WorldWideScience

Sample records for medicago species affect

  1. Sequence divergence of microsatellites for phylogeographic assessment of Moroccan Medicago species.

    Science.gov (United States)

    Zitouna, N; Marghali, S; Gharbi, M; Haddioui, A; Trifi-Farah, N

    2014-03-12

    Six Medicago species were investigated to characterize and valorize plant genetic resources of pastoral interest in Morocco. Samples were obtained from the core collection of the South Australian Research and Development Institute (SARDI). The transferability of single sequence repeat markers of Medicago truncatula was successful with 97.6% efficiency across the five species. A total of 283 alleles and 243 genotypes were generated using seven SSR markers, confirming the high level of polymorphism that is characteristic of the Medicago genus, despite a heterozygosity deficit (HO = 0.378; HE = 0.705). In addition, a high level of gene flow was revealed among the species analyzed with significant intra-specific variation. The unweighted pair group method with arithmetic mean dendrogram generated by the dissimilarity matrix revealed that M. polymorpha and M. orbicularis are closely related, and that M. truncatula is likely the ancestral species. The Pearson correlation index revealed no significant correlations between the geographic distribution of the Moroccan species and genetic similarities, indicating local adaptation of these species to different ecological environments independent of their topographical proximities. The substantial genetic variation observed was likely due to the predominance of selfing species, the relative proximity of prospected sites, human impacts, and the nature of the SARDI core collections, which are selected for their high genetic diversity. The results of this first report on Moroccan Medicago species will be of great interest for establishing strategies aiming at reasonable management and selection programs for local and Mediterranean germplasm in the face of increasing environmental change.

  2. Translational genomics from model species Medicago truncatula to crop legume Trifolium pratense

    NARCIS (Netherlands)

    Lang Chunting, Chunting

    2012-01-01

    The legume Trifolium pratense (red clover) is an important fodder crop and produces important secondary metabolites. This makes red clover an interesting species. In this thesis, the red clover genome is compared to the legume model species Medicago truncatula, of which the

  3. Comparison of the phytoremediation potentials of Medicago falcata L. And Medicago sativa L. in aged oil-sludge-contaminated soil.

    Science.gov (United States)

    Panchenko, Leonid; Muratova, Anna; Turkovskaya, Olga

    2017-01-01

    Thirteen-year monitoring of the vegetation growing in the industrial and adjacent areas of an oil refinery showed the prevalence of yellow medick (Medicago falcata L.) over other plant species, including alfalfa (Medicago sativa L.). A comparative field study of the two Medicago species established that yellow medick and alfalfa exhibited similar resistance to soil petroleum hydrocarbons and that the pollutant concentration in their rhizosphere was 30% lower than that in the surrounding bulk soil. In laboratory pot experiments, yellow medick reduced the contaminant content by 18% owing to the degradation of the major heavy oil fractions, such as paraffins, naphthenes, and alcohol and benzene tars; and it was more successful than alfalfa. Both species were equally effective in stimulating the total number of soil microorganisms, but the number of hydrocarbon-oxidizing microorganisms, including polycyclic aromatic hydrocarbon degraders, was larger in the root zone of alfalfa. In turn, yellow medick provided a favorable balance of available nitrogen. Both Medicago species equally stimulated the dehydrogenase and peroxidase activities of the soil, and yellow medick increased the activity of soil polyphenol oxidase but reduced the activity of catalase. The root tissue activity of catalase, ascorbate oxidase, and tyrosinase was grater in alfalfa than in yellow medick. The peroxidase activity of plant roots was similar in both species, but nondenaturing polyacrylamide gel electrophoresis showed some differences in the peroxidase profiles of the root extracts of alfalfa and yellow medick. Overall, this study suggests that the phytoremediation potentials of yellow medick and alfalfa are similar, with some differences.

  4. Medicago PhosphoProtein Database: a repository for Medicago truncatula phosphoprotein data

    Directory of Open Access Journals (Sweden)

    Christopher M. Rose

    2012-06-01

    Full Text Available The ability of legume crops to fix atmospheric nitrogen via a symbiotic association with soil rhizobia makes them an essential component of many agricultural systems. Initiation of this symbiosis requires protein phosphorylation-mediated signaling in response to rhizobial signals named Nod factors. Medicago truncatula (Medicago is the model system for studying legume biology, making the study of its phosphoproteome essential. Here, we describe the Medicago Phosphoprotein Database (http://phospho.medicago.wisc.edu, a repository built to house phosphoprotein, phosphopeptide, and phosphosite data specific to Medicago. Currently, the Medicago Phosphoprotein Database holds 3,457 unique phosphopeptides that contain 3,404 non-redundant sites of phosphorylation on 829 proteins. Through the web-based interface, users are allowed to browse identified proteins or search for proteins of interest. Furthermore, we allow users to conduct BLAST searches of the database using both peptide sequences and phosphorylation motifs as queries. The data contained within the database are available for download to be investigated at the user’s discretion. The Medicago Phosphoprotein Database will be updated continually with novel phosphoprotein and phosphopeptide identifications, with the intent of constructing an unparalleled compendium of large-scale Medicago phosphorylation data.

  5. Three way interactions between Thymus vulgaris, Medicago truncatula and Sinorhizobium meliloti

    DEFF Research Database (Denmark)

    Grøndahl, Eva; Ehlers, Bodil Kirstine

    2012-01-01

    Thymus vulgaris is a dominating component of the Mediterranean garrigue vegetation. It produces aromatic oil, containing monoterpenes, which affects the performance (growth, survival) of other plants, and microorganisms. Annual plant species of the genus Medicago are commonly found in Mediterranean...... shows patterns of adaptation to its thyme neighbor, and 2) if any adaptive response was dependent on the rhizobium, and whether the rhizobium was either "experienced" or "naive" with respect to thyme monoterpenes. Using a G*G*E design, the fitness of 13 genotypes of Medicago truncatula was tested....... Of these genotypes, 7 were ”experienced”, and 6 were ”naive” to thyme. All genotypes were grown on soil either amended with thyme monoterpene or not. In addition, each plant received a rhizobium treatment, which was either: no rhizobium, a mix of thyme experienced Sinorhizobium genotypes, or a mix of thyme naive...

  6. Unveiling common responses of Medicago truncatula to appropriate and inappropriate rust species

    Science.gov (United States)

    Vaz Patto, Maria Carlota; Rubiales, Diego

    2014-01-01

    Little is known about the nature of effective defense mechanisms in legumes to pathogens of remotely related plant species. Some rust species are among pathogens with broad host range causing dramatic losses in various crop plants. To understand and compare the different host and nonhost resistance (NHR) responses of legume species against rusts, we characterized the reaction of the model legume Medicago truncatula to one appropriate (Uromyces striatus) and two inappropriate (U. viciae-fabae and U. lupinicolus) rusts. We found that similar pre and post-haustorial mechanisms of resistance appear to be operative in M. truncatula against appropriate and inappropriate rust fungus. The appropriate U. striatus germinated better on M. truncatula accessions then the inappropriate U. viciae-fabae and U. lupinicolus, but once germinated, germ tubes of the three rusts had a similar level of success in finding stomata and forming an appressoria over a stoma. However, responses to different inappropriate rust species also showed some specificity, suggesting a combination of non-specific and specific responses underlying this legume NHR to rust fungi. Further genetic and expression analysis studies will contribute to the development of the necessary molecular tools to use the present information on host and NHR mechanisms to breed for broad-spectrum resistance to rust in legume species. PMID:25426128

  7. Unveiling common responses of Medicago truncatula to appropriate and inappropriate rust species

    Directory of Open Access Journals (Sweden)

    Maria Carlota eVaz Patto

    2014-11-01

    Full Text Available Little is known about the nature of effective defense mechanisms in legumes to pathogens of remotely related plant species. Some rust species are among pathogens with broad host range causing dramatic losses in various crop plants. To understand and compare the different host and nonhost resistance responses of legume species against rusts, we characterized the reaction of the model legume Medicago truncatula to one appropriate (Uromyces striatus and two inappropriate (U. viciae-fabae and U. lupinicolus rusts. We found that similar pre and post-haustorial mechanisms of resistance appear to be operative in M. truncatula against appropriate and inappropriate rust fungus. The appropriate U. striatus germinated better on M. truncatula accessions then the inappropriate U. viciae-fabae and U. lupinicolus, but once germinated, germ tubes of the three rusts had a similar level of success in finding stomata and forming an appressoria over a stoma. However responses to different inappropriate rust species also showed some specificity, suggesting a combination of non specific and specific responses underlying this legume nonhost resistance to rust fungi. Further genetic and expression analysis studies will contribute to the development of the necessary molecular tools to use the present information on host and nonhost resistance mechanisms to breed for broad-spectrum resistance to rust in legume species.

  8. The Medicago truncatula gene expression atlas web server

    Directory of Open Access Journals (Sweden)

    Tang Yuhong

    2009-12-01

    Full Text Available Abstract Background Legumes (Leguminosae or Fabaceae play a major role in agriculture. Transcriptomics studies in the model legume species, Medicago truncatula, are instrumental in helping to formulate hypotheses about the role of legume genes. With the rapid growth of publically available Affymetrix GeneChip Medicago Genome Array GeneChip data from a great range of tissues, cell types, growth conditions, and stress treatments, the legume research community desires an effective bioinformatics system to aid efforts to interpret the Medicago genome through functional genomics. We developed the Medicago truncatula Gene Expression Atlas (MtGEA web server for this purpose. Description The Medicago truncatula Gene Expression Atlas (MtGEA web server is a centralized platform for analyzing the Medicago transcriptome. Currently, the web server hosts gene expression data from 156 Affymetrix GeneChip® Medicago genome arrays in 64 different experiments, covering a broad range of developmental and environmental conditions. The server enables flexible, multifaceted analyses of transcript data and provides a range of additional information about genes, including different types of annotation and links to the genome sequence, which help users formulate hypotheses about gene function. Transcript data can be accessed using Affymetrix probe identification number, DNA sequence, gene name, functional description in natural language, GO and KEGG annotation terms, and InterPro domain number. Transcripts can also be discovered through co-expression or differential expression analysis. Flexible tools to select a subset of experiments and to visualize and compare expression profiles of multiple genes have been implemented. Data can be downloaded, in part or full, in a tabular form compatible with common analytical and visualization software. The web server will be updated on a regular basis to incorporate new gene expression data and genome annotation, and is accessible

  9. Activity of Saponins from Medicago species Against HeLa and MCF-7 Cell Lines and their Capacity to Potentiate Cisplatin Effect.

    Science.gov (United States)

    Avato, Pinarosa; Migoni, Danilo; Argentieri, Mariapia; Fanizzi, Francesco P; Tava, Aldo

    2017-11-24

    Saponins from Medicago species display several biological activities, among them apoptotic effects against plant cells have been evidenced. In contrast, their cytotoxic and antitumor activity against animal cells have not been studied in great details. To explore the cytotoxic properties of saponin from Medicago species against animal cells and their effect in combination with the antitumoral drug cisplatin. Cytotoxic activity of saponin mixtures from M. arabica (tops and roots), M. arborea (tops) and M. sativa (tops, roots and seeds) and related prosapogenins from M. arborea and M. sativa (tops) against HeLa and MCF-7 cell lines is described. In addition, cytotoxicity of soyasaponin I and purified saponins (1-8) of hederagenin, medicagenic and zanhic acid is also presented. Combination experiments with cisplatin have been also conducted. Saponins from M. arabica tops and roots (mainly monodesmosides of hederagenin and bayogenin) were the most effective to reduce proliferation of HeLa and MCF-7 cell lines. Among the purified saponins, the most cytotoxic was saponin 1, 3-O-ß-D-glucopyranosyl(1→2)-α-L-arabinopyranosyl hederagenin. When saponins, derived prosapogenins and pure saponins were used in combination with cisplatin, they all, to different extent, were able to potentiate cisplatin activity against HeLa cells but not against MCF-7 cell lines. Moreover uptake of cisplatin in these cell lines was significantly reduced. Overall results showed that specific molecular types of saponins (hederagenin glycosides) have potential as anti-cancer agents or as leads for anti-cancer agents. Moreover saponins from Medicago species have evidenced interesting properties to mediate cisplatin effects in tumor cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Alfalfa breeding benefits from genomics of Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Žilije Bernadet

    2010-01-01

    Full Text Available International programs aim at developing knowledge and tools in the model species Medicago truncatula. Genetic resources, DNA sequences, markers, genetic and physical maps are now publicly available. These efforts contribute to improve breeding schemes of crop species such as alfalfa. However, transfer of information from M. truncatula to alfalfa is not straightforward. The article reviews the gain given by the model species to better analyze genetic determinism of breeding traits in alfalfa. It also shows that investments in alfalfa genomics (DNA sequences, SNP development are needed to benefit from the model species.

  11. Identification of novel RNA viruses in alfalfa (Medicago sativa): an Alphapartitivirus, a Deltapartitivirus, and a Marafivirus.

    Science.gov (United States)

    Kim, Hyein; Park, Dongbin; Hahn, Yoonsoo

    2018-01-05

    Genomic RNA molecules of plant RNA viruses are often co-isolated with the host RNAs, and their sequences can be detected in plant transcriptome datasets. Here, an alfalfa (Medicago sativa) transcriptome dataset was analyzed and three new RNA viruses were identified, which were named Medicago sativa alphapartitivirus 1 (MsAPV1), Medicago sativa deltapartitivirus 1 (MsDPV1), and Medicago sativa marafivirus 1 (MsMV1). The RNA-dependent RNA polymerases of MsAPV1, MsDPV1, and MsMV1 showed about 68%, 58%, and 46% amino acid sequence identity, respectively, with their closest virus species. Sequence similarity and phylogenetic analyses indicated that MsAPV1, MsDPV1, and MsMV1 were novel RNA virus species that belong to the genus Alphapartitivirus of the family Partitiviridae, the genus Deltapartitivirus of the family Partitiviridae, and the genus Marafivirus of the family Tymoviridae, respectively. The bioinformatics procedure applied in this study may facilitate the identification of novel RNA viruses from plant transcriptome data. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Geographically structured genetic variation in the Medicago lupulina-Ensifer mutualism.

    Science.gov (United States)

    Harrison, Tia L; Wood, Corlett W; Heath, Katy D; Stinchcombe, John R

    2017-07-01

    Gene flow between genetically differentiated populations can maintain variation in species interactions, especially when population structure is congruent between interacting species. However, large-scale empirical comparisons of the population structure of interacting species are rare, particularly in positive interspecific interactions (mutualisms). One agriculturally and ecologically important mutualism is the partnership between legume plants and rhizobia. Through characterizing and comparing the population genomic structure of the legume Medicago lupulina and two rhizobial species (Ensifer medicae and E. meliloti), we explored the spatial scale of population differentiation between interacting partners in their introduced range in North America. We found high proportions of E. meliloti in southeastern populations and high proportions of E. medicae in northwestern populations. Medicago lupulina and the Ensifer genus showed similar patterns of spatial genetic structure (isolation by distance). However, we detected no evidence of isolation by distance or population structure within either species of bacteria. Genome-wide nucleotide diversity within each of the two Ensifer species was low, suggesting limited introduction of strains, founder events, or severe bottlenecks. Our results suggest that there is potential for geographically structured coevolution between M. lupulina and the Ensifer genus, but not between M. lupulina and either Ensifer species. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  13. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Redman Julia C

    2008-07-01

    Full Text Available Abstract Background Medicago truncatula is a model legume species that is currently the focus of an international genome sequencing effort. Although several different oligonucleotide and cDNA arrays have been produced for genome-wide transcript analysis of this species, intrinsic limitations in the sensitivity of hybridization-based technologies mean that transcripts of genes expressed at low-levels cannot be measured accurately with these tools. Amongst such genes are many encoding transcription factors (TFs, which are arguably the most important class of regulatory proteins. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is the most sensitive method currently available for transcript quantification, and one that can be scaled up to analyze transcripts of thousands of genes in parallel. Thus, qRT-PCR is an ideal method to tackle the problem of TF transcript quantification in Medicago and other plants. Results We established a bioinformatics pipeline to identify putative TF genes in Medicago truncatula and to design gene-specific oligonucleotide primers for qRT-PCR analysis of TF transcripts. We validated the efficacy and gene-specificity of over 1000 TF primer pairs and utilized these to identify sets of organ-enhanced TF genes that may play important roles in organ development or differentiation in this species. This community resource will be developed further as more genome sequence becomes available, with the ultimate goal of producing validated, gene-specific primers for all Medicago TF genes. Conclusion High-throughput qRT-PCR using a 384-well plate format enables rapid, flexible, and sensitive quantification of all predicted Medicago transcription factor mRNAs. This resource has been utilized recently by several groups in Europe, Australia, and the USA, and we expect that it will become the 'gold-standard' for TF transcript profiling in Medicago truncatula.

  14. Evaluation of three endemic Mediterranean plant species Atriplex halimus, Medicago lupulina and Portulaca oleracea for Phytoremediation of Ni, Pb and Zn

    Science.gov (United States)

    Chami, Ziad Al; Amer, Nasser; Bitar, Lina Al; Mondelli, Donato; Dumontet, Stefano

    2013-04-01

    The success of phytoremediation depends upon the identification of suitable plants species that hyperaccumulate/tolerate heavy metals and produce large amounts of biomass. In this study, three endemic Mediterranean plant species Atriplex halimus, Medicago lupulina and Portulaca oleracea, were grown hydroponically to assess their potential use in phytoremediation of Ni, Pb and Zn and biomass production. The objective of this research is to improve phytoremediation procedures by searching for a new endemic Mediterranean plant species which can be used for phytoremediation of low/moderate contamination in the Mediterranean arid and semiarid conditions and bioenergy production. The hydroponics experiment was carried out in a growth chamber using half strength Hoagland's solution as control (CTR) and 5 concentrations for Pb and Zn (5, 10, 25, 50 and 100 mg L-1) and 3 concentrations for Ni (1, 2, and 5 mg L-1). Complete randomized design with five replications was adopted. Main growth parameters (shoot and root dry weight, shoot and root length and chlorophyll content) were determined. Shoots and roots were analyzed for their metals contents. Some interesting contributions of this research are: (i) plant metal uptake efficiency ranked as follows: A. halimus > M. lupulina > P. oleracea, whereas heavy metal toxicity ranked as follows: Ni > Zn > Pb, (ii) none of the plant species was identified as hyperaccumulator, (iii) Atriplex halimus and Medicago lupulina can accumulate Ni, Pb and Zn in their roots, (iv) translocate small fraction to their above ground biomass, and (v) indicate moderate pollution levels of the environment. In addition, as they are a good biomass producer, they can be used in phytostabilisation of marginal lands and their above ground biomass can be used for livestock feeding as well for bioenergy production.

  15. Spatio-Temporal Expression Patterns of Arabidopsis thaliana and Medicago truncatula Defensin-Like Genes

    Science.gov (United States)

    Nallu, Sumitha; Wang, Lin; Botanga, Christopher J.; Gomez, S. Karen; Costa, Liliana M.; Harrison, Maria J.; Samac, Deborah A.; Glazebrook, Jane; Katagiri, Fumiaki; Gutierrez-Marcos, Jose F.; VandenBosch, Kathryn A.

    2013-01-01

    Plant genomes contain several hundred defensin-like (DEFL) genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species. PMID:23527067

  16. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes.

    Directory of Open Access Journals (Sweden)

    Mesfin Tesfaye

    Full Text Available Plant genomes contain several hundred defensin-like (DEFL genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species.

  17. [Natural nucleotide polymorphism of the Srlk gene that determines salt stress tolerance in alfalfa (Medicago sativa L)].

    Science.gov (United States)

    Vishnevskaia, M S; Pavlov, A V; Dziubenko, E A; Dziubenko, N I; Potokina, E K

    2014-04-01

    Based on legume genome syntheny, the nucleotide sequence of Srlk gene, key role of which in response to salt stress was demonstrated for the model species Medicago truncatula, was identified in the major forage and siderate crop alfalfa (Medicago sativa). In twelve alfalfa samples originating from regions with contrasting growing conditions, 19 SNPs were revealed in the Srlk gene. For two nonsynonymous SNPs, molecular markers were designed that could be further used to analyze the association between Srlk gene nucleotide polymorphism and the variability in salt stress tolerance among alfalfa cultivars.

  18. STUDY ON PHYTOEXTRACTION BALANCE OF ZN, CD, PB FROM MINE-WASTE POLLUTED SOILS BY USING MEDICAGO SATIVA AND TRIFOLIUM PRATENSE SPECIES

    Directory of Open Access Journals (Sweden)

    B. LIXANDRU

    2009-05-01

    Full Text Available For a term of two years was studied phytoextractive potential of Zn, Cd and Pb using successive culture of alfalfa (Medicago sativa and red clover (Trifolium pratense. In the experimental plot was incorporated a quantity of 20 kg mine waste per square meter, providing in soil 1209 mg Zn/kg d.s., 4.70 mg Cd/kg d.s. and 188.2 mg Pb/kg d.s. The metals content accumulated in plants was determined at the two moments of biomass harvesting, and through balance calculations we could establish the phytoextraction efficiency of the two forage-grasses species. The obtained results indicate that both perennial forage-legumes species have a good phytoextractive capacity and tolerance for Zn and Pb, especially Trifolium pratense specie. By using this species as phytoextractors on soil polluted with 3.76 times more Pb and 4.03 times more Zn, is provided the reduction of metallic ions concentration in soil to limits admitted by laws in a period of 3, respectively, 4 years.

  19. [The effect of Medicago spp. on growth of Trichophyton mentagrophytes in microculture].

    Science.gov (United States)

    Spiewak, R; Szostak, W; Jurzysta, M; Biały, Z; Maleszka, R; Rzepecka, B; Mazurek, M

    2001-01-01

    The study aimed at assessing effect of dried root and aerial parts of Medicago spp. on growth of Trichophryton mentagrophytes. Fungus strains were inoculated onto microcultures with Sabouraud agar supplemented each with 1 g of dried and pulverised roots or aerial parts of 3 species: Medicago arabica, M. sativa, and M. murex. The strongest inhibitory effect on T. mentagrophytes growth was that of aerial parts of M. arabica (median diameter 6 mm compared to 13 mm of control), followed by root of M. arabica (10 mm) and root of M. murex (10.5 mm)--in all cases p < 0.001. Slight inhibitory effect was also found in the case of aerial parts of M. murex (median diameter 12 mm, p = 0.03). In contrast, M. sativa has shown stimulating effect on growth of T. mentagrophytes (15 mm for root and 16.5 mm for aerial part, p<0.001).

  20. The thiol compounds glutathione and homoglutathione differentially affect cell development in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Pasternak, Taras; Asard, Han; Potters, Geert; Jansen, Marcel A K

    2014-01-01

    Glutathione (GSH) is an important scavenger of Reactive Oxygen Species (ROS), precursor of metal chelating phytochelatins, xenobiotic defence compound and regulator of cell proliferation. Homoglutathione (hGSH) is a GSH homologue that is present in several taxa in the family of Fabaceae. It is thought that hGSH performs many of the stress-defence roles typically ascribed to GSH, yet little is known about the potential involvement of hGSH in controlling cell proliferation. Here we show that hGSH/GSH ratios vary across organs and cells and that these changes in hGSH/GSH ratio occur during dedifferentiation and/or cell cycle activation events. The use of a GSH/hGSH biosynthesis inhibitor resulted in impaired cytokinesis in isolated protoplasts, showing the critical importance of these thiol-compounds for cell division. However, exposure of isolated protoplasts to exogenous GSH accelerated cytokinesis, while exogenous hGSH was found to inhibit the same process. We conclude that GSH and hGSH have distinct functional roles in cell cycle regulation in Medicago sativa L. GSH is associated with meristemic cells, and promotes cell cycle activation and induction of somatic embryogenesis, while hGSH is associated with differentiated cells and embryo proliferation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Novel SINEs families in Medicago truncatula and Lotus japonicus: bioinformatic analysis.

    Science.gov (United States)

    Gadzalski, Marek; Sakowicz, Tomasz

    2011-07-01

    Although short interspersed elements (SINEs) were discovered nearly 30 years ago, the studies of these genomic repeats were mostly limited to animal genomes. Very little is known about SINEs in legumes--one of the most important plant families. Here we report identification, genomic distribution and molecular features of six novel SINE elements in Lotus japonicus (named LJ_SINE-1, -2, -3) and Medicago truncatula (MT_SINE-1, -2, -3), model species of legume. They possess all the structural features commonly found in short interspersed elements including RNA polymerase III promoter, polyA tail and flanking repeats. SINEs described here are present in low to moderate copy numbers from 150 to 3000. Bioinformatic analyses were used to searched public databases, we have shown that three of new SINE elements from M. truncatula seem to be characteristic of Medicago and Trifolium genera. Two SINE families have been found in L. japonicus and one is present in both M. truncatula and L. japonicus. In addition, we are discussing potential activities of the described elements. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula

    DEFF Research Database (Denmark)

    Ronfort, Joelle; Bataillon, Thomas; Santoni, Sylvain

    2006-01-01

    at representing the genetic diversity of this species with a minimum of repetitiveness. We investigate the patterns of genetic diversity and population structure in a collection of 346 inbred lines representing the breadth of naturally occurring diversity in the Legume plant model Medicago truncatula using 13...... of inbred lines and the core collections are publicly available and will help coordinating efforts for the study of naturally occurring variation in the growing Medicago truncatula community....

  3. Multiple mutualist effects on genomewide expression in the tripartite association between Medicago truncatula, nitrogen-fixing bacteria and mycorrhizal fungi.

    Science.gov (United States)

    Afkhami, Michelle E; Stinchcombe, John R

    2016-10-01

    While all species interact with multiple mutualists, the fitness consequences and molecular mechanisms underlying these interactions remain largely unknown. We combined factorial ecological experiments with genomewide expression analyses to examine the phenotypic and transcriptomic responses of model legume Medicago truncatula to rhizobia and mycorrhizal fungi. We found synergistic effects of these mutualists on plant performance and examined unique features of plant gene expression responses to multiple mutualists. There were genomewide signatures of mutualists and multiple mutualists on expression, with partners often affecting unique sets of genes. Mycorrhizal fungi had stronger effects on plant expression than rhizobia, with 70% of differentially expressed genes affected by fungi. Fungal and bacterial mutualists had joint effects on 10% of differentially expressed genes, including unexpected, nonadditive effects on some genes with important functions such as nutrient metabolism. For a subset of genes, interacting with multiple mutualists even led to reversals in the direction of expression (shifts from up to downregulation) compared to interacting with single mutualists. Rhizobia also affected the expression of several mycorrhizal genes, including those involved in nutrient transfer to host plants, indicating that partner species can also impact each other's molecular phenotypes. Collectively, these data illustrate the diverse molecular mechanisms and transcriptional responses associated with the synergistic benefits of multiple mutualists. © 2016 John Wiley & Sons Ltd.

  4. Medicago truncatula SOC1 Genes Are Up-regulated by Environmental Cues That Promote Flowering

    Directory of Open Access Journals (Sweden)

    Jared B. Fudge

    2018-04-01

    Full Text Available Like Arabidopsis thaliana, the flowering of the legume Medicago truncatula is promoted by long day (LD photoperiod and vernalization. However, there are differences in the molecular mechanisms involved, with orthologs of two key Arabidopsis thaliana regulators, FLOWERING LOCUS C (FLC and CONSTANS (CO, being absent or not having a role in flowering time function in Medicago. In Arabidopsis, the MADS-box transcription factor gene, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (AtSOC1, plays a key role in integrating the photoperiodic and vernalization pathways. In this study, we set out to investigate whether the Medicago SOC1 genes play a role in regulating flowering time. Three Medicago SOC1 genes were identified and characterized (MtSOC1a–MtSOC1c. All three MtSOC1 genes, when heterologously expressed, were able to promote earlier flowering of the late-flowering Arabidopsis soc1-2 mutant. The three MtSOC1 genes have different patterns of expression. However, consistent with a potential role in flowering time regulation, all three MtSOC1 genes are expressed in the shoot apex and are up-regulated in the shoot apex of plants in response to LD photoperiods and vernalization. The up-regulation of MtSOC1 genes was reduced in Medicago fta1-1 mutants, indicating that they are downstream of MtFTa1. Insertion mutant alleles of Medicago soc1b do not flower late, suggestive of functional redundancy among Medicago SOC1 genes in promoting flowering.

  5. The lipoxygenase gene family: a genomic fossil of shared polyploidy between Glycine max and Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Choi Beom-Soon

    2008-12-01

    Full Text Available Abstract Background Soybean lipoxygenases (Lxs play important roles in plant resistance and in conferring the distinct bean flavor. Lxs comprise a multi-gene family that includes GmLx1, GmLx2 and GmLx3, and many of these genes have been characterized. We were interested in investigating the relationship between the soybean lipoxygenase isozymes from an evolutionary perspective, since soybean has undergone two rounds of polyploidy. Here we report the tetrad genome structure of soybean Lx regions produced by ancient and recent polyploidy. Also, comparative genomics with Medicago truncatula was performed to estimate Lxs in the common ancestor of soybean and Medicago. Results Two Lx regions in Medicago truncatula showing synteny with soybean were analyzed. Differential evolutionary rates between soybean and Medicago were observed and the median Ks values of Mt-Mt, Gm-Mt, and Gm-Gm paralogs were determined to be 0.75, 0.62, and 0.46, respectively. Thus the comparison of Gm-Mt paralogs (Ks = 0.62 and Gm-Mt orthologs (Ks = 0.45 supports the ancient duplication of Lx regions in the common ancestor prior to the Medicago-Glycine split. After speciation, no Lx regions generated by another polyploidy were identified in Medicago. Instead tandem duplication of Lx genes was observed. On the other hand, a lineage-specific duplication occurred in soybean resulting in two pairs of Lx regions. Each pair of soybean regions was co-orthologous to one Lx region in Medicago. A total of 34 Lx genes (15 MtLxs and 19 GmLxs were divided into two groups by phylogenetic analysis. Our study shows that the Lx gene family evolved from two distinct Lx genes in the most recent common ancestor. Conclusion This study analyzed two pairs of Lx regions generated by two rounds of polyploidy in soybean. Each pair of soybean homeologous regions is co-orthologous to one region of Medicago, demonstrating the quartet structure of the soybean genome. Differential evolutionary rates between

  6. Natural occurrence of entomophthoroid fungi of aphid pests on Medicago sativa L. in Argentina

    Directory of Open Access Journals (Sweden)

    Romina G Manfrino

    Full Text Available Four species of entomophthoroid fungi, Pandora neoaphidis (Entomophthorales: Entomophthoraceae, Zoophthora radicans (Entomophthorales: Entomophthoraceae, Entomophthora planchoniana (Entomophthorales: Entomophthoraceae and Neozygites fresenii (Neozygitales: Neozygitaceae were found to infect Aphis craccivora, Therioaphis trifolii, and Acyrthosiphon pisum and unidentified species of Acyrthosiphon on lucerne in Argentina. Samples were collected from five sites (Ceres, Rafaela, Sarmiento, Monte Vera and Bernardo de Irigoyen in the province of Santa Fe. In this study, Zoophthora radicans was the most important pathogen and was recorded mainly on Acyrthosiphon sp. Zoophthora radicans was successfully isolated and maintained in pure cultures. This study is the first report of entomophthoroid fungi infecting lucerne (Medicago sativa L. aphids in Argentina.

