang@sydney.edu.au [University of Sydney Discipline of Imaging, University of Sydney, Department of Radiology, Westmead Hospital, Hawkesbury Road, Westmead, NSW 2145 (Australia); Vujnovic, Sasa, E-mail: svujnovic@yahoo.com [Department of Radiology, Clinical Center Banja Luka, Zdrave Korda 1, 51000 Banja Luka (Bosnia and Herzegowina)

    2011-06-15

    Radiology undergraduate curriculum has undergone a tremendous transformation in the decades reflecting a change in the structure, content and delivery of instruction. These changes are not unique to the discipline, but rather a response in the cycle of the re-engineering process in the medical curriculum in order to ensure its proper role into the ever-changing context. Radiology education is now more integrated across the curriculum than ever. The diversity of how radiology is being taught within the medical undergraduate curriculum is extensive and promising with the expanding role of the radiologist in the spectrum within the medical curriculum. A strong interface between the medical student and the clinicians must always be integrated in the learning process in order to convey the essential and practical use of the different aspects of radiology essential to the student's career as a future clinician. With the recent advancement in educational and technological innovations, radiology education is mobilized in the most pioneering ways, stimulating a rekindled interest in the field of medical imaging. This paper describes the increasing interest in current role of undergraduate radiology education in the context of constant medical curriculum innovations and in the digital age.

  10. Undergraduate radiology education in the era of dynamism in medical curriculum: An educational perspective

    International Nuclear Information System (INIS)

    Pascual, Thomas N.B.; Chhem, Rethy; Wang, Shih-Chang; Vujnovic, Sasa

    2011-01-01

    Radiology undergraduate curriculum has undergone a tremendous transformation in the decades reflecting a change in the structure, content and delivery of instruction. These changes are not unique to the discipline, but rather a response in the cycle of the re-engineering process in the medical curriculum in order to ensure its proper role into the ever-changing context. Radiology education is now more integrated across the curriculum than ever. The diversity of how radiology is being taught within the medical undergraduate curriculum is extensive and promising with the expanding role of the radiologist in the spectrum within the medical curriculum. A strong interface between the medical student and the clinicians must always be integrated in the learning process in order to convey the essential and practical use of the different aspects of radiology essential to the student's career as a future clinician. With the recent advancement in educational and technological innovations, radiology education is mobilized in the most pioneering ways, stimulating a rekindled interest in the field of medical imaging. This paper describes the increasing interest in current role of undergraduate radiology education in the context of constant medical curriculum innovations and in the digital age.

  11. Results of questionnaire to members of Japanese college of radiology. Their attitude and act for medical exposure

    International Nuclear Information System (INIS)

    Hirata, Hideki; Ohno, Kazuko; Saito, Tsutomu; Furui, Shigeru; Ogata, Hiromitsu; Sakai, Kazuo

    2013-01-01

    This paper describes results of questionnaire conducted to members of Japanese College of Radiology (JCR) about their attitude and act for medical exposure. It asked, concerning medical exposure, about their attribute, attitude, education and knowledge, awareness at routine clinical practice and about occupational dose; was sent to 5,135 JCR members in September, 2011 for sending back within a month; and was replied by 1,177 members (22.9%), of which data were analyzed by chi-square distribution. Answered doctors (M/F of ca. 3/1, 30-59 years old) concerned with the actual practice (89.5%) for >10 years (ca. 67%) and >6 y (ca. 80) of imaging diagnosis (ca. 70%), radiotherapy (ca. 15) and nuclear medicine ( 300-bed hospital (ca. 70%). They were always or often aware of the medical exposure (>90%); their significantly high awareness was found in hospitals having >4 radiological doctors; and their awareness was significantly correlated with the population of their service area. They were also aware at CT (38%), IVR (interventional radiology) (27), radiotherapy (10) and PET (12), for patients of pediatrics (31%), of pregnancy-possible women (27), receiving frequent tests (30) and undergoing pelvic region imaging (12). Frequent questions to them arose from departments of nurse (28%), pediatrics (18), radiology (17), gynecology (13) and internal medicine (12); from patients often (5%), sometimes (28), rarely (55%) and null (12%). Significant relationship was found between questions by patients and the bed number/number of radiological doctors/population of medical service area. About 90% of doctors joined the education and training course always, often, or sometimes and about 40% of whom recognized its effectiveness. For accumulated dose restriction, 69.8% of doctors thought negative for patients while 72.1%, positive for volunteers in clinical trials (significant). Doctors who didn't explained patients about the exposure were 16%. Those highly aware of exposure wore the

  12. Analysis of radiology education in undergraduate medical doctors training in Europe

    International Nuclear Information System (INIS)

    Kourdioukova, Elena V.; Valcke, Martin; Derese, Anselme; Verstraete, Koenraad L.

    2011-01-01

    Objectives: The purpose of the present study is to describe how undergraduate radiology teaching is organized in Europe and to identify important characteristics of undergraduate radiology curriculum. Methods: An electronic survey on undergraduate teaching was distributed by the European Society of Radiology (ESR) to 38 national delegates of the ESR Education Committee. Results: The 'classic type' of radiology teaching method is more frequent than the 'modular type'. In 38% of medical training centres the first experience with radiology is in pre-clinical years. The students enrolled in the fourth medical year experience the largest involvement in radiology education. The total number of teaching hours (mean 89 h, median 76 h) varies across the countries and differs depending on the radiological topic (mean across all topics 14.8 h, median 13). Written tests and oral exams were the most frequently used examination modes. Clerkships are reported as a key part of training. Conclusion: This first international comparative study of undergraduate radiological curriculum in Europe identifies a large number of differences in curriculum content and teaching methods throughout Europe. More research is needed to establish the radiological educational competences resulting from these differing curricula's to improve and to standardize the teaching according to (inter)national and institutional needs.

  13. Medical device-related pressure ulcers

    Directory of Open Access Journals (Sweden)

    Black JM

    2016-08-01

    Full Text Available Joyce M Black,1 Peggy Kalowes2 1Adult Health and Illness Department, College of Nursing, University of Nebraska Medical Center, Omaha, NE, 2Nursing Research and Innovation, Long Beach Memorial Miller Children’s & Women’s Hospital, Long Beach, CA, USA Abstract: Pressure ulcers from medical devices are common and can cause significant morbidity in patients of all ages. These pressure ulcers appear in the shape of the device and are most often found from the use of oxygen delivery devices. A hospital program designed to reduce the number of pressure ulcers from medical devices was successful. The program involved the development of a team that focused on skin, the results were then published for the staff to track their performance, and it was found that using foam dressings helped reduce the pressure from the device. The incidence of ulcers from medical devices has remained at zero at this hospital since this program was implemented. Keywords: pressure ulcer, medical device related

  14. Human Factors and Medical Devices

    International Nuclear Information System (INIS)

    Dick Sawyer

    1998-01-01

    Medical device hardware- and software-driven user interfaces should be designed to minimize the likelihood of use-related errors and their consequences. The role of design-induced errors in medical device incidents is attracting widespread attention. The U.S. Food and Drug Administration (FDA) is fully cognizant that human factors engineering is critical to the design of safe medical devices, and user interface design is receiving substantial attention by the agency. Companies are paying more attention to the impact of device design, including user instructions, upon the performance of those health professionals and lay users who operate medical devices. Concurrently, the FDA is monitoring human factors issues in its site inspections, premarket device approvals, and postmarket incident evaluations. Overall, the outlook for improved designs and safer device operation is bright

  15. Comparative Study on Radiological Impact Due To Direct Exposure to a Radiological Dispersal Device Using A Sealed Radiation Source

    International Nuclear Information System (INIS)

    Margeanu, C.A.

    2011-01-01

    Nowadays, one of the most serious terrorist threats implies radiological dispersal devices (RDDs), the so-called dirty bombs, that combine a conventional explosive surrounded by an inflammatory material (like thermit) with radioactive material. The paper objective is to evaluate the radiological impact due to direct exposure to a RDD using a sealed radiation source (used for medical and industrial applications) as radioactive material. The simulations were performed for 60Co, 137Cs and 192Ir radiation sources. In order to model the contamination potential level and radiation exposure due to radioactive material spreading from RDD, Lawrence Livermore National Laboratory's HOTSPOT 2.07 computer code was used. The worst case scenario has been considered, calculations being performed for two radioactive material dispersion models, namely General radioactive Plume and General Explosion. Following parameters evolution with distance from the radiation source was investigated: total effective dose equivalent, time-integrated air concentration, ground surface deposition and ground shine dose rates. Comparisons between considered radiation sources and radioactive material dispersion models have been performed. The most drastic effects on population and the environment characterize 60Co sealed radiation source use in RDD.

  16. Diagnostic efficacy of handheld devices for emergency radiologic consultation.

    LENUS (Irish Health Repository)

    Toomey, Rachel J

    2010-02-01

    Orthopedic injury and intracranial hemorrhage are commonly encountered in emergency radiology, and accurate and timely diagnosis is important. The purpose of this study was to determine whether the diagnostic accuracy of handheld computing devices is comparable to that of monitors that might be used in emergency teleconsultation.

  17. [Medical Devices Law for pain therapists].

    Science.gov (United States)

    Regner, M; Sabatowski, R

    2016-08-01

    Medical Devices Law is a relatively new legal system, which has replaced the Medical Devices Regulations still well-known in Germany. German Medical Devices Law is based on European directives, which are, in turn, incorporated into national law by the Medical Devices Act. The Medical Devices Act is a framework law and covers a number of regulations that address specific topics within Medical Devices Law. In turn, in individual regulations, reference is made to guidelines, recommendations, etc. from other sources that provide detailed technical information on specific topics. Medical Devices Law is a very complex legal system, which needs to be permanently observed due to constant updating and adjustment. In the current article, the design and the structure of the system will be described, but special emphasis will be laid on important problem areas that need to be considered when applying and operating medical products, in this case by pain therapists in particular.

  18. The state of radiologic teaching practice in preclinical medical education: survey of American medical, osteopathic, and podiatric schools.

    Science.gov (United States)

    Rubin, Zachary; Blackham, Kristine

    2015-04-01

    This study describes the state of preclinical radiology curricula in North American allopathic, osteopathic, and podiatric medical schools. An online survey of teaching methods, radiology topics, and future plans was developed. The Associations of American Medical Colleges, Colleges of Osteopathic Medicine, and Colleges of Podiatric Medicine listing for all US, Canadian, and Puerto Rican schools was used for contact information for directors of anatomy and/or radiology courses. Letters were sent via e-mail to 198 schools, with a link to the anonymous survey. Of 198 schools, 98 completed the survey (48%). Radiology curricula were integrated with other topics (91%), and taught by anatomists (42%) and radiologists (43%). The majority of time was spent on the topic of anatomy correlation (35%). Time spent teaching general radiology topics in the curriculum, such as physics (3%), modality differences (6%), radiation safety (2%), and contrast use (2%) was limited. Most schools had plans to implement an innovative teaching method in the near future (62%). The major challenges included limits on: time in the curriculum (73%); resources (32%); and radiology faculty participation (30%). A total of 82% reported that their curriculum did not model the suggestions made by the Alliance of Medical Student Educators in Radiology. This survey describes the current state of preclinical radiology teaching: curricula were nonstandard, integrated into other courses, and predominantly used for anatomy correlation. Other important contextual principles of the practice of radiology were seldom taught. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  19. Medical SisRadiologia: a new software tool for analysis of radiological accidents and incidents in medical radiology

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Camila M. Araujo; Silva, Francisco C.A. da, E-mail: araujocamila@yahoo.com.br, E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Araujo, Rilton A.; Pelegrineli, Samuel Q., E-mail: consultoria@maximindustrial.com.br, E-mail: samuelfisica@maximindustrial.com.br [Maxim Industrial, Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The man's exposure to ionizing radiation in health are has increased considerably due not only the great request of medical examinations as well as the improvement of the techniques used in diagnostic imaging, for example, equipment for conventional X-rays, CT scans, mammography, hemodynamic and others. Although the benefits of using of radiology techniques are unquestionable, the lack of training in radiation protection of the workers, associated with procedure errors, have been responsible for the increasing number of radiation overexposures of these workers. Sometimes these high doses are real and there is a true radiological accident. The radiation workers, named occupationally Exposed Individual (IOE), must comply with two national regulations: Governmental Decree 453/1998 of the National Agency of Sanitary Surveillance (Portaria 453/1998 ANVISA Agencia Nacional de Vigilancia Sanitaria), which establishes the basic guidelines for radiation protection in medial and dental radiology and; the Governmental Decree NR-32/2002 of the Ministry of Labour and Employment (Ministerio do Trabalho e Emprego), which establishes the basic guidelines for the worker's health. The two mandatory regulations postulate a detailed investigation in the event of radiation overexposure of an IOE. In order to advice the diagnostic institution to perform an efficient analysis, investigation and report of high doses, it is proposed the use of a computational tool named 'Medical SisRadiologia'. This software tool enables the compilation and record of radiological abnormal data occurred in a diagnostic institution. It will also facilitate the detailed analysis of the event and will increase the effectiveness and development of work performed by the Radiation Protection Service. At the end, a technical report is issued, in accordance with the regulations of the technical regulations, which could also be used as training tool to avoid another event in the future. (author)

  20. Medical SisRadiologia: a new software tool for analysis of radiological accidents and incidents in medical radiology

    International Nuclear Information System (INIS)

    Lima, Camila M. Araujo; Silva, Francisco C.A. da; Araujo, Rilton A.; Pelegrineli, Samuel Q.

    2013-01-01

    The man's exposure to ionizing radiation in health are has increased considerably due not only the great request of medical examinations as well as the improvement of the techniques used in diagnostic imaging, for example, equipment for conventional X-rays, CT scans, mammography, hemodynamic and others. Although the benefits of using of radiology techniques are unquestionable, the lack of training in radiation protection of the workers, associated with procedure errors, have been responsible for the increasing number of radiation overexposures of these workers. Sometimes these high doses are real and there is a true radiological accident. The radiation workers, named occupationally Exposed Individual (IOE), must comply with two national regulations: Governmental Decree 453/1998 of the National Agency of Sanitary Surveillance (Portaria 453/1998 ANVISA Agencia Nacional de Vigilancia Sanitaria), which establishes the basic guidelines for radiation protection in medial and dental radiology and; the Governmental Decree NR-32/2002 of the Ministry of Labour and Employment (Ministerio do Trabalho e Emprego), which establishes the basic guidelines for the worker's health. The two mandatory regulations postulate a detailed investigation in the event of radiation overexposure of an IOE. In order to advice the diagnostic institution to perform an efficient analysis, investigation and report of high doses, it is proposed the use of a computational tool named 'Medical SisRadiologia'. This software tool enables the compilation and record of radiological abnormal data occurred in a diagnostic institution. It will also facilitate the detailed analysis of the event and will increase the effectiveness and development of work performed by the Radiation Protection Service. At the end, a technical report is issued, in accordance with the regulations of the technical regulations, which could also be used as training tool to avoid another event in the future. (author)

  1. [A survey of medical information education in radiological technology schools].

    Science.gov (United States)

    Ohba, Hisateru; Ogasawara, Katsuhiko; Hoshino, Shuhei; Hosoba, Minoru; Okuda, Yasuo; Konishi, Yasuhiko; Ikeda, Ryuji

    2010-08-20

    The purpose of this study was to clarify actual conditions and problems in medical information education and to propose the educational concept to be adopted in medical information. A questionnaire survey was carried out by the anonymous method in June 2008. The survey was intended for 40 radiological technology schools. The questionnaire items were as follows: (1) educational environment in medical information education, (2) content of a lecture in medical information, (3) problems in medical information education. The response rate was 55.0% (22 schools). Half of the responding schools had a laboratory on medical information. Seventeen schools had a medical information education facility, and out of them, approximately 50% had an educational medical information system. The main problems of the medical information education were as follows: (a) motivation of the students is low, (b) the educational coverage and level for medical information are uncertain, (c) there are not an appropriate textbook and educational guidance. In conclusion, these findings suggest that it is necessary to have a vision of medical information education in the education of radiological technologists.

  2. A survey of medical information education in radiological technology schools

    International Nuclear Information System (INIS)

    Ohba, Hisateru; Ogasawara, Katsuhiko; Hoshino, Shuhei; Hosoba, Minoru; Okuda, Yasuo; Konishi, Yasuhiko; Ikeda, Ryuji

    2010-01-01

    The purpose of this study was to clarify actual conditions and problems in medical information education and to propose the educational concept to be adopted in medical information. A questionnaire survey was carried out by the anonymous method in June 2008. The survey was intended for 40 radiological technology schools. The questionnaire items were as follows: educational environment in medical information education, content of a lecture in medical information, problems in medical information education. The response rate was 55.0% (22 schools). Half of the responding schools had a laboratory on medical information. Seventeen schools had a medical information education facility, and out of them, approximately 50% had an educational medical information system. The main problems of the medical information education were as follows: motivation of the students is low, the educational coverage and level for medical information are uncertain, there are not an appropriate textbook and educational guidance. In conclusion, these findings suggest that it is necessary to have a vision of medical information education in the education of radiological technologists. (author)

  3. Radiation safety knowledge of medical center radiology technologists in southern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Su Wen-Chuan; Huang Ying-Fong; Chen Cheng-Chung; Chang Pao-Shu [Kaohsiung Medical University, Taiwan (China)

    2000-05-01

    People who live in Taiwan are getting more and more afraid of radiation. Sometimes the phobia results from distorted knowledge. Radiology technologists, in one hand, are more well-educated in radiation and, in the other hand, have more chance to expose to radiation when they are operating radiation producing medical instruments in their daily life. So we are interested in whether they have enough knowledge to protect themselves. We pick up the radiology technology board examination to make the questionnaire for this study. The population is the radiology technologists who work at department of diagnostic radiology, of radiation therapy and nuclear medicine in medical centers. Statistics is then used to see the relationship between knowledge and the factors including gender, age and career period. Based on statistics, we find out that there is significant correlation between the knowledge with age or education level. Elder or lower education level ones has worse knowledge. Continued education may be highly recommended for radiology technologists to avoid occupational radiation injury. (author)

  4. Radiation safety knowledge of medical center radiology technologists in southern Taiwan

    International Nuclear Information System (INIS)

    Su Wen-Chuan; Huang Ying-Fong; Chen Cheng-Chung; Chang Pao-Shu

    2000-01-01

    People who live in Taiwan are getting more and more afraid of radiation. Sometimes the phobia results from distorted knowledge. Radiology technologists, in one hand, are more well-educated in radiation and, in the other hand, have more chance to expose to radiation when they are operating radiation producing medical instruments in their daily life. So we are interested in whether they have enough knowledge to protect themselves. We pick up the radiology technology board examination to make the questionnaire for this study. The population is the radiology technologists who work at department of diagnostic radiology, of radiation therapy and nuclear medicine in medical centers. Statistics is then used to see the relationship between knowledge and the factors including gender, age and career period. Based on statistics, we find out that there is significant correlation between the knowledge with age or education level. Elder or lower education level ones has worse knowledge. Continued education may be highly recommended for radiology technologists to avoid occupational radiation injury. (author)

  5. Features and limitations of mobile tablet devices for viewing radiological images.

    Science.gov (United States)

    Grunert, J H

    2015-03-01

    Mobile radiological image display systems are becoming increasingly common, necessitating a comparison of the features of these systems, specifically the operating system employed, connection to stationary PACS, data security and rang of image display and image analysis functions. In the fall of 2013, a total of 17 PACS suppliers were surveyed regarding the technical features of 18 mobile radiological image display systems using a standardized questionnaire. The study also examined to what extent the technical specifications of the mobile image display systems satisfy the provisions of the Germany Medical Devices Act as well as the provisions of the German X-ray ordinance (RöV). There are clear differences in terms of how the mobile systems connected to the stationary PACS. Web-based solutions allow the mobile image display systems to function independently of their operating systems. The examined systems differed very little in terms of image display and image analysis functions. Mobile image display systems complement stationary PACS and can be used to view images. The impacts of the new quality assurance guidelines (QS-RL) as well as the upcoming new standard DIN 6868 - 157 on the acceptance testing of mobile image display units for the purpose of image evaluation are discussed. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Specialising in radiology in Switzerland: Still attractive for medical school graduates?

    International Nuclear Information System (INIS)

    Buddeberg-Fischer, B.; Hoffmann, A.; Christen, S.; Weishaupt, D.; Kubik-Huch, R.A.

    2012-01-01

    Purpose: To gain insight into the professional characteristics of radiologists in Switzerland and to determine how to enhance the attractiveness of radiology to medical graduates as a specialty. Materials and methods: Data from 262 members of the Swiss Society of Radiology (m:f = 76:24%) obtained in a questionnaire survey were analysed regarding socio-demographic variables, working status, specialty, main fields of interest, career success, mentoring and reasons for the shortage of radiologists. Results: 35 (56.4%) female and 85 (45.5%) male radiologists were aged ≤45 years. 228 (87%) were board-certified; 44 (17.9%) had completed a sub-specialisation. Men worked part-time mostly just before retirement, while women worked part-time at a younger age. As reasons for specialty choice, the wide range of clinical work and the combination of technology and medicine were ranked highest. Women reported significantly less career success and support. To improve the attractiveness of radiology to graduates, radiology should be visible on medical school curricula. Conclusion: In Switzerland, more female radiologists work part-time than male ones, and there is less career success and support for women. In order to make radiology more attractive to medical graduates as a specialty, structured residency programmes and reliable gender-respecting career support are needed.

  7. Role and responsibilities of medical physicists in radiological protection of patients

    International Nuclear Information System (INIS)

    Niroomand-Rad, A.

    2001-01-01

    The paper provides a brief history of the International Organization for Medical Physics (IOMP), followed by some general comments on the radiological protection of patients. The importance of establishing scientific guidelines and professional standards is emphasized, as is the need to ensure the protection of patients undergoing radiation therapy. The responsibility of qualified medical physicists in the protection of patients in nuclear medicine and in diagnostic and interventional radiology is also discussed. (author)

  8. Medical imaging physics teaching to radiologic technologists in Kuwait

    International Nuclear Information System (INIS)

    Ballani, Nasser S.; Sukkar, Ibrahim

    2005-01-01

    Physics of X-radiation and medical imaging is an important subject (among others) in the education and preparation of skilful and problem-solving radiologic technologists. This short communication gives a brief explanation of the physics courses at the Department of Radiologic Science, Faculty of Allied Health Sciences, Kuwait University, Kuwait. The methods of teaching and assessing the physics courses offered to radiographers as part of their education are also explained

  9. Medical device software: defining key terms.

    Science.gov (United States)

    Pashkov, Vitalii; Gutorova, Nataliya; Harkusha, Andrii

    one of the areas of significant growth in medical devices has been the role of software - as an integral component of a medical device, as a standalone device and more recently as applications on mobile devices. The risk related to a malfunction of the standalone software used within healthcare is in itself not a criterion for its qualification or not as a medical device. It is therefore, necessary to clarify some criteria for the qualification of stand-alone software as medical devices Materials and methods: Ukrainian, European Union, United States of America legislation, Guidelines developed by European Commission and Food and Drug Administration's, recommendations represented by international voluntary group and scientific works. This article is based on dialectical, comparative, analytic, synthetic and comprehensive research methods. the legal regulation of software which is used for medical purpose in Ukraine limited to one definition. In European Union and United States of America were developed and applying special guidelines that help developers, manufactures and end users to difference software on types standing on medical purpose criteria. Software becomes more and more incorporated into medical devices. Developers and manufacturers may not have initially appreciated potential risks to patients and users such situation could have dangerous results for patients or users. It is necessary to develop and adopt the legislation that will intend to define the criteria for the qualification of medical device software and the application of the classification criteria to such software, provide some illustrative examples and step by step recommendations to qualify software as medical device.

  10. A study on the issues and improving directions of the rules related radiologic technologist in medical law

    International Nuclear Information System (INIS)

    Lim, Chang Seon

    1994-01-01

    According to the astonishing progress of medical science, the medical roles of the radiologic technologist are increasing gradually and specializing highly. However, there are the wide disagreements the actual roles of the radiologic technologists at clinics and the relating rules of the medical law. Therefore, it is required that the medical law should be corresponded with the actual state. To solve these problems. This study has proceeded to make the survey of the present medical law and has tried to offer the most suitable theories to the actual state. This study includes the survey of relevant professional literatures. The major contents of this study are as follows. First, medical technician is written (in Chinese character) at the present medical technician law, and that word is written wrong. So, it should be replaced with Therefore, radiologic technologist should be written Second, the relations between the doctor and the radiologic technologist should be written the 'request or other words' instead of 'direction' Third, in spite of the rules of the present medical law, the medical act of radiologic technologist at clinics should be belonging to the boundary of medical practice. Forth, to present the appropriate medical service to the patients, legal status of radiologic technologist as a member of medical team should be established. Fifth, it is desired that Magnetic Resonance Imaging Technology as a business of radiologic technologist should be provided for in the medical law

  11. How Secure Is Your Radiology Department? Mapping Digital Radiology Adoption and Security Worldwide.

    Science.gov (United States)

    Stites, Mark; Pianykh, Oleg S

    2016-04-01

    Despite the long history of digital radiology, one of its most critical aspects--information security--still remains extremely underdeveloped and poorly standardized. To study the current state of radiology security, we explored the worldwide security of medical image archives. Using the DICOM data-transmitting standard, we implemented a highly parallel application to scan the entire World Wide Web of networked computers and devices, locating open and unprotected radiology servers. We used only legal and radiology-compliant tools. Our security-probing application initiated a standard DICOM handshake to remote computer or device addresses, and then assessed their security posture on the basis of handshake replies. The scan discovered a total of 2774 unprotected radiology or DICOM servers worldwide. Of those, 719 were fully open to patient data communications. Geolocation was used to analyze and rank our findings according to country utilization. As a result, we built maps and world ranking of clinical security, suggesting that even the most radiology-advanced countries have hospitals with serious security gaps. Despite more than two decades of active development and implementation, our radiology data still remains insecure. The results provided should be applied to raise awareness and begin an earnest dialogue toward elimination of the problem. The application we designed and the novel scanning approach we developed can be used to identify security breaches and to eliminate them before they are compromised.

  12. Medical devices regulations, standards and practices

    CERN Document Server

    Ramakrishna, Seeram; Wang, Charlene

    2015-01-01

    Medical Devices and Regulations: Standards and Practices will shed light on the importance of regulations and standards among all stakeholders, bioengineering designers, biomaterial scientists and researchers to enable development of future medical devices. Based on the authors' practical experience, this book provides a concise, practical guide on key issues and processes in developing new medical devices to meet international regulatory requirements and standards. Provides readers with a global perspective on medical device regulationsConcise and comprehensive information on how to desig

  13. [Consideration of Mobile Medical Device Regulation].

    Science.gov (United States)

    Peng, Liang; Yang, Pengfei; He, Weigang

    2015-07-01

    The regulation of mobile medical devices is one of the hot topics in the industry now. The definition, regulation scope and requirements, potential risks of mobile medical devices were analyzed and discussed based on mobile computing techniques and the FDA guidance of mobile medical applications. The regulation work of mobile medical devices in China needs to adopt the risk-based method.

  14. Surgical tools and medical devices

    CERN Document Server

    Jackson, Mark

    2016-01-01

    This new edition presents information and knowledge on the field of biomedical devices and surgical tools. The authors look at the interactions between nanotechnology, nanomaterials, design, modeling, and tools for surgical and dental applications, as well as how nanostructured surfaces can be created for the purposes of improving cell adhesion between medical devices and the human body. Each original chapter is revised in this second edition and describes developments in coatings for heart valves, stents, hip and knee joints, cardiovascular devices, orthodontic applications, and regenerative materials such as bone substitutes. There are also 8 new chapters that address: Microvascular anastomoses Inhaler devices used for pulmonary delivery of medical aerosols Surface modification of interference screws Biomechanics of the mandible (a detailed case study) Safety and medical devices The synthesis of nanostructured material Delivery of anticancer molecules using carbon nanotubes Nano and micro coatings for medic...

  15. Accreditation of professionals for radiological protection in medical and dental radiology at Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Silva, Teogenes A. da; Pereira, Elton G.; Alonso, Thessa C.; Guedes, Elton C.; Goncalves, Elaine C.; Nogueira, Maria Angela A.

    2000-01-01

    The role of the CDTN/CNEN as far as the radiological protection services in the medical and dental radiology has changed a lot due to the new Regulatory Directives. The CDTN/CNEN was recognized as the regional reference center for providing not only radiological survey services, but to coordinate an accreditation procedure for professional persons to be accepted by the State Regulatory Authorities to work at Minas Gerais. All the new activities were formalized in a Cooperation Agreement between the CDTN/CNEN and the Regulatory Authority. This paper describes the accreditation procedure for candidates, the adopted requirements, the intercomparison results among measuring instruments and the main achievements during the first year of the Agreement. (author)

  16. Development of a handmade device for collimation and central ray alignment tests in medical X-ray equipment

    International Nuclear Information System (INIS)

    Cruz, B.L. da; Brito, E.B.; Gomes, A.S.

    2017-01-01

    Ordinance 453/98 of the Ministry of Health establishes that medical X-ray equipment should be monitored by tests that prove its efficiency. This practice is called quality control (QC), and two important tests jointly evaluate the operation of the collimation and alignment systems of the central axis of the X-ray beam. The low supply and the high cost generate allegations of difficulties in the periodic realization of the tests. The aim of this work is to design, make and evaluate the performance of a handmade device for the mentioned tests, using low cost materials. Once built, the device had its performance evaluated and compared with the traditionally marketed device. The handmade device proved to be fit in its functions. It is possible to make a device that tests X-ray medical equipment, using the radiology technologist himself as the test runner. Radiation protection is promoted and legislation with no real financial burden

  17. Medical device development.

    Science.gov (United States)

    Panescu, Dorin

    2009-01-01

    The development of a successful medical product requires not only engineering design efforts, but also clinical, regulatory, marketing and business expertise. This paper reviews items related to the process of designing medical devices. It discusses the steps required to take a medical product idea from concept, through development, verification and validation, regulatory approvals and market release.

  18. Lessons learned from radiological accidents at medical exposures in radiotherapy

    International Nuclear Information System (INIS)

    Fagundes, J.S.; Ferreira, A.F.; Lima, C.M.A.; Silva, F.C.A. da

    2017-01-01

    An exposure is considered accidental in radiotherapy when there is a substantial deviation in the prescription of treatment. In this work, an analysis of published radiological accidents, both in Brazil and internationally, was performed during medical exposures in radiotherapy treatments, removing the main lessons learned. Of the research carried out, we highlight Brazil with four radiological accidents and one death in the period between 2011 and 2014; the United States of America with 169 accidents with two deaths from 2000 to 2010 and France from 2001 to 2014 had 569 deaths without patients. Lessons learned have been described, for example, that maintenance personnel training should specify limitations or restrictions on the handling or adjustment of critical parts on the accelerator. It is recommended to apply the 10 main lessons learned due to radiological accidents during medical exposures in radiotherapy treatments to avoid future events

  19. Radiological accident 'The Citadel' medical aspects

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan; Fernandez, Isis M.; Lopez, Gladys; Garcia, Omar; Lamadrid, Ana I.; Ramos, Enma O.; Villa, Rosario; Giron, Carmen M.; Escobar, Myrian; Zerpa, Miguel; Romero, Argenis H.; Medina, Julio; Laurenti, Zenia; Oliva, Maria T.; Sierra, Nitza; Lorenzo, Alexis

    2008-01-01

    The work exposes the medical actions carried out in the mitigation of the consequences of the accident and its main results. In a facility of storage of radioactive waste in Caracas, Venezuela, it was happened a radiological accident. This event caused radioactive contamination of the environment, as well as the irradiation and radioactive contamination of at least 10 people involved in the fact, in its majority children. Cuban institutions participated in response to the accident. Among the decisions adopted by the team of combined work Cuban-Venezuelan, we find the one of transferring affected people to Cuba, for their dosimetric and medical evaluation. Being designed a work strategy to develop the investigations to people affected by the radiological accident, in correspondence with the circumstances, magnitude and consequences of the accident. The obtained main results are: 100% presented affectations in its health, not associate directly to the accident, although the accident influenced in its psychological state. In 3 of studied people they were detected radioactive contamination with Cesium -137 with dose among 2.01 X 10-4 Sv up to 2.78 X 10-4 Sv. This accident demonstrated the necessity to have technical capacities to face these events and the importance of the international solidarity. (author)

  20. Relativity Screens for Misvalued Medical Services: Impact on Noninvasive Diagnostic Radiology.

    Science.gov (United States)

    Rosenkrantz, Andrew B; Silva, Ezequiel; Hawkins, C Matthew

    2017-11-01

    In 2006, the AMA/Specialty Society Relative Value Scale Update Committee (RUC) introduced ongoing relativity screens to identify potentially misvalued medical services for payment adjustments. We assess the impact of these screens upon the valuation of noninvasive diagnostic radiology services. Data regarding relativity screens and relative value unit (RVU) changes were obtained from the 2016 AMA Relativity Assessment Status Report. All global codes in the 2016 Medicare Physician Fee Schedule with associated work RVUs were classified as noninvasive diagnostic radiology services versus remaining services. The frequency of having ever undergone a screen was compared between the two groups. Screened radiology codes were further evaluated regarding the RVU impact of subsequent revaluation. Of noninvasive diagnostic radiology codes, 46.0% (201 of 437) were screened versus 22.2% (1,460 of 6,575) of remaining codes (P < .001). Most common screens for which radiology codes were identified as potentially misvalued were (1) high expenditures (27.5%) and (2) high utilization (25.6%). The modality and body region most likely to be identified in a screen were CT (82.1%) and breast (90.9%), respectively. Among screened radiology codes, work RVUs, practice expense RVUs, and nonfacility total RVUs decreased in 20.3%, 65.9%, and 75.3%, respectively. All screened CT, MRI, brain, and spine codes exhibited decreased total RVUs. Policymakers' ongoing search for potentially misvalued medical services has disproportionately impacted noninvasive diagnostic radiology services, risking the introduction of unintended or artificial shifts in physician practice. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  1. Recognition difference and improvement direction of the radiological technologists and patient against medical service in department radiology - Inchon area in the object

    International Nuclear Information System (INIS)

    An, Sung Min; Kim, Sung Chul

    2006-01-01

    Satisfaction of the patient against the medical service in department of radiology and it evaluated the different recognition of radiological technologist and patient, and investigates it's improvement direction. It sent the reply the above the which is a usual result in question result of the most that, the receipt process it was complicated in the portion which is insufficient. 'The receipt process is complication', 'waiting time is long' and ' don't radiation protection for patient and guardian'. Also these a facts was recognizing patients and radiological technologist all. And the effort of the radiological technologist is necessary with the method which reduces a recognition difference. The periodical medical service satisfaction investigates and must endeavor in reform measure preparation

  2. Availability and use of medical isotopes in Canada : performed as part of a radiological terrorism risk assessment. Technical memorandum

    International Nuclear Information System (INIS)

    Larsson, C.L.

    2004-12-01

    An assessment of the availability of radioactive material used for medical applications in Canada has been performed as part of the CBRN Research and Technology Initiative (CRTI) Project CRTI-02-0024RD (Probabilistic Risk Assessment Tool for Radiological Dispersal Devices). A general list of medical radioisotopes used worldwide was compiled via literature searches and Internet investigations. This list was then compared to all isotopes licenced to healthcare facilities in Canada. Sources of lesser concern for this study, such as noble gases, short-lived isotopes, and radioisotopes not licenced for medical applications in Canada, were eliminated. The remaining sources were then analysed for frequency of use and maximum licenced activity to assess which materials would be of highest concern in relation to radiological terrorism. A detailed description of the application, typical administered activity, and other relevant information for these most common and highest licenced activity medical sources was assembled to feed directly into the risk assessment database. A general discussion of security in healthcare facilities is also given. Due to the constant advances made in medicine, the information relating to licenced isotopes is dynamic and thus requires updating to ensure the database is kept current. (author)

  3. International Standards for Radiation Sterilization of Medical Devices

    International Nuclear Information System (INIS)

    Miller, A.

    2007-01-01

    For a terminally sterilized medical device to be designated '' STERILE '', probability of finding the viable micro-organisms in the device shall be equal to or less than 1 x 10 -6 (EN 556-1:2001: Sterilization of medical devices - Requirements for medical devices to be designated '' STERILE '' - Part 1: Requirements for terminally sterilized medical devices). Author presents the main legal aspects of the international standards for radiation sterilization of medical devices

  4. Radiological protection worker: occupational medical aspects

    International Nuclear Information System (INIS)

    Mora Ramirez, Erick

    2008-01-01

    International Organizations involved with radiation protection are presented in the first part. Also some documents related to the radiation that have been published by these organizations. Among the analyzed contents are the radiation and their patients, how to avoid the damage of radiation, pregnancy and exposure to medical radiation, effects of radiation, recommendations for the protection and safety standards. Occupational exposure is defined as the exposure received and understood by a worker during a period of work. In addition, it shows the types of occupational exposure, the protection that workers must have with the radiation, regulations, laws and the regulatory authority that protects the medical personnel in the uses of radiology [es

  5. The role of radiology in diagnostic error: a medical malpractice claims review.

    Science.gov (United States)

    Siegal, Dana; Stratchko, Lindsay M; DeRoo, Courtney

    2017-09-26

    Just as radiologic studies allow us to see past the surface to the vulnerable and broken parts of the human body, medical malpractice claims help us see past the surface of medical errors to the deeper vulnerabilities and potentially broken aspects of our healthcare delivery system. And just as the insights we gain through radiologic studies provide focus for a treatment plan for healing, so too can the analysis of malpractice claims provide insights to improve the delivery of safe patient care. We review 1325 coded claims where Radiology was the primary service provider to better understand the problems leading to patient harm, and the opportunities most likely to improve diagnostic care in the future.

  6. FE-001: EPR-First Responders: radiological dispersion device: field exercise

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of this exercise is that the participants have to know the implementation an incident control, prioritize the medical requirements for victims, demonstrate the control of the scene and to install the safety cordons in a radiological emergency

  7. Implementation of a low-cost mobile devices to support medical diagnosis.

    Science.gov (United States)

    García Sánchez, Carlos; Botella Juan, Guillermo; Ayuso Márquez, Fermín; González Rodríguez, Diego; Prieto-Matías, Manuel; Tirado Fernández, Francisco

    2013-01-01

    Medical imaging has become an absolutely essential diagnostic tool for clinical practices; at present, pathologies can be detected with an earliness never before known. Its use has not only been relegated to the field of radiology but also, increasingly, to computer-based imaging processes prior to surgery. Motion analysis, in particular, plays an important role in analyzing activities or behaviors of live objects in medicine. This short paper presents several low-cost hardware implementation approaches for the new generation of tablets and/or smartphones for estimating motion compensation and segmentation in medical images. These systems have been optimized for breast cancer diagnosis using magnetic resonance imaging technology with several advantages over traditional X-ray mammography, for example, obtaining patient information during a short period. This paper also addresses the challenge of offering a medical tool that runs on widespread portable devices, both on tablets and/or smartphones to aid in patient diagnostics.

  8. Implementation of a Low-Cost Mobile Devices to Support Medical Diagnosis

    Directory of Open Access Journals (Sweden)

    Carlos García Sánchez

    2013-01-01

    Full Text Available Medical imaging has become an absolutely essential diagnostic tool for clinical practices; at present, pathologies can be detected with an earliness never before known. Its use has not only been relegated to the field of radiology but also, increasingly, to computer-based imaging processes prior to surgery. Motion analysis, in particular, plays an important role in analyzing activities or behaviors of live objects in medicine. This short paper presents several low-cost hardware implementation approaches for the new generation of tablets and/or smartphones for estimating motion compensation and segmentation in medical images. These systems have been optimized for breast cancer diagnosis using magnetic resonance imaging technology with several advantages over traditional X-ray mammography, for example, obtaining patient information during a short period. This paper also addresses the challenge of offering a medical tool that runs on widespread portable devices, both on tablets and/or smartphones to aid in patient diagnostics.

  9. On-field evaluation of operator lens protective devices in interventional radiology

    International Nuclear Information System (INIS)

    Strocchi, S.; Chiaravalli, A.; Veronese, I.; Novario, R.

    2016-01-01

    The recent publication of the Euratom Directive 2013/59, adopting the reduction of eye lens dose limits from 150 to 20 mSv y"-"1, calls for the development of new tools and methodologies for evaluating the eye lens dose absorbed by the medical staff involved in interventional radiology practices. Moreover, the effectiveness of the protective devices, like leaded glasses, which can be employed for radiation protection purposes, must be tested under typical exposure scenarios. In this work, eye lens dose measurements were carried out on an anthropomorphic phantom simulating a physician bound to perform standard interventional neuroradiology angiographic procedures. The correlation between eye lens doses, in terms of Hp(0.07), and the equivalent dose [again in terms of Hp(0.07)] monthly measured with thermoluminescent dosemeters placed above the lead apron at the chest level was studied, in the presence and in the absence of different types of leaded glasses. (authors)

  10. Advancing regulatory science to bring novel medical devices for use in emergency care to market: the role of the Food and Drug Administration.

    Science.gov (United States)

    Scully, Christopher G; Forrest, Shawn; Galeotti, Loriano; Schwartz, Suzanne B; Strauss, David G

    2015-04-01

    The Food and Drug Administration (FDA) performs regulatory science to provide science-based medical product regulatory decisions. This article describes the types of scientific research the FDA's Center for Devices and Radiological Health performs and highlights specific projects related to medical devices for emergency medicine. In addition, this article discusses how results from regulatory science are used by the FDA to support the regulatory process as well as how the results are communicated to the public. Regulatory science supports the FDA's mission to assure safe, effective, and high-quality medical products are available to patients. Published by Elsevier Inc.

  11. Radiology curriculum for undergraduate medical studies—A consensus survey

    International Nuclear Information System (INIS)

    Mirsadraee, S.; Mankad, K.; McCoubrie, P.; Roberts, T.; Kessel, D.

    2012-01-01

    Aim: To establish an expert consensus of what, when, and how the teaching of radiology should be incorporated into the core undergraduate medical curriculum. Methods and materials: This Delphi survey consisted of four iterative rounds, with feedback given at the start of each successive round in the form of the results of the previous round. The participants consisted of both radiologists and non-radiologists with significant interest and involvement in radiology and undergraduate/Foundation training. The study addressed the questions of how, where, when, and by whom radiology should be taught. Results: The number of responses in rounds 1–4 was 20, 23, 41, and 25 (25, 22, 31, and 61% response rate, respectively). There was good consensus amongst the responders on the following: radiology teaching must be delivered in conjunction with anatomy and clinical case-based teaching, if possible in the department of radiology on picture archiving and communication system (PACS) workstations, and the teaching should be delivered by a competent and credentialled individual. Case-based assessment was the most agreed method of assessment. The majority of the responders concurred that the curriculum should include general indications for commonly requested radiological investigations, consent and safety issues around radiological tests, and their basic interpretation. Conclusion: The consensus points reached by the present study not only serve as directive principles for developing a more comprehensive radiology curriculum, but also places emphasis on a broader range of knowledge required to promote the best use of a department of radiology by junior doctors in an attempt to improve patient experiences and care.

  12. Body Implanted Medical Device Communications

    Science.gov (United States)

    Yazdandoost, Kamya Yekeh; Kohno, Ryuji

    The medical care day by day and more and more is associated with and reliant upon concepts and advances of electronics and electromagnetics. Numerous medical devices are implanted in the body for medical use. Tissue implanted devices are of great interest for wireless medical applications due to the promising of different clinical usage to promote a patient independence. It can be used in hospitals, health care facilities and home to transmit patient measurement data, such as pulse and respiration rates to a nearby receiver, permitting greater patient mobility and increased comfort. As this service permits remote monitoring of several patients simultaneously it could also potentially decrease health care costs. Advancement in radio frequency communications and miniaturization of bioelectronics are supporting medical implant applications. A central component of wireless implanted device is an antenna and there are several issues to consider when designing an in-body antenna, including power consumption, size, frequency, biocompatibility and the unique RF transmission challenges posed by the human body. The radiation characteristics of such devices are important in terms of both safety and performance. The implanted antenna and human body as a medium for wireless communication are discussed over Medical Implant Communications Service (MICS) band in the frequency range of 402-405MHz.

  13. Medical intervention in radiological emergencies, formation and training; Intervencion medica en emergencias radiologicas, formacion y adiestramiento

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas H, J. [CPHR, Calle 20 No. 4113, e/41 y 47 Playa, CP 11300, La Habana (Cuba)]. e-mail: cardenas@cphr.edu.cu

    2006-07-01

    The work exposes the national experience in the development of training programs in medical aspects of the radiological emergencies. Implemented after valuing the existent situation, identified the necessities and the reach of the training, additionally it was elaborated the content of the training program whose purpose is guided to the invigoration of the medical answer capacity in radiological emergencies The content of the modular program it approaches theoretical- practical aspects on preparation and medical answer in radiological emergencies. The program includes an exercise that simulates a radiological accident, to evaluate during the same one, the answer capacity before this situation. The training concludes with the design of a strategy for the preparation and answer in radiological emergencies in correspondence with the potential accidental scenarios that the participants can face. (Author)

  14. Integrating Radiology and Anatomy Teaching in Medical Education in the UK--The Evidence, Current Trends, and Future Scope.

    Science.gov (United States)

    Heptonstall, N B; Ali, T; Mankad, K

    2016-04-01

    This review article presents the current evidence of the importance of integrating radiology and anatomy in medical education in the UK, a recommendation by a number of key anatomy, education, and radiology organizations. Current evidence highlights that on average only 5% of total teaching time in medical education is dedicated to radiology. Often, radiology teaching does not adequately fulfill students' learning needs and potentially leaves them underprepared for medical practice. Benefits of integrating radiology and anatomy include improved clinical application of anatomy, an increase in student's interest in anatomy, and ultimately improved radiological interpretation. Various modalities exist for the integration of radiology and anatomy, facilitated by the vast portability of radiological images. It appears that combining radiological resources with traditional anatomy teaching methodology in a blended approach is most beneficial. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  15. A medical application integrating remote 3D visualization tools to access picture archiving and communication system on mobile devices.

    Science.gov (United States)

    He, Longjun; Ming, Xing; Liu, Qian

    2014-04-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks.

  16. Support to triage and public risk perception considering long-term response to a Cs-137 radiological dispersive device scenario.

    Science.gov (United States)

    Andrade, Cristiane Ps; Souza, Cláudio J; Camerini, Eduardo Sn; Alves, Isabela S; Vital, Hélio C; Healy, Matthew Jf; Ramos De Andrade, Edson

    2018-01-01

    A radiological dispersive device (RDD) spreads radioactive material, complicates the treatment of physical injuries, raises cancer risk, and induces disproportionate fear. Simulating such an event enables more effective and efficient utilization of the triage and treatment resources of staff, facilities, and space. Fast simulation can give detail on events in progress or future events. The resources for triage and treatment of contaminated trauma victims can differ for pure exposure individuals, while discouraging the "worried well" from presenting in the crisis phase by media announcement would relieve pressure on hospital facilities. The proposed methodology integrates capabilities from different platforms in a convergent way composed of three phases: (a) scenario simulation, (b) data generation, and (c) risk assessment for triage focused on follow-up epidemiological assessment. Simulations typically indicate that most of the affected population does not require immediate medical assistance. Medical triage for the few severely injured and the radiological triage to diminish the contamination with radioactivity will always be the priority. For this study, however, higher priorities should be given to individuals from radiological "warm" and "hot" zones as required by risk criteria. The proposed methodology could thus help to (a) filter and reduce the number of individuals to be attended, (b) optimize the prioritization of medical care, (c) reduce or prepare for future costs, (d) effectively locate the operational triage site to avoid possible contamination on the main facility, and (e) provide the scientific data needed to develop an adequate approach to risk and its proper communication.

  17. Medical students' preferences in radiology education a comparison between the Socratic and didactic methods utilizing powerpoint features in radiology education.

    Science.gov (United States)

    Zou, Lily; King, Alexander; Soman, Salil; Lischuk, Andrew; Schneider, Benjamin; Walor, David; Bramwit, Mark; Amorosa, Judith K

    2011-02-01

    The Socratic method has long been a traditional teaching method in medicine and law. It is currently accepted as the standard of teaching in clinical wards, while the didactic teaching method is widely used during the first 2 years of medical school. There are arguments in support of both styles of teaching. After attending a radiology conference demonstrating different teaching methods, third-year and fourth-year medical students were invited to participate in an online anonymous survey. Of the 74 students who responded, 72% preferred to learn radiology in an active context. They preferred being given adequate time to find abnormalities on images, with feedback afterward from instructors, and they thought the best approach was a volunteer-based system of answering questions using the Socratic method in the small group. They desired to be asked questions in a way that was constructive and not belittling, to realize their knowledge deficits and to have daily pressure to come prepared. The respondents thought that pimping was an effective teaching tool, supporting previous studies. When teaching radiology, instructors should use the Socratic method to a greater extent. Combining Socratic teaching with gentle questioning by an instructor through the use of PowerPoint is a preferred method among medical students. This information is useful to improve medical education in the future, especially in radiology education. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  18. RADIOLOGY EDUCATION: A PILOT STUDY TO ASSESS KNOWLEDGE OF MEDICAL STUDENTS REGARDING IMAGING IN TRAUMA.

    Science.gov (United States)

    Siddiqui, Saad; Saeed, Muhammad Anwar; Shah, Noreen; Nadeem, Naila

    2015-01-01

    Trauma remains one of the most frequent presentations in emergency departments. Imaging has established role in setting of acute trauma with ability to identify potentially fatal conditions. Adequate knowledge of health professionals regarding trauma imaging is vital for improved healthcare. In this work we try to assess knowledge of medical students regarding imaging in trauma as well as identify most effective way of imparting radiology education. This cross-sectional pilot study was conducted at Aga Khan University Medical College & Khyber Girls Medical College, to assess knowledge of medical students regarding imaging protocols practiced in initial management of trauma patients. Only 40 & 20% respectively were able to identify radiographs included in trauma series. Very few had knowledge of correct indication for Focused abdominal sonography in trauma. Clinical radiology rotation was reported as best way of learning radiology. Change in curricula & restructuring of clinical radiology rotation structure is needed to improve knowledge regarding Trauma imaging.

  19. Medical Devices

    NARCIS (Netherlands)

    Verkerke, Gijsbertus Jacob; Mahieu, H.F.; Geertsema, A.A.; Hermann, I.F.; van Horn, J.R.; Hummel, J. Marjan; van Loon, J.P.; Mihaylov, D.; van der Plaats, A.; Schraffordt Koops, H.; Schutte, H.K.; Veth, R.P.H.; de Vries, M.P.; Rakhorst, G.; Shi, Donglu

    2004-01-01

    The development of new medical devices is a very time-consuming and costly process. Besides the time between the initial idea and the time that manufacturing and testing of prototypes takes place, the time needed for the development of production facilities, production of test series, marketing,

  20. Classification and evaluation of medical devices

    Directory of Open Access Journals (Sweden)

    Edina Vranić

    2003-05-01

    Full Text Available Medical devices and medical disposables contribute significantly to the quality and effectiveness of the health care system. It is necessary to commit scientifically sound regulatory environment that will provide consumers with the best medical care. This includes continued services to small manufacturers, readily available guidance on FDA requirements, predictable and reasonable response times on applications for marketing, and equitable enforcement. But in the public interest, this commitment to the industry must be coupled with a reciprocal commitment: that medical device firms will meet high standards in the design, manufacture, and evaluation of their products. The protections afforded our consumer, and the benefits provided the medical device industry, cannot be underestimated.

  1. "I Just bought my residents iPads… now what?" The integration of mobile devices into radiology resident education.

    Science.gov (United States)

    Bedi, Harprit S; Yucel, Edgar K

    2013-10-01

    This article describes how mobile technologies can improve the way we teach radiology and offers ideas to bridge the clinical gap with technology. Radiology programs across the country are purchasing iPads and other mobile devices for their residents. Many programs, however, do not have a concrete vision for how a mobile device can enhance the learning environment.

  2. The journal of medical chemical, biological and radiological defense, an update

    International Nuclear Information System (INIS)

    Price, B. B. S.; Peitersen, L.E.

    2009-01-01

    The Journal of Medical Chemical, Biological, and Radiological Defense (www.JMedCBR.org) is a peer-reviewed scientific online journal focusing on the biology, chemistry, physiology, toxicology and treatment of exposure to threat agents. JMedCBR provides a central international forum for the publication of current research and development information on medical chemical, biological and radiological defense, as well as training, doctrine, and problems related to chemical, biological and radiological casualties. JMedCBR is sponsored by the US Defense Threat Reduction Agency (DTRA) Chem-Bio Technologies Directorate as part of its scientific outreach program in chemical and biological defense solutions for the Department of Defense. In addition to scientific and medical research, JMedCBR hosts an archive of related papers from authors in the field. Although organized into annual issues, articles are published on the web continuously. The complete JMedCBR is published electronically and is made available to the scientific community free of charge. JMedCBR is committed to providing its readers with quality scientific information and critical analyses. All submissions are peer-reviewed by an editorial board of recognized and respected international scientists who represent expertise in different aspects of medical chemical, biological and radiological defense. Contributions to JMedCBR must be original works of the author(s) and must not have been previously published or simultaneously submitted to other publications. The author(s) transfer the copyright of articles published in JMedCBR to the journal. A copyright transfer form must accompany each manuscript submission. For more information on submitting to JMedCBR, see the Authors' Guide, available at http://www.jmedcbr.org/authorGuide.html.(author)

  3. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Magnetic resonance diagnostic device. 892.1000 Section 892.1000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1000 Magnetic resonance diagnostic...

  4. Medical Preparedness and Response for a Nuclear or Radiological Emergency. Training Materials

    International Nuclear Information System (INIS)

    2014-01-01

    In almost all nuclear and radiological emergencies, local emergency services (e.g. local medical, law enforcement, and fire brigades) will have the most important role in the early response. Within hours, hospitals may also have an important role to play in the response at the local level. Since nuclear and radiological emergencies are rare, medical responders often have little or no experience in dealing with this type of emergency and inexperience may lead to an inadequate response. For this reason, training in medical preparedness and response for a nuclear or radiological emergency is an important aspect of preparedness and response activities. These materials are designed for use at a training course on medical preparedness and response for a nuclear or radiological emergency. They contain a wide range of lectures and supporting materials, which cover the basic topics and more specific areas of medical preparedness and response. Therefore, in planning their specific courses, organizers are encouraged to choose those lectures and supportive materials from the CD-ROM that best match their training priorities. Materials on the CD-ROM address the following areas: • Terrorism in Perspective; • Malicious Act Scenarios; • Providing Information to the Medical Community and the Public; • Medical Response to a Radiation Mass Casualty Event; • Handling of Contaminated Persons in Malicious Events; • Planning and Preparedness for Medical Response to Malicious Events with Radioactive Material; • Handling the Bodies of Decedents Contaminated with Radioactive Material; • Radiation Emergencies: Scope of the Problem; • Common Sources of Radiation; • Basic Concepts of Ionizing Radiation; • Basic Concepts of Radiation Protection; • Biological Effects of Ionizing Radiation – Basic Notions; • Basics of Radiopathology; • External Radioactive Contamination; • Internal Radioactive Contamination; • Acute Radiation Syndrome; • Cutaneous Radiation

  5. 76 FR 14028 - Center for Devices and Radiological Health 510(k) Implementation: Online Repository of Medical...

    Science.gov (United States)

    2011-03-15

    ... could facilitate patient access to information on what types of devices are available for their medical... input from the public on what they would want and need in labeling and how they would want to access it. CDRH is also interested in learning more about how patients, consumers, and caregivers acquire and use...

  6. Role and responsibilities of medical physicists in radiology and membership of Bulgaria in European union

    International Nuclear Information System (INIS)

    Todorov, V.; Vassileva, J.

    2006-01-01

    Full text: Medical radiology and especially the radiotherapy is the birthplace of modern medical physics. Medical physicists have proven place and important role in research and practice in radiotherapy. They share the responsibility with physicians in varied daily work in this medical speciality. The rapid development of medical imaging in last decades increases the need of competence of medical physicists. Quality assurance in Diagnostic Radiology aimed to achieve maximum diagnostic information at minimal risk and with minimal prize, which is obligatory for the members of the EU, is impossible to be implemented without medical physicists. The enforced recently Ordinance 30/2005 of the Ministry of Health forms the regulatory basis of obligatory implementation of Quality Assurance at medical use of ionizing radiation in the country. This Ordinance introduces the requirements of the EURATOM 97/43 Directive on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure. It regulates also the responsibilities of medical physicists in radiology. Forthcoming is the practical implementation of these requirements, which needs the competence and efforts of Medical physics community as well as of radiologists in the country

  7. Contextual inquiry for medical device design

    CERN Document Server

    Privitera, Mary Beth

    2015-01-01

    Contextual Inquiry for Medical Device Design helps users understand the everyday use of medical devices and the way their usage supports the development of better products and increased market acceptance. The text explains the concept of contextual inquiry using real-life examples to illustrate its application. Case studies provide a frame of reference on how contextual inquiry is successfully used during product design, ultimately producing safer, improved medical devices. Presents the ways contextual inquiry can be used to inform the evaluation and business case of technologyHelps users

  8. Educational treasures in Radiology: The Radiology Olympics - striving for gold in Radiology education

    OpenAIRE

    Talanow, Roland

    2010-01-01

    This article focuses on Radiology Olympics (www.RadiologyOlympics.com) - a collaboration with the international Radiology community for Radiology education, Radiolopolis (www.Radiolopolis.com). The Radiology Olympics honour the movers and shakers in Radiology education and offer an easy to use platform for educating medical professionals based on Radiology cases.

  9. Radiation protection study of radiology medical workers in radiodiagnosis area

    International Nuclear Information System (INIS)

    Gaona, E.; Canizal, C.; Garcia, M.A.; Orozco, M.; Rincon, A.; Padilla, Y.; Martinez, A.

    1996-01-01

    Aspects related to radiological safety and its organization in radiodiagnosis were evaluated by means of scanning carried out in 18 hospitals of Mexico City, divided in 11 public institutions and 7 private ones. The population being studied was: hospital personnel that works in radiodiagnosis. The survey was made with 31 dichotomic variables, being obtained 132 surveys. The personnel characteristics are 83% works in public institutions, 49% works in radiodiagnosis, 3% has an academic degree, 13% is member of a hospital professional association, 13% has updated information on radiological protection, 36% was trained, 45% works for more than 2 years, 52% uses personal dosemeter, less than the 20% knows about the fundamentals of the radiological protection and 24% states to suffer from biological radiation effects, due to the exposure to x-rays. As result of the study, it was found that the main problems that the radiological protection has, are: lack of training programs in radiological protection and supervision, medical surveillance and the few number of persons that takes part in clinical meetings and professional associations. (authors). 7 refs., 3 tabs

  10. Medical device market in China.

    Science.gov (United States)

    Boyer, Philip; Morshed, Bashir I; Mussivand, Tofy

    2015-06-01

    With China's growing old-age population and economic presence on the international stage, it has become important to evaluate its domestic and foreign market contribution to medical devices. Medical devices are instruments or apparatuses used in the prevention, rehabilitation, treatment, or knowledge generation with respect to disease or other abnormal conditions. This article provides information drawn from recent publications to describe the current state of the Chinese domestic market for medical devices and to define opportunities for foreign investment potential therein. Recent healthcare reforms implemented to meet rising demand due to an aging and migrating population are having a positive effect on market growth-a global market with a projected growth of 15% per year over the next decade. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  11. Medical and dental radiological trends in Japan

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kihara, Takuji; Sawada, Shozo

    1978-01-01

    Yearly trends in radiologic practice in Japan were estimated on the basis of annual dampling surveys of medical and dental examinations and treatments covered by Government-Managed Health Insurance, modified by (1) the ratio of all insurance-covered medical care to that covered by this insurance, and (2) the ratio of insured plus privately purchased medical care to insured medical care alone. All radiographic and fluoroscopic examinations, x-ray films consumed, radiation treatments, and dental x-ray examinations, increased during the 10 years prior to this study. In 1970, numbers of examinations or treatments per capita were 1.2 for radiography, 0.1 for fluoroscopy, 0.06 for radiation treatments, and 0.3 for dental radiography, respectively. The dental radiography data were interpolated to Hiroshima and Nagasaki Cities and compared with those submitted by institutions in both cities in October 1970. The Reports of Annual Medical Care Survey, the Fund Office's Annual Reports, and the Annual Reports of the National Health Insurance were main sources for this estimate and provided more than 90% of the necessary information. (auth.)

  12. Conventional radiology: fixed installations in medical environment

    International Nuclear Information System (INIS)

    2010-01-01

    This document presents the different procedures, the different types of specific hazards, the analysis of risks, their assessment and the preventive methods with regard to radioprotection in the case of fixed conventional radiology equipment in medical environment. It indicates and describes the concerned personnel, the course of procedures, the hazards, the identification of the risk associated with ionizing radiation, the risk assessment and the determination of exposure levels (definition of regulated areas, personnel categories), the strategy aimed at controlling the risk (risk reduction, technical measures concerning the installation or the personnel, teaching and information, prevention, incident), the different measures of medical monitoring, the assessment of risk control, and other risks. An appendix proposes an example of workstation assessment

  13. Medical response for radiological accidents from Regional cooperation : Latin-American radiopathology networks

    International Nuclear Information System (INIS)

    Valverde, Nelson; Cardenas, Juan; Perez, Maria del Rosario; Trano, Jose Luiz Di; Gisone, Pablo

    2001-01-01

    The objective of this program is to have a system, in order to assure an appropriate medical response in the case of radiological accidents and to offer medical advice in aspects related to the biological effects of ionizing radiations in risk assessment of radiation workers, medical exposures, potential effects of prenatal irradiation

  14. On history of medical radiology in Ukraine: main directions of scientific development (1920-1941)

    International Nuclear Information System (INIS)

    Pilipenko, M.Yi.; Artamonova, N.O.; Busigyina, N.O.

    1994-01-01

    The work is devoted to the history of medical radiology in Ukraine. It deals with principal problems of scientific research development during 1920-1941. The authors describe both known and little known facts of the history of foundation and development of the first Ukrainian radiological, roentgenological and oncological institutes. Main achievements in radiology development i.e. foundation of large specialized research centres in Kharkov, kiev, Odessa, independent departments of roentgenology both at the majority of medical institutes and three advanced training institutes for doctors, organization of ALL-Union and Republican Congresses and Conferences of Radiologists, publication of a special journal > (Problems of Oncology) are described

  15. Medical radiation exposure and its impact on occupational practices in Korean radiologic technologists

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seul Ki; Lee, Won Jin [Dept. of Preventive Medicine, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    The use of radiology examinations in medicine has been growing worldwide. Annually an estimated 3.1 billion radiologic exams are performed. According to this expansion of medical radiation exposure, it has been hard to pay no attention to the effects of medical radiation exposures in the exposure from different types of radiation source. This study, therefore, was aimed to assess the association of medical and occupational radiation exposure in Korean radiologic technologists and evaluate necessity for its consideration in occupational studies. This study did not show the strong association between medical radiation exposure and occupational radiation exposure except several modalities with specific frequency. These results are preliminary but certainly meaningful for interpretation of epidemiologic finding, therefore, we need further evaluation specially for the repeatedly exposed imaging tests and high dose procedures that presented somewhat weak relationship in this study linked with health outcomes of radiation exposure. This study did not show the strong association between medical radiation exposure and occupational radiation exposure except several modalities with specific frequency. These results are preliminary but certainly meaningful for interpretation of epidemiologic finding, therefore, we need further evaluation specially for the repeatedly exposed imaging tests and high dose procedures that presented somewhat weak relationship in this study linked with health outcomes of radiation exposure.

  16. Medical radiation exposure and its impact on occupational practices in Korean radiologic technologists

    International Nuclear Information System (INIS)

    Ko, Seul Ki; Lee, Won Jin

    2016-01-01

    The use of radiology examinations in medicine has been growing worldwide. Annually an estimated 3.1 billion radiologic exams are performed. According to this expansion of medical radiation exposure, it has been hard to pay no attention to the effects of medical radiation exposures in the exposure from different types of radiation source. This study, therefore, was aimed to assess the association of medical and occupational radiation exposure in Korean radiologic technologists and evaluate necessity for its consideration in occupational studies. This study did not show the strong association between medical radiation exposure and occupational radiation exposure except several modalities with specific frequency. These results are preliminary but certainly meaningful for interpretation of epidemiologic finding, therefore, we need further evaluation specially for the repeatedly exposed imaging tests and high dose procedures that presented somewhat weak relationship in this study linked with health outcomes of radiation exposure. This study did not show the strong association between medical radiation exposure and occupational radiation exposure except several modalities with specific frequency. These results are preliminary but certainly meaningful for interpretation of epidemiologic finding, therefore, we need further evaluation specially for the repeatedly exposed imaging tests and high dose procedures that presented somewhat weak relationship in this study linked with health outcomes of radiation exposure.

  17. Career choices for radiology: national surveys of graduates of 1974-2002 from UK medical schools

    International Nuclear Information System (INIS)

    Turner, G.; Lambert, T.W.; Goldacre, M.J.

    2006-01-01

    Aim: To report on trends in career choices for radiology among UK medical graduates. Materials and methods: One and 3 years after graduation, and at longer time intervals thereafter, postal questionnaire surveys were sent to all doctors who graduated from UK medical schools in 1974, 1977, 1980, 1983, 1993, 1996, 1999, 2000 and 2002. Doctors were asked to specify their choice of long-term career and to identify factors influencing their choice. Employment details were also collected. Results were analysed using χ 2 statistics and binary logistic regression. Results: Seventy-four percent (24,621/33,412) and 73% (20,720/28,459) of doctors responded 1 and 3 years after graduation. Choices for radiology in year 1 increased significantly over time (1.7% of 1974 graduates to 3.2% of 2002 graduates; χ 2 test for trend = 15.3, p < 0.001). In particular, there has been a steady increase from the cohorts of 1993 onwards. Thirty-eight percent of those who chose radiology in year 1, and 80% who chose radiology in year 3, were still working in radiology 10 years after graduation. Hours and working conditions influenced long-term career choices more for radiology than for other careers. Conclusions: The proportion of UK trained junior doctors who want to become radiologists has increased in recent years. However, although medical school intake and the numbers making an early choice for radiology have risen, it is unclear whether sufficient UK graduates will be attracted to radiology to fulfil future service requirements from UK trained graduates alone

  18. Legislative aspects of the development of medical devices.

    Science.gov (United States)

    Marešová, Petra; Klímová, Blanka; Krejcar, Ondřej; Kuča, Kamil

    2015-09-01

    European industry of medical device technologies represents 30% of all worlds sales. New health technologies bring effective treatment approaches, help shorten stays in hospital1),bring better treatment results and accelerate rehabilitation which leads to the earlier patients recovery.Legislative aspects are one of the key areas influencing the speed of development of medical devices and their launching. The aim of this article is to specify current state of legislation in the development of medical devices in the European Union in comparison with the market leaders such as China, Japan and USA.The best established market of medical devices is in the USA. Both Japan and China follow the USA model. However, a non-professional code of ethics in China in some respect contributes to the decrease of quality of medical devices, while Japan as well as the EU countries try really hard to conform to all the regulations imposed on the manufacturing of medical devices.

  19. Mobile medical device connectivity: real world solutions.

    Science.gov (United States)

    Pettus, Dan

    2004-01-01

    Mobile medical devices, such as infusion pumps, provide an important therapeutic function. They are also valuable sources of information about treatment patterns at the point of care. However, these mobile devices have been independent islands of valuable information, unable to share the data they gather with other hospital information resources on a real time basis. Although data from these devices can provide significant improvements for medical safety and vital information needed for clinical best practice development, gathering that data poses significant challenges when interfacing with hospital information systems. Mobile medical devices move from place to place as independent actors, raising a series of security and identification issues when they need to be disconnected and reconnected using traditional tethered cable connections. The continuing lack of accepted communications protocol standards, in spite of the concentrated efforts of organizations like the IEEE and the Medical Information Bus (IEEE 1073) to establish them, has made integration into the hospital information system a complex and non-standard task. The rapid spread in availability and adoption of high-speed 802.11 wireless systems in hospitals offers a realistic connectivity solution for mobile medical devices. Inspite of this, the 802.11 standard is still evolving, and current security methods designed for user-based products like PDAs and laptop computers are not ideal for unmanned mobile medical devices because they assume the availability of a human operator to authenticate a wireless session. In the absence of accepted standards, manufacturers have created practical and innovative solutions to support the collection of clinical data from mobile medical devices and the integration of that data with hospital information systems. This paper will explore the potential benefits of integrating mobile medical devices into the hospital information system, and describe the challenges in

  20. Repository National Institutes for Quantum and Radiological Science and Technology (QST)

    International Nuclear Information System (INIS)

    Maeda, Takamasa

    2016-01-01

    This paper introduces the facilities of National Institute of Radiological Sciences (NIRS). It was established as an auxiliary organ of the Science and Technology Agency in 1957. In April 2016, it became a comprehensive radiology research and development department of the Quantum Science and Technology Research Organization, and has been performing 'research for medical use of radiation' and 'research for radiation safety and emergency radiation medical care' as the two pillars of research. The laboratory hospital is a sole monotechnic radiation hospital in Japan specializing in radiotherapy. Heavy particle accelerator for medical use has been constructed, and advancement of heavy particle therapy using rotating gantry is expected. At the clinical nuclear medicine department, research facilities involved in molecular imaging are cyclotron building, positron building, imaging diagnostic building, and exploratory research building, and they are equipped with are three large and small cyclotrons, clinical PET device, animal-specialized PET device, 7-tesla MRI. The nuclear medicine laboratory is equipped with four PET/CT devices, one PET device, and one gamma camera, and performing tumor examination and clinical research on psychiatric and neurological diseases. (A.O.)

  1. Analytical Chemistry in the Regulatory Science of Medical Devices.

    Science.gov (United States)

    Wang, Yi; Guan, Allan; Wickramasekara, Samanthi; Phillips, K Scott

    2018-06-12

    In the United States, regulatory science is the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of all Food and Drug Administration-regulated products. Good regulatory science facilitates consumer access to innovative medical devices that are safe and effective throughout the Total Product Life Cycle (TPLC). Because the need to measure things is fundamental to the regulatory science of medical devices, analytical chemistry plays an important role, contributing to medical device technology in two ways: It can be an integral part of an innovative medical device (e.g., diagnostic devices), and it can be used to support medical device development throughout the TPLC. In this review, we focus on analytical chemistry as a tool for the regulatory science of medical devices. We highlight recent progress in companion diagnostics, medical devices on chips for preclinical testing, mass spectrometry for postmarket monitoring, and detection/characterization of bacterial biofilm to prevent infections.

  2. Radiology fundamentals

    CERN Document Server

    Singh, Harjit

    2011-01-01

    ""Radiology Fundamentals"" is a concise introduction to the dynamic field of radiology for medical students, non-radiology house staff, physician assistants, nurse practitioners, radiology assistants, and other allied health professionals. The goal of the book is to provide readers with general examples and brief discussions of basic radiographic principles and to serve as a curriculum guide, supplementing a radiology education and providing a solid foundation for further learning. Introductory chapters provide readers with the fundamental scientific concepts underlying the medical use of imag

  3. 78 FR 25747 - Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2013-05-02

    ... Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD... as catheters, cannulae or hollow needles. Chronic hemodialysis catheters are soft, blunt-tipped...

  4. An update on mobile phones interference with medical devices.

    Science.gov (United States)

    Mahmoud Pashazadeh, Ali; Aghajani, Mahdi; Nabipour, Iraj; Assadi, Majid

    2013-10-01

    Mobile phones' electromagnetic interference with medical devices is an important issue for the medical safety of patients who are using life-supporting medical devices. This review mainly focuses on mobile phones' interference with implanted medical devices and with medical equipment located in critical areas of hospitals. A close look at the findings reveals that mobile phones may adversely affect the functioning of medical devices, and the specific effect and the degree of interference depend on the applied technology and the separation distance. According to the studies' findings and the authors' recommendations, besides mitigating interference, using mobile phones at a reasonable distance from medical devices and developing technology standards can lead to their effective use in hospital communication systems.

  5. An update on mobile phones interference with medical devices

    International Nuclear Information System (INIS)

    Pashazadeh, A. M.; Aghajani, M.; Nabipour, I.; Assadi, M.

    2013-01-01

    Mobile phones' electromagnetic interference with medical devices is an important issue for the medical safety of patients who are using life-supporting medical devices. This review mainly focuses on mobile phones' interference with implanted medical devices and with medical equipment located in critical areas of hospitals. A close look at the findings reveals that mobile phones may adversely affect the functioning of medical devices, and the specific effect and the degree of interference depend on the applied technology and the separation distance. According to the studies' findings and the authors' recommendations, besides mitigating interference, using mobile phones at a reasonable distance from medical devices and developing technology standards can lead to their effective use in hospital communication systems. (authors)

  6. Medical devices and human engineering

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Medical Devices and Human Engineering, the second volume of the handbook, presents material from respected scientists with diverse backgrounds in biomedical sensors, medical instrumentation and devices, human performance engineering, rehabilitation engineering, and clinical engineering.More than three doze

  7. Medical device reliability and associated areas

    National Research Council Canada - National Science Library

    Dhillon, Balbir S

    2000-01-01

    .... Although the history of reliability engineering can be traced back to World War II, the application of reliability engineering concepts to medical devices is a fairly recent idea that goes back to the latter part of the 1960s when many publications on medical device reliability emerged. Today, a large number of books on general reliability have been...

  8. Improving radiation awareness and feeling of personal security of non-radiological medical staff by implementing a traffic light system in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Heilmaier, C.; Mayor, A.; Zuber, N.; Weishaupt, D. [Stadtspital Triemli, Zurich (Switzerland). Dept. of Radiology; Fodor, P. [Stadtspital Triemli, Zurich (Switzerland). Dept. of Anesthesiology and Intensive Care Medicine

    2016-03-15

    Non-radiological medical professionals often need to remain in the scanning room during computed tomography (CT) examinations to supervise patients in critical condition. Independent of protective devices, their position significantly influences the radiation dose they receive. The purpose of this study was to assess if a traffic light system indicating areas of different radiation exposure improves non-radiological medical staff's radiation awareness and feeling of personal security. Phantom measurements were performed to define areas of different dose rates and colored stickers were applied on the floor according to a traffic light system: green = lowest, orange = intermediate, and red = highest possible radiation exposure. Non-radiological medical professionals with different years of working experience evaluated the system using a structured questionnaire. Kruskal-Wallis and Spearman's correlation test were applied for statistical analysis. Fifty-six subjects (30 physicians, 26 nursing staff) took part in this prospective study. Overall rating of the system was very good, and almost all professionals tried to stand in the green stickers during the scan. The system significantly increased radiation awareness and feeling of personal protection particularly in staff with ? 5 years of working experience (p < 0.05). The majority of non-radiological medical professionals stated that staying in the green stickers and patient care would be compatible. Knowledge of radiation protection was poor in all groups, especially among entry-level employees (p < 0.05). A traffic light system in the CT scanning room indicating areas with lowest, in-termediate, and highest possible radiation exposure is much appreciated. It increases radiation awareness, improves the sense of personal radiation protection, and may support endeavors to lower occupational radiation exposure, although the best radiation protection always is to re-main outside the CT room during the scan.

  9. Improving radiation awareness and feeling of personal security of non-radiological medical staff by implementing a traffic light system in computed tomography

    International Nuclear Information System (INIS)

    Heilmaier, C.; Mayor, A.; Zuber, N.; Weishaupt, D.; Fodor, P.

    2016-01-01

    Non-radiological medical professionals often need to remain in the scanning room during computed tomography (CT) examinations to supervise patients in critical condition. Independent of protective devices, their position significantly influences the radiation dose they receive. The purpose of this study was to assess if a traffic light system indicating areas of different radiation exposure improves non-radiological medical staff's radiation awareness and feeling of personal security. Phantom measurements were performed to define areas of different dose rates and colored stickers were applied on the floor according to a traffic light system: green = lowest, orange = intermediate, and red = highest possible radiation exposure. Non-radiological medical professionals with different years of working experience evaluated the system using a structured questionnaire. Kruskal-Wallis and Spearman's correlation test were applied for statistical analysis. Fifty-six subjects (30 physicians, 26 nursing staff) took part in this prospective study. Overall rating of the system was very good, and almost all professionals tried to stand in the green stickers during the scan. The system significantly increased radiation awareness and feeling of personal protection particularly in staff with ? 5 years of working experience (p < 0.05). The majority of non-radiological medical professionals stated that staying in the green stickers and patient care would be compatible. Knowledge of radiation protection was poor in all groups, especially among entry-level employees (p < 0.05). A traffic light system in the CT scanning room indicating areas with lowest, in-termediate, and highest possible radiation exposure is much appreciated. It increases radiation awareness, improves the sense of personal radiation protection, and may support endeavors to lower occupational radiation exposure, although the best radiation protection always is to re-main outside the CT room during the scan.

  10. Advantages and Disadvantages in Image Processing with Free Software in Radiology.

    Science.gov (United States)

    Mujika, Katrin Muradas; Méndez, Juan Antonio Juanes; de Miguel, Andrés Framiñan

    2018-01-15

    Currently, there are sophisticated applications that make it possible to visualize medical images and even to manipulate them. These software applications are of great interest, both from a teaching and a radiological perspective. In addition, some of these applications are known as Free Open Source Software because they are free and the source code is freely available, and therefore it can be easily obtained even on personal computers. Two examples of free open source software are Osirix Lite® and 3D Slicer®. However, this last group of free applications have limitations in its use. For the radiological field, manipulating and post-processing images is increasingly important. Consequently, sophisticated computing tools that combine software and hardware to process medical images are needed. In radiology, graphic workstations allow their users to process, review, analyse, communicate and exchange multidimensional digital images acquired with different image-capturing radiological devices. These radiological devices are basically CT (Computerised Tomography), MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), etc. Nevertheless, the programs included in these workstations have a high cost which always depends on the software provider and is always subject to its norms and requirements. With this study, we aim to present the advantages and disadvantages of these radiological image visualization systems in the advanced management of radiological studies. We will compare the features of the VITREA2® and AW VolumeShare 5® radiology workstation with free open source software applications like OsiriX® and 3D Slicer®, with examples from specific studies.

  11. Course of radiological protection and safety in the medical diagnostic with X-rays

    International Nuclear Information System (INIS)

    Dominguez A, C.E.

    1997-01-01

    The obtention of images of human body to the medical diagnostic is one of the more old and generalized applications for X-ray. Therefore the design and performance of equipment and installations as well as the operation procedures must be oriented toward safety with the purpose to guarantee this radiological practice will bring a net positive benefit to the society. Given that in Mexico only exists the standardization related to source and equipment generators of ionizing radiation in the industrial area and medical therapy, but not so to the medical diagnostic area it is the purpose of this work to present those standards related with this application branch. Also it is presented the preparation of a manual for the course named Formation of teachers in radiological protection and safety in the X-ray medical diagnostic in 1997 which was imparted at ININ. (Author)

  12. Model-based engineering for medical-device software.

    Science.gov (United States)

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  13. Film traffic queueing model for the DUMC radiology department

    International Nuclear Information System (INIS)

    Humphrey, L.M.; Ravin, C.E.

    1988-01-01

    This paper discusses the radiology department traffic model for Duke University Medical Center (DUMC) which simulates the flow of film through the department, and then incorporates the effect of introducing a PACS-type system into present operations. Each Radiology Section is considered separately for queuing of two types of film: old film (from previous exams) and new film (from the present exam). The amount of film in each queue at any time is controlled by controlling hours of operation, service times, delay, and arrival rates. The model also takes into account the use of film in each major radiology area. This gives some idea of the load on a device in that area as well as the amount of storage needed to adequately handle its daily load is local storage at the display device is desired

  14. Medical student knowledge regarding radiology before and after a radiological anatomy module: implications for vertical integration and self-directed learning.

    Science.gov (United States)

    Murphy, Kevin P; Crush, Lee; O'Malley, Eoin; Daly, Fergus E; O'Tuathaigh, Colm M P; O'Connor, Owen J; Cryan, John F; Maher, Michael M

    2014-10-01

    To examine the impact that anatomy-focused radiology teaching has on non-examined knowledge regarding radiation safety and radiology as a specialty. First-year undergraduate medical students completed surveys prior to and after undertaking the first-year anatomy programme that incorporates radiological anatomy. Students were asked opinions on preferred learning methodology and tested on understanding of radiology as a specialty and radiation safety. Pre-module and post-module response rates were 93 % (157/168) and 85 % (136/160), respectively. Pre-module and post-module, self-directed learning (SDL) ranked eighth (of 11) for preferred gross-anatomy teaching formats. Correct responses regarding radiologist/radiographer roles varied from 28-94 % on 16 questions with 4/16 significantly improving post-module. Identification of modalities that utilise radiation significantly improved for five of eight modalities post-module but knowledge regarding relative amount of modality-specific radiation use was variable pre-module and post-module. SDL is not favoured as an anatomy teaching method. Exposure of students to a radiological anatomy module delivered by senior clinical radiologists improved basic knowledge regarding ionising radiation use, but there was no improvement in knowledge regarding radiation exposure relative per modality. A possible explanation is that students recall knowledge imparted in didactic lectures but do little reading around the subject when the content is not examined. • Self-directed learning is not favoured as a gross anatomy teaching format amongst medical students. • An imaging anatomy-focused module improved basic knowledge regarding ionising radiation use. • Detailed knowledge of modality-specific radiation exposure remained suboptimal post-module. • Knowledge of roles within a clinical radiology department showed little change post-module.

  15. [Ethic review on clinical experiments of medical devices in medical institutions].

    Science.gov (United States)

    Shuai, Wanjun; Chao, Yong; Wang, Ning; Xu, Shining

    2011-07-01

    Clinical experiments are always used to evaluate the safety and validity of medical devices. The experiments have two types of clinical trying and testing. Ethic review must be done by the ethics committee of the medical department with the qualification of clinical research, and the approval must be made before the experiments. In order to ensure the safety and validity of clinical experiments of medical devices in medical institutions, the contents, process and approval criterions of the ethic review were analyzed and discussed.

  16. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Don, E-mail: lee.sangdon@epa.gov [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Snyder, Emily G.; Willis, Robert [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Viani, Brian [Simbol Mining Corp., Pleasanton, CA 94566 (United States); Drake, John [U.S. Environmental Protection Agency, Cincinnati, OH 45268 (United States); MacKinney, John [U.S. Department of Homeland Security, Washington, DC 20528 (United States)

    2010-04-15

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  17. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    International Nuclear Information System (INIS)

    Lee, Sang Don; Snyder, Emily G.; Willis, Robert; Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark; Viani, Brian; Drake, John; MacKinney, John

    2010-01-01

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  18. A concept ideation framework for medical device design.

    Science.gov (United States)

    Hagedorn, Thomas J; Grosse, Ian R; Krishnamurty, Sundar

    2015-06-01

    Medical device design is a challenging process, often requiring collaboration between medical and engineering domain experts. This collaboration can be best institutionalized through systematic knowledge transfer between the two domains coupled with effective knowledge management throughout the design innovation process. Toward this goal, we present the development of a semantic framework for medical device design that unifies a large medical ontology with detailed engineering functional models along with the repository of design innovation information contained in the US Patent Database. As part of our development, existing medical, engineering, and patent document ontologies were modified and interlinked to create a comprehensive medical device innovation and design tool with appropriate properties and semantic relations to facilitate knowledge capture, enrich existing knowledge, and enable effective knowledge reuse for different scenarios. The result is a Concept Ideation Framework for Medical Device Design (CIFMeDD). Key features of the resulting framework include function-based searching and automated inter-domain reasoning to uniquely enable identification of functionally similar procedures, tools, and inventions from multiple domains based on simple semantic searches. The significance and usefulness of the resulting framework for aiding in conceptual design and innovation in the medical realm are explored via two case studies examining medical device design problems. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Evaluation of the contribution of radiological imaging to the final diagnosis in medical case reports

    International Nuclear Information System (INIS)

    Wiesinger, Isabel; Scharf, Gregor; Platz, Natascha; Dendl, Lena M.; Stroszczynski, Christian; Schreyer, Andreas G.; Pawlik, Michael T.

    2015-01-01

    To evaluate the clinical value and impact of radiological imaging in published medial case reports. We analysed 671 consecutively published case reports of a peer-reviewed medical journal for case reports. The general use of radiological imaging as well as the specific imaging modality used in each case (ultrasound, x-ray, fluoroscopy, CT, MRI) was documented, and most importantly the 'final problem solver', i.e. the diagnostic modality giving the final clue to the patient's diagnosis, was identified. In 511 of 671 (76.1 %) analysed case reports at least one radiological modality was used in the diagnostic cascade. In 28.6 % of all cases the final diagnosis was achieved by radiological imaging. All other cases were solved by the patient's history and physical examination (15.2 %), histology (12.4 %), and blood analysis (9.6 %). When radiology was the 'final problem solver', it was mainly CT (51.6 %) and MRI (30.6 %). In 52.2 % of the case reports the radiological image was included in the article. In case reports published in a prominent general medical journal radiological imaging is an important key player in the diagnostic process. In many cases, it is also the diagnostic tool which ultimately leads to determining the final diagnosis. (orig.)

  20. Evaluation of the contribution of radiological imaging to the final diagnosis in medical case reports

    Energy Technology Data Exchange (ETDEWEB)

    Wiesinger, Isabel; Scharf, Gregor; Platz, Natascha; Dendl, Lena M.; Stroszczynski, Christian; Schreyer, Andreas G. [University Hospital Regensburg, Institute of Radiology, Regensburg (Germany); Pawlik, Michael T. [Intensive Care and Emergency Medicine, Institute of Anaesthesiology, Regensburg (Germany)

    2015-05-01

    To evaluate the clinical value and impact of radiological imaging in published medial case reports. We analysed 671 consecutively published case reports of a peer-reviewed medical journal for case reports. The general use of radiological imaging as well as the specific imaging modality used in each case (ultrasound, x-ray, fluoroscopy, CT, MRI) was documented, and most importantly the 'final problem solver', i.e. the diagnostic modality giving the final clue to the patient's diagnosis, was identified. In 511 of 671 (76.1 %) analysed case reports at least one radiological modality was used in the diagnostic cascade. In 28.6 % of all cases the final diagnosis was achieved by radiological imaging. All other cases were solved by the patient's history and physical examination (15.2 %), histology (12.4 %), and blood analysis (9.6 %). When radiology was the 'final problem solver', it was mainly CT (51.6 %) and MRI (30.6 %). In 52.2 % of the case reports the radiological image was included in the article. In case reports published in a prominent general medical journal radiological imaging is an important key player in the diagnostic process. In many cases, it is also the diagnostic tool which ultimately leads to determining the final diagnosis. (orig.)

  1. Power Approaches for Implantable Medical Devices

    Directory of Open Access Journals (Sweden)

    Achraf Ben Amar

    2015-11-01

    Full Text Available Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health. In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources.

  2. Historical perspective: eponyms of vascular radiology.

    Science.gov (United States)

    DiPoce, Jason; Jimenez, Guillermo; Weintraub, Joshua

    2014-01-01

    Eponyms are ubiquitous throughout the medical literature, especially the radiology lexicon. In particular, vascular radiology is replete with dozens of eponyms named after pathologic and anatomic features and various medical devices. Several disease processes are known exclusively by their eponyms or by both their eponyms and their descriptive names. Although some authors advocate abandoning eponyms in favor of more descriptive terms, the established history and common use of eponyms make it unlikely that they will disappear from the vocabulary. Radiologists should be familiar with both the eponymous and descriptive names of disease processes to ensure effective communication and prevent erroneous identification. Study of these eponyms provides information about these disease processes and other medical knowledge for use in daily practice. In addition, biographic information about the pertinent physicians can yield insights into the sometimes surprising origins of these eponyms. The authors provide biographic sketches of these physicians and discuss the clinical relevance of the anatomic features, malformations, and syndromes that bear their names. ©RSNA, 2014.

  3. Radiologic analysis of the medical collateral ligament rupture

    International Nuclear Information System (INIS)

    Cho, Chung Che; Lee, Chang Jun; Kim, Kun Sang; Park, Soo Soung

    1979-01-01

    The medical collateral ligament rupture is the most common injury involving the knee joint ligaments. The ruptured medical collateral ligaments of 73 cases with clinical and surgical confirmations were radiologically analyzed. The results were obtained as follows: 1. The most risky age for tearing of the medical collateral ligament was third to fifth decades (50 cases of male and 23 of females). 2. The most common cause of the medical collateral ligament rupture was traffic accident (82.2%). 3. The mean distance of medial knee joint space was 7.9 ± 2.0 mm on the normal side and 13.7 ± 4.2 mm on the affected side. 4. The mean degree of knee joint space was 10.1 ± 2.5 on the normal side and 14.7 ± 3.8 on the affected side. 5. The fibula was the bone fractured most frequently in association with the medial collateral ligament rupture (30.6%).

  4. TU-AB-204-01: Device Approval Process

    International Nuclear Information System (INIS)

    Delfino, J.

    2016-01-01

    The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) and the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission (IEC

  5. TU-AB-204-01: Device Approval Process

    Energy Technology Data Exchange (ETDEWEB)

    Delfino, J. [Food & Drug Administration (United States)

    2016-06-15

    The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) and the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission (IEC

  6. Towards sustainable design for single-use medical devices.

    Science.gov (United States)

    Hanson, Jacob J; Hitchcock, Robert W

    2009-01-01

    Despite their sophistication and value, single-use medical devices have become commodity items in the developed world. Cheap raw materials along with large scale manufacturing and distribution processes have combined to make many medical devices more expensive to resterilize, package and restock than to simply discard. This practice is not sustainable or scalable on a global basis. As the petrochemicals that provide raw materials become more expensive and the global reach of these devices continues into rapidly developing economies, there is a need for device designs that take into account the total life-cycle of these products, minimize the amount of non-renewable materials consumed and consider alternative hybrid reusable / disposable approaches. In this paper, we describe a methodology to perform life cycle and functional analyses to create additional design requirements for medical devices. These types of sustainable approaches can move the medical device industry even closer to the "triple bottom line"--people, planet, profit.

  7. 78 FR 21129 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2013-04-09

    ... radiofrequency band ranging between 13 megahertz to 27.12 megahertz and is intended for the treatment of medical...] Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: Orthopaedic and Rehabilitation Devices Panel of the Medical Devices...

  8. Mobile technology in radiology resident education.

    Science.gov (United States)

    Korbage, Aiham C; Bedi, Harprit S

    2012-06-01

    The authors hypothesized that ownership of a mobile electronic device would result in more time spent learning radiology. Current trends in radiology residents' studying habits, their use of electronic and printed radiology learning resources, and how much of the funds allotted to them are being used toward printed vs electronic education tools were assessed in this study. A survey study was conducted among radiology residents across the United States from June 13 to July 5, 2011. Program directors listed in the Association of Program Directors in Radiology e-mail list server received an e-mail asking for residents to participate in an online survey. The questionnaire consisted of 12 questions and assessed the type of institution, the levels of training of the respondents, and book funds allocated to residents. It also assessed the residents' study habits, access to portable devices, and use of printed and electronic radiology resources. Radiology residents are adopters of new technologies, with 74% owning smart phones and 37% owning tablet devices. Respondents spend nearly an equal amount of time learning radiology from printed textbooks as they do from electronic resources. Eighty-one percent of respondents believe that they would spend more time learning radiology if provided with tablet devices. There is considerable use of online and electronic resources and mobile devices among the current generation of radiology residents. Benefits, such as more study time, may be obtained by radiology programs that incorporate tablet devices into the education of their residents. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  9. Anti-malware software and medical devices.

    Science.gov (United States)

    2010-10-01

    Just as much as healthcare information systems, medical devices need protection against cybersecurity threats. Anti-malware software can help safeguard the devices in your facility-but it has limitations and even risks. Find out what steps you can take to manage anti-malware applications in your devices.

  10. Practice of Regulatory Science (Development of Medical Devices).

    Science.gov (United States)

    Niimi, Shingo

    2017-01-01

    Prototypes of medical devices are made in accordance with the needs of clinical practice, and for systems required during the initial process of medical device development for new surgical practices. Verification of whether these prototypes produce the intended performance specifications is conducted using basic tests such as mechanical and animal tests. The prototypes are then improved and modified until satisfactory results are obtained. After a prototype passes through a clinical trial process similar to that for new drugs, application for approval is made. In the approval application process, medical devices are divided into new, improved, and generic types. Reviewers judge the validity of intended use, indications, operation procedures, and precautions, and in addition evaluate the balance between risk and benefit in terms of efficacy and safety. Other characteristics of medical devices are the need for the user to attain proficiency in usage techniques to ensure efficacy and safety, and the existence of a variety of medical devices for which assessment strategies differ, including differences in impact on the body in cases in which a physical burden to the body or failure of a medical device develops. Regulatory science of medical devices involves prediction, judgment, and evaluation of efficacy, safety, and quality, from which data result which can become indices in the development stages from design to application for approval. A reduction in the number of animals used for testing, improvement in efficiency, reduction of the necessity for clinical trials, etc. are expected through rational setting of evaluation items.

  11. Advent and evolution of radiology in dentistry from the end of the 19. century until today

    International Nuclear Information System (INIS)

    Zarate, Julien

    2015-01-01

    This work traces the history of dental radiology from the discovery of the X rays by Roentgen to modern radiology. At the end of the 19. century, Roentgen, as other physicists, was fascinated by the study of cathodic rays. On the 8 november 1895, he discovered an unknown radiation: the X rays. It was the beginning of a revolution in dental and medical occupations but some radiology pioneers died because of the effects of this new radiation, having received a too high irradiation dose. At this time, the first radiology devices were not still available into a single piece. The dentist has, by his own means, to find the different elements of the device in spare parts. The dental radiological device is described at its beginnings: particularly its manufacture and its further evolution particularly with the Coolidge tube that is still used today. Relying on the historical aspects, the different techniques of radiology, that are used frequently in dentistry including the panoramic radiology and numerical radiology are raised. Our aim will be to show how the experiments of our predecessors make our everyday life. (O.M.) [fr

  12. MDR (Medical Device Reporting)

    Data.gov (United States)

    U.S. Department of Health & Human Services — This database allows you to search the CDRH's database information on medical devices which may have malfunctioned or caused a death or serious injury during the...

  13. 78 FR 68714 - Medical Devices; Ophthalmic Devices; Classification of the Scleral Plug

    Science.gov (United States)

    2013-11-15

    ... amendments), as ``preamendments devices.'' FDA classifies these devices after the Agency takes the following.... FDA-2012-N-1238] Medical Devices; Ophthalmic Devices; Classification of the Scleral Plug AGENCY: Food... scleral plugs in order to provide a reasonable assurance of safety and effectiveness of the device. The...

  14. Transporting radioactive materials and possible radiological consequences from accidents as might be seen by medical institutions

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1990-01-01

    This paper discusses how medical personnel faced with treating victims of an accident involving radioactive material should be suspicious concerning possible radiological involvement. At the same time, they should be careful to obtain the necessary information in order to make a rational decision as to the likelihood of such involvement. Having made that decision, it is entirely possible then to approach the problem from a medical standpoint in such a way as to determine the extent of radiological involvement and to apply proper medical treatment consistent with that exposure

  15. Medical Student Assessment of Videotape for Teaching in Diagnostic Radiology

    Science.gov (United States)

    Moss, J. R.; McLachlan, M. S. F.

    1976-01-01

    A series of six recordings that describe some aspects of the radiology of the chest, using only radiographs, were viewed by a small group of final year medical students. Their scores for factual questions immediately afterwards were compared with their attitudes to the learning experience; higher scores correlated with positive attitudes. (LBH)

  16. Quality and Calibration of X-Ray Devices Used in Radiology

    OpenAIRE

    SONĞUR, Levent

    2013-01-01

    Calibration is defined as the relationship between the results obtained from the reference systems and the measurement devices, or briefly as the process of determining the magnitude of deviation from the correct values. The errors in the results produced by the measurement systems, which has been calibrated correctly, must be within the specified limits. Medical diagnosis and therapies are conducted by taking into account the results obtained from medical devices. So, the accuracy of the res...