  7. Phytotoxicity of three plant-based biodiesels, unmodified castor oil, and Diesel fuel to alfalfa (Medicago sativa L.), lettuce (Lactuca sativa L.), radish (Raphanus sativus), and wheatgrass (Triticum aestivum).

    Science.gov (United States)

    Bamgbose, Ifeoluwa; Anderson, Todd A

    2015-12-01

    The wide use of plant-based oils and their derivatives, in particular biodiesel, have increased extensively over the past decade to help alleviate demand for petroleum products and improve the greenhouse gas emissions profile of the transportation sector. Biodiesel is regarded as a clean burning alternative fuel produced from livestock feeds and various vegetable oils. Although in theory these animal and/or plant derived fuels should have less environmental impact in soil based on their simplified composition relative to Diesel, they pose an environmental risk like Diesel at high concentrations when disposed. The aim of the present study was to ascertain the phytotoxicity of three different plant-derived biodiesels relative to conventional Diesel. For phytotoxicological analysis, we used seeds of four crop plants, Medicago sativa, Lactuca sativa, Raphanus sativus, and Triticum aestivum to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with two different soil textures: sandy loam soil and silt loam soil. The studied plant-based biodiesels were safflower methyl-ester, castor methyl ester, and castor ethyl-ester. Biodiesel toxicity was more evident at high concentrations, affecting the germination and survival of small-seeded plants to a greater extent. Tolerance of plants to the biodiesels varied between plant species and soil textures. With the exception of R. sativus, all plant species were affected and exhibited some sensitivity to the fuels, such as delayed seedling emergence and slow germination (average=10 days) at high soil concentrations (0.85% for Diesel and 1.76% for the biodiesels). Tolerance of plants to soil contamination had a species-specific nature, and on average, decreased in the following order: Raphanus sativus (0-20%)>Triticum aestivum (10-40%) ≥ Medicago sativa> Lactuca sativa (80-100%). Thus, we conclude that there is some phytotoxicity associated with plant-based biodiesels. Further

  8. Natural occurrence of entomophthoroid fungi of aphid pests on Medicago sativa L. in Argentina.

    Science.gov (United States)

    Manfrino, Romina G; Zumoffen, Leticia; Salto, César E; Lastra, Claudia C López

    2014-01-01

    Four species of entomophthoroid fungi, Pandora neoaphidis (Entomophthorales: Entomophthoraceae), Zoophthora radicans (Entomophthorales: Entomophthoraceae), Entomophthora planchoniana (Entomophthorales: Entomophthoraceae) and Neozygites fresenii (Neozygitales: Neozygitaceae) were found to infect Aphis craccivora, Therioaphis trifolii, and Acyrthosiphon pisum and unidentified species of Acyrthosiphon on lucerne in Argentina. Samples were collected from five sites (Ceres, Rafaela, Sarmiento, Monte Vera and Bernardo de Irigoyen) in the province of Santa Fe. In this study, Zoophthora radicans was the most important pathogen and was recorded mainly on Acyrthosiphon sp. Zoophthora radicans was successfully isolated and maintained in pure cultures. This study is the first report of entomophthoroid fungi infecting lucerne (Medicago sativa L.) aphids in Argentina. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  9. Nutritive evaluation of Medicago truncutula (cv. jernalong) pasture ...

    African Journals Online (AJOL)

    Nutritive evaluation of Medicago truncutula (cv. jernalong) pasture for sheep. 1. Seasonal .... obtained by laboratory work, using in vitro techniques. (Engels et al. .... model that was used to explain 92,3% of the variance in. IVDOM content.

  10. Germination success under different treatments and pod sowing depths in six legume species present in olive groves

    Energy Technology Data Exchange (ETDEWEB)

    Siles, S.; García-Zafra, A.; Torres, J.A.; García-Fuentes, A.; Ruiz-Valenzuela, L.

    2017-07-01

    This study analysed the germination success of pods of six annual native legumes species: Astragalus hamosus, Medicago minima, Medicago orbicularis, Medicago polymorpha, Medicago rigidula and Scorpiurus muricatus. The use of these species has been proposed as a means of generating and improving herbaceous cover in olive groves. Germination success was studied in terms of the variability in the number of seeds germinated per pod after 18 months at two different sowing depths, on the surface (S) and buried 10 mm (B). Pods were subject to five different pre-germination treatments: chemical scarification, consisting of immersion in sulphuric acid for 15 min (S{sub 1}5) and 20 min (S{sub 2}0), immersion in water for 48 h (W{sub 4}8), pod precooled to -18ºC for one month (P{sub 1}8º) and untreated pods (Con). The results showed that the effectiveness of the different treatments and sowing depths depended on the species, and that there were no problems of ‘sibling-competition’ in any of the treatments or at any of the sowing depths. Species with larger, non-spiralled pods, such as A. hamosus or S. muricatus, or with very loosely spiralled pods such as M. orbicularis, had greater germination rates when buried, mainly in the case of untreated pods and pods that were immersed in sulphuric acid for 20 minutes.

  11. Germination success under different treatments and pod sowing depths in six legume species present in olive groves

    International Nuclear Information System (INIS)

    Siles, S.; García-Zafra, A.; Torres, J.A.; García-Fuentes, A.; Ruiz-Valenzuela, L.

    2017-01-01

    This study analysed the germination success of pods of six annual native legumes species: Astragalus hamosus, Medicago minima, Medicago orbicularis, Medicago polymorpha, Medicago rigidula and Scorpiurus muricatus. The use of these species has been proposed as a means of generating and improving herbaceous cover in olive groves. Germination success was studied in terms of the variability in the number of seeds germinated per pod after 18 months at two different sowing depths, on the surface (S) and buried 10 mm (B). Pods were subject to five different pre-germination treatments: chemical scarification, consisting of immersion in sulphuric acid for 15 min (S 1 5) and 20 min (S 2 0), immersion in water for 48 h (W 4 8), pod precooled to -18ºC for one month (P 1 8º) and untreated pods (Con). The results showed that the effectiveness of the different treatments and sowing depths depended on the species, and that there were no problems of ‘sibling-competition’ in any of the treatments or at any of the sowing depths. Species with larger, non-spiralled pods, such as A. hamosus or S. muricatus, or with very loosely spiralled pods such as M. orbicularis, had greater germination rates when buried, mainly in the case of untreated pods and pods that were immersed in sulphuric acid for 20 minutes.

  12. Genome-Wide Development of MicroRNA-Based SSR Markers in Medicago truncatula with Their Transferability Analysis and Utilization in Related Legume Species.

    Science.gov (United States)

    Min, Xueyang; Zhang, Zhengshe; Liu, Yisong; Wei, Xingyi; Liu, Zhipeng; Wang, Yanrong; Liu, Wenxian

    2017-11-18

    Microsatellite (simple sequence repeats, SSRs) marker is one of the most widely used markers in marker-assisted breeding. As one type of functional markers, MicroRNA-based SSR (miRNA-SSR) markers have been exploited mainly in animals, but the development and characterization of miRNA-SSR markers in plants are still limited. In the present study, miRNA-SSR markers for Medicago truncatula ( M. truncatula ) were developed and their cross-species transferability in six leguminous species was evaluated. A total of 169 primer pairs were successfully designed from 130 M. truncatula miRNA genes, the majority of which were mononucleotide repeats (70.41%), followed by dinucleotide repeats (14.20%), compound repeats (11.24%) and trinucleotide repeats (4.14%). Functional classification of SSR-containing miRNA genes showed that all targets could be grouped into three Gene Ontology (GO) categories: 17 in biological process, 11 in molecular function, and 14 in cellular component. The miRNA-SSR markers showed high transferability in other six leguminous species, ranged from 74.56% to 90.53%. Furthermore, 25 Mt - miRNA-SSR markers were used to evaluate polymorphisms in 20 alfalfa accessions, and the polymorphism information content (PIC) values ranged from 0.39 to 0.89 with an average of 0.71, the allele number per marker varied from 3 to 18 with an average of 7.88, indicating a high level of informativeness. The present study is the first time developed and characterized of M. truncatula miRNA-SSRs and demonstrated their utility in transferability, these novel markers will be valuable for genetic diversity analysis, marker-assisted selection and genotyping in leguminous species.

  13. Adaptive evolution of the symbiotic gene NORK is not correlated with shifts of rhizobial specificity in the genus Medicago

    Directory of Open Access Journals (Sweden)

    Ronfort Joëlle

    2007-11-01

    Full Text Available Abstract Background The NODULATION RECEPTOR KINASE (NORK gene encodes a Leucine-Rich Repeat (LRR-containing receptor-like protein and controls the infection by symbiotic rhizobia and endomycorrhizal fungi in Legumes. The occurrence of numerous amino acid changes driven by directional selection has been reported in this gene, using a limited number of messenger RNA sequences, but the functional reason of these changes remains obscure. The Medicago genus, where changes in rhizobial associations have been previously examined, is a good model to test whether the evolution of NORK is influenced by rhizobial interactions. Results We sequenced a region of 3610 nucleotides (encoding a 392 amino acid-long region of the NORK protein in 32 Medicago species. We confirm that positive selection in NORK has occurred within the Medicago genus and find that the amino acid positions targeted by selection occur in sites outside of solvent-exposed regions in LRRs, and other sites in the N-terminal region of the protein. We tested if branches of the Medicago phylogeny where changes of rhizobial symbionts occurred displayed accelerated rates of amino acid substitutions. Only one branch out of five tested, leading to M. noeana, displays such a pattern. Among other branches, the most likely for having undergone positive selection is not associated with documented shift of rhizobial specificity. Conclusion Adaptive changes in the sequence of the NORK receptor have involved the LRRs, but targeted different sites than in most previous studies of LRR proteins evolution. The fact that positive selection in NORK tends not to be associated to changes in rhizobial specificity indicates that this gene was probably not involved in evolving rhizobial preferences. Other explanations (e.g. coevolutionary arms race must be tested to explain the adaptive evolution of NORK.

  14. Winery wastewater inhibits seed germination and vegetative growth of common crop species.

    Science.gov (United States)

    Mosse, Kim P M; Patti, Antonio F; Christen, Evan W; Cavagnaro, Timothy R

    2010-08-15

    The ability to reuse winery wastewater would be of significant benefit to the wine industry, as it could potentially be a cost-effective method of wastewater management, whilst at the same time providing a valuable water resource. This study investigated the effects of different dilutions of a semi-synthetic winery wastewater on the growth and germination of four common crop species in a glasshouse study; barley (Hordeum vulgare), millet (Pennisetum glaucum), lucerne (Medicago sativa) and phalaris (Phalaris aquatica). The wastewater caused a significant delay in the germination of lucerne, millet and phalaris, although overall germination percentage of all species was not affected. Vegetative growth was significantly reduced in all species, with millet being the most severely affected. The germination index of barley correlated very highly (r(2)=0.99) with barley biomass, indicating that barley seed germination bioassays are highly relevant to plant growth, and therefore may be of use as a bioassay for winery wastewater toxicity. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Sinorhizobium meliloti can protect Medicago truncatula against Phoma medicaginis attack

    Directory of Open Access Journals (Sweden)

    Moncef MRABET

    2011-09-01

    Full Text Available The Sinorhizobium meliloti microsymbiont of Medicago spp. was used in an antibiosis test against Phoma medicaginis and in bioprotection assays of Medicago truncatula JA17 from the pathogen. Among 17 S. meliloti strains isolated from root nodules of M. truncatula and Medicago laciniata grown in Tunisian soils, six showed up to 60% growth inhibition of five P. medicaginis strains isolated from infected field-grown M. truncatula. Two S. meliloti strains with differing in vitro effects on P. medicaginis, 10.16/R6 antagonist and 5M6 non antagonist, were used in a bioprotection assay of M. truncatula JA17 from the pathogen. The inoculation of P. medicaginis caused complete root and stem rotting, and the mortality of all treated plantlets. Inoculation of the antagonist S. meliloti strain 10.16/R6 to M. truncatula JA17 infected with P. medicaginis was associated with a significant 65% decrease of vegetative rotting length, an 80% decrease of plant mortality, an increase of root length, and enhancement of root and shoot biomass comparatively to control plantlets treated with P. medicaginis. The inoculation of the non antagonistic S. meliloti strain 5M6 slightly decreased disease and slightly increased plant growth parameters.

  16. In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago

    Directory of Open Access Journals (Sweden)

    Nina M. Soares-Cavalcanti

    2012-01-01

    Full Text Available Plants experience various environmental stresses, but tolerance to these adverse conditions is a very complex phenomenon. The present research aimed to evaluate a set of genes involved in osmotic response, comparing soybean and medicago with the well-described Arabidopsis thaliana model plant. Based on 103 Arabidopsis proteins from 27 categories of osmotic stress response, comparative analyses against Genosoja and Medicago truncatula databases allowed the identification of 1,088 soybean and 1,210 Medicago sequences. The analysis showed a high number of sequences and high diversity, comprising genes from all categories in both organisms. Genes with unknown function were among the most representative, followed by transcription factors, ion transport proteins, water channel, plant defense, protein degradation, cellular structure, organization & biogenesis and senescence. An analysis of sequences with unknown function allowed the annotation of 174 soybean and 217 Medicago sequences, most of them concerning transcription factors. However, for about 30% of the sequences no function could be attributed using in silico procedures. The establishment of a gene set involved in osmotic stress responses in soybean and barrel medic will help to better understand the survival mechanisms for this type of stress condition in legumes.

  17. Alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Fu, Chunxiang; Hernandez, Timothy; Zhou, Chuanen; Wang, Zeng-Yu

    2015-01-01

    Alfalfa (Medicago sativa L.) is a high-quality forage crop widely grown throughout the world. This chapter describes an efficient protocol that allows for the generation of large number of transgenic alfalfa plants by sonication-assisted Agrobacterium-mediated transformation. Binary vectors carrying different selectable marker genes that confer resistance to phosphinothricin (bar), kanamycin (npt II), or hygromycin (hph) were used to generate transgenic alfalfa plants. Intact trifoliates collected from clonally propagated plants in the greenhouse were sterilized with bleach and then inoculated with Agrobacterium strain EHA105. More than 80 % of infected leaf pieces could produce rooted transgenic plants in 4-5 months after Agrobacterium-mediated transformation.

  18. Effects of Sludge Compost on EC value of Saline Soil and Plant Height of Medicago

    Science.gov (United States)

    Sun, Chongyang; Zhao, Ke; Chen, Xing; Wang, Xiaohui

    2017-12-01

    In this study, the effects of sludge composting on the EC value of saline soil and the response to Medicago plant height were studied by planting Medicago with pots for 45 days in different proportions as sludge composting with saline soil. The results showed that the EC value of saline soil did not change obviously with the increase of fertilization ratio,which indicated that the EC value of saline soil was close to that of the original soil. The EC decreased by 31.45% at fertilization ratio of 40%. The height of Medicago reached the highest at 40% fertilization ratio, and that was close to 60% fertilization ratio, and the difference was significant with other treatments. By comprehensive analyse and compare,the optimum application rate of sludge compost was 40% under this test condition.

  19. Correlations between environmental factors and wild bee behavior on alfalfa (Medicago sativa) in northwestern China.

    Science.gov (United States)

    Wang, Xiaojuan; Liu, Hongping; Li, Xiaoxia; Song, Yu; Chen, Li; Jin, Liang

    2009-10-01

    To discover the effect of environmental factors on pollinator visitation to flowering Medicago sativa, several field experiments were designed to examine the diurnal movement patterns of wild bee species in the Hexi Corridor of northwestern China. Our study results showed that Megachile abluta, M. spissula, and Xylocopa valga showed unimodal diurnal foraging behavior, whereas Andrena parvula and Anthophora melanognatha showed bimodal diurnal foraging behavior. Correlation analysis indicated that diurnal foraging activities of pollinators were significantly correlated with environmental factors. Correlations of foraging activities versus environmental factors for M. abluta, M. spissula, and X. valga best fit a linear model, whereas those of A. parvula and A. melanognatha best fit a parallel quadratic model. Results of this study indicated that solitary wild bees such as M. abluta, M. spissula, X. valga, A. parvula, and A. melanognatha are potential alfalfa pollinators in the Hexi Corridor. An understanding of the environmental factors that affect the behaviors of different wild bees foraging in alfalfa are basic to the utilization of solitary wild bees in a practical way for increased, or more consistent, pollination of alfalfa for seed production.

  20. Root developmental programs shape the Medicago truncatula nodule meristem

    NARCIS (Netherlands)

    Franssen, H.; Xiao, T.T.; Kulikova, O.; Wan, X.; Bisseling, T.; Scheres, B.; Heidstra, R.

    2015-01-01

    Nodules on the roots of legume plants host nitrogen-fixing Rhizobium bacteria. Several lines of evidence indicate that nodules are evolutionarily related to roots. We determined whether developmental control of the Medicago truncatula nodule meristem bears resemblance to that in root meristems

  1. cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules.

    Directory of Open Access Journals (Sweden)

    Erik Limpens

    Full Text Available Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur and proximal region (where symbiosomes are mainly differentiating, as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital "in situ". This digital "in situ" offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.

  2. Prediction of chemical composition of South African Medicago sativa ...

    African Journals Online (AJOL)

    The near infrared reflectance spectroscopy (NIRS) to predict chemical and digestibility parameters was investigated. Samples (n = 168) representing the spectral characteristics of the South African. Medicago sativa L. hay population were chemically analysed for the development of calibration equations. Values for r² and ...

  3. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks.

    OpenAIRE

    Damiani , Isabelle; Drain , Alice; Guichard , Marjorie; Balzergue , Sandrine; Boscari , Alexandre; Boyer , Jean-Christophe; Brunaud , Véronique; Cottaz , Sylvain; Rancurel , Corinne; Da Rocha , Martine; Fizames , Cécile; Fort , Sébastien; Gaillard , Isabelle; MAILLOL , Vincent; Danchin , Etienne G J

    2015-01-01

    International audience; Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod fac...

  4. Differential response to water deficit stress in alfalfa ( Medicago ...

    African Journals Online (AJOL)

    The present study was fixed as objective to compare the response to water deficit (33% of field capacity, FC) stress of eight cultivars of Medicago sativa, originating from the Mediterranean basin. Comparison was performed on some key parameters such as growth, relative water content, leaf water potential, MDA tissue ...

  5. Nod factor effects on root hair-specific transcriptome of Medicago truncatula: focus on plasma membrane transport systems and reactive oxygen species networks

    OpenAIRE

    Isabelle eDAMIANI; Alice eDRAIN; Marjorie eGUICHARD; Sandrine eBALZERGUE; Sandrine eBALZERGUE; Alexandre eBOSCARI; Jean-Christophe eBOYER; Véronique eBRUNAUD; Véronique eBRUNAUD; Sylvain eCOTTAZ; Sylvain eCOTTAZ; Corinne eRANCUREL; Martine eDa Rocha; Cécile eFIZAMES; Sebastien eFORT

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 h or 20 ...

  6. A model for assessing Medicago Sativa L. hay quality | Scholtz ...

    African Journals Online (AJOL)

    A study was conducted to identify chemical parameters and/or models for assessing. Medicago sativa L. (L) hay quality, using near infrared reflectance spectroscopy (NIRS) analysis and Cornell Net Carbohydrate and Protein System (CNCPS) milk prediction as a criterion of accuracy. Milk yield (MY) derived from the ...

  7. Genome sequence of Ensifer meliloti strain WSM1022; a highly effective microsymbiont of the model legume Medicago truncatula A17.

    Science.gov (United States)

    Terpolilli, Jason; Hill, Yvette; Tian, Rui; Howieson, John; Bräu, Lambert; Goodwin, Lynne; Han, James; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-12-20

    Ensifer meliloti WSM1022 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1022 was isolated in 1987 from a nodule recovered from the roots of the annual Medicago orbicularis growing on the Cyclades Island of Naxos in Greece. WSM1022 is highly effective at fixing nitrogen with M. truncatula and other annual species such as M. tornata and M. littoralis and is also highly effective with the perennial M. sativa (alfalfa or lucerne). In common with other characterized E. meliloti strains, WSM1022 will nodulate but fixes poorly with M. polymorpha and M. sphaerocarpos and does not nodulate M. murex. Here we describe the features of E. meliloti WSM1022, together with genome sequence information and its annotation. The 6,649,661 bp high-quality-draft genome is arranged into 121 scaffolds of 125 contigs containing 6,323 protein-coding genes and 75 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  8. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula

    KAUST Repository

    Kamphuis, L. G.; Lichtenzveig, J.; Peng, K.; Guo, S.-M.; Klingler, John; Siddique, K. H. M.; Gao, L.-L.; Singh, K. B.

    2013-01-01

    Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)]. Aphid performance and plant damage were compared among three accessions. A20 is highly susceptible, A17 has moderate resistance, and Jester is strongly resistant. Subsequent analyses using A17 and A20, reciprocal F1s and an A17×A20 recombinant inbred line (RIL) population revealed that this moderate resistance is phloem mediated and involves antibiosis and tolerance but not antixenosis. Electrical penetration graph analysis also identified a novel waveform termed extended potential drop, which occurred following SAA infestation of M. truncatula. Genetic dissection using the RIL population revealed three quantitative trait loci on chromosomes 3, 6, and 7 involved in distinct modes of aphid defence including antibiosis and tolerance. An antibiosis locus resides on linkage group 3 (LG3) and is derived from A17, whereas a plant tolerance and antibiosis locus resides on LG6 and is derived from A20, which exhibits strong temporary tolerance. The loci identified reside in regions harbouring classical resistance genes, and introgression of these loci in current medic cultivars may help provide durable resistance to SAA, while elucidation of their molecular mechanisms may provide valuable insight into other aphid–plant interactions.

  9. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula

    KAUST Repository

    Kamphuis, L. G.

    2013-09-21

    Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)]. Aphid performance and plant damage were compared among three accessions. A20 is highly susceptible, A17 has moderate resistance, and Jester is strongly resistant. Subsequent analyses using A17 and A20, reciprocal F1s and an A17×A20 recombinant inbred line (RIL) population revealed that this moderate resistance is phloem mediated and involves antibiosis and tolerance but not antixenosis. Electrical penetration graph analysis also identified a novel waveform termed extended potential drop, which occurred following SAA infestation of M. truncatula. Genetic dissection using the RIL population revealed three quantitative trait loci on chromosomes 3, 6, and 7 involved in distinct modes of aphid defence including antibiosis and tolerance. An antibiosis locus resides on linkage group 3 (LG3) and is derived from A17, whereas a plant tolerance and antibiosis locus resides on LG6 and is derived from A20, which exhibits strong temporary tolerance. The loci identified reside in regions harbouring classical resistance genes, and introgression of these loci in current medic cultivars may help provide durable resistance to SAA, while elucidation of their molecular mechanisms may provide valuable insight into other aphid–plant interactions.

  10. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Dixon Richard A

    2008-12-01

    Full Text Available Abstract Background Exposure of Medicago truncatula cell suspension cultures to pathogen or wound signals leads to accumulation of various classes of flavonoid and/or triterpene defense molecules, orchestrated via a complex signalling network in which transcription factors (TFs are essential components. Results In this study, we analyzed TFs responding to yeast elicitor (YE or methyl jasmonate (MJ. From 502 differentially expressed TFs, WRKY and AP2/EREBP gene families were over-represented among YE-induced genes whereas Basic Helix-Loop-Helix (bHLH family members were more over-represented among the MJ-induced genes. Jasmonate ZIM-domain (JAZ transcriptional regulators were highly induced by MJ treatment. To investigate potential involvement of WRKY TFs in signalling, we expressed four Medicago WRKY genes in tobacco. Levels of soluble and wall bound phenolic compounds and lignin were increased in all cases. WRKY W109669 also induced tobacco endo-1,3-β-glucanase (NtPR2 and enhanced the systemic defense response to tobacco mosaic virus in transgenic tobacco plants. Conclusion These results confirm that Medicago WRKY TFs have broad roles in orchestrating metabolic responses to biotic stress, and that they also represent potentially valuable reagents for engineering metabolic changes that impact pathogen resistance.

  11. Sample preparation of Medicago sativa L. hay for chemical analysis ...

    African Journals Online (AJOL)

    The objective of this study was to quantify the effect of the grinding procedure on the moisture and crude protein concentration of a ground Medicago sativa L. hay sample for quality grading. An additional aim was to investigate the accuracy of electronic moisture testers (EMT). Variance of analyses revealed significant ...

  12. Soil quality effects on regeneration of annual Medicago pastures in ...

    African Journals Online (AJOL)

    Annual medic (Medicago spp.) pastures are widely used as the forage component of crop rotation systems in the Mediterranean region of South Africa. Reliable establishment of medics can be challenging. This may be related to poor soil quality, an inherent problem of soils in the region often aggravated by poor ...

  13. MediPlEx - a tool to combine in silico & experimental gene expression profiles of the model legume Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Stutz Leonhard J

    2010-10-01

    Full Text Available Abstract Background Expressed Sequence Tags (ESTs are in general used to gain a first insight into gene activities from a species of interest. Subsequently, and typically based on a combination of EST and genome sequences, microarray-based expression analyses are performed for a variety of conditions. In some cases, a multitude of EST and microarray experiments are conducted for one species, covering different tissues, cell states, and cell types. Under these circumstances, the challenge arises to combine results derived from the different expression profiling strategies, with the goal to uncover novel information on the basis of the integrated datasets. Findings Using our new analysis tool, MediPlEx (MEDIcago truncatula multiPLe EXpression analysis, expression data from EST experiments, oligonucleotide microarrays and Affymetrix GeneChips® can be combined and analyzed, leading to a novel approach to integrated transcriptome analysis. We have validated our tool via the identification of a set of well-characterized AM-specific and AM-induced marker genes, identified by MediPlEx on the basis of in silico and experimental gene expression profiles from roots colonized with AM fungi. Conclusions MediPlEx offers an integrated analysis pipeline for different sets of expression data generated for the model legume Medicago truncatula. As expected, in silico and experimental gene expression data that cover the same biological condition correlate well. The collection of differentially expressed genes identified via MediPlEx provides a starting point for functional studies in plant mutants. MediPlEx can freely be used at http://www.cebitec.uni-bielefeld.de/mediplex.

  14. No evidence for adaptation to local rhizobial mutualists in the legume Medicago lupulina.

    Science.gov (United States)

    Harrison, Tia L; Wood, Corlett W; Borges, Isabela L; Stinchcombe, John R

    2017-06-01

    Local adaptation is a common but not ubiquitous feature of species interactions, and understanding the circumstances under which it evolves illuminates the factors that influence adaptive population divergence. Antagonistic species interactions dominate the local adaptation literature relative to mutualistic ones, preventing an overall assessment of adaptation within interspecific interactions. Here, we tested whether the legume Medicago lupulina is adapted to the locally abundant species of mutualistic nitrogen-fixing rhizobial bacteria that vary in frequency across its eastern North American range. We reciprocally inoculated northern and southern M. lupulina genotypes with the northern ( Ensifer medicae ) or southern bacterium ( E. meliloti ) in a greenhouse experiment. Despite producing different numbers of root nodules (the structures in which the plants house the bacteria), neither northern nor southern plants produced more seeds, flowered earlier, or were more likely to flower when inoculated with their local rhizobia. We then used a pre-existing dataset to perform a genome scan for loci that showed elevated differentiation between field-collected plants that hosted different bacteria. None of the loci we identified belonged to the well-characterized suite of legume-rhizobia symbiosis genes, suggesting that the rhizobia do not drive genetic divergence between M. lupulina populations. Our results demonstrate that symbiont local adaptation has not evolved in this mutualism despite large-scale geographic variation in the identity of the interacting species.

  15. Medicago truncatula transporter database: a comprehensive database resource for M. truncatula transporters

    Directory of Open Access Journals (Sweden)

    Miao Zhenyan

    2012-02-01

    Full Text Available Abstract Background Medicago truncatula has been chosen as a model species for genomic studies. It is closely related to an important legume, alfalfa. Transporters are a large group of membrane-spanning proteins. They deliver essential nutrients, eject waste products, and assist the cell in sensing environmental conditions by forming a complex system of pumps and channels. Although studies have effectively characterized individual M. truncatula transporters in several databases, until now there has been no available systematic database that includes all transporters in M. truncatula. Description The M. truncatula transporter database (MTDB contains comprehensive information on the transporters in M. truncatula. Based on the TransportTP method, we have presented a novel prediction pipeline. A total of 3,665 putative transporters have been annotated based on International Medicago Genome Annotated Group (IMGAG V3.5 V3 and the M. truncatula Gene Index (MTGI V10.0 releases and assigned to 162 families according to the transporter classification system. These families were further classified into seven types according to their transport mode and energy coupling mechanism. Extensive annotations referring to each protein were generated, including basic protein function, expressed sequence tag (EST mapping, genome locus, three-dimensional template prediction, transmembrane segment, and domain annotation. A chromosome distribution map and text-based Basic Local Alignment Search Tools were also created. In addition, we have provided a way to explore the expression of putative M. truncatula transporter genes under stress treatments. Conclusions In summary, the MTDB enables the exploration and comparative analysis of putative transporters in M. truncatula. A user-friendly web interface and regular updates make MTDB valuable to researchers in related fields. The MTDB is freely available now to all users at http://bioinformatics.cau.edu.cn/MtTransporter/.

  16. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials.

    Science.gov (United States)

    Judy, Jonathan D; Kirby, Jason K; McLaughlin, Mike J; McNear, David; Bertsch, Paul M

    2016-07-01

    Silver (Ag) engineered nanomaterials (ENMs) are being released into waste streams and are being discharged, largely as Ag2S aged-ENMs (a-ENMs), into agroecosystems receiving biosolids amendments. Recent research has demonstrated that biosolids containing an environmentally relevant mixture of ZnO, TiO2, and Ag ENMs and their transformation products, including Ag2S a-ENMs, disrupted the symbiosis between nitrogen-fixing bacteria and legumes. However, this study was unable to unequivocally determine which ENM or combination of ENMs and a-ENMs was responsible for the observed inhibition. Here, we examined further the effects of polyvinylpyrollidone (PVP) coated pristine Ag ENMs (PVP-Ag), Ag2S a-ENMs, and soluble Ag (as AgSO4) at 1, 10, and 100 mg Ag kg(-1) on the symbiosis between the legume Medicago truncatula and the nitrogen-fixing bacterium, Sinorhizobium melliloti in biosolids-amended soil. Nodulation frequency, nodule function, glutathione reductase production, and biomass were not significantly affected by any of the Ag treatments, even at 100 mg kg(-1), a concentration analogous to a worst-case scenario resulting from long-term, repeated biosolids amendments. Our results provide additional evidence that the disruption of the symbiosis between nitrogen-fixing bacteria and legumes in response to a mixture of ENMs in biosolids-amended soil reported previously may not be attributable to Ag ENMs or their transformation end-products. We anticipate these findings will provide clarity to regulators and industry regarding potential unintended consequences to terrestrial ecosystems resulting from of the use of Ag ENMs in consumer products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biofertilizer in the nutritional quality of alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Rodrigo Luis Lemes

    2016-06-01

    Full Text Available The objective of this study was to evaluate the response of alfalfa (Medicago sativa L. in the nutritional composition to the application of biofertilizers. The experiment was conducted with increasing doses of biofertilizers in a greenhouse at the Faculty of Veterinary Medicine / UNESP, Araçatuba - Sao Paulo, Brazil, from April to October 2010. The experimental design was completely randomized with six biofertilizer doses from cattle manure (0, 25, 50, 100, 200, and 400 m3 ha-1 and five replications. Cuts were performed, on average, every 27 days, 10 cm above the ground when 10% of the plants were flowering. Biofertilization had a positive significant impact on foliar nitrogen, potassium, calcium, magnesium, sulfur, and shoot iron concentrations. The values of crude protein, acid detergent fiber, and neutral detergent fiber did not differ between doses of biofertilizers. Biofertilization is a viable alternative for nutrition of this species, showing positive results in the nutritional composition of alfalfa. However, but long-term studies are necessary to assess the environmental impact of these fertilizers.