  17. Deepening the reform of medical education, strengthening the training of reserve specialists in interventional radiology: a profound rethinking based on a survey of medical students

    International Nuclear Information System (INIS)

    Ren Chongyang; Di Zhenhai; Li Linsun

    2010-01-01

    Although the interventional radiology, a rapidly expanding medical specialty, has already been widely popularized and generally accepted for many years, it is still facing lots of challenges and turf wars, such as the brain drain, understaffed and the gap between the old and the young. This article attempts to analyze the reasons through investigating the current teaching situation of interventional radiology in medical colleges and finding out the undergraduates' attitude to interventional radiology, in order to explore possible paths for solving the imbalance between supply and demand of qualified personnel. (authors)

  18. 77 FR 72924 - Taxable Medical Devices

    Science.gov (United States)

    2012-12-07

    ... in hospitals, doctors offices and other medical institutions, such as x-ray machines, magnetic... the medical device context include sales to hospitals and other medical service providers. Although... of a taxable article to charity constitutes a taxable use under section 4218. However, the IRS and...

  19. Predictable and SuStainable Implementation of National Cardiovascular Registries (PASSION) infrastructure: A think tank report from Medical Device Epidemiological Network Initiative (MDEpiNet).

    Science.gov (United States)

    Zeitler, Emily P; Al-Khatib, Sana M; Drozda, Joseph P; Kessler, Larry G; Kirtane, Ajay J; Kong, David F; Laschinger, John; Marinac-Dabic, Danica; Morice, Marie-Claude; Reed, Terrie; Sedrakyan, Art; Stein, Kenneth M; Tcheng, James; Krucoff, Mitchell W

    2016-01-01

    The MDEpiNet is a public-private partnership between the US Food and Drug Administration's Center for Devices and Radiological Health and participating partners. The PASSION program is an MDEpiNet-sponsored program that aims to demonstrate the goals of MDEpiNet by using cardiovascular medical device registries to bridge evidence gaps across the medical device total product life cycle. To this end, a PASSION Think Tank meeting took place in October 2014 in Silver Spring, MD, to facilitate discussion between stakeholders about the successes, challenges, and future novel applications of medical device registries, with particular emphasis on identifying pilot projects. Participants spanned a broad range of groups including patients, device manufacturers, regulators, physicians/academicians, professional societies, providers, and payers. The meeting focus included 4 areas of cardiovascular medicine intended to cultivate interest in 4 MDEpiNet disease-specific/device-specific working groups: coronary intervention, electrophysiology, valvular disease, and peripheral vascular disease. In addition, more general issues applying to registry-based infrastructure and analytical methodologies for assessing device benefit/risk were considered to provide context for the working groups as PASSION programs going forward. This article summarizes the discussions at the meeting and the future directions of the PASSION program. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Development of Implantable Medical Devices: From an Engineering Perspective

    Directory of Open Access Journals (Sweden)

    Yeun-Ho Joung

    2013-09-01

    Full Text Available From the first pacemaker implant in 1958, numerous engineering and medical activities for implantable medical device development have faced challenges in materials, battery power, functionality, electrical power consumption, size shrinkage, system delivery, and wireless communication. With explosive advances in scientific and engineering technology, many implantable medical devices such as the pacemaker, cochlear implant, and real-time blood pressure sensors have been developed and improved. This trend of progress in medical devices will continue because of the coming super-aged society, which will result in more consumers for the devices. The inner body is a special space filled with electrical, chemical, mechanical, and marine-salted reactions. Therefore, electrical connectivity and communication, corrosion, robustness, and hermeticity are key factors to be considered during the development stage. The main participants in the development stage are the user, the medical staff, and the engineer or technician. Thus, there are three different viewpoints in the development of implantable devices. In this review paper, considerations in the development of implantable medical devices will be presented from the viewpoint of an engineering mind.

  1. Preventing medical device recalls

    CERN Document Server

    Raheja, Dev

    2014-01-01

    Introduction to Medical Device RequirementsIntroductionThe ChallengesSources of ErrorsUnderstanding the Science of Safety     Overview of FDA Quality System Regulation     Overview of Risk Management Standard ISO 14971     Overview of FDA Device Approval Process     Overview of Regulatory Requirements for Clinical TrialsSummaryReferencesPreventing Recalls during Specification WritingIntroductionConduct Requirements Analysis to Identify Missing RequirementsSpecifications for Safety, Durability, and

  2. 78 FR 26786 - Microbiology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-05-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Microbiology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Microbiology Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To...

  3. 76 FR 48871 - Immunology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-08-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Immunology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Immunology Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To...

  4. Product-based Safety Certification for Medical Devices Embedded Software.

    Science.gov (United States)

    Neto, José Augusto; Figueiredo Damásio, Jemerson; Monthaler, Paul; Morais, Misael

    2015-01-01

    Worldwide medical device embedded software certification practices are currently focused on manufacturing best practices. In Brazil, the national regulatory agency does not hold a local certification process for software-intensive medical devices and admits international certification (e.g. FDA and CE) from local and international industry to operate in the Brazilian health care market. We present here a product-based certification process as a candidate process to support the Brazilian regulatory agency ANVISA in medical device software regulation. Center of Strategic Technology for Healthcare (NUTES) medical device embedded software certification is based on a solid safety quality model and has been tested with reasonable success against the Class I risk device Generic Infusion Pump (GIP).

  5. Radiological anatomy - evaluation of integrative education in radiology.

    Science.gov (United States)

    Dettmer, S; Schmiedl, A; Meyer, S; Giesemann, A; Pabst, R; Weidemann, J; Wacker, F K; Kirchhoff, T

    2013-09-01

    Evaluation and analysis of the integrative course "Radiological Anatomy" established since 2007 at the Medical School Hannover (MHH) in comparison with conventional education. Anatomy and radiology are usually taught separately with a considerable time lag. Interdisciplinary teaching of these associated subjects seems logical for several reasons. Therefore, the integrative course "Radiological Anatomy" was established in the second year of medical education, combining these two closely related subjects. This interdisciplinary course was retrospectively evaluated by consideration of a student questionnaire and staff observations. The advantages and disadvantages of integrative teaching in medical education are discussed. The course ratings were excellent (median 1; mean 1.3 on a scale of 1 to 6). This is significantly (p radiology increased during the course (88 %). According to the students' suggestions the course was enhanced by a visitation in the Department of Radiology and the additional topic central nervous system. Integrative teaching of anatomy and radiology was well received by the students. Both, anatomical and radiological comprehension and the motivation to learn were improved. However, it should be considered, that the amount of work and time required by the teaching staff is considerably increased compared to traditional teaching. © Georg Thieme Verlag KG Stuttgart · New York.

  6. United States Department of Health and Human Services Biodosimetry and radiological/nuclear medical countermeasure programs

    International Nuclear Information System (INIS)

    Homer, Mary J.; Raulli, Robert; Esker, John; Moyer, Brian; Wathen, Lynne; DiCarlo-Cohen, Andrea L.; Maidment, Bert W.; Rios, Carmen; Macchiarini, Francesca; Hrdina, Chad; Prasanna, Pataje G.

    2016-01-01

    The United States Department of Health and Human Services (HHS) is fully committed to the development of medical countermeasures to address national security threats from chemical, biological, radiological, and nuclear agents. Through the Public Health Emergency Medical Countermeasures Enterprise, HHS has launched and managed a multi-agency, comprehensive effort to develop and operationalize medical countermeasures. Within HHS, development of medical countermeasures includes the National Institutes of Health (NIH), (led by the National Institute of Allergy and Infectious Diseases), the Office of the Assistant Secretary of Preparedness and Response/Biomedical Advanced Research and Development Authority (BARDA); with the Division of Medical Countermeasure Strategy and Requirements, the Centers for Disease Control and Prevention, and the Food and Drug Administration as primary partners in this endeavor. This paper describes various programs and coordinating efforts of BARDA and NIH for the development of medical countermeasures for radiological and nuclear threats. (authors)

  7. Radiation protection in medical diagnostic radiology in the city of Sobral, Brazil

    International Nuclear Information System (INIS)

    Menezes, F.L.; Paschoal, C.M.M.; Ferreira, F.C.L.; Alcantara, M.C.

    2015-01-01

    The objective of this study was to evaluate the suitability to radiation protection of four diagnostic radiology medical services in the city of Sobral-CE, Northeast of Brazil, and to analyze results of the literature for the cities of Rio Branco-AC, North of Brazil, and Rio de Janeiro-RJ, South-east of Brazil. In Sobral-CE, it was performed interviews and direct observations with reference to Brazilian law, the National Ordinance No.453/1998 of the Ministry of Health that regulates the operation of medical and odontological diagnostic radiology services. The results show the occurrence of many items in disagreement with the standard. The technical and operational infractions have basically due to unfamiliarity with the legislation, the lack of investment in training and/or professional development courses. (authors)

  8. Clinical Training of Medical Physicists Specializing in Diagnostic Radiology

    International Nuclear Information System (INIS)

    2010-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for diagnostic radiology. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists based in the clinical setting. However, an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement (RCA) for Research, Development and Training related to Nuclear Sciences for Asia and the Pacific. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia-Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specializing in diagnostic radiology started in 2007 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experiences of clinical training programmes in Australia and New Zealand, the UK and the USA, and was moderated by physicists working in the Asian region. This publication follows the approach of the IAEA publication Training Course Series No. 37, Clinical Training of Medical Physicists specializing in Radiation Oncology. This approach to clinical training has been successfully tested

  9. On the impact of medical device regulations on software architecture

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Manikas, Konstantinos

    2016-01-01

    Compliance to regulations and regulatory approval are requirements for many medical device software systems. In this paper, we investigate the implications of medical device software regulations to the design of software systems. We do so by focusing on the American and European regulatory author...... of the device. Moreover, we review software modularity in the implementation of software medical device and propose a set of preliminary principles for architectural design of software medical device based on a set of constrains identified from the reviewed regulations....

  10. Survey of UK radiology trainees in the aftermath of ‘Modernising Medical Careers’

    Directory of Open Access Journals (Sweden)

    Mair Grant

    2012-10-01

    Full Text Available Abstract Background Following implementation of Modernising Medical Careers (MMC in the UK, potential radiology trainees must decide on their career and apply sooner than ever before. We aimed to determine whether current trainees were sufficiently informed to make an earlier career decision by comparing the early radiology experiences of Traditional and Foundation Trainees. Methods 344 radiology trainees were appointed through MMC in 2007/08. This cohort was surveyed online. Results Response rate was 174/344 (51%. Traditional Trainees made their career decision 2.6 years after graduation compared with 1.2 years for Foundation Trainees (57/167, 34%. Nearly half of responders (79/169, 47% experienced no formal radiology teaching as undergraduates. Most trainees regularly attended radiology meetings, spent time in a radiology department and/or performed radiology research. Many trainees received no career advice specific to radiology (69/163, 42% at any point prior to entering the specialty; this includes both formal and informal advice. Junior doctor experiences were more frequently cited as influencing career choice (98/164, 60%. An earlier career decision was associated with; undergraduate radiology projects (-0.72 years, p = 0.018, career advice (-0.63 years, p = 0.009 and regular attendance at radiology meetings (-0.65 years, p = 0.014. Conclusion Early experience of radiology enables trainees to make an earlier career decision, however current radiology trainees were not always afforded relevant experiences prior to entering training. Radiologists need to be more proactive in encouraging the next generation of trainees.

  11. Survey of UK radiology trainees in the aftermath of ‘Modernising Medical Careers’

    Science.gov (United States)

    2012-01-01

    Background Following implementation of Modernising Medical Careers (MMC) in the UK, potential radiology trainees must decide on their career and apply sooner than ever before. We aimed to determine whether current trainees were sufficiently informed to make an earlier career decision by comparing the early radiology experiences of Traditional and Foundation Trainees. Methods 344 radiology trainees were appointed through MMC in 2007/08. This cohort was surveyed online. Results Response rate was 174/344 (51%). Traditional Trainees made their career decision 2.6 years after graduation compared with 1.2 years for Foundation Trainees (57/167, 34%). Nearly half of responders (79/169, 47%) experienced no formal radiology teaching as undergraduates. Most trainees regularly attended radiology meetings, spent time in a radiology department and/or performed radiology research. Many trainees received no career advice specific to radiology (69/163, 42%) at any point prior to entering the specialty; this includes both formal and informal advice. Junior doctor experiences were more frequently cited as influencing career choice (98/164, 60%). An earlier career decision was associated with; undergraduate radiology projects (-0.72 years, p = 0.018), career advice (-0.63 years, p = 0.009) and regular attendance at radiology meetings (-0.65 years, p = 0.014). Conclusion Early experience of radiology enables trainees to make an earlier career decision, however current radiology trainees were not always afforded relevant experiences prior to entering training. Radiologists need to be more proactive in encouraging the next generation of trainees. PMID:23031228

  12. [Industry regulation and its relationship to the rapid marketing of medical devices].

    Science.gov (United States)

    Matsuoka, Atsuko

    2012-01-01

    In the market of medical devices, non-Japanese products hold a large part even in Japan. To overcome this situation, the Japanese government has been announcing policies to encourage the medical devices industry, such as the 5-year strategy for medical innovation (June 6, 2012). The Division of Medical Devices has been contributing to rapid marketing of medical devices by working out the standards for approval review and accreditation of medical devices, guidances on evaluation of medical devices with emerging technology, and test methods for biological safety evaluation of medical devices, as a part of practice in the field of regulatory science. The recent outcomes are 822 standards of accreditation for Class II medical devices, 14 guidances on safety evaluation of medical devices with emerging technology, and the revised test methods for biological safety evaluation (MHLW Notification by Director, OMDE, Yakushokuki-hatsu 0301 No. 20 "Basic Principles of Biological Safety Evaluation Required for Application for Approval to Market Medical Devices").

  13. 76 FR 7220 - Medical Device Innovation Initiative; Request for Comments

    Science.gov (United States)

    2011-02-09

    ... medical device innovation. 6. Other actions CDRH should take to facilitate the development, assessment...] Medical Device Innovation Initiative; Request for Comments AGENCY: Food and Drug Administration, HHS... availability of a document for public comment entitled ``Medical Device Innovation Initiative'' (the report...

  14. Medical and policy considerations for nuclear and radiation accidents, incidents and terrorism.

    Science.gov (United States)

    Gale, Robert Peter

    2017-11-01

    The purpose of this review is to address the increasing medical and public concern regarding the health consequences of radiation exposure, a concern shaped not only by fear of another Chernobyl or Fukushima nuclear power facility accident but also by the intentional use of a nuclear weapon, a radiological dispersion device, a radiological exposure device, or an improved nuclear device by rogue states such as North Korea and terrorist organizations such as Al Qaeda and ISIS. The United States has the medical capacity to respond to a limited nuclear or radiation accident or incident but an effective medical response to a catastrophic nuclear event is impossible. Dealing effectively with nuclear and radiation accidents or incidents requires diverse strategies, including policy decisions, public education, and medical preparedness. I review medical consequences of exposures to ionizing radiations, likely concomitant injuries and potential medical intervention. These data should help haematologists and other healthcare professionals understand the principles of medical consequences of nuclear terrorism. However, the best strategy is prevention.

  15. 78 FR 68853 - International Medical Device Regulators Forum; Medical Device Single Audit Program International...

    Science.gov (United States)

    2013-11-15

    ... its inaugural meeting in Singapore in 2012, identified a Work Group (WG) to develop specific documents... Assessment Method for the Recognition and Monitoring of Medical Device Auditing Organizations;'' and IMDRF...

  16. Radiological protection and quality control for diagnostic radiology in China

    International Nuclear Information System (INIS)

    Baorong, Yue

    2008-01-01

    Full text: There are 43,000 diagnostic departments, nearly 70,000 X-ray diagnostic facilities, 7,000 CT, 250 million for the annual total numbers of X-ray examinations, 120,000 occupationally exposed workers in diagnostic radiology. 'Basic standards for protection against ionizing radiation and for the safety of radiation sources' is promulgated on October, 2002. This basic standard follows the BSS. 'Rule on the administration of radio-diagnosis and radiotherapy', as a order of the Ministry of Health No. 46, is promulgated by Minister of Health on January 24, 2006. It includes general provisions, requirements and practice, establishment and approval of radio-diagnosis and radiotherapy services, safeguards and quality assurance, and so on. There are a series of radiological protection standards and quality control standards in diagnostic radiology, including 'radiological protection standard for the examination in X-ray diagnosis', 'radiological health protection standards for X-ray examination of child-bearing age women and pregnant women', 'radiological protection standards for the children in X-ray diagnosis', 'standards for radiological protection in medical X-ray diagnosis', 'specification for radiological protection monitoring in medical X-ray diagnosis', 'guide for reasonable application of medical X-ray diagnosis', 'general aspects for quality assurance in medical X-ray image of diagnosis', 'specification of image quality control test for the medical X-ray diagnostic equipment', 'specification of image quality assurance test for X-ray equipment for computed tomography', 'specification for testing of quality control in computed radiography (CR)' and 'specification for testing of quality control in X-ray mammography'. With the X-ray diagnostic equipment, there are acceptant tests, status tests and routing tests in large hospitals. It is poor for routing test in middle and smaller hospitals. CT is used widely in diagnostic radiology, however most workers in CT

  17. L-027: EPR-First Responders: First Medical Response in a radiological emergency

    International Nuclear Information System (INIS)

    2011-01-01

    The main topics covered in this conference are the tasks and the roles of medical emergency services and the local hospital such as firsts aid in a radiological emergency, protective measures, contamination level of the victims and lifesaving

  18. Distributed radiology clerkship for the core clinical year of medical school.

    Science.gov (United States)

    Chew, Felix S

    2002-11-01

    The central role that diagnostic radiology has in the modern practice of medicine has not always been reflected in radiology's place in the curriculum. We developed a new radiology clerkship for undergraduate medical students during their core clinical year that was supported by Web technology. The assumptions underlying the design of the clerkship were that radiology is best learned from radiologists and that students are most receptive to learning radiology when it is related to concurrent patient care experiences. Beginning in May 2000, a required radiology clerkship experience was incorporated into the core clinical year at Wake Forest University School of Medicine. The core clinical year was organized into three 16-week blocks of clerkships. Two or four independent half-day radiology tutorial sessions were included with each clerkship block, and attended by all students in the block (approximately 35 students), regardless of their specific clerkship assignments. There were ten different radiology tutorials, each given three times during the year as students rotated through the clerkship blocks. Thus, each student attended a radiology tutorial session every four to eight weeks during the year. The topics covered during the tutorials were correlated with the content of the clerkship blocks and included adult and pediatric chest radiology, adult and pediatric abdominal radiology, body CT, neuroradiology, obstetric ultrasound, gynecologic ultrasound, osteoporosis, adult and pediatric fractures, mammography, and cervical spine trauma. The tutorials included pre- and post-test, lectures, case presentations, and sometimes tours of the radiology department. The educational emphasis was on pragmatic case-based learning exercises, development of verbal and visual vocabulary, and learning when and where to seek more information. To provide continuity and organization, Web-based curriculum materials were designed and implemented as a component of the clerkship. The home

  19. The current situation and development of medical device testing institutes in China.

    Science.gov (United States)

    Yang, Xiaofang; Mu, Ruihong; Fan, Yubo; Wang, Chunren; Li, Deyu

    2017-04-01

    This article analyses the current situation and development of Chinese medical device testing institutes from the perspectives of the two most important functions - testing functions and medical device standardization functions. Areas Covered: The objective of the Chinese government regulations for medical device industry is to ensure the safety and effectiveness of medical devices for Chinese patients. To support the regulation system, the Chinese government has established medical device testing institutes at different levels for example, the national, provincial, and municipal levels. These testing institutes also play an important role in technical support during medical device premarket registration and post market surveillance, they are also the vital practitioners of Chinese medical device standardization. Expert Commentary: Chinese medical device testing institutes are technical departments established by government, and serve the regulatory functions of government agency. In recent years, with the rapid development of medical device industry as well as constantly increasing international and domestic medical device market, the importance of medical device testing institute is more prominent, However, there are still some problems unsolved, such as their overall capacity remains to be improved, construction of standardization is to be strengthened, etc.

  20. Medical devices for the anesthetist: current perspectives

    Directory of Open Access Journals (Sweden)

    Ingrande J

    2014-03-01

    Full Text Available Jerry Ingrande, Hendrikus JM LemmensDepartment of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USAAbstract: Anesthesiologists are unique among most physicians in that they routinely use technology and medical devices to carry out their daily activities. Recently, there have been significant advances in medical technology. These advances have increased the number and utility of medical devices available to the anesthesiologist. There is little doubt that these new tools have improved the practice of anesthesia. Monitoring has become more comprehensive and less invasive, airway management has become easier, and placement of central venous catheters and regional nerve blockade has become faster and safer. This review focuses on key medical devices such as cardiovascular monitors, airway equipment, neuromonitoring tools, ultrasound, and target controlled drug delivery software and hardware. This review demonstrates how advances in these areas have improved the safety and efficacy of anesthesia and facilitate its administration. When applicable, indications and contraindications to the use of these novel devices will be explored as well as the controversies surrounding their use.Keywords: catheters, echocardiography, ultrasound, fiberoptic bronchoscope, laryngeal mask airway, closed-loop anesthesia

  1. 77 FR 18829 - Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2012-03-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Gastroenterology and Urology Devices Panel of the Medical Devices Advisory...

  2. 76 FR 71983 - Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2011-11-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Gastroenterology and Urology Devices Panel of the Medical Devices Advisory...

  3. Teaching Critical Thinking in Graduate Medical Education: Lessons Learned in Diagnostic Radiology.

    Science.gov (United States)

    Morrissey, Benjamin; Heilbrun, Marta E

    2017-01-01

    The 2014 Institute of Medicine report, Graduate Medical Education that Meets the Nation's Health Needs , challenged the current graduate medical training process and encouraged new opportunities to redefine the fundamental skills and abilities of the physician workforce. This workforce should be skilled in critically evaluating the current systems to improve care delivery and health. To meet these goals, current challenges, motivations, and educational models at the medical school and graduate medical education levels related to formal training in nonclinical aspects of medicine, especially critical thinking, are reviewed. Our diagnostic radiology training program is presented as a "case study" to frame the review.

  4. TU-AB-204-02: Device Adverse Events and Compliance

    International Nuclear Information System (INIS)

    Gonzales, S.

    2016-01-01

    The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) and the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission (IEC

  5. TU-AB-204-02: Device Adverse Events and Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, S. [Food & Drug Administration (United States)

    2016-06-15

    The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) and the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission (IEC

  6. Analysis of radiological protection and security in the radioactive diagnosis area in a third level hospital

    International Nuclear Information System (INIS)

    Azorin Vega, J.C.; Aazorin Nieto, J.; Rivera Montalvo, T.

    1998-01-01

    Results from the evaluation made to radiological security and protection conditions prevailing in 13 medical diagnosis rooms with X rays at the National Nutrition Institute Zlavador Zubiran (third level hospital), aiming to give adequate protection and radiological security devices to the staff exposed from that hospital and to comply fully with requirements set by the standards

  7. 42 CFR 410.36 - Medical supplies, appliances, and devices: Scope.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Medical supplies, appliances, and devices: Scope... Services § 410.36 Medical supplies, appliances, and devices: Scope. (a) Medicare Part B pays for the following medical supplies, appliances and devices: (1) Surgical dressings, and splints, casts, and other...

  8. 75 FR 57968 - Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2010-09-23

    ...] Gastroenterology and Urology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Gastroenterology and Urology Devices Panel of the Medical Devices Advisory... committee will discuss, make recommendations, and vote on information related to the PMA for the LAP-BAND...

  9. 76 FR 55398 - Immunology Devices Panel of the Medical Devices Advisory Committee: Notice of Postponement of...

    Science.gov (United States)

    2011-09-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Immunology Devices Panel of the Medical Devices Advisory Committee: Notice of Postponement of Meeting AGENCY... postponing the meeting of the Immunology Devices Panel of the Medical Devices Advisory Committee scheduled...

  10. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    When ionizing radiation was discovered more than 100 years ago its beneficial uses were quickly discovered by the medical profession. Over the years new diagnostic and therapeutic techniques have been developed and the general level of health care has improved. This has resulted in medical radiation exposures becoming a significant component of the total radiation exposure of populations. Current estimates put the worldwide annual number of diagnostic exposures at 2500 million and therapeutic exposures at 5.5 million. Some 78% of diagnostic exposures are due to medical X rays, 21% due to dental X rays and the remaining 1% due to nuclear medicine techniques. The annual collective dose from all diagnostic exposures is about 2500 million man Sv, corresponding to a worldwide average of 0.4 mSv per person per year. There are, however, wide differences in radiological practices throughout the world, the average annual per caput values for States of the upper and lower health care levels being 1.3 mSv and 0.02 mSv, respectively. It should, however, be noted that doses from therapeutic uses of radiation are not included in these averages, as they involve very high doses (in the region of 20-60 Gy) precisely delivered to target volumes in order to eradicate disease or to alleviate symptoms. Over 90% of total radiation treatments are conducted by teletherapy or brachytherapy, with radiopharmaceuticals being used in only 7% of treatments. Increases in the uses of medical radiation and the resultant doses can be expected following changes in patterns of health care resulting from advances in technology and economic development. For example, increases are likely in the utilization of computed tomography (CT), digital imaging and, with the attendant potential for deterministic effects, interventional procedures; practice in nuclear medicine will be driven by the use of new and more specific radiopharmaceuticals for diagnosis and therapy, and there will be an increased demand for

  11. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    When ionizing radiation was discovered more than 100 years ago its beneficial uses were quickly discovered by the medical profession. Over the years new diagnostic and therapeutic techniques have been developed and the general level of health care has improved. This has resulted in medical radiation exposures becoming a significant component of the total radiation exposure of populations. Current estimates put the worldwide annual number of diagnostic exposures at 2500 million and therapeutic exposures at 5.5 million. Some 78% of diagnostic exposures are due to medical X rays, 21% due to dental X rays and the remaining 1% due to nuclear medicine techniques. The annual collective dose from all diagnostic exposures is about 2500 million man Sv, corresponding to a worldwide average of 0.4 mSv per person per year. There are, however, wide differences in radiological practices throughout the world, the average annual per caput values for States of the upper and lower health care levels being 1.3 mSv and 0.02 mSv, respectively. It should, however, be noted that doses from therapeutic uses of radiation are not included in these averages, as they involve very high doses (in the region of 20-60 Gy) precisely delivered to target volumes in order to eradicate disease or to alleviate symptoms. Over 90% of total radiation treatments are conducted by teletherapy or brachytherapy, with radiopharmaceuticals being used in only 7% of treatments. Increases in the uses of medical radiation and the resultant doses can be expected following changes in patterns of health care resulting from advances in technology and economic development. For example, increases are likely in the utilization of computed tomography (CT), digital imaging and, with the attendant potential for deterministic effects, interventional procedures. Practice in nuclear medicine will be driven by the use of new and more specific radiopharmaceuticals for diagnosis and therapy, and there will be an increased demand for

  12. A Medical Delivery Device

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a medical delivery device comprising at least two membrane electrode assembly units each of which comprises three layers: an upper and a lower electrode and a selective ionic conductive membrane provided there-between. At least one of the three layers are shared...

  13. Radiologic Equipment and Technicians according to the Distribution of the Population

    International Nuclear Information System (INIS)

    Yoon, Chul Ho; Choi, Jun Gu

    2009-01-01

    The purpose of this paper is to provide basic data in order to systematize the management of demand and supply of radiologic technicians, to pursue a fair regional distribution of educational institutions, and furthermore to keep reasonable medical treatment and fee. This research was carried out through the investigation of radiologic equipment and technicians according to the distribution of the population. We compared and analyzed the correlation between regional population, the number of clinics and hospitals, the number of medical imaging devices, and the number of radiologists and radiologic technicians in 5 cities without 'Gu' administrative units in 2008. 27,317 radiologic technicians have been produced since the administration of the national qualifying exam for radiologic technicians. About 18,000 radiologic technicians are currently working. There are 39 colleges or universities with Departments of Radiology and the admission quota is 2,120 students excluding one college. The ratio of radiologic equipment to radiologic technicians is 2.6 to 1. There is a dilemma in which some radiologic technicians fail to find appropriate jobs while some clinics or hospitals are in need of radiologic technicians. This dilemma is due to unreasonable regional discrepancies in pay system and welfare situation, and excessive profit-oriented recruiting system of clinics and hospitals. The increase of students of Radiologic Departments and approval of additional departments will end up with producing superfluous high academic degree holders, which is on the contrary to the government policy to produce more job opportunities. So the policy of increasing Radiologic Departments should be reconsidered.

  14. WORK EXPERIENCE OF THE OPERA TIVE INFORMATION SUPPORT SERVICE FOR SCIENTIFIC RESEARCH A T THE MEDICAL RADIOLOGICAL RESEARCH CENTER NAMED AFTER A.F . TSYB – BRANCH OF THE FEDERAL STATE BUDGET INSTITUTION "NATIONAL MEDICAL RESEARCH RADIOLOGICAL CENTER” OF T

    Directory of Open Access Journals (Sweden)

    N. P. Savina

    2015-01-01

    Full Text Available Abstract:The Operative Information Support Service for Scientific Research of the Medical Radiological Research Center named after A. F. Tsyb — Branch of the FSBI «National Medical Research Radiological Center” of the RF Health Ministry presented a report on providing off-budget support for scientific activities over the period from 1993 to 2014 using domestic and foreign information resources. The dynamics of employee activities in institutional sectors with aim to receive financial support for fundamental and applied scientific research on a competitive and non-competitive basis was given. The analysis of the obtained data indicated that a multi-channeling in off-budget funding was formed. It also showed to some extent a situation at the open market of grants in the field of medical radiology, radiobiology, and radiation epidemiology among leading investors in intellectual products.

  15. Interaction effect study on stress reaction and job burnout, personality, self-esteem in radiological medical personnel

    International Nuclear Information System (INIS)

    Li Linlin; Feng Liyun; Yang Yanyan; Wu Di

    2009-01-01

    Objective: To explore interaction effect between stress reaction and job burnout, personality, self-esteem in radiological medical personnel with path analysis. Methods: 728 radiological medical personnels were investigated with Maslach burnout Inventory-General Survey (MBI-GS), Chinese Perceived Stress Scale (CPSS), Eysenck Personality Questionnaire (EPQ) and Self-esteem Scale. Results: Multiple regression and path analysis revealed that there were statistically significant relation between stress reaction and job burnout, Personality and self-esteem. Conclusion: Psychological stress is a complicated and multiple interaction of psychological stress related factors. (authors)

  16. Medical Device Integration Model Based on the Internet of Things

    Science.gov (United States)

    Hao, Aiyu; Wang, Ling

    2015-01-01

    At present, hospitals in our country have basically established the HIS system, which manages registration, treatment, and charge, among many others, of patients. During treatment, patients need to use medical devices repeatedly to acquire all sorts of inspection data. Currently, the output data of the medical devices are often manually input into information system, which is easy to get wrong or easy to cause mismatches between inspection reports and patients. For some small hospitals of which information construction is still relatively weak, the information generated by the devices is still presented in the form of paper reports. When doctors or patients want to have access to the data at a given time again, they can only look at the paper files. Data integration between medical devices has long been a difficult problem for the medical information system, because the data from medical devices are lack of mandatory unified global standards and have outstanding heterogeneity of devices. In order to protect their own interests, manufacturers use special protocols, etc., thus causing medical decices to still be the "lonely island" of hospital information system. Besides, unfocused application of the data will lead to failure to achieve a reasonable distribution of medical resources. With the deepening of IT construction in hospitals, medical information systems will be bound to develop towards mobile applications, intelligent analysis, and interconnection and interworking, on the premise that there is an effective medical device integration (MDI) technology. To this end, this paper presents a MDI model based on the Internet of Things (IoT). Through abstract classification, this model is able to extract the common characteristics of the devices, resolve the heterogeneous differences between them, and employ a unified protocol to integrate data between devices. And by the IoT technology, it realizes interconnection network of devices and conducts associate matching

  17. 75 FR 384 - Event Problem Codes Web Site; Center for Devices and Radiological Health; Availability

    Science.gov (United States)

    2010-01-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2009-N-0576] Event Problem Codes Web Site; Center for Devices and Radiological Health; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing...

  18. Handbook of materials for medical devices

    National Research Council Canada - National Science Library

    Davis, J. R

    2003-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Introduction Chapter 1 Overview of Biomaterials and Their Use in Medical Devices . . . . . . . . . . . . . . . . 1 Uses for Biomaterials...

  19. Registration and monitoring of radiation exposure from radiological imaging

    International Nuclear Information System (INIS)

    Jungmann, F.; Pinto dos Santos, D.; Hempel, J.; Dueber, C.; Mildenberger, P.

    2013-01-01

    Strategies for reducing radiation exposure are an important part of optimizing medical imaging and therefore a relevant quality factor in radiology. Regarding the medical radiation exposure, computed tomography has a special relevance. The use of the integrating the healthcare enterprise (IHE) radiation exposure monitoring (REM) profile is the upcoming standard for organizing and collecting exposure data in radiology. Currently most installed base devices do not support this profile generating the required digital imaging and communication in medicine (DICOM) dose structured reporting (SR). For this reason different solutions had been developed to register dose exposure measurements without having the dose SR object. Registration and analysis of dose-related parameters is required for constantly optimizing examination protocols, especially computed tomography (CT) examinations based on the latest research results in order to minimize the individual radiation dose exposure from medical imaging according to the principle as low as reasonably achievable (ALARA). (orig.) [de

  20. Cybersecurity and the Medical Device Product Development Lifecycle.

    Science.gov (United States)

    Jones, Richard W; Katzis, Konstantinos

    2017-01-01

    Protecting connected medical devices from evolving cyber related threats, requires a continuous lifecycle approach whereby cybersecurity is integrated within the product development lifecycle and both complements and re-enforces the safety risk management processes therein. This contribution reviews the guidance relating to medical device cybersecurity within the product development lifecycle.

  1. Emergency response guidance for the first 48 hours after the outdoors detonation of an explosive radiological dispersal device

    International Nuclear Information System (INIS)

    Harper, Frederick Taylor; Musolino, Stephen V.

    2006-01-01

    Strategies and decisions to protect emergency responders, the public, and critical infrastructure against the effects of a radiological dispersal device detonated outdoors must be made in the planning stage, not in the early period just after an attack. This contrasts with planning for small-scale types of radiological or nuclear emergencies, or for a large-scale nuclear-power-type accident that evolves over many hours or days before radioactivity is released to the environment, such that its effects can be prospectively modeled and analyzed. By the time it is known an attack has occurred, most likely there will have been casualties, all the radioactive material will have been released, plume growth will be progressing, and there will be no time left for evaluating possible countermeasures. This paper offers guidance to planners, first responders, and senior decision makers to assist them in developing strategies for protective actions and operational procedures for the first 48 hours after an explosive radiological dispersal device has been detonated

  2. BIOANALYTICAL STANDARDIZING FOR SEROLOGICAL DIAGNOSTIC MEDICAL DEVICES

    OpenAIRE

    A. Yu. Galkin; A. G. Komar; A. A. Grigorenko

    2015-01-01

    In article we analyzed national and international regulations concerning the quality and safety of medical devices for in vitro diagnostics. We discussed the possibility of a partial application of the recommendations of the State Pharmacopoeia of Ukraine to this type of product. The main guiding regulatory documents establishing requirements for quality and safety tools for the serological diagnosis products are The technical regulation on medical devices for the diagnosis in vitro, DSTU ISO...

  3. 75 FR 61507 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of...

    Science.gov (United States)

    2010-10-05

    ...] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of Notice... announcing an amendment to the notice of meeting of the General and Plastic Surgery Devices Panel of the..., FDA announced that a meeting of the General and Plastic Surgery Devices Panel of the Medical Devices...

  4. The impact of quality assurance in medical radiology in raising the quality of life and the role of medical physicist in this process

    International Nuclear Information System (INIS)

    Stieve, F.E.

    2004-01-01

    The goal on establishing quality assurance programmes in diagnostic radiology at the European level is to provide explanations on regulations, which had been developed by International Organizations on the level of the existing knowledge on the use of ionizing radiation for medical diagnosis. Since it is well known that diagnostic radiological users often produce poor quality images and are applying to patients unnecessary high radiation exposure the criteria for performance characteristics related to good imaging quality and patient exposure had been established. The correct application of the principles of quality assurance and quality control in relation to patient exposure needs to be standardised on a general European level, since radiographs should be generally comparable. The implementation of quality assurance programmes and quality control methods could lead to more accurate diagnosis and better informed decisions regarding treatment. The role and responsibility of medical physicists in the process of image production, radiation exposure and quality assurance in diagnostic radiology is now implemented in this Directive. The tasks of the medical physicist in this process had been identified and explained. (author)

  5. Medical device risk management and its economic impact

    Directory of Open Access Journals (Sweden)

    Katerina Krsteva Jakimovska

    2013-10-01

    Full Text Available The importance of medical devices in everyday users/patients lives is imensse. This is the reason why emphasis must be put on safety during their use. Satisfactory safety level can be achived by implementation of quality and risk management standards. Medical device manufacturers must learn to deal with the potential risks by using theoretical and practical examples and measures in order to protect their users/patients and themselves from suffering huge losses arising from adverse events or recall of their products. The best moment for implementation of risk management methods and analysis begins from the device design and development through manufacturing, sales and distribution. These way medical device manufacturers will succseed in protecting their users/patients from serious adverse events and at the same time protect their brand and society status, while minimizing economic losses.

  6. SU-F-P-24: Radiological Disperse Device

    Energy Technology Data Exchange (ETDEWEB)

    Alam, R [NYC Dept of Health, NYC, NY (United States)

    2016-06-15

    Purpose: We are now living in a society of constant fear of terrorism. This topic is pertaining to give a general knowledge of what is a radiological dispersion device or RDD and in case of its detonation, what are the options open to public for a safe action in terms of reducing the exposure and knowing the proper steps. These RDD are also called dirty bombs. Methods: Compared to nuclear weapons, dirty bombs are easy to make. In order for a terrorist organization to construct and detonate a dirty bomb, it must acquire radioactive material by stealing it or buying it through legal or illegal channels. Possible RDD material could come from the millions of radioactive sources used in the industry, for medical purposes and in academic applications mainly for researches. These are, americium-{sup 241}, californium-{sup 252}, caesium-{sup 137}, cobalt-{sup 60}, iridium-{sup 192}, plutonium-{sup 238}, polonium-{sup 210}, radium-{sup 226} and strontium-{sup 90}. Results: Prompt detection of the type of radioactive material used will greatly assist advising people on the protective measures, like sheltering in place, or quickly leaving the immediate area. The effects of radiation are determined by:°the amount of radiation absorbed by body°the type of radiation °the distance from the radiation to an individual°the means of exposure absorbed by the skin, inhaled, or ingested; and length of time exposed. Conclusion: In any facility it is now much more important to keep a log list of all radioactive materials in use. In case there is a dirty bomb explosion, the chaos and economic cost could be enormous. The economic cost for the evaluation of the contamination, survey of people and surroundings and the after treatment, decontamination cost and effort will be a big challenge in any country. So awareness and preparation is the start to face this new type of challenge.

  7. 75 FR 47606 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2010-08-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of... General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee scheduled for August...

  8. [Design and application of implantable medical device information management system].

    Science.gov (United States)

    Cao, Shaoping; Yin, Chunguang; Zhao, Zhenying

    2013-03-01

    Through the establishment of implantable medical device information management system, with the aid of the regional joint sharing of resources, we further enhance the implantable medical device traceability management level, strengthen quality management, control of medical risk.

  9. 2013 Dade W. Moeller lecture: medical countermeasures against radiological terrorism.

    Science.gov (United States)

    Moulder, John E

    2014-08-01

    Soon after the 9-11 attacks, politicians and scientists began to question our ability to cope with a large-scale radiological terrorism incident. The outline of what was needed was fairly obvious: the ability to prevent such an attack, methods to cope with the medical consequences, the ability to clean up afterward, and the tools to figure out who perpetrated the attack and bring them to justice. The medical response needed three components: the technology to determine rapidly the radiation doses received by a large number of people, methods for alleviating acute hematological radiation injuries, and therapies for mitigation and treatment of chronic radiation injuries. Research done to date has shown that a realistic medical response plan is scientifically possible, but the regulatory and financial barriers to achieving this may currently be insurmountable.

  10. 78 FR 16684 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2013-03-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  11. 77 FR 20642 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2012-04-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  12. 76 FR 14415 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2011-03-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  13. 76 FR 62419 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2011-10-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  14. 75 FR 49940 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2010-08-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  15. 78 FR 30928 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2013-05-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  16. 76 FR 39882 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2011-07-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0478] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting... the public. Name of Committee: General and Plastic Surgery Devices Panel of the Medical Devices...

  17. A radiological case collection with interactive character as a new element in the education of medical students

    International Nuclear Information System (INIS)

    Heye, T.; Kurz, P.; Eiers, M.; Kauffmann, G.W.; Schipp, A.

    2008-01-01

    Purpose: evaluation of an interactive, multimedia case-based learning platform for the radiological education of medical students. Materials and methods: an interactive electronic learning platform for the education of medical students was built in html format independent of the operating system in the context of the Heidelberg Curriculum Medicinale (HeiCuMed). A case collection of 30 common and authentic clinical cases is used as the central theme and clinical background. The user has to work on each case by making decisions regarding a selection of diagnostic modalities and by analyzing the chosen studies. After a reasonable selection and sequence of diagnostic radiological modalities and their interpretation, a diagnosis has to be made. An extensive collection of normal findings for any modality is available for the user as a reference in correlation with the pathology at anytime within each case. The case collection consists of 2053 files with 1109 Internet pages (html) and 869 image files (jpeg) with approximately 10 000 crosslinks (links). The case collection was evaluated by a questionnaire (scale 1 - 5) at the end of the radiological student course. The development of the results of the radiological course exam was analyzed to investigate any effect on the learning performance after the case collection was introduced. Results: 97.6% of the course participants would use the case collection beyond the radiological student course to learn radiology in their medical studies. The handling of the case collection was rated excellent in 36.9%, good in 54.6%, satisfactory in 8% and unsatisfactory in 0.4%. 41% felt that the case collection was overall excellent, 49.2% good, 7.8% satisfactory, 1.6% unsatisfactory and 0.4% poor. A positive trend in the development of the results in the radiological course exam with less variance after the introduction of the case collection was found but failed statistical significance. (orig.)

  18. Design considerations for medical devices in the home environment.

    Science.gov (United States)

    Kaufman-Rivi, Diana; Collins-Mitchell, Janette; Jetley, Raoul

    2010-01-01

    Patient demographics, economic forces, and technological advancements contribute to the rise in home care services. Advanced medical devices and equipment originally designed for use by trained personnel in hospitals and clinics are increasingly migrating into the home. Unlike the clinical setting, the home is an uncontrolled environment with additional hazards. The compatibility of the device with the recipient's knowledge, abilities, lifestyle, and home environment plays a significant role in their therapy and rehabilitation. The advent of new device technologies such as wireless devices and interoperability of systems lends a new and complex perspective for medical device use in the home that must also be addressed. Adequately assessing and matching the patient and their caregiver with the appropriate device technology while considering the suitability of the home environment for device operation and maintenance is a challenge that relies on good human factors principles. There is a need to address these challenges in the growing home care sector In this article, the authors take a look at some important considerations and design issues for medical devices used in the home care environment.

  19. Implantable Medical Devices; Networking Security Survey

    Directory of Open Access Journals (Sweden)

    Siamak Aram

    2016-08-01

    Full Text Available The industry of implantable medical devices (IMDs is constantly evolving, which is dictated by the pressing need to comprehensively address new challenges in the healthcare field. Accordingly, IMDs are becoming more and more sophisticated. Not long ago, the range of IMDs’ technical capacities was expanded, making it possible to establish Internet connection in case of necessity and/or emergency situation for the patient. At the same time, while the web connectivity of today’s implantable devices is rather advanced, the issue of equipping the IMDs with sufficiently strong security system remains unresolved. In fact, IMDs have relatively weak security mechanisms which render them vulnerable to cyber-attacks that compromise the quality of IMDs’ functionalities. This study revolves around the security deficiencies inherent to three types of sensor-based medical devices; biosensors, insulin pump systems and implantable cardioverter defibrillators. Manufacturers of these devices should take into consideration that security and effectiveness of the functionality of implants is highly dependent on the design. In this paper, we present a comprehensive study of IMDs’ architecture and specifically investigate their vulnerabilities at networking interface.

  20. MedMon: securing medical devices through wireless monitoring and anomaly detection.

    Science.gov (United States)

    Zhang, Meng; Raghunathan, Anand; Jha, Niraj K

    2013-12-01

    Rapid advances in personal healthcare systems based on implantable and wearable medical devices promise to greatly improve the quality of diagnosis and treatment for a range of medical conditions. However, the increasing programmability and wireless connectivity of medical devices also open up opportunities for malicious attackers. Unfortunately, implantable/wearable medical devices come with extreme size and power constraints, and unique usage models, making it infeasible to simply borrow conventional security solutions such as cryptography. We propose a general framework for securing medical devices based on wireless channel monitoring and anomaly detection. Our proposal is based on a medical security monitor (MedMon) that snoops on all the radio-frequency wireless communications to/from medical devices and uses multi-layered anomaly detection to identify potentially malicious transactions. Upon detection of a malicious transaction, MedMon takes appropriate response actions, which could range from passive (notifying the user) to active (jamming the packets so that they do not reach the medical device). A key benefit of MedMon is that it is applicable to existing medical devices that are in use by patients, with no hardware or software modifications to them. Consequently, it also leads to zero power overheads on these devices. We demonstrate the feasibility of our proposal by developing a prototype implementation for an insulin delivery system using off-the-shelf components (USRP software-defined radio). We evaluate its effectiveness under several attack scenarios. Our results show that MedMon can detect virtually all naive attacks and a large fraction of more sophisticated attacks, suggesting that it is an effective approach to enhancing the security of medical devices.

  1. Risk evaluation of medical and industrial radiation devices

    International Nuclear Information System (INIS)

    Jones, E.D.; Cunningham, R.E.; Rathbun, P.A.

    1994-03-01

    In 1991, the NRC, Division of Industrial and Medical Nuclear Safety, began a program to evaluate the use of probabilistic risk assessment (PRA) in regulating medical devices. This program represents an initial step in an overall plant to evaluate the use of PRA in regulating the use of nuclear by-product materials. The NRC envisioned that the use of risk analysis techniques could assist staff in ensuring that the regulatory approach was standardized, understandable, and effective. Traditional methods of assessing risk in nuclear power plants may be inappropriate to use in assessing the use of by-product devices. The approaches used in assessing nuclear reactor risks are equipment-oriented. Secondary attention is paid to the human component, for the most part after critical system failure events have been identified. This paper describes the risk methodology developed by Lawrence Livermore National Laboratory (LLNL), initially intended to assess risks associated with the use of the Gamma Knife, a gamma stereotactic radiosurgical device. For relatively new medical devices such as the Gamma Knife, the challenge is to perform a risk analysis with very little quantitative data but with an important human factor component. The method described below provides a basic approach for identifying the most likely risk contributors and evaluating their relative importance. The risk analysis approach developed for the Gamma Knife and described in this paper should be applicable to a broader class of devices in which the human interaction with the device is a prominent factor. In this sense, the method could be a prototypical model of nuclear medical or industrial device risk analysis

  2. Off label use of devices and drugs in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Zvavanjanja, R.C., E-mail: Rodrick.Zvavanjanja@rlbuht.nhs.uk [Royal Liverpool University Hospital, Liverpool (United Kingdom); Odetoyinbo, T.O.; Rowlands, P.C.; Healey, A.; Abdelsalam, H.; Powell, S.; Evans, J.C.; Hughes, M.L.; Gould, D.A.; McWilliams, R.G. [Royal Liverpool University Hospital, Liverpool (United Kingdom)

    2012-03-15

    Aim: To establish how often off-label device and drug use occurs in interventional radiology (IR) in a UK tertiary referral hospital and consider the wider implications for the interventional radiologist. Materials and methods: Prospective data were collected during interventional procedures for 1 working week in a university hospital. Out-of-hours procedures and procedures outside the department were excluded. Operators were asked to record the drugs and devices used, the indication, and method of use. The instructions for use/summary of product characteristics were then studied for each device/drug used to assess if the use was on or off-label. Results: During the study period 52 cases were performed and data were available on 26 cases (50%). In 22 of the 26 cases (84%) there was evidence of off-label use of devices or drugs. Off-label use of drugs included treatment of venous malformations with Fibrovein{sup Copyright-Sign} (sodium tetradecyl sulphate), which is licensed for the treatment of varicose veins in the leg, and intra-arterial injection of heparin, which is licensed for intravenous and subcutaneous use. Off-label device use included placing vascular sheaths in the urinary tract, using angiographic catheters to guide wires in the urinary tract, using sheaths for thrombosuction, reshaping of the tip of most guidewires, and using angioplasty balloons to dislodge the arterial plug at fistula thrombectomy. Conclusion: Off-label device and drugs use is common in a UK tertiary hospital IR department and literature suggests this is common in the wider IR community. There are important clinical and legal implications for off-label use for patients and physicians.