  18. Degradation of lucerne stem cell walls by five rumen bacterial species

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.; Weimer, P.J.

    2004-01-01

    The rumen bacterial strains Butyrivibrio fibrisolvens H17c, Fibrobacter succinogenes S85, Lachnospira multiparus 40, Ruminococcus albus 7 and R. flavefaciens FD-1 were compared individually and as a five-species mixture with a rumen inoculum for their ability to degrade lucerne (Medicago sativa L.)

  19. Discovery AP2/ERF family genes in silico in Medicago truncatula

    African Journals Online (AJOL)

    aghomotsegin

    Medicago truncatula is a legume model plant due to its small genome and it has been used to study the molecular events of legume ... molecular mechanism of stress responses of AP2/EREBPs. ..... comprehensive profiling of developmental, hormonal or ... interactions with other organisms, plant development and stress.

  20. Growth characteristics and nutrient content of some herbaceous species under shade and fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Koukoura, Z.; Kyriazopoulos, A. P.; Parissi, Z. M.

    2009-07-01

    Herbage production and nutrient content are affected by light interception and soil fertility. The objective of this study was to assess the effects of artificial shade and fertilization on herbage production, growth characteristics, and nutrient content of the grass species Dactylis glomerata and Festuca ovina, and the legume species Trifolium subterraneum and Medicago lupulina. Each plant species was placed under three shading treatments of 90% (heavy shade), 50% (moderate shade) and 0% (control). Fertilization (225 kg ha{sup -}1 N, 450 kg ha{sup -}1 P, and 225 kg ha{sup -}1 K) was applied to half of the pots of every species and shading treatment. Reduced light intensity (90% shading) significantly lowered herbage production from 18% for F. ovina to 48% for D. glomerata and decreased the root:shoot (R/S) ratio of all species but the moderate reduction of light intensity (50%) did not affect R/S ratio and herbage production of the grasses and M. lupulina, while it resulted in an increase of the production of T. subterraneum by 10.5%. Reduced light intensity increased by 25% on average, the crude protein concentration of the grass species while moderate shading did not affect the crude protein concentration of T. subterraneum. Fertilization increased herbage production from 16% for F. ovina to 59% for D. glomerata and ameliorated its nutrient content. Among the tested species, D. glomerata and T. subterraneum demonstrated the highest shade tolerance and could be incorporated into silvopastoral systems of the Mediterranean region. (Author)

  1. Microsynteny between pea and Medicago truncatula in the SYM2 region

    NARCIS (Netherlands)

    Gualtieri, G.; Kulikova, O.; Limpens, E.; Kim, D.J.; Cook, D.R.; Bisseling, T.; Geurts, R.

    2002-01-01

    The crop legume pea (Pisum sativum) is genetically well characterized. However, due to its large genome it is not amenable to efficient positional cloning strategies. The purpose of this study was to determine if the model legume Medicago truncatula, which is a close relative of pea, could be used

  2. Glutamine synthetase in Medicago truncatula, unveiling new secrets of a very old enzyme

    Directory of Open Access Journals (Sweden)

    Ana Rita Seabra

    2015-07-01

    Full Text Available Glutamine Synthetase (GS catalyses the first step at which nitrogen is brought into cellular metabolism and is also involved in the reassimilation of ammonium released by a number of metabolic pathways. Due to its unique position in plant nitrogen metabolism, GS plays essential roles in all aspects of plant development, from germination to senescence, and is a key component of nitrogen use efficiency (NUE and plant yield. Understanding the mechanisms regulating GS activity is therefore of utmost importance and a great effort has been dedicated to understand how GS is regulated in different plant species. The present review summarizes exciting recent developments concerning the structure and regulation of glutamine synthetase isoenzymes, using the model legume Medicago truncatula. These include the understanding of the structural determinants of both the cytosolic and plastid located isoenzymes, the existence of a seed-specific GS gene unique to M. truncatula and closely related species and the discovery that GS isoenzymes are regulated by nitric oxide at the post-translational level. The data is discussed and integrated with the potential roles of the distinct GS isoenzymes within the whole plant context.

  3. Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins.

    Science.gov (United States)

    Carelli, Maria; Biazzi, Elisa; Panara, Francesco; Tava, Aldo; Scaramelli, Laura; Porceddu, Andrea; Graham, Neil; Odoardi, Miriam; Piano, Efisio; Arcioni, Sergio; May, Sean; Scotti, Carla; Calderini, Ornella

    2011-08-01

    Saponins, a group of glycosidic compounds present in several plant species, have aglycone moieties that are formed using triterpenoid or steroidal skeletons. In spite of their importance as antimicrobial compounds and their possible benefits for human health, knowledge of the genetic control of saponin biosynthesis is still poorly understood. In the Medicago genus, the hemolytic activity of saponins is related to the nature of their aglycone moieties. We have identified a cytochrome P450 gene (CYP716A12) involved in saponin synthesis in Medicago truncatula using a combined genetic and biochemical approach. Genetic loss-of-function analysis and complementation studies showed that CYP716A12 is responsible for an early step in the saponin biosynthetic pathway. Mutants in CYP716A12 were unable to produce hemolytic saponins and only synthetized soyasaponins, and were thus named lacking hemolytic activity (lha). In vitro enzymatic activity assays indicate that CYP716A12 catalyzes the oxidation of β-amyrin and erythrodiol at the C-28 position, yielding oleanolic acid. Transcriptome changes in the lha mutant showed a modulation in the main steps of triterpenic saponin biosynthetic pathway: squalene cyclization, β-amyrin oxidation, and glycosylation. The analysis of CYP716A12 expression in planta is reported together with the sapogenin content in different tissues and stages. This article provides evidence for CYP716A12 being a key gene in hemolytic saponin biosynthesis.

  4. Transcript profiling of two alfalfa genotypes with contrasting cell wall composition in stems using a cross-species platform: optimizing analysis by masking biased probes

    Directory of Open Access Journals (Sweden)

    Jung Hans-Joachim G

    2010-05-01

    Full Text Available Abstract Background The GeneChip® Medicago Genome Array, developed for Medicago truncatula, is a suitable platform for transcript profiling in tetraploid alfalfa [Medicago sativa (L. subsp. sativa]. However, previous research involving cross-species hybridization (CSH has shown that sequence variation between two species can bias transcript profiling by decreasing sensitivity (number of expressed genes detected and the accuracy of measuring fold-differences in gene expression. Results Transcript profiling using the Medicago GeneChip® was conducted with elongating stem (ES and post-elongation stem (PES internodes from alfalfa genotypes 252 and 1283 that differ in stem cell wall concentrations of cellulose and lignin. A protocol was developed that masked probes targeting inter-species variable (ISV regions of alfalfa transcripts. A probe signal intensity threshold was selected that optimized both sensitivity and accuracy. After masking for both ISV regions and previously identified single-feature polymorphisms (SFPs, the number of differentially expressed genes between the two genotypes in both ES and PES internodes was approximately 2-fold greater than the number detected prior to masking. Regulatory genes, including transcription factor and receptor kinase genes that may play a role in development of secondary xylem, were significantly over-represented among genes up-regulated in 252 PES internodes compared to 1283 PES internodes. Several cell wall-related genes were also up-regulated in genotype 252 PES internodes. Real-time quantitative RT-PCR of differentially expressed regulatory and cell wall-related genes demonstrated increased sensitivity and accuracy after masking for both ISV regions and SFPs. Over 1,000 genes that were differentially expressed in ES and PES internodes of genotypes 252 and 1283 were mapped onto putative orthologous loci on M. truncatula chromosomes. Clustering simulation analysis of the differentially expressed genes

  5. The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses

    Science.gov (United States)

    Young, Nevin D.; Debellé, Frédéric; Oldroyd, Giles E. D.; Geurts, Rene; Cannon, Steven B.; Udvardi, Michael K.; Benedito, Vagner A.; Mayer, Klaus F. X.; Gouzy, Jérôme; Schoof, Heiko; Van de Peer, Yves; Proost, Sebastian; Cook, Douglas R.; Meyers, Blake C.; Spannagl, Manuel; Cheung, Foo; De Mita, Stéphane; Krishnakumar, Vivek; Gundlach, Heidrun; Zhou, Shiguo; Mudge, Joann; Bharti, Arvind K.; Murray, Jeremy D.; Naoumkina, Marina A.; Rosen, Benjamin; Silverstein, Kevin A. T.; Tang, Haibao; Rombauts, Stephane; Zhao, Patrick X.; Zhou, Peng; Barbe, Valérie; Bardou, Philippe; Bechner, Michael; Bellec, Arnaud; Berger, Anne; Bergès, Hélène; Bidwell, Shelby; Bisseling, Ton; Choisne, Nathalie; Couloux, Arnaud; Denny, Roxanne; Deshpande, Shweta; Dai, Xinbin; Doyle, Jeff; Dudez, Anne-Marie; Farmer, Andrew D.; Fouteau, Stéphanie; Franken, Carolien; Gibelin, Chrystel; Gish, John; Goldstein, Steven; González, Alvaro J.; Green, Pamela J.; Hallab, Asis; Hartog, Marijke; Hua, Axin; Humphray, Sean; Jeong, Dong-Hoon; Jing, Yi; Jöcker, Anika; Kenton, Steve M.; Kim, Dong-Jin; Klee, Kathrin; Lai, Hongshing; Lang, Chunting; Lin, Shaoping; Macmil, Simone L; Magdelenat, Ghislaine; Matthews, Lucy; McCorrison, Jamison; Monaghan, Erin L.; Mun, Jeong-Hwan; Najar, Fares Z.; Nicholson, Christine; Noirot, Céline; O’Bleness, Majesta; Paule, Charles R.; Poulain, Julie; Prion, Florent; Qin, Baifang; Qu, Chunmei; Retzel, Ernest F.; Riddle, Claire; Sallet, Erika; Samain, Sylvie; Samson, Nicolas; Sanders, Iryna; Saurat, Olivier; Scarpelli, Claude; Schiex, Thomas; Segurens, Béatrice; Severin, Andrew J.; Sherrier, D. Janine; Shi, Ruihua; Sims, Sarah; Singer, Susan R.; Sinharoy, Senjuti; Sterck, Lieven; Viollet, Agnès; Wang, Bing-Bing; Wang, Keqin; Wang, Mingyi; Wang, Xiaohong; Warfsmann, Jens; Weissenbach, Jean; White, Doug D.; White, Jim D.; Wiley, Graham B.; Wincker, Patrick; Xing, Yanbo; Yang, Limei; Yao, Ziyun; Ying, Fu; Zhai, Jixian; Zhou, Liping; Zuber, Antoine; Dénarié, Jean; Dixon, Richard A.; May, Gregory D.; Schwartz, David C.; Rogers, Jane; Quétier, Francis; Town, Christopher D.; Roe, Bruce A.

    2011-01-01

    Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation 1. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Mya). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species 2. Medicago truncatula (Mt) is a long-established model for the study of legume biology. Here we describe the draft sequence of the Mt euchromatin based on a recently completed BAC-assembly supplemented with Illumina-shotgun sequence, together capturing ~94% of all Mt genes. A whole-genome duplication (WGD) approximately 58 Mya played a major role in shaping the Mt genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the Mt genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max (Gm) and Lotus japonicus (Lj). Mt is a close relative of alfalfa (M. sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the Mt genome sequence provides significant opportunities to expand alfalfa’s genomic toolbox. PMID:22089132

  6. Effects of the weed density on grass yield of Alfalfa ( Medicago ...

    African Journals Online (AJOL)

    This study, in which the effects of different row spacing applications on weed density and on grass yield of Medicago sativa L. were investigated, was carried out in Van-Turkey from 2006 - 2008. Randomized blocks design was adopted with three replications. Row spacing applications of 20, 30, 40, 50, 60 and 70 cm were ...

  7. Exploring the plant-associated bacterial communities in Medicago sativa L

    Directory of Open Access Journals (Sweden)

    Pini Francesco

    2012-05-01

    Full Text Available Abstract Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti. However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40% between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may

  8. Accumulation of heavy metals in Medicago sativa L. and Trifolium pratense L. at the contaminated fluvisol

    Directory of Open Access Journals (Sweden)

    Jakšić Snežana P.

    2013-01-01

    Full Text Available Recently, heavy metals concentrations increased in some agricultural areas due to the consequences of anthropogenic impacts. The aim of this study was to determine the level of heavy metals (As, Cr, Ni and Pb in Medicago sativa L. and Trifolium pratense L. grown on fluvisol, in order to obtain information on safety of these nutrients. The total content of Pb, As, Cr and Ni in the samples of fluvisol was above the maximum allowable amount. The content of heavy metals in Medicago sativa L. and Trifolium pratense L. was below the critical and toxic concentrations in all samples originating from contaminated soil. It was concluded that the accumulation of heavy metals in plants did not depend only on the total content in soil, but also the affinity of the plant, and individual and interactive effects of various soil properties. No statistically significant differences in the accumulation of heavy metals between Medicago sativa L. and Trifolium pratense L were observed. It is necessary to further control of heavy metals in the investigated area, in order to prevent their entry into the food chain and provide healthy food.

  9. Stress responses in alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Kessmann, H.; Edwards, R.; Dixon, R.A.; Geno, P.W.

    1990-01-01

    The isoflavonoid conjugates medicarpin-3-O-glucoside-6 double-prime-O-malonate (MGM), afrormosin-7-O-glucoside (AG), and afrormosin-7-O-glucoside-6 double-prime-O-malonate (AGM) were isolated and characterized from cell suspension cultures of alfalfa (Medicago sativa L.), where they were the major constitutive secondary metabolites. They were also found in alfalfa roots but not in other parts of the plant. The phytoalexin medicarpin accumulated rapidly in suspension cultured cells treated with elicitor from Colletotrichum lindemuthianum, and this was subsequently accompanied by an increase in the levels of MGM. In contrast, net accumulation of afrormosin conjugates was not affected by elicitor treatment. Labeling studies with [ 14 C]phenylalanine indicated that afrormosin conjugates were the major de novo synthesized isoflavonoid products in unelicited cells. During elicitation, [ 14 C]phenylalanine was incorporated predominantly into medicarpin, although a significant proportion of the newly synthesized medicarpin was also conjugated. Treatment of 14 C-labeled, elicited cells with L-α-aminooxy-β-phenylpropionic acid, a potent inhibitor of PAL activity in vivo, resulted in the initial appearance of labeled medicarpin of very low specific activity, suggesting that the phytoalexin could be released from a preformed conjugate under these conditions. Our data draw attention to the involvement of isoflavone hydroxylases during the constitutive and elicitor-induced accumulation of isoflavonoids and their conjugates in alfalfa cell cultures

  10. Bioinformatics Analysis of MAPKKK Family Genes in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-04-01

    Full Text Available Mitogen‐activated protein kinase kinase kinase (MAPKKK is a component of the MAPK cascade pathway that plays an important role in plant growth, development, and response to abiotic stress, the functions of which have been well characterized in several plant species, such as Arabidopsis, rice, and maize. In this study, we performed genome‐wide and systemic bioinformatics analysis of MAPKKK family genes in Medicago truncatula. In total, there were 73 MAPKKK family members identified by search of homologs, and they were classified into three subfamilies, MEKK, ZIK, and RAF. Based on the genomic duplication function, 72 MtMAPKKK genes were located throughout all chromosomes, but they cluster in different chromosomes. Using microarray data and high‐throughput sequencing‐data, we assessed their expression profiles in growth and development processes; these results provided evidence for exploring their important functions in developmental regulation, especially in the nodulation process. Furthermore, we investigated their expression in abiotic stresses by RNA‐seq, which confirmed their critical roles in signal transduction and regulation processes under stress. In summary, our genome‐wide, systemic characterization and expressional analysis of MtMAPKKK genes will provide insights that will be useful for characterizing the molecular functions of these genes in M. truncatula.

  11. Effects of legume species introduction on vegetation and soil nutrient development on abandoned croplands in a semi-arid environment on the Loess Plateau, China.

    Science.gov (United States)

    Yuan, Zi-Qiang; Yu, Kai-Liang; Epstein, Howard; Fang, Chao; Li, Jun-Ting; Liu, Qian-Qian; Liu, Xue-Wei; Gao, Wen-Juan; Li, Feng-Min

    2016-01-15

    Revegetation facilitated by legume species introduction has been used for soil erosion control on the Loess Plateau, China. However, it is still unclear how vegetation and soil resources develop during this restoration process, especially over the longer term. In this study, we investigated the changes of plant aboveground biomass, vegetation cover, species richness and density of all individuals, and soil total nitrogen, mineral nitrogen, total phosphorus and available phosphorus over 11 years from 2003 to 2013 in three treatments (natural revegetation, Medicago sativa L. introduction and Melilotus suaveolens L. introduction) on the semi-arid Loess Plateau. Medicago significantly increased aboveground biomass and vegetation cover, and soil total nitrogen and mineral nitrogen contents. The Medicago treatment had lower species richness and density of all individuals, lower soil moisture in the deep soil (i.e., 1.4-5m), and lower soil available phosphorus. Melilotus introduction significantly increased aboveground biomass in only the first two years, and it was not an effective approach to improve vegetation biomass and cover, and soil nutrients, especially in later stages of revegetation. Overall, our study suggests that M. sativa can be the preferred plant species for revegetation of degraded ecosystems on the Loess Plateau, although phosphorus fertilizer should be applied for the sustainability of the revegetation. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Medicago truncatula CYP716A12 Is a Multifunctional Oxidase Involved in the Biosynthesis of Hemolytic Saponins[W

    Science.gov (United States)

    Carelli, Maria; Biazzi, Elisa; Panara, Francesco; Tava, Aldo; Scaramelli, Laura; Porceddu, Andrea; Graham, Neil; Odoardi, Miriam; Piano, Efisio; Arcioni, Sergio; May, Sean; Scotti, Carla; Calderini, Ornella

    2011-01-01

    Saponins, a group of glycosidic compounds present in several plant species, have aglycone moieties that are formed using triterpenoid or steroidal skeletons. In spite of their importance as antimicrobial compounds and their possible benefits for human health, knowledge of the genetic control of saponin biosynthesis is still poorly understood. In the Medicago genus, the hemolytic activity of saponins is related to the nature of their aglycone moieties. We have identified a cytochrome P450 gene (CYP716A12) involved in saponin synthesis in Medicago truncatula using a combined genetic and biochemical approach. Genetic loss-of-function analysis and complementation studies showed that CYP716A12 is responsible for an early step in the saponin biosynthetic pathway. Mutants in CYP716A12 were unable to produce hemolytic saponins and only synthetized soyasaponins, and were thus named lacking hemolytic activity (lha). In vitro enzymatic activity assays indicate that CYP716A12 catalyzes the oxidation of β-amyrin and erythrodiol at the C-28 position, yielding oleanolic acid. Transcriptome changes in the lha mutant showed a modulation in the main steps of triterpenic saponin biosynthetic pathway: squalene cyclization, β-amyrin oxidation, and glycosylation. The analysis of CYP716A12 expression in planta is reported together with the sapogenin content in different tissues and stages. This article provides evidence for CYP716A12 being a key gene in hemolytic saponin biosynthesis. PMID:21821776

  13. Cyclin-like F-box protein plays a role in growth and development of the three model species Medicago truncatula, Lotus japonicus, and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Boycheva I

    2015-08-01

    Full Text Available Irina Boycheva,1 Valya Vassileva,2 Miglena Revalska,1 Grigor Zehirov,2 Anelia Iantcheva1 1Department of Functional Genetics Legumes, 2AgroBioInstitute, Department of Plant Stress Molecular Biology, Institute of Plant Physiology and Genetics, Sofia, Bulgaria Abstract: In eukaryotes, F-box proteins are one of the main components of the SCF complex that belongs to the family of ubiquitin E3 ligases, which catalyze protein ubiquitination and maintain the balance between protein synthesis and degradation. In the present study, we clarified the role and function of the gene encoding cyclin-like F-box protein from Medicago truncatula using transgenic plants of the model species M. truncatula, Lotus japonicas, and Arabidopsis thaliana generated by Agrobacterium-mediated transformation. Morphological and transcriptional analyses combined with flow cytometry and histochemistry demonstrated the participation of this protein in many aspects of plant growth and development, including processes of indirect somatic embryogenesis and symbiotic nodulation. The cyclin-like F-box gene showed expression in all plant organs and tissues comprised of actively dividing cells. The observed variations in root and hypocotyl growth, leaf and silique development, ploidy levels, and leaf parameters in the obtained transgenic lines demonstrated the effects of this gene on organ development. Furthermore, knockdown of cyclin-like F-box led to accumulation of higher levels of the G2/M transition-specific gene cyclin B1:1 (CYCB1:1, suggesting its possible role in cell cycle control. Together, the collected data suggest a similar role of the cyclin-like F-box protein in the three model species, providing evidence for the functional conservation of the studied gene. Keywords: cyclin-like F-box, model legumes, Arabidopsis thaliana, plant growth, plant development, cell cycle

  14. Bees (Hymenoptera, Apoidea, Apiformes in the Agricultural Landscape of Bulgaria: Species Diversity

    Directory of Open Access Journals (Sweden)

    Banaszak Józef

    2014-06-01

    Full Text Available Wild bees (Apiformes were studied in 4 crop fields and 8 refuge habitats for 2 - 5 years in agricultural landscapes in the Pleven and Plovdiv regions of Bulgaria. In total, 233 bee species were recorded. Bee forage plants visited by the honey bee and wild Apiformes are listed for each refuge habitat. Species composition is given for individual habitats, including fields of alfalfa (Medicago sativa, oilseed rape (Brassica napus, sunflower (Helianthus annuus, and radish (Raphanus sativus. Species richness and dominance structure of bee communities in the 2 regions are compared, and species responsible for significant differences are identified.

  15. Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds

    Directory of Open Access Journals (Sweden)

    Seabra Ana R

    2010-08-01

    Full Text Available Abstract Background Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS, occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in Medicago truncatula. Results This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2 in M. truncatula. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene. Conclusions This study shows that Medicago truncatula contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate

  16. Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn.

    Science.gov (United States)

    Amer, Nasser; Al Chami, Ziad; Al Bitar, Lina; Mondelli, Donato; Dumontet, Stefano

    2013-01-01

    Suitable plant species are able to accumulate heavy metals and to produce biomass useful for non-food purposes. In this study, three endemic Mediterranean plant species, Atriplex halimus, Portulaca oleracea and Medicago lupulina were grown hydroponically to assess their potential use in phytoremediation and biomass production. The experiment was carried out in a growth chamber using half strength Hoagland's solutions separately spiked with 5 concentrations of Pb and Zn (5, 10, 25, 50, and 100 mg L(-1)), and 3 concentrations of Ni (1, 2 and 5 mg L(-1)). Shoot and root biomass were determined and analyzed for their metals contents. A. halimus and M. lupulina gave high shoot biomass with relatively low metal translocation to the above ground parts. Metals uptake was a function of both metals and plant species. It is worth noting that M. lupulina was the only tested plant able to grow in treatment Pb50 and to accumulate significant amount of metal in roots. Plant metal uptake efficiency ranked as follows: A. halimus > M. lupulina > P. oleracea. Due to its high biomass production and the relatively high roots metal contents, A. halimus and M. lupulina could be successfully used in phytoremediation, and in phytostabilization, in particular.

  17. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa).

    Science.gov (United States)

    Hong, Jie; Rico, Cyren M; Zhao, Lijuan; Adeleye, Adeyemi S; Keller, Arturo A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-01-01

    The increased production and use of nanoparticles (NPs) has generated concerns about their impact on living organisms. In this study, nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2 were exposed for 15 days to 10 days-old hydroponically grown lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Each compound was applied at 0, 5, 10, and 20 mg L(-1). At harvest, we measured the size of the plants and determined the concentration of Cu, macro and microelements by using ICP-OES. Catalase and ascorbate peroxidase activity was also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. All Cu NPs/compounds increased Cu, P, and S (>100%, >50%, and >20%, respectively) in alfalfa shoots and decreased P and Fe in lettuce shoot (>50% and >50%, respectively, excluding Fe in CuCl2 treatment). Biochemical assays showed reduced catalase activity in alfalfa (root and shoot) and increased ascorbate peroxidase activity in roots of both plant species. Results suggest that Cu NPs/compounds not only reduced the size of the plants but altered nutrient content and enzyme activity in both plant species.

  18. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula.

    Science.gov (United States)

    Bazin, Jérémie; Khan, Ghazanfar Abbas; Combier, Jean-Philippe; Bustos-Sanmamed, Pilar; Debernardi, Juan Manuel; Rodriguez, Ramiro; Sorin, Céline; Palatnik, Javier; Hartmann, Caroline; Crespi, Martin; Lelandais-Brière, Christine

    2013-06-01

    The root system is crucial for acquisition of resources from the soil. In legumes, the efficiency of mineral and water uptake by the roots may be reinforced due to establishment of symbiotic relationships with mycorrhizal fungi and interactions with soil rhizobia. Here, we investigated the role of miR396 in regulating the architecture of the root system and in symbiotic interactions in the model legume Medicago truncatula. Analyses with promoter-GUS fusions suggested that the mtr-miR396a and miR396b genes are highly expressed in root tips, preferentially in the transition zone, and display distinct expression profiles during lateral root and nodule development. Transgenic roots of composite plants that over-express the miR396b precursor showed lower expression of six growth-regulating factor genes (MtGRF) and two bHLH79-like target genes, as well as reduced growth and mycorrhizal associations. miR396 inactivation by mimicry caused contrasting tendencies, with increased target expression, higher root biomass and more efficient colonization by arbuscular mycorrhizal fungi. In contrast to MtbHLH79, repression of three GRF targets by RNA interference severely impaired root growth. Early activation of mtr-miR396b, concomitant with post-transcriptional repression of MtGRF5 expression, was also observed in response to exogenous brassinosteroids. Growth limitation in miR396 over-expressing roots correlated with a reduction in cell-cycle gene expression and the number of dividing cells in the root apical meristem. These results link the miR396 network to the regulation of root growth and mycorrhizal associations in plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  19.  Molecular evolution and positive selection of the symbiotic gene NORK in Medicago truncatula

    DEFF Research Database (Denmark)

    De Mita, Stephane; Santoni, Sylvain; Hochu, Isabelle

    2006-01-01

    . The membrane-anchored receptor NORK (nodulation receptor kinase) of the legume Medicago truncatula controls early steps of root infection by two symbiotic microorganisms: nitrogen-fixing bacteria (rhizobia) and endomycorrhizal fungi (Glomales). We analyzed the diversity of the gene NORK by sequencing 4...

  20. ECONOMIC VALUE OF SOME LEGUMINOUS PLANT SPECIES OF THE COLLECTIONS FROM THE BOTANICAL GARDEN (INSTITUTE OF THE ACADEMY OF SCIENCES OF MOLDOVA

    Directory of Open Access Journals (Sweden)

    Alexandru TELEUTA

    2016-12-01

    Full Text Available The results of the evaluation of the growth and development rates, the seed productivity, the green mass yield, the biochemical composition and the content of amino acids, phosphorous and calcium, the nutritive and energy value of the forage, as well as the biomethane productivity of local ecotypes of the leguminous species maintained in monoculture, in the collection of the Botanical Garden (Institute of the Academy of Sciences of Moldova (BG ASM: Astragalus ponticus, Coronilla varia, Lotus corniculatus, Medicago falcata, Onobrychis arenaria and Trifolium repens are presented in this article. Control variants – the traditional forage crops: Medicago sativa and Onobrychis viciifolia. The local ecotypes of the studied leguminous species were characterized by different growth and development rates. Coronilla varia and Lotus corniculatus, in the 2nd-3rd years, could be harvested, for the first time, 5 days earlier than Medicago sativa, but Medicago falcata and Onobrychis viciifolia – 18 days later. The green mass yield varied from 0.83 kg/m2 to 4.08 kg/m2. The studied ecotypes reached amounts of 0.60-0.89 nutritive units/kg and metabolizable energy 8.05-9.90 MJ/kg of dry matter, the content of digestible protein, of 106.28-225.09 g/nutritive unit, met the zootechnical standards; seed production: 19.12-83.00 g/m2; the biomethane yield ranged from 692 to 3197 m3/ha. Higher yield of natural forage, dry matter and biomethane was produced by Onobrychis arenaria and Coronilla varia.

  1. Lucerne (Medicago sativa) or grass-clover as cut-and-carry fertilizers in organic agriculture

    NARCIS (Netherlands)

    Burgt, van der G.J.H.M.; Eekeren, van N.J.M.; Scholberg, J.M.S.; Koopmans, C.J.

    2013-01-01

    Onfarm nitrogen fixation is a driving force in organic agriculture. The efficiency with which this nitrogen is used can be increased by using lucerne (Medicago sativa) or grassclover directly as sources of fertilizer on arable land: cutandcarry fertilizers. In two arable crops, the use of lucerne

  2. THE PERSPECTIVE OF CULTIVATION AND UTILIZATION OF THE NEW LEGUMINOUS GRASSES SPECIES IN MOLDOVA

    Directory of Open Access Journals (Sweden)

    Alexandru TELEUŢĂ

    2015-10-01

    Full Text Available The development and modernization of our country’s agriculture is related to the revitalization of the animal breeding sector along with the implementation of new genotypes of animals and diversification of fodder production, balanced in terms of quantity and quality throughout the year, suitable for the physiological requirements of animals, and qualitative products as required in the market. Scientific research conducted in the Botanical Garden (Institute of the ASM over decades was aimed at mobilization, improvement and implementation of new non-traditional plant species that use efficiently photosynthetic active radiation and land resources to obtain fodder with a high level of vegetable protein, the fodder leguminous grasses (fam. Fabaceae Lindl. play an important role. We have studied the biological peculiarities, productivity, chemical composition and nutritional value of new fodder leguminous plant species Astragalus galegiformis, Onobrychis inermis and Medicago tianschanica of the collection of non-traditional fodder plants of the Botanical Garden (Institute of the ASM, the traditional forage crop alfalfa served as control variant. The nutritional value of fresh mass accounts: the Astragalus galegiformis - 0.27 nutritive units, 3.26 MJ metabolizable energy and 146g digestible protein/nutritive unit; Onobrychis inermis - 0.25 nutritive units, 2.56 MJ metabolizable energy and 154 g digestible protein/nutritive unit; Medicago tianschanica - 0.24 nutritive units, 2.86 MJ metabolizable energy and 173 g digestible protein/nutritive unit and alfalfa - 0.21 nutritive units, 2.28 MJ metabolizable energy and 164 g digestible protein/nutritive unit. Due to the productivity and high and stable quality of fodder, use of the plantation for a long period of time, capacity of fixing atmospheric nitrogen, the new fodder leguminous species Astragalus galegiformis, Onobrychis inermis and Medicago tianschanica can serve as initial material for enriching

  3. The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.

    Science.gov (United States)

    Friesen, Maren L; von Wettberg, Eric J B; Badri, Mounawer; Moriuchi, Ken S; Barhoumi, Fathi; Chang, Peter L; Cuellar-Ortiz, Sonia; Cordeiro, Matilde A; Vu, Wendy T; Arraouadi, Soumaya; Djébali, Naceur; Zribi, Kais; Badri, Yazid; Porter, Stephanie S; Aouani, Mohammed Elarbi; Cook, Douglas R; Strauss, Sharon Y; Nuzhdin, Sergey V

    2014-12-22

    As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and understanding plant adaptation to salt stress can help enable effective crop breeding. Salt tolerance is a complex plant phenotype and we know little about the pathways utilized by naturally tolerant plants. Legumes are important species in agricultural and natural ecosystems, since they engage in symbiotic nitrogen-fixation, but are especially vulnerable to salinity stress. Our studies of the model legume Medicago truncatula in field and greenhouse settings demonstrate that Tunisian populations are locally adapted to saline soils at the metapopulation level and that saline origin genotypes are less impacted by salt than non-saline origin genotypes; these populations thus likely contain adaptively diverged alleles. Whole genome resequencing of 39 wild accessions reveals ongoing migration and candidate genomic regions that assort non-randomly with soil salinity. Consistent with natural selection acting at these sites, saline alleles are typically rare in the range-wide species' gene pool and are also typically derived relative to the sister species M. littoralis. Candidate regions for adaptation contain genes that regulate physiological acclimation to salt stress, such as abscisic acid and jasmonic acid signaling, including a novel salt-tolerance candidate orthologous to the uncharacterized gene AtCIPK21. Unexpectedly, these regions also contain biotic stress genes and flowering time pathway genes. We show that flowering time is differentiated between saline and non-saline populations and may allow salt stress escape. This work nominates multiple potential pathways of adaptation to naturally stressful environments in a model legume. These candidates point to the importance of both tolerance and avoidance in natural legume populations. We have uncovered several promising targets that could be used to breed for enhanced salt tolerance in crop legumes to enhance food security

  4. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    Science.gov (United States)

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  5. Detection of Norspermidine and Norspermine in Medicago sativa L. (Alfalfa) 1

    Science.gov (United States)

    Rodriguez-Garay, Benjamin; Phillips, Gregory C.; Kuehn, Glenn D.

    1989-01-01

    Shoot meristem tissues of alfalfa, Medicago sativa L., were found by high performance liquid chromatography analyses to contain the uncommon polyamines, norspermidine and norspermine. The chemical structures of norspermidine and norspermine, purified from alfalfa, were confirmed by comparison of mass spectra with those from authentic standards. The discovery of norspermidine and norspermine in alfalfa implicates the presence of at least two biosynthetic enzymes, a polyamine oxidase and a previously uncharacterized aminopropyltransferase. PMID:16666576

  6. Differential Effects of Legume Species on the Recovery of Soil Microbial Communities, and Carbon and Nitrogen Contents, in Abandoned Fields of the Loess Plateau, China

    Science.gov (United States)

    Li, Jin Hua; Jiao, Shu Mei; Gao, Rong Qing; Bardgett, Richard D.

    2012-12-01

    Plant-soil interactions are known to influence a wide range of ecosystem-level functions. Moreover, the recovery of these functions is of importance for the successful restoration of soils that have been degraded through intensive and/or inappropriate land use. Here, we assessed the effect of planting treatments commonly used to accelerate rates of grassland restoration, namely introduction of different legume species Medicago sativa, Astragalus adsurgens, Melilotus suaveolens, on the recovery of soil microbial communities and carbon and nitrogen contents in abandoned fields of the Loess Plateau, China. The results showed effects were species-specific, and either positive, neutral or negative depending on the measure and time-scale. All legumes increased basal respiration and metabolic quotient and had a positive effect on activity and functional diversity of the soil microbial community, measured using Biolog EcoPlate. However, soil under Astragalus adsurgens had the highest activity and functional diversity relative to the other treatments. Soil carbon and nitrogen content and microbial biomass were effectively restored in 3-5 years by introducing Medicago sativa and Astragalus adsurgens into early abandoned fields. Soil carbon and nitrogen content were retarded in 3-5 years and microbial biomass was retarded in the fifth year by introducing Melilotus suaveolens. Overall, the restoration practices of planting legumes can significantly affect soil carbon and nitrogen contents, and the biomass, activity, and functional diversity of soil microbial community. Therefore, we propose certain legume species could be used to accelerate ecological restoration of degraded soils, hence assist in the protection and preservation of the environment.

  7. Germination and root elongation bioassays in six different plant species for testing Ni contamination in soil.

    Science.gov (United States)

    Visioli, Giovanna; Conti, Federica D; Gardi, Ciro; Menta, Cristina

    2014-04-01

    In vitro short-term chronic phytotoxicity germination and root elongation test were applied to test the effects of nickel (Ni) in seed germination and root elongation in six plants species: Cucumis sativus (Cucurbitaceae), Lepidium sativum and Brassica nigra (Brassicaceae), Trifolium alexandrinum and Medicago sativa (Fabaceae), Phacelia tanacetifolia (Boraginaceae). A naturally Ni rich soil was used to compare the results obtained. Unlike root elongation, germination was not affected by Ni in any of the six species tested. EC50 values, calculated on the root elongation, showed that Ni toxicity decreases in the following order: P. tanacetifolia > B. nigra > C. sativus > L. sativum > M. sativa > T. alexandrinum. The test conducted using soil elutriate revealed a significantly lower effect in both seed germination and root elongation when compared to the results obtained using untreated soil. Conversely, the test performed on soil confirmed the high sensitivity of C. sativus, P. tanacetifolia and L. sativum to Ni.

  8. Forage production and N2 fixation in mixed cropping of saltbush and shrubby medic grown on a salt affected soil

    International Nuclear Information System (INIS)

    Kurdali, F.

    2008-11-01

    Two experiments were conducted to evaluate dry matter, nitrogen yield, N 2 fixation (Ndfa) and soil N uptake in saltbush (Atriplex halimus) and shrubby medic (Medicago arborea) grown either solely or in mixture on a salt affected soil, using 15 N tracer techniques. In a pot experiment, the combined dry matter yield of both species was considerably higher than that of solely grown shrubs. The inclusion of saltbush in the mixed cropping system decreased soil N uptake by shrubby medic and enhanced %Ndfa without affecting amounts of N 2 fixed. Under field conditions, estimated values of %Ndfa via δ 15 N natural abundance were relatively similar to those of the pot experiment using 15 N enrichment method. It can be concluded that the use of mixed cropping system of shrubby medic and saltbush could be a promising bio-saline agricultural approach to utilize salt affected soils in terms of forage yield and N 2 -fixation. (Author)

  9. A method for the isolation of root hairs from the model legume Medicago truncatula

    NARCIS (Netherlands)

    Ramos Escribano, J.; Bisseling, T.

    2003-01-01

    A new method for the isolation of root hairs from the model legume, Medicago truncatula, was developed. The procedure involves the propagation of detached roots on agar plates and the collection of root hairs by immersion in liquid nitrogen. Yields of up to 40 µg of root hair protein were obtained

  10. Effect of Rhizosphere Enzymes on Phytoremediation in PAH-Contaminated Soil Using Five Plant Species

    Science.gov (United States)

    Liu, Rui; Dai, Yuanyuan; Sun, Libo

    2015-01-01

    A pot experiment was performed to study the effectiveness of remediation using different plant species and the enzyme response involved in remediating PAH-contaminated soil. The study indicated that species Echinacea purpurea, Festuca arundinacea Schred, Fire Phoenix (a combined F. arundinacea), and Medicago sativa L. possess the potential for remediation in PAH-contaminated soils. The study also determined that enzymatic reactions of polyphenol oxidase (except Fire Phoenix), dehydrogenase (except Fire Phoenix), and urease (except Medicago sativa L.) were more prominent over cultivation periods of 60d and 120d than 150d. Urease activity of the tested species exhibited prominently linear negative correlations with alkali-hydrolyzable nitrogen content after the tested plants were cultivated for 150d (R2 = 0.9592). The experiment also indicated that alkaline phosphatase activity in four of the five tested species (Echinacea purpurea, Callistephus chinensis, Festuca arundinacea Schred and Fire Phoenix) was inhibited during the cultivation process (at 60d and 120d). At the same time, the study determined that the linear relationship between alkaline phosphatase activity and effective phosphorus content in plant rhizosphere soil exhibited a negative correlation after a growing period of 120d (R2 = 0.665). Phytoremediation of organic contaminants in the soil was closely related to specific characteristics of particular plant species, and the catalyzed reactions were the result of the action of multiple enzymes in the plant rhizosphere soil. PMID:25822167

  11. Analysis of nodule meristem persistence and ENOD40 functioning in Medicago truncatula nodule formation

    NARCIS (Netherlands)

    Wan Xi,

    2007-01-01

    Medicago root nodules are formed as a result of the interaction of the plant with the soil-borne bacterium Sinorhizobium meliloti. Several plant genes are induced during nodule formation and MtENOD40 is one of the earliest genes activated. The precise function as well as the molecule

  12. Stem nematode counteracts plant resistance of aphids in alfalfa, Medicago sativa.

    Science.gov (United States)

    Ramirez, Ricardo A; Spears, Lori R

    2014-10-01

    Plants are exploited by a diverse community of insect herbivores and phytopathogens that interact indirectly through plant-mediated interactions. Generally, plants are thought to respond to insects and pathogens through different defensive signaling pathways. As plants are selected for resistance to one phytophagous organism type (insect vs. pathogen) in managed systems, it is not clear how this selection may affect community interactions. This study examined the effect of nematode-resistant varieties on aphid (Acyrthosiphon pisum) suppression, and then determined how infection by the stem nematode, Ditylenchus dipsaci, mediated ecological effects on aphids and on plant defense proteins. Four alfalfa (Medicago sativa) varieties were selected with resistance to nematodes only (+,-), aphids only (-,+), nematodes and aphids (+,+), and susceptibility to nematodes and aphids (-,-). Field and greenhouse experiments were conducted to isolate the effect of nematode infection and aphid abundance on each variety. We found that varieties resistant to nematode, regardless of aphid resistance, had the lowest aphid counts, suggesting possible cross-resistance. Aphid abundance, however, increased when plants were exposed to nematodes. Resistant varieties were associated with elevated saponins but these compounds were not affected by insect or pathogen feeding. Concentrations of peroxidases and trypsin inhibitors, however, were increased in nematode resistant varieties when exposed to nematodes and aphids, respectively. The patterns of plant defense were variable, and a combination of resistance traits and changes in nutrient availability may drive positive interactions between nematodes and aphids aboveground.

  13. Evaluation of Effect of Silicon on NaCl Tolerance in Annual Medicago scutellata L.

    Directory of Open Access Journals (Sweden)

    M Azizi

    2016-07-01

    Full Text Available Introduction Salinity is one of the most important stress resulting depletion of vegetation in large areas of the world including some regions of Iran. Reduction of plant growth due to salinity occurs with a range of mechanisms, including low external water potential, ion toxicity and interfere with the uptake. Silicon (Si is the second most abundant element in soil and could efficiently mitigate the effects of various biotic and abiotic stresses, such as drought, heavy metal toxicity and salinity on plants. Medicago scutellata is an important leguminous forage crop throughout the world that could increase soil nitrogen content via reduction of atmospheric nitrogen. To our knowledge, no study have examined the interaction of salinity and Si nutrition in Medicago scutellata or how the beneficial effects of Si in salt-stressed M. scutellata plants (if any are exerted. Accordingly, the aim of the present study was to evaluate the effect of silicon nutrition on salt tolerance of Medicago scutellata. Materials and Methods Seeds of alfalfa (Medicago scutellata L. were sterilized with a 2.5% sodium hypochlorite solution and were incubated in a moistened paper towel. Then, they germinated in the dark at 255  C for 48 h. Healthy seedlings of uniform sizes were selected for hydroponic culture (Hoagland solution in a 10×15×15 cm plastic pots. A factorial experiment carried out based on a completely randomized design with two factors. The first factor was salinity, including 0 and 100 mM NaCl and the second was silicon nutrition, including 0, 0.75 and 1.5 m.M sodium silicate. The pH of the nutrient solution was adjusted daily at 6.4  0.2 and nutrient solution was refreshed weekly. During the experiment, maximum and minimum air temperatures were 30ºC and 21ºC respectively, and the mean relative humidity was 67%. Four weeks after exerting the treatments, plants were harvested and used for the assessment of growth parameters and chemical analyses

  14. Development of simple sequence repeat markers and diversity analysis in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Zan; Yan, Hongwei; Fu, Xinnian; Li, Xuehui; Gao, Hongwen

    2013-04-01

    Efficient and robust molecular markers are essential for molecular breeding in plant. Compared to dominant and bi-allelic markers, multiple alleles of simple sequence repeat (SSR) markers are particularly informative and superior in genetic linkage map and QTL mapping in autotetraploid species like alfalfa. The objective of this study was to enrich SSR markers directly from alfalfa expressed sequence tags (ESTs). A total of 12,371 alfalfa ESTs were retrieved from the National Center for Biotechnology Information. Total 774 SSR-containing ESTs were identified from 716 ESTs. On average, one SSR was found per 7.7 kb of EST sequences. Tri-nucleotide repeats (48.8 %) was the most abundant motif type, followed by di-(26.1 %), tetra-(11.5 %), penta-(9.7 %), and hexanucleotide (3.9 %). One hundred EST-SSR primer pairs were successfully designed and 29 exhibited polymorphism among 28 alfalfa accessions. The allele number per marker ranged from two to 21 with an average of 6.8. The PIC values ranged from 0.195 to 0.896 with an average of 0.608, indicating a high level of polymorphism of the EST-SSR markers. Based on the 29 EST-SSR markers, assessment of genetic diversity was conducted and found that Medicago sativa ssp. sativa was clearly different from the other subspecies. The high transferability of those EST-SSR markers was also found for relative species.

  15. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    Energy Technology Data Exchange (ETDEWEB)

    Wu Naiying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Department of Chemistry, Shangqiu Normal College, Shangqiu 476000 (China); Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhang Shuzhen, E-mail: szzhang@rcees.ac.c [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Christie, Peter [Agri-Environment Branch, Agriculture Food and Environmental Science Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom); Zhang Yong [State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005 (China)

    2009-05-15

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state {sup 13}C nuclear magnetic resonance spectroscopy ({sup 13}C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  16. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    International Nuclear Information System (INIS)

    Wu Naiying; Huang Honglin; Zhang Shuzhen; Zhu Yongguan; Christie, Peter; Zhang Yong

    2009-01-01

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state 13 C nuclear magnetic resonance spectroscopy ( 13 C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  17. Root-Zone Glyphosate Exposure Adversely Affects Two Ditch Species

    Directory of Open Access Journals (Sweden)

    Lyndsay E. Saunders

    2013-12-01

    Full Text Available Glyphosate, one of the most applied herbicides globally, has been extensively studied for its effects on non-target organisms. In the field, following precipitation, glyphosate runs off into agricultural ditches where it infiltrates into the soil and thus may encounter the roots of vegetation. These edge-of-field ditches share many characteristics with wetlands, including the ability to reduce loads of anthropogenic chemicals through uptake, transformation, and retention. Different species within the ditches may have a differential sensitivity to exposure of the root zone to glyphosate, contributing to patterns of abundance of ruderal species. The present laboratory experiment investigated whether two species commonly found in agricultural ditches in southcentral United States were affected by root zone glyphosate in a dose-dependent manner, with the objective of identifying a sublethal concentration threshold. The root zone of individuals of Polygonum hydropiperoides and Panicum hemitomon were exposed to four concentrations of glyphosate. Leaf chlorophyll content was measured, and the ratio of aboveground biomass to belowground biomass and survival were quantified. The findings from this study showed that root zone glyphosate exposure negatively affected both species including dose-dependent reductions in chlorophyll content. P. hydropiperdoides showed the greatest negative response, with decreased belowground biomass allocation and total mortality at the highest concentrations tested.

  18. Nitrogen accumulation in lucerne (Medicago sativa L.) under water deficit stress

    OpenAIRE

    Vasileva Viliana; Vasilev Emil

    2013-01-01

    In order to study nitrogen accumulation in aboveground and root dry mass in lucerne (Medicago sativa L.) under water deficit stress, a pot experiment was carried out at the Institute of Forage Crops, Pleven, Bulgaria. The plants were grown under optimum water supply (75-80% FC) and 10-days water deficit stress was simulated at the stage of budding by interrupting the irrigation until soil moisture was reduced to 37-40% FC. Mineral nitrogen fertilization (ammonium nitrate) at the doses of 40, ...

  19. A Medicago truncatula rdr6 allele impairs transgene silencing and endogenous phased siRNA production but not development.

    Science.gov (United States)

    Bustos-Sanmamed, Pilar; Hudik, Elodie; Laffont, Carole; Reynes, Christelle; Sallet, Erika; Wen, Jiangqi; Mysore, Kirankumar S; Camproux, Anne-Claude; Hartmann, Caroline; Gouzy, Jérome; Frugier, Florian; Crespi, Martin; Lelandais-Brière, Christine

    2014-12-01

    RNA-dependent RNA polymerase 6 (RDR6) and suppressor of gene silencing 3 (SGS3) act together in post-transcriptional transgene silencing mediated by small interfering RNAs (siRNAs) and in biogenesis of various endogenous siRNAs including the tasiARFs, known regulators of auxin responses and plant development. Legumes, the third major crop family worldwide, has been widely improved through transgenic approaches. Here, we isolated rdr6 and sgs3 mutants in the model legume Medicago truncatula. Two sgs3 and one rdr6 alleles led to strong developmental defects and impaired biogenesis of tasiARFs. In contrast, the rdr6.1 homozygous plants produced sufficient amounts of tasiARFs to ensure proper development. High throughput sequencing of small RNAs from this specific mutant identified 354 potential MtRDR6 substrates, for which siRNA production was significantly reduced in the mutant. Among them, we found a large variety of novel phased loci corresponding to protein-encoding genes or transposable elements. Interestingly, measurement of GFP expression revealed that post-transcriptional transgene silencing was reduced in rdr6.1 roots. Hence, this novel mis-sense mutation, affecting a highly conserved amino acid residue in plant RDR6s, may be an interesting tool both to analyse endogenous pha-siRNA functions and to improve transgene expression, at least in legume species. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Genome-Wide Identification of Glyoxalase Genes in Medicago truncatula and Their Expression Profiling in Response to Various Developmental and Environmental Stimuli

    Directory of Open Access Journals (Sweden)

    Ajit Ghosh

    2017-06-01

    Full Text Available Glyoxalase is an evolutionary highly conserved pathway present in all organisms. Conventional glyoxalase pathway has two enzymes, glyoxalase I (GLYI and glyoxalase II (GLYII that act sequentially to detoxify a highly cytotoxic compound methylglyoxal (MG to D-lactate with the help of reduced glutathione. Recently, proteins with DJ-1/PfpI domain have been reported to perform the same conversion in a single step without the help of any cofactor and thus termed as “unique glyoxalase III” enzyme. Genome-wide analysis of glyoxalase genes have been previously conducted in Arabidopsis, rice and Soybean plants, but no such study was performed for one of the agricultural important model legume species, Medicago truncatula. A comprehensive genome-wide analysis of Medicago identified a total of putative 29 GLYI, 14 GLYII genes, and 5 glyoxalase III (DJ-1 genes. All these identified genes and their corresponding proteins were analyzed in detail including their chromosomal distribution, gene duplication, phylogenetic relationship, and the presence of conserved domain(s. Expression of all these genes was analyzed in different tissues as well as under two devastating abiotic stresses- salinity and drought using publicly available transcript data. This study revealed that MtGLYI-4, MtGLYII-6, and MtDJ-1A are the constitutive members with a high level of expression at all 17 analyzed tissues; while MtGLYI-1, MtGLYI-11, MtGLYI-5, MtGLYI-7, and MtGLYII-13 showed tissue-specific expression. Moreover, most of the genes displayed similar pattern of expression in response to both salinity and drought stress, irrespective of stress duration and tissue type. MtGLYI-8, MtGLYI-11, MtGLYI-6, MtGLYI-16, MtGLYI-21, and MtGLYII-9 showed up-regulation, while MtGLYI-17 and MtGLYI-7/9 showed down-regulation in response to both stresses. Interestingly, MtGLYI-14/15 showed completely opposite pattern of expression in these two stresses. This study provides an initial basis

  1. Determination of Nutrient Contents and Gas Production Values of Some Legume Forages Grown in the Harran Plain Saline Soils

    Directory of Open Access Journals (Sweden)

    M. Boga

    2014-06-01

    Full Text Available The aim of this study was to determine the nutritive value of some legume species in salt-affected soils of South-East Anatolian region using chemical composition and in vitro gas production kinetics. In this study, Lotus corniculatus, Trifolium alexandrinum, Medicago sativa were sown and tested in four different locations. A 3 by 4 factorial design with 3 legume species and 4 salt levels (non salty electrical conductivity (ECECECEC was used in the study. Results indicated that salinity and plants had no significant effect on ash and ether extract. Dry matter (DM, acid detergent fiber, digestible dry matter, dry matter intake (DMI were affected by plant, salinity and plant×salinity interaction. On the other hand neutral detergent fiber, relative feed value (RFV, and DMI were affected by salinity and plant×salinity interaction. Mineral contents were affected by plant species, salinity and salinity×plants interactions. In vitro gas production, their kinetics and estimated parameters such as were not affected by salinity whereas the gas production up to 48 h, organic matter digestibility, metabolizable energy (ME, and net energy lactation (NEL were affected by plant and plant×salt interaction. Generally RFVs of all species ranged from 120 to 210 and were quite satisfactory in salty conditions. Current results show that the feed value of Medicago sativa is higher compared to Lotus corniculatus and Trifolium alexandrinum.

  2. Affective responses in tamarins elicited by species-specific music

    OpenAIRE

    Snowdon, Charles T.; Teie, David

    2009-01-01

    Theories of music evolution agree that human music has an affective influence on listeners. Tests of non-humans provided little evidence of preferences for human music. However, prosodic features of speech (‘motherese’) influence affective behaviour of non-verbal infants as well as domestic animals, suggesting that features of music can influence the behaviour of non-human species. We incorporated acoustical characteristics of tamarin affiliation vocalizations and tamarin threat vocalizations...

  3. Allelopathic interference of alfalfa (Medicago sativa L.) genotypes to annual ryegrass (Lolium rigidum).

    Science.gov (United States)

    Zubair, Hasan Muhammad; Pratley, James E; Sandral, G A; Humphries, A

    2017-07-01

    Alfalfa (Medicago sativa L.) genotypes at varying densities were investigated for allelopathic impact using annual ryegrass (Lolium rigidum) as the target species in a laboratory bioassay. Three densities (15, 30, and 50 seedlings/beaker) and 40 alfalfa genotypes were evaluated by the equal compartment agar method (ECAM). Alfalfa genotypes displayed a range of allelopathic interference in ryegrass seedlings, reducing root length from 5 to 65%. The growth of ryegrass decreased in response to increasing density of alfalfa seedlings. At the lowest density, Q75 and Titan9 were the least allelopathic genotypes. An overall inhibition index was calculated to rank each alfalfa genotype. Reduction in seed germination of annual ryegrass occurred in the presence of several alfalfa genotypes including Force 10, Haymaster7 and SARDI Five. A comprehensive metabolomic analysis using Quadruple Time of Flight (Q-TOF), was conducted to compare six alfalfa genotypes. Variation in chemical compounds was found between alfalfa root extracts and exudates and also between genotypes. Further individual compound assessments and quantitative study at greater chemical concentrations are needed to clarify the allelopathic activity. Considerable genetic variation exists among alfalfa genotypes for allelopathic activity creating the opportunity for its use in weed suppression through selection.

  4. Allelopathic Potential of Switchgrass ( Panicum virgatum L.) on Perennial Ryegrass ( Lolium perenne L.) and Alfalfa ( Medicago sativa L.)

    Science.gov (United States)

    Shui, Junfeng; An, Yu; Ma, Yongqing; Ichizen, Nobumasa

    2010-10-01

    This study investigated allelopathy and its chemical basis in nine switchgrass ( Panicum virgatum L.) accessions. Perennial ryegrass ( Lolium perenne L.) and alfalfa ( Medicago sativa L.) were used as test species. Undiluted aqueous extracts (5 g plant tissue in 50 ml water) from the shoots and roots of most of the switchgrass accessions inhibited the germination and growth of the test species. However, the allelopathic effect of switchgrass declined when extracts were diluted 5- or 50-fold. Seedling growth was more sensitive than seed germination as an indicator of allelopathic effect. Allelopathic effect was related to switchgrass ecotype but not related to ploidy level. Upland accessions displayed stronger allelopathic potential than lowland accessions. The aqueous extract from one switchgrass accession was separated into phenols, organic acids, neutral chemicals, and alkaloids, and then these fractions were bioassayed to test for allelopathic potential. Alkaloids had the strongest allelopathic effect among the four chemical fractions. In summary, the results indicated that switchgrass has allelopathic potential; however, there is not enough evidence to conclude that allelopathic advantage is the main factor that has contributed to the successful establishment of switchgrass on China’s Loess Plateau.

  5. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa

    NARCIS (Netherlands)

    Choi, H.K.; Kim, D.; Uhm, T.; Limpens, E.H.M.; Lim, H.; Mun, J.H.; Kalo, P.; Penmetsa, R.V.; Seres, A.; Kulikova, O.; Roe, B.A.; Bisseling, T.; Kiss, G.B.; Cook, D.R.

    2004-01-01

    A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an E, population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene

  6. LegumeDB1 bioinformatics resource: comparative genomic analysis and novel cross-genera marker identification in lupin and pasture legume species.

    Science.gov (United States)

    Moolhuijzen, P; Cakir, M; Hunter, A; Schibeci, D; Macgregor, A; Smith, C; Francki, M; Jones, M G K; Appels, R; Bellgard, M

    2006-06-01

    The identification of markers in legume pasture crops, which can be associated with traits such as protein and lipid production, disease resistance, and reduced pod shattering, is generally accepted as an important strategy for improving the agronomic performance of these crops. It has been demonstrated that many quantitative trait loci (QTLs) identified in one species can be found in other plant species. Detailed legume comparative genomic analyses can characterize the genome organization between model legume species (e.g., Medicago truncatula, Lotus japonicus) and economically important crops such as soybean (Glycine max), pea (Pisum sativum), chickpea (Cicer arietinum), and lupin (Lupinus angustifolius), thereby identifying candidate gene markers that can be used to track QTLs in lupin and pasture legume breeding. LegumeDB is a Web-based bioinformatics resource for legume researchers. LegumeDB analysis of Medicago truncatula expressed sequence tags (ESTs) has identified novel simple sequence repeat (SSR) markers (16 tested), some of which have been putatively linked to symbiosome membrane proteins in root nodules and cell-wall proteins important in plant-pathogen defence mechanisms. These novel markers by preliminary PCR assays have been detected in Medicago truncatula and detected in at least one other legume species, Lotus japonicus, Glycine max, Cicer arietinum, and (or) Lupinus angustifolius (15/16 tested). Ongoing research has validated some of these markers to map them in a range of legume species that can then be used to compile composite genetic and physical maps. In this paper, we outline the features and capabilities of LegumeDB as an interactive application that provides legume genetic and physical comparative maps, and the efficient feature identification and annotation of the vast tracks of model legume sequences for convenient data integration and visualization. LegumeDB has been used to identify potential novel cross-genera polymorphic legume

  7. Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Wiesel, Lea; Dubchak, Sergiy; Turnau, Katarzyna; Broadley, Martin R.; White, Philip J.

    2015-01-01

    Contamination of soils with radioisotopes of caesium (Cs) is of concern because of their emissions of harmful β and γ radiation. Radiocaesium enters the food chain through vegetation and the intake of Cs can affect the health of organisms. Arbuscular mycorrhizal (AM) fungi form mutualistic symbioses with plants through colonization of the roots and previous studies on the influence of AM on Cs concentrations in plants have given inconsistent results. These studies did not investigate the influence of Cs on AM fungi and it is therefore not known if Cs has a direct effect on AM colonization. Here, we investigated whether Cs influences AM colonization and if this effect impacts on the influence of Rhizophagus intraradices on Cs accumulation by Medicago truncatula. M. truncatula was grown with or without R. intraradices in pots containing different concentrations of Cs. Here, we present the first evidence that colonization of plants by AM fungi can be negatively affected by increasing Cs concentrations in the soil. Mycorrhizal colonization had little effect on root or shoot Cs concentrations. In conclusion, the colonization by AM fungi is impaired by high Cs concentrations and this direct effect of soil Cs on AM colonization might explain the inconsistent results reported in literature that have shown increased, decreased or unaffected Cs concentrations in AM plants. - Highlights: • Colonization of plants by arbuscular mycorrhizal fungi is negatively affected by increasing soil caesium concentrations. • Shoot caesium concentrations are not influenced by AM fungi at soil caesium concentrations above about 3 μg Cs kg −1 . • The direct effect of caesium on AM fungi might impact on the influence of AM fungi on Cs accumulation in plants. • This might explain the inconsistent results reported in literature on Cs accumulation in AM plants

  8. First report of race 2 of Colletotrichum trifolii causing anthracnose on alfalfa (Medicago sativa) in Wisconsin

    Science.gov (United States)

    Anthracnose of alfalfa (Medicago sativa), caused by Colletotrichum trifolii, is widespread in the United States. Three physiological races have been described. Race 1 is reported to be the dominant race that is present wherever alfalfa is grown, while race 2 was reported in a limited area in the Mid...

  9. Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis.