  3. Off label use of devices and drugs in interventional radiology

    International Nuclear Information System (INIS)

    Zvavanjanja, R.C.; Odetoyinbo, T.O.; Rowlands, P.C.; Healey, A.; Abdelsalam, H.; Powell, S.; Evans, J.C.; Hughes, M.L.; Gould, D.A.; McWilliams, R.G.

    2012-01-01

    Aim: To establish how often off-label device and drug use occurs in interventional radiology (IR) in a UK tertiary referral hospital and consider the wider implications for the interventional radiologist. Materials and methods: Prospective data were collected during interventional procedures for 1 working week in a university hospital. Out-of-hours procedures and procedures outside the department were excluded. Operators were asked to record the drugs and devices used, the indication, and method of use. The instructions for use/summary of product characteristics were then studied for each device/drug used to assess if the use was on or off-label. Results: During the study period 52 cases were performed and data were available on 26 cases (50%). In 22 of the 26 cases (84%) there was evidence of off-label use of devices or drugs. Off-label use of drugs included treatment of venous malformations with Fibrovein © (sodium tetradecyl sulphate), which is licensed for the treatment of varicose veins in the leg, and intra-arterial injection of heparin, which is licensed for intravenous and subcutaneous use. Off-label device use included placing vascular sheaths in the urinary tract, using angiographic catheters to guide wires in the urinary tract, using sheaths for thrombosuction, reshaping of the tip of most guidewires, and using angioplasty balloons to dislodge the arterial plug at fistula thrombectomy. Conclusion: Off-label device and drugs use is common in a UK tertiary hospital IR department and literature suggests this is common in the wider IR community. There are important clinical and legal implications for off-label use for patients and physicians.

  4. Value-based purchasing of medical devices.

    Science.gov (United States)

    Obremskey, William T; Dail, Teresa; Jahangir, A Alex

    2012-04-01

    Health care in the United States is known for its continued innovation and production of new devices and techniques. While the intention of these devices is to improve the delivery and outcome of patient care, they do not always achieve this goal. As new technologies enter the market, hospitals and physicians must determine which of these new devices to incorporate into practice, and it is important these devices bring value to patient care. We provide a model of a physician-engaged process to decrease cost and increase review of physician preference items. We describe the challenges, implementation, and outcomes of cost reduction and product stabilization of a value-based process for purchasing medical devices at a major academic medical center. We implemented a physician-driven committee that standardized and utilized evidence-based, clinically sound, and financially responsible methods for introducing or consolidating new supplies, devices, and technology for patient care. This committee worked with institutional finance and administrative leaders to accomplish its goals. Utilizing this physician-driven committee, we provided access to new products, standardized some products, decreased costs of physician preference items 11% to 26% across service lines, and achieved savings of greater than $8 million per year. The implementation of a facility-based technology assessment committee that critically evaluates new technology can decrease hospital costs on implants and standardize some product lines.

  5. 76 FR 50230 - Center for Devices and Radiological Health 510(k) Clearance Process; Recommendations Proposed in...

    Science.gov (United States)

    2011-08-12

    ... develop and implement a program of continuous quality improvement to track regulatory decisions on medical devices, identify potential process improvements in the medical device regulatory framework, and address... software used in devices, software used as devices, and software used as a tool in producing devices. 8...

  6. Medical instruments and devices principles and practices

    CERN Document Server

    Schreiner, Steven; Peterson, Donald R

    2015-01-01

    Medical Instruments and Devices: Principles and Practices originates from the medical instruments and devices section of The Biomedical Engineering Handbook, Fourth Edition. Top experts in the field provide material that spans this wide field. The text examines how biopotential amplifiers help regulate the quality and content of measured signals. It includes instruments and devices that span a range of physiological systems and the physiological scale: molecular, cellular, organ, and system. The book chronicles the evolution of pacemakers and their system operation and discusses oscillometry, cardiac output measurement, and the direct and indirect methods of measuring cardiac output. The authors also expound on the mechanics and safety of defibrillators and cover implantable stimulators, respiration, and the structure and function of mechanical ventilators. In addition, this text covers in depth: Anesthesia Delivery Electrosurgical Units and Devices Biomedical Lasers Measuring Cellular Traction Forces Blood G...

  7. EUTEMPE-RX, an EC supported FP7 project for the training and education of medical physics experts in radiology

    International Nuclear Information System (INIS)

    Bosmans, H.; Van Peteghem, N.; Bliznakova, K.; Vassileva, J.; Padovani, R.; Christofides, S.; Tsapaki, V.; Caruana, C.J.

    2015-01-01

    The core activity of the medical physics expert (MPE) is to ensure optimal use of ionising radiation in health care. It is essential that these health care professionals are trained to the highest level, defined as European Qualifications Framework for Lifelong Learning (EQF) level 8 by the European Commission's Radiation Protection Report 174 'Guidelines on the MPE'. The main objective of the EUTEMPE-RX project is to provide a model training scheme that allows the medical physicist in diagnostic and interventional radiology (D and IR) to reach this high level. A European network of partners was brought together in this FP7 EC project to ensure sufficient expertise in all aspects of the subject and to create a harmonised course programme. Targeted participants are medical physicists in D and IR in hospitals, engineers and scientists in medical device industries and officers working in regulatory authorities. Twelve course modules will be developed at EQF level 8, with radiation safety and diagnostic effectiveness being prevalent subjects. The modules will combine online with face-to-face teaching using a blended learning approach. (authors)

  8. Instructions included? Make safety training part of medical device procurement process.

    Science.gov (United States)

    Keller, James P

    2010-04-01

    Before hospitals embrace new technologies, it's important that medical personnel agree on how best to use them. Likewise, hospitals must provide the support to operate these sophisticated devices safely. With this in mind, it's wise for hospitals to include medical device training in the procurement process. Moreover, purchasing professionals can play a key role in helping to increase the amount of user training for medical devices and systems. What steps should you take to help ensure that new medical devices are implemented safely? Here are some tips.

  9. Medical follow up of ten patients victims of the radiological accident occurred in Goiania, Goias State, Brazil 1988/1992

    International Nuclear Information System (INIS)

    Curado, M.P.; Morais, M.S.A.; Silva, J.F.; Assis, P.R.; Oliveira, A.R.; Santos, E.A.

    1992-01-01

    The author makes an update of the medical aspects of ten victims of the radiological accident occurred in Goiania in September 1987. These patients received specialized treatment during the critical phase at Marcilio Dias Naval Hospital in Rio de Janeiro. Actually these patients are under medical follow-up at Leide das Neves Ferreira Foundation since march 1988. The clinical, haematological and laboratorial results are presented and discussed. The importance of a close medical follow-up direct victims of a radiological accident is stressed. (author)

  10. The potential of medical device industry in technological and economical context.

    Science.gov (United States)

    Maresova, Petra; Penhaker, Marek; Selamat, Ali; Kuca, Kamil

    2015-01-01

    The high quality of public health improves not only healthy life expectancy, but also the productivity of labor. The most important part of the health care sector is the medical technology industry. The aim of this study is to analyze the current situation in the medical device industry in Europe, its potential strengths and weaknesses in the context of topical economic and demographic development. The contribution specifies an analysis of the economic state of the medical device industry in the context of demographic development of European Union's macroeconomic indicators and views of experts in the field of medical device development, concerning the opportunities for entities involved in the medical device market. There is fierce competition on the European market. The innovative activity is stable and well regulated by responsible authorities. Worldwide, the medical device market is expected to grow.

  11. 77 FR 14272 - Medical Devices; Immunology and Microbiology Devices; Classification of Norovirus Serological...

    Science.gov (United States)

    2012-03-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2012-N-0165] Medical Devices; Immunology and Microbiology Devices; Classification of Norovirus... AND MICROBIOLOGY DEVICES 0 1. The authority citation for 21 CFR part 866 continues to read as follows...

  12. Radiology Physician Extenders: A Literature Review of the History and Current Roles of Physician Extenders in Medical Imaging.

    Science.gov (United States)

    Sanders, Vicki L; Flanagan, Jennifer

    2015-01-01

    The purpose of the literature review was to assess the origins of radiology physician extenders and examine the current roles found in the literature of advanced practice physician extenders within medical imaging. Twenty-six articles relating to physician assistants (PAs), nurse practitioners (NPs), radiologist assistants (RAs), and nuclear medicine advanced associates (NMAAs) were reviewed to discern similarities and differences in history, scope of practice, and roles in the medical imaging field. The literature showed PAs and NPs are working mostly in interventional radiology. PAs, NPs, and RAs perform similar tasks in radiology, including history and physicals, evaluation and management, preprocedure work-up, obtaining informed consent, initial observations/reports, and post-procedure follow-up. NPs and PAs perform a variety of procedures but most commonly vascular access, paracentesis, and thoracentesis. RAs perform gastrointestinal, genitourinary, nonvascular invasive fluoroscopy procedures, and vascular access procedures. The review revealed NMAAs are working in an advanced role, but no specific performances of procedures was found in the literature, only suggested tasks and clinical competencies. PAs, NPs, and RAs are currently the three main midlevel providers used in medical imaging. These midlevel providers are being used in a variety of ways to increase the efficiency of the radiologist and provide diagnostic and therapeutic radiologic procedures to patients. NMAAs are being used in medical imaging but little literature is available on current roles in clinical practice. More research is needed to assess the exact procedures and duties being performed by these medical imaging physician extenders.

  13. Generic procedures for medical response during a nuclear or radiological emergency. Emergency preparedness and response

    International Nuclear Information System (INIS)

    2005-04-01

    The aim of this publication is to serve as a practical resource for planning the medical response to a nuclear or radiological emergency. It fulfils in part functions assigned to the IAEA under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), namely, to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. Effective medical response is a necessary component of the overall response to nuclear or radiological (radiation) emergencies. In general, the medical response may represent a difficult challenge for the authorities due to the complexity of the situation, often requiring specialized expertise, and special organizational arrangements and materials. To be effective, adequate planning and preparedness are needed. This manual, if implemented, should help to contribute to coherent international response. The manual provides the practical tools and generic procedures for use by emergency medical personnel during an emergency situation. It also provides guidance to be used at the stage of preparedness for development of medical response capabilities. The manual also addresses mass casualty emergencies resulting from malicious acts involving radioactive material. This part was supported by the Nuclear Security Fund. The manual was developed based on a number of assumptions about national and local capabilities. Therefore, it must be reviewed and revised as part of the planning process to match the potential accidents, threats, local conditions and other unique characteristics of the facility where it may be used

  14. Regulatory affairs for biomaterials and medical devices

    CERN Document Server

    Amato, Stephen F; Amato, B

    2015-01-01

    All biomaterials and medical devices are subject to a long list of regulatory practises and policies which must be adhered to in order to receive clearance. This book provides readers with information on the systems in place in the USA and the rest of the world. Chapters focus on a series of procedures and policies including topics such as commercialization, clinical development, general good practise manufacturing and post market surveillance.Addresses global regulations and regulatory issues surrounding biomaterials and medical devicesEspecially useful for smaller co

  15. Value of MRI in radiology. No MRI training in other special medical fields. A joint statement by the DRG and BVDRN

    International Nuclear Information System (INIS)

    Wolf, K.J.; Fischer, J.

    1997-01-01

    Applications of MRI are restricted to the special field of diagnostic radiology, also comprising neuroradiology and pediatric radiology, and this is how it should be. This is the unanimous opinion of the medical self-administration bodies as well as of the supervisory bodies, declared with the coming into force of the WO of 1992. Any spreading of applications to other special medical fields will jeopardize the existence and development of diagnostic radiology. Only its being exclusively applied by diagnostic radiology experts will guarantee and maintain the high quality standards and economic efficiency meanwhile achieved with MRI. The demand for diagnostic MRI examinations is met by the currently available equipment at radiological specialists' practices. The Medical Associations of the Laender Baden-Wuerttemberg, Schleswig-Holstein, Saarland, and Westfalen-Lippe, other than the Bavarian Association, declared that the method should not be opened up for application by orthopedic specialists. The Federal Medical Association is called upon to use its competences as a recommending body in order to make this point clear in a general statement, recommending that MRI applications should be restricted to experts in the field of diagnostic radiology. Another good reason is warranty of equal conditions throughout Germany. There are no facts or reasons that would recommend a softening of current conditions by allowing deviating practice at Laender level. (Orig./AJ) [de

  16. Training for the medical response in radiological emergency experiences and results; Capacitacion para la respuesta medica en emergencias radiologicas experiencias y resultados

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas Herrera, J.; Lopez Forteza, Y.

    2003-07-01

    The use of the nuclear techniques in the social practice confers a special imporatnce to the relative aspects to the safety of the practices and radiationsources, for what the implementation of efficient programs of radiation protection constitutes a priority. However in spite of the will before expressed, regrettably radiological situations happen accidental assocaited to multiple causes taht suggest the creation of response capacities to intervention before these fortuitous facts. The experiences accumulated in the last decades related with accidental exposures have evidenced the convenience of having properly qualified human resources for the Medical Response in Radiological Emergencies. The training in the medical aspects of the radiological emergencies acquires a singular character. In such a sense when valuing the national situation put onof manifest deficiences as for the training in medical aspects of the radiological emergencies that advised the development of training programs in such aspects for the different response groups linked to the topic. After identified the training necessities and the scope of the same ones, the contents of the training program were elaborated. The program has as general purpose the invigoration of the capacity of the medical response in front of accidental radiological situations, by means of actions that they bear to prepare groups of medical response in the handling of people accident victims and to the identification of potentials,accidental scenarios, as well as of the necessary resources to confront them. The program content approaches theoretical and paractical aspects to the medical aspect to radiological emergencies. The program include the different topics about fundamental of physical biological to radiation protection, radiation protection during exposure of radiological accidents, medical care for overexposed or contaminated persons, drill, exercises and concludes with designation of a strategy as preparation and

  17. INTERFACE ELECTRONIC MEDICAL CARD ON MOBILE DEVICE

    Directory of Open Access Journals (Sweden)

    Y. L. Nechyporenko

    2013-05-01

    Full Text Available The concept designed by electronic medical card for heterogeneous environment of medical information systems at various levels. Appropriate model and technical solution. Done evaluating operating systems for mobile devices. Designed and produced by the project mobile application on Android OS as an electronic medical record on a Tablet PC Acer.

  18. Growing pains: medical device interoperability. Regulators and new standards are helping to bring about the convergence of medical devices and information management systems on IT networks.

    Science.gov (United States)

    Degaspari, John

    2011-07-01

    Both provider organizations and medical device vendors have made significant, if slow-going, progress over the last several years to network their digitally-enabled medical devices. Recent strides in both the regulatory and standards arenas have provided renewed impetus on the part of both stakeholder groups to bring more interoperability to disparate medical devices, resulting in better security and quality of patient data.

  19. Pediatric radiology malpractice claims - characteristics and comparison to adult radiology claims

    Energy Technology Data Exchange (ETDEWEB)

    Breen, Micheal A.; Taylor, George A. [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States); Dwyer, Kathy; Yu-Moe, Winnie [CRICO Risk Management Foundation, Boston, MA (United States)

    2017-06-15

    Medical malpractice is the primary method by which people who believe they have suffered an injury in the course of medical care seek compensation in the United States and Canada. An increasing body of research demonstrates that failure to correctly diagnose is the most common allegation made in malpractice claims against radiologists. Since the 1994 survey by the Society of Chairmen of Radiology in Children's Hospitals (SCORCH), no other published studies have specifically examined the frequency or clinical context of malpractice claims against pediatric radiologists or arising from pediatric imaging interpretation. We hypothesize that the frequency, character and outcome of malpractice claims made against pediatric radiologists differ from those seen in general radiology practice. We searched the Controlled Risk Insurance Co. (CRICO) Strategies' Comparative Benchmarking System (CBS), a private repository of approximately 350,000 open and closed medical malpractice claims in the United States, for claims related to pediatric radiology. We further queried these cases for the major allegation, the clinical environment in which the claim arose, the clinical severity of the alleged injury, indemnity paid (if payment was made), primary imaging modality involved (if applicable) and primary International Classification of Diseases, 9th revision (ICD-9) diagnosis underlying the claim. There were a total of 27,056 fully coded claims of medical malpractice in the CBS database in the 5-year period between Jan. 1, 2010, and Dec. 31, 2014. Of these, 1,472 cases (5.4%) involved patients younger than 18 years. Radiology was the primary service responsible for 71/1,472 (4.8%) pediatric cases. There were statistically significant differences in average payout for pediatric radiology claims ($314,671) compared to adult radiology claims ($174,033). The allegations were primarily diagnosis-related in 70% of pediatric radiology claims. The most common imaging modality

  20. Pediatric radiology malpractice claims - characteristics and comparison to adult radiology claims

    International Nuclear Information System (INIS)

    Breen, Micheal A.; Taylor, George A.; Dwyer, Kathy; Yu-Moe, Winnie

    2017-01-01

    Medical malpractice is the primary method by which people who believe they have suffered an injury in the course of medical care seek compensation in the United States and Canada. An increasing body of research demonstrates that failure to correctly diagnose is the most common allegation made in malpractice claims against radiologists. Since the 1994 survey by the Society of Chairmen of Radiology in Children's Hospitals (SCORCH), no other published studies have specifically examined the frequency or clinical context of malpractice claims against pediatric radiologists or arising from pediatric imaging interpretation. We hypothesize that the frequency, character and outcome of malpractice claims made against pediatric radiologists differ from those seen in general radiology practice. We searched the Controlled Risk Insurance Co. (CRICO) Strategies' Comparative Benchmarking System (CBS), a private repository of approximately 350,000 open and closed medical malpractice claims in the United States, for claims related to pediatric radiology. We further queried these cases for the major allegation, the clinical environment in which the claim arose, the clinical severity of the alleged injury, indemnity paid (if payment was made), primary imaging modality involved (if applicable) and primary International Classification of Diseases, 9th revision (ICD-9) diagnosis underlying the claim. There were a total of 27,056 fully coded claims of medical malpractice in the CBS database in the 5-year period between Jan. 1, 2010, and Dec. 31, 2014. Of these, 1,472 cases (5.4%) involved patients younger than 18 years. Radiology was the primary service responsible for 71/1,472 (4.8%) pediatric cases. There were statistically significant differences in average payout for pediatric radiology claims ($314,671) compared to adult radiology claims ($174,033). The allegations were primarily diagnosis-related in 70% of pediatric radiology claims. The most common imaging modality implicated in

  1. Pediatric radiology malpractice claims - characteristics and comparison to adult radiology claims.

    Science.gov (United States)

    Breen, Micheál A; Dwyer, Kathy; Yu-Moe, Winnie; Taylor, George A

    2017-06-01

    Medical malpractice is the primary method by which people who believe they have suffered an injury in the course of medical care seek compensation in the United States and Canada. An increasing body of research demonstrates that failure to correctly diagnose is the most common allegation made in malpractice claims against radiologists. Since the 1994 survey by the Society of Chairmen of Radiology in Children's Hospitals (SCORCH), no other published studies have specifically examined the frequency or clinical context of malpractice claims against pediatric radiologists or arising from pediatric imaging interpretation. We hypothesize that the frequency, character and outcome of malpractice claims made against pediatric radiologists differ from those seen in general radiology practice. We searched the Controlled Risk Insurance Co. (CRICO) Strategies' Comparative Benchmarking System (CBS), a private repository of approximately 350,000 open and closed medical malpractice claims in the United States, for claims related to pediatric radiology. We further queried these cases for the major allegation, the clinical environment in which the claim arose, the clinical severity of the alleged injury, indemnity paid (if payment was made), primary imaging modality involved (if applicable) and primary International Classification of Diseases, 9th revision (ICD-9) diagnosis underlying the claim. There were a total of 27,056 fully coded claims of medical malpractice in the CBS database in the 5-year period between Jan. 1, 2010, and Dec. 31, 2014. Of these, 1,472 cases (5.4%) involved patients younger than 18 years. Radiology was the primary service responsible for 71/1,472 (4.8%) pediatric cases. There were statistically significant differences in average payout for pediatric radiology claims ($314,671) compared to adult radiology claims ($174,033). The allegations were primarily diagnosis-related in 70% of pediatric radiology claims. The most common imaging modality implicated in

  2. "Flipping" the introductory clerkship in radiology: impact on medical student performance and perceptions.

    Science.gov (United States)

    Belfi, Lily M; Bartolotta, Roger J; Giambrone, Ashley E; Davi, Caryn; Min, Robert J

    2015-06-01

    Among methods of "blended learning" (ie, combining online modules with in-class instruction), the "flipped classroom" involves student preclass review of material while reserving class time for interactive knowledge application. We integrated blended learning methodology in a "flipped" introductory clerkship in radiology, and assessed the impact of this approach on the student educational experience (performance and perception). In preparation for the "flipped clerkship," radiology faculty and residents created e-learning modules that were uploaded to an open-source website. The clerkship's 101 rising third-year medical students were exposed to different teaching methods during the course, such as blended learning, traditional lecture learning, and independent learning. Students completed precourse and postcourse knowledge assessments and surveys. Student knowledge improved overall as a result of taking the course. Blended learning achieved greater pretest to post-test improvement of high statistical significance (P value, .0060) compared to lecture learning alone. Blended learning also achieved greater pretest to post-test improvement of borderline statistical significance (P value, .0855) in comparison to independent learning alone. The difference in effectiveness of independent learning versus lecture learning was not statistically significant (P value, .2730). Student perceptions of the online modules used in blended learning portions of the course were very positive. They specifically enjoyed the self-paced interactivity and the ability to return to the modules in the future. Blended learning can be successfully applied to the introductory clerkship in radiology. This teaching method offers educators an innovative and efficient approach to medical student education in radiology. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  3. Enterprise-wide PACS: beyond radiology, an architecture to manage all medical images.

    Science.gov (United States)

    Bandon, David; Lovis, Christian; Geissbühler, Antoine; Vallée, Jean-Paul

    2005-08-01

    Picture archiving and communication systems (PACS) have the vocation to manage all medical images acquired within the hospital. To address the various situations encountered in the imaging specialties, the traditional architecture used for the radiology department has to evolve. We present our preliminarily results toward an enterprise-wide PACS intended to support all kind of image production in medicine, from biomolecular images to whole-body pictures. Our solution is based on an existing radiologic PACS system from which images are distributed through an electronic patient record to all care facilities. This platform is enriched with a flexible integration framework supporting digital image communication in medicine (DICOM) and DICOM-XML formats. In addition, a generic workflow engine highly customizable is used to drive work processes. Echocardiology; hematology; ear, nose, and throat; and dermatology, including wounds, follow-up is the first implemented extensions outside of radiology. We also propose a global strategy for further developments based on three possible architectures for an enterprise-wide PACS.

  4. Extended outlook: description, utilization, and daily applications of cloud technology in radiology.

    Science.gov (United States)

    Gerard, Perry; Kapadia, Neil; Chang, Patricia T; Acharya, Jay; Seiler, Michael; Lefkovitz, Zvi

    2013-12-01

    The purpose of this article is to discuss the concept of cloud technology, its role in medical applications and radiology, the role of the radiologist in using and accessing these vast resources of information, and privacy concerns and HIPAA compliance strategies. Cloud computing is the delivery of shared resources, software, and information to computers and other devices as a metered service. This technology has a promising role in the sharing of patient medical information and appears to be particularly suited for application in radiology, given the field's inherent need for storage and access to large amounts of data. The radiology cloud has significant strengths, such as providing centralized storage and access, reducing unnecessary repeat radiologic studies, and potentially allowing radiologic second opinions more easily. There are significant cost advantages to cloud computing because of a decreased need for infrastructure and equipment by the institution. Private clouds may be used to ensure secure storage of data and compliance with HIPAA. In choosing a cloud service, there are important aspects, such as disaster recovery plans, uptime, and security audits, that must be considered. Given that the field of radiology has become almost exclusively digital in recent years, the future of secure storage and easy access to imaging studies lies within cloud computing technology.

  5. 78 FR 18233 - Medical Devices; Technical Amendment

    Science.gov (United States)

    2013-03-26

    ... human environment. Therefore, neither an environmental assessment nor an environmental impact statement..., Confidential business information, Medical devices, Medical research, Reporting and recordkeeping requirements... revising the second sentence in paragraph (a) to read as follows: Sec. 870.3600 External pacemaker pulse...

  6. New era of the relationship between Chinese interventional radiology sub-society and journal of interventional radiology

    International Nuclear Information System (INIS)

    Li Linsun

    2009-01-01

    The past decades have witnessed interventional radiology in China to go from a very initial clinical practice to an important medical player in modern medicine. Recently, a friendly collaboration has been successfully established between the Chinese Interventional Radiology Sub-society and the Journal of Interventional Radiology. The Chinese Interventional Radiology Sub-society will take the full responsibility for the academic governance of the Journal of Interventional Radiology and the Journal of Interventional Radiology will formally become the sole interventional academic periodical of the Chinese Interventional Radiology Sub-society in China. This collaboration will surely make Chinese interventional radiology to initiate a new era,promote the further development of interventional radiology at home and enable the Journal of Interventional Radiology to step into the international medical circle. (authors)

  7. 76 FR 65200 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee: Notice of...

    Science.gov (United States)

    2011-10-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee: Notice of... Administration (FDA) is postponing the meeting of the General and Plastic Surgery Devices Panel of the Medical...

  8. StarClose Vascular Closure Device: Prospective Study on 222 Deployments in an Interventional Radiology Practice

    International Nuclear Information System (INIS)

    Imam, Atique; Carter, Ranjana M. S.; Phillips-Hughes, Jane; Boardman, Philip; Uberoi, Raman

    2007-01-01

    The StarClose device (Abbott Vascular Devices; Abbott Laboratories, Redwood City, CA) utilizes an externally placed Nitinol clip to achieve arterial closure following femoral artery puncture. The objectives of this study were to assess the efficacy and complications of the StarClose device in patients undergoing interventional radiological procedures. Preprocedural clotting status, pulse and blood pressure, severity of vessel calcification, sheath size, and time to deployment were recorded. Postdeployment complications immediately postprocedure, at 1 h, at 2 h, and at 1 week were recorded. A duplex scan was performed in the first 10 patients to assess any immediate vascular complications. Deployments were successful in 96% achieving immediate hemostasis. Mean deployment time was 48 s. There were no major complications. The StarClose device was found to have a high technical and clinical efficacy

  9. Diagnostic radiology physics: A handbook for teachers and students. Endorsed by: American Association of Physicists in Medicine, Asia-Oceania Federation of Organizations for Medical Physics, European Federation of Organisations for Medical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Dance, D. R. [Royal Surrey County Hospital, Guildford (United Kingdom); Christofides, S. [New Nicosia General Hospital (Cyprus); Maidment, A. D.A. [University of Pennsylvania (United States); McLean, I. D. [International Atomic Energy Agency, Vienna (Austria); Ng, K. H. [University of Malaya, Kuala Lumpur (Malaysia)

    2014-09-15

    This publication is written for students and teachers involved in programmes that train medical physicists for work in diagnostic radiology. It provides, in the form of a syllabus, a comprehensive overview of the basic medical physics knowledge required for the practice of modern diagnostic radiology. This makes it particularly useful for graduate students and residents in medical physics programmes. The material presented in the publication has been endorsed by the major international organizations and is the foundation for academic and clinical courses in both diagnostic radiology physics and in emerging areas such as imaging in radiotherapy.

  10. TU-AB-204-00: CDRH/FDA Regulatory Processes and Device Science Activities

    International Nuclear Information System (INIS)

    2016-01-01

    The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) and the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission (IEC

  11. TU-AB-204-00: CDRH/FDA Regulatory Processes and Device Science Activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) and the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission (IEC

  12. Prospects of radiation sterilization of medical devices

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari

    1992-01-01

    Since radiation sterilization was first introduced in the United States in 1956 in the field of disposable medical devices, it has become an indispensable technique for sterilization because of the following reasons: (1) introduction into dialyzers, (2) introduction in medical device makers, (3) development of disposable medical devices associated with developing both high molecular chemistry and cool sterilization, (4) rationality of sterilization process, and (5) problems of sterilization with ethylene oxide gas. To promote the further development of radiation sterilization, the following items are considered necessary: (1) an increase in the number of facilities for radiation sterilization, (2) recommendation of the international standardization of sterilization method, (3) decrease in radiation doses associated with sterilization, (4) development of electron accelerators and bremsstrahlung equipments for radiation sources, and (5) simplification of sterilization process management. Factors precluding the development of radiation sterilization are: (1) development of other methods than radiation sterilization, (2) development of technique for sterile products, (3) high facility cost, (4) high irradiation cost, (5) benefits and limits of sterilization markets, and (6) influences of materials. (N.K.)

  13. Evaluating a medical error taxonomy.

    OpenAIRE

    Brixey, Juliana; Johnson, Todd R.; Zhang, Jiajie

    2002-01-01

    Healthcare has been slow in using human factors principles to reduce medical errors. The Center for Devices and Radiological Health (CDRH) recognizes that a lack of attention to human factors during product development may lead to errors that have the potential for patient injury, or even death. In response to the need for reducing medication errors, the National Coordinating Council for Medication Errors Reporting and Prevention (NCC MERP) released the NCC MERP taxonomy that provides a stand...

  14. Assurance Cases for Medical Devices

    Science.gov (United States)

    2011-04-28

    the patient, and the hospital setting. Some pumps allow the patient to control part of the injection process (e.g. to inject more painkiller ...overdose, incorrect therapy, etc.   Design and development decisions that bear on safety and effectiveness http://www.fda.gov/MedicalDevices

  15. Electronic medical devices: a primer for pathologists.

    Science.gov (United States)

    Weitzman, James B

    2003-07-01

    Electronic medical devices (EMDs) with downloadable memories, such as implantable cardiac pacemakers, defibrillators, drug pumps, insulin pumps, and glucose monitors, are now an integral part of routine medical practice in the United States, and functional organ replacements, such as the artificial heart, pancreas, and retina, will most likely become commonplace in the near future. Often, EMDs end up in the hands of the pathologist as a surgical specimen or at autopsy. No established guidelines for systematic examination and reporting or comprehensive reviews of EMDs currently exist for the pathologist. To provide pathologists with a general overview of EMDs, including a brief history; epidemiology; essential technical aspects, indications, contraindications, and complications of selected devices; potential applications in pathology; relevant government regulations; and suggested examination and reporting guidelines. Articles indexed on PubMed of the National Library of Medicine, various medical and history of medicine textbooks, US Food and Drug Administration publications and product information, and specifications provided by device manufacturers. Studies were selected on the basis of relevance to the study objectives. Descriptive data were selected by the author. Suggested examination and reporting guidelines for EMDs received as surgical specimens and retrieved at autopsy. Electronic medical devices received as surgical specimens and retrieved at autopsy are increasing in number and level of sophistication. They should be systematically examined and reported, should have electronic memories downloaded when indicated, will help pathologists answer more questions with greater certainty, and should become an integral part of the formal knowledge base, research focus, training, and practice of pathology.

  16. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices.

    Science.gov (United States)

    Haghi, Mostafa; Thurow, Kerstin; Stoll, Regina

    2017-01-01

    Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization.

  17. Clinical Training of Medical Physicists Specializing in Diagnostic Radiology (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for diagnostic radiology. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists based in the clinical setting. However, an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement (RCA) for Research, Development and Training related to Nuclear Sciences for Asia and the Pacific. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia-Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specializing in diagnostic radiology started in 2007 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experiences of clinical training programmes in Australia and New Zealand, the UK and the USA, and was moderated by physicists working in the Asian region. This publication follows the approach of the IAEA publication Training Course Series No. 37, Clinical Training of Medical Physicists specializing in Radiation Oncology. This approach to clinical training has been successfully tested

  18. Clinical Training of Medical Physicists Specializing in Diagnostic Radiology (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasing technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for diagnostic radiology. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists based in the clinical setting. However, an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase academic educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement (RCA) for Research, Development and Training related to Nuclear Sciences for Asia and the Pacific. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in the Asia-Pacific region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specializing in diagnostic radiology started in 2007 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experiences of clinical training programmes in Australia and New Zealand, the UK and the USA, and was moderated by physicists working in the Asian region. This publication follows the approach of the IAEA publication Training Course Series No. 37, Clinical Training of Medical Physicists specializing in Radiation Oncology. This approach to clinical training has been successfully tested

  19. The Style Evolution of Glasses: Acknowledging Well-being for Wearable Medical Device

    Directory of Open Access Journals (Sweden)

    Lydia Royeen

    2015-10-01

    Full Text Available The focus of Peta Bush’s work is to create wearable medical devices that address all qualities of the individual, including physical, mental, emotional, and psychosocial aspects. Peta is completing a practice-based research PhD titled “Therapeutic jewelry: The craft of people-centric devices for wellbeing.” Her passion for creating wearable medical devices that are multi-dimensional stems from her personal experiences, as she has Ehlers-Danlos syndrome. In addition, she uses her knowledge of well-being and the biopsychosocial model when creating her wearable medical devices. Peta currently uses technology, such as 3D printing, as one method to fabricate her collection. Her aspirations are for this concept of wearable medical devices to become mainstream, similar to glasses, and to remove the stigma associated with wearable medical devices.

  20. 78 FR 12329 - Distinguishing Medical Device Recalls From Product Enhancements; Reporting Requirements; Draft...

    Science.gov (United States)

    2013-02-22

    ... medical devices to take timely action to correct violative devices or remove them from the marketplace...] Distinguishing Medical Device Recalls From Product Enhancements; Reporting Requirements; Draft Guidance for... draft guidance entitled ``Distinguishing Medical Device Recalls From Product Enhancements; Reporting...

  1. TU-AB-204-03: Research Activities in Medical Physics

    International Nuclear Information System (INIS)

    Badano, A.

    2016-01-01

    The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) and the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission (IEC

  2. TU-AB-204-03: Research Activities in Medical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Badano, A. [Food & Drug Administration (United States)

    2016-06-15

    The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) and the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission (IEC

  3. Radiological and Medical Sciences Research Institute (RAMSRI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Radiological and Medical Sciences Research Institute (RAMSRI) is the fourth Research and Development Institute of the Ghana Atomic Energy Commission (GAEC), undertaking research in human health and nutrition. This annual report covers the major activities undertaken by RAMSRI for the year 2015. The activities are grouped under the following headings: Establishment; Personnel and Organisation; Major Activities of Centres; Ongoing IAEA TC Projects; Human Resource Development; IAEA Coordinated Meetings Hosted; Publications; Achievements; Challenges; Projections for the Year 2016; and Recommendations.

  4. Attention for pediatric interventional radiology

    International Nuclear Information System (INIS)

    Zhu Ming; Cheng Yongde

    2005-01-01

    ; devices closure of atrial septal defect, ventricular septal defect and patent ducts; and radiofrequency ablation of arrhythmias and others. Pediatric radiologists usually only take the responsibility for diagnosis of angiocardiography and do not take part in cardiac interventional procedures in most children's hospitals of China. The problem of underdevelopment of pediatric interventional radiology in China possesses a lot of reasons, even historical. Most of pediatric patients are confined in children's hospital with shortage of advanced equipment and enough pediatric interventional patients due to the old price system, the old medical insurance system and old financial support system, outcoming with the economic condition of most children's hospital be more inferior than the adult general hospital. (authors)

  5. [Thoughts on the Witnessed Audit in Medical Device Single Audit Program].

    Science.gov (United States)

    Wen, Jing; Xiao, Jiangyi; Wang, Aijun

    2018-02-08

    Medical Device Single Audit Program is one of the key projects in International Medical Device Regulators Forum, which has much experience to be used for reference. This paper briefly describes the procedures and contents of the Witnessed Audit in Medical Device Single Audit Program. Some revelations about the work of Witnessed Audit have been discussed, for reference by the Regulatory Authorities and the Auditing Organizations.

  6. The study on the perceptions of radiological technologist in medical imaging equipment used by the oriental doctor

    International Nuclear Information System (INIS)

    Choi, Jae Ho; Kang, Gi Bong; Kim, Sang Hyun

    2017-01-01

    In order to examine how Radiological Technologists perceive the oriental doctor's use of Medical Imaging Equipment, surveys were conducted for the members of the Korean Radiological Technologists Association. The total number of respondents were 515 and 481, with 34 insincere responses removed caused of nonvalidated answer. The results of the analysis are as follows. Although there were no statistical significance in the difference in perception by location of residence, work place, and educational background, respondents with higher education showed a tendency to agree on the use of comprehensive medical imaging equipment, but tended to oppose the use of special medical imaging equipment. Differences in perception by gender showed a greater negative perception toward the oriental doctor's use of medical imaging equipment by women than men. In particular, women showed more negative tendency for oriental doctor's use of special medical imaging equipment such as MRI, CT, and ultrasound equipment compared to men, and this was statistically significant. The difference in perception by age showed that the oriental doctor's use of medical imaging equipment was negative in the 20∼30s, neutral in the 40∼50s, and positive in the 60s, which were statistically significant. The difference in perception by work experience showed that the longer the work experience was, the more positive it was toward oriental doctor's use of medical imaging equipment. Specifically, the most favorable tendency was found with work experience of more than 30 years, which was statistically significant. The results of this study revealed the Radiological Technologists' perceptions on the oriental doctor's use of Medical Imaging Equipment and this can contribute to the direction of public health promotion in the future

  7. Medical device development: managing conflicts of interest encountered by physicians.

    Science.gov (United States)

    Baim, Donald S; Donovan, Aine; Smith, John J; Briefs, Nancy; Geoffrion, Richard; Feigal, David; Kaplan, Aaron V

    2007-04-01

    New technologies introduced over the past three decades have transformed medical diagnosis and treatment, and significantly improved patient outcomes. These changes have been mediated by the introduction of new medical devices, particularly for the treatment of cardiovascular, orthopedic, and ophthalmic disorders. These devices, in turn, have created large markets and spawned a burgeoning medical device industry, including six Fortune 500 companies whose combined market capitalization now exceeds 400 billion dollars. This success story, which has unquestionably benefited patients and society alike, has been dependent upon an intense collaboration among industry, clinicians, and regulatory authorities. However, when physicians actively involved in patient care participate in such collaborations, they are increasingly vulnerable to creating potential conflicts between these two (clinical and device development) roles. Such conflicts, which may ultimately erode public trust, have important consequences not only for the individual physicians, but also for their parent institutions, their patients, sponsoring companies, and the entire clinical research enterprise that makes the development and introduction of new devices possible. The third Dartmouth Device Development Symposium held in October 2005 brought together thought leaders within the medical device community, including academicians, clinical investigators, regulators from the Food and Drug Administration and Centers for Medicare and Medicaid Services (CMS), large and small device manufacturers and the financial (venture capital and investment banks) community. The Symposium examined the conflicts of interest encountered during the early development and commercialization of a medical device. The goal of these discussions was to (1) identify and characterize the conflicts that arise and (2) provide strategies to address these conflicts. This manuscript was prepared by a writing committee to provide a summary

  8. Identification of Bodies by Unique Serial Numbers on Implanted Medical Devices.

    Science.gov (United States)

    Blessing, Melissa M; Lin, Peter T

    2018-05-01

    Visual identification is the most common identification method used by medical examiners but is not always possible. Alternative methods include X-ray, fingerprint, or DNA comparison, but these methods require additional resources. Comparison of serial numbers on implanted medical devices is a rapid and definitive method of identification. To assess the practicality of using this method, we reviewed 608 consecutive forensic autopsies performed at a regional medical examiner office. Of these, 56 cases required an alternative method of identification due to decomposition (n = 35), gunshot wound (n = 9), blunt trauma (n = 6), or charring (n = 6). Of these 56 cases, eight (14.3%) were known to have an implanted medical device. Of these eight cases, five (63%) could be positively identified by comparing serial numbers. If an implanted medical device is known to be present, and medical records are available, identification by medical device serial number should be a first-line method. © 2017 American Academy of Forensic Sciences.

  9. MEDIC: medical embedded device for individualized care.

    Science.gov (United States)

    Wu, Winston H; Bui, Alex A T; Batalin, Maxim A; Au, Lawrence K; Binney, Jonathan D; Kaiser, William J

    2008-02-01

    Presented work highlights the development and initial validation of a medical embedded device for individualized care (MEDIC), which is based on a novel software architecture, enabling sensor management and disease prediction capabilities, and commercially available microelectronic components, sensors and conventional personal digital assistant (PDA) (or a cell phone). In this paper, we present a general architecture for a wearable sensor system that can be customized to an individual patient's needs. This architecture is based on embedded artificial intelligence that permits autonomous operation, sensor management and inference, and may be applied to a general purpose wearable medical diagnostics. A prototype of the system has been developed based on a standard PDA and wireless sensor nodes equipped with commercially available Bluetooth radio components, permitting real-time streaming of high-bandwidth data from various physiological and contextual sensors. We also present the results of abnormal gait diagnosis using the complete system from our evaluation, and illustrate how the wearable system and its operation can be remotely configured and managed by either enterprise systems or medical personnel at centralized locations. By using commercially available hardware components and software architecture presented in this paper, the MEDIC system can be rapidly configured, providing medical researchers with broadband sensor data from remote patients and platform access to best adapt operation for diagnostic operation objectives.

  10. Medical applications for pharmacists using mobile devices.

    Science.gov (United States)

    Aungst, Timothy Dy

    2013-01-01

    Mobile devices (eg, smartphones, tablet computers) have become ubiquitous and subsequently there has been a growth in mobile applications (apps). Concurrently, mobile devices have been integrated into health care practice due to the availability and quality of medical apps. These mobile medical apps offer increased access to clinical references and point-of-care tools. However, there has been little identification of mobile medical apps suitable for the practice of pharmacy. To address the shortage of recommendations of mobile medical apps for pharmacists in daily practice. Mobile medical apps were identified via the iTunes and Google Play Stores via the "Medical" app categories and key word searches (eg, drug information, medical calculators). In addition, reviews provided by professional mobile medical app review websites were used to identify apps. Mobile medical apps were included if they had been updated in the previous 3 months, were available in the US, used evidence-based information or literature support, had dedicated app support, and demonstrated stability. Exclusion criteria included apps that were not available in English, had advertisement bias, used nonreferenced sources, were available only via an institution-only subscription, and were web-based portals. Twenty-seven mobile apps were identified and reviewed that involved general pharmacy practice, including apps that involved drug references, clinical references, medical calculators, laboratory references, news and continuing medical education, and productivity. Mobile medical apps have a variety of features that are beneficial to pharmacy practice. Individual clinicians should consider several characteristics of these apps to determine which are suitable to incorporate into their daily practice.

  11. From Bertha Roentgen's hand to current medical imaging: one century of radiological progress

    International Nuclear Information System (INIS)

    Tubiana, M.

    1997-01-01

    From 1896 to 1996 radiology progressed at an amazing and unforeseen pace. The analysis of a few examples shows that these developments were due to a few groups and were enhanced by a close interaction between radiologists, physicists, engineers and manufacturers. Radiologists emphasize needs and are often able to suggest avenues for research; engineers exploit the basic discoveries of physicists and find new technologies. Manufacturers proceed from prototypes to instruments that can be built on an industrial scale at an affordable price. This system works efficiently only in a few developed countries. The gap between developing and developed countries is not narrowing and a large proportion of the world population has no access to adequate medical imaging. Very sophisticated imaging technologies used in industrialized countries are costly in terms of both money and human resources and in developing countries may usurp the limited assets that are needed for public health. Thus, the current challenge facing radiology is to take advantage of technological progress, firstly for building affordable and easy to maintain equipment giving images of sufficient quality, and secondly, through progress in telecommunications and computers, to improve medical education, telemedicine and build hospital networks. These networks will enable easier access to consultations with specialized radiologists and will give physicians the means of sharing their medical expertise. The aim is not only to narrow the gap but to provide a sufficient level of care in imaging medicine and radiotherapy throughout the world. This will only be achieved through a clear strategy and adequate human, technical and financial resources. The role of the radiological community, in particular ISR, RSNA and EAR, shall be crucial in this endeavour. (orig.)

  12. Developing medical device software in compliance with regulations.

    Science.gov (United States)

    Zema, M; Rosati, S; Gioia, V; Knaflitz, M; Balestra, G

    2015-08-01

    In the last decade, the use of information technology (IT) in healthcare has taken a growing role. In fact, the adoption of an increasing number of computer tools has led to several benefits related to the process of patient care and allowed easier access to social and health care resources. At the same time this trend gave rise to new challenges related to the implementation of these new technologies. Software used in healthcare can be classified as medical devices depending on the way they are used and on their functional characteristics. If they are classified as medical devices they must satisfy specific regulations. The aim of this work is to present a software development framework that can allow the production of safe and high quality medical device software and to highlight the correspondence between each software development phase and the appropriate standard and/or regulation.

  13. An analysis of radiological research publications in high impact general medical journals between 1996 and 2010

    International Nuclear Information System (INIS)

    Ku, You Jin; Yoon, Dae Young; Yun, Eun Joo; Baek, Sora; Lim, Kyoung Ja; Seo, Young Lan; Choi, Chul Soon; Bae, Sang Hoon

    2013-01-01

    Highlights: ► Radiologists published only 0.2% of articles in five general medical journals. ► Most original articles from radiologists were funded and were prospective studies. ► Radiology researchers from only 11 countries published at least one original article. -- Abstract: Objective: To evaluate scientific papers published by radiologists in high impact general medical journals between 1996 and 2010. Methods: A MEDLINE search was performed in five high impact general medical journals (AIM, BMJ, JAMA, Lancet, and NEJM) for all articles of which a radiologist was the first author between 1996 and 2010. The following information was abstracted from the original articles: radiological subspecialty, imaging technique used, type of research, sample size, study design, statistical analysis, study outcome, declared funding, number of authors, collaboration, and country of the first author. Results: Of 216 (0.19%) articles were published by radiologists in five general medical journals between 1996 and 2010, 83 were original articles. Fifteen (18.1%) original articles were concerned with the field of vascular/interventional radiology, 24 (28.9%) used combined imaging techniques, 76 (91.6%) were clinical research, 63 (75.9%) had a sample size of >50, 65 (78.3%) were prospective, 78 (94.0%) performed statistical analysis, 83 (100%) showed positive study outcomes, 57 (68.7%) were funded, 49 (59.0%) had from four to seven authors, and 79 (95.2%) were collaborative studies. Conclusions: A very small number (0.19%) in five high impact general medical journals was published by radiologists between 1996 and 2010

  14. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Science.gov (United States)

    2010-04-01

    ....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”. ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices for processing, repacking, or...

  15. Handheld Diagnostic Device Delivers Quick Medical Readings

    Science.gov (United States)

    2014-01-01

    To monitor astronauts' health remotely, Glenn Research Center awarded SBIR funding to Cambridge, Massachusetts-based DNA Medical Institute, which developed a device capable of analyzing blood cell counts and a variety of medical biomarkers. The technology will prove especially useful in rural areas without easy access to labs.

  16. Medical device problem reporting for the betterment of healthcare.

    Science.gov (United States)

    1998-08-01

    Given that there are nearly 5,000 individual classes of medical devices, tens of thousands of medical device suppliers, and millions of healthcare providers around the world, device-related problems are bound to happen. But effective problem reporting can help reduce or eliminate many of these problems--not only within an institution, but also potentially around the world. In this article, we trace the problem reporting process from its beginnings in the hospital to its global impact in making critical information available throughout the healthcare community.