    Science.gov (United States)

    Andrio, Emilie; Marino, Daniel; Marmeys, Anthony; de Segonzac, Marion Dunoyer; Damiani, Isabelle; Genre, Andrea; Huguet, Stéphanie; Frendo, Pierre; Puppo, Alain; Pauly, Nicolas

    2013-04-01

    Reactive oxygen species (ROS), particularly hydrogen peroxide (H(2)O(2)), play an important role in signalling in various cellular processes. The involvement of H(2)O(2) in the Medicago truncatula-Sinorhizobium meliloti symbiotic interaction raises questions about its effect on gene expression. A transcriptome analysis was performed on inoculated roots of M. truncatula in which ROS production was inhibited with diphenylene iodonium (DPI). In total, 301 genes potentially regulated by ROS content were identified 2 d after inoculation. These genes included MtSpk1, which encodes a putative protein kinase and is induced by exogenous H(2)O(2) treatment. MtSpk1 gene expression was also induced by nodulation factor treatment. MtSpk1 transcription was observed in infected root hair cells, nodule primordia and the infection zone of mature nodules. Analysis with a fluorescent protein probe specific for H(2)O(2) showed that MtSpk1 expression and H(2)O(2) were similarly distributed in the nodule infection zone. Finally, the establishment of symbiosis was impaired by MtSpk1 downregulation with an artificial micro-RNA. Several genes regulated by H(2)O(2) during the establishment of rhizobial symbiosis were identified. The involvement of MtSpk1 in the establishment of the symbiosis is proposed. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbios

    Directory of Open Access Journals (Sweden)

    Daniel eWipf

    2014-12-01

    Full Text Available Sulfur plays an essential role in plants’ growth and development and in their response to various abiotic and biotic stresses despite its leachability and its very low abundance in the only form that plant roots can uptake (sulfate. It is part of amino acids, glutathione (GSH, thiols of proteins and peptides, membrane sulfolipids, cell walls and secondary products, so reduced availability can drastically alter plant growth and development. The nutritional benefits of symbiotic interactions can help the plant in case of S deficiency. In particular the arbuscular mycorrhizal (AM interaction improves N, P and S plant nutrition, but the mechanisms behind these exchanges are not fully known yet. Although the transcriptional changes in the leguminous model plant Medicago truncatula have been already assessed in several biotic and/or abiotic conditions, S deficiency has not been considered so far. The aim of this work is to get a first overview on S-deficiency responses in the leaf and root tissues of plants interacting with the AM fungus Rhizophagus irregularis.Several hundred genes displayed significantly different transcript accumulation levels. Annotation and GO ID association were used to identify biological processes and molecular functions affected by sulfur starvation. Beside the beneficial effects of AM interaction, plants were greatly affected by the nutritional status, showing various differences in their transcriptomic footprints. Several pathways in which S plays an important role appeared to be differentially affected according to mycorrhizal status, with a generally reduced responsiveness to S deficiency in mycorrhized plants.

  11. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    Science.gov (United States)

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-05-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities.

  12. Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review

    Directory of Open Access Journals (Sweden)

    Elisa González-Domínguez

    2017-09-01

    Full Text Available The fungal genus Venturia Sacc. (anamorph Fusicladium Bonord. includes plant pathogens that cause substantial economic damage to fruit crops worldwide. Although Venturia inaequalis is considered a model species in plant pathology, other Venturia spp. also cause scab on other fruit trees. Relative to the substantial research that has been conducted on V. inaequalis and apple scab, little research has been conducted on Venturia spp. affecting other fruit trees. In this review, the main characteristics of plant-pathogenic species of Venturia are discussed with special attention to V. inaequalis affecting apple, V. pyrina affecting European pear, V. nashicola affecting Asian pear, V. carpophila affecting peach and almond, Fusicladium oleagineum affecting olive, F. effusum affecting pecan, and F. eriobotryae affecting loquat. This review has two main objectives: (i to identify the main gaps in our knowledge regarding the biology and epidemiology of Venturia spp. affecting fruit trees; and (ii to identify similarities and differences among these Venturia spp. in order to improve disease management. A thorough review has been conducted of studies regarding the phylogenetic relationships, host ranges, biologies, and epidemiologies of Venturia spp. A multiple correspondence analysis (CA has also been performed on the main epidemiological components of these Venturia spp. CA separated the Venturia spp. into two main groups, according to their epidemiological behavior: the first group included V. inaequalis, V. pyrina, V. nashicola, and V. carpophila, the second F. oleagineum and F. eriobotryae, with F. effusum having an intermediate position. This review shows that Venturia spp. affecting fruit trees are highly host-specific, and that important gaps in understanding the life cycle exist for some species, including V. pyrina; gaps include pseudothecia formation, ascospore and conidia germination, and mycelial growth. Considering the epidemiological

  13. The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes

    NARCIS (Netherlands)

    Arrighi, J.F.; Barre, A.; Amor, Ben B.; Bersoult, A.; Campos Soriano, L.; Mirabella, R.; Carvalho-Niebel, de F.; Journet, E.P.; Ghérardi, M.; Huguet, T.; Geurts, R.; Dénarié, J.; Rougé, P.; Gough, C.

    2006-01-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide

  14. Hydrological Conditions Affect the Interspecific Interaction between Two Emergent Wetland Species

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2018-01-01

    Full Text Available Hydrological conditions determine the distribution of plant species in wetlands, where conditions such as water depth and hydrological fluctuations are expected to affect the interspecific interactions among emergent wetland species. To test such effects, we conducted a greenhouse experiment with three treatment categories, interspecific interaction (mixed culture or monoculture, water depth (10 or 30 cm depth, and hydrological fluctuation (static or fluctuating water level, and two common emergent wetland plant species, Scirpus planiculumis Fr. (Cyperaceae and Phragmites australis var. baiyangdiansis (Gramineae. An increase in the water depth significantly restrained the growth of both S. planiculumis and P. australis, while hydrological fluctuations did not obviously alter the growth of either species. In addition, both water depth and hydrological fluctuations significantly affected the interspecific interaction between these two wetland species. P. australis benefited from interspecific interaction under increasing water depth and hydrological fluctuations, and the RII values were clearly positive for plants grown at a water depth that fluctuated around 30 cm. The results may have some implications for understanding how S. planiculumis and P. australis, as well as wetland communities, respond to the natural variation or human modification of hydrological conditions.

  15. Novel MtCEP1 peptides produced in vivo differentially regulate root development in Medicago truncatula.

    Science.gov (United States)

    Mohd-Radzman, Nadiatul A; Binos, Steve; Truong, Thy T; Imin, Nijat; Mariani, Michael; Djordjevic, Michael A

    2015-08-01

    Small, post-translationally modified and secreted peptides regulate diverse plant developmental processes. Due to low natural abundance, it is difficult to isolate and identify these peptides. Using an improved peptide isolation protocol and Orbitrap mass spectrometry, nine 15-amino-acid CEP peptides were identified that corresponded to the two domains encoded by Medicago truncatula CEP1 (MtCEP1). Novel arabinosylated and hydroxylated peptides were identified in root cultures overexpressing MtCEP1. The five most abundant CEP peptides were hydroxylated and these species were detected also in low amounts in vector control samples. Synthetic peptides with different hydroxylation patterns differentially affected root development. Notably, the domain 1 peptide hydroxylated at Pro4 and Pro11 (D1:HyP4,11) imparted the strongest inhibition of lateral root emergence when grown with 5mM KNO3 and stimulated the highest increase in nodule number when grown with 0mM KNO3. Inhibition of lateral root emergence by D1:HyP4,11 was not alleviated by removing peptide exposure. In contrast, the domain 2 peptide hydroxylated at Pro11 (D2:HyP11) increased stage III-IV lateral root primordium numbers by 6-fold (P emerge. Auxin addition at levels which stimulated lateral root formation in wild-type plants had little or no ameliorating effect on CEP peptide-mediated inhibition of lateral root formation or emergence. Both peptides increased and altered the root staining pattern of the auxin-responsive reporter GH3:GUS suggesting CEPs alter auxin sensitivity or distribution. The results showed that CEP primary sequence and post-translational modifications influence peptide activities and the improved isolation procedure effectively and reproducibly identifies and characterises CEPs. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. ECOLOGICAL RISK ASSESSMENT OF ALFALFA (MEDICAGO VARIA L.) GENETICLALY ENGINEERED TO EXPRESS A HUMAN METALLOTHIONEIN (HMT) GENE

    Science.gov (United States)

    The objectives of these studies were two-fold: (1) to determine efficacy of low and high expression hMT gene constructs by assessing accumulation of Cu in shoots of parental and transgenic plants of alfalfa (Medicago varia L.) exposed to different concentrations of CuSO4 by addit...

  17. Medicago truncatula-derived calcium oxalate crystals have a negative impact on chewing insect performance via their physical properties

    Science.gov (United States)

    Plant structural traits often act as defenses against herbivorous insects, causing them to avoid feeding on a given plant or tissue. Mineral crystals of calcium oxalate in Medicago truncatula Gaertn. (Fabaceae) leaves have previously been shown to be effective deterrents of lepidopteran insect feedi...

  18. Alfalfa (Medicago sativa L.) forage production, tissue and soil nutrient concentration under three N based broiler litter regimes

    Science.gov (United States)

    Alfalfa (Medicago sativa L.) is considered as most important forage legume grown in Kentucky. Alfalfa supports many livestock production systems including the beef, dairy, and horse industries in Kentucky. Being a legume, alfalfa typically meets its N requirement through symbiotic N2 fixation, but h...

  19. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation.

    Science.gov (United States)

    Zhang, Wan-Jun; Wang, Tao

    2015-05-01

    Generating salt tolerance forage plant is essential for use of the land affected by high salinity. A salt tolerance gene rstB was used as a selectable marker gene in Agrobacterium-mediated transformation of tobacco under a selective regime of 170mM NaCl. The transgenic plants showed clear improvement in salt tolerance. To improve salt tolerance of alfalfa (Medicago sativa L.), rstB gene was introduced into alfalfa genome by Agrobacterium-mediated transformation. No abnormal phenotype was observed among the transgenic plants when compared with wild type (wt) plants. Significant enhancement of resistance to salt-shock treatment was noted on the rstB transgenic (T0) plants. Transgenic second-generation (T1) seeds showed improved germination rate and seedling growth under salt-stress condition. Hindered Na(+) accumulation, but enhanced Ca(2+) accumulation was observed on the rstB T1 plants when subjected to salt-stresses. Enhanced calcium accumulation in transgenic plants was also verified by cytohistochemical localization of calcium. Under salt-stress of 50mM NaCl, about 15% of the transgenic plants finished their life-cycle but the wt plants had no flower formation. The results demonstrated that the expression of rstB gene improved salt tolerance in transgenic alfalfa. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Symbiotic N2 fixation by legumes growing in pots. 2. Uptake of VN-labelled NO3 , C2H2 reduction and H2 evolution by Trifolium subterraneum L. , Medicago truncatula Gaertn. and Acacia dealbata Link

    Energy Technology Data Exchange (ETDEWEB)

    Hopmans, P.; Chalk, P.M.; Douglas, L.A.

    1983-01-01

    The objectives of this study were to estimate symbiotic nitrogen fixation by two common pasture legumes, Trifolium subterraneum L. and Medicago truncatula Gaertn., and an Australian native legume, Acacia dealbata Link, growing in pots using an indirect isotopic method. This method was also used to calibrate the C2H2 reduction assay of the intact plants. In addition, hydrogen evolution was measured in an attempt to explain the variations in C2H2:N2 ratios between the species. 25 refs.; 1 figure; 4 tabs.

  1. Model uncertainties do not affect observed patterns of species richness in the Amazon

    Science.gov (United States)

    Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo

    2017-01-01

    Background Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale—patterns of species richness and species vulnerability to climate change—are affected by the inputs used to model and project species distribution. Methods We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. Results The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. Conclusions From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of

  2. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae

    Science.gov (United States)

    Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L.) in the central and western U.S. and has been reported in Australia and Europe. The disease is not always recognized because symptoms are often associated with frost damage. Two culti...

  3. Quantification of the Volume and Surface Area of Symbiosomes and Vacuoles of Infected Cells in Root Nodules of Medicago truncatula

    NARCIS (Netherlands)

    Gavrin, A.Y.; Fedorova, E.

    2015-01-01

    Legumes are able to form endosymbiotic interactions with nitrogen-fixing rhizobia. Endosymbiosis takes shape in formation of a symbiotic organ, the root nodule. Medicago truncatula (M. truncatula) nodules contain several zones representing subsequent stages of development. The apical part of the

  4. Effect of alfalfa (medicago sativa) on fermentation profile and nutritive value of switchgrass (panicum virgatum) and bermudagrass (cynodon dactylon) silages

    Science.gov (United States)

    An experiment was conducted at the University of Kentucky Spindletop Farm in Lexington, Kentucky between October and November, 2009 to evaluate the effect of different percentages of alfalfa (Medicago sativa) as mixtures in switchgrass (Panicum virgatus) and bermudagrass (Cynodon dactylon) silages. ...

  5. Molecular docking of Glycine max and Medicago truncatula ureases with urea; bioinformatics approaches.

    Science.gov (United States)

    Filiz, Ertugrul; Vatansever, Recep; Ozyigit, Ibrahim Ilker

    2016-03-01

    Urease (EC 3.5.1.5) is a nickel-dependent metalloenzyme catalyzing the hydrolysis of urea into ammonia and carbon dioxide. It is present in many bacteria, fungi, yeasts and plants. Most species, with few exceptions, use nickel metalloenzyme urease to hydrolyze urea, which is one of the commonly used nitrogen fertilizer in plant growth thus its enzymatic hydrolysis possesses vital importance in agricultural practices. Considering the essentiality and importance of urea and urease activity in most plants, this study aimed to comparatively investigate the ureases of two important legume species such as Glycine max (soybean) and Medicago truncatula (barrel medic) from Fabaceae family. With additional plant species, primary and secondary structures of 37 plant ureases were comparatively analyzed using various bioinformatics tools. A structure based phylogeny was constructed using predicted 3D models of G. max and M. truncatula, whose crystallographic structures are not available, along with three additional solved urease structures from Canavalia ensiformis (PDB: 4GY7), Bacillus pasteurii (PDB: 4UBP) and Klebsiella aerogenes (PDB: 1FWJ). In addition, urease structures of these species were docked with urea to analyze the binding affinities, interacting amino acids and atom distances in urease-urea complexes. Furthermore, mutable amino acids which could potentially affect the protein active site, stability and flexibility as well as overall protein stability were analyzed in urease structures of G. max and M. truncatula. Plant ureases demonstrated similar physico-chemical properties with 833-878 amino acid residues and 89.39-90.91 kDa molecular weight with mainly acidic (5.15-6.10 pI) nature. Four protein domain structures such as urease gamma, urease beta, urease alpha and amidohydro 1 characterized the plant ureases. Secondary structure of plant ureases also demonstrated conserved protein architecture, with predominantly α-helix and random coil structures. In

  6. Mycorrhizal Glomus spp. vary in their effects on the dynamics and turnover of fine alfalfa (Medicago sativa L.) roots

    International Nuclear Information System (INIS)

    Ren, A.; Waly, N.; Chunhui, M.; Zhang, Q.; Liu, H.; Yang, J.

    2016-01-01

    The distribution of fine roots in the soil profile has important implications related to water and nutrient uptake. The Objective of this study was to compare the effects of different arbuscular mycorrhizal fungi (AMF) on the fine root dynamics of Medicago sativa L. cv. Sanditi. We used minirhizotrons to observe changes in fine root length density (FRLD, mm/cm2) and fine root surface area density (FRSAD, mm2/cm2) during the growing season. Fine root P concentrations and turnover rate were also measured. The colonization rate of fine roots varied depending on the AMF species. Colonization rates were highest when roots were inoculated with Glomus mosseae and lowest when roots were inoculated G. intraradices. Inoculation with AMF significantly increased both FRLD and FRSAD. G. versiforme increased FRLD and FRSAD most, whereas G. mosseae had the least effect. Inoculation with AMF also decreased fine root turnover rates. Inoculation with a mixture of AMF species increased fine root turnover and P concentrations more than inoculation with a single AMF species. Fine root length density increased to a maximum on Aug. 6 and then decreased. In comparison, FRSAD exhibited two peaks during the growing season. Overall, the Results indicated that inoculation with AMF can significantly promote fine root growth and P uptake by alfalfa growing on soil with low P availability. The AMF may preserve fine root function late in the growing season. (author)

  7. Genetic analysis of tolerance to boron toxicity in the legume Medicago truncatula.

    Science.gov (United States)

    Bogacki, Paul; Peck, David M; Nair, Ramakrishnan M; Howie, Jake; Oldach, Klaus H

    2013-03-27

    Medicago truncatula Gaertn. (barrel medic) is cultivated as a pasture legume for its high protein content and ability to improve soils through nitrogen fixation. Toxic concentrations of the micronutrient Boron (B) in agricultural soils hamper the production of cereal and leguminous crops. In cereals, the genetic analysis of B tolerance has led to the development of molecular selection tools to introgress and maintain the B tolerance trait in breeding lines. There is a comparable need for selection tools in legumes that grow on these toxic soils, often in rotation with cereals. Genetic variation for B tolerance in Medicago truncatula was utilised to generate two F2 populations from crosses between tolerant and intolerant parents. Phenotyping under B stress revealed a close correlation between B tolerance and biomass production and a segregation ratio explained by a single dominant locus. M. truncatula homologues of the Arabidopsis major intrinsic protein (MIP) gene AtNIP5;1 and the efflux-type transporter gene AtBOR1, both known for B transport, were identified and nearby molecular markers screened across F2 lines to verify linkage with the B-tolerant phenotype. Most (95%) of the phenotypic variation could be explained by the SSR markers h2_6e22a and h2_21b19a, which flank a cluster of five predicted MIP genes on chromosome 4. Three CAPS markers (MtBtol-1,-2,-3) were developed to dissect the region further. Expression analysis of the five predicted MIPs indicated that only MtNIP3 was expressed when leaf tissue and roots were assessed. MtNIP3 showed low and equal expression in the roots of tolerant and intolerant lines but a 4-fold higher expression level in the leaves of B-tolerant cultivars. The expression profile correlates closely with the B concentration measured in the leaves and roots of tolerant and intolerant plants. Whereas no significant difference in B concentration exists between roots of tolerant and intolerant plants, the B concentration in the leaves

  8. Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation.

    Science.gov (United States)

    Senovilla, Marta; Castro-Rodríguez, Rosario; Abreu, Isidro; Escudero, Viviana; Kryvoruchko, Igor; Udvardi, Michael K; Imperial, Juan; González-Guerrero, Manuel

    2018-04-01

    Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  9. Development of manganese toxicity in pasture legumes under extreme climatic conditions. [Trifolium subterraneum; Medicago sativa; Brassica campestris

    Energy Technology Data Exchange (ETDEWEB)

    Siman, A; Cradock, F W; Hudson, A W

    1974-08-01

    Manganese levels and pH in soil were measured on limed and unlimed plots at bi-monthly intervals for two years at five field sites with lucerne (Medicago sativa) and subterranean clover (Trifolium subterraneum) and related to rainfall and temperature. Pot experiments with lucerne, subterranean clover and rape (Brassica campestris) were used to confirm the results of the field experiments. Manganese toxicity developed in lucerne and subterranean clover under waterlogged conditions after heavy rain on the slightly acid soils (pH 4.7-5.5). Lucerne also showed manganese toxicity on the same soils in summer after extended hot, dry conditions. The maximum available manganese was 210 ..mu..g/g in the waterlogged soil (0-15 cm) the 128 ..mu..g/g in the heat affected soil. Lime treatment of 2240 kg/ha reduced the maximum available manganese to 148 ..mu..g/g in waterlogged plots and to 47 ..mu..g/g in the heat affected plots but failed to correct manganese toxicity. However, lime corrected toxicity symptoms under less severe conditions. In the pot experiments, available manganese reached 270 ..mu..g/g after 2 weeks artificial waterlogging and 68 ..mu..g/g after 2 weeks dry heat exposure. 12 references, 4 figures, 3 tables.

  10. How does species name affect consumer choice? An analysis and implications for cabinet door marketers.

    Science.gov (United States)

    Joseph A. Roos; Geof Donovan; David. Nicholls

    2005-01-01

    Consumers choose products based on various tangible and intangible attributes. Previous research has shown that there is a difference between appearance-based and word-based evaluations of wood species. However, little research has been done on how this difference affects consumer choice. This study examined how the presence or absence of a species name affects a...

  11. Factors affecting Archaeal Lipid Compositions of the Sulfolobus Species

    Science.gov (United States)

    He, L.; Han, J.; Wei, Y.; Lin, L.; Wei, Y.; Zhang, C.

    2010-12-01

    Temperature is the best known variable affecting the distribution of the archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) in marine and freshwater systems. Other variables such as pH, ionic strength, or bicarbonate concentration may also affect archaeal GDGTs in terrestrial systems. Studies of pure cultures can help us pinpoint the specific effects these variables may have on archaeal lipid distribution in natural environments. In this study, three Sulfolobus species (HG4, HB5-2, HB9-6) isolated from Tengchong hot springs (pH 2-3, temperature 73-90°C) in China were used to investigate the effects of temperature, pH, substrate, and type of strain on the composition of GDGTs. Results showed that increase in temperature had negative effects on the relative contents of GDGT-0 (no cyclopentyl rings), GDGT-1 (one cyclopentyl ring), GDGT-2 and GDGT-3 but positive effects on GDGT-4, GDGT-4', GDGT-5 and GDGT-5'. Increase in pH, on the other hand, had negative effects on GDGT-0, GDGT-1, GDGT-4', GDGT-5 and GDGT-5', and positive effects on GDGT-3 and GDGT-4. GDGT-2 remained relatively constant with changing pH. When the HG4 was grown on different substrates, GDGT-5 was five time more abundant in sucrose-grown cultures than in yeast extract- or sulfur- grown cultures, suggesting that carbohydrates may stimulate the production of GDGT-5. For all three species, the ring index (average number of rings) of GDGTs correlated positively with incubation temperature. In HG4, ring index was much lower at optimal pH (3.5) than at other pH values. Ring index of HB5-2 or HB9-6 is higher than that of HG4, suggesting that speciation may affect the degree of cyclization of GDGT of the Sulfolobus. These results indicate that individual archaeal lipids respond differently to changes in environmental variables, which may be also species specific.

  12. Role of N-glycosylation sites and CXC motifs in trafficking of Medicago trunculata Nod Factor Perception protein to the plasma membrane.

    NARCIS (Netherlands)

    Lefebvre, B.; Klaus-Heisen, D.; Pietraszewska-Bogiel, A.; Hervé, M.; Camut, S.; Auriac, M.C.; Gasciolli, V.; Nurisso, A.; Gadella, T.W.; Cullimore, J.

    2012-01-01

    The lysin motif receptor like kinase, NFP, is a key protein in the legume Medicago truncatula for the perception of lipochitooligosaccharidic Nod Factors, which are secreted bacterial signals essential for establishing the nitrogen-fixing legume-rhizobia symbiosis. Predicted structural and genetic

  13. Interaction of Medicago truncatula Lysin Motif Receptor-Like Kinases, NFP and LYK3, Produced in Nicotiana benthamiana Induces Defence-Like Responses

    NARCIS (Netherlands)

    Pietraszewska-Bogiel, A.; Lefebvre, B.; Koini, A.M.; Klaus-Heisen, D.; Takken, F.L.W.; Geurts, R.; Cullimore, J.V.; Gadella, Th.W.J.

    2013-01-01

    Receptor(-like) kinases with Lysin Motif (LysM) domains in their extracellular region play crucial roles during plant interactions with microorganisms; e.g. Arabidopsis thaliana CERK1 activates innate immunity upon perception of fungal chitin/chitooligosaccharides, whereas Medicago truncatula NFP

  14. Life history affects how species experience succession in pen shell metacommunities.

    Science.gov (United States)

    Munguia, Pablo

    2014-04-01

    In nature, very few species are common and broadly distributed. Most species are rare and occupy few sites; this pattern is ubiquitous across habitats and taxa. In spatially structured communities (metacommunities), regional distribution and local abundance may change as the relative effects of within-habitat processes (e.g., species interactions) and among-habitat processes (e.g., dispersal) may vary through succession. A field experiment with the marine benthic inhabitants of pen shells (Atrina rigida) tested how common and rare species respond to succession and metacommunity size. I followed community development through time and partitioned species into sessile and motile based on their natural history. Rare species drive diversity patterns and are influenced by metacommunity size: there are strong abundance-distribution differences between common and rare species in large metacommunities, but motile species show lower rates of change than sessile species. In small metacommunities both common and rare species have similar changes through time; the dichotomous distinction of common and rare species is not present. Edge effects in metacommunities affect species' changes in distribution and abundance. In large metacommunities diversity is higher in edge habitats relative to small metacommunities during early succession. However, edge effects benefit motile species over time in small metacommunities showing a rapid increase in diversity. Individual mobility is sensitive to regional community size and allows individuals to sort among different communities. In contrast, sessile species do not show this edge effect. Metacommunity theory is a useful framework for understanding spatially structured communities, but the natural history of coexisting species cannot be ignored.

  15. Factors affecting the efficient transformation of Colletotrichum species

    Science.gov (United States)

    Redman, Regina S.; Rodriguez, Rusty J.

    1994-01-01

    Factors affecting the efficient transformation of Colletotrichum species. Experimental Mycology, 18, 230-246. Twelve isolates representing four species of Colletotrichum were transformed either by enhanced protoplast, restriction enzyme-mediated integration (REMI), or electroporation-mediated protocols. The enhanced protoplast transformation protocol resulted in 100- and 50-fold increases in the transformation efficiencies of Colletotrichum lindemuthianum and C. magna , respectively. REMI transformation involved the use of Hin dIII and vector DNA linearized with HindIII to increase the number of integration events and potential gene disruptions in the fungal genome. Combining the enhanced protoplast and the REMI protocols resulted in a 22-fold increase in the number of hygromycin/nystatin-resistant mutants in C. lindemuthianum . Electroporation-mediated transformation was performed on mycelial fragments and spores of four Colletotrichum species, resulting in efficiencies of up to 1000 transformants/μg DNA. The pHA1.3 vector which confers hygromycin resistance contains telomeric sequences from Fusarium oxysporum , transforms by autonomous replication and genomic integration, and was essential for elevated transformation efficiencies of 100 to 10,000 transformants/μg DNA. Modifications of pHA1.3 occurred during bacterial amplification and post fungal transformation resulting in plasmids capable of significantly elevated transformation efficiencies in C. lindemuthianum.

  16. Herbivore species and density affect vegetation-structure patchiness in salt marshes

    NARCIS (Netherlands)

    Nolte, Stefanie; Esselink, Peter; Smit, Christian; Bakker, Jan P.

    2014-01-01

    The importance of spatial patterns for ecosystem functioning and biodiversity has long been recognized in ecology. Grazing by herbivores is an important mechanism leading to spatial patterns in the vegetation structure. How different herbivore species and their densities affect vegetation-structure

  17. Accumulation and residue of napropamide in alfalfa (Medicago sativa) and soil involved in toxic response.

    Science.gov (United States)

    Cui, Li E; Yang, Hong

    2011-06-15

    Napropamide belongs to the amide herbicide family and widely used to control weeds in farmland. Intensive use of the herbicide has resulted in widespread contamination to ecosystems. The present study demonstrated an analysis on accumulation of the toxic pesticide napropamide in six genotypes of alfalfa (Medicago sativa), along with biological parameters and its residues in soils. Soil was treated with napropamide at 3 mg kg(-1) dry soil and alfalfa plants were cultured for 10 or 30 d, respectively. The maximum value for napropamide accumulation is 0.426 mg kg(-1) in shoots and 2.444 mg kg(-1) in roots. The napropamide-contaminated soil with alfalfa cultivation had much lower napropamide concentrations than the control (soil without alfalfa cultivation). Also, the content of napropamide residue in the rhizosphere was significantly lower than that in the non-rhizosphere soil. M. sativa exposed to 3 mg kg(-1) napropamide showed inhibited growth. Further analysis revealed that plants treated with napropamide accumulated more reactive oxygen species (O(2)(-) and H(2)O(2)) and less amounts of chlorophyll. However, not all cultivars showed oxidative injury, suggesting that the alfalfa cultivars display different tolerance to napropamide. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Do non-native plant species affect the shape of productivity-diversity relationships?

    Science.gov (United States)

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  19. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  20. Recruitment dynamics mediated by ungulate herbivory can affect species coexistence for tree seedling assemblages

    Directory of Open Access Journals (Sweden)

    Chi-Yu Weng

    2017-08-01

    Full Text Available The best-known mechanism that herbivory affects species coexistence of tree seedlings is negative density-dependency driven by specialist natural enemies. However, in a forest with intense herbivory by non-specialists, what causes a diversifying seedling bank if rare species do not benefit from negative density-dependency in dominant species? We hypothesize that generalist herbivores can cause unevenly distributed species-specific mortality, which mediates recruitment dynamics and therefore affects species coexistence. To answer this question, we conducted a fence-control experiment in a montane cloud forest, Taiwan, and found that herbivorous damages were mainly caused by ungulates, which are generalists. We explored ungulate herbivory effects on recruitment dynamics by censusing tree seedling dynamics for three years. We found that herbivorous damages by ungulates significantly cause seedling death, mostly at their early stage of establishment. The percentage of death caused by herbivory varied among species. In particular, nurse plants and seedling initial height help shade-tolerant species to persist under such intense herbivory. Whereas, deaths caused by other factors occurred more often in older seedlings, with a consistent low percentage among species. We then tested species coexistence maintenance by dynamic modelling under different scenarios of ungulate herbivory. Raising percentages of death by herbivory changes relative species abundances by suppressing light-demanding species and increasing shade-tolerant species. Density-dependent mortality immediately after bursts of recruitments can suppress dominance of abundant species. With ungulate herbivory, fluctuating recruitment further prevent rare species from apparent competition induced by abundant species. Such bio-processes can interact with ungulate herbivory so that long-term coexistence can be facilitated.

  1. Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Guangshun Zheng

    2017-12-01

    Full Text Available Alfalfa (Medicago sativa L. is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought Tolerance 1 (AtEDT1 gene into alfalfa via Agrobacterium-mediated transformation. Compared with wild type plants, drought stress treatment resulted in higher survival rates and biomass, but reduced water loss rates in the transgenic plants. Furthermore, transgenic alfalfa plants had increased stomatal size, but reduced stomatal density, and these stomatal changes contributed greatly to reduced water loss from leaves. Importantly, transgenic alfalfa plants exhibited larger root systems with larger root lengths, root weight, and root diameters than wild type plants. The transgenic alfalfa plants had reduced membrane permeability and malondialdehyde content, but higher soluble sugar and proline content, higher superoxide dismutase activity, higher chlorophyll content, enhanced expression of drought-responsive genes, as compared with wild type plants. Notably, transgenic alfalfa plants grew better in a 2-year field trial and showed enhanced growth performance with increased biomass yield. All of our morphological, physiological, and molecular analyses demonstrated that the ectopic expression of AtEDT1 improved growth and enhanced drought tolerance in alfalfa. Our study provides alfalfa germplasm for use in forage improvement programs, and may help to increase alfalfa production in arid lands.

  2. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing

    Science.gov (United States)

    Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping

    2016-01-01

    Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses. PMID:27446182

  3. Effect of vanadium and tungsten on nitrogen fixation and the growth of Medicago sativa

    Energy Technology Data Exchange (ETDEWEB)

    Jha, K K

    1969-01-01

    In sand culture, it was found that vanadium had no stimulatory effect on nitrogen content or the growth of Medicago sativa inoculated with an effective strain of Rhizobium meliloti or supplied with ammonium nitrate. At the level of 500 ppm it reduced the plant growth, the inhibitory effect being particularly severe on the root. On the other hand tungsten increased nitrogen fixation and the dry matter yield of the inoculated plants. The results are suggestive of a direct role of tungsten in symbiotic nitrogen fixation. 4 references, 2 tables.

  4. Microsynteny between the Medicago truncatula SYM2-orthologous genomic region and another region located on the same chromosome arm

    NARCIS (Netherlands)

    Gualtieri, G.; Bisseling, T.

    2002-01-01

    A synteny based positional cloning approach was started to clone the pea SYM2 gene by using locally conserved genome structure with the model plant Medicago truncatula. We reported that a pea marker tightly linked to SYM2 was used to screen a M. truncatula BAC library, and two contigs named C1/C2

  5. A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat

    Science.gov (United States)

    Abirached-Darmency, Mona

    2013-01-01

    The seed coat is involved in the determination of seed quality traits such as seed size, seed composition, seed permeability, and hormonal regulation. Understanding seed coat structure is therefore a prerequisite to deciphering the genetic mechanisms that govern seed coat functions. By combining histological and transcriptomic data analyses, cellular and molecular events occurring during Medicago truncatula seed coat development were dissected in order to relate structure to function and pinpoint target genes potentially involved in seed coat traits controlling final seed quality traits. The analyses revealed the complexity of the seed coat transcriptome, which contains >30 000 genes. In parallel, a set of genes showing a preferential expression in seed coat that may be involved in more specific functions was identified. The study describes how seed coat anatomy and morphological changes affect final seed quality such as seed size, seed composition, seed permeability, and hormonal regulation. Putative regulator genes of different processes have been identified as potential candidates for further functional genomic studies to improve agronomical seed traits. The study also raises new questions concerning the implication of seed coat endopolyploidy in cell expansion and the participation of the seed coat in de novo abscisic acid biosynthesis at early seed filling. PMID:23125357

  6. Patterns of coexistence of two species of freshwater turtles are affected by spatial scale

    DEFF Research Database (Denmark)

    Segurado, P.; Kunin, W.E.; Filipe, A.F.

    2012-01-01

    Inferring biotic interactions from the examination of patterns of species occurrences has been a central tenet in community ecology, and it has recently gained interest in the context of single-species distribution modelling. However, understanding of how spatial extent and grain size affect such...

  7. The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes

    Directory of Open Access Journals (Sweden)

    Ané Jean-Michel

    2002-01-01

    Full Text Available Abstract Background The legume Medicago truncatula has emerged as a model plant for the molecular and genetic dissection of various plant processes involved in rhizobial, mycorrhizal and pathogenic plant-microbe interactions. Aiming to develop essential tools for such genetic approaches, we have established the first genetic map of this species. Two parental homozygous lines were selected from the cultivar Jemalong and from the Algerian natural population (DZA315 on the basis of their molecular and phenotypic polymorphism. Results An F2 segregating population of 124 individuals between these two lines was obtained using an efficient manual crossing technique established for M. truncatula and was used to construct a genetic map. This map spans 1225 cM (average 470 kb/cM and comprises 289 markers including RAPD, AFLP, known genes and isoenzymes arranged in 8 linkage groups (2n = 16. Markers are uniformly distributed throughout the map and segregation distortion is limited to only 3 linkage groups. By mapping a number of common markers, the eight linkage groups are shown to be homologous to those of diploid alfalfa (M. sativa, implying a good level of macrosynteny between the two genomes. Using this M. truncatula map and the derived F3 populations, we were able to map the Mtsym6 symbiotic gene on linkage group 8 and the SPC gene, responsible for the direction of pod coiling, on linkage group 7. Conclusions These results demonstrate that Medicago truncatula is amenable to diploid genetic analysis and they open the way to map-based cloning of symbiotic or other agronomically-important genes using this model plant.

  8. Medicago Scutellata Seed Dormancy Breaking by Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Nazari Meisam

    2014-12-01

    Full Text Available In this study dormancy breaking of a hard-coated plant seed, Medicago scutellata, was investigated. The ultrasonic waves effect on the seed germination percentage, germination rate, radicle length and stalk length growth was assessed. Six treatments of waves exposure periods including 0, 1, 3, 5, 7, and 9 minutes were tested under laboratorial conditions. Statistical analyses were done at probability level of 0.01. Results revealed that the ultrasonic waves have a significantly positive effect on the seed dormancy breaking, but there was no linear correlation between the increasing times of exposure with any of the growth features. The best treatment for germination percentage and germination rate was the 7-minute one and the 3-minute one was the best for radicle length growth. Treatments of 3, 5 and 7 minutes had the same effect on stalk length growth and were better than all other treatments. The 9-minute treatment had a negative effect, even lessening the growth of all of the assessed features in comparison with the control treatment.

  9. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula

    DEFF Research Database (Denmark)

    Watts-Williams, Stephanie J.; Jakobsen, Iver; Cavagnaro, Timothy R.

    2015-01-01

    and root growth, at different soil P levels. Medicago truncatula was grown at three soil P levels in split-pots with or without AM fungal inoculation and where one root half grew into soil labelled with 33P. Plant genotypes included the A17 wild type and the mtpt4 mutant. The mtpt4 mutant, colonized by AM...

  10. Cross-family translational genomics of abiotic stress-responsive genes between Arabidopsis and Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Daejin Hyung

    Full Text Available Cross-species translation of genomic information may play a pivotal role in applying biological knowledge gained from relatively simple model system to other less studied, but related, genomes. The information of abiotic stress (ABS-responsive genes in Arabidopsis was identified and translated into the legume model system, Medicago truncatula. Various data resources, such as TAIR/AtGI DB, expression profiles and literatures, were used to build a genome-wide list of ABS genes. tBlastX/BlastP similarity search tools and manual inspection of alignments were used to identify orthologous genes between the two genomes. A total of 1,377 genes were finally collected and classified into 18 functional criteria of gene ontology (GO. The data analysis according to the expression cues showed that there was substantial level of interaction among three major types (i.e., drought, salinity and cold stress of abiotic stresses. In an attempt to translate the ABS genes between these two species, genomic locations for each gene were mapped using an in-house-developed comparative analysis platform. The comparative analysis revealed that fragmental colinearity, represented by only 37 synteny blocks, existed between Arabidopsis and M. truncatula. Based on the combination of E-value and alignment remarks, estimated translation rate was 60.2% for this cross-family translation. As a prelude of the functional comparative genomic approaches, in-silico gene network/interactome analyses were conducted to predict key components in the ABS responses, and one of the sub-networks was integrated with corresponding comparative map. The results demonstrated that core members of the sub-network were well aligned with previously reported ABS regulatory networks. Taken together, the results indicate that network-based integrative approaches of comparative and functional genomics are important to interpret and translate genomic information for complex traits such as abiotic stresses.

  11. Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula

    International Nuclear Information System (INIS)

    Gyuricza, Veronika; Declerck, Stephane; Dupre de Boulois, Herve

    2010-01-01

    The role of arbuscular mycorrhizal fungi (AMF) in plant radiocesium uptake and accumulation remains ambiguous. This is probably due to the presence of other soil microorganisms, the variability of soil characteristics and plant nutritional status or the availability of its chemical analogue, potassium (K). Here, we used an in vitro culture system to study the impact of increased concentration of K on radiocesium accumulation in non K-starved mycorrhizal and non-mycorrhizal Medicago truncatula plants. In the presence of AMF radiocesium uptake decreased regardless of the concentration of K, and its translocation from root to shoot was also significantly lower. Potassium also reduced the accumulation of radiocesium in plants but to a lesser extent than mycorrhization, and without any effect on translocation. These results suggest that AMF in combination with K can play a key role in reducing radiocesium uptake and its subsequent translocation to plant shoots, thereby representing good potential for improved phytomanagement of contaminated areas.

  12. Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula

    Energy Technology Data Exchange (ETDEWEB)

    Gyuricza, Veronika; Declerck, Stephane [Universite catholique de Louvain, Earth and Life Institute (ELI), Laboratoire de Mycologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Dupre de Boulois, Herve, E-mail: herve.dupre@uclouvain.b [Universite catholique de Louvain, Earth and Life Institute (ELI), Laboratoire de Mycologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)

    2010-08-15

    The role of arbuscular mycorrhizal fungi (AMF) in plant radiocesium uptake and accumulation remains ambiguous. This is probably due to the presence of other soil microorganisms, the variability of soil characteristics and plant nutritional status or the availability of its chemical analogue, potassium (K). Here, we used an in vitro culture system to study the impact of increased concentration of K on radiocesium accumulation in non K-starved mycorrhizal and non-mycorrhizal Medicago truncatula plants. In the presence of AMF radiocesium uptake decreased regardless of the concentration of K, and its translocation from root to shoot was also significantly lower. Potassium also reduced the accumulation of radiocesium in plants but to a lesser extent than mycorrhization, and without any effect on translocation. These results suggest that AMF in combination with K can play a key role in reducing radiocesium uptake and its subsequent translocation to plant shoots, thereby representing good potential for improved phytomanagement of contaminated areas.

  13. Effect of drought and rewatering on the cellular status and antioxidant response of Medicago truncatula plants.

    Science.gov (United States)

    Filippou, Panagiota; Antoniou, Chrystalla; Fotopoulos, Vasileios

    2011-02-01

    Effects of water stress on plants have been well-documented. However, the combined responses to drought and rewatering and their underlying mechanisms are relatively unknown. The present study attempts to describe spatiotemporal alterations in the physiology and cellular status of Medicago truncatula tissues that result from and subsequently follow a period of moderate water deficit. Physiological processes and cellular damage levels were monitored in roots and leaves by determining lipid peroxidation levels, as well as nitric oxide and hydrogen peroxide content, further supported by stomatal conductance and chlorophyll fluorescence measurements in leaves. During water stress, cells in both organs displayed increased damage levels and reactive oxygen and nitrogen species content, while leaves showed reduced stomatal conductance. Furthermore, both tissues demonstrated increased proline content. Upon rewatering, plants recovered displaying readings similar to pre-stress control conditions. Furthermore, molecular analysis of antioxidant gene expression by quantitative real-time RT-PCR revealed differential spatiotemporal regulation in a number of genes examined (including catalase, cytosolic ascorbate peroxidase, copper/zinc and iron superoxide dismutase and alternative oxidase). Overall, M. truncatula plants demonstrated increased sensitivity to drought-induced oxidative damage; however, this was reversed following rewatering indicating a great elasticity in the plant's capacity to cope with free oxygen radicals. 

  14. Co-invading symbiotic mutualists of Medicago polymorpha retain high ancestral diversity and contain diverse accessory genomes.

    Science.gov (United States)

    Porter, Stephanie S; Faber-Hammond, Joshua J; Friesen, Maren L

    2018-01-01

    Exotic, invasive plants and animals can wreak havoc on ecosystems by displacing natives and altering environmental conditions. However, much less is known about the identities or evolutionary dynamics of the symbiotic microbes that accompany invasive species. Most leguminous plants rely upon symbiotic rhizobium bacteria to fix nitrogen and are incapable of colonizing areas devoid of compatible rhizobia. We compare the genomes of symbiotic rhizobia in a portion of the legume's invaded range with those of the rhizobium symbionts from across the legume's native range. We show that in an area of California the legume Medicago polymorpha has invaded, its Ensifer medicae symbionts: (i) exhibit genome-wide patterns of relatedness that together with historical evidence support host-symbiont co-invasion from Europe into California, (ii) exhibit population genomic patterns consistent with the introduction of the majority of deep diversity from the native range, rather than a genetic bottleneck during colonization of California and (iii) harbor a large set of accessory genes uniquely enriched in binding functions, which could play a role in habitat invasion. Examining microbial symbiont genome dynamics during biological invasions is critical for assessing host-symbiont co-invasions whereby microbial symbiont range expansion underlies plant and animal invasions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Cell suspension culture and mutants selection for resistance to PEG induced water stress in alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Lin Tingan

    1994-01-01

    Elements affecting suspension cell culture in alfalfa (Medicago sativa L.) were studied and a method of rapid establishment of embryogenic suspension cell lines was introduced. Effects of γ ray irradiation on the growth of suspension cells were studied, and the optimum dose of irradiation for inducing mutants from suspension cells was about 20 ∼ 60 Gy. Effects of PEG and NaCl induced water stress on the growth of suspension cells were also investigated, and the results showed that the congregants of preliminary suspension culture were more susceptible than the established suspension cell lines. With 20 Gy of γ ray irradiation on suspension cell line (JL416), six clones were obtained with 70 days of selection on medium of 15% PEG (about-11 bar). A number of regenerated plants were obtained from these clones. One clone was also gained from medium containing 20% PEG (about-15 bar). The selected mutant cell lines (JP15 and JP20) has strong resistances to high concentration of PEG and NaCl induced water stress

  16. Temperature affects species distribution in symbiotic populations of Vibrio spp.

    Science.gov (United States)

    Nishiguchi, M K

    2000-08-01

    The genus Sepiola (Cephalopoda: Sepiolidae) contains 10 known species that occur in the Mediterranean Sea today. All Sepiola species have a light organ that contains at least one of two species of luminous bacteria, Vibrio fischeri and Vibrio logei. The two Vibrio species coexist in at least four Sepiola species (S. affinis, S. intermedia, S. ligulata, and S. robusta), and their concentrations in the light organ depend on changes in certain abiotic factors, including temperature. Strains of V. fischeri grew faster in vitro and in Sepiola juveniles when they were incubated at 26 degrees C. In contrast, strains of V. logei grew faster at 18 degrees C in culture and in Sepiola juveniles. When aposymbiotic S. affinis or S. ligulata juveniles were inoculated with one Vibrio species, all strains of V. fischeri and V. logei were capable of infecting both squid species at the optimum growth temperatures, regardless of the squid host from which the bacteria were initially isolated. However, when two different strains of V. fischeri and V. logei were placed in direct competition with each other at either 18 or 26 degrees C, strains of V. fischeri were present in sepiolid light organs in greater concentrations at 26 degrees C, whereas strains of V. logei were present in greater concentrations at 18 degrees C. In addition to the competition experiments, the ratios of the two bacterial species in adult Sepiola specimens caught throughout the season at various depths differed, and these differences were correlated with the temperature in the surrounding environment. My findings contribute additional data concerning the ecological and environmental factors that affect host-symbiont recognition and may provide insight into the evolution of animal-bacterium specificity.

  17. Mycorrhiza Symbiosis Increases the Surface for Sunlight Capture in Medicago truncatula for Better Photosynthetic Production

    Science.gov (United States)

    Adolfsson, Lisa; Keresztes, Áron; Uddling, Johan; Schoefs, Benoît; Spetea, Cornelia

    2015-01-01

    Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with Pi fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with Pi fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased Pi supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and Pi-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by Pi fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and Pi-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area. PMID:25615871

  18. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production.

    Directory of Open Access Journals (Sweden)

    Lisa Adolfsson

    Full Text Available Arbuscular mycorrhizal (AM fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi, and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM, mock inoculum (control or with P(i fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with P(i fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased P(i supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and P(i-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by P(i fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and P(i-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.

  19. Gamma-Ray Doses Affected on Alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Zayed, E.M; Tarrad, M.M.; Abd El-Daem, G.A.N.A.

    2013-01-01

    Field experiments were conducted at the experimental from, Nuclear Research Center at Inshas. Atomic Energy Authority (AEA) at Egypt during 2011– 2012 growing seasons on alfalfa genotype. The aim of this investigation to evaluate the effect of different gamma ray doses (100-300 Gy) on the alfalfa yield and related traits. Seeds lots of alfalfa genotype were subjected to five gamma ray treatments (100,150,200,250 and 300 Gray). Over all cuts, the dose treatment 300 Gy increased the majority of studied traits i.e., plant height, No. of shoots/plant, fresh weight/plant, fresh yield/Fadden and dry weight yield/fed. The results observed indicated that. In addition, dose of 200 and 250 Gy increased No. of leaves /plant, No. of shoots/plant, stem diameter and fresh weight /plant. However, the plant dry weight was decreased by all doses used and over all cuts, but the dose of 100 and 150 Gy increased leaves /stem ratio. Meanwhile, the later cuts were more affected by irradiation treatments than the earlier ones. In general, the low doses had negative effects on yield traits, but, the relatively high doses exhibited an increase in yield traits

  20. IDENTIFICATION AND OCCURRENCE OF FUSARIUM SPECIES ON SEEDS OF COMMON WETCH, WHITE LUPINE AND SOME WILD LEGUMES

    Directory of Open Access Journals (Sweden)

    Tihomir Miličević

    2013-06-01

    Full Text Available The presence and occurrence of Fusarium species was examined on the seeds of cultivated legumes – common vetch (Vicia sativa, white lupine (Lupinus albus, and wild legumes: bird’s-foot trefoil (Lotus corniculatus, wild alfalfa (Medicago sativa, black locust (Robinia pseudoacacia, honey locust (Gleditsia triacanthos, sweet clover (Melilotus officinalis, bird vetch (Vicia cracca and meadow vetchling (Lathyrus pratensis. Thirteen Fusarium species were identified - F. verticillioides, F. acuminatum, F. avenaceum, F. tricinctum F. oxysporum, F. scirpi, F. semitectum, F. culmorum, F. proliferatum, F. pseudograminearum, F. sporotrichioides, F. sambucinum and F. heterosporum. Species F. verticillioides and F. proliferatum were determined on seeds of the cultivated legumes (common vetch and white lupine. Other 11 Fusarium species were determined on seeds of wild legumes (bird’s-foot trefoil, wild alfalfa, sweet clover and bird vetch among which the most prevalent were species F. avenaceum and F. acuminatum.

  1. Species co-occurrence affects the trophic interactions of two juvenile reef shark species in tropical lagoon nurseries in Moorea (French Polynesia).

    Science.gov (United States)

    Matich, Philip; Kiszka, Jeremy J; Mourier, Johann; Planes, Serge; Heithaus, Michael R

    2017-06-01

    Food web structure is shaped by interactions within and across trophic levels. As such, understanding how the presence and absence of predators, prey, and competitors affect species foraging patterns is important for predicting the consequences of changes in species abundances, distributions, and behaviors. Here, we used plasma δ 13 C and δ 15 N values from juvenile blacktip reef sharks (Carcharhinus melanopterus) and juvenile sicklefin lemon sharks (Negaprion acutidens) to investigate how species co-occurrence affects their trophic interactions in littoral waters of Moorea, French Polynesia. Co-occurrence led to isotopic niche partitioning among sharks within nurseries, with significant increases in δ 15 N values among sicklefin lemon sharks, and significant decreases in δ 15 N among blacktip reef sharks. Niche segregation likely promotes coexistence of these two predators during early years of growth and development, but data do not suggest coexistence affects life history traits, such as body size, body condition, and ontogenetic niche shifts. Plasticity in trophic niches among juvenile blacktip reef sharks and sicklefin lemon sharks also suggests these predators are able to account for changes in community structure, resource availability, and intra-guild competition, and may fill similar functional roles in the absence of the other species, which is important as environmental change and human impacts persist in coral reef ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Transgene silencing of sucrose synthase in alfalfa (Medicago sativa L.) stem vascular tissue suggests a role for invertase in cell wall cellulose synthesis

    Science.gov (United States)

    Alfalfa (Medicago sativa L.) plants were transformed with two constructs: (1) a truncated phosphoenolpyruvate carboxylase promoter isolated from alfalfa nodules (PEPC-4) fused to GUS; and (2) PEPC-4 fused with sucrose synthase (SUS) isolated from alfalfa nodules. Histochemical staining for GUS in st...

  3. Effect of different pastures on CLA content in milk and sheep cheese

    Directory of Open Access Journals (Sweden)

    G. Piredda

    2011-03-01

    Full Text Available It is known that milk composition included conjugated linoleic acid (CLA is affected by animal feeding system (Cabiddu et al., 2001. In Sardinia dairy sheep feeding is mainly based on pastures. Most of them are characterised by self-regenerating species, like annual ryegrass (Lolium rigidum Gaudin and burr medic (Medicago polymorpha L.. Non conventional species belonging to the Compositae family such as (Chrysanthemum coronarium L. seem interesting for sheep feeding when other herbages decrease in quality (late spring- early summer...

  4. The Effects of Clinorotation on the Host Plant, Medicago truncatula, and Its Microbial Symbionts

    Energy Technology Data Exchange (ETDEWEB)

    Dauzart, Ariel J. C.; Vandenbrink, Joshua P.; Kiss, John Z., E-mail: jzkiss@olemiss.edu [Department of Biology, Graduate School, University of Mississippi, University, MS (United States)

    2016-02-26

    Understanding the outcome of the plant-microbe symbiosis in reduced or altered is vital to developing life support systems for long-distance space travel and colonization of other planets. Thus, the aim of this research was to understand mutualistic relationships between plants and endophytic microbes under the influence of altered gravity. This project utilized the model tripartite relationship among Medicago truncatula—Sinorhizobium meliloti—Rhizophagus irregularis. Plants were inoculated with rhizobial bacteria (S. meliloti), arbuscular mycorrhizal fungi (R. irregularis), or both microbes, and placed on a rotating clinostat. Vertical and horizontal static controls were also performed. Clinorotation significantly reduced M. truncatula dry mass and fresh mass compared to the static controls. The addition of rhizobia treatments under clinorotation also altered total root length and root-to-shoot fresh mass ratio. Nodule size decreased under rhizobia + clinorotation treatment, and nodule density was significantly decreased compared to the vertical treatment. However, inoculation with arbuscular mycorrhizal fungi was shown to increase biomass accumulation and nodule size. Thus, clinorotation significantly affected M. truncatula and its symbiotic relationships with S. meliloti and R. irregularis. In the long term, the results observed in this clinostat study on the changes of plant-microbe mutualism need to be investigated in spaceflight experiments. Thus, careful consideration of the symbiotic microbes of plants should be included in the design of bioregenerative life support systems needed for space travel.

  5. The Effects of Clinorotation on the Host Plant, Medicago truncatula, and Its Microbial Symbionts

    International Nuclear Information System (INIS)

    Dauzart, Ariel J. C.; Vandenbrink, Joshua P.; Kiss, John Z.

    2016-01-01

    Understanding the outcome of the plant-microbe symbiosis in reduced or altered is vital to developing life support systems for long-distance space travel and colonization of other planets. Thus, the aim of this research was to understand mutualistic relationships between plants and endophytic microbes under the influence of altered gravity. This project utilized the model tripartite relationship among Medicago truncatula—Sinorhizobium meliloti—Rhizophagus irregularis. Plants were inoculated with rhizobial bacteria (S. meliloti), arbuscular mycorrhizal fungi (R. irregularis), or both microbes, and placed on a rotating clinostat. Vertical and horizontal static controls were also performed. Clinorotation significantly reduced M. truncatula dry mass and fresh mass compared to the static controls. The addition of rhizobia treatments under clinorotation also altered total root length and root-to-shoot fresh mass ratio. Nodule size decreased under rhizobia + clinorotation treatment, and nodule density was significantly decreased compared to the vertical treatment. However, inoculation with arbuscular mycorrhizal fungi was shown to increase biomass accumulation and nodule size. Thus, clinorotation significantly affected M. truncatula and its symbiotic relationships with S. meliloti and R. irregularis. In the long term, the results observed in this clinostat study on the changes of plant-microbe mutualism need to be investigated in spaceflight experiments. Thus, careful consideration of the symbiotic microbes of plants should be included in the design of bioregenerative life support systems needed for space travel.

  6. Influence of papermill sludge on growth of Medicago sativa, Festuca rubra and Agropyron trachycaulum in gold mine tailings: A greenhouse study

    International Nuclear Information System (INIS)

    Green, Scott; Renault, Sylvie

    2008-01-01

    A greenhouse study was undertaken to determine the suitability of adding papermill sludge to neutral/alkaline gold mine tailings to improve the establishment of Festuca rubra, Agropyron trachycaulum and Medicago sativa. Festuca rubra root and shoot biomass and A. Trachycaulum shoot biomass were increased with papermill sludge amendment. The addition of papermill sludge and fertilizer drastically increased the shoot and root biomass of M. sativa (20-30 times) while A. trachycaulum and F. rubra showed a more moderate increase in growth. Photosynthetic pigment content of the leaves was higher in papermill sludge treatments than in the treatments without papermill sludge. The organic carbon content, macro-aggregate content and field capacity of the gold mine tailings were increased while the bulk density was decreased by the addition of papermill sludge. This study suggests that addition of papermill sludge and adequate fertilization can alleviate some of the adverse conditions of neutral/alkaline gold mine tailings. - Addition of papermill sludge and adequate fertilization of neutral gold mine tailings increased growth of Medicago sativa, Festuca rubra and Agropyron trachycaulum

  7. Artificial light at night affects sleep behaviour differently in two closely related songbird species.

    Science.gov (United States)

    Sun, Jiachen; Raap, Thomas; Pinxten, Rianne; Eens, Marcel

    2017-12-01

    Artificial light at night (ALAN) or light pollution is an increasing and worldwide problem. There is growing concern that because of the disruption of natural light cycles, ALAN may pose serious risks for wildlife. While ALAN has been shown to affect many aspects of animal behaviour and physiology, few studies have experimentally studied whether individuals of different species in the wild respond differently to ALAN. Here, we investigated the effect of ALAN on sleep behaviour in two closely related songbird species inhabiting the same study area and roosting/breeding in similar nest boxes. We experimentally exposed free-living great tits (Parus major) and blue tits (Cyanistes caeruleus) to artificial light inside their nest boxes and observed changes in their sleep behaviour compared to the previous night when the nest boxes were dark. In line with previous studies, sleep behaviour of both species did not differ under dark conditions. ALAN disrupted sleep in both great and blue tits. However, compared to blue tits, great tits showed more pronounced effects and more aspects of sleep were affected. Light exposed great tits entered the nest boxes and fell asleep later, woke up and exited the nest boxes earlier, and the total sleep amount and sleep percentage were reduced. By contrast, these changes in sleep behaviour were not found in light exposed blue tits. Our field experiment, using exactly the same light manipulation in both species, provides direct evidence that two closely related species respond differently to ALAN, while their sleep behaviour under dark conditions was similar. Our research suggests that findings for one species cannot necessarily be generalised to other species, even closely-related species. Furthermore, species-specific effects could have implications for community dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Nitrogen accumulation in lucerne (Medicago sativa L. under water deficit stress

    Directory of Open Access Journals (Sweden)

    Vasileva Viliana

    2013-01-01

    Full Text Available In order to study nitrogen accumulation in aboveground and root dry mass in lucerne (Medicago sativa L. under water deficit stress, a pot experiment was carried out at the Institute of Forage Crops, Pleven, Bulgaria. The plants were grown under optimum water supply (75-80% FC and 10-days water deficit stress was simulated at the stage of budding by interrupting the irrigation until soil moisture was reduced to 37-40% FC. Mineral nitrogen fertilization (ammonium nitrate at the doses of 40, 80, 120 and 160 mg N kg-1 soil was applied. It was found that nitrogen accumulation in dry aboveground mass was reduced to 18.0%, and in dry root mass to 26.5% under water deficit stress. Mineral nitrogen fertilization contributed to easily overcome the stress conditions of water deficit stress in lucerne.

  9. An expression database for roots of the model legume Medicago truncatula under salt stress.

    Science.gov (United States)

    Li, Daofeng; Su, Zhen; Dong, Jiangli; Wang, Tao

    2009-11-11

    Medicago truncatula is a model legume whose genome is currently being sequenced by an international consortium. Abiotic stresses such as salt stress limit plant growth and crop productivity, including those of legumes. We anticipate that studies on M. truncatula will shed light on other economically important legumes across the world. Here, we report the development of a database called MtED that contains gene expression profiles of the roots of M. truncatula based on time-course salt stress experiments using the Affymetrix Medicago GeneChip. Our hope is that MtED will provide information to assist in improving abiotic stress resistance in legumes. The results of our microarray experiment with roots of M. truncatula under 180 mM sodium chloride were deposited in the MtED database. Additionally, sequence and annotation information regarding microarray probe sets were included. MtED provides functional category analysis based on Gene and GeneBins Ontology, and other Web-based tools for querying and retrieving query results, browsing pathways and transcription factor families, showing metabolic maps, and comparing and visualizing expression profiles. Utilities like mapping probe sets to genome of M. truncatula and In-Silico PCR were implemented by BLAT software suite, which were also available through MtED database. MtED was built in the PHP script language and as a MySQL relational database system on a Linux server. It has an integrated Web interface, which facilitates ready examination and interpretation of the results of microarray experiments. It is intended to help in selecting gene markers to improve abiotic stress resistance in legumes. MtED is available at http://bioinformatics.cau.edu.cn/MtED/.

  10. An expression database for roots of the model legume Medicago truncatula under salt stress

    Directory of Open Access Journals (Sweden)

    Dong Jiangli

    2009-11-01

    Full Text Available Abstract Background Medicago truncatula is a model legume whose genome is currently being sequenced by an international consortium. Abiotic stresses such as salt stress limit plant growth and crop productivity, including those of legumes. We anticipate that studies on M. truncatula will shed light on other economically important legumes across the world. Here, we report the development of a database called MtED that contains gene expression profiles of the roots of M. truncatula based on time-course salt stress experiments using the Affymetrix Medicago GeneChip. Our hope is that MtED will provide information to assist in improving abiotic stress resistance in legumes. Description The results of our microarray experiment with roots of M. truncatula under 180 mM sodium chloride were deposited in the MtED database. Additionally, sequence and annotation information regarding microarray probe sets were included. MtED provides functional category analysis based on Gene and GeneBins Ontology, and other Web-based tools for querying and retrieving query results, browsing pathways and transcription factor families, showing metabolic maps, and comparing and visualizing expression profiles. Utilities like mapping probe sets to genome of M. truncatula and In-Silico PCR were implemented by BLAT software suite, which were also available through MtED database. Conclusion MtED was built in the PHP script language and as a MySQL relational database system on a Linux server. It has an integrated Web interface, which facilitates ready examination and interpretation of the results of microarray experiments. It is intended to help in selecting gene markers to improve abiotic stress resistance in legumes. MtED is available at http://bioinformatics.cau.edu.cn/MtED/.

  11. Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before InfectionW⃞

    Science.gov (United States)

    Genre, Andrea; Chabaud, Mireille; Timmers, Ton; Bonfante, Paola; Barker, David G.