  17. Home Healthcare Medical Devices: A Checklist

    Science.gov (United States)

    ... not using it. Contact your doctor and home healthcare team often to review your health condition. * Check ... assurance of their safety and effectiveness. A home healthcare medical device is any product or equipment used ...

  18. [Cooperation with the electronic medical record and accounting system of an actual dose of drug given by a radiology information system].

    Science.gov (United States)

    Yamamoto, Hideo; Yoneda, Tarou; Satou, Shuji; Ishikawa, Toru; Hara, Misako

    2009-12-20

    By input of the actual dose of a drug given into a radiology information system, the system converting with an accounting system into a cost of the drug from the actual dose in the electronic medical record was built. In the drug master, the first unit was set as the cost of the drug, and we set the second unit as the actual dose. The second unit in the radiology information system was received by the accounting system through electronic medical record. In the accounting system, the actual dose was changed into the cost of the drug using the dose of conversion to the first unit. The actual dose was recorded on a radiology information system and electronic medical record. The actual dose was indicated on the accounting system, and the cost for the drug was calculated. About the actual dose of drug, cooperation of the information in a radiology information system and electronic medical record were completed. It was possible to decide the volume of drug from the correct dose of drug at the previous inspection. If it is necessary for the patient to have another treatment of medicine, it is important to know the actual dose of drug given. Moreover, authenticity of electronic medical record based on a statute has also improved.

  19. Radiation sterilization of medical devices

    International Nuclear Information System (INIS)

    Kaluska, I.; Stuglik, Z.

    1996-01-01

    Overview of sterilization methods of medical devices has been given, with the special stress put on radiation sterilization. A typical validation program for radiation sterilization has been shown and also a comparison of European and ISO standards concerning radiation sterilization has been discussed. (author). 13 refs, 1 fig., 2 tabs

  20. 77 FR 19534 - Medical Devices; Immunology and Microbiology Devices; Classification of Norovirus Serological...

    Science.gov (United States)

    2012-04-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2012-N-0165] Medical Devices; Immunology and Microbiology Devices; Classification of Norovirus Serological Reagents; Correction AGENCY: Food and Drug Administration, HHS. ACTION: Final rule; correction...

  1. BIOANALYTICAL STANDARDIZING FOR SEROLOGICAL DIAGNOSTIC MEDICAL DEVICES

    Directory of Open Access Journals (Sweden)

    A. Yu. Galkin

    2015-04-01

    Full Text Available In article we analyzed national and international regulations concerning the quality and safety of medical devices for in vitro diagnostics. We discussed the possibility of a partial application of the recommendations of the State Pharmacopoeia of Ukraine to this type of product. The main guiding regulatory documents establishing requirements for quality and safety tools for the serological diagnosis products are The technical regulation on medical devices for the diagnosis in vitro, DSTU ISO 13485 “Medical devices. Quality management system. Regulatory requirements”, and DSTU ISO/IEC 17025 “General requirements for the competence of testing and calibration laboratories”. Similar requirements of the State Pharmacopoeia of Ukraine which are used for drug standardization can not be directly applied to the medical devises for in vitro diagnostics due to a number of features, namely, the serological diagnosis products pre-designed to determine the unknown concentration of a particular analyte in a biological material, the diagnostic kits has to include the control samples (internal standard systems that need to be calibrated. It was determined following parameters of bioanalytical standardization and validation characterization for of qualitative (semi quantitative test-kits for serological diagnosis: precision (convergence, intralaboratory precision and reproducibility, diagnostic and analytical specificity, diagnostic sensitivity. It’s necessary to inspect additional parameters for quantitative test-kits such as accuracy (precision, linearity, analytical sensitivity and range.

  2. General-purpose radiological examination device

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, J

    1978-03-15

    Equipment is described suitable for all radiological examinations using x-ray and neuroradiological diagnostic machines. The equipment consists of a gimbal suspension supporting a base plate and an imaging system, a gantry on which a neurological seat is pivoted capable of isocentrically positioning the patient's head.

  3. RSVP radiology

    International Nuclear Information System (INIS)

    Kirks, D.R.; Chaffee, D.J.

    1990-01-01

    This paper develops a relative scale of value for pediatric radiology (RSVPR). Neither the HCFA/ACA Relative Value Scale nor the Workload Measurement System developed by Health and Welfare Canada specifically addressed pediatric radiologic examinations. Technical and professional charges for examinations at Children's Hospital Medical Center were reviewed and compared with time and cost analysis. A scale was developed with chest radiography (PA and lateral views) assigned a value of 1. After review by pediatric radiologic technologists, radiologic administrators, pediatric radiologists, and chairs of departments of children's hospitals, this proposed scale was modified to reflect more accurately relative value components of pediatric radiologic and imaging examinations

  4. Liability for damage caused by shortage and failure to use necessary medical devices

    Directory of Open Access Journals (Sweden)

    Cvetković Mihajlo

    2014-01-01

    Full Text Available In order to provide for successful, safe and high quality medical services, health care institutions need to be equipped with adequate medical devices. For this reason, every medical institution is legally obliged to have relevant medical devices. In case a patient has been deprived of some medical service for the lack of necessary medical devices (which the institution has been obliged to provide, the medical institution is responsible for the damage and harm sustained by the patient. The responsibility implies non-contractual liability (in tort law or pre-contractual liability (in contract law. In both cases, the liability is based on the presumed culpability. In order to be excluded from liability, the medical institution has to prove that the patient has been deprived of medical service (or that the institution has refused to enter into a medical service provider agreement on justifiable grounds, i.e. due to the lack of necessary medical devices. On the other hand, in case the medial institutions fail to provide needed care or violate their obligation to use medical devices when necessary, it is regarded as medical negligence (professional error. In most cases, it implies the liability of medical institutions for damage, injury or harm caused to the patient by medical services provided without applying a relevant medical device, whose use has been medically indicated. The liability is even more substantial in cases where the medical device has been available but the medical institutions has not applied it in medial treatment (even though its use has been medically indicated; such conduct is qualified as gross negligence.

  5. Medical Device Plug-and-Play Interoperability Standards and Technology Leadership

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-09-1-0705 TITLE: “Medical Device Plug-and-Play Interoperability Standards and Technology Leadership” PRINCIPAL INVESTIGATOR...Sept 2016 – 20 Sept 2017 4. TITLE AND SUBTITLE “Medical Device Plug-and-Play Interoperability 5a. CONTRACT NUMBER Standards and Technology ...efficiency through interoperable medical technologies . We played a leadership role on interoperability safety standards (AAMI, AAMI/UL Joint

  6. Transmitting patient and device data via GSM--central management for decentral mobile medical devices.

    Science.gov (United States)

    Bachmor, T; Schöchlin, J; Bolz, A

    2002-01-01

    Equipping medical devices with long range telemetry opens completely new possibilities for emergency response, home care and remote diagnosis. Mobile communications nowadays seem to be a generally accepted part of our modern world, but bridging the gap between new (consumer-) technologies and medical devices still is a challenge today. Providing a telemetry link (GSM) is just the trivial part--ensuring security, reliability and service management are the more critical tasks that need to be addressed. Therefore, a complete system concept consists of an automatic fleet management (e.g. periodic device-initiated service calls) as well as customer relationship management (CRM), including technical service and a trouble-ticket system.

  7. Medical device integration: CIOs must bridge the digital divide between devices and electronic medical records.

    Science.gov (United States)

    Raths, David

    2009-02-01

    To get funding approved for medical device integration, ClOs suggest focusing on specific patient safety or staff efficiency pain points. Organizations that make clinical engineering part of their IT team report fewer chain-of-command issues. It also helps IT people understand the clinical goals because the engineering people have been working closely with clinicians for years. A new organization has formed to work on collaboration between clinical engineers and IT professionals. For more information, go to www.ceitcollaboration.org. ECRI Institute has written a guide to handling the convergence of medical technology and hospital networks. Its "Medical Technology for the IT Professional: An Essential Guide for Working in Today's Healthcare Setting" also details how IT professionals can assist hospital technology planning and acquisition, and provide ongoing support for IT-based medical technologies. For more information, visit www.ecri.org/ITresource.

  8. An assessment of the terrorist threat to use a nuclear or radiological device in an attack

    Energy Technology Data Exchange (ETDEWEB)

    Kingshott, B.F. [Grand Valley State University, 275C DeVos Center, 401 West Fulton Street, Grand Rapids, MI 49504 (United States)]. E-mail: kingshob@gvsu.edu

    2006-07-01

    This paper will discuss terrorism from the perspective of a terrorist organisation acquiring nuclear material to build weapons and how security of radiological material world wide will minimise the risk of such devices being used. It will discuss the need to improve security at nuclear waste processing and storage sites and the adequacy of current security. It will also discuss the phenomenon of suicide attacks by the bomb carriers and the role of the media in informing and educating the general public of the consequences should such a device containing nuclear material be detonated. (author)

  9. Presentation of the main regulatory provisions applicable in medical and dental radiology

    International Nuclear Information System (INIS)

    2010-01-01

    The aim of this document is to give an overview of the regulation framework to physicians, radiologists, dental surgeons, medical personnel employers, and persons with abilities in radioprotection. It addresses the procedures of declaration and authorization of possession and use of electric equipment generating ionizing radiation, the different persons intervening to ensure the radioprotection of patients and workers, the laying-out conditions for a radiology installation, the different aspects of population and worker radioprotection and of patient radioprotection, the maintenance and quality control of medical equipment, the declaration of incidents at the ASN, and radioprotection inspection

  10. Cybersecurity and medical devices: A practical guide for cardiac electrophysiologists

    Science.gov (United States)

    Kramer, Daniel B.; Foo Kune, Denis; Auto de Medeiros, Julio; Yan, Chen; Xu, Wenyuan; Crawford, Thomas; Fu, Kevin

    2017-01-01

    Abstract Medical devices increasingly depend on software. While this expands the ability of devices to perform key therapeutic and diagnostic functions, reliance on software inevitably causes exposure to hazards of security vulnerabilities. This article uses a recent high‐profile case example to outline a proactive approach to security awareness that incorporates a scientific, risk‐based analysis of security concerns that supports ongoing discussions with patients about their medical devices. PMID:28512774

  11. The study on the perceptions of radiological technologist in medical imaging equipment used by the oriental doctor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Ho [Dept. of Radiological Technology, Ansan University, Ansan (Korea, Republic of); Kang, Gi Bong [Dept. of Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Sang Hyun [Dept. of Radiology, Shinhan University, Seongnam (Korea, Republic of); and others

    2017-03-15

    In order to examine how Radiological Technologists perceive the oriental doctor's use of Medical Imaging Equipment, surveys were conducted for the members of the Korean Radiological Technologists Association. The total number of respondents were 515 and 481, with 34 insincere responses removed caused of nonvalidated answer. The results of the analysis are as follows. Although there were no statistical significance in the difference in perception by location of residence, work place, and educational background, respondents with higher education showed a tendency to agree on the use of comprehensive medical imaging equipment, but tended to oppose the use of special medical imaging equipment. Differences in perception by gender showed a greater negative perception toward the oriental doctor's use of medical imaging equipment by women than men. In particular, women showed more negative tendency for oriental doctor's use of special medical imaging equipment such as MRI, CT, and ultrasound equipment compared to men, and this was statistically significant. The difference in perception by age showed that the oriental doctor's use of medical imaging equipment was negative in the 20∼30s, neutral in the 40∼50s, and positive in the 60s, which were statistically significant. The difference in perception by work experience showed that the longer the work experience was, the more positive it was toward oriental doctor's use of medical imaging equipment. Specifically, the most favorable tendency was found with work experience of more than 30 years, which was statistically significant. The results of this study revealed the Radiological Technologists' perceptions on the oriental doctor's use of Medical Imaging Equipment and this can contribute to the direction of public health promotion in the future.

  12. The 2013 Dade W. Moeller Lecture: Medical Countermeasures Against Radiological Terrorism

    Science.gov (United States)

    Moulder, John E.

    2014-01-01

    Soon after the 9–11 attacks, politicians and scientists began to question our ability to cope with a large-scale radiological terrorism incident. The outline of what was needed was fairly obvious: the ability to prevent such an attack; methods to cope with the medical consequences; the ability to clean up afterwards; and the tools to figure out who perpetrated the attack and bring them to justice. The medical response needed three components: the technology to rapidly determine the radiation doses received by a large number of people, methods for alleviating acute hematological radiation injuries, and therapies for mitigation and treatment of chronic radiation injuries. Research done to date has shown that a realistic medical response plan is scientifically possible, but the regulatory and financial barriers to achieving this may currently be insurmountable. PMID:24978287

  13. Quality index in medical radiology; Indice de qualidade em radiologia medica

    Energy Technology Data Exchange (ETDEWEB)

    Travassos, Paulo Cesar B.; Magalhaes, Luis Alexandre Goncalves; Drexler, Gunter G.; Almeida, Carlos E. de, E-mail: luisalexandregm@hotmail.com [Universidade do Estado do Rio de Janeiro (IBRAG/UERJ), RJ (Brazil). Instituto de Biologia. Laboratorio de Ciencias Radiologicas; Navarro, Marcus V. [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Salvador, BA (Brazil)

    2012-08-15

    In the literature there are articles with methods for the calculation of potential risk in medical radiodiagnostics institutions: Evaluation Model for Potential Risk (MARP). These articles present results based on documental evaluation of the institutions, but they suggest that quantitative data from the equipment's quality assurance can be included. This article proposes an evaluation of medical radiology institutions with a variation of the Potential Risk model, which considers, besides the administrative factors, quantitative results from equipment's quality assurance: the quality index. Results of the application of this proposition in 42 institutions are presented, with 52 evaluated conventional X-Ray equipment, located in the state of Rio de Janeiro, Brazil. (author)

  14. Medical device registration, agreements on mutual recognition - a step forward to global harmonization?

    International Nuclear Information System (INIS)

    Eidenberger, R.Reiner

    2000-01-01

    The purpose of this article is to give a short overview of some different regulations in Europe and the United States with regard to the clearance of medical devices and to give an outlook of what the Agreements on Mutual Recognition will bring in terms of Global Harmonization. Recent European legislation, the Council Directive 93/42/EEC of 14 June 1993 concerning medical devices (Medical Device Directive, MDD), requires that all medical devices placed on the European market bear the CE marking. From 14 June 1998, medical devices fall under the scope of this European Medical Device Directive and there is a harmonization within the European market. Similar to this, but for another market, are the USA FDA requirements, Premarket Approval (PMA) and Premarket notification (510(k)). The same medical device, the same goal - a safe product - but different legislation and thus duplication of registration procedures. The European Commission is presently discussing a series of agreements with third countries, Australia, New Zealand, USA, Canada, Japan and Eastern European countries wishing to join the EU, concerning the mutual acceptance of inspection bodies and, ultimately, proof of conformity (for example reports on examination, certificates, licenses and marks of conformity) in connection with medical devices. Meanwhile agreements with Australia, New Zealand, USA and Canada came into force. (author)

  15. The potential of medical device industry in technological and economical context

    Directory of Open Access Journals (Sweden)

    Maresova P

    2015-10-01

    Full Text Available Petra Maresova,1 Marek Penhaker,1,2 Ali Selamat,1,3 Kamil Kuca1,41Faculty of Informatics and Management, University of Hradec Králové, Hradec Králové, Czech Republic; 2Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, Technical University of Ostrava, Poruba, Czech Republic; 3Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia; 4Center for Biomedical Research, University Hospital Hradec Králové, Hradec Králové, Czech RepublicAbstract: The high quality of public health improves not only healthy life expectancy, but also the productivity of labor. The most important part of the health care sector is the medical technology industry. The aim of this study is to analyze the current situation in the medical device industry in Europe, its potential strengths and weaknesses in the context of topical economic and demographic development. The contribution specifies an analysis of the economic state of the medical device industry in the context of demographic development of European Union’s macroeconomic indicators and views of experts in the field of medical device development, concerning the opportunities for entities involved in the medical device market. There is fierce competition on the European market. The innovative activity is stable and well regulated by responsible authorities. Worldwide, the medical device market is expected to grow.Keywords: technology context, medical device, Europe, expenditure, review

  16. 77 FR 4252 - Additional Spectrum for the Medical Device Radiocommunication Service

    Science.gov (United States)

    2012-01-27

    ... licensed users in these frequency bands to continue providing service. Medical Micro-Power Networks (MMNs...). Under this approach, medical devices would operate in the band on a shared, non-exclusive basis with...Radio Service rules for devices operating in the 413-457 MHz band. These definitions were for a Medical...

  17. Interpretive versus noninterpretive content in top-selling radiology textbooks: what are we teaching medical students?

    Science.gov (United States)

    Webb, Emily M; Vella, Maya; Straus, Christopher M; Phelps, Andrew; Naeger, David M

    2015-04-01

    There are little data as to whether appropriate, cost effective, and safe ordering of imaging examinations are adequately taught in US medical school curricula. We sought to determine the proportion of noninterpretive content (such as appropriate ordering) versus interpretive content (such as reading a chest x-ray) in the top-selling medical student radiology textbooks. We performed an online search to identify a ranked list of the six top-selling general radiology textbooks for medical students. Each textbook was reviewed including content in the text, tables, images, figures, appendices, practice questions, question explanations, and glossaries. Individual pages of text and individual images were semiquantitatively scored on a six-level scale as to the percentage of material that was interpretive versus noninterpretive. The predominant imaging modality addressed in each was also recorded. Descriptive statistical analysis was performed. All six books had more interpretive content. On average, 1.4 pages of text focused on interpretation for every one page focused on noninterpretive content. Seventeen images/figures were dedicated to interpretive skills for every one focused on noninterpretive skills. In all books, the largest proportion of text and image content was dedicated to plain films (51.2%), with computed tomography (CT) a distant second (16%). The content on radiographs (3.1:1) and CT (1.6:1) was more interpretive than not. The current six top-selling medical student radiology textbooks contain a preponderance of material teaching image interpretation compared to material teaching noninterpretive skills, such as appropriate imaging examination selection, rational utilization, and patient safety. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  18. Optical tests for using smartphones inside medical devices

    Science.gov (United States)

    Bernat, Amir S.; Acobas, Jennifer K.; Phang, Ye Shang; Hassan, David; Bolton, Frank J.; Levitz, David

    2018-02-01

    Smartphones are currently used in many medical applications and are more frequently being integrated into medical imaging devices. The regulatory requirements in existence today however, particularly the standardization of smartphone imaging through validation and verification testing, only partially cover imaging characteristics with a smartphone. Specifically, it has been shown that smartphone camera specifications are of sufficient quality for medical imaging, and there are devices which comply with the FDA's regulatory requirements for a medical device such as a device's field of view, direction of viewing and optical resolution and optical distortion. However, these regulatory requirements do not call specifically for color testing. Images of the same object using automatic settings or different light sources can show different color composition. Experimental results showing such differences are presented. Under some circumstances, such differences in color composition could potentially lead to incorrect diagnoses. It is therefore critical to control the smartphone camera and illumination parameters properly. This paper examines different smartphone camera settings that affect image quality and color composition. To test and select the correct settings, a test methodology is proposed. It aims at evaluating and testing image color correctness and white balance settings for mobile phones and LED light sources. Emphasis is placed on color consistency and deviation from gray values, specifically by evaluating the ΔC values based on the CIEL*a*b* color space. Results show that such standardization minimizes differences in color composition and thus could reduce the risk of a wrong diagnosis.

  19. Laser direct writing of micro- and nano-scale medical devices

    Science.gov (United States)

    Gittard, Shaun D; Narayan, Roger J

    2010-01-01

    Laser-based direct writing of materials has undergone significant development in recent years. The ability to modify a variety of materials at small length scales and using short production times provides laser direct writing with unique capabilities for fabrication of medical devices. In many laser-based rapid prototyping methods, microscale and submicroscale structuring of materials is controlled by computer-generated models. Various laser-based direct write methods, including selective laser sintering/melting, laser machining, matrix-assisted pulsed-laser evaporation direct write, stereolithography and two-photon polymerization, are described. Their use in fabrication of microstructured and nanostructured medical devices is discussed. Laser direct writing may be used for processing a wide variety of advanced medical devices, including patient-specific prostheses, drug delivery devices, biosensors, stents and tissue-engineering scaffolds. PMID:20420557

  20. Open-source hardware for medical devices.

    Science.gov (United States)

    Niezen, Gerrit; Eslambolchilar, Parisa; Thimbleby, Harold

    2016-04-01

    Open-source hardware is hardware whose design is made publicly available so anyone can study, modify, distribute, make and sell the design or the hardware based on that design. Some open-source hardware projects can potentially be used as active medical devices. The open-source approach offers a unique combination of advantages, including reducing costs and faster innovation. This article compares 10 of open-source healthcare projects in terms of how easy it is to obtain the required components and build the device.

  1. Film selection in medical radiology

    International Nuclear Information System (INIS)

    Bor, Dogan

    1988-01-01

    Importing of medical imaging films is the responsibility of Turkish Red Croscend, but some institutions have currently started to import their own films. Because of the different resources in individual departments throughout Turkey, a general purpose medical film is imported by Turkish Red Croscend. This kind of film has the advantage to tolerate some technical faults related to the exposure, dark room and processing conditions and still reveals the necessary image quality. In addition to general purpose film, many companies produce special used films which improve some film characteristics in order to have a better image. The initial results of a project already started by Turkish Atomic Energy Authority showed that some other technical reasons prevent obtaining films with optimum quality. The film is the last step of diagnostic procedure and not only gives necessary clinical information, but also visualizes all the problems related to the lock of the calibration of X-ray system and dark room processing conditions. Because of these reasons, many people hold the film responsible for every technical problem. During the selection of the best film among the different companies, institutions have to fulfill some prerequisites at the beginning and than evaluate the quantitative results obtained from measurements according to their clinical purposes. It is the subject of this paper to show how to use film parameter as a comparison to different types of films measured with light sensitometry method. The dark room and processing problems which adversely effect the results are also given. The requirements for the best film selection both for general and special purposes are also evaluated. The extent of this paper is limited only to films using radiology and does not cover the types used in other imaging areas

  2. Evaluating and Predicting Patient Safety for Medical Devices With Integral Information Technology

    Science.gov (United States)

    2005-01-01

    323 Evaluating and Predicting Patient Safety for Medical Devices with Integral Information Technology Jiajie Zhang, Vimla L. Patel, Todd R...errors are due to inappropriate designs for user interactions, rather than mechanical failures. Evaluating and predicting patient safety in medical ...the users on the identified trouble spots in the devices. We developed two methods for evaluating and predicting patient safety in medical devices

  3. Modelling degradation of bioresorbable polymeric medical devices

    CERN Document Server

    Pan, J

    2015-01-01

    The use of bioresorbable polymers in stents, fixation devices and tissue engineering is revolutionising medicine. Both industry and academic researchers are interested in using computer modelling to replace some experiments which are costly and time consuming. This book provides readers with a comprehensive review of modelling polymers and polymeric medical devices as an alternative to practical experiments. Chapters in part one provide readers with an overview of the fundamentals of biodegradation. Part two looks at a wide range of degradation theories for bioresorbable polymers and devices.

  4. 77 FR 8260 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Device...

    Science.gov (United States)

    2012-02-14

    ... will be used to evaluate risks associated with medical devices which will enable FDA to take...] Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Device Reporting... comment in response to the notice. This notice solicits comments on medical device reporting (MDR...

  5. Medical radiology and population exposure

    International Nuclear Information System (INIS)

    Wall, B.F.; Kendall, G.M.

    1980-01-01

    Surveys of both the frequency of medical X-ray examinations and their associated gonadal doses in 1977 were performed in National Health Service hospitals in Great Britain. The results indicated that 393 X-ray examinations per thousand of the population were performed over the year which represents an increase in the rate per thousand of 48% since 1957. This frequency level is lower than in most other industrialised countries. The frequency of radiological examinations per thousand was highest for old people. The frequency per thousand patients in their twenties had not changed significantly since 1957. A most important finding was the low reported frequency of the use of gonad shields. Gonadal doses were measured directly on 4565 patients undergoing 13 types of examination of the lower abdomen using lithium borate dosemeters. The mean ovarian dose of 1.6 cGy for barium enemas was > 3 times higher since 1957 due mainly to changes in techniques. Most of the other types of examination demonstrated either similar or reduced doses to those found in 1957. An enormous variability in gonadal doses delivered for the same type of examination was observed. This, together with the low usage of gonad shields, would suggest that some patients in the U.K. are receiving doses that are unnecessarily high. (U.K.)

  6. Informatics in radiology: evaluation of an e-learning platform for teaching medical students competency in ordering radiologic examinations.

    LENUS (Irish Health Repository)

    Marshall, Nina L

    2011-09-01

    A preliminary audit of orders for computed tomography was performed to evaluate the typical performance of interns ordering radiologic examinations. According to the audit, the interns showed only minimal improvement after 8 months of work experience. The online radiology ordering module (ROM) program included baseline assessment of student performance (part I), online learning with the ROM (part II), and follow-up assessment of performance with simulated ordering with the ROM (part III). A curriculum blueprint determined the content of the ROM program, with an emphasis on practical issues, including provision of logistic information, clinical details, and safety-related information. Appropriate standards were developed by a committee of experts, and detailed scoring systems were devised for assessment. The ROM program was successful in addressing practical issues in a simulated setting. In the part I assessment, the mean score for noting contraindications for contrast media was 24%; this score increased to 59% in the part III assessment (P = .004). Similarly, notification of methicillin-resistant Staphylococcus aureus status and pregnancy status and provision of referring physician contact information improved significantly. The quality of the clinical notes was stable, with good initial scores. Part III testing showed overall improvement, with the mean score increasing from 61% to 76% (P < .0001). In general, medical students lack the core knowledge that is needed for good-quality ordering of radiology services, and the experience typically afforded to interns does not address this lack of knowledge. The ROM program was a successful intervention that resulted in statistically significant improvements in the quality of radiologic examination orders, particularly with regard to logistic and radiation safety issues.

  7. Quality assurance in diagnostic radiology

    International Nuclear Information System (INIS)

    1982-01-01

    The present guide endeavours to provide an outline of the type of quality assurance programme to be recommended for (1) routine implementation by those performing radiodiagnostic procedures (medical radiology technicians, medical physicists, and radiologists), (2) for application by the responsible national authorities, and (3) for use by international bodies such as the International Society of Radiology (ISR), the International Commission on Radiological Protection (ICRP), and the International Commission on Radiation Units and Measurements (ICRU)

  8. Radiology and Ethics Education.

    Science.gov (United States)

    Camargo, Aline; Liu, Li; Yousem, David M

    2017-09-01

    The purpose of this study is to assess medical ethics knowledge among trainees and practicing radiologists through an online survey that included questions about the American College of Radiology Code of Ethics and the American Medical Association Code of Medical Ethics. Most survey respondents reported that they had never read the American Medical Association Code of Medical Ethics or the American College of Radiology Code of Ethics (77.2% and 67.4% of respondents, respectively). With regard to ethics education during medical school and residency, 57.3% and 70.0% of respondents, respectively, found such education to be insufficient. Medical ethics training should be highlighted during residency, at specialty society meetings, and in journals and online resources for radiologists.

  9. Use-related risk analysis for medical devices based on improved FMEA.

    Science.gov (United States)

    Liu, Long; Shuai, Ma; Wang, Zhu; Li, Ping

    2012-01-01

    In order to effectively analyze and control use-related risk of medical devices, quantitative methodologies must be applied. Failure Mode and Effects Analysis (FMEA) is a proactive technique for error detection and risk reduction. In this article, an improved FMEA based on Fuzzy Mathematics and Grey Relational Theory is developed to better carry out user-related risk analysis for medical devices. As an example, the analysis process using this improved FMEA method for a certain medical device (C-arm X-ray machine) is described.

  10. Home Use Devices: How to Prepare for and Handle Power Outages for Medical Devices That Require Electricity

    Science.gov (United States)

    ... to Create a Personal Emergency File My personal emergency file contains: □ Instructions for using the medical device and all device manuals. □ First aid kit □ Medical records □ Insurance cards □ Current home care doctor’s orders □ Plan of treatment □ What a family ...

  11. Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: Results of a comprehensive survey.

    Science.gov (United States)

    Faggioni, Lorenzo; Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Caramella, Davide

    2017-01-01

    To evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital. A total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations). Medical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; Pradiological procedures was significantly worse among medical students than radiology residents and radiography students (Pradiology residents as to knowledge of radiation protection issues (PRadiology residents, radiography students and medical students have a limited awareness about radiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological examinations. Both undergraduate and postgraduate teaching needs to be effectively implemented with radiation safety courses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Extended device profiles and testing procedures for the approval process of integrated medical devices using the IEEE 11073 communication standard.

    Science.gov (United States)

    Janß, Armin; Thorn, Johannes; Schmitz, Malte; Mildner, Alexander; Dell'Anna-Pudlik, Jasmin; Leucker, Martin; Radermacher, Klaus

    2018-02-23

    Nowadays, only closed and proprietary integrated operating room systems (IORS) from big manufacturers are available on the market. Hence, the interconnection of components from third-party vendors is only possible with increased time and costs. In the context of the German Federal Ministry of Education and Research (BMBF)-funded project OR.NET (2012-2016), the open integration of medical devices from different manufacturers was addressed. An integrated operating theater based on the open communication standard IEEE 11073 shall give clinical operators the opportunity to choose medical devices independently of the manufacturer. This approach would be advantageous especially for hospital operators and small- and medium-sized enterprises (SME) of medical devices. Actual standards and concepts regarding technical feasibility and the approval process do not cope with the requirements for a modular integration of medical devices in the operating room (OR), based on an open communication standard. Therefore, innovative approval strategies and corresponding certification and test procedures, which cover actual legal and normative standards, have to be developed in order to support the future risk management and the usability engineering process of open integrated medical devices in the OR. The use of standardized device and service profiles and a three-step testing procedure, including conformity, interoperability and integration tests are described in this paper and shall support the manufacturers to integrate their medical devices without disclosing the medical devices' risk analysis and related confidential expertise or proprietary information.

  13. Radiologic protection in intensive therapy units

    International Nuclear Information System (INIS)

    Andrea, H.; Juliana, C.; Gerusa, R.; Laurete, M.B.; Suelen, S.; Derech, Rodrigo D.A.

    2013-01-01

    The discovery of X-ray was a great achievement for humanity, especially for the medical community. In Intensive Care Units (ICUs), the RX tests, performed with mobile devices, add immense value to the diagnosis of inpatients who do not have the option to carry them out of bed. Following the technology and its improvements, fatalities arose from misuse of ionizing radiation, which mostly gave up for lack of knowledge of the biological effects caused by them, which leads to fear among professionals and often prevents a quick job and effectively by professionals of radiological techniques. The research it is a systematic review of the literature and justified by the scarcity of materials that reflect on the radiological protection in ICUs. For this study we found the Virtual Health Library (VHL) and Pubmed were indexed terms radiological protection and intensive care units, the search in Portuguese and English terms were used radiological protection and intensive care unit. The study aims to inform professionals of ICUs on the main aspects that refer to X-rays in hospital beds, the standards of radiological protection and personal protective equipment, thus avoiding possible damage to the biological health of workers, addressing subjects in rules and laws about the X radiation, emphasizing the protection of professionals in intensive care. It is clear, finally, that little research is conducted in the context of radiological protection of workers ICU's and this is a place that receives daily RX equipment, deserving more attention to protect the worker. (author)

  14. Vascular Closure Devices in Interventional Radiology Practice

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rafiuddin, E-mail: rafiuddin.patel@ouh.nhs.uk [John Radcliffe Hospital, Department of Radiology (United Kingdom); Muller-Hulsbeck, Stefan, E-mail: muehue@diako.de [Diakonissen Hospital, Diagnostic and Interventional Radiology/Neuroradiology (Germany); Morgan, Robert, E-mail: robert.morgan@stgeorges.nhs.uk [St George’s Hospital, Department of Radiology (United Kingdom); Uberoi, Raman, E-mail: raman.uberoi@orh.nhs.uk [John Radcliffe Hospital, Department of Radiology (United Kingdom)

    2015-08-15

    Manual compression (MC) is a well-established technique for haemostasis following percutaneous arterial intervention. However, MC is labour and time intensive with potential limitations, particularly for patients who are coagulopathic, unable to comply with bed rest or obese and when large sheaths or anti-coagulants are used. There are a variety of vascular closure devices (VCDs) available to overcome these limitations. This review gives an overview of current VCDs, their mechanism of action, individual strengths and weaknesses, evidence base and utility in interventional radiology (IR) practice. The majority of the published evidence on VCDs is derived from patients undergoing cardiac interventions, which should be borne in mind when considering the applicability and transfer of this data for general IR practice. Overall, the evidence suggests that most VCDs are effective in achieving haemostasis with a similar rate of complications to MC although the complication profile associated with VCDs is distinct to that of MC. There is insufficient evidence to comparatively analyse the different types of VCDs currently available or reliably judge their cost-effectiveness. The interventional radiologist should have a thorough understanding of the available techniques for haemostasis and be able to identify and utilise the most appropriate strategy and closure technique for the individual patient.

  15. 76 FR 22322 - Medical Devices; Immunology and Microbiology Devices; Classification of Ovarian Adnexal Mass...

    Science.gov (United States)

    2011-04-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2010-N-0026] Medical Devices; Immunology and Microbiology Devices; Classification of Ovarian Adnexal Mass Assessment Score Test System; Correction AGENCY: Food and Drug Administration, HHS. ACTION...

  16. Just a piece of equipment? The importance of medical device education.

    Science.gov (United States)

    Brand, Darren

    2012-12-01

    The use of medical devices is an increasingly important element of a healthcare professional's role. It is crucial that users receive regular teaching and education to ensure that they are competent in the use of devices. This is particularly relevant in the increasingly litigious society in which we live. This article focuses upon the importance of a medical device education.

  17. Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: Results of a comprehensive survey

    International Nuclear Information System (INIS)

    Faggioni, Lorenzo; Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Caramella, Davide

    2017-01-01

    Highlights: • Medical students tend to overstate their knowledge of radiation protection (RP). • Overall RP knowledge of young doctors and students is suboptimal. • RP teaching to undergraduates and postgraduates needs to be substantially improved. - Abstract: Purpose: To evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital. Material and methods: A total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations). Results: Medical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; P < 0.05), with no cases of perceived excellent knowledge among radiography students. However, the actual knowledge of essential radiation protection topics such as regulations, patient and tissue susceptibility to radiation damage, professional radiation risk and dose optimisation, as well as of radiation doses delivered by common radiological procedures was significantly worse among medical students than radiology residents and radiography students (P < 0.05). Those latter significantly outperformed radiology residents as to knowledge of radiation protection issues (P < 0.01). Overall, less than 50% of survey respondents correctly answered all questions of the survey. Conclusions: Radiology residents, radiography students and medical students have a limited awareness about radiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological

  18. Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: Results of a comprehensive survey

    Energy Technology Data Exchange (ETDEWEB)

    Faggioni, Lorenzo, E-mail: lfaggioni@sirm.org [Department of Diagnostic and Interventional Radiology, University of Pisa, Via Roma 67, 56100, Pisa (Italy); Paolicchi, Fabio [Department of Diagnostic and Interventional Radiology, University of Pisa, Via Roma 67, 56100, Pisa (Italy); Bastiani, Luca [Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124, Pisa (Italy); Guido, Davide [Unit of Biostatistics and Clinical Epidemiology, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100, Pavia (Italy); Caramella, Davide [Department of Diagnostic and Interventional Radiology, University of Pisa, Via Roma 67, 56100, Pisa (Italy)

    2017-01-15

    Highlights: • Medical students tend to overstate their knowledge of radiation protection (RP). • Overall RP knowledge of young doctors and students is suboptimal. • RP teaching to undergraduates and postgraduates needs to be substantially improved. - Abstract: Purpose: To evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital. Material and methods: A total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations). Results: Medical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; P < 0.05), with no cases of perceived excellent knowledge among radiography students. However, the actual knowledge of essential radiation protection topics such as regulations, patient and tissue susceptibility to radiation damage, professional radiation risk and dose optimisation, as well as of radiation doses delivered by common radiological procedures was significantly worse among medical students than radiology residents and radiography students (P < 0.05). Those latter significantly outperformed radiology residents as to knowledge of radiation protection issues (P < 0.01). Overall, less than 50% of survey respondents correctly answered all questions of the survey. Conclusions: Radiology residents, radiography students and medical students have a limited awareness about radiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological

  19. New IEEE 11073 Standards for interoperable, networked Point-of-Care Medical Devices.

    Science.gov (United States)

    Kasparick, Martin; Schlichting, Stefan; Golatowski, Frank; Timmermann, Dirk

    2015-08-01

    Surgical procedures become more and more complex and the number of medical devices in an operating room (OR) increases continuously. Today's vendor-dependent solutions for integrated ORs are not able to handle this complexity. They can only form isolated solutions. Furthermore, high costs are a result of vendor-dependent approaches. Thus we present a service-oriented device communication for distributed medical systems that enables the integration and interconnection between medical devices among each other and to (medical) information systems, including plug-and-play functionality. This system will improve patient's safety by making technical complexity of a comprehensive integration manageable. It will be available as open standards that are part of the IEEE 11073 family of standards. The solution consists of a service-oriented communication technology, the so called Medical Devices Profile for Web Services (MDPWS), a Domain Information & Service Model, and a binding between the first two mechanisms. A proof of this concept has been done with demonstrators of real world OR devices.

  20. Protecting computer-based medical devices: defending against viruses and other threats.

    Science.gov (United States)

    2005-07-01

    The increasing integration of computer hardware has exposed medical devices to greater risks than ever before. More and more devices rely on commercial off-the-shelf software and operating systems, which are vulnerable to the increasing proliferation of viruses and other malicious programs that target computers. Therefore, it is necessary for hospitals to take steps such as those outlined in this article to ensure that their computer-based devices are made safe and continue to remain safe in the future. Maintaining the security of medical devices requires planning, careful execution, and a commitment of resources. A team should be created to develop a process for surveying the security status of all computerized devices in the hospital and making sure that patches and other updates are applied as needed. These patches and updates should be approved by the medical system supplier before being implemented. The team should consider using virtual local area networks to isolate susceptible devices on the hospital's network. All security measures should be carefully documented, and the documentation should be kept up-to-date. Above all, care must be taken to ensure that medical device security involves a collaborative, supportive partnership between the hospital's information technology staff and biomedical engineering personnel.

  1. Advance of the National Program of Radiological Protection and Safety for medical diagnostic with X-rays

    International Nuclear Information System (INIS)

    Verdejo S, M.

    1999-01-01

    The National Program of Radiological Protection and Safety for medical diagnostic with X-ray (Programa Nacional de Proteccion y Seguridad Radiologica para diagnostico medico con rayos X) was initiated in the General Direction of Environmental Health (Direccion General de Salud Ambiental) in 1995. Task coordinated with different dependences of the Public Sector in collaboration between the Secretary of Health (Secretaria de Salud), the National Commission of Nuclear Safety and Safeguards (Comision Nacional de Seguridad Nuclear y Salvaguardias) and, the National Institute of Nuclear Research (Instituto Nacional de Investigaciones Nucleares). The surveillance to the fulfilment of the standardization in matter of Radiological Protection and Safety in the medical diagnostic with X-rays has been obtained for an important advance in the Public sector and it has been arousing interest in the Private sector. (Author)

  2. Medical and industrial radiation sources as radiological weapons

    International Nuclear Information System (INIS)

    Bielefeld, T.; Fischer, H.W.

    2006-01-01

    The execution of attacks with radiological weapons are well within the capabilities of both local terrorist groups and transnational terrorist networks. In a research project, plausible attack scenarios have been developed, based on medical and industrial radioactive sources widely used in Germany. Special emphasis was put on how such sources could be obtained applying criminal tactics. To this end, working procedures in hospitals and companies have been analyzed. Furthermore, by means of simulations, the consequences of a terrorist attack using such sources were estimated. None of the scenarios we investigated led to doses at the site of the explosion which might cause acute radiation effects. However, in some scenarios, an attack would result in the necessity of a potentially very costly clean-up of large urban areas. Therefore, improvements in sources security are recommended. (orig.)

  3. Computer in radiology: Physicians memorandum and administration of medical practice aided by COMRAD

    International Nuclear Information System (INIS)

    Kuesters, H.

    1983-01-01

    One year after introduction of the COMRAD EDP system of text processing to the radiological practice of the author, the advantages resulting for the physician and medical staff as well as for the transferring physician and their patients are presented and the econimic efficiency is determined. The high capacity of COMRAD including the automatic text processing for a complete computer aided administration of medical practice and the accounting department, is based on the advanced technological development of microelectronics and combined with a user specific software. The hardware equipment enables multiprogram processing, data processing in on-line operation as well as short access-time of stored data, due to the rapid tracertechnology of the computer. The software equipment, with text processing and a medical practice administration system, permits the regular workload to be handled efficiently and reliable. The main issue is text processing using a text rail. An integrated part of the result output is the performance capacity enabling automatic settlement of accounts with health insurance agencies and privatly insured patients. Statistical evaluation, for instance the daily performance efficiency of the practice can be recalled any time. An accounting system accounts receivable, accounts payable, payroll and general accounting supplements the software package enabling a computer aided handling of all administrative tasks required in a radiological practice. (orig.)

  4. Studies on failure kind analysis of the radiologic medical equipment in general hospital

    International Nuclear Information System (INIS)

    Lee, Woo Cheul; Kim, Jeong Lae

    1999-01-01

    This paper included a data analysis of the unit of medical devices using maintenance recording card that had medical devices of unit failure mode, hospital of failure mode and MTBF. The results of the analysis were as follows : 1. Medical devices of unit failure mode was the highest in QC/PM such A hospital as 33.9%, B hospital 30.9%, C hospital 30.3%, second degree was the Electrical and Electronic failure such A hospital as 23.5%, B hospital 25.3%, C hospital 28%, third degree was mechanical failure such A hospital as 19.6%, B hospital 22.5%, C hospital 25.4%. 2. Hospital of failure mode was the highest in Mobile X-ray device(A hospital 62.5%, B hospital 69.5%, C hospital 37.4%), and was the lowest in Sono devices(A hospital 16.76%, B hospital 8.4%, C hospital 7%). 3. Mean time between failures(MTBT) was the highest in SONO devices and was the lowest in Mobile X-ray devices which have 200 - 400 failure hours. 4. Average failure ratio was the highest in Mobile X-ray devices(A hospital 31.3%, B hospital 34.8%, C hospital 18.7%), and was the lowest in Sono(Ultrasound) devices (A hospital 8.4%, B hospital 4.2%, C hospital 3.5%). 5. Failure ratio results of medical devices according to QC/PM part of unit failure mode were as follows ; A hospital was the highest part of QC/PM (50%) in Mamo X-ray device and was the lowest part of QC/PM(26.4%) in Gastro X-ray. B hospital was the highest part of QC/PM(56%) in Mobile X-ray device, and the lowest part of QC/PM(12%) in Gastro X-ray. C hospital was the highest part of QC/PM(60%) in R/F X-ray device, and the lowest a part of QC/PM(21%) in Universal X-ray. It was found that the units responsible for most failure decreased by systematic management. We made the preventive maintenance schedule focusing on adjustment of operating and dust removal

  5. A survey of interventional radiology awareness among final-year medical students in a European country.

    LENUS (Irish Health Repository)

    Leong, Sum

    2009-07-01

    Interventional radiology (IR) is a rapidly expanding specialty that is facing the challenges of turf wars and personnel shortages. Appropriate exposure of medical students to this field can be vital to recruitment of potential future trainees or referring physicians. The aim of this study was to determine the knowledge and views of final-year medical students in a single EU country regarding various aspects of IR. An electronic survey was sent via e-mail to all final-year medical students in a European country. The students were given a month to respond to the questionnaire. A total of 234 students of 675 (34.5%) replied to the survey. Of the respondents, 35% had previously completed an attachment to the radiology department. The majority of students (63%) thought their knowledge in radiology in general was poor. The percentage of students who correctly identified procedures performed by interventional radiologists was 69% for Hickman line insertion, 79% for fibroid embolization, and 67.5% for lower limb angioplasty. Sixty percent, 30%, and 47% thought that interventional radiologists perform cardiac angioplasties, perform arterial bypasses, and create AV fistulas, respectively. Forty-nine percent felt that interventional radiologists are surgically trained. Eighty-three percent of students were first made aware of angioplasty by a cardiologist. Thirty-one percent thought that interventional radiologists do ward rounds, 24% thought that interventional radiologists have admitting rights, and 26% felt that interventional radiologists run an outpatient practice. A significant number of students (76%) thought that the job prospects in IR are good or excellent but only 40.5% were willing to consider a career in IR. In conclusion, this study indicates that IR remains a nascent but attractive specialty to the majority of medical students. Further development of the existing informal undergraduate curriculum to address shortcomings will ensure that IR continues to attract

  6. A Survey of Interventional Radiology Awareness Among Final-Year Medical Students in a European Country

    International Nuclear Information System (INIS)

    Leong, Sum; Keeling, Aoife N.; Lee, Michael J.

    2009-01-01

    Interventional radiology (IR) is a rapidly expanding specialty that is facing the challenges of turf wars and personnel shortages. Appropriate exposure of medical students to this field can be vital to recruitment of potential future trainees or referring physicians. The aim of this study was to determine the knowledge and views of final-year medical students in a single EU country regarding various aspects of IR. An electronic survey was sent via e-mail to all final-year medical students in a European country. The students were given a month to respond to the questionnaire. A total of 234 students of 675 (34.5%) replied to the survey. Of the respondents, 35% had previously completed an attachment to the radiology department. The majority of students (63%) thought their knowledge in radiology in general was poor. The percentage of students who correctly identified procedures performed by interventional radiologists was 69% for Hickman line insertion, 79% for fibroid embolization, and 67.5% for lower limb angioplasty. Sixty percent, 30%, and 47% thought that interventional radiologists perform cardiac angioplasties, perform arterial bypasses, and create AV fistulas, respectively. Forty-nine percent felt that interventional radiologists are surgically trained. Eighty-three percent of students were first made aware of angioplasty by a cardiologist. Thirty-one percent thought that interventional radiologists do ward rounds, 24% thought that interventional radiologists have admitting rights, and 26% felt that interventional radiologists run an outpatient practice. A significant number of students (76%) thought that the job prospects in IR are good or excellent but only 40.5% were willing to consider a career in IR. In conclusion, this study indicates that IR remains a nascent but attractive specialty to the majority of medical students. Further development of the existing informal undergraduate curriculum to address shortcomings will ensure that IR continues to attract

  7. 21 CFR 892.2010 - Medical image storage device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image storage device. 892.2010 Section 892.2010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED..., and digital memory. (b) Classification. Class I (general controls). The device is exempt from the...

  8. Radiology information management system, TOSRIM

    International Nuclear Information System (INIS)

    Tani, Yuichiro; Uchiyama, Akira; Kimura, Hirohito

    1991-01-01

    This is a report on a new type of distributed computer system for radiology departments named 'TOSRIM' (Toshiba radiology information management system), which is designed to be installed between medical diagnosis equipment and a host computer system in a hospital. Recently, a new type of host computer system has been developed which enables doctors to order any of the hospital's entire activities using terminals. By connecting 'TOSRIM' to this type of host computer system, many of the activities of a radiology department can be carried out via terminals without the use of examination requirement forms. As well as being connected to medical diagnosis equipment, 'TOSRIM' can also be connected to a medical imaging system which stores and displays medical images. By means of these connections, doctors will be able to diagnose medical images using display terminals without the need for films. (author)

  9. [Impact of an automated dispensing system for medical devices in cardiac surgery department].

    Science.gov (United States)

    Clou, E; Dompnier, M; Kably, B; Leplay, C; Poupon, E; Archer, V; Paul, M

    2018-01-01

    To secure medical devices' management, the implementation of automated dispensing system in surgical service has been realized. The objective of this study was to evaluate security, organizational and economic impact of installing automated dispensing system for medical devices (ASDM). The implementation took place in a cardiac surgery department. Security impact was assessed by comparing traceability rate of implantable medical devices one year before and one year after installation. Questionnaire on nurses' perception and satisfaction completed this survey. Resupplying costs, stocks' evolution and investments for the implementation of ASDM were the subject of cost-benefit study. After one year, traceability rate is excellent (100%). Nursing staffs were satisfied with 87.5% by this new system. The introduction of ASDM allowed a qualitative and quantitative decrease in stocks, with a reduction of 30% for purchased medical devices and 15% for implantable medical devices in deposit-consignment. Cost-benefit analysis shows a rapid return on investment. Real stock decrease (purchased medical devices) is equivalent to 46.6% of investment. Implementation of ASDM allows to secure storage and dispensing of medical devices. This system has also an important economic impact and appreciated by users. Copyright © 2017 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  10. The American Board of Radiology Maintenance of Certification (MOC) Program in Radiologic Physics

    International Nuclear Information System (INIS)

    Thomas, Stephen R.; Hendee, William R.; Paliwal, Bhudatt R.

    2005-01-01

    Maintenance of Certification (MOC) recognizes that in addition to medical knowledge, several essential elements involved in delivering quality care must be developed and maintained throughout one's career. The MOC process is designed to facilitate and document the professional development of each diplomate of The American Board of Radiology (ABR) through its focus on the essential elements of quality care in Diagnostic Radiology and its subspecialties, and in the specialties of Radiation Oncology and Radiologic Physics. The initial elements of the ABR-MOC have been developed in accord with guidelines of The American Board of Medical Specialties. All diplomates with a ten-year, time-limited primary certificate in Diagnostic Radiologic Physics, Therapeutic Radiologic Physics, or Medical Nuclear Physics who wish to maintain certification must successfully complete the requirements of the appropriate ABR-MOC program for their specialty. Holders of multiple certificates must meet ABR-MOC requirements specific to the certificates held. Diplomates with lifelong certificates are not required to participate in the MOC, but are strongly encouraged to do so. MOC is based on documentation of individual participation in the four components of MOC: (1) professional standing, (2) lifelong learning and self-assessment, (3) cognitive expertise, and (4) performance in practice. Within these components, MOC addresses six competencies: medical knowledge, patient care, interpersonal and communication skills, professionalism, practice-based learning and improvement, and systems-based practice

  11. [Regulatory Program for Medical Devices in Cuba: experiences and current challenges].

    Science.gov (United States)

    Pereira, Dulce María Martínez; Rodríguez, Yadira Álvarez; Valdés, Yamila Cedeño; Ribas, Silvia Delgado

    2016-05-01

    Regulatory control of medical devices in Cuba is conducted through a system based on the Regulatory Program for Medical Devices as a way to ensure the safety, efficacy, and effectiveness of these technologies, which are in use by the National Health System. This program was launched in 1992, when the Regulations for State Evaluation and Registration of Medical Devices were approved. Its successive stages and the merging of regulatory activities for drugs and medical equipment have meant progress toward stronger, more transparent strategies and greater control of industry and the National Health System. Throughout its course the Cuban program has met with challenges and difficulties that it has addressed by drawing on its own experiences. During the new period, the greatest challenges revolve around ensuring that regulatory systems incorporate scientific evaluation, risk levels, maximum rigor through the use of technical standards, and the implementation of international recommendations, together with the application of the ISO 13485 certification scheme, enhanced market monitoring, and classification of medical devices in accordance with their relevance to the country's national health policies. From the regional standpoint, the greatest challenge lies in working toward regulatory convergence. The Collaborating Centre for the Regulation of Health Technologies will support the proposed regulatory strategy and established regional priorities, in particular in connection with the implementation of actions involving medical devices.

  12. Regional training course on medical response on radiological emergencies. Annex

    International Nuclear Information System (INIS)

    2000-01-01

    This short information is an annex of the documentation distributed to the participants to the International Atomic Energy Agency (IAEA) Regional Training Course on Medical Response on Radiological Emergencies, organised by the IAEA in co-operation with the Government of Argentina thought the Nuclear Regulatory Authority, held in Buenos Aires, Argentina, 16-20 October 2000. The course was intended to people from IAEA Member State in the Latin American and Caribbean region, and to professionals and workers on medicine related with the radiation protection. This annex present information about: Radioactive materials transport; Internal and external contamination; Radiation accidents; Physical dosimetry

  13. 76 FR 16292 - Medical Devices; Immunology and Microbiology Devices; Classification of Ovarian Adnexal Mass...

    Science.gov (United States)

    2011-03-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2011-N-0026] Medical Devices; Immunology and Microbiology Devices; Classification of Ovarian... of Food and Drugs, 21 CFR part 866 is amended as follows: PART 866--IMMUNOLOGY AND MICROBIOLOGY...

  14. On history of medical radiology development in Ukraine: war period and after war reconstruction (1941-1947)

    International Nuclear Information System (INIS)

    Pilipenko, M.Yi.; Artamonova, N.O.; Busigyina, N.O.; Kononenko, O.K.

    1994-01-01

    The paper is devoted to history of Ukrainian medical radiology development, namely main problems of its scientific and practical aspects of development during 1941-1947. The authors describe the work of Ukrainian roentgenologists and radiologists during the war and after war restoration of radiological service. Contribution of Ukrainian scientists to practical and theoretical achievements of military roentgenology is shown. Operative mobilization of all the forces for restoration of destroyed during the war years roentgenological service allowed to start scientific research within a short term (already in 1945)

  15. Safety evaluation in the development of medical devices and combination products

    CERN Document Server

    Gad, Shayne C

    2008-01-01

    Capturing the growth of the global medical device market in recent years, this practical new guide is essential for all who are responsible for ensuring safety in the use and manufacture of medical devices. It has been extensively updated to reflect significant advances, incorporating combination products and helpful case examples of current real-life problems in the field.The Third Edition explores these key current trends:global device marketscontinually advancing technologythe increasing harmonization of device safety regulation worldwideEach aspect of safety evaluation is considered in ter

  16. Inhaled medication for asthma management: evaluation of how asthma patients, medical students, and doctors use the different devices

    Directory of Open Access Journals (Sweden)

    Muniz Janaína Barbosa

    2003-01-01

    Full Text Available Asthma results from a combination of three essential features: airflow obstruction, hyperresponsiveness of airways to endogenous or exogenous stimuli and inflammation. Inadequacy of the techniques to use different inhalation devices is one of the causes of therapeutic failure. The main purpose of this study was to evaluate how 20 medical students, 36 resident physicians of Internal Medicine/Pediatrics, and 40 asthma patients used three devices for inhalation therapy containing placebo. All patients were followed at the Pulmonary Outpatient Service of Botucatu Medical School and had been using inhaled medication for at least six months. The following devices were evaluated: metered dose inhalers (MDI, dry powder inhalers (DPI, and MDI attached to a spacer device. A single observer applied a protocol containing the main steps necessary to obtain a good inhaler technique to follow and grade the use of different devices. Health care professionals tested all three devices and patients tested only the device being used on their management. MDI was the device best known by doctors and patients. MDI use was associated with errors related to the coordination between inspiration and device activation. Failure to exhale completely before inhalation of the powder was the most frequent error observed with DPI use. In summary, patients did not receive precise instruction on how to use inhaled medication and health care professionals were not well prepared to adequately teach their patients.

  17. Methodological considerations in observational comparative effectiveness research for implantable medical devices: an epidemiologic perspective.

    Science.gov (United States)

    Jalbert, Jessica J; Ritchey, Mary Elizabeth; Mi, Xiaojuan; Chen, Chih-Ying; Hammill, Bradley G; Curtis, Lesley H; Setoguchi, Soko

    2014-11-01

    Medical devices play a vital role in diagnosing, treating, and preventing diseases and are an integral part of the health-care system. Many devices, including implantable medical devices, enter the market through a regulatory pathway that was not designed to assure safety and effectiveness. Several recent studies and high-profile device recalls have demonstrated the need for well-designed, valid postmarketing studies of medical devices. Medical device epidemiology is a relatively new field compared with pharmacoepidemiology, which for decades has been developed to assess the safety and effectiveness of medications. Many methodological considerations in pharmacoepidemiology apply to medical device epidemiology. Fundamental differences in mechanisms of action and use and in how exposure data are captured mean that comparative effectiveness studies of medical devices often necessitate additional and different considerations. In this paper, we discuss some of the most salient issues encountered in conducting comparative effectiveness research on implantable devices. We discuss special methodological considerations regarding the use of data sources, exposure and outcome definitions, timing of exposure, and sources of bias. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. [Study on the reform and improvement of the medical device registration system in China].

    Science.gov (United States)

    Wang, Lanming

    2012-11-01

    Based on the theories of the Government Regulation and Administrative Licensure, aiming at the current situations of medical device registration system in China, some policy suggestions for future reform and improvement were provided as follows. (1) change the concepts of medical device registration administration. (2) perfect the regulations of medical device registration administration. (3) reform the medical device review organizational system. (4) Optimize the procedure of review and approval. (5) set up and maintain a professional team of review and approval staff. (6) reinforce the post-marketing supervision of medical devices. (7) foster and bring into play of the role of non-government organizations.

  19. Radiological source tracking in oil/gas, medical and other industries: requirements and specifications for passive RFID technology

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, Farid U. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-01

    Subsurface sensors that employ radioisotopes, such 241Am-Be and 137Cs, for reservoir characterization must be tracked for safety and security reasons. Other radiological sources are also widely used in medicine. The radiological source containers, in both applications, are small, mobile and used widely worldwide. The nuclear sources pose radiological dispersal device (RDD) security risks. Security concerns with the industrial use of radionuclide sources is in fact quite high as it is estimated that each year hundreds of sealed sources go missing, either lost or stolen. Risk mitigation efforts include enhanced regulations, source-use guidelines, research and development on electronic tracking of sources. This report summarizes the major elements of the requirements and operational concepts of nuclear sources with the goal of developing automated electronic tagging and locating systems.

  20. 78 FR 19711 - Center for Devices and Radiological Health: Experiential Learning Program

    Science.gov (United States)

    2013-04-02

    ... timely and continued access to safe, effective, high-quality medical devices and safe radiation-emitting...-acoustic stimulation using hybrid cochlear implants, preservation of residual hearing, postoperative...

  1. An Internet-Based Radiology Course in Medical School: Comparison of Academic Performance of Students on Campus Versus Those With Absenteeism Due to Residency Interviews.

    Science.gov (United States)

    Alexander, Andrew George; Deas, Deborah; Lyons, Paul Eric

    2018-05-18

    Imaging and its optimal use are imperative to the practice of medicine, yet many students don't receive a formal education in radiology. Concurrently, students look for ways to take time away from medical school for residency interviewing. Web-based instruction provides an opportunity to combine these imperatives using online modalities. A largely Web-based course in radiology during the 4th year of medical school was evaluated both for its acceptance to students who needed to be away from campus for interviews, and its effectiveness on a nationally administered standardized test. All students were placed into a structured program utilizing online videos, online modules, online textbook assignments, and live interactive online lectures. Over half of the course could be completed away from campus. The Alliance of Medical Student Educators in Radiology test exam bank was used as a final exam to evaluate medical knowledge. Positive student feedback included the freedom to travel for interviews, hands-on ultrasound training, interactive teaching sessions, and quality Web-based learning modules. Negative feedback included taking quizzes in-person, a perceived outdated online textbook, and physically shadowing hospital technicians. Most students elected to take the course during the interview months of October through January. The Alliance of Medical Student Educators in Radiology final exam results (70.5%) were not significantly different than the national cohort (70%) who took the course in-person. Test scores from students taking the course during interview travel months were not significantly different from students who took the course before (P=.30) or after (P=.34) the interview season. Students desire to learn radiology and often choose to do so when they need to be away from campus during the fall of their 4th year of study to accomplish their residency interviews. Web-based education in radiology allows students' interview traveling and radiology course

  2. University of Saskatchewan Radiology Courseware (USRC): an assessment of its utility for teaching diagnostic imaging in the medical school curriculum.

    Science.gov (United States)

    Burbridge, Brent; Kalra, Neil; Malin, Greg; Trinder, Krista; Pinelle, David

    2015-01-01

    We have found it very challenging to integrate images from our radiology digital imaging repository into the curriculum of our local medical school. Thus, it has been difficult to convey important knowledge related to viewing and interpreting diagnostic radiology images. We sought to determine if we could create a solution for this problem and evaluate whether students exposed to this solution were able to learn imaging concepts pertinent to medical practice. We developed University of Saskatchewan Radiology Courseware (USRC), a novel interactive web application that enables preclinical medical students to acquire image interpretation skills fundamental to clinical practice. This web application reformats content stored in Medical Imaging Resource Center teaching cases for BlackBoard Learn™, a popular learning management system. We have deployed this solution for 2 successive years in a 1st-year basic sciences medical school course at the College of Medicine, University of Saskatchewan. The "courseware" content covers both normal anatomy and common clinical pathologies in five distinct modules. We created two cohorts of learners consisting of an intervention cohort of students who had used USRC for their 1st academic year, whereas the nonintervention cohort was students who had not been exposed to this learning opportunity. To assess the learning experience of the users we designed an online questionnaire and image review quiz delivered to both of the student groups. Comparisons between the groups revealed statistically significant differences in both confidence with image interpretation and the ability to answer knowledge-based questions. Students were satisfied with the overall usability, functions, and capabilities of USRC. USRC is an innovative technology that provides integration between Medical Imaging Resource Center, a teaching solution used in radiology, and a Learning Management System.

  3. Emergency radiology elective improves second-year medical students' perceived confidence and knowledge of appropriate imaging utilization.

    Science.gov (United States)

    Leschied, Jessica R; Knoepp, Ursula S; Hoff, Carrie Nicole; Mazza, Michael B; Klein, Katherine A; Mullan, Patricia B; Kelly, Aine M

    2013-09-01

    Given recent advances in and wider availability of complex imaging, physicians are expected to understand imaging appropriateness. We introduced second-year medical students to the American College of Radiology Appropriateness Criteria (ACR-AC) in an interactive case-based elective to demonstrate their use in imaging for common emergency department clinical complaints. Prospective pre- and post-test design assessed second-year medical students' performance on case-based knowledge applications and self-assessed confidence related to ACR-AC guidelines compared to second-year students participating in a different concurrent radiology elective. Students participated in a 3-day elective covering the ACR-AC, comparative effective imaging, and risks associated with imaging radiation exposure, with outcomes of perceived confidence using a 5-point Likert scale and knowledge of ACR-AC using case-based multiple choice questions. Analysis included computing mean scores and assessing effect sizes for changes in knowledge. Before the elective, 24 students scored an average of 3.45 questions correct of 8 (43.1%). On course completion, students scored an average of 5.3 questions correct of the same questions (66.3%) (P .85; effect size = 0.008). Students' confidence in ordering appropriate imaging improved nearly 2-fold from a range of 1.9 to 3.2 (on a scale of 1.0 to 5.0) to a range of 3.7 to 4.5. Following a short radiology elective, second-year medical students improved their knowledge of appropriate image utilization and perceived awareness of the indications, contraindications, and effects of radiation exposure related to medical imaging. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  4. Evaluation of the field size in dental diagnostic radiology system

    International Nuclear Information System (INIS)

    Andrade, P.S.; Potiens, M.P.A.

    2006-01-01

    In this work the field size of a dental X rays machine was evaluated considering the recommendation of the Brazilian Health Ministry Regulation 453 which established basic lines of radiological protection in medical and dental diagnostic radiology. The diameter of the field should not be superior to 6 cm in the localized end point, limiting the radiated area and protecting the head-neck region. The measurements were carried out in a dental X rays machine, Dabi Atlante, model Spectro 70X Seletronic. For the field size or useful beam determination, the intra-oral films were positioned on a plain surface to be exposed in four stages and two focus-film distances (FFD), 20 cm and 27.5 cm: 1) with spacer cone; 2) without spacer cone; 3) with spacer cone and film-holding device; 4) without spacer cone and film-holding device. The results show that the diameter of the field size is satisfactory only for FFD = 20 cm. When the film-holding device is used, which is recommended by the Regulation 453, item 5.8 d(ii), the diameter of the field size exceeds the maximum recommended value of 6 cm. (authors)

  5. Organisational aspects of the qualification and involvement of Medical Physicists in Radiology

    International Nuclear Information System (INIS)

    Vassileva, J.

    2004-01-01

    The specialist in Medical Physics has a key position in Quality Assurance process at diagnostic and therapeutic process and in Radiation Protection at medical use of ionizing radiation. The International Basic Safety Standards for protection against ionizing radiation of IAEA recommend and the EURATOM Directives 96/23 and 97/43 require qualified expert in medical physics to be involved in all the activities with ionizing radiation. In radiotherapeutic process this expert shall be closely involved and in nuclear medicine and diagnostic radiology this specialist shall be available. The International Organization for Medical Physics (IOMP), the European Federation of Organizations for Medical Physics (EFOMP) as well as a number of national organizations for Medical Physics in different countries have a clear concept for the qualification levels of the medical physics specialists, for the recognition scheme of their qualification and for the organization of the medical physics activities in a clinical environment. The legal requirements for medical physics expert's involvement in medicine is introducing in Bulgaria with the new Ordinance for Radiation Protection of Individuals at Medical Exposure that is expected to come into force in the beginning of next year. Some problems for discussion are submitted here finding necessary changes in the existing system for education and training of Medical physicists as well as in the organization of their involvement in health centers in the country. (author)

  6. 75 FR 70112 - Medical Devices; General and Plastic Surgery Devices; Classification of Non-Powered Suction...

    Science.gov (United States)

    2010-11-17

    .... FDA-2010-N-0513] Medical Devices; General and Plastic Surgery Devices; Classification of Non-Powered... risks. Adverse tissue reaction Material degradation Improper function of suction apparatus (e.g., reflux.... Material degradation Section 8. Stability and Shelf Life. [[Page 70113

  7. Campaign to gather medical devices containing radium: results

    International Nuclear Information System (INIS)

    Pierre, J.P.; Vidal, J.P.; Martin, J.C.; Pasquier, J.L.

    2002-01-01

    Campaign to gather medical devices containing radium: results. On December 1, 1999, at the request of the French Health Ministry, OPRI and ANDRA launched a campaign to gather medical devices containing radium, formerly used in brachytherapy. This campaign addressed a public health issue because of the risks actually involved in a careless handling of these objects. Moreover the growing number of reported scattered radium medical devices in the last few years reinforced the necessity of the campaign. The gathering was initiated by a call of the owners (hospitals, caring centers, retired doctors or their heirs) to a toll free number. OPRI or ANDRA then appreciated the situation urgency. Priority was given to private people because most of them did not have suitable storage facilities. OPRI teams operated according a strict protocol guaranteeing their own safety, proper procedures and compliance with transport regulations for radioactive materials. 517 objects amounting to an activity of 1.32 x 10 11 Bq have been gathered in 90 operations. Properly packaged they were transported to and safely stored at the CEA Saclay site before their permanent storage in the ANDRA facilities. (author)

  8. Radiology information management system, TOSRIM

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Yuichiro; Uchiyama, Akira; Kimura, Hirohito (Toshiba Corp., Kawasaki, Kanagawa (Japan))

    1991-02-01

    This is a report on a new type of distributed computer system for radiology departments named 'TOSRIM' (Toshiba radiology information management system), which is designed to be installed between medical diagnosis equipment and a host computer system in a hospital. Recently, a new type of host computer system has been developed which enables doctors to order any of the hospital's entire activities using terminals. By connecting 'TOSRIM' to this type of host computer system, many of the activities of a radiology department can be carried out via terminals without the use of examination requirement forms. As well as being connected to medical diagnosis equipment, 'TOSRIM' can also be connected to a medical imaging system which stores and displays medical images. By means of these connections, doctors will be able to diagnose medical images using display terminals without the need for films. (author).

  9. Drugs and Medical Devices: Adverse Events and the Impact on Women's Health.

    Science.gov (United States)

    Carey, Jennifer L; Nader, Nathalie; Chai, Peter R; Carreiro, Stephanie; Griswold, Matthew K; Boyle, Katherine L

    2017-01-01

    A large number of medications and medical devices removed from the market by the US Food and Drug Administration over the past 4 decades specifically posed greater health risks to women. This article reviews the historical background of sex and gender in clinical research policy and describes several approved drugs and devices targeted for use in women that have caused major morbidity and mortality. The intended population for the medications and devices, population affected, approval process, and the basic and legal actions taken against the medication/drug company are also discussed. It is recognized that women are still at risk for harm from unsafe medications and devices, and continued improvements in legislation that promotes inclusion of sex and gender into the design and analysis of research will improve safety for both men and women. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  10. CIRSE Vascular Closure Device Registry

    NARCIS (Netherlands)

    Reekers, Jim A.; Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2011-01-01

    Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. The CIRSE registry of closure devices

  11. 76 FR 71982 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...

    Science.gov (United States)

    2011-11-21

    ... Multiplexed Microbiology Devices: Their clinical application and public health/clinical needs; inclusion of...] Advancing Regulatory Science for Highly Multiplexed Microbiology/ Medical Countermeasure Devices; Public... Multiplexed Microbiology/ Medical Countermeasure Devices'' that published in the Federal Register of August 8...

  12. Electromagnetic compatibility of WLAN adapters with life-supporting medical devices.

    Science.gov (United States)

    Calcagnini, G; Mattei, E; Censi, F; Triventi, M; Lo Sterzo, R; Marchetta, E; Bartolini, P

    2011-05-01

    This paper investigates the electromagnetic compatibility of 45 critical care medical devices (infusion pumps, defibrillators, monitors, lung ventilators, anesthesia machines and external pacemakers) with various types of wireless local area network (WLAN, IEEE 802.11 b/g, 2.45 GHz, 100 mW) adapters. Interference is evaluated by performing ad-hoc tests according to the ANSI C63.18 recommended practice. The behavior of the devices during the tests was monitored using patient simulators/device testers specific for each device class. Electromagnetic interference cases were observed in three of 45 devices at a maximum distance of 5 cm. In two cases the interference caused malfunctions that may have clinical consequences for the patient. The authors' findings show that the use of these wireless local area network adapters can be considered reasonably safe, although interference may occur if they are operated at very close distance (<10 cm) to the medical devices.

  13. 77 FR 6028 - Taxable Medical Devices

    Science.gov (United States)

    2012-02-07

    ... sold as part of an x-ray system. Commentators also requested information on the tax treatment of..., mitigation, treatment, or prevention of disease; or intended to affect the structure or any function of the... subject to an IDE is not a ``taxable medical device'' under the proposed regulations. VI. Dental...

  14. 78 FR 33849 - Battery-Powered Medical Devices Workshop: Challenges and Opportunities; Public Workshop; Request...

    Science.gov (United States)

    2013-06-05

    ... after the public workshop on the Internet at http://www.fda.gov/MedicalDevices/NewsEvents/Workshops..., compact, and mobile, the number of battery-powered medical devices will continue to increase. While many...] Battery-Powered Medical Devices Workshop: Challenges and Opportunities; Public Workshop; Request for...

  15. Upgrading the Medical Physics Calibration Laboratory Towards ISO/IEC 17025: Radiation Standards and Calibration in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Muhammad Jamal Md Isa; Abd Aziz Mhd Ramli; Wan Hazlinda Ismail; Norhayati Abdullah; Shahrul Azlan Azizan; Siti Sara Deraman; Nor Azlin Azraai; Md Khairusalih Md Zin

    2010-01-01

    Calibration of quality control (QC) test tools used in diagnostic radiology is legally required under the Ministry of Health (MOH) requirement. The Medical Physics Calibration Laboratory of the Malaysian Nuclear Agency is the national focal point for the calibration of quality control test tools used in diagnostic radiology. The Medical Physics Calibration Laboratory has measurement traceability to primary standard dosimetry laboratory (Physikalisch-Technische Bundesanstalt (PTB)), thus providing an interface between the primary standard dosimetry laboratory and Malaysian hospitals, clinics and license class H holder. The Medical Physics Calibration Laboratory facility is comprised of a constant potential x-ray system with a capability of 160 kV tube and a series of reference and working standard ion chambers. The stability of reference and working standard ion chambers was measured using strontium-90. Dosimetric instruments used in diagnostic radiology is calibrated in terms of air kerma to comply with an International Code of Practices of dosimetry for example IAEA's Technical Report Series number 457. The new series of standard radiation qualities was established based on ISO/IEC 61267. The measurement of beam homogeneity was measured using film and ion chamber to define the field size at certain distance and kV output was measured using the spectrometer and non-invasive kVp meter. The uncertainties measurement was determined with expended uncertainties to a level of confidence of approximately 95% (coverage factor k=2). This paper describes the available facility and the effort of the Medical Physics Calibration Laboratory to upgrade the laboratory towards ISO/IEC 17025. (author)

  16. Radiology trainer. Musculoskeletal system

    International Nuclear Information System (INIS)

    Staebler, A.; Erlt-Wagner, B.

    2006-01-01

    This book enables students to simulate examinations. The Radiology Trainer series comprises the whole knowledge of radiology in the form of case studies for self-testing. It is based on the best-sorted German-language collection of radiological examinations of all organ regions. Step by step, radiological knowledge is trained in order to make diagnoses more efficient. The book series ensures optimal preparation for the final medical examinations and is also a valuable tool for practical training. (orig.)

  17. Problem-based learning and radiology

    International Nuclear Information System (INIS)

    Thurley, P.; Dennick, R.

    2008-01-01

    The Royal College of Radiologists recently published documents setting out guidelines to improve the teaching of radiology to medical students. These included recommendations that clinicians who teach radiology should be aware of newer educational techniques, such as problem-based learning, and should be involved in the development of curricula and assessment in medical schools. This review aims to introduce the educational theories behind problem-based learning and describe how a problem-based learning tutorial is run. The relevance of problem-based learning to radiology and the potential advantages and disadvantages are discussed

  18. 75 FR 68972 - Medical Devices; General and Plastic Surgery Devices; Classification of Tissue Adhesive With...

    Science.gov (United States)

    2010-11-10

    .... FDA-2010-N-0512] Medical Devices; General and Plastic Surgery Devices; Classification of Tissue... running to unintended areas, etc. B. Wound dehiscence C. Adverse tissue reaction and chemical burns D..., Clinical Studies, Labeling. Adverse tissue reaction and chemical Biocompatibility Animal burns. Testing...

  19. 77 FR 32644 - Medical Devices; Exemption From Premarket Notification: Wheelchair Elevator

    Science.gov (United States)

    2012-06-01

    ...] Medical Devices; Exemption From Premarket Notification: Wheelchair Elevator AGENCY: Food and Drug... elevator devices commonly known as inclined platform lifts and vertical platform lifts. These devices are... behalf of Bruno Independent Living Aids, Inc., for wheelchair elevator devices (commonly known as...

  20. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India.

    Science.gov (United States)

    Sonawane, A U; Singh, Meghraj; Sunil Kumar, J V K; Kulkarni, Arti; Shirva, V K; Pradhan, A S

    2010-10-01

    We conducted a radiological safety and quality assurance (QA) audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp), linearity of tube current (mA station) and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM) (Model RAD/FLU-9001), dose Test-O-Meter (ToM) (Model 6001), ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%), lack of congruence of radiation and optical field (23%), nonlinearity of mA station (16%) and timer (9%), improper collimator/diaphragm (19.6%), faulty adjustor knob for alignment of field size (4%), nonavailability of warning light (red light) at the entrance of the X-ray room (29%), and use of mobile protective barriers without lead glass viewing window (14%). The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body.

  1. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India

    International Nuclear Information System (INIS)

    Sonawane, A.U.; Singh, Meghraj; Sunil Kumar, J.V.K.; Kulkarni, Arti; Shirva, V.K.; Pradhan, A.S.

    2010-01-01

    We conducted a radiological safety and quality assurance (QA) audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp), linearity of tube current (mA station) and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM) (Model RAD/FLU-9001), dose Test-O-Meter (ToM) (Model 6001), ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%), lack of congruence of radiation and optical field (23%), nonlinearity of mA station (16%) and timer (9%), improper collimator/diaphragm (19.6%), faulty adjustor knob for alignment of field size (4%), nonavailability of warning light (red light) at the entrance of the X-ray room (29%), and use of mobile protective barriers without lead glass viewing window (14%). The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body. (author)

  2. Program for the radiological protection of the embryos-fetuses due to the medical exposure of him mother

    International Nuclear Information System (INIS)

    Lopez B, G.M.; Martinez G, A.; Cardenas H, J.; Gonzalez R, N.; Valdes R, M.; Zaldivar H, W.

    2006-01-01

    In the last years the organizations in charge of the regulation in matter of radiological protection, its have adopted measures to minimize the risks derived of the medical exposures, paying special attention to those that involve women in age of procreation, gestating and in period of lactation, because the embryo - fetus and the newborn babies ones are very vulnerable to the risks of the ionizing radiations, which can end up producing them multiple effects of variable severity. In Cuba, a Maternal-children program that includes the genetic advice to the pregnant woman from the medical point of view exists but didn't so the evaluation of the radiological risk; which is only carried out by the Medical Surveillance Service of the Protection and Hygiene of the Radiations Center (CPHR), without that mediates an official link among both parts and whose existence is only known by a reduced group of professionals of the health and of specialists in Radiological Protection. On the other hand is not established a strategy at national level for the differentiated information and systematic in these topics that it contributes to the control of the exposures of the embryo fetus and the breast-fed baby. Keeping in mind the above-mentioned the specialists of the CPHR have elaborated a proposal of national program for the radiological protection of the embryo- fetus due to the medical exposure of its progenitor. In the same one it is settles down the interrelation between work groups and multidisciplinary institutions to achieve the detection, communication and consultant ship of the cases of exposure to the fetus or breast-fed baby that happen in the country and at the same time include the training so much of the professionals of the health like of the public in general. Presently work the program and the elements that conform it among those that are, the on-line system developed for the automation of the medical dosimetric evaluation, the technician-methodological documents

  3. Views of patients and professionals about electronic multicompartment medication devices: a qualitative study.

    Science.gov (United States)

    Hall, Jill; Bond, Christine; Kinnear, Moira; McKinstry, Brian

    2016-10-17

    To explore the perceived acceptability, advantages and disadvantages of electronic multicompartment medication devices. Qualitative study using 8 focus groups and 10 individual semistructured interviews. Recordings were transcribed and analysed thematically. Strategies were employed to ensure the findings were credible and trustworthy. Community pharmacists (n=11), general practitioners (n=9), community nurses (n=12) and social care managers (n=8) were recruited from the National Health Service (NHS) and local authority services. Patients (n=15) who were current conventional or electronic multicompartment medication device users or had medication adherence problems were recruited from community pharmacies. 3 informal carers participated. Electronic multicompartment medication devices which prompt the patient to take medication may be beneficial for selected individuals, particularly those with cognitive impairment, but who are not seriously impaired, provided they have a good level of dexterity. They may also assist individuals where it is important that medication is taken at fixed time intervals. These are likely to be people who are being supported to live alone. No single device suited everybody; smaller/lighter devices were preferred but their usefulness was limited by the small number/size of storage compartments. Removing medications was often challenging. Transportability was an important factor for patients and carers. A carer's alert if medication is not taken was problematic with multiple barriers to implementation and no consensus as to who should receive the alert. There was a lack of enthusiasm among professionals, particularly among pharmacists, due to concerns about responsibility and funding for devices as well as ensuring devices met regulatory standards for storage and labelling. This study provides indicators of which patients might benefit from an electronic multicompartment medication device as well as the kinds of features to consider when

  4. Left to their own devices: medical learners' use of mobile technologies.

    Science.gov (United States)

    Ellaway, Rachel H; Fink, Patricia; Graves, Lisa; Campbell, Alanna

    2014-02-01

    Although many medical learners and teachers are using mobile technologies within medical education, there has been little evidence presented describing how they use mobile devices across a whole curriculum. The Northern Ontario School of Medicine (NOSM) introduced a new mobile device program in 2010. Incoming undergraduate medical learners received a laptop and an iPad and learners entering year three of the four-year program received a laptop and an iPhone. A survey was sent to all learners to gather information on their use of and attitudes toward these devices. A combination of quantitative and qualitative methods was used to analyze the data and to generate a series of themes that synthesized student behaviors, perceptions and attitudes. Context and learner autonomy were found to be important factors with learners using multiple devices for different purposes and adopting strategic approaches to learning using these devices. The expectation that school-issued devices would be regularly and enthusiastically used to replace more traditional study media was not reflected in practice. Learners' approaches to using mobile devices are heterogeneous as is the extent to which they use them. Learners adapt their use of mobile devices to the learning cultures and contexts they find themselves in.

  5. Advancing medical device innovation through collaboration and coordination of structured data capture pilots: Report from the Medical Device Epidemiology Network (MDEpiNet) Specific, Measurable, Achievable, Results-Oriented, Time Bound (SMART) Think Tank.

    Science.gov (United States)

    Reed, Terrie L; Drozda, Joseph P; Baskin, Kevin M; Tcheng, James; Conway, Karen; Wilson, Natalia; Marinac-Dabic, Danica; Heise, Theodore; Krucoff, Mitchell W

    2017-12-01

    The Medical Device Epidemiology Network (MDEpiNet) is a public private partnership (PPP) that provides a platform for collaboration on medical device evaluation and depth of expertise for supporting pilots to capture, exchange and use device information for improving device safety and protecting public health. The MDEpiNet SMART Think Tank, held in February, 2013, sought to engage expert stakeholders who were committed to improving the capture of device data, including Unique Device Identification (UDI), in key electronic health information. Prior to the Think Tank there was limited collaboration among stakeholders beyond a few single health care organizations engaged in electronic capture and exchange of device data. The Think Tank resulted in what has become two sustainable multi-stakeholder device data capture initiatives, BUILD and VANGUARD. These initiatives continue to mature within the MDEpiNet PPP structure and are well aligned with the goals outlined in recent FDA-initiated National Medical Device Planning Board and Medical Device Registry Task Force white papers as well as the vision for the National Evaluation System for health Technology.%. Published by Elsevier Inc.

  6. Development of an informative system on aspects of radiological protection in the medical practices

    International Nuclear Information System (INIS)

    Lopez B, G.M.; Martinez G, A.; Gonzalez R, N.; Hernandez A, R.; Valdes R, M.; Cardenas H, J.; Zaldivar H, W.; Diaz B, M.; Machado T, A.

    2006-01-01

    Today in day is difficult to imagine the development of the medical practices in the diagnosis and treatment of diverse illnesses without the use of the ionizing radiations. In spite of the diffusion and application of these practices, the patients and the public in general don't have full conscience of like the procedures are carried out and the risks that these involve. For it diverse international and national organizations in the last years recommend to include in the programs of radiological protection, all the information that should be given to the patients and the one public that attend as users to the medical institutions to undergo to procedures that imply the use of the ionizing radiations. In Cuba a growing and quick tendency exists to the introduction of nuclear techniques for medical ends, however paradoxically the relative aspects to the communication to the patients and the public in general about the risks of the procedures to that they will be subjected and in consequence on the measures to minimize them is not adequate. Keeping in mind the above-mentioned, specialists of national centers linked to the control and consultant ship in the topics of radiological protection in the medical practices that use ionizing radiations, they worked in the country in the design of an information system that should contribute to elevate the population's culture before the mentioned aspects. The present work describes the structure of this system in function of the different medical attention levels of our national health system. Additionally it exposes the development of a package of varied informative and training tools among those that are folding, posters, guides, instructions, CD Show that its approach general and specific aspects of the uses and risks of medical practices in nuclear medicine, radiodiagnostic and radiotherapy directed so much to health professionals, patients as public in general. (Author)

  7. Efficient radiologic reading environment by using an open-source macro program as connection software.

    Science.gov (United States)

    Lee, Young Han

    2012-01-01

    The objectives are (1) to introduce an easy open-source macro program as connection software and (2) to illustrate the practical usages in radiologic reading environment by simulating the radiologic reading process. The simulation is a set of radiologic reading process to do a practical task in the radiologic reading room. The principal processes are: (1) to view radiologic images on the Picture Archiving and Communicating System (PACS), (2) to connect the HIS/EMR (Hospital Information System/Electronic Medical Record) system, (3) to make an automatic radiologic reporting system, and (4) to record and recall information of interesting cases. This simulation environment was designed by using open-source macro program as connection software. The simulation performed well on the Window-based PACS workstation. Radiologists practiced the steps of the simulation comfortably by utilizing the macro-powered radiologic environment. This macro program could automate several manual cumbersome steps in the radiologic reading process. This program successfully acts as connection software for the PACS software, EMR/HIS, spreadsheet, and other various input devices in the radiologic reading environment. A user-friendly efficient radiologic reading environment could be established by utilizing open-source macro program as connection software. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Efficient radiologic reading environment by using an open-source macro program as connection software

    International Nuclear Information System (INIS)

    Lee, Young Han

    2012-01-01

    Purpose: The objectives are (1) to introduce an easy open-source macro program as connection software and (2) to illustrate the practical usages in radiologic reading environment by simulating the radiologic reading process. Materials and methods: The simulation is a set of radiologic reading process to do a practical task in the radiologic reading room. The principal processes are: (1) to view radiologic images on the Picture Archiving and Communicating System (PACS), (2) to connect the HIS/EMR (Hospital Information System/Electronic Medical Record) system, (3) to make an automatic radiologic reporting system, and (4) to record and recall information of interesting cases. This simulation environment was designed by using open-source macro program as connection software. Results: The simulation performed well on the Window-based PACS workstation. Radiologists practiced the steps of the simulation comfortably by utilizing the macro-powered radiologic environment. This macro program could automate several manual cumbersome steps in the radiologic reading process. This program successfully acts as connection software for the PACS software, EMR/HIS, spreadsheet, and other various input devices in the radiologic reading environment. Conclusion: A user-friendly efficient radiologic reading environment could be established by utilizing open-source macro program as connection software.

  9. Possibilities of radiation sterilization for re-usage of medical devices in the medical management

    International Nuclear Information System (INIS)

    Tabei, Masae; Kudo, Hisaaki; Katsumura, Yosuke

    2004-01-01

    The rule for re-usage of medical single-use devices was established in US in 2000 based on the concept of Managed Care (total management of medicare on cost, quality and patients' satisfaction) and 20-30% of those devices are re-used at present. The re-usage is conducted in not only US but also Canada, Denmark, UK, India, China etc. Standing on the viewpoint, this paper described and discussed the possibility of re-usage of the single-use devices now prohibited in Japan, possible re-sterilization, possible re-usage of hollow fiber-type hemodialyzer following γ-ray sterilization with consideration for D-values against bacteria and viruses, cost estimation of electron beam sterilization for re-usage, and radiation sterilization of waste water and plastic materials. Radiation sterilization for re-usage of medical devices was concluded possible if their materials and records for their usage processes are proper, and should be conducted in a large scale after sufficient examinations by industries/government/academia. (N.I.)

  10. Third-year medical students' knowledge of privacy and security issues concerning mobile devices.

    Science.gov (United States)

    Whipple, Elizabeth C; Allgood, Kacy L; Larue, Elizabeth M

    2012-01-01

    The use of mobile devices are ubiquitous in medical-care professional settings, but information on privacy and security concerns of mobile devices for medical students is scarce. To gain baseline information about third-year medical students' mobile device use and knowledge of privacy and security issues concerning mobile devices. We surveyed 67 third-year medical students at a Midwestern university on their use of mobile devices and knowledge of how to protect information available through mobile devices. Students were also presented with clinical scenarios to rate their level of concern in regards to privacy and security of information. The most used features of mobile devices were: voice-to-voice (100%), text messaging (SMS) (94%), Internet (76.9%), and email (69.3%). For locking of one's personal mobile phone, 54.1% never physically lock their phone, and 58% never electronically lock their personal PDA. Scenarios considering definitely privacy concerns include emailing patient information intact (66.7%), and posting de-identified information on YouTube (45.2%) or Facebook (42.2%). As the ease of sharing data increases with the use of mobile devices, students need more education and training on possible privacy and security risks posed with mobile devices.

  11. Low power signal processing electronics for wearable medical devices.

    Science.gov (United States)

    Casson, Alexander J; Rodriguez-Villegas, Esther

    2010-01-01

    Custom designed microchips, known as Application Specific Integrated Circuits (ASICs), offer the lowest possible power consumption electronics. However, this comes at the cost of a longer, more complex and more costly design process compared to one using generic, off-the-shelf components. Nevertheless, their use is essential in future truly wearable medical devices that must operate for long periods of time from physically small, energy limited batteries. This presentation will demonstrate the state-of-the-art in ASIC technology for providing online signal processing for use in these wearable medical devices.

  12. Stakeholder challenges in purchasing medical devices for patient safety.

    Science.gov (United States)

    Hinrichs, Saba; Dickerson, Terry; Clarkson, John

    2013-03-01

    This study identifies the stakeholders who have a role in medical device purchasing within the wider system of health-care delivery and reports on their particular challenges to promote patient safety during purchasing decisions. Data was collected through observational work, participatory workshops, and semi-structured qualitative interviews, which were analyzed and coded. The study takes a systems-based and engineering design approach to the study. Five hospitals took part in this study, and the participants included maintenance, training, clinical end-users, finance, and risk departments. The main stakeholders for purchasing were identified to be staff from clinical engineering (Maintenance), device users (Clinical), device trainers (Training), and clinical governance for analyzing incidents involving devices (Risk). These stakeholders display varied characteristics in terms of interpretation of their own roles, competencies for selecting devices, awareness and use of resources for purchasing devices, and attitudes toward the purchasing process. The role of "clinical engineering" is seen by these stakeholders to be critical in mediating between training, technical, and financial stakeholders but not always recognized in practice. The findings show that many device purchasing decisions are tackled in isolation, which is not optimal for decisions requiring knowledge that is currently distributed among different people within different departments. The challenges expressed relate to the wider system of care and equipment management, calling for a more systemic view of purchasing for medical devices.

  13. An analysis of radiological research publications in high impact general medical journals between 1996 and 2010.

    Science.gov (United States)

    Ku, You Jin; Yoon, Dae Young; Yun, Eun Joo; Baek, Sora; Lim, Kyoung Ja; Seo, Young Lan; Choi, Chul Soon; Bae, Sang Hoon

    2013-06-01

    To evaluate scientific papers published by radiologists in high impact general medical journals between 1996 and 2010. A MEDLINE search was performed in five high impact general medical journals (AIM, BMJ, JAMA, Lancet, and NEJM) for all articles of which a radiologist was the first author between 1996 and 2010. The following information was abstracted from the original articles: radiological subspecialty, imaging technique used, type of research, sample size, study design, statistical analysis, study outcome, declared funding, number of authors, collaboration, and country of the first author. Of 216 (0.19%) articles were published by radiologists in five general medical journals between 1996 and 2010, 83 were original articles. Fifteen (18.1%) original articles were concerned with the field of vascular/interventional radiology, 24 (28.9%) used combined imaging techniques, 76 (91.6%) were clinical research, 63 (75.9%) had a sample size of >50, 65 (78.3%) were prospective, 78 (94.0%) performed statistical analysis, 83 (100%) showed positive study outcomes, 57 (68.7%) were funded, 49 (59.0%) had from four to seven authors, and 79 (95.2%) were collaborative studies. A very small number (0.19%) in five high impact general medical journals was published by radiologists between 1996 and 2010. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The Radiological and Medical Sciences Research Institute was established in 2009, as the forth research institute of the Ghana Atomic Energy Commission. This Annual Report provides an overview of the major activities of the Institutes in the year 2014. Major items covered in the report include: Strategic objectives; Collaborations; Personnel and Organisational Structure; Facilities and Technical Services; Summary of Research and Development Projects; Human Resource Development; Publications and Technical Reports.

  15. [Software as medical devices/medical apps : Tasks, requirements, and experiences from the point of view of a competent authority].

    Science.gov (United States)

    Terhechte, Arno

    2018-03-01

    Software can be classified as a medical device according to the Medical Device Directive 93/42/EEC. The number of software products and medical apps is continuously increasing and so too is the use in health institutions (e. g., in hospitals and doctors' surgeries) for diagnosis and therapy.Different aspects of standalone software and medical apps from the perspective of the authority responsible are presented. The quality system implemented to establish a risk-based systematic inspection and supervision of manufacturers is discussed. The legal framework, as well as additional standards that are the basis for inspection, are outlined. The article highlights special aspects that occur during inspection like verification of software and interfaces, and the clinical evaluation of software. The Bezirksregierung, as the local government authority responsible in North Rhine-Westphalia, is also in charge of inspection of health institutions. Therefore this article is not limited to the manufacturers placing the software on the market, but in addition it describes the management and use of software as a medical device in hospitals.The future legal framework, the Medical Device Regulation, will strengthen the requirements and engage notified bodies more than today in the conformity assessment of software as a medical device.Manufacturers, health institutions, notified bodies and the authorities responsible are in charge of intensifying their efforts towards software as a medical device. Mutual information, improvement of skills, and inspections will lead to compliance with regulatory requirements.

  16. Research on dose setting for radiation sterilization of medical device

    International Nuclear Information System (INIS)

    Zhang Tongcheng; Liu Qingfang; Zhong Hongliang; Mi Zhisu; Wang Chunlei; Jiang Jianping

    2002-01-01

    Objective: To establish the radiation sterilization dose for medical devices using data of bioburden on the medical device. Methods: Firstly determination of recovery ratio and correction coefficient of the microbiological test method was used according to ISO11737 standard, then determination of bioburden on the products, finally the dose setting was completed based on the Method 1 in ISO11137 standard. Results: Fifteen kinds of medical devices were tested. Bioburden range was from 8.6-97271.2 CFU/device, recovery ration range 54.6%-100%, correction co-efficiency range 1.00-1.83, D 10 distribution from 1.40 to 2.82 kGy, verification dose (dose at SAL = 10 -2 ) range 5.1-17.6 kGy and sterilization dose (dose at SAL 10 -6 ) range 17.5-32.5 kGy. Conclusion: One hundred samples of each kind of product were exposed to the pre-determined verification dose and then the sterility test was performed. Each sterility test showed positive number was not greater than two. This indicated that the sterilization dose established for each kind of product was statistically acceptable

  17. 77 FR 32642 - Medical Devices; Exemption From Premarket Notification: Powered Patient Transport

    Science.gov (United States)

    2012-06-01

    ...] Medical Devices; Exemption From Premarket Notification: Powered Patient Transport AGENCY: Food and Drug... received a petition requesting exemption from the premarket notification requirements for powered patient... necessary to provide a reasonable assurance of safety and effectiveness. Under the Medical Device Amendments...

  18. Moving beyond quality control in diagnostic radiology and the role of the clinically qualified medical physicist.

    Science.gov (United States)

    Delis, H; Christaki, K; Healy, B; Loreti, G; Poli, G L; Toroi, P; Meghzifene, A

    2017-09-01

    Quality control (QC), according to ISO definitions, represents the most basic level of quality. It is considered to be the snapshot of the performance or the characteristics of a product or service, in order to verify that it complies with the requirements. Although it is usually believed that "the role of medical physicists in Diagnostic Radiology is QC", this, not only limits the contribution of medical physicists, but is also no longer adequate to meet the needs of Diagnostic Radiology in terms of Quality. In order to assure quality practices more organized activities and efforts are required in the modern era of diagnostic radiology. The complete system of QC is just one element of a comprehensive quality assurance (QA) program that aims at ensuring that the requirements of quality of a product or service will consistently be fulfilled. A comprehensive Quality system, starts even before the procurement of any equipment, as the need analysis and the development of specifications are important components under the QA framework. Further expanding this framework of QA, a comprehensive Quality Management System can provide additional benefits to a Diagnostic Radiology service. Harmonized policies and procedures and elements such as mission statement or job descriptions can provide clarity and consistency in the services provided, enhancing the outcome and representing a solid platform for quality improvement. The International Atomic Energy Agency (IAEA) promotes this comprehensive quality approach in diagnostic imaging and especially supports the field of comprehensive clinical audits as a tool for quality improvement. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. 76 FR 14414 - Microbiology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-03-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES [Docket No. FDA-2011-N-0002] Microbiology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... and Drug Administration (FDA). The meeting will be open to the public. Name of Committee: Microbiology...