    2005-01-01

    The penetration of arbuscular mycorrhizal (AM) fungi through the outermost root tissues of the host plant is a critical step in root colonization, ultimately leading to the establishment of this ecologically important endosymbiotic association. To evaluate the role played by the host plant during AM infection, we have studied in vivo cellular dynamics within Medicago truncatula root epidermal cells using green fluorescent protein labeling of both the plant cytoskeleton and the endoplasmic reticulum. Targeting roots with Gigaspora hyphae has revealed that, before infection, the epidermal cell assembles a transient intracellular structure with a novel cytoskeletal organization. Real-time monitoring suggests that this structure, designated the prepenetration apparatus (PPA), plays a central role in the elaboration of the apoplastic interface compartment through which the fungus grows when it penetrates the cell lumen. The importance of the PPA is underlined by the fact that M. truncatula dmi (for doesn't make infections) mutants fail to assemble this structure. Furthermore, PPA formation in the epidermis can be correlated with DMI-dependent transcriptional activation of the Medicago early nodulin gene ENOD11. These findings demonstrate how the host plant prepares and organizes AM infection of the root, and both the plant–fungal signaling mechanisms involved and the mechanistic parallels with Rhizobium infection in legume root hairs are discussed. PMID:16284314

  12. Traits affecting early season nitrogen uptake in nine legume species

    Directory of Open Access Journals (Sweden)

    Elana Dayoub

    2017-02-01

    Full Text Available Legume crops are known to have low soil N uptake early in their life cycle, which can weaken their ability to compete with other species, such as weeds or other crops in intercropping systems. However, there is limited knowledge on the main traits involved in soil N uptake during early growth and for a range of species. The objective of this research was to identify the main traits explaining the variability among legume species in soil N uptake and to study the effect of the soil mineral N supply on the legume strategy for the use of available N sources during early growth. Nine legume species were grown in rhizotrons with or without N supply. Root expansion, shoot and root biomass, nodule establishment, N2 fixation and mineral soil N uptake were measured. A large interspecific variability was observed for all traits affecting soil N uptake. Root lateral expansion and early biomass in relation to seed mass were the major traits influencing soil N uptake regardless of the level of soil N availability. Fenugreek, lentil, alfalfa, and common vetch could be considered weak competitors for soil N due to their low plant biomass and low lateral root expansion. Conversely, peanut, pea, chickpea and soybean had a greater soil N uptake. Faba bean was separated from other species having a higher nodule biomass, a higher N2 fixation and a lower seed reserve depletion. Faba bean was able to simultaneously fix N2 and take up soil N. This work has identified traits of seed mass, shoot and root biomass, root lateral expansion, N2 fixation and seed reserve depletion that allowing classification of legume species regarding their soil N uptake ability during early growth.

  13. Identification of distinct quantitative trait loci associated with defence against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula

    KAUST Repository

    Guo, Su-Min

    2012-03-21

    Aphids are a major family of plant insect pests. Medicago truncatula and Acyrthosiphon pisum (pea aphid, PA) are model species with a suite of resources available to help dissect the mechanism underlying plant-aphid interactions. A previous study focused on monogenic and relatively strong resistance in M. truncatula to PA and other aphid species. In this study a moderate resistance to PA was characterized in detail in the M. truncatula line A17 and compared with the highly susceptible line A20 and the more resistant line Jester. The results show that PA resistance in A17 involves both antibiosis and tolerance, and that resistance is phloem based. Quantitative trait locus (QTL) analysis using a recombinant inbred line (RIL) population (n=114) from a cross between A17 and A20 revealed that one locus, which co-segregated with AIN (Acyrthosiphon-induced necrosis) on chromosome 3, is responsible for the reduction of aphid biomass (indicator of antibiosis) for both PA and bluegreen aphid (BGA, A. kondoi), albeit to a lesser degree for PA than BGA. Interestingly, two independent loci on chromosomes 5 and 3 were identified for the plant biomass reduction (indicator of plant tolerance) by PA and BGA, respectively, demonstrating that the plant\\'s tolerance response to these two closely related aphid species is distinct. Together with previously identified major resistant (R) genes, the QTLs identified in this study are powerful tools to understand fully the spectrum of plant defence against sap-sucking insects and provide opportunities for breeders to generate effective and sustainable strategies for aphid control. 2012 The Author.

  14. Which Factors Affect the Success or Failure of Eradication Campaigns against Alien Species?

    NARCIS (Netherlands)

    Pluess, T.; Jarošík, V.; Pysek, P.; Cannon, R.; Pergl, J.; Breukers, A.; Bacher, S.

    2012-01-01

    Although issues related to the management of invasive alien species are receiving increasing attention, little is known about which factors affect the likelihood of success of management measures. We applied two data mining techniques, classification trees and boosted trees, to identify factors that

  15. Canopy cover negatively affects arboreal ant species richness in a tropical open habitat

    Directory of Open Access Journals (Sweden)

    A. C. M. Queiroz

    Full Text Available Abstract We tested the hypothesis of a negative relationship between vegetation characteristics and ant species richness in a Brazilian open vegetation habitat, called candeial. We set up arboreal pitfalls to sample arboreal ants and measured the following environmental variables, which were used as surrogate of environmental heterogeneity: tree richness, tree density, tree height, circumference at the base of the plants, and canopy cover. Only canopy cover had a negative effect on the arboreal ant species richness. Vegetation characteristics and plant species composition are probably homogeneous in candeial, which explains the lack of relationship between other environmental variables and ant richness. Open vegetation habitats harbor a large number of opportunistic and generalist species, besides specialist ants from habitats with high temperatures. An increase in canopy cover decreases sunlight incidence and may cause local microclimatic differences, which negatively affect the species richness of specialist ants from open areas. Canopy cover regulates the richness of arboreal ants in open areas, since only few ant species are able to colonize sites with dense vegetation; most species are present in sites with high temperature and luminosity. Within open vegetation habitats the relationship between vegetation characteristics and species richness seems to be the opposite from closed vegetation areas, like forests.

  16. How planting configuration influences plant secondary metabolites and total N in tall fescue (Festuca arundinacea Schreb.), alfalfa (Medicago sativa L.) and birdsfoot trefoil (Lotus corniculatus L.)

    Science.gov (United States)

    Theories suggest that incorporating alfalfa (Medicago sativa L.; Alf) or birdsfoot trefoil (Lotus corniculatus L.; BFT) into endophyte-infected tall fescue (Festuca arundinaceas Schreb.; E+TF) pasturelands may improve livestock production. We investigated how planting configuration might influence p...

  17. Impact of Inter-Row Spacing on Yield and Yield Components of several Annual Medics Species

    Directory of Open Access Journals (Sweden)

    Mahnaz BAGHERI

    2010-12-01

    Full Text Available A field study was conducted in Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran to evaluate the effects of three within-row spacing treatments (20, 30 and 40 cm on forage and seed production of five species of annual medics (Medicago scutellata cv. Sava; M. littoralis cv. Herald; M. polymorpha cv. Santiago; M. minima cv. Orion and M. truncatula cv. Mogul. The experiment was carried out in Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. The results of the experiment indicated that M. polymorpha had the highest forage yield out of the highest plant population. Latter with average 443.09 Kg ha-1 and M. scutellata with average 409.99 Kg ha-1 produced the highest seed yield. Also, the last species with 1306.78 Kg ha-1 had the highest pod yields. The highest seed yield and pod yield were produced at 20 cm within-row spacing because there were not adequate plants for maximum seed and pod yields in 30 and 40 cm within-row spacing. The tested plant densities did not affect on seeds number per pod, 1000 seeds weight and seeds to burr pod weight ratio. The M. truncatula and M. minima have the highest seeds number per pod. In addition, M. scutellata had the highest 1000 seeds weight with an average of 12.57 g. The highest seeds to burr pod ratio was observed in M. polymorpha. The most pod numbers were obtained in 20 and 30 cm within-row spacing and M. polymorpha while, the least pod numbers was observed in M. scutellata. Plant densities did not affect on pod numbers of the mentioned species. The highest dry forage yield was produced in 20 cm within-row spacing. Among the tested tested species, M. truncatula had the highest forage yield with average 870.07 Kg ha-1. This experiment indicated that there is possibility for seed and forage production of tested annual medics in the mentioned zone with the considering suitable plant densities.

  18. The Effects of Clinorotation on the Host Plant, Medicago truncatula, and Its Microbial Symbionts

    Directory of Open Access Journals (Sweden)

    Ariel J.C. Dauzart

    2016-02-01

    Full Text Available Understanding the outcome of the plant-microbe symbiosis in altered gravity is vital to developing life support systems for long-distance space travel and colonization of other planets. Thus, the aim of this research was to understand mutualistic relationships between plants and endophytic microbes under the influence of altered gravity. This project utilized the model tripartite relationship among Medicago truncatula ¬– Sinorhizobium meliloti – Rhizophagus irregularis. Plants were inoculated with rhizobial bacteria (S. meliloti, arbuscular mycorrhizal fungi (R. irregularis, or both microbes, and placed on a rotating clinostat. Vertical and horizontal static controls were also performed. Clinorotation significantly reduced M. truncatula dry mass and fresh mass compared to the static controls. The addition of rhizobia treatments under clinorotation also altered total root length and root-to-shoot fresh mass ratio. Nodule size decreased under rhizobia + clinorotation treatment, and nodule density was significantly decreased compared to the vertical treatment. However, inoculation with arbuscular mycorrhizal fungi was shown to increase biomass accumulation and nodule size. Thus, clinorotation significantly affected M. truncatula and its symbiotic relationships with S. meliloti and R. irregularis. In the long term, the results observed in this clinostat study on the changes of plant-microbe mutualism need to be investigated in spaceflight experiments. Thus, careful consideration of the symbiotic microbes of plants should be included in the design of bioregenerative life support systems needed for space travel.

  19. Mapping the genetic basis of symbiotic variation in legume-rhizobium interactions in Medicago truncatula.

    Science.gov (United States)

    Gorton, Amanda J; Heath, Katy D; Pilet-Nayel, Marie-Laure; Baranger, Alain; Stinchcombe, John R

    2012-11-01

    Mutualisms are known to be genetically variable, where the genotypes differ in the fitness benefits they gain from the interaction. To date, little is known about the loci that underlie such genetic variation in fitness or whether the loci influencing fitness are partner specific, and depend on the genotype of the interaction partner. In the legume-rhizobium mutualism, one set of potential candidate genes that may influence the fitness benefits of the symbiosis are the plant genes involved in the initiation of the signaling pathway between the two partners. Here we performed quantitative trait loci (QTL) mapping in Medicago truncatula in two different rhizobium strain treatments to locate regions of the genome influencing plant traits, assess whether such regions are dependent on the genotype of the rhizobial mutualist (QTL × rhizobium strain), and evaluate the contribution of sequence variation at known symbiosis signaling genes. Two of the symbiotic signaling genes, NFP and DMI3, colocalized with two QTL affecting average fruit weight and leaf number, suggesting that natural variation in nodulation genes may potentially influence plant fitness. In both rhizobium strain treatments, there were QTL that influenced multiple traits, indicative of either tight linkage between loci or pleiotropy, including one QTL with opposing effects on growth and reproduction. There was no evidence for QTL × rhizobium strain or genotype × genotype interactions, suggesting either that such interactions are due to small-effect loci or that more genotype-genotype combinations need to be tested in future mapping studies.

  20. Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa.

    Science.gov (United States)

    Kisiel, Anna; Kępczyńska, Ewa

    2016-05-01

    The present study showed all the 16 strains isolated and identified from the alfalfa rhizosphere and nodules, and registered in GenBank, to be good candidates for targeted use in studies addressing the rather weak known mechanism of plant growth promotion, including that of Medicago truncatula, a molecular crop model. Based on physiological, biochemical and molecular analysis, the 16 isolates obtained were ascribed to the following five families: Bacillaceae, Rhizobiaceae, Xantomonadaceae, Enterobacteriaceae and Pseudomonadaceae, within which 9 genera and 16 species were identified. All these bacteria were found to significantly enhance fresh and dry weight of root, shoots and whole 5-week-old seedlings. The bacteria were capable of the in vitro use of tryptophan to produce indolic compounds at various concentrations. The ability of almost all the strains to enhance growth of seedlings and individual roots was positively correlated with the production of the indolic compounds (r = 0.69; P = 0.0001), but not with the 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity (no correlation). For some strains, it was difficult to conclude whether the growth promotion was related to the production of indolic compounds or to the ACCD activity. It is likely that promotion of M. truncatula root development involves also root interaction with pseudomonads, known to produce 2,4-diacetylphloroglucinol (DAPG), a secondary metabolite reported to alter the root architecture by interacting with an auxin-dependent signaling pathway. Inoculation of seedlings with Pseudomonas brassicacearum KK 5, a bacterium known for its lowest ability to produce indolic compounds, the highest ACCD activity and the presence of the phlD gene responsible for DAPG precursor synthesis, resulted in a substantial promotion of root development. Inoculation with the strain increased the endogenous IAA level in M. truncatula leaves after inoculation of 5-week-old seedlings. Three other strains examined

  1. A snapshot of functional genetic studies in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Yun Kang

    2016-08-01

    Full Text Available In the current context of food security, increase of plant protein production in a sustainable manner represents one of the major challenges of agronomic research, which could be partially resolved by increased cultivation of legume crops. Medicago truncatula is now a well-established model for legume genomic and genetic studies. With the establishment of genomics tools and mutant populations in M. truncatula, it has become an important resource to answer some of the basic biological questions related to plant development and stress tolerance. This review has an objective to overview a decade of genetic studies in this model plant from generation of mutant populations to nowadays. To date, the three biological fields, which have been extensively studied in M. truncatula, are the symbiotic nitrogen fixation, the seed development, and the abiotic stress tolerance, due to their significant agronomic impacts. In this review, we summarize functional genetic studies related to these three major biological fields. We integrated analyses of a nearly exhaustive list of genes into their biological contexts in order to provide an overview of the forefront research advances in this important legume model plant.

  2. Wild felid species richness affected by a corridor in the Lacandona forest, Mexico

    Directory of Open Access Journals (Sweden)

    Gil–Fernández, M.

    2017-02-01

    Full Text Available Wild felids are one of the most vulnerable species due to habitat loss caused by fragmentation of ecosystems. We analyzed the effect of a structural corridor, defined as a strip of vegetation connecting two habitat patches, on the richness and habitat occupancy of felids on three sites in Marqués de Comillas, Chiapas, one with two isolated forest patches, the second with a structural corridor, and the third inside the Montes Azules Biosphere Reserve. We found only two species (L. pardalis and H. yagouaroundi in the isolated forest patches, five species in the structural corridor, and four species inside the Reserve. The corridor did not significantly affect occupancy, but due to the low detection rates, further investigation is needed to rule out differences. Our results highlight the need to manage habitat connectivity in the remaining forests in order to preserve the felid community of Marqués de Comillas, Chiapas, México.

  3. WATER DEFICIT EFFECT ON YIELD AND FORAGE QUALITY OF MEDICAGO SATIVA POPULATIONS UNDER FIELD CONDITIONS IN MARRAKESH AREA (MOROCCO)

    OpenAIRE

    Mohamed FARISSI; Cherki GHOULAM; Abdelaziz BOUIZGAREN

    2014-01-01

    The present study focused the effect of water deficit on agronomic potential and some traits related to forage quality in plants of Moroccan Alfalfa (Medicago sativa L.) populations (Taf 1, Taf 2, Dem and Tata) originated from Oasis and High Atlas of Morocco and an introduced variety from Australia (Siriver). The experiment was conducted under field conditions in experimental station of INRA-Marrakech and under two irrigation treatments. The first treatment was normal irrigation, providing an...

  4. Mercury affects the distribution of culturable species of Pseudomonas in soil

    DEFF Research Database (Denmark)

    Holtze, Maria Sommer; Nielsen, Preben; Ekelund, Flemming

    2006-01-01

    Pseudomonas bacteria isolated during 52 days on Gould's S1 agar from soil spiked with 0, 3.5 and 15 mg Hg(II) kg soil(-1) were characterised to reveal whether mercury affected them differently. Isolates from the treatments with 0 and 15 mg Hg kg(-1) were characterised using FT-IR characterisation...... was almost exclusively restricted to P. frederiksbergensis and P. migulae groups. We conclude that Hg caused a shift in the dominating species of culturable Pseudomonas....

  5. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Kong, W.D.; Zhu, Y.G.; Liang, Y.C.; Zhang, J.; Smith, F.A.; Yang, M.

    2007-01-01

    A series of experiments were conducted in a hydroponic system to investigate the uptake of oxytetracycline (OTC) and its toxicity to alfalfa (Medicago sativa L.). OTC inhibited alfalfa shoot and root growth by up to 61% and 85%, respectively. The kinetics of OTC uptake could be well described by Michaelis-Menten equation with V max of 2.25 μmol g -1 fresh weight h -1 , and K m of 0.036 mM. The uptake of OTC by alfalfa was strongly inhibited by the metabolic inhibitor, 2,4-DNP (2,4-dinitrophenol), at pH 3.5 and 6.0, but not by the aquaporin competitors, glycerol and Ag + . OTC uptake, however, was significantly inhibited by Hg 2+ , suggesting that the inhibition of influx was due to general cellular stress rather than the specific action of Hg 2+ on aquaporins. Results from the present study suggested that OTC uptake into alfalfa is an energy-dependent process. - Plant uptake of antibiotic oxytetracycline is energy-dependent

  6. Low-fiber alfalfa (Medicago sativa L.) meal in the laying hen diet: effects on productive traits and egg quality.

    Science.gov (United States)

    Laudadio, V; Ceci, E; Lastella, N M B; Introna, M; Tufarelli, V

    2014-07-01

    This study was designed to determine the effects on laying performance and egg quality resulting from partial substitution of soybean meal (SBM) with low-fiber alfalfa (LFA; Medicago sativa L.) meal in the diet of early-phase laying hens. ISA Brown layers, 18 wk of age, were randomly allocated to 2 dietary treatments and fed for 10 wk. The hens were fed 2 wheat middling-based diets: a control diet, which contained SBM (15% of diet), and a test diet containing LFA (15% of diet) as the main protein source. Low-fiber alfalfa meal was obtained by a combination of sieving and air-classification processes. Feed intake was recorded daily, and egg production was calculated on a hen-day basis; eggs from each group were weekly collected to evaluate egg components and quality. The partial substitution of SBM with LFA had no adverse effect on growth performance of early-phase laying hens. Egg production and none of the egg-quality traits examined were influenced by dietary treatment, except for yolk color (P alfalfa meal in the laying-hen diet can positively influence yolk quality without adversely affecting productive traits. © 2014 Poultry Science Association Inc.

  7. Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Pajuelo, Eloisa [Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville (Spain); Rodriguez-Llorente, Ignacio D. [Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville (Spain)], E-mail: irodri@us.es; Dary, Mohammed; Palomares, Antonio J. [Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville (Spain)

    2008-07-15

    Recently, the Rhizobium-legume symbiotic interaction has been proposed as an interesting tool in bioremediation. However, little is known about the effect of most common contaminants on this process. The phytotoxic effects of arsenic on nodulation of Medicago sativa have been examined in vitro using the highly arsenic resistant and symbiotically effective Sinorhizobium sp. strain MA11. The bacteria were able to grow on plates containing As concentrations as high as 10 mM. Nevertheless, as little as 25-35 {mu}M arsenite produced a 75% decrease in the total number of nodules, due to a 90% reduction in the number of rhizobial infections, as could be determined using the strain MA11 carrying a lacZ reporter gene. This effect was associated to root hair damage and a shorter infective root zone. However, once nodulation was established nodule development seemed to continue normally, although earlier senescence could be observed in nodules of arsenic-grown plants. - First steps of nodulation of alfalfa, in particular infection thread formation, are more sensitive to As than nitrogen fixation due to plant effects.

  8. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    Directory of Open Access Journals (Sweden)

    Alessandro Ossola

    2015-10-01

    Full Text Available Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i ant abundance and species richness would be higher in high-complexity urban habitats, (ii ant assemblages would differ between low- and high-complexity habitats and (iii ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size.

  9. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    Science.gov (United States)

    Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  10. Traffic noise affects forest bird species in a protected tropical forest

    Directory of Open Access Journals (Sweden)

    J. Edgardo Arévalo

    2011-06-01

    , these results have conservation as well as management implications. A decrease in bird species richness and bird abundance due to intrusive road noise could negatively affect the use of trails by visitors. Alternatives for noise attenuation in the affected forest area include the enforcement of speed limits and the planting of live barriers. Rev. Biol. Trop. 59 (2: 969-980. Epub 2011 June 01.

  11. Similar local and landscape processes affect both a common and a rare newt species.

    Science.gov (United States)

    Denoël, Mathieu; Perez, Amélie; Cornet, Yves; Ficetola, Gentile Francesco

    2013-01-01

    Although rare species are often the focus of conservation measures, more common species may experience similar decline and suffer from the same threatening processes. We tested this hypothesis by examining, through an information-theoretic approach, the importance of ecological processes at multiple scales in the great crested newt Triturus cristatus, regionally endangered and protected in Europe, and the more common smooth newt, Lissotriton vulgaris. Both species were similarly affected by the same processes, i.e. suitability of aquatic and terrestrial components of their habitat at different scales, connectivity among breeding sites, and the presence of introduced fish. T. cristatus depended more on water depth and aquatic vegetation than L. vulgaris. The results show that environmental pressures threaten both common and rare species, and therefore the more widespread species should not be neglected in conservation programs. Because environmental trends are leading to a deterioration of aquatic and terrestrial habitat features required by newt populations, populations of the common species may follow the fate of the rarest species. This could have substantial conservation implications because of the numerical importance of common species in ecosystems and because commonness could be a transient state moving towards rarity. On the other hand, in agreement with the umbrella species concept, targeting conservation efforts on the most demanding species would also protect part of the populations of the most common species.

  12. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium

    DEFF Research Database (Denmark)

    Trieu, A.T.; Burleigh, S.H.; Kardailsky, I.V.

    2000-01-01

    Two rapid and simple in planta transformation methods have been developed for the model legume Medicago truncatula. The first approach is based on a method developed for transformation of Arabidopsis thaliana and involves infiltration of flowering plants with a suspension of Agrobacterium....... The second method involves infiltration of young seedlings with Agrobacterium. In both cases a proportion of the progeny of the infiltrated plants is transformed. The transformation frequency ranges from 4.7 to 76% for the flower infiltration method, and from 2.9 to 27.6% for the seedling infiltration method....... Both procedures resulted in a mixture of independent transformants and sibling transformants. The transformants were genetically stable, and analysis of the T-2 generation indicates that the transgenes are inherited in a Mendelian fashion. These transformation systems will increase the utility of M...

  13. Root and Nodulation Phenotypes of the Ethylene-Insensitive Sickle Mutant of Medicago truncatula

    Directory of Open Access Journals (Sweden)

    JOKO PRAYITNO

    2010-09-01

    Full Text Available The sickle (skl mutant of the model legume Medicago truncatula is an ethylene-sensitive mutant that have a ten-fold increase in nodule numbers. The nodulation and root phenotypes of the skl mutant were investigated and further characterised. The skl mutant had longer roots than the wild type, but when inoculated with Sinorhizobium, its root length was reduced to the level of wild type. Furthermore, lateral root numbers in uninoculated skl were similar to those in uninoculated wild type. However, when the root tips were decapitated, fewer lateral roots formed in skl than in wild type. Nodule numbers of the skl mutant were significantly reduced by low nitrate concentration (2.5 mM. These results suggest that skl mutant has alterations in both root and nodule development.

  14. Remnant trees affect species composition but not structure of tropical second-growth forest.

    Science.gov (United States)

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  15. Efecto de las arañas (Arachnida: Araneae como depredadoras de insectos plaga en cultivos de alfalfa (Medicago sativa (Fabaceae en Argentina

    Directory of Open Access Journals (Sweden)

    Andrea Armendano

    2011-12-01

    Full Text Available Effect of spiders (Arachnida: Araneae as predators of insect pest in alfalfa crops (Medicago sativa (Fabaceae in Argentina. Spiders are predators that reduce insect pest populations in agroecosystems. Trials were conducted to measure the selectivity against different insect preys, the daily consumption, effect of predators alone and together with a known number of preys, and the indirect effect of predators on vegetation. For this, experimental units (1x1m were used covered with a fine plastic mesh. Misumenops pallidus, Oxyopes salticus and Araneus sp. were used as generalist predators, and aphids, weevils, locusts, chrysomelids and Lepidoptera larvae as their potential preys. Among the preys offered, the spiders preferred Lepidoptera larvae compared to the other two pests groups (weevils and aphids. The maximum consumption rate was of 93.33% for Lepidoptera larvae, 25.33% for aphids and 11.67% for weevils. The Q Index values for the three species of spiders showed a positive selectivity only for defoliating larvae. O. salticus showed the highest values of consumption rates while Rachiplusia nu was the most consumed. The maximum value of consumption in 24 hours was showed by O. salticus on R. nu (C=2.8. The association of several species of predatory spiders increased the total number of insects captured, and also showed that the addition of spiders caused a decrease in the number of leaves damaged by the effect of lepidopterous larvae. Rev. Biol. Trop. 59 (4: 1651-1662. Epub 2011 December 01

  16. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula

    OpenAIRE

    Zhao, Qiao; Tobimatsu, Yuki; Zhou, Rui; Pattathil, Sivakumar; Gallego-Giraldo, Lina; Fu, Chunxiang; Jackson, Lisa A.; Hahn, Michael G.; Kim, Hoon; Chen, Fang; Ralph, John; Dixon, Richard A.

    2013-01-01

    There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis in...

  17. Development of a GAL4-VP16/UAS trans-activation system for tissue specific expression in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Amélie Sevin-Pujol

    Full Text Available Promoters with tissue-specific activity are very useful to address cell-autonomous and non cell autonomous functions of candidate genes. Although this strategy is widely used in Arabidopsis thaliana, its use to study tissue-specific regulation of root symbiotic interactions in legumes has only started recently. Moreover, using tissue specific promoter activity to drive a GAL4-VP16 chimeric transcription factor that can bind short upstream activation sequences (UAS is an efficient way to target and enhance the expression of any gene of interest. Here, we developed a collection of promoters with different root cell layers specific activities in Medicago truncatula and tested their abilities to drive the expression of a chimeric GAL4-VP16 transcription factor in a trans-activation UAS: β-Glucuronidase (GUS reporter gene system. By developing a binary vector devoted to modular Golden Gate cloning together with a collection of adapted tissue specific promoters and coding sequences we could test the activity of four of these promoters in trans-activation GAL4/UAS systems and compare them to "classical" promoter GUS fusions. Roots showing high levels of tissue specific expression of the GUS activity could be obtained with this trans-activation system. We therefore provide the legume community with new tools for efficient modular Golden Gate cloning, tissue specific expression and a trans-activation system. This study provides the ground work for future development of stable transgenic lines in Medicago truncatula.

  18. The Hybridization Barrier between Herbaceous Medicago sativa and Woody M. arborea Is Weakened by Selection of Seed Parents

    Directory of Open Access Journals (Sweden)

    Edwin Bingham

    2013-05-01

    Full Text Available Medicago sativa, alfalfa or lucerne, and M. arborea were considered reproductively isolated until recently. Then, in 2003, an alfalfa genotype was identified that produced a few seeds and progeny with hybrid traits after a large number of pollinations by M. arborea. A derivative of this alfalfa genotype also produced a low frequency of progeny with hybrid traits. Thus, the hybridization barrier was weakened by selection of seed parents. Hybrids from both events expressed traits from M. arborea and M. arborea-specific DNA bands, although more of the M. sativa genome was retained, based on the DNA results. Thus, there was chromatin elimination during embryogenesis, resulting in partial hybrids (hereafter hybrids. However, more than 30 hybrids with an array of M. arborea traits have been obtained thus far, and research continues on the nature of the hybrids. Traits have been genetically transmitted in crosses, and selected traits are in use for alfalfa breeding. This paper reviews the first hybrids and then focuses on further weakening of the hybridization barrier with the discovery of a more efficient hybridizer derived from crossing Medicago sativa subspecies, sativa, coerulea and falcata. This genotype was found to have reproductive abnormalities associated with its complex subspecies origin that are best described as hybrid breakdown. In effect, this subspecies derivative is a bridge-cross parent that consistently produces hybrids. Reproductive abnormalities in the bridge-cross parent are reported and discussed.

  19. The Hybridization Barrier between Herbaceous Medicago sativa and Woody M. arborea Is Weakened by Selection of Seed Parents

    Science.gov (United States)

    Bingham, Edwin; Armour, David; Irwin, John

    2013-01-01

    Medicago sativa, alfalfa or lucerne, and M. arborea were considered reproductively isolated until recently. Then, in 2003, an alfalfa genotype was identified that produced a few seeds and progeny with hybrid traits after a large number of pollinations by M. arborea. A derivative of this alfalfa genotype also produced a low frequency of progeny with hybrid traits. Thus, the hybridization barrier was weakened by selection of seed parents. Hybrids from both events expressed traits from M. arborea and M. arborea-specific DNA bands, although more of the M. sativa genome was retained, based on the DNA results. Thus, there was chromatin elimination during embryogenesis, resulting in partial hybrids (hereafter hybrids). However, more than 30 hybrids with an array of M. arborea traits have been obtained thus far, and research continues on the nature of the hybrids. Traits have been genetically transmitted in crosses, and selected traits are in use for alfalfa breeding. This paper reviews the first hybrids and then focuses on further weakening of the hybridization barrier with the discovery of a more efficient hybridizer derived from crossing Medicago sativa subspecies, sativa, coerulea and falcata. This genotype was found to have reproductive abnormalities associated with its complex subspecies origin that are best described as hybrid breakdown. In effect, this subspecies derivative is a bridge-cross parent that consistently produces hybrids. Reproductive abnormalities in the bridge-cross parent are reported and discussed. PMID:27137379

  20. Genetic Mapping of a Major Resistance Gene to Pea Aphid (Acyrthosipon pisum in the Model Legume Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Lars G. Kamphuis

    2016-07-01

    Full Text Available Resistance to the Australian pea aphid (PA; Acyrthosiphon pisum biotype in cultivar Jester of the model legume Medicago truncatula is mediated by a single dominant gene and is phloem-mediated. The genetic map position for this resistance gene, APR (Acyrthosiphon pisum resistance, is provided and shows that APR maps 39 centiMorgans (cM distal of the A. kondoi resistance (AKR locus, which mediates resistance to a closely related species of the same genus bluegreen aphid (A. kondoi. The APR region on chromosome 3 is dense in classical nucleotide binding site leucine-rich repeats (NLRs and overlaps with the region harbouring the RAP1 gene which confers resistance to a European PA biotype in the accession Jemalong A17. Further screening of a core collection of M. truncatula accessions identified seven lines with strong resistance to PA. Allelism experiments showed that the single dominant resistance to PA in M. truncatula accessions SA10481 and SA1516 are allelic to SA10733, the donor of the APR locus in cultivar Jester. While it remains unclear whether there are multiple PA resistance genes in an R-gene cluster or the resistance loci identified in the other M. truncatula accessions are allelic to APR, the introgression of APR into current M. truncatula cultivars will provide more durable resistance to PA.

  1. A PROPOSITO DE UN ENSAYO CON ABONOS (cal y harina de huesos EN ALFALFAl (Medicago sativa

    Directory of Open Access Journals (Sweden)

    Isidoro Mogilner

    1960-01-01

    Full Text Available En este trabajo, los autores estudian el efecto que sobre el rendimiento de la alfalfa (Medicago sativa produce la incorporación de diferentes dosis de cal y harina de huesos, en un suelo pobre de P y Ca; de una textura pesada con alto contenido de arcilla en todos los horizontes, de un pH ácido (5.1 a 6.2 y que es característico de la zona donde fué hecha la experiencia.Se han obtenido resultados referentes a la influencia de la inoculación de la semilla con Rhizobium y el agregado de cal y harina de huesos sobre los rendimientos.