  20. Build-up forces at Military Institute of Medical Radiology and Oncology for emergency medical response to some eventualities of radiological accidents - some suggestions

    International Nuclear Information System (INIS)

    Ho Van Cu; Nguyen Huu Nghia

    2011-01-01

    Nowadays, the use of various nuclear sources in some fields of the life has brought many practical advantages in general; especially in the next several years, our country will begin construction of the first nuclear plant. However, if there were user carelessness or objective disadvantageous factors (earthquake, tsunami, etc.), that disadvantages could lead to a radiation accident or nuclear accident which causes damages not only for economy but also for public health. Therefore, the emergency response to radiation accident, especially the emergency medical response that has a great important position. To satisfy this real demand, in 1996, Vietnam Ministry of Defence made the decision to establish Center for Nuclear Medicine and Radiation Protecting (now becomes Military Institute of Medical Radiology and Oncology) with the main missions are research, applying radiation protecting methods and organizing treatments to radiation injured victims. To fulfill above main missions, with the help of Vietnam Atomic Energy Institute (VAEI), Vietnam Agency for Radiation and Nuclear Safety (VARANS), the doctors and staffs of our Institute have been participated in the international training courses and workshops that organized in Vietnam or in regional countries about emergency medical response to radiation accidents, they get valuable information, knowledge and documents from these courses and workshops. Depending on the principles of radiation emergency medical response to nuclear/ radiation accidents that International Atomic Energy Agency (IAEA) guided, and with the experience learned from other countries in Asia region, our Institute have been gradually improving on organization and curing processes for the radiation victims and also setting the preparedness for emergency medical response to radiation accidents if maybe they could occur. (author)

  1. Medical Device Plug-and-Play Interoperability Standards and Technology Leadership

    Science.gov (United States)

    2010-10-01

    American Telemedicine Association), we demonstrated how continuous monitoring of the patient’s SpO2 and respiratory rate could detect the onset of...designed to monitor sepsis infection sounded its alarm continually, day and night. The device was built with an innovative algorithm to detect sepsis, but...transport Figure 3. This medical device has misread its sensors and inserted false data into patient’s permanent medical record. SPECIal FEaTuRE October

  2. Integrated biodosimetry in large scale radiological events. Opportunities for civil military co-operation

    International Nuclear Information System (INIS)

    Port, M.; Eder, S.F.; Lamkowski, A.; Majewski, M.; Abend, M.

    2016-01-01

    Radiological events like large scale radiological or nuclear accidents, terroristic attacks with radionuclide dispersal devices require rapid and precise medical classification (''triage'') and medical management of a large number of patients. Estimates on the absorbed dose and in particular predictions of the radiation induced health effects are mandatory for optimized allocation of limited medical resources and initiation of patient centred treatment. Among the German Armed Forces Medical Services the Bundeswehr Institute of Radiobiology offers a wide range of tools for the purpose of medical management to cope with different scenarios. The forward deployable mobile Medical Task Force has access to state of the art methodologies summarized into approaches such as physical dosimetry (including mobile gammaspectroscopy), clinical ''dosimetry'' (prodromi, H-Modul) and different means of biological dosimetry (e.g. dicentrics, high throughput gene expression techniques, gamma-H2AX). The integration of these different approaches enables trained physicians of the Medical Task Force to assess individual health injuries as well as prognostic evaluation, considering modern treatment options. To enhance the capacity of single institutions, networking has been recognized as an important emergency response strategy. The capabilities of physical, biological and clinical ''dosimetry'' approaches spanning from low up to high radiation exposures will be discussed. Furthermore civil military opportunities for combined efforts will be demonstrated.

  3. 21 CFR 801.16 - Medical devices; Spanish-language version of certain required statements.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices; Spanish-language version of....16 Medical devices; Spanish-language version of certain required statements. If devices restricted to prescription use only are labeled solely in Spanish for distribution in the Commonwealth of Puerto Rico where...

  4. Assessment of radiological protection systems among diagnostic radiology facilities in North East India.

    Science.gov (United States)

    Singh, Thokchom Dewan; Jayaraman, T; Arunkumar Sharma, B

    2017-03-01

    This study aims to assess the adequacy level of radiological protection systems available in the diagnostic radiology facilities located in three capital cities of North East (NE) India. It further attempts to understand, using a multi-disciplinary approach, how the safety codes/standards in diagnostic radiology framed by the Atomic Energy Regulatory Board (AERB) and the International Atomic Energy Agency (IAEA) to achieve adequate radiological protection in facilities, have been perceived, conceptualized, and applied accordingly in these facilities. About 30 diagnostic radiology facilities were randomly selected from three capitals of states in NE India; namely Imphal (Manipur), Shillong (Meghalaya) and Guwahati (Assam). A semi-structured questionnaire developed based on a multi-disciplinary approach was used for this study. It was observed that radiological practices undertaken in these facilities were not exactly in line with safety codes/standards in diagnostic radiology of the AERB and the IAEA. About 50% of the facilities had registered/licensed x-ray equipment with the AERB. More than 80% of the workers did not use radiation protective devices, although these devices were available in the facilities. About 85% of facilities had no institutional risk management system. About 70% of the facilities did not carry out periodic quality assurance testing of their x-ray equipment or surveys of radiation leakage around the x-ray room, and did not display radiation safety indicators in the x-ray rooms. Workers in these facilities exhibited low risk perception about the risks associated with these practices. The majority of diagnostic radiology facilities in NE India did not comply with the radiological safety codes/standards framed by the AERB and IAEA. The study found inadequate levels of radiological protection systems in the majority of facilities. This study suggests a need to establish firm measures that comply with the radiological safety codes/standards of the

  5. The radiological technologist

    International Nuclear Information System (INIS)

    Bundy, A.L.

    1988-01-01

    Radiologists rely upon the talents of the technologists with whom they work. Indeed, a good technologist will only enhance the radiologist's performance. Radiological technologists no longer solely take radiographs, but are involved in many more detailed areas of imaging, such as computered tomography, magnetic resonance imaging, nuclear radiology, ultrasound, angiography, and special procedures. They are also required to make decisions that affect the radiological examination. Besides the degree in radiological technology (RT), advanced degrees in nuclear medicine technology (NMT) and diagnostic medical sonography (RDMS) are attainable. The liability of the technologist is not the same as the radiologist involved, but the liability is potentially real and governed by a subdivision of jurisprudence known as agency law. Since plaintiffs and attorneys are constantly searching for new frontiers of medical liability, it is wise for the radiologist and technologist to be aware of the legalities governing their working relationship and to behave accordingly. The legal principles that apply to this working relationship are discussed in this chapter, followed by a presentation of some relevant and interesting cases that have been litigated

  6. Characterization of X-ray fields at the center for devices and radiological health

    Energy Technology Data Exchange (ETDEWEB)

    Cerra, F. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    This talk summarizes the process undertaken by the Center for Devices and Radiological Health (CDRH) for establishing reference x-ray fields in its accredited calibration laboratory. The main considerations and their effects on the calibration parameters are discussed. The characterization of fields may be broken down into two parts: (1) the initial setup of the calibration beam spectra and (2) the ongoing measurements and controls which ensure consistency of the reference fields. The methods employed by CDRH for both these stages and underlying considerations are presented. Uncertainties associated with the various parameters are discussed. Finally, the laboratory`s performance, as evidenced by ongoing measurement quality assurance results, is reported.

  7. Health Care: Reprocessed Medical Single-Use Devices in DoD

    National Research Council Canada - National Science Library

    2002-01-01

    ... for decontamination and resterilization. The emergence of new materials and sterilization methods, and the increasing costs of health care, resulted in the development of medical single-use devices and the practice of reprocessing the devices...

  8. The use of models to help in the decision making process related to response after an RDD (Radiological dispersion device) event

    International Nuclear Information System (INIS)

    Saint Yves, Thalis Leon de Avila; Lauria, Dejanira da Costa; Maia, Arlei; Andrade, Edson Ramos de

    2011-01-01

    Since the terrorist attacks on September 11, 2001, the assessment of radiological impacts for the public and the environment due to radionuclides being scattered by a radiological malevolent event has been a central focus. Models and computational codes have been developed and hypothetical scenarios have been formulated for establishing priority of countermeasures and protective actions; determining of generic operational guidelines; and assessment of risks for exposure population. In this study, a likely scenario was considered for evaluation of radiation exposures after a hypothetical radiological explosion of a 137 Cs device event in an urban environment. Joining to that, the main goal of this study is evaluating the usefulness of the sequential use of two codes for assessment of radiological consequence, and supporting decision making related to a RDD. A summary of the approaches of the two different codes, of their key inputs and outputs are presented. (author)

  9. Management information system of medical equipment using mobile devices

    Science.gov (United States)

    Núñez, C.; Castro, D.

    2011-09-01

    The large numbers of technologies currently incorporated into mobile devices transform them into excellent tools for capture and to manage the information, because of the increasing computing power and storage that allow to add many miscellaneous applications. In order to obtain benefits of these technologies, in the biomedical engineering field, it was developed a mobile information system for medical equipment management. The central platform for the system it's a mobile phone, which by a connection with a web server, it's capable to send and receive information relative to any medical equipment. Decoding a type of barcodes, known as QR-Codes, the management process is simplified and improved. These barcodes identified the medical equipments in a database, when these codes are photographed and decoded with the mobile device, you can access to relevant information about the medical equipment in question. This Project in it's actual state is a basic support tool for the maintenance of medical equipment. It is also a modern alternative, competitive and economic in the actual market.

  10. Regulatory Science in Practice (Pharmaceuticals and Medical Devices Agency).

    Science.gov (United States)

    Hojo, Taisuke

    2017-01-01

    Review, safety, and relief services of the Pharmaceuticals and Medical Devices Agency are primarily focused on scientifically evaluating pharmaceuticals, medical devices, and cellular and tissue-based products referring to their quality, efficacy, and safety, which requires a variety of scientific knowledge and methods. Pharmaceutical regulation should be established based on the most advanced scientific expertise at all times. In order to evaluate products that use cutting-edge technology such as induced pluripotent stem cells and information and communication technology adequately, since fiscal year 2012 the Science Committee has been established as a platform to exchange opinions among members from top-ranking domestic and international academia and to enhance personnel exchanges through the Initiative to Facilitate Development of Innovative Drugs. In addition, the Regulatory Science Center will be established in 2018 to increase the integrity of our services for product reviews and safety measures. In particular, requiring electronic data submissions for clinical trial applications followed by an advanced approach to analysis should not only enhance the quality of reviews of individual products but should also support the development of pharmaceuticals and medical devices by providing pharmaceutical affairs consultations on research and development strategies with various guidelines based on new insights resulting from product-bridging data analysis. Moreover, a database including electronic health records with comprehensive medical information collected mainly from 10 cooperating medical institutions will be developed with the aim of developing safety measures in a more timely manner using methods of pharmacoepidemiological analysis.

  11. 31 CFR 595.513 - In-kind donations of medicine, medical devices, and medical services.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false In-kind donations of medicine...-kind donations of medicine, medical devices, and medical services. (a) Effective July 6, 2006, nongovernmental organizations that are U.S. persons are authorized to provide in-kind donations of medicine...

  12. Pricing and reimbursement of drugs and medical devices in Hungary.

    Science.gov (United States)

    Gulácsi, L; Dávid, T; Dózsa, Cs

    2002-01-01

    Similarly to other countries of Central and Eastern Europe, Hungary has witnessed massive diffusion of healthcare technology such as drugs and medical devices since 1990. While substantial new pharmaceuticals, medical devices, and procedures have been liberalized, there has been no proper evaluation or training in their use. Healthcare providers have come to find themselves as entrepreneurs in private practice, while patients are acquiring an increasing awareness as customers of healthcare,demanding services in return for their taxes and contributions. This has led to extremely irrational patterns of investment in technology, with most an obvious waste of resources, while leaving basic needs unmet. Both the National Health Insurance Fund and the Ministry of Finance believe that the current pharmaceutical and medical device bill is too high. However, introducing a more transparent and flexible pricing and reimbursement framework may enable a more efficient allocation of the limited resources to be achieved.

  13. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India

    Directory of Open Access Journals (Sweden)

    Sonawane A

    2010-01-01

    Full Text Available We conducted a radiological safety and quality assurance (QA audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp, linearity of tube current (mA station and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM (Model RAD/FLU-9001, dose Test-O-Meter (ToM (Model 6001, ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%, lack of congruence of radiation and optical field (23%, nonlinearity of mA station (16% and timer (9%, improper collimator/diaphragm (19.6%, faulty adjustor knob for alignment of field size (4%, nonavailability of warning light (red light at the entrance of the X-ray room (29%, and use of mobile protective barriers without lead glass viewing window (14%. The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body.

  14. Patient exposure evaluation in Romanian radiological departments

    International Nuclear Information System (INIS)

    Girjoaba, O.; Cucu, A.

    2012-01-01

    Purpose: A nation-wide evaluation of ionizing radiation exposure of the Romanian population due to the radiological examinations is performed in accordance with European Directive 97/43 EURATOM implemented in national regulations. Method: The study is applied to the collected data from radiological departments from Romanian hospitals during 2010. The radiological examinations were grouped in three categories: conventional diagnostic radiology, interventional radiology and computed tomography. The annual collective dose was determined from the reported data about the mean effective doses and the frequency for each type of radiological examination, in conformity with the national regulations. Regarding the frequency aspects, the results include the age and gender distributions. Major results: More then 6 million radiological examinations were performed in 2010, Romania having a population about of 20.3 million inhabitants. The collective effective dose for 2010 resulted from the study is 152 mSv per 1000 inhabitants. Conclusions: Medical practitioners must select the best medical imaging investigation for each clinical case taking into account the importance of keeping the patient dose as low as possible. Medical physicists should be strongly involved in the establishing of the dosimetry procedures. (author)

  15. 75 FR 1395 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of...

    Science.gov (United States)

    2010-01-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2009-N-0606] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of Notice...) is announcing an amendment to the notice of a meeting of the General and Plastic Surgery Devices...

  16. Towards automated assistance for operating home medical devices.

    Science.gov (United States)

    Gao, Zan; Detyniecki, Marcin; Chen, Ming-Yu; Wu, Wen; Hauptmann, Alexander G; Wactlar, Howard D

    2010-01-01

    To detect errors when subjects operate a home medical device, we observe them with multiple cameras. We then perform action recognition with a robust approach to recognize action information based on explicitly encoding motion information. This algorithm detects interest points and encodes not only their local appearance but also explicitly models local motion. Our goal is to recognize individual human actions in the operations of a home medical device to see if the patient has correctly performed the required actions in the prescribed sequence. Using a specific infusion pump as a test case, requiring 22 operation steps from 6 action classes, our best classifier selects high likelihood action estimates from 4 available cameras, to obtain an average class recognition rate of 69%.

  17. [Medical image compression: a review].

    Science.gov (United States)

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings.

  18. A combination of traditional learning and e-learning can be more effective on radiological interpretation skills in medical students: a pre- and post-intervention study.

    Science.gov (United States)

    Salajegheh, Ali; Jahangiri, Alborz; Dolan-Evans, Elliot; Pakneshan, Sahar

    2016-02-03

    The ability to interpret an X-Ray is a vital skill for graduating medical students which guides clinicians towards accurate diagnosis and treatment of the patient. However, research has suggested that radiological interpretation skills are less than satisfactory in not only medical students, but also in residents and consultants. This study investigated the effectiveness of e-learning for the development of X-ray interpretation skills in pre-clinical medical students. Competencies in clinical X-Ray interpretation were assessed by comparison of pre- and post-intervention scores and one year follow up assessment, where the e-learning course was the 'intervention'. Our results demonstrate improved knowledge and skills in X-ray interpretation in students. Assessment of the post training students showed significantly higher scores than the scores of control group of students undertaking the same assessment at the same time. The development of the Internet and advances in multimedia technologies has paved the way for computer-assisted education. As more rural clinical schools are established the electronic delivery of radiology teaching through websites will become a necessity. The use of e-learning to deliver radiology tuition to medical students represents an exciting alternative and is an effective method of developing competency in radiological interpretation for medical students.

  19. Changes in IEC standards related to diagnostic radiology

    International Nuclear Information System (INIS)

    Porubszky, T.; Barsai, J.

    2007-01-01

    Complete test of publication follows. Purposes. Technical Committee TC62 of International Electrotechnical Commission (IEC) deals with medical electrical equipment (i.e. medical devices using electricity). Standardization concerning diagnostic radiology equipment is task of its Sub-Committee SC62B. An outlook of its activities and present situation, and especially of radiation protection aspects, is given. Materials and methods. Third edition of basic safety standard for medical electrical equipment IEC 60601-1 was issued in 2005. Elaboration of new collateral and particular standards - applicable together with it - is in progress. These standards are generally at the same time also European - EN - and national standards. There is a great importance of radiation protection in diagnostic X-ray equipment. Collateral standard IEC 6060-1-3 about it was at first issued in 1994. Rapid development of imaging technology demands updating of requirements. SC62B in 2003 founded a maintenance team MT37 for preparation of the second edition of this standard. According to new safety philosophy of IEC all modality specific requirements are to be collected in 'safety and essential performance' particular standards. A new working group WG42 - founded in 2006 - elaborates a new particular standard IEC 60601-2-54 for radiographic and radioscopic equipment. Maintenance team MT32 deals with safety and performance standards for X-ray tube assemblies. The authors actively participate in these activities. Results and discussion. Present and future system of diagnostic radiology IEC standards and some interesting details are presented. Conclusions. International standards - although they are not 'obligatory' - are generally the basis of safety and performance certification of diagnostic radiology equipment and often also of their quality assurance.

  20. Collective dose estimation in Portuguese population due to medical exams of diagnostic radiology and nuclear medicine

    International Nuclear Information System (INIS)

    Teles, Pedro; Vaz, Pedro; Paulo, Graciano; Santos, Joana; Pascoal, Ana; Lanca, Isabel; Matela, Nuno; Sousa, Patrick; Carvoeiras, Pedro; Parafita, Rui; Simaozinho, Paula

    2013-01-01

    In order to assess the exposure of the Portuguese population to ionizing radiation due to medical examinations of diagnostic radiology and nuclear medicine, a working group, consisting of 40 institutions, public and private, was created to evaluation the coletive dose in the Portuguese population in 2010. This work was conducted in collaboration with the Dose Datamed European consortium, which aims to assess the exposure of the European population to ionizing radiation due to 20 diagnostic radiology examinations most frequent in Europe (the 'TOP 20') and nuclear medicine examinations. We obtained an average value of collective dose of ≈ 1 mSv/caput, which puts Portugal in the category of countries medium to high exposure to Europe. We hope that this work can be a starting point to bridge the persistent lack of studies in the areas referred to in Portugal, and to enable the characterization periodic exposure of the Portuguese population to ionizing radiation in the context of medical applications

  1. 31 CFR 594.515 - In-kind donations of medicine, medical devices, and medical services.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false In-kind donations of medicine....515 In-kind donations of medicine, medical devices, and medical services. (a) Effective July 6, 2006, nongovernmental organizations that are U.S. persons are authorized to provide in-kind donations of medicine...

  2. 31 CFR 597.511 - In-kind donations of medicine, medical devices, and medical services.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false In-kind donations of medicine... Licensing Policy § 597.511 In-kind donations of medicine, medical devices, and medical services. (a... incident to the provision by nongovernmental organizations that are U.S. persons of in-kind donations of...

  3. Radiological hazard assessment of extracorporeal shock wave lithotripsy devices

    International Nuclear Information System (INIS)

    Sprague, D.D.; Vermeere, W.R.

    1987-01-01

    With the recent introduction of ESWL to the clinical environment, a new health physics challenge has entered the medical consulting area. The x-ray imaging systems used in the devices are of a conventional design, but in an unusual configuration that is difficult to properly assess. The scope of this paper considers specific evaluation problems, and deals with methods developed during experience with 4 units in California. Pertinent regulations are also covered, along with a synopsis of data obtained and ALARA recommendations

  4. Evaluation of the Quality Control Program for Diagnostic Radiography and Fluoroscopy Devices in Syria during 2005-2013

    Directory of Open Access Journals (Sweden)

    M. H. Kharita

    2017-06-01

    Full Text Available Introduction: Extensive use of diagnostic radiology is the largest contributor to total population radiation doses. Thus, appropriate equipment and safe practice are necessary for good-quality images with optimal doses. This study aimed to perform quality control (QC audit for radiography and fluoroscopy devices owned by private sector in Syria (2005-2013 to verify compliance of performance of X-ray machines with the regulatory requirements stipulated by the national regulatory body. Materials and Methods: In this study, QC audit included 487 X-ray diagnostic machines, (363 radiography and 124 fluoroscopy devices, installed in 306 medical diagnostic radiology centers in 14 provinces in Syria. We employed an X-ray beam analyzer device (NERO model 8000, Victoreen, USA, which was tested and calibrated at the National Secondary Standard Dosimetry Laboratory traceable to the IAEA Network of Secondary Standard Dosimetry Laboratories. Standard QC tool kits were used to evaluate tube and generator of the X-ray machines, which constituted potential (kVp, timer accuracy, radiation output consistency, tube filtration, small and large focal spot sizes, X-ray beam collimation and alignment, as well as high- and low-resolution and entrance surface dose in fluoroscopy. Results: According to our results, most of the assessed operating parameters were in compliance with the standards stipulated by the National Regulatory Authority. In cases of noncompliance for the assessed parameters, maximum value (28.77% pertained to accuracy of kVp calibration for radiography units, while the lowest value (2.42% belonged to entrance surface dose in fluoroscopy systems. Conclusion: Effective QC program in diagnostic radiology leads to obtaining information regarding quality of radiology devices used for medical diagnosis and minimizing the doses received by patients and medical personnel. The findings of this QC program, as the main part of QA program, illustrated that most

  5. ANSTO and CSIRO: supporting the medical devices and sensors industry in Australia

    International Nuclear Information System (INIS)

    Triani, Gerry; Doe, Simon

    2005-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) have provided support to the Medical Devices and Sensors Industry in Australia for many years. In particular the Institute of Materials and Engineering Science at ANSTO and CSIRO Manufacturing and Infrastructure Technology have worked independently and jointly on a number of projects to provide technical services and support to small to medium sized companies. A recent venture to capture their capabilities in the WTIA's Medical Devices and Sensors Industry Sectoral Project, part of the WTIA National Diffusion Networks Project, has produced substantial technical and financial gains for its participants. The aim of this article is to highlight the infrastructure and capabilities that ANSTO and CSIRO can provide to component manufacturers and industry clusters that offer a range of manufacturing processes needed for medical devices and sensors. Several case studies illustrate how ANSTO and CSIRO have provided support to the medical devices industry

  6. Sterilization and reprocessing of materials and medical devices--reusability.

    Science.gov (United States)

    Jayabalan, M

    1995-07-01

    Problems associated with reprocessing of disposable medical devices such as hemodialysers with resterilization for reuse and changes in material properties with resterilization of polymeric (PVC, polypropylene, polyester, polycarbonate) materials intended for development of disposable devices are reviewed. Reprocessing of hospital supplies, polystyrene microtiter plate and angiographic catheter for reuse is also discussed.

  7. Analysis of the Radiology Reports from Radiology Clinics

    International Nuclear Information System (INIS)

    Kim, Eun Jin; Kwack, Kyu Sung; Cho, Jae Hyun; Jang, Eun Ho

    2009-01-01

    The purpose of this study was to investigate the form and content of the radiology reports from radiology clinics in Korea. One hundred and sixty six radiology reports from 49 radiology clinics were collected, and these reports were referred to the academic tertiary medical center from March 2008 to February 2009. These included reports for CT (n = 18), MRI (n = 146) and examinations not specified (n = 2). Each report was evaluated for the presence of required contents (demographics, technical information, findings, conclusion, the name, license number and signature of the radiologist and the referring facility). These requirements were based on the guideline of the American College of Radiology and the previous research. The name of the patient, the gender, the body part, the type of examination, the time of examination and the conclusion, the name of the radiologist and the name of facility were well recorded in over 90% of the radiology reports. However, the identification number of the patient, the referring facility, the referring physician, the use of contrast material, the clinical information, the time of dictation, the signature of the radiologist and the license number of the radiologist were poorly recorded (less than 50%). The optimal format of a radiology report should be established for reliable and valid communication with clinicians

  8. Home Healthcare Medical Devices: Infusion Therapy - Getting the Most Out of Your Pump

    Science.gov (United States)

    ... Medical Procedures Home Health and Consumer Devices Brochure - Home Healthcare Medical Devices: Infusion Therapy - Getting the Most ... if needed. What is the role of your home healthcare provider and supplier in your infusion therapy? ...

  9. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    International Nuclear Information System (INIS)

    2001-01-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  10. Radiological protection of patients in diagnostic and interventional radiology, nuclear medicine and radiotherapy. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An International Conference on the Radiological Protection of Patients in Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy organized by the International Atomic Energy Agency and co-sponsored by the European Commission, the Pan American Health Organization and the World Health Organization was held in Malaga, Spain, from 26 to 30 March 2001. The Government of Spain hosted this Conference through the Ministerio de Sanidad y Consumo, the Consejo de Seguridad Nuclear, the Junta de Andalucia, the Universidad de Malaga and the Grupo de Investigacion en Proteccion Radiologica de la Universidad de Malaga (PRUMA). The Conference was organized in co-operation with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), the International Commission on Radiological Protection (ICRP) and the following professional societies: International Organization of Medical Physicists (IOMP), International Radiation Protection Association (IRPA), International Society of Radiation Oncology (ISRO), International Society of Radiology (ISR), International Society of Radiographers and Radiological Technologists (ISRRT) and World Federation of Nuclear Medicine and Biology (WFNMB). This publication contains contributed papers submitted to the Conference Programme Committee. The papers are in one of the two working languages of this Conference, English and Spanish. The topics covered by the Conference are as follows: Radiological protection of patients in general diagnostic radiology (radiography), Radiological protection of patients in general diagnostic radiology (fluoroscopy), Radiological protection issues in specific uses of diagnostic radiology, such as mammography and computed tomography (with special consideration of the impact of digital techniques), Radiological protection in interventional radiology, including fluoroscopy not carried out by radiologists, Radiological protection of patients in nuclear medicine, Developing and

  11. Establishment of exposure dose assessment laboratory in National Radiation Emergency Medical Center (NREMC)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Ryong; Ha, Wi Ho; Yoon, Seok Won; Han, Eun Ae; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    As unclear industry grown, 432 of the nuclear power plants are operating and 52 of NPPs are under construction currently. Increasing use of radiation or radioisotopes in the field of industry, medical purpose and research such as non-destructive examination, computed tomography and x-ray, etc. constantly. With use of nuclear or radiation has incidence possibility for example the Fukushima NPP incident, the Goiania accident and the Chernobyl Nuclear accident. Also the risk of terror by radioactive material such as Radiological Dispersal Device(RDD) etc. In Korea, since the 'Law on protection of nuclear facilities and countermeasure for radioactive preparedness was enacted in 2003, the Korean institute of Radiological and Medical Sciences(KIRAMS) was established for the radiation emergency medical response in radiological disaster due to nuclear accident, radioactive terror and so on. Especially National Radiation Emergency Medical Center(NREMC) has the duty that is protect citizens from nuclear, radiological accidents or radiological terrors through the emergency medical preparedness. The NREMC was established by the 39-article law on physical protection of nuclear material and facilities and measures for radiological emergencies. Dose assessment or contamination survey should be performed which provide the radiological information for medical response. For this reason, the NREMC establish and re-organized dose assessment system based on the existing dose assessment system of the NREMC recently. The exposure dose could be measured by physical and biological method. With these two methods, we can have conservative dose assessment result. Therefore the NREMC established the exposure dose assessment laboratory which was re-organized laboratory space and introduced specialized equipment for dose assessment. This paper will report the establishment and operation of exposure dose assessment laboratory for radiological emergency response and discuss how to enhance

  12. The Development of Radiology among Slovenes

    Directory of Open Access Journals (Sweden)

    Zvonka Zupanič Slavec

    2016-10-01

    Full Text Available Few discoveries in the history of science brought such significant progress as did the discovery of X-rays by the German physicist Wilhelm Conrad Röntgen in 1895. The finding did not only bring a revolution to the field of medicine but also to many other technical branches. With technological progress in the 20th century, medical roentgenology swiftly developed. The first significant step forward was the introduction of contrast media followed by others including computerised image data management and digital techniques. Medical diagnostics embraced other imaging methods based on other types of energy such as ultrasound and magnetic resonance imaging. The beginnings of roentgenology in the Slovene Lands go back to the year 1900. Bone fractures were the first to be imaged, followed by thoracic imaging and contrast imaging of the gastrointestinal tract. The use of roentgenology spread significantly after World War I, with the implementation in the following years of X-ray machines in all Slovenian hospitals, some spas and sanatoria. Gradually the need for an independent scientific institution emerged, which led to the establishment of the Roentgenological Institute for Slovenia and Istria in Ljubljana in 1923. At the same time radiology was developing also by other Slovenian hospitals.In the 1950s, Slovenian roentgenology increasingly stayed in touch with contemporary international development, updated its equipment and introduced new methods. The modern concept of centralised radiological management, comparable with that of modern European institutions, was realised in Ljubljana in 1973 after the relocation of the Radiological Institute to the new facilities at the Ljubljana University Medical Centre. The first computer tomography machine was installed in 1980, the first ultrasound machine was acquired in 1981, the first digital subtraction angiography (DSA machine was introduced in 1986 and the first magnetic resonance machine was installed in

  13. Information on radiation hazard and on radiological protection in medical school in Italy

    International Nuclear Information System (INIS)

    Biagini, C.

    1993-01-01

    The state of teaching Radiation Protection in Medical School in Italy was considered. An historical approach was utilized, in order to define periods of time characterized by different conditions. Some data are collected by a concise enquiry on the information given during the course of Radiology in the second triennial cycle, and on some other teaching courses including information on radiation effects. The conclusion is that teaching times are exceedingly reduced, and the need of improving the diffusion of knowledge in the field is stressed. An official Act of the OECD and of European Community is expected, with the aim of emphasizing the importance of the information of doctors on Radiation Protection as a problem of public interest. A proposal is advanced of implementing the Teaching of Radiobiology in the second triennial cycle, changing the name of the course in 'Radiobiology and Radiological Protection'. 6 tabs

  14. 76 FR 42713 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of...

    Science.gov (United States)

    2011-07-19

    ...] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Amendment of Notice... announcing an amendment to the notice of meeting of the General and Plastic Surgery Devices Panel of the... INFORMATION: In the Federal Register of July 7, 2011, FDA announced that a meeting of the General and Plastic...

  15. OR.NET: a service-oriented architecture for safe and dynamic medical device interoperability.

    Science.gov (United States)

    Kasparick, Martin; Schmitz, Malte; Andersen, Björn; Rockstroh, Max; Franke, Stefan; Schlichting, Stefan; Golatowski, Frank; Timmermann, Dirk

    2018-02-23

    Modern surgical departments are characterized by a high degree of automation supporting complex procedures. It recently became apparent that integrated operating rooms can improve the quality of care, simplify clinical workflows, and mitigate equipment-related incidents and human errors. Particularly using computer assistance based on data from integrated surgical devices is a promising opportunity. However, the lack of manufacturer-independent interoperability often prevents the deployment of collaborative assistive systems. The German flagship project OR.NET has therefore developed, implemented, validated, and standardized concepts for open medical device interoperability. This paper describes the universal OR.NET interoperability concept enabling a safe and dynamic manufacturer-independent interconnection of point-of-care (PoC) medical devices in the operating room and the whole clinic. It is based on a protocol specifically addressing the requirements of device-to-device communication, yet also provides solutions for connecting the clinical information technology (IT) infrastructure. We present the concept of a service-oriented medical device architecture (SOMDA) as well as an introduction to the technical specification implementing the SOMDA paradigm, currently being standardized within the IEEE 11073 service-oriented device connectivity (SDC) series. In addition, the Session concept is introduced as a key enabler for safe device interconnection in highly dynamic ensembles of networked medical devices; and finally, some security aspects of a SOMDA are discussed.

  16. Exploring the Potential of Generative Adversarial Networks for Synthesizing Radiological Images of the Spine to be Used in In Silico Trials

    Directory of Open Access Journals (Sweden)

    Fabio Galbusera

    2018-05-01

    Full Text Available In silico trials recently emerged as a disruptive technology, which may reduce the costs related to the development and marketing approval of novel medical technologies, as well as shortening their time-to-market. In these trials, virtual patients are recruited from a large database and their response to the therapy, such as the implantation of a medical device, is simulated by means of numerical models. In this work, we propose the use of generative adversarial networks to produce synthetic radiological images to be used in in silico trials. The generative models produced credible synthetic sagittal X-rays of the lumbar spine based on a simple sketch, and were able to generate sagittal radiological images of the trunk using coronal projections as inputs, and vice versa. Although numerous inaccuracies in the anatomical details may still allow distinguishing synthetic and real images in the majority of cases, the present work showed that generative models are a feasible solution for creating synthetic imaging data to be used in in silico trials of novel medical devices.

  17. The Swiss disaster management plan for coping with the aftermath of radiological dispersal devices - ''dirty bomb'' operational concept

    International Nuclear Information System (INIS)

    Stoffel, F.; Blaettler, M.; Leonardi, A.

    2009-01-01

    In 2007 the Swiss Federal Commission for NRBC Protection released a disaster management plan for coping with the aftermath of radiological dispersal devices. This paper summarises the basic concept and outlines the relevant bodies and agencies as well as their responsibilities. It also sets out the strategy to monitor radioactive contamination and the measures to prevent public radiation exposure. (orig.)

  18. El Centro de Cardioestimuladores del Uruguay. CCC Medical Devices

    Directory of Open Access Journals (Sweden)

    Pablo Darscht

    2011-05-01

    Full Text Available Estudio de caso del Centro de Cardioestimuladores del Uruguay - CCC Medical Devices preparado a solicitud de Ingenio en el marco del proyecto financiado por la Iniciativa para Incubadoras de InfoDev - Grupo Banco Mundial. Este estudio detalla los pasos seguidos por una empresa nacional con un fuerte factor de innovación y los cambios producidos en el entorno de los negocios de la empresa. El comienzo de una pequeña empresa de marcapasos que tras pasar por diferentes etapas hoy gana mercados en el área de ingeniería para dispositivos médicos para diferentes empresas de investigación biomédica a nivel internacional.AbstractCase study of the Centro de Cardioestimuladores del Uruguay - CCC Medical Devices prepared on behalf of Ingenio within the project financed by de Incubator Initiative of InfoDev-World Bank Group. This study refers to the steps followed by a highly innovative local company and to the changes in its business environment. The start up of a small pacemakers company that after going through different stages is presently increasing its market share in the area of engineering of medical devices for biomedic research companies worldwide.

  19. Evaluation of radiological workstations and web-browser-based image distribution clients for a PACS project in hands-on workshops

    International Nuclear Information System (INIS)

    Boehm, Thomas; Handgraetinger, Oliver; Voellmy, Daniel R.; Marincek, Borut; Wildermuth, Simon; Link, Juergen; Ploner, Ricardo

    2004-01-01

    The methodology and outcome of a hands-on workshop for the evaluation of PACS (picture archiving and communication system) software for a multihospital PACS project are described. The following radiological workstations and web-browser-based image distribution software clients were evaluated as part of a multistep evaluation of PACS vendors in March 2001: Impax DS 3000 V 4.1/Impax Web1000 (Agfa-Gevaert, Mortsel, Belgium); PathSpeed V 8.0/PathSpeed Web (GE Medical Systems, Milwaukee, Wis., USA); ID Report/ID Web (Image Devices, Idstein, Germany); EasyVision DX/EasyWeb (Philips Medical Systems, Eindhoven, Netherlands); and MagicView 1000 VB33a/MagicWeb (Siemens Medical Systems, Erlangen, Germany). A set of anonymized DICOM test data was provided to enable direct image comparison. Radiologists (n=44) evaluated the radiological workstations and nonradiologists (n=53) evaluated the image distribution software clients using different questionnaires. One vendor was not able to import the provided DICOM data set. Another vendor had problems in displaying imported cross-sectional studies in the correct stack order. Three vendors (Agfa-Gevaert, GE, Philips) presented server-client solutions with web access. Two (Siemens, Image Devices) presented stand-alone solutions. The highest scores in the class of radiological workstations were achieved by ID Report from Image Devices (p<0.005). In the class of image distribution clients, the differences were statistically not significant. Questionnaire-based evaluation was shown to be useful for guaranteeing systematic assessment. The workshop was a great success in raising interest in the PACS project in a large group of future clinical users. The methodology used in the present study may be useful for other hospitals evaluating PACS. (orig.)

  20. Current status of the regulation for medical devices

    OpenAIRE

    Shah Anuja; Goyal R

    2008-01-01

    In the light of escalating use of medical devices, stringent regulatory standards are required to ensure that the devices are safe, well studied and have least adverse reactions. Recently introduced guidelines and the amendment in the law will provide adequate guidance for both the manufacturers and competent authorities to manage cases efficiently and appropriately. India has emerged as one of the leaders in pharmaceutical industry. Like many other amendments in Drugs and Cosmetics Act that ...

  1. Radiological emergency response in a medical waste treatment unit

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Fabio F.; Boni-Mitake, Malvina; Vianna, Estanislau B.; Nicolau, Jose R.A.; Rodrigues, Demerval L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2000-07-01

    Radioactive materials are largely used in medicine, research and industry. The amount of radioactive material employed in each application varies from negligible to large and it can be in sealed or non-sealed form. A medical waste treatment unit that deals only with A-type medical waste (ABNT-NBR 12808), which does not include radioactive waste, detected abnormal radiation levels in a collecting truck and the IPEN-CNEN/SP Nuclear and Radiological Emergency Response Team was called. The presence of radioactive material inside the truck was confirmed; however, its origin and nature were not possible to be determined because the truck had collected medical waste in several facilities. So, an operation in order to segregate and identify that material was carried out. During the operation, a second collecting truck presenting abnormal radiation levels arrived to the unit and the same procedure was carried out on that truck. In both situations, the contaminated objects found were infantile diapers. The radioactive waste was transported to IPEN-CNEN/SP to be managed. Samples of the radioactive materials were submitted to gamma spectrometry and the radionuclide was identified as Iodine-131. Since that attendance, similar occurrences have been frequent. These events suggest that it is necessary a better control of the radioactive waste at the generating facilities and there should be basic radioprotection orientations to the discharging patients that were submitted to nuclear medicine procedures. (author)

  2. Radiological emergency response in a medical waste treatment unit

    International Nuclear Information System (INIS)

    Suzuki, Fabio F.; Boni-Mitake, Malvina; Vianna, Estanislau B.; Nicolau, Jose R.A.; Rodrigues, Demerval L.

    2000-01-01

    Radioactive materials are largely used in medicine, research and industry. The amount of radioactive material employed in each application varies from negligible to large and it can be in sealed or non-sealed form. A medical waste treatment unit that deals only with A-type medical waste (ABNT-NBR 12808), which does not include radioactive waste, detected abnormal radiation levels in a collecting truck and the IPEN-CNEN/SP Nuclear and Radiological Emergency Response Team was called. The presence of radioactive material inside the truck was confirmed; however, its origin and nature were not possible to be determined because the truck had collected medical waste in several facilities. So, an operation in order to segregate and identify that material was carried out. During the operation, a second collecting truck presenting abnormal radiation levels arrived to the unit and the same procedure was carried out on that truck. In both situations, the contaminated objects found were infantile diapers. The radioactive waste was transported to IPEN-CNEN/SP to be managed. Samples of the radioactive materials were submitted to gamma spectrometry and the radionuclide was identified as Iodine-131. Since that attendance, similar occurrences have been frequent. These events suggest that it is necessary a better control of the radioactive waste at the generating facilities and there should be basic radioprotection orientations to the discharging patients that were submitted to nuclear medicine procedures. (author)

  3. Post market surveillance in the german medical device sector - current state and future perspectives.

    Science.gov (United States)

    Zippel, Claus; Bohnet-Joschko, Sabine

    2017-08-01

    Medical devices play a central role in the diagnosis and treatment of diseases but also bring the potential for adverse events, hazards or malfunction with serious consequences for patients and users. Medical device manufacturers are therefore required by law to monitor the performance of medical devices that have been approved by the competent authorities (post market surveillance). Conducting a nationwide online-survey in the German medical device sector in Q2/2014 in order to explore the current status of the use of post market instruments we obtained a total of 118 complete data sets, for a return rate of 36%. The survey included manufacturers of different sizes, producing medical devices of all risk classes. The post market instruments most frequently reported covered the fields of production monitoring and quality management as well as literature observation, regulatory vigilance systems, customer knowledge management and market observation while Post Market Clinical Follow-up and health services research were being used less for product monitoring. We found significant differences between the different risk classes of medical devices produced and the intensity of use of post market instruments. Differences between company size and the intensity of instruments used were hardly detected. Results may well contribute to the development of device monitoring which is a crucial element of the policy and regulatory system to identify device-related safety issues. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Study of graduate curriculum in the radiological science: problems and suggestions

    International Nuclear Information System (INIS)

    Ko, Seong Jin; Kim, Hwa Gon; Kang, Se Sik; Park, Byeong Rae; Kim, Chang Soo

    2006-01-01

    Currently, Educational program of radiological science is developed in enormous growth, our educational environments leading allied health science education program in the number of super high speed medical industry. Radiological science may be the fastest growing technologies in our medical department today. In this way, Medical industry fields converged in the daily quick, the fact that department of radiological science didn't discharged ones duties on current educational environments. The curriculum of radiological technologists that play an important part between skill and occupation's education as major and personality didn't performed one's part most effectively on current medical environments and digital radiological equipment interface. We expect improvement and suggestion to grow natural disposition as studies in the graduate of radiological science. Therefore, in this paper, current curriculum of radiological science are catched hold of trend and problems on digital radiology environments, on fact the present state of problems, for Graduate program of radiological science, graduate courses of MS and ph.D. are suggested a reform measure of major education curriculum introduction

  5. Increase of doses delivered to patients during medical imagery examinations. Conclusions of 16 September 2010 seminar organized by the ASN

    International Nuclear Information System (INIS)

    2011-01-01

    This document reports the contributions of the participants to the seminar which aimed at discussing the increase of doses delivered in medical imagery, and the actions to undertake to limit this increase. The authors recall the regulatory and legal context regarding the optimization of medical procedures and the organisation of radiation protection for medical exposures, comment the assessment of exposures by medical imagery in 2007, comment the CE marking of medical devices, the recent evolutions in dose optimization of radiology and scanography devices. Other sets of interventions address the application of the justification and optimization principle by professionals (in new scanography practices, in radio-paediatrics), the professional training issue (radiologist continuous training, electro-radiology operator training), the comparison between scanner and RMI (new fields for RMI, imagery benchmark), the assessment of professional practices (tools for continuous professional development of health professionals, medical imagery initiatives in Belgium), and international recommendations (by the IAEA, the WHO, the European Union)

  6. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    Science.gov (United States)

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  7. "Joint Workshop on High Confidence Medical Devices, Software, and Systems (HCMDSS) and Medical Device Plug-and-Play (MD PnP) Interoperability"

    National Research Council Canada - National Science Library

    Goldman, Julian M

    2008-01-01

    Partial support was requested from TATRC, with joint funding from NSF, for a joint workshop to bring together the synergistic efforts and communities of the High Confidence Medical Devices, Software, and Systems (HCMDSS...

  8. Radiology and the law in South Africa

    International Nuclear Information System (INIS)

    Muller, C.J.B.

    1978-01-01

    In terms of regulations gazetted in 1973, the Department of Health has control of the practice of medical radiology in South Africa. The regulations and the rules of the South African Medical and Dental Council that apply to radiology are discussed, and the legal position of workers is noted

  9. Value driven innovation in medical device design: a process for balancing stakeholder voices.

    Science.gov (United States)

    de Ana, F J; Umstead, K A; Phillips, G J; Conner, C P

    2013-09-01

    The innovation process has often been represented as a linear process which funnels customer needs through various business and process filters. This method may be appropriate for some consumer products, but in the medical device industry there are some inherent limitations to the traditional innovation funnel approach. In the medical device industry, there are a number of stakeholders who need to have their voices heard throughout the innovation process. Each stakeholder has diverse and unique needs relating to the medical device, the needs of one may highly affect the needs of another, and the relationships between stakeholders may be tenuous. This paper describes the application of a spiral innovation process to the development of a medical device which considers three distinct stakeholder voices: the Voice of the Customer, the Voice of the Business and the Voice of the Technology. The process is presented as a case study focusing on the front-end redesign of a class III medical device for an orthopedics company. Starting from project initiation and scope alignment, the process describes four phases, Discover, Envision, Create, and Refine, and concludes with value assessment of the final design features.

  10. ISO 13485 a complete guide to quality management in the medical device industry

    CERN Document Server

    Abuhav, Itay

    2011-01-01

    Although complex and lengthy, the process of certification for the ISO 13485 can be easily mastered using the simple method outlined in ISO 13485: A Complete Guide to Quality Management in the Medical Device Industry. Written by an experienced industry professional, this practical book provides a complete guide to the ISO 13485 Standard certification for medical device manufacturing. Filled with examples drawn from the author's experience and spanning different sectors and fields of the medical device industry, the book translates the extra ordinary requirements and objectives of the standard

  11. Program of training and technical expertise in radiation protection for personnel of medical radiology

    International Nuclear Information System (INIS)

    Oliveira, Sergio R. de

    2013-01-01

    This work aims to verify the actual conditions for the training of technicians in Radiology, in relation to the knowledge of radiation protection in the field of Medical Diagnostic Radiology. To evaluate the knowledge of professionals was prepared a questionnaire on the topic, having been answered by workers with varied experience. The questionnaire was divided into three parts, being the initial self-evaluation, followed by closed and open issues, all specific knowledge. With a total of 55 questionnaires answered, it was found that 85% of respondents consider themselves able to work in the area performing the function, but when questioned about the technical details regarding the exposure to ionizing radiation, it was found that only 15% of respondents had some knowledge about the subject. In relation to Radiological Protection, was found that little more than 10% of the respondents know about the subject. The results found in this survey outlined the creation of a technical specialization course in radiation protection, which is part of the permanent staff of course of the Polytechnical School of Health of FIOCRUZ, solving, partially, one of the problems pointed out today by health bodies, that is the lack of trained personnel

  12. A study of professional competence for radiological technology department students in Taiwan area

    International Nuclear Information System (INIS)

    Cheng Kai-Yuan; Hsieh Bor-Tsung; Huang W.

    2005-01-01

    Recently, so many medical institutions established and the increasing use of the high technological medical imaging equipment, it makes radiological technology become the main instrument for the medical diagnostic and radiation therapy. However, the medical radiological technologies play the important role to operate all the related radiological machines. If they do not use the machines adequately, it will increase the patients' radiation absorbed dose. Then, the whole society health may be influenced. Therefore, constructing the professional competence of the medical radiological technologists is an important course. The purpose of this research are: (1) to construct the index of professional competence with radiological technology students, (2) to discuss the professional competence for the graduates from the department of radiological technology to be the reference for the Ministry of Examination for the license test of radiological technologists, (3) to provide the direction of the radiological technology department development. (author)

  13. Stretchable bioelectronics for medical devices and systems

    CERN Document Server

    Ghaffari, Roozbeh; Kim, Dae-Hyeong

    2016-01-01

    This book highlights recent advances in soft and stretchable biointegrated electronics. A renowned group of authors address key ideas in the materials, processes, mechanics, and devices of soft and stretchable electronics; the wearable electronics systems; and bioinspired and implantable biomedical electronics. Among the topics discussed are liquid metals, stretchable and flexible energy sources, skin-like devices, in vitro neural recording, and more. Special focus is given to recent advances in extremely soft and stretchable bio-inspired electronics with real-world clinical studies that validate the technology. Foundational theoretical and experimental aspects are also covered in relation to the design and application of these biointegrated electronics systems. This is an ideal book for researchers, engineers, and industry professionals involved in developing healthcare devices, medical tools and related instruments relevant to various clinical practices.

  14. A model of user engagement in medical device development.

    Science.gov (United States)

    Grocott, Patricia; Weir, Heather; Ram, Mala Bridgelal

    2007-01-01

    The purpose of this paper is to address three topical themes: user involvement in health services research; determining the value of new medical technologies in patient care pathways, furthering knowledge related to quality in health and social care; and knowledge exchange between manufacturers, health service supply chain networks and device users. The model is being validated in a case study in progress. The latter is a "proving ground" study for a translational research company. Medical devices play a pivotal role in the management of chronic diseases, across all care settings. Failure to engage users in device development inevitably affects the quality of clinical outcomes. A model of user engagement is presented, turning unmet needs for medical devices into viable commercial propositions. A case study investigating the perceptions of individuals with Epidermolysis Bullosa (EB), their lay and professional carers into unmet needs. EB is an inherited condition affecting the skin and mucosal linings that leads to blistering and wounds. Qualitative data are being collected to generate understanding of unmet needs and wound care products. These needs are being translated into new design concepts and prototypes. Prototypes will be evaluated in an n = 1 experimental design, generating quantitative outcomes data. There are generalisations from the case study, and the model outlined. New products for managing EB wounds can logically benefit other groups. The model is transferable to other clinical problems, which can benefit from research and technological advances that are integral to clinical needs and care.

  15. How can cardiothoracic and vascular medical devices stay in the market?

    Science.gov (United States)

    Wong, Kathie A; Hodgson, Luke; Garas, George; Malietzis, George; Markar, Sheraz; Rao, Christopher; von Segesser, Ludwig K; Athanasiou, Thanos

    2016-12-01

    Surgeons, as the consumers, must engage in commercial activity regarding medical devices since it directly has impacts on surgical practice and patient outcomes. Unique features defy traditional economic convention in this specific market partly because consumers do not usually pay directly. Greater involvement with commercial activity means better post-market surveillance of medical devices which leads to improved patient safety. The medical device industry has exhibited astonishing levels of growth and profitability reaching $398 billion on a global scale with new product development focusing on unmet clinical need. The industry has rapidly emerged within the context of an ageing population and a global surge in healthcare spending. But the market remains fragmented. The split of consumer, purchaser and payer leads to clinical need driving demand for new product development. This demand contributes to potentially large profit margins mainly contained by regulatory burden and liability issues. Demographic trends, prevalence of diseases and a huge capacity to absorb technology have sustained near unparalleled growth. To stay in the market, incremental development over the short term is essentially aided by responsiveness to demand. Disruptive product development is now more likely to come from multinational companies, in an increasingly expensive, regulated industry. Understanding healthcare organization can help explain the highly complex process of diffusion of innovations in healthcare that include medical devices. The time has come for surgeons to become actively involved with all aspects of the medical device life cycle including commercial activity and post-market surveillance. This is vital for improving patient care and ensuring patient safety. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Medical radiology terminology. French - English - German. Woerterbuch der physikalisch-technischen Begriffe der medizinischen Radiologie. Franzoesisch - Englisch - Deutsch

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Standardization achievements in the field of radiology induced the IEC to compile the terminology used in its safety and application standards and present it in publication 788 (1984 issue), entitled 'Medical radiology terminology'. The objective pursued is to foster the use of standard terminology in the radiology standards. The value of publication 788 lies in the fact that it presents definitions of terms used in the French and English versions of IEC standards in the field of radiology, and thus facilitates adequate translation of these terms into other languages. In the glossary in hand, German-language definitions have been adopted from the DIN standards in cases where the French or English versions of definitions are identical with the German wording or meaning. The numbers of DIN standards or sections are then given without brackets, ahead of the text of the definition. In cases where correspondance of the various texts is not so good, or reference should be made to a term in a DIN standard, the numbers are given in brackets.

  17. Effects of Medical Device Regulations on the Development of Stand-Alone Medical Software: A Pilot Study.

    Science.gov (United States)

    Blagec, Kathrin; Jungwirth, David; Haluza, Daniela; Samwald, Matthias

    2018-01-01

    Medical device regulations which aim to ensure safety standards do not only apply to hardware devices but also to standalone medical software, e.g. mobile apps. To explore the effects of these regulations on the development and distribution of medical standalone software. We invited a convenience sample of 130 domain experts to participate in an online survey about the impact of current regulations on the development and distribution of medical standalone software. 21 respondents completed the questionnaire. Participants reported slight positive effects on usability, reliability, and data security of their products, whereas the ability to modify already deployed software and customization by end users were negatively impacted. The additional time and costs needed to go through the regulatory process were perceived as the greatest obstacles in developing and distributing medical software. Further research is needed to compare positive effects on software quality with negative impacts on market access and innovation. Strategies for avoiding over-regulation while still ensuring safety standards need to be devised.

  18. 78 FR 66941 - Design Considerations for Pivotal Clinical Investigations for Medical Devices; Guidance for...

    Science.gov (United States)

    2013-11-07

    .... 66, rm. 2110, Silver Spring, MD 20993-0002, 301- 796-5750. For devices regulated by CBER: Stephen... the best clinical and statistical practices for investigational medical device studies. A medical...

  19. Dosimetry in diagnostic and interventional radiology - ICRU and IAEA activities

    International Nuclear Information System (INIS)

    Zoetelief, J.; Pernicka, F.

    2002-01-01

    Full text: Main aims of patient dosimetry in diagnostic and interventional radiology are to determine dosimetric quantities for establishment and use of guidance levels or diagnostic reference levels and for comparative risk assessment. In the latter case, the average doses to the organs and tissues at risk should be assessed. Only limited number of measurements serve to potential risk assessment of the examination and intervention. An additional objective of dosimetry in diagnostic and interventional radiology is the assessment of equipment performance. Ionization chambers are the main devices used for dosimetric measurements in diagnostic and interventional radiology but other devices with special properties are also used. Important examples are thermoluminescent detectors (TLDs) and semiconductor detectors. For most dosemeters used in x-ray medical imaging the desired quantity for calibration of dosemeters is the air kerma free-in-air. Calibrations should be made at appropriate radiation qualities, for which recommendations are available for conventional radiology. It is important that the calibrations are traceable to the international measurement system. The uncertainty of dose measurements in medical x-ray imaging, for comparative risk assessments as well as for quality assurance, should not exceed about 7 per cent in terms of the expanded uncertainty using a coverage factor of 2. The dosimetric approaches in general diagnostic radiology, mammography and computed tomography are slightly different, resulting in application specific dosimetric quantities. Consequently, different protocols for patient dosimetry are available for these different purposes. In general diagnostic radiology, various quantities and terminologies have been used for the specification of dose on the central beam axis at the point where the x-ray beam enters the patient (or a phantom representing the patient). These include the exposure at skin entrance (ESE), the input radiation exposure

  20. Implementation of procedures of radiological protection in the section of Radiology of the emergency Hospital of Porto Alegre-Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzini, F.; Rizzati, M.R. [Emergency Hospital of Porto Alegre, HPS (Brazil)

    1998-12-31

    The Emergency Hospital of Porto Alegre (HPS) is one of the main reference centers for the population in the attendance of medical emergencies/urgencies. The Section of Radiology, which informs the patients clinical conditions based on radiological images, is the most demanded section of the hospital (81.43 % of the medical cases request radiological exams) in the aid of the diagnosis, in which excels for the search of the quality in the health branch. In this work are presented the procedures to have been implemented about radiological protection according to effective norm, methods, ways and conditions to satisfy the radiation workers and the internal and external patients. (Author)

  1. Implementation of procedures of radiological protection in the section of Radiology of the emergency Hospital of Porto Alegre-Brazil

    International Nuclear Information System (INIS)

    Lorenzini, F.; Rizzati, M.R.

    1998-01-01

    The Emergency Hospital of Porto Alegre (HPS) is one of the main reference centers for the population in the attendance of medical emergencies/urgencies. The Section of Radiology, which informs the patients clinical conditions based on radiological images, is the most demanded section of the hospital (81.43 % of the medical cases request radiological exams) in the aid of the diagnosis, in which excels for the search of the quality in the health branch. In this work are presented the procedures to have been implemented about radiological protection according to effective norm, methods, ways and conditions to satisfy the radiation workers and the internal and external patients. (Author)

  2. The practice of radiology education. Challenges and trends

    International Nuclear Information System (INIS)

    Van Deven, Teresa; Hibbert, Kathryn M.; Chhem, Rethy K.; Ulm Univ.

    2010-01-01

    The role of medical imaging is increasingly integral to health care, drug discovery, biology, and other life sciences. The changes that are occurring call for innovation in the training of the medical imaging experts of tomorrow. In their previous book, Radiology Education: The Scholarship of Teaching and Learning (2008), the editors addressed the philosophical and theoretical underpinnings of scholarship in radiology education. Now, in The Practice of Radiology Education: Challenges and Trends, they focus on the application of these concepts within educational programs for radiology residents and fellows. The book has three sections on Curriculum, Programs and Trainees, and Leadership and Resources. Within this framework, each chapter addresses theory and principles, practical issues, and resources and literature relevant to educational practice. The contributors are educators in radiology from around the world, providing a global perspective on the main challenges facing medical imaging education and the potential strategies required to meet these challenges. It is hoped that the book will assist in attaining the ultimate goal of radiology education: to help patients. (orig.)

  3. Medical response in the initial phase of a radiological or nuclear emergency

    International Nuclear Information System (INIS)

    Vazquez, M.; Perez, M.R.; Dubner, D.; Michelin, S.; Malvicini, M.

    2006-01-01

    The frequency of radiological and nuclear accidents is low with relationship to another type of have an accident, but the use of radioactive sources has been increased in the finish decades. Additionally, a growing world concern exists by the eventual use of radioactive material with malevolent ends. These facts put in relevance the necessity to have an appropriate preparation for the medical answer in this type of emergencies. The medical answer consists of different phases: Initial: pre-hospital and in local general hospitals; Intermediate: in local general hospitals and central reference hospitals. Late: in central reference hospitals and the pursuit to long term. The presence of conventional injuries (radio combined injuries) modifies in substantial form the assignment in the priority of the attention, the prediction and the evolution. The establishment of an appropriate triage is outstanding in the initial phase. The present communication approaches the early medical answer, sustained in the anamnesis, the chronology and severity of the symptoms and prodromal signs besides the laboratory results and complementary exams arisen during the first ones 24 to 72 hours. (Author)

  4. OR.NET RT: how service-oriented medical device architecture meets real-time communication.

    Science.gov (United States)

    Pfeiffer, Jonas H; Kasparick, Martin; Strathen, Benjamin; Dietz, Christian; Dingler, Max E; Lueth, Tim C; Timmermann, Dirk; Radermacher, Klaus; Golatowski, Frank

    2018-02-23

    Today's landscape of medical devices is dominated by stand-alone systems and proprietary interfaces lacking cross-vendor interoperability. This complicates or even impedes the innovation of novel, intelligent assistance systems relying on the collaboration of medical devices. Emerging approaches use the service-oriented architecture (SOA) paradigm based on Internet protocol (IP) to enable communication between medical devices. While this works well for scenarios with no or only soft timing constraints, the underlying best-effort communication scheme is insufficient for time critical data. Real-time (RT) networks are able to reliably guarantee fixed latency boundaries, for example, by using time division multiple access (TDMA) communication patterns. However, deterministic RT networks come with their own limitations such as tedious, inflexible configuration and a more restricted bandwidth allocation. In this contribution we overcome the drawbacks of both approaches by describing and implementing mechanisms that allow the two networks to interact. We introduce the first implementation of a medical device network that offers hard RT guarantees for control and sensor data and integrates into SOA networks. Based on two application examples we show how the flexibility of SOA networks and the reliability of RT networks can be combined to achieve an open network infrastructure for medical devices in the operating room (OR).

  5. Scouting For Approval: Lessons on Medical Device Regulation in an Era of Crowdfunding from Scanadu's "Scout".

    Science.gov (United States)

    Smith, Colleen

    2015-01-01

    Internet crowdfunding, a new and increasingly popular method of raising capital to develop products and businesses, has recently come into conflict with the Food and Drug Administration's (FDA's) regulation of medical devices. This Article examines the issues that arise when companies pre-sell medical devices via crowdfunding campaigns before gaining FDA approval of the devices. Because Internet crowdfunding has only been in use for a few years, little has been written about it academically, particularly about its interaction with FDA regulations. The rising interest in crowdfunding, coupled with the downturn in investment in the American medical device industry, make this a salient issue that is ripe for FDA review. This Article uses the crowdfunding campaign Scanadu, a medical device company, conducted in 2013 to raise money to develop its in-home diagnostic device, the "Scout," as a starting point for this analysis. Because it is extremely costly to develop a device and obtain FDA approval, medical device companies should be able to utilize crowdfunding to raise the necessary capital. However, because of the possible dangers medical devices pose, FDA needs to review the risks created by allowing companies to crowdfund medical devices and should issue guidance to help companies comply with FDA regulations while still allowing them to take advantage of the benefits of crowdfunding. This guidance should ensure the continued commitment to consumer safety that is at the core of FDA regulation.

  6. The Perceived long-term impact of the radiological curriculum innovation in the medical doctors training at Ghent University

    Energy Technology Data Exchange (ETDEWEB)

    Kourdioukova, Elena V., E-mail: elena.kourdioukova@ugent.be [Department of Radiology, Ghent University Hospital (UZG), MR/-1K12, De Pintelaan 185, B-9000 Ghent (Belgium); Valcke, Martin [Department of Educational Studies, Ghent University, H. Dunantlaan 2, B-9000 Ghent (Belgium); Verstraete, Koenraad L. [Department of Radiology, Ghent University Hospital (UZG), MR/-1K12, De Pintelaan 185, B-9000 Ghent (Belgium)

    2011-06-15

    Objectives: How do students experience and perceive the innovative undergraduate radiology curriculum at Ghent University, and what explains differences in student perception? Methods: A survey was presented to the 2008 cohort of students enrolled in the undergraduate medical curriculum at Ghent University. The survey focused on their experiences and perceptions in relation to the innovative undergraduate radiology teaching. Results and conclusion: The present research results point at a favorable perception of the innovative radiology curriculum components. The study points - both during pre-clinical and clinical years - at the appreciation for curriculum components that combine traditional curriculum components (ex-cathedra lessons with syllabus) with distance learning components such as E-learning and E-testing. In clinical years - as expected - students switch to the application of knowledge and skills and therefore heavily appreciate practice linked curriculum components.

  7. The Perceived long-term impact of the radiological curriculum innovation in the medical doctors training at Ghent University

    International Nuclear Information System (INIS)

    Kourdioukova, Elena V.; Valcke, Martin; Verstraete, Koenraad L.

    2011-01-01

    Objectives: How do students experience and perceive the innovative undergraduate radiology curriculum at Ghent University, and what explains differences in student perception? Methods: A survey was presented to the 2008 cohort of students enrolled in the undergraduate medical curriculum at Ghent University. The survey focused on their experiences and perceptions in relation to the innovative undergraduate radiology teaching. Results and conclusion: The present research results point at a favorable perception of the innovative radiology curriculum components. The study points - both during pre-clinical and clinical years - at the appreciation for curriculum components that combine traditional curriculum components (ex-cathedra lessons with syllabus) with distance learning components such as E-learning and E-testing. In clinical years - as expected - students switch to the application of knowledge and skills and therefore heavily appreciate practice linked curriculum components.

  8. Radiation dosimetry for medical management in nuclear/radiological disaster

    International Nuclear Information System (INIS)

    Narayan, Pradeep

    2012-01-01

    Medical Management of radiation exposed victims depends on the amount of radiation doses received in their body and individual organs. The severity of radiation sickness; and early/late biological effects of radiation can be judged on the basis of absorbed dose level of the exposed individual. Radiation Dosimetry is a scientific technique for estimating radiation doses in material and living being. It is an important task for managing radiation effects/injuries to the living being in case of radiological accidents/disasters. In such scenario occupational radiation workers as well as public in general may be exposed with ionizing radiations such as; gamma, alpha, beta and neutron. Radiation dosimetric equipment's are available for occupational radiation workers, however, public in general may not have any dosimetry system with them. Therefore, absorbed dose estimation to the public on individual basis is a challenge to the society. The ambient environment materials in close proximity to the exposed individual may be analyzed using scientific techniques to estimate their personal radiation doses. The blood sample from exposed individual can be examined in laboratory using citometry techniques for dose estimation, however these techniques are very time consuming and may not be suitable for quick radiation management. The other human biological material such as; tooth, hair, and bone etc., can be examined using Electron Spin Resonance (ESR) spectrometry techniques. This technique is very efficient and capable in measuring radiation doses of the order of 20-30 mGy in very less time typically 2-3 min. In reality, this technique is costly affair and available mostly in developed countries. Thermoluminescence (TL) technique is very versatile and cost effective for routine personal dose estimation, This technique has been found suitable for measuring TL in many accidentally exposed environmental materials. The radiation exposed natural environmental materials, such as

  9. Cost benefit analysis of the radiological shielding of medical cyclotrons using a genetic algorithm

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar

    2001-01-01

    Adequate radiation shielding is vital to the safe operation of modern commercial medical cyclotrons producing large yields of short-lived radioisotopes. The radiological shielding constitutes a significant capital investment for any new cyclotron-based radioisotope production facility; hence, the shielding design requires an accurate cost-benefit analysis often based on a complex multi-variant optimization technique. This paper demonstrates the application of a Genetic Algorithm (GA) for the optimum design of the high yield target cave of a Medical Cyclotron radioisotope production facility based in Sydney, Australia. The GA is a novel optimization technique that mimics the Darwinian Evolution paradigm and is ideally suited to search for global optima in a large multi-dimensional solution space

  10. Monitoring of Vital Signs with Flexible and Wearable Medical Devices.

    Science.gov (United States)

    Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C

    2016-06-01

    Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Investigative report, science committee of Aggregate corporation Radiological technologist society of the Oita prefecture. Questionnaires research on security control of department of radiological technology of medical facilities in the Oita prefecture. The second report. Research on high risk incident measures

    International Nuclear Information System (INIS)

    Eto, Yoshihiro; Mano, Isao; Takagi, Ikuya; Murakami, Yasunori; Sueyoshi, Seiji; Yoshimoto, Asahi

    2007-01-01

    Oita association of radiological technologists carried out the questionnaires about the measures against high lisk incidental in department of radiological technology at the medical facilities in Oita. We distributed the questionnaire to 102 facilities, which are worked by the technologists (member), and got response from 91 facilities (89%). Research contents are Patient verification method'' ''Input and verification of patient attribute'' ''Infection in hospital'' ''Stumbles and falls of patient'' Contrast enhancement CT'' ''Something related to pacemaker'' ''MRI inspection and the magnetic substance'' ''Remedy mistake'' and ''Risk management''. The Result, Low level recognition contents of medical accident measures are ''Contrast enhancement CT'' ''Stumbles and falls of patient'' Risk management of department of radiological technology''. (author)

  12. Smartphones, tablets and mobile applications for radiology.

    Science.gov (United States)

    Székely, András; Talanow, Roland; Bágyi, Péter

    2013-05-01

    Smartphones are phone devices that may also be used for browsing, navigation and running smaller computer programs called applications. One may consider them as compact personal computers which are primarily to be used for making phone calls. Tablets or "tablet PCs" are fully functioning standalone computers the size of a thin LCD monitor that use the screen itself for control and data input. Both of these devices may be categorized based on the mobile operating system that they use. The aim of this study is to illustrate how smartphones and tablets can be used by diagnostic imaging professionals, radiographers and residents, and to introduce relevant applications that are available for their field. A search was performed on iTunes, Android Market, Blackberry App World, and Windows Phone Marketplace for mobile applications pertinent to the field of diagnostic imaging. The following terms were applied for the search strategy: (1) radiology, (2) X-ray, (3) ultrasound, (4) MRI, (5) CT, (6) radiographer, (7) nuclear medicine. Two radiologists and one radiology resident reviewed the results. Our review was limited to english-language software. Additional applications were identified by reviewing the list of similar software provided in the description of each application. We downloaded and installed all applications that appeared relevant to an appropriate mobile phone or tablet device. We identified and reviewed a total of 102 applications. We ruled out 1 non-English application and 20 other applications that were created for entertainment purposes. Thus our final list includes 81 applications in the following five categories: diagnostic reading, decision support applications, medical books, interactive encyclopedias, and journal reading programs. Smartphones and tablets offer new opportunities for diagnostic imaging practitioners; these easy-to-use devices equipped with excellent display may be used for diagnostic reading, reference, learning, consultation, and for

  13. Smartphones, tablets and mobile applications for radiology

    Energy Technology Data Exchange (ETDEWEB)

    Székely, András, E-mail: andras.szekely@gmail.com [Kenézy Hospital Department of Radiology, 4043 Debrecen, Bartók Béla út 2-26 (Hungary); Talanow, Roland, E-mail: roland@talanow.info [P.O. Box 1570, Lincoln, CA 95648 (United States); Bágyi, Péter [Kenézy Hospital Department of Radiology, 4043 Debrecen, Bartók Béla út 2-26 (Hungary)

    2013-05-15

    Background: Smartphones are phone devices that may also be used for browsing, navigation and running smaller computer programs called applications. One may consider them as compact personal computers which are primarily to be used for making phone calls. Tablets or “tablet PCs” are fully functioning standalone computers the size of a thin LCD monitor that use the screen itself for control and data input. Both of these devices may be categorized based on the mobile operating system that they use. The aim of this study is to illustrate how smartphones and tablets can be used by diagnostic imaging professionals, radiographers and residents, and to introduce relevant applications that are available for their field. Materials and methods: A search was performed on iTunes, Android Market, Blackberry App World, and Windows Phone Marketplace for mobile applications pertinent to the field of diagnostic imaging. The following terms were applied for the search strategy: (1) radiology, (2) X-ray, (3) ultrasound, (4) MRI, (5) CT, (6) radiographer, (7) nuclear medicine. Two radiologists and one radiology resident reviewed the results. Our review was limited to english-language software. Additional applications were identified by reviewing the list of similar software provided in the description of each application. We downloaded and installed all applications that appeared relevant to an appropriate mobile phone or tablet device. Results: We identified and reviewed a total of 102 applications. We ruled out 1 non-English application and 20 other applications that were created for entertainment purposes. Thus our final list includes 81 applications in the following five categories: diagnostic reading, decision support applications, medical books, interactive encyclopedias, and journal reading programs. Conclusion: Smartphones and tablets offer new opportunities for diagnostic imaging practitioners; these easy-to-use devices equipped with excellent display may be used for

  14. Smartphones, tablets and mobile applications for radiology

    International Nuclear Information System (INIS)

    Székely, András; Talanow, Roland; Bágyi, Péter

    2013-01-01

    Background: Smartphones are phone devices that may also be used for browsing, navigation and running smaller computer programs called applications. One may consider them as compact personal computers which are primarily to be used for making phone calls. Tablets or “tablet PCs” are fully functioning standalone computers the size of a thin LCD monitor that use the screen itself for control and data input. Both of these devices may be categorized based on the mobile operating system that they use. The aim of this study is to illustrate how smartphones and tablets can be used by diagnostic imaging professionals, radiographers and residents, and to introduce relevant applications that are available for their field. Materials and methods: A search was performed on iTunes, Android Market, Blackberry App World, and Windows Phone Marketplace for mobile applications pertinent to the field of diagnostic imaging. The following terms were applied for the search strategy: (1) radiology, (2) X-ray, (3) ultrasound, (4) MRI, (5) CT, (6) radiographer, (7) nuclear medicine. Two radiologists and one radiology resident reviewed the results. Our review was limited to english-language software. Additional applications were identified by reviewing the list of similar software provided in the description of each application. We downloaded and installed all applications that appeared relevant to an appropriate mobile phone or tablet device. Results: We identified and reviewed a total of 102 applications. We ruled out 1 non-English application and 20 other applications that were created for entertainment purposes. Thus our final list includes 81 applications in the following five categories: diagnostic reading, decision support applications, medical books, interactive encyclopedias, and journal reading programs. Conclusion: Smartphones and tablets offer new opportunities for diagnostic imaging practitioners; these easy-to-use devices equipped with excellent display may be used for

  15. Medical devices and the Middle East: market, regulation, and reimbursement in Gulf Cooperation Council states

    Directory of Open Access Journals (Sweden)

    Howard JJ

    2014-11-01

    Full Text Available Jason J Howard Division of Paediatric Orthopaedics, Department of Surgery, Sidra Medical and Research Center, Doha, Qatar Abstract: With some of the richest economies in the world, the Gulf Cooperation Council (GCC is undergoing rapid growth not only in its population but also in health care expenditure. Despite the GCC's abundance of hydrocarbon-based wealth, the drivers of the medical device industry in the GCC are still in flux, with gains yet to be made in areas of infrastructure, regulation, and reimbursement. However, the regional disease burden, expanding health insurance penetration, increasing privatization, and a desire to attract skilled expatriate health care providers have led to favorable conditions for the medical device market in the GCC. The purpose of this article is to investigate the current state of the GCC medical device industry, with respect to market, regulation, and reimbursement, paying special attention to the three largest medical device markets: Saudi Arabia, the United Arab Emirates, and Qatar. The GCC would seem to represent fertile ground for the development of medical technologies, especially those in line with the regional health priorities of the respective member states. Keywords: medical devices, regulation, reimbursement, Middle East 

  16. Mississippi Curriculum Framework for Medical Radiologic Technology (Radiography) (CIP: 51.0907--Medical Radiologic Technology). Postsecondary Programs.

    Science.gov (United States)

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the radiologic technology program. Presented in the introductory section are a description of the program and suggested course sequence. Section I lists baseline competencies for the program,…

  17. Analysis of scientific papers in the field of radiology and medical imaging included in Science Citation Index expanded and published by Turkish authors.

    Science.gov (United States)

    Akpinar, Erhan; Karçaaltincaba, Muşturay

    2010-09-01

    We aimed to analyze scientific papers published by Turkish authors in "radiology, nuclear medicine and medical imaging" journals included in the Science Citation Index Expanded and compared the number of published scientific papers from Turkey and other countries. We retrospectively searched all papers published by Turkish authors between 1945 and 2008 by using Web of Science software. We performed the analysis by typing "Turkey" in the address section and all radiology and medical imaging journals in the source title section using the general search function of the software. We further analyzed these results by using "analyze" function of the software according to the number of publications per year, journals, institution and type of papers. We also calculated total number of citations to published scientific papers using citation report function. We analyzed the rank of Turkey among other countries in terms of the number of published papers. Overall, 4,532 papers were published between 1945 and 2008. The first paper was published in 1976. Number of publications increased dramatically from 1976 (n = 1) to 2008 (n = 383). The top 5 journals publishing papers from Turkish authors were European Journal of Nuclear Medicine and Molecular Imaging (n = 328), Clinical Nuclear Medicine (n = 296), European Journal of Radiology (n = 289), European Radiology (n = 207) and Journal of Clinical Ultrasound (n = 186). All published papers received 18,419 citations and citation to paper ratio was 4.06. The rank of Turkey among other countries in terms of published papers improved during the last 25 years. Number of papers from Turkey published in radiology and medical imaging journals has increased at the start of the new millennium. Currently, Turkey is among the top 12 countries when the number of scientific papers published in radiology journals is taken into consideration.

  18. Mobile devices in medicine: a survey of how medical students, residents, and faculty use smartphones and other mobile devices to find information*

    Science.gov (United States)

    Boruff, Jill T.; Storie, Dale

    2014-01-01

    Objectives: The research investigated the extent to which students, residents, and faculty members in Canadian medical faculties use mobile devices, such as smartphones (e.g., iPhone, Android, Blackberry) and tablet computers (e.g., iPad), to answer clinical questions and find medical information. The results of this study will inform how health libraries can effectively support mobile technology and collections. Methods: An electronic survey was distributed by medical librarians at four Canadian universities to medical students, residents, and faculty members via departmental email discussion lists, personal contacts, and relevant websites. It investigated the types of information sought, facilitators to mobile device use in medical information seeking, barriers to access, support needs, familiarity with institutionally licensed resources, and most frequently used resources. Results: The survey of 1,210 respondents indicated widespread use of smartphones and tablets in clinical settings in 4 Canadian universities. Third- and fourth-year undergraduate students (i.e., those in their clinical clerkships) and medical residents, compared to other graduate students and faculty, used their mobile devices more often, used them for a broader range of activities, and purchased more resources for their devices. Conclusions: Technological and intellectual barriers do not seem to prevent medical trainees and faculty from regularly using mobile devices for their medical information searches; however, barriers to access and lack of awareness might keep them from using reliable, library-licensed resources. Implications: Libraries should focus on providing access to a smaller number of highly used mobile resources instead of a huge collection until library-licensed mobile resources have streamlined authentication processes. PMID:24415916

  19. Mobile devices in medicine: a survey of how medical students, residents, and faculty use smartphones and other mobile devices to find information.

    Science.gov (United States)

    Boruff, Jill T; Storie, Dale

    2014-01-01

    The research investigated the extent to which students, residents, and faculty members in Canadian medical faculties use mobile devices, such as smartphones (e.g., iPhone, Android, Blackberry) and tablet computers (e.g., iPad), to answer clinical questions and find medical information. The results of this study will inform how health libraries can effectively support mobile technology and collections. An electronic survey was distributed by medical librarians at four Canadian universities to medical students, residents, and faculty members via departmental email discussion lists, personal contacts, and relevant websites. It investigated the types of information sought, facilitators to mobile device use in medical information seeking, barriers to access, support needs, familiarity with institutionally licensed resources, and most frequently used resources. The survey of 1,210 respondents indicated widespread use of smartphones and tablets in clinical settings in 4 Canadian universities. Third- and fourth-year undergraduate students (i.e., those in their clinical clerkships) and medical residents, compared to other graduate students and faculty, used their mobile devices more often, used them for a broader range of activities, and purchased more resources for their devices. Technological and intellectual barriers do not seem to prevent medical trainees and faculty from regularly using mobile devices for their medical information searches; however, barriers to access and lack of awareness might keep them from using reliable, library-licensed resources. Libraries should focus on providing access to a smaller number of highly used mobile resources instead of a huge collection until library-licensed mobile resources have streamlined authentication processes.

  20. Informatics in radiology: Efficiency metrics for imaging device productivity.

    Science.gov (United States)

    Hu, Mengqi; Pavlicek, William; Liu, Patrick T; Zhang, Muhong; Langer, Steve G; Wang, Shanshan; Place, Vicki; Miranda, Rafael; Wu, Teresa Tong

    2011-01-01

    Acute awareness of the costs associated with medical imaging equipment is an ever-present aspect of the current healthcare debate. However, the monitoring of productivity associated with expensive imaging devices is likely to be labor intensive, relies on summary statistics, and lacks accepted and standardized benchmarks of efficiency. In the context of the general Six Sigma DMAIC (design, measure, analyze, improve, and control) process, a World Wide Web-based productivity tool called the Imaging Exam Time Monitor was developed to accurately and remotely monitor imaging efficiency with use of Digital Imaging and Communications in Medicine (DICOM) combined with a picture archiving and communication system. Five device efficiency metrics-examination duration, table utilization, interpatient time, appointment interval time, and interseries time-were derived from DICOM values. These metrics allow the standardized measurement of productivity, to facilitate the comparative evaluation of imaging equipment use and ongoing efforts to improve efficiency. A relational database was constructed to store patient imaging data, along with device- and examination-related data. The database provides full access to ad hoc queries and can automatically generate detailed reports for administrative and business use, thereby allowing staff to monitor data for trends and to better identify possible changes that could lead to improved productivity and reduced costs in association with imaging services. © RSNA, 2011.

  1. Radiological diagnosis of stomach cancer

    Energy Technology Data Exchange (ETDEWEB)

    Horlacher, B

    1981-05-01

    The problems of routine radiology and the differential diagnosis of malignant and benign gastric ulcers are gone into. The value of endoscopy combined with radiology is stressed. The patient, the physician, and the X-ray equipment have to meet certain requirements in order to obtain good images and make a correct interpretation. The most important aspect of radiology today is radiation protection, which is possible only with efficient equipment and experienced medical examiners.

  2. Implantable Medical Devices; Networking Security Survey

    OpenAIRE

    Siamak Aram; Rouzbeh A. Shirvani; Eros G. Pasero; Mohamd F. Chouikha

    2016-01-01

    The industry of implantable medical devices (IMDs) is constantly evolving, which is dictated by the pressing need to comprehensively address new challenges in the healthcare field. Accordingly, IMDs are becoming more and more sophisticated. Not long ago, the range of IMDs’ technical capacities was expanded, making it possible to establish Internet connection in case of necessity and/or emergency situation for the patient. At the same time, while the web connectivity of today’s implantable dev...

  3. Framework conditions and requirements to ensure the technical functional safety of reprocessed medical devices.

    Science.gov (United States)

    Kraft, Marc

    2008-09-03

    Testing and restoring technical-functional safety is an essential part of medical device reprocessing. Technical functional tests have to be carried out on the medical device in the course of the validation of reprocessing procedures. These ensure (in addition to the hygiene tests) that the reprocessing procedure is suitable for the medical device. Functional tests are, however, also a part of reprocessing procedures. As a stage in the reprocessing, they ensure for the individual medical device that no damage or other changes limit the performance. When determining which technical-functional tests are to be carried out, the current technological standard has to be taken into account in the form of product-specific and process-oriented norms. Product-specific norms primarily define safety-relevant requirements. The risk management method described in DIN EN ISO 14971 is the basis for recognising hazards; the likelihood of such hazards arising can be minimised through additional technical-functional tests, which may not yet have been standardised. Risk management is part of a quality management system, which must be bindingly certified for manufacturers and processors of critical medical devices with particularly high processing demands by a body accredited by the competent authority.

  4. Emergencies in radiology: a survey of radiologist and radiology trainees

    International Nuclear Information System (INIS)

    Craig, Simon; Naidoo, Parmanand

    2014-01-01

    Emergencies in radiology are infrequent but potentially lethal. Australian and New Zealand radiologists are advised to undergo resuscitation training at least every three years; however, little is known about their experience and confidence in managing common emergencies relevant to their clinical practice. This paper describes the current experience and confidence of radiologists and radiology trainees in Australia and New Zealand in the management of common medical emergencies. A cross-sectional online survey of trainees and fellows of the Royal Australian and New Zealand College of Radiology collected data on training and learning preferences relating to resuscitation and life-support skills, access to emergency medical care, and knowledge, confidence and ability in managing a variety of medical emergencies. There were 602 responses to the survey (response rate 23.4%). The majority of respondents were interested in learning more about the management of contrast reactions, cardiac arrest, ischaemic chest pain and basic life support. Self-rated knowledge, confidence and ability were higher in respondents who had completed life-support training within the previous three years. In this group, however, more than 40% rated their ability at managing contrast reactions as poor or fair, while more than 60% rated their ability as poor or fair for management of cardiac arrest, basic life support, advanced life support and dosing of adrenaline. Preferred resuscitation training modalities included simulation, small-group tutorials and workshops. Self-reported level of skill and expertise in the management of potential emergencies in radiology is suboptimal among a large number of respondents. Consideration should be given to addressing this by improving access to specific training.

  5. 77 FR 3781 - Pediatric Medical Devices; Public Workshop; Reopening of Comment Period

    Science.gov (United States)

    2012-01-25

    ... devices. DATES: Submit either electronic or written comments by March 5, 2012. ADDRESSES: Submit.... Designing pediatric medical devices can be challenging; children are often smaller and more active than adults; body structures and functions change throughout childhood, and children may be long-term device...

  6. A Maturity Grid Assessment Tool for Environmentally Conscious Design in the Medical Device Industry

    DEFF Research Database (Denmark)

    Moultrie, James; Sutcliffe, Laura Francesca Rose; Maier, Anja

    2016-01-01

    . This intervention tool provides designers and product marketers with insights on how to improve the design of their medical devices and specifically allows consideration of the complex trade-offs between decisions that influence different life-cycle stages. Through the tool, actionable insight is created......The medical device industry is growing increasingly concerned about environmental impact of products. Whilst there are many tools aiming to support environmentally conscious design, they are typically complex to use, demand substantial data collection and are not tailored to the specific needs...... of the medical device sector. This paper reports on the development of a Maturity Grid to address this gap. This novel design tool was developed iteratively through application in five case studies. The tool captures principles of eco-design for medical devices in a simple form, designed to be used by a team...

  7. Initiatives in the Australian Medical Devices Industry

    International Nuclear Information System (INIS)

    Whelan, Luke

    2005-01-01

    The medical device industry is as diverse as it is specialised and calls on the innovative use of design and components and utilises all facets of precision manufacturing from printed circuit boards, injection-moulded plastics to engineering, using a wide range of materials. It generally requires exacting standards, starting with design, particularly for devices that are invasive or have direct contact with the human body. Of course this brings the further consideration of sterilisation and whether it is for single or multiple use. There is an ever-present need to produce more accurate less invasive and cheaper devices. The driving motivation appears to be meeting clinical needs at a reduced cost. The push to treat people outside the hospital is growing, creating new demands and directions. The advent of the Internet and wireless technology has opened a whole new direction of research and development opportunities

  8. 78 FR 27971 - Dental Products Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-05-13

    ...] Dental Products Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Dental Products Panel of the Medical Devices Advisory Committee. General Function of the Committee: To... regulatory classification for dental devices known as Endosseous Dental Implants (Blade-form), one of the...

  9. A trend study on radiodiagnosis and radiotherapy and radiological protection for medical exposure in Shanghai

    International Nuclear Information System (INIS)

    Zheng Junzheng; Gao Linfeng; Yao Jie; Wang Bin; Qian Aijun; Ji Guiyi; Xiao Hong; Zhuo Weihai

    2014-01-01

    This paper reviews the rapid development of various types of Radiodiagnosis and Radiotherapy in China and aboard, which leads to a dramatic increase of application frequency of medical exposure. Then summaries the trend found through the investigation on the medical exposure levels during the Eleventh Five-year Plan in Shanghai. According to the above analysis, suggestions to strengthen the medical exposure protection are proposed. When the X-ray diagnosis, interventional radiology, nuclear medicine and radiation oncology become indispensable means to modern medicine, the public exposure due to health examinations and disease diagnosis or treatments has been institutions undergoing X-ray diagnosis in Shanghai by the year of 2010, 2.1 more times of that in 1998. During this period, the total number of X-ray diagnosis equipment increased by 57.7%, and the number of X-CT scanners increased by 131.9%. The annual application frequency of X-ray diagnosis was 780.44 person · time for per 1000 population in 2009. Compared with the data in 1996, the total frequency increased by 58.3%, and the frequency of X-CT scans increased 317.l%. In clinical nuclear medicine, compared with the data in 1996, the annual application frequencies increased by 139.4% and 210.6% for diagnosis and therapy in 2008, respectively. In the field of radiation oncology, the annual frequency also increased by 59.9% during the same period. Shanghai pioneered the survey on medical exposure levels during the Eleventh Five-Year Plan period in China, and has accumulated a lot of valuable new information and mastered the development trends of medical exposure. This work lays a solid foundation for effectively strengthening the radiation protection from medical exposure, provides a scientific basis for the rational planning and utilization of health care resources. Meanwhile, this work is also very useful for promoting the healthy development of radiology career while avoiding disadvantages and to the

  10. Machine Learning and Radiology

    Science.gov (United States)

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  11. Network oriented radiological and medical archive

    Science.gov (United States)

    Ferraris, M.; Frixione, P.; Squarcia, S.

    2001-10-01

    In this paper the basic ideas of NORMA (Network Oriented Radiological and Medical Archive) are discussed. NORMA is an original project built by a team of physicists in collaboration with radiologists in order to select the best Treatment Planning in radiotherapy. It allows physicians and health physicists, working in different places, to discuss on interesting clinical cases visualizing the same diagnostic images, at the same time, and highlighting zones of interest (tumors and organs at risk). NORMA has a client/server architecture in order to be platform independent. Applying World Wide Web technologies, it can be easily used by people with no specific computer knowledge providing a verbose help to guide the user through the right steps of execution. The client side is an applet while the server side is a Java application. In order to optimize execution the project also includes a proprietary protocol, lying over TCP/IP suite, that organizes data exchanges and control messages. Diagnostic images are retrieved from a relational database or from a standard DICOM (Digital Images and COmmunications in Medicine) PACS through the DICOM-WWW gateway allowing connection of the usual Web browsers, used by the NORMA system, to DICOM applications via the HTTP protocol. Browser requests are sent to the gateway from the Web server through CGI (Common Gateway Interface). DICOM software translates the requests in DICOM messages and organizes the communication with the remote DICOM Application.

  12. Presentation of the main regulatory provisions applicable in medical and dental radiology. October 2016 update

    International Nuclear Information System (INIS)

    2016-10-01

    This document is an update of a previous version published in 2013. Its aim is to give an overview of the regulation framework to physicians, radiologists, dental surgeons, medical personnel employers, and persons with abilities in radioprotection. It addresses the procedures of declaration and authorization of possession and use of electric equipment generating ionizing radiation, the different persons intervening to ensure the radioprotection of patients and workers, the laying-out conditions for a radiology installation, the different aspects of population and worker radioprotection and of patient radioprotection, the maintenance and quality control of medical equipment, the declaration of incidents at the ASN, and radioprotection inspection

  13. Presentation of the main regulatory provisions applicable in medical and dental radiology - October 2013 update

    International Nuclear Information System (INIS)

    2013-10-01

    This document is an update of a previous version published in May 2012. Its aim is to give an overview of the regulation framework to physicians, radiologists, dental surgeons, medical personnel employers, and persons with abilities in radioprotection. It addresses the procedures of declaration and authorization of possession and use of electric equipment generating ionizing radiation, the different persons intervening to ensure the radioprotection of patients and workers, the laying-out conditions for a radiology installation, the different aspects of population and worker radioprotection and of patient radioprotection, the maintenance and quality control of medical equipment, the declaration of incidents at the ASN, and radioprotection inspection

  14. Presentation of the main regulatory provisions applicable in medical and dental radiology - May 2012 update

    International Nuclear Information System (INIS)

    2012-05-01

    This document is an update of a previous version published in 2010. Its aim is to give an overview of the regulation framework to physicians, radiologists, dental surgeons, medical personnel employers, and persons with abilities in radioprotection. It addresses the procedures of declaration and authorization of possession and use of electric equipment generating ionizing radiation, the different persons intervening to ensure the radioprotection of patients and workers, the laying-out conditions for a radiology installation, the different aspects of population and worker radioprotection and of patient radioprotection, the maintenance and quality control of medical equipment, the declaration of incidents at the ASN, and radioprotection inspection

  15. Feasibility and Diagnostic Accuracy of Point-of-Care Abdominal Sonography by Pocket-Sized Imaging Devices, Performed by Medical Residents.

    Science.gov (United States)

    Kjesbu, Ingunn E; Laursen, Christian B; Graven, Torbjørn; Holden, Hans Martin; Rømo, Bjørnar; Newton Andersen, Garrett; Mjølstad, Ole Christian; Lassen, Annmarie; Dalen, Håvard

    2017-06-01

    We aimed to study the feasibility and diagnostic performance of bedside ultrasound by examination of the liver, gallbladder, kidneys, and abdominal aorta performed by medical residents with limited experience in ultrasound, on emergency admissions using pocket-sized imaging devices (PSIDs). A total of 199 patients admitted acutely to the medical department at the non-university Levanger Hospital, Norway, during the period from April 4 to June 23, 2011, were consecutively included. Six medical residents, selected by drawing, examined these patients with a PSID at admission. Reference imaging was performed and/or judged at the Department of Radiology. Each resident performed a median of 28 examinations (interquartile range 24-46). Imaging of the kidneys and liver were feasible in 85 and 82% of the cases, and the corresponding values for the gallbladder and abdominal aorta were 79 and 50%, respectively. The sensitivity of medical residents to detect organ pathology with the aid of PSID, ranged between 54% (95% confidence interval [CI]: 29-77%) and 74% (95% CI: 51-88%). Assessment of the aortic dimension showed moderate correlation, with r = 0.38. Examination by PSID by inexperienced residents may allow for early detection of abdominal pathology, but do not appear to be accurate enough to rule out pathology in the abdominal organs. © 2017 by the American Institute of Ultrasound in Medicine.

  16. Biomaterials and medical devices a perspective from an emerging country

    CERN Document Server

    Hermawan, Hendra

    2016-01-01

    This book presents an introduction to biomaterials with the focus on the current development and future direction of biomaterials and medical devices research and development in Indonesia. It is the first biomaterials book written by selected academic and clinical experts experts on biomaterials and medical devices from various institutions and industries in Indonesia. It serves as a reference source for researchers starting new projects, for companies developing and marketing products and for governments setting new policies. Chapter one covers the fundamentals of biomaterials, types of biomaterials, their structures and properties and the relationship between them. Chapter two discusses unconventional processing of biomaterials including nano-hybrid organic-inorganic biomaterials. Chapter three addresses biocompatibility issues including in vitro cytotoxicity, genotoxicity, in vitro cell models, biocompatibility data and its related failure. Chapter four describes degradable biomaterial for medical implants...

  17. Qualification diploma in radiological and medical physics. Evolution of the initial training of hospital physicists

    International Nuclear Information System (INIS)

    Hammadi, A.

    2009-01-01

    This series of slides presents: - the evolution of the radio-physicists training since its creation (history, 1995-2005 era, 2005-2009 changes); - the qualification diploma in radiological and medical physics (QDRMP - DQPRM in French) in figures (validating services, number of qualified people); - the QDRMP context and goals (strength needs, limited number of candidates); - the means implemented to reach the goals; - the perspectives (increase of students number, continuous training). (J.S.)

  18. Radiologic image compression -- A review

    International Nuclear Information System (INIS)

    Wong, S.; Huang, H.K.; Zaremba, L.; Gooden, D.

    1995-01-01

    The objective of radiologic image compression is to reduce the data volume of and to achieve a lot bit rate in the digital representation of radiologic images without perceived loss of image quality. However, the demand for transmission bandwidth and storage space in the digital radiology environment, especially picture archiving and communication systems (PACS) and teleradiology, and the proliferating use of various imaging modalities, such as magnetic resonance imaging, computed tomography, ultrasonography, nuclear medicine, computed radiography, and digital subtraction angiography, continue to outstrip the capabilities of existing technologies. The availability of lossy coding techniques for clinical diagnoses further implicates many complex legal and regulatory issues. This paper reviews the recent progress of lossless and lossy radiologic image compression and presents the legal challenges of using lossy compression of medical records. To do so, the authors first describe the fundamental concepts of radiologic imaging and digitization. Then, the authors examine current compression technology in the field of medical imaging and discuss important regulatory policies and legal questions facing the use of compression in this field. The authors conclude with a summary of future challenges and research directions. 170 refs

  19. Estimated radiation exposure from medical imaging for patients of radiology service of Al Faraby Hospital, Oujda Morocco

    Directory of Open Access Journals (Sweden)

    Slimane Semghouli

    2015-09-01

    Full Text Available Purpose: To evaluate the effective dose received per radiological examination per patient and the additional cancer risk factor in the Radiological Service of Al Faraby Hospital in 2012. Methods: From the number of radiological procedures (NX made in 2012 in the radiology service of Al Faraby Hospital and the average effective dose DEX associated with each type of act exam X, it is possible to calculate the effective dose collective [S =∑ DEX * NX]. The additional cancer risk factor is calculated by the X-ray risk software promoting responsible imaging through patient and provider education. It is function of the effective dose received, the age at the time of exam, and gender of patient. Results: The radiological average effective dose received per act exam is 1 millisievert (mSv, whereas it is 4.45 mSv and 0.21 mSv for the computed tomography (CT scan and conventional radiological examinations, respectively. As for the average number of acts per patient 2.66, the effective dose is 1.16 mSv and 3.8 mSv for CT scan and conventional radiological examinations, respectively. As for the average effective dose per patient 2.69 mSv, it is 5.16 mSv and 0.81 mSv for CT scan and conventional radiological examinations, respectively. As for the additional cancer risk in 40 years at the time of exam, the average additional cancer risk is equal to 2.17 × 10-4, wheras the risk is 4.17 × 10-4 and 6.54 × 10-5 for CT scan and conventional radiological examinations, respectively. Conclusion: Medical exposure related to the diagnosis of patients in the radiology service in 2012 can be characterized by: (a 2.66 Act exams on average per patient diagnosis corresponding to a mean effective dose equal to 2.69 mSv per patient, (bfrequency of conventional radiology and CT scan was 81% and 19%, respectively. These act exams contribute to the collective effective dose by 17% and 83%, respectively, and (c radiological acts can be divided into three levels of exposures

  20. Additive Manufacturing for Robust and Affordable Medical Devices

    OpenAIRE

    Wolozny Gomez Robelo, Daniel Andre

    2016-01-01

    Additive manufacturing in the form of 3D printing is a revolutionary technology that has developed within the last two decades. Its ability to print an object with accurate features down to the micro scale have made its use in medical devices and research feasible. A range of life-saving technologies can now go from the laboratory and into field with the application of 3D-printing. This technology can be applied to medical diagnosis of patients in at-risk pop