  2. Fotossíntese em alfafa (Medicago sativa L.) sob supressão e ressuprimento de fosfato

    OpenAIRE

    Gomes,Fernando Teixeira; Pereira,Gilmara Duarte; Borges,Arnaldo Chaer; Mosquim,Paulo Roberto

    2003-01-01

    Neste estudo, foram avaliados os efeitos da supressão e do ressuprimento de fosfato (Pi) sobre a fotossíntese e eficiência fotoquímica de plantas de Medicago sativa cv. Flórida 77, em diferentes estádios do desenvolvimento vegetativo (V3, V4) e reprodutivo (R6, R8). O ensaio foi conduzido em casa de vegetação e as plantas cultivadas na solução nutritiva de HOAGLAND & ARNON (1950), contendo 0,14mmol L-1 de Pi. A supressão de Pi por dez dias reduziu os teores de fósforo nas folhas amostrada...

  3. Mineral accumulation in vegetative and reproductive tissues during seed development in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Christina B. Garcia

    2015-08-01

    Full Text Available Enhancing nutrient density in legume seeds is one of several strategies being explored to improve the nutritional quality of the food supply. In order to develop crop varieties with increased seed mineral concentration, a more detailed understanding of mineral translocation within the plant is required. By studying mineral accumulation in different organs within genetically diverse members of the same species, it may be possible to identify variable traits that modulate seed mineral concentration. We utilized two ecotypes (A17 and DZA315.16 of the model legume, Medicago truncatula, to study dry mass and mineral accumulation in the leaves, pod walls, and seeds during reproductive development. The pod wall dry mass was significantly different between the two ecotypes beginning at 12 days after pollination, whereas there was no significant difference in the average dry mass of individual seeds between the two ecotypes at any time point. There were also no significant differences in leaf dry mass between ecotypes; however, we observed expansion of A17 leaves during the first 21 days of pod development, while DZA315.16 leaves did not display a significant increase in leaf area. Mineral profiling of the leaves, pod walls, and seeds highlighted differences in accumulation patterns among minerals within each tissue as well as genotypic differences with respect to individual minerals. Because there were differences in the average seed number per pod, the total seed mineral content per pod was generally higher in A17 than DZA315.16. In addition, mineral partitioning to the seeds tended to be higher in A17 pods. These data revealed that mineral retention within leaves and/or pod walls might attenuate mineral accumulation within the seeds. As a result, strategies to increase seed mineral content should include approaches that will enhance export from these tissues.

  4. [Genome-wide identification and analysis of WRKY transcription factors in Medicago truncatula].

    Science.gov (United States)

    Song, Hui; Nan, Zhibiao

    2014-02-01

    WRKY gene family plays important roles in plant by involving in transcriptional regulations during various physiologically processes such as development, metabolism and responses to biotic and abiotic stresses. WRKY genes have been identified in various plants. However, only few WRKY genes in Medicago truncatula have been identified with systematic analysis and comparison. In this study, we identified 93 WRKY genes through analyses of M. truncatula genome. These genes include 19 type-I genes, 49 type II genes and 13 type-III genes, and 12 non-regular type genes. All of these genes were characterized through analyses of gene duplication, chromosomal locations, structural diversity, conserved protein motifs and phylogenetic relations. The results showed that 11 times of gene duplication event occurred in WRKY gene family involving 24 genes. WRKY genes, containing 6 gene clusters, are unevenly distributed into chromosome 1 to 6, and there is the purifying selection pressure in WRKY group III genes.

  5. Effects of compost organic amendments on chemical composition and in vitro digestibility of alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Francesco Montemurro

    2010-01-01

    Full Text Available The following fertiliser treatments were compared during the years 2002 and 2003 on alfalfa forage (Medicago sativa L.: compost obtained from the organic fraction of the Municipal Solid Waste (MSW; olive pomace compost (OPC; mineral fertiliser (Min. All the treatments allowed a distribution of 75kg ha-1 of P2O5. Three cuttings occurred: at 168, 206 and 351 days after compost application (DAA in 2002; 119, 152 and 320 DAA in 2003. Cumulative biomass and dry matter yields were measured during each experimental year. Furthermore, chemical composition and in vitro digestibility of dry matter (DMd, organic matter (OMd, crude protein (CPd and NDF (NDFd were determined. MSW treatment showed a significantly (P<0.01 higher content of ADL than OPC and Min (77.0, 66.0 and 65.0g kg-1 DM, respectively. Fertiliser treatments also affected (P<0.01 digestibility parameters. In fact, DMd and OMd values showed the same trend with lower percentages in MSW treatment than in the OPC and Min ones. The NDFd differed in all treatments having the highest value in OPC (40.1%. The results indicated that the soil distribution of organic materials offer the possibility to reduce the application of mineral fertilisers and production costs without decreasing alfalfa yield, forage chemical composition and in vitro digestibility.

  6. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W D [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhu, Y G [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Liang, Y C [Ministry of Agriculture Key Laboratory of Plant Nutrition and Nutrient Cycling, Institute of Soils and Fertilizers, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Zhang, J [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Smith, F A [Soil and Land Systems, School of Earth and Environmental Sciences, University of Adelaide, DP 636, Adelaide, SA 5005 (Australia); Yang, M [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2007-05-15

    A series of experiments were conducted in a hydroponic system to investigate the uptake of oxytetracycline (OTC) and its toxicity to alfalfa (Medicago sativa L.). OTC inhibited alfalfa shoot and root growth by up to 61% and 85%, respectively. The kinetics of OTC uptake could be well described by Michaelis-Menten equation with V {sub max} of 2.25 {mu}mol g{sup -1} fresh weight h{sup -1}, and K {sub m} of 0.036 mM. The uptake of OTC by alfalfa was strongly inhibited by the metabolic inhibitor, 2,4-DNP (2,4-dinitrophenol), at pH 3.5 and 6.0, but not by the aquaporin competitors, glycerol and Ag{sup +}. OTC uptake, however, was significantly inhibited by Hg{sup 2+}, suggesting that the inhibition of influx was due to general cellular stress rather than the specific action of Hg{sup 2+} on aquaporins. Results from the present study suggested that OTC uptake into alfalfa is an energy-dependent process. - Plant uptake of antibiotic oxytetracycline is energy-dependent.

  7. Mixing ratio and species affect the use of substrate-derived CO2 by Sphagnum

    NARCIS (Netherlands)

    Limpens, J.; Robroek, B.J.M.; Heijmans, M.M.P.D.; Tomassen, H.B.M.

    2008-01-01

    Question: Can mixing ratio and species affect the use of substrate-derived CO2 by Sphagnum? Location: Poor fen in south Sweden and greenhouse in Wageningen, The Netherlands. Methods: Two mixing ratios of Sphagnum cuspidatum and S. magellanicum were exposed to two levels of CO2 by pumping CO2

  8. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties

    NARCIS (Netherlands)

    Fischer, C.; Tischer, J.; Roscher, C.; Eisenhauer, N.; Ravenek, J.; Gleixner, G.; Attinger, S.; Jensen, B.; Kroon, de H.; Mommer, L.; Scheu, S.; Hildebrandt, A.

    2015-01-01

    Background and aims Soil hydraulic properties drive water distribution and availability in soil. There exists limited knowledge of how plant species diversity might influence soil hydraulic properties. Methods We quantified the change in infiltration capacity affected by soil structural variables

  9. Alfalfa (Medicago sativa L.) shoot saponins: identification and bio-activity by the assessment of aphid feeding.

    Science.gov (United States)

    Mazahery-Laghab, H; Yazdi-Samadi, B; Bagheri, M; Bagheri, A R

    2011-01-01

    Biochemical components in alfalfa (Medicago sativa L.), such as saponins, can act as protecting factors against bio-stresses. Saponins are also antifeedants and show oral toxicity towards higher and lower animals. Changes in saponins, such as variation in the carbon skeleton, or hydrolysis of saponin glycosides and other conjugates, may change their biological effects. The aims of this research were to study saponin variation in different growth stages of alfalfa and to investigate the biological role of saponins in the spotted alfalfa aphid, Therioaphis maculata. Saponins from alfalfa shoots in different growth stages were extracted, chemically purified and analysed by TLC. Specific saponins such as soyasaponin1 from root and shoot and two bisdesmosides of medicagenic acid, one from shoot and another from root tissues, were identified using reference compounds allowing changes in saponin composition during plant development in different shoot tissues of alfalfa to be assessed. The response of the alfalfa aphid to feeding on alfalfa in different growth stages was studied. No significant difference in the survival of aphids, from neonate to adult, was observed, but due to the antibiotic effects of saponins, two differences were found in the onset of nymph production and cumulative nymph production. The results show that the saponin composition in alfalfa changes with plant development and this, in turn, can often negatively affect the development of specific insect pests such as the spotted alfalfa aphid, suggesting a possible biological role of alfalfa saponins.

  10. Monolignol biosynthesis in microsomal preparations from lignifying stems of alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Guo, Dianjing; Chen, Fang; Dixon, Richard A

    2002-11-01

    Microsomal preparations from lignifying stems of alfalfa (Medicago sativa L.) contained coniferaldehyde 5-hydroxylase activity and immunodetectable caffeic acid 3-O-methyltransferase (COMT), and catalyzed the S-adenosyl L-methionine (SAM) dependent methylation of caffeic acid, caffeyl aldehyde and caffeyl alcohol. When supplied with NADPH and SAM, the microsomes converted caffeyl aldehyde to coniferaldehyde, 5-hydroxyconiferaldehyde, and traces of sinapaldehyde. Coniferaldehyde was a better precursor of sinapaldehyde than was 5-hydroxyconiferaldehyde. The alfalfa microsomes could not metabolize 4-coumaric acid, 4-coumaraldehyde, 4-coumaroyl CoA, or ferulic acid. No metabolism of monolignol precursors was observed in microsomal preparations from transgenic alfalfa down-regulated in COMT expression. In most microsomal preparations, the level of the metabolic conversions was independent of added recombinant COMT. Taken together, the data provide only limited support for the concept of metabolic channeling in the biosynthesis of S monolignols via coniferaldehyde.

  11. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    Science.gov (United States)

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The voice of emotion across species: how do human listeners recognize animals' affective states?

    Directory of Open Access Journals (Sweden)

    Marina Scheumann

    Full Text Available Voice-induced cross-taxa emotional recognition is the ability to understand the emotional state of another species based on its voice. In the past, induced affective states, experience-dependent higher cognitive processes or cross-taxa universal acoustic coding and processing mechanisms have been discussed to underlie this ability in humans. The present study sets out to distinguish the influence of familiarity and phylogeny on voice-induced cross-taxa emotional perception in humans. For the first time, two perspectives are taken into account: the self- (i.e. emotional valence induced in the listener versus the others-perspective (i.e. correct recognition of the emotional valence of the recording context. Twenty-eight male participants listened to 192 vocalizations of four different species (human infant, dog, chimpanzee and tree shrew. Stimuli were recorded either in an agonistic (negative emotional valence or affiliative (positive emotional valence context. Participants rated the emotional valence of the stimuli adopting self- and others-perspective by using a 5-point version of the Self-Assessment Manikin (SAM. Familiarity was assessed based on subjective rating, objective labelling of the respective stimuli and interaction time with the respective species. Participants reliably recognized the emotional valence of human voices, whereas the results for animal voices were mixed. The correct classification of animal voices depended on the listener's familiarity with the species and the call type/recording context, whereas there was less influence of induced emotional states and phylogeny. Our results provide first evidence that explicit voice-induced cross-taxa emotional recognition in humans is shaped more by experience-dependent cognitive mechanisms than by induced affective states or cross-taxa universal acoustic coding and processing mechanisms.

  13. Comparative Genomics of Non-TNL Disease Resistance Genes from Six Plant Species.

    Science.gov (United States)

    Nepal, Madhav P; Andersen, Ethan J; Neupane, Surendra; Benson, Benjamin V

    2017-09-30

    Disease resistance genes (R genes), as part of the plant defense system, have coevolved with corresponding pathogen molecules. The main objectives of this project were to identify non-Toll interleukin receptor, nucleotide-binding site, leucine-rich repeat (nTNL) genes and elucidate their evolutionary divergence across six plant genomes. Using reference sequences from Arabidopsis , we investigated nTNL orthologs in the genomes of common bean, Medicago , soybean, poplar, and rice. We used Hidden Markov Models for sequence identification, performed model-based phylogenetic analyses, visualized chromosomal positioning, inferred gene clustering, and assessed gene expression profiles. We analyzed 908 nTNL R genes in the genomes of the six plant species, and classified them into 12 subgroups based on the presence of coiled-coil (CC), nucleotide binding site (NBS), leucine rich repeat (LRR), resistance to Powdery mildew 8 (RPW8), and BED type zinc finger domains. Traditionally classified CC-NBS-LRR (CNL) genes were nested into four clades (CNL A-D) often with abundant, well-supported homogeneous subclades of Type-II R genes. CNL-D members were absent in rice, indicating a unique R gene retention pattern in the rice genome. Genomes from Arabidopsis , common bean, poplar and soybean had one chromosome without any CNL R genes. Medicago and Arabidopsis had the highest and lowest number of gene clusters, respectively. Gene expression analyses suggested unique patterns of expression for each of the CNL clades. Differential gene expression patterns of the nTNL genes were often found to correlate with number of introns and GC content, suggesting structural and functional divergence.

  14. Both free indole-3-acetic acid and the photosynthetic performance are important players in the response of Medicago truncatula to urea and ammonium nutrition under axenic conditions

    Directory of Open Access Journals (Sweden)

    RAQUEL eEsteban

    2016-02-01

    Full Text Available We aimed to identify the early stress response and plant performance of Medicago truncatula growing in axenic medium with ammonium or urea as the sole source of nitrogen with respect to nitrate based nutrition through biomass measurements, auxin contents analyses, root system architecture response analyses, and physiological determinations. Both ammonium and ureic nutrition severely affected the root system architecture, resulting in changes in the main elongation rate, lateral root development and insert position from the base. The auxin content decreased in both urea- and ammonium- treated roots; however, only the ammonium- treated plants were affected at the shoot level. The analysis of chlorophyll a fluorescence transients showed that ammonium affected photosystem II, but urea did not impair photosynthetic activity. Superoxide dismutase isoenzymes in the plastids were moderately affected by urea and ammonium in the roots. Overall, our results showed that low N doses from different sources had no remarkable effects on M. truncatula, with the exception of the differential phenotypic root response. High dose of both ammonium and urea caused great changes at plant length, auxin content and physiological determinations. The interesting correlations found between the shoot auxin pool, the plant length, and the parameter performance index, obtained from the chlorophyll a fluorescence rise kinetics measurements, indicated that both IAA pool and performance index are an important part of the response of M. truncatula under ammonium or urea as a sole N source.

  15. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Aloui, Achref; Recorbet, Ghislaine; Lemaître-Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; Wipf, Daniel; Dumas-Gaudot, Eliane

    2018-01-01

    In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.

  16. [Affect regularity of medicinal species and heating time on flavonoids contents in Epimedium cut crude drug].

    Science.gov (United States)

    Sun, E; Chen, Ling-ling; Jia, Xiao-bin; Qian, Qian; Cui, Li

    2012-09-01

    To study the affect regularity of medicinal species and heating time on flavonoids contents in Epimedium cut crude drug. Setting processing temperature at 170 degrees C, 39 batches Epimedium cut crude drug of different species were heated for 0, 5, 10 minutes. The contents of epimedin A, B, C, icariin, Baohuoside I in different species of Epimedium were determined by HPLC. The variance analysis was used to study the effect of medicinal species and heating time on the contents change of five major flavonoids. The contents of Epimedin A, B, C were significantly impacted by medicinal species (P time (P time and species (P > 0.05). The medicinal species and heat processed time are two important influence factors on the flavonoids contents in Epimedium. The contents of Epimedin A, C are abundant in Epimedium pubescens, and the contents of Epimedin B, Baohuoside I are higher in Epimedium brevicornu. After heating, the contents of Epimedin A, B, C are decreased, and icariin, Baohuoside I are increased. This study provides scientific evidences for variety certification, optimizing processing technology, exploring processing mechanism and clinical rational administration.

  17. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    Science.gov (United States)

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.

  18. Political systems affect mobile and sessile species diversity--a legacy from the post-WWII period.

    Directory of Open Access Journals (Sweden)

    Sara A O Cousins

    Full Text Available Political ideologies, policies and economy affect land use which in turn may affect biodiversity patterns and future conservation targets. However, few studies have investigated biodiversity in landscapes with similar physical properties but governed by different political systems. Here we investigate land use and biodiversity patterns, and number and composition of birds and plants, in the borderland of Austria, Slovenia and Hungary. It is a physically uniform landscape but managed differently during the last 70 years as a consequence of the political "map" of Europe after World War I and II. We used a historical map from 1910 and satellite data to delineate land use within three 10-kilometre transects starting from the point where the three countries meet. There was a clear difference between countries detectable in current biodiversity patterns, which relates to land use history. Mobile species richness was associated with current land use whereas diversity of sessile species was more associated with past land use. Heterogeneous landscapes were positively and forest cover was negatively correlated to bird species richness. Our results provide insights into why landscape history is important to understand present and future biodiversity patterns, which is crucial for designing policies and conservation strategies across the world.

  19. Patterns of woody plant species diversity in Lebanon as affected by climatic and soil properties

    International Nuclear Information System (INIS)

    Zahreddine, H.; Barker, D.; Struve, D.; Martin, F.; Quigley, M.; Sleem, K.

    2007-01-01

    Lebanese biodiversity is threatened by tourist and urban development, political instability, over-collection of medicinal and aromatic plants, lack of compliance to the regulations prohibiting over-exploitation from the wild, over-grazing and forest fires. A large number of the native species have unexplored economic potential for either medicinal or ornamental use. One way to preserve these species is by propagation and reintroduction into appropriate habitats. However, this requires an understanding of the species biology and environment. The relationship of nine species to the soil and climatic conditions in eight sites along an altitudinal gradient was studied. Individual species were counted and identified within transects at each site. Climatic data were collected and soil samples were taken and analyzed for soil texture, soil pH, EC, CaCO3, organic matter content and the following nutrients: Ca, Mn, Na, Fe, P, K, Cu, Mg, and Zn. Each ecosystem had a unique environment that could be described using the first two factors (70.3 % of variation) in a Factor Analysis of the six most important variables. Some species densities were affected by soil conditions (the first factor) while climatic conditions (the second factor) explained the densities of other species. Recommendations are made for the in-situ and ex-situ preservations of the nine species and their ecosystems.(author)

  20. Ractopamine up take by alfalfa (Medicago sativa) and wheat (Triticum aestivum) from soil.

    Science.gov (United States)

    Shelver, Weilin L; DeSutter, Thomas M

    2015-08-01

    Ractopamine is a beta adrenergic agonist used as a growth promoter in swine, cattle and turkeys. To test whether ractopamine has the potential to accumulate in plants grown in contaminated soil, a greenhouse study was conducted with alfalfa (Medicago sativa) and wheat (Triticum aestivum) grown in two soils having different concentrations of organic matter (1.3% and 2.1%), amended with 0, 0.5, and 10 μg/g of ractopamine. Plant growth ranged from 2.7 to 8.8 g dry weight (dw) for alfalfa, and 8.7 to 40 g dw for wheat and was generally greater in the higher organic matter content soil. The uptake of ractopamine in plant tissues ranged from non-detectable to 897 ng/g and was strongly dependent on soil ractopamine concentration across soil and plant tissue. When adjusted to the total fortified quantities, the amount of ractopamine taken up by the plant tissue was low, <0.01% for either soil. Copyright © 2015. Published by Elsevier B.V.

  1. In silico identification, phylogeny and expression analysis of expansin superfamily in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2016-01-01

    Full Text Available Expansins are important components of plant cell walls, which are involved in the process of cell wall loosening under low extracellular pH. By using a combinational method for homology search and protein domain analysis, a total of 42 expansin genes were identified from Medicago truncatula genome in this study. They were divided into four families, based on sequence alignment and phylogenetic analysis. Gene duplication events were identified in the expansins superfamily, especially in the extension of α-expansin family. By analysis of RNA-sequencing data from National Center for Biotechnology Information, the expansin (EXP genes expressed during tissues development were characterized. Meanwhile, lots of cis-acting regulatory DNA elements in the EXP superfamily were identified, which were mainly related to plant growth and development processes. The results presented in this study are expected to facilitate further research works on this gene superfamily and provide new insights about the molecular mechanisms of expansins in M. truncatula.

  2. Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula.

    Science.gov (United States)

    Wang, Qi; Yang, Shengming; Liu, Jinge; Terecskei, Kata; Ábrahám, Edit; Gombár, Anikó; Domonkos, Ágota; Szűcs, Attila; Körmöczi, Péter; Wang, Ting; Fodor, Lili; Mao, Linyong; Fei, Zhangjun; Kondorosi, Éva; Kaló, Péter; Kereszt, Attila; Zhu, Hongyan

    2017-06-27

    Legumes engage in root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed in membrane-bound vesicles called symbiosomes and differentiate into bacteroids that are capable of converting atmospheric nitrogen into ammonia. Bacteroid differentiation and prolonged intracellular survival are essential for development of functional nodules. However, in the Medicago truncatula - Sinorhizobium meliloti symbiosis, incompatibility between symbiotic partners frequently occurs, leading to the formation of infected nodules defective in nitrogen fixation (Fix - ). Here, we report the identification and cloning of the M. truncatula NFS2 gene that regulates this type of specificity pertaining to S. meliloti strain Rm41. We demonstrate that NFS2 encodes a nodule-specific cysteine-rich (NCR) peptide that acts to promote bacterial lysis after differentiation. The negative role of NFS2 in symbiosis is contingent on host genetic background and can be counteracted by other genes encoded by the host. This work extends the paradigm of NCR function to include the negative regulation of symbiotic persistence in host-strain interactions. Our data suggest that NCR peptides are host determinants of symbiotic specificity in M. truncatula and possibly in closely related legumes that form indeterminate nodules in which bacterial symbionts undergo terminal differentiation.

  3. Gene expression analysis of molecular mechanisms of defense induced in Medicago truncatula parasitized by Orobanche crenata.

    Science.gov (United States)

    Die, José Vicente; González Verdejo, Clara I; Dita, Miguel A; Nadal, Salvador; Román, Belén

    2009-07-01

    The infection of Medicago truncatula Gaertn. roots with the obligate parasite Orobanche crenata Forsk. is a useful model for studying the molecular events involved in the legumes-parasite interaction. In order to gain insight into the identification of gene-regulatory elements involved in the resistance mechanism, the temporal expression pattern of ten defense-related genes was carried out using real-time quantitative reverse-transcription polymerase chain reaction assays. The induction of all of the analyzed transcripts significantly increased over a range from 2- to 321-fold higher than the control depending on the gene and time point. The transcriptional changes observed in response to O. crenata infection suggest that resistance could rely on both, the induction of general defense-related genes and more specific responses.

  4. Preliminary results on agronomic performance of barrel medic (Medicago truncatula in Serbia

    Directory of Open Access Journals (Sweden)

    Mihailović Vojislav

    2011-01-01

    Full Text Available A small-plot trial with eight Australian barrel medic (Medicago truncatula Gaertn cultivars was carried out in 2010 at Rimski Šančevi. The average green forage and forage dry matter yields were highest in Jemalong (30.7 t ha-1 and 7.3 t ha-1 and Parabinga (30.7 t ha-1 and 8.0 t ha-1. Forage dry matter crude protein content ranged between 150.8 g kg-1 in Parabinga and 179.4 g kg-1 in Jester. Forage neutral detergent fibre content varied from 305.2 g kg-1 in Sephi to 458.8 g kg-1 in Caliph, while the average forage acid detergent fibre content was 312.8 g kg-1. The average seed yield for all cultivars was 281 kg ha-1 and may be considered satisfying, as it was obtained in a very rainy and warm growing season. Jemalong and Parabinga had the highest aboveground nitrogen yield (190 kg ha-1 and 193 kg ha-1 and thus the greatest potential for green manure.

  5. Browsing affects intra-ring carbon allocation in species with contrasting wood anatomy.

    Science.gov (United States)

    Palacio, S; Paterson, E; Sim, A; Hester, A J; Millard, P

    2011-02-01

    Current knowledge on tree carbon (C) allocation to wood is particularly scarce in plants subjected to disturbance factors, such as browsing, which affects forest regeneration worldwide and has an impact on the C balance of trees. Furthermore, quantifying the degree to which tree rings are formed from freshly assimilated vs. stored carbohydrates is highly relevant for our understanding of tree C allocation. We used (13)C labelling to quantify seasonal allocation of stored C to wood formation in two species with contrasting wood anatomy: Betula pubescens Ehrh. (diffuse-porous) and Quercus petraea [Matt.] Liebl. (ring-porous). Clipping treatments (66% shoot removal, and unclipped) were applied to analyse the effect of browsing on C allocation into tree rings, plus the effects on tree growth, architecture, ring width and non-structural carbohydrates (NSCs). The relative contribution of stored C to wood formation was greater in the ring-porous (55-70%) than in the diffuse-porous species (35-60%), although each species followed different seasonal trends. Clipping did not cause a significant depletion of C stores in either species. Nonetheless, a significant increase in the proportion of stored C allocated to earlywood growth was observed in clipped birches, and this could be explained through changes in tree architecture after clipping. The size of C pools across tree species seems to be important in determining the variability of seasonal C allocation patterns to wood and their sensibility to disturbances such as browsing. Our results indicate that the observed changes in C allocation to earlywood in birch were not related to variations in the amount or concentration of NSC stores, but to changes in the seasonal availability of recently assimilated C caused by modifications in tree architecture after browsing.

  6. Ozone risk assessment in three oak species as affected by soil water availability.

    Science.gov (United States)

    Hoshika, Yasutomo; Moura, Barbara; Paoletti, Elena

    2018-03-01

    To derive ozone (O 3 ) dose-response relationships for three European oak species (Quercus ilex, Quercus pubescens, and Quercus robur) under a range of soil water availability, an experiment was carried out with 2-year-old potted seedlings exposed to three levels of water availability in the soil and three levels of O 3 pollution for one growing season in an ozone free-air controlled exposure (FACE) facility. Total biomass losses were estimated relative to a hypothetical clean air at the pre-industrial age, i.e., at 10 ppb as daily average (M24). A stomatal conductance model was parameterized with inputs from the three species for calculating the stomatal O 3 flux. Exposure-based (M24, W126, and AOT40) and flux-based (phytotoxic O 3 dose (POD) 0-3 ) dose-response relationships were estimated and critical levels (CL) were calculated for a 5% decline of total biomass. Results show that water availability can significantly affect O 3 risk assessment. In fact, dose-response relationships calculated per individual species at each water availability level resulted in very different CLs and best metrics. In a simplified approach where species were aggregated on the basis of their O 3 sensitivity, the best metric was POD 0.5 , with a CL of 6.8 mmol m -2 for the less O 3 -sensitive species Q. ilex and Q. pubescens and of 3.5 mmol m -2 for the more O 3 -sensitive species Q. robur. The performance of POD 0 , however, was very similar to that of POD 0.5 , and thus a CL of 6.9 mmol m -2 POD 0 and 3.6 mmol m -2 POD 0 for the less and more O 3 -sensitive oak species may be also recommended. These CLs can be applied to oak ecosystems at variable water availability in the soil. We conclude that POD y is able to reconcile the effects of O 3 and soil water availability on species-specific oak productivity.

  7. Soil fauna and leaf species, but not species diversity, affect initial soil erosion in a subtropical forest plantation

    Science.gov (United States)

    Seitz, Steffen; Goebes, Philipp; Assmann, Thorsten; Schuldt, Andreas; Scholten, Thomas

    2017-04-01

    In subtropical parts of China, high rainfall intensities cause continuous soil losses and thereby provoke severe harms to ecosystems. In woodlands, it is not the tree canopy, but mostly an intact forest floor that provides protection from soil erosion. Although the protective role of leaf litter covers against soil losses is known for a long time, little research has been conducted on the processes involved. For instance, the role of different leaf species and leaf species diversity has been widely disregarded. Furthermore, the impact of soil meso- and macrofauna within the litter layer on soil losses remains unclear. To investigate how leaf litter species and diversity as well as soil meso- and macrofauna affect sediment discharge in a subtropical forest ecosystem, a field experiment was carried out in Xingangshan, Jiangxi Province, PR China (BEF China). A full-factorial random design with 96 micro-scale runoff plots and seven domestic leaf species in three diversity levels and a bare ground feature were established. Erosion was initiated with a rainfall simulator. This study confirms that leaf litter cover generally protects forest soils from water erosion (-82 % sediment discharge on leaf covered plots compared to bare plots) and this protection is gradually removed as the litter layer decomposes. Different leaf species showed variable impacts on sediment discharge and thus erosion control. This effect can be related to different leaf habitus, leaf decomposition rates and food preferences of litter decomposing meso- and macrofauna. In our experiment, runoff plots with leaf litter from Machilus thunbergii in monoculture showed the highest sediment discharge (68.0 g m-2), whereas plots with Cyclobalanopsis glauca in monoculture showed the smallest rates (7.9 g m-2). At the same time, neither leaf species diversity, nor functional diversity showed any significant influence, only a negative trend could be observed. Nevertheless, the protective effect of the leaf

  8. Do Tillage Methods Affect Germination and Species Similarity of Soil Weed Seeds Bank?

    Directory of Open Access Journals (Sweden)

    Shahgholi Hassan

    2015-12-01

    Full Text Available Cultural practices such as tillage used for crop production influence the composition of the weed seed bank in the soil. In order to investigate the effects of different tillage methods on seed bank properties, species diversity and similarity, two laboratory and greenhouse experiments were carried out as randomized complete block design with four replications in 2011. Treatments included: once tillage per year (T1, twice tillage per year (T2, more than twice tillage (T3 and no tillage (T4. Laboratory results showed that the T3 and T4 treatments had the highest and the lowest observed seeds numbers, respectively. Between the laboratory observed weed seeds, the maximum weed seed numbers were Echinochloa crus-galli and Amaranthus retroflexus in the T3 treatment, while Chenopodium album, Polygonum aviculare and Cuscuta campestris had the highest seed numbers in the T2 treatment. At the greenhouse study, Chenopodium album, Amaranthus retroflexus and Hordeum morinum in the T2 treatment were dominant species. The highest diversity was observed in the T2 treatment, and Chenopodium album and Echinochloa crus-galli were dominant species in the T2 and T3 treatments. Maximum species similarity index was achieved from the T1 and T3 treatments. Thereby this study concluded that increasing of tillage number could affect the similarity index of weed seeds and subsequently alters the weed community composition.

  9. Use of hold-gro erosion control fabric in the establishment of plant species on coal mine soil.

    Science.gov (United States)

    Day, A D; Ludeke, K L

    1986-09-01

    Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: (1) spring barley (Horduem vulgare L.), an annual grass (2) crested wheatgrass (Agropyron cristatum L.), a perennial grass (3) alfalfa (lucerne) (Medicago sativa L.), a perennial legume and (4) fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States.

  10. Use of Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Ludeke, K.L.

    1986-09-01

    Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: spring barley (Horduem vulgare L.), an annual grass; crested wheatgrass (Agropyron cristatum L.), a perennial grass; alfalfa (lucerne) (Medicago sativa L.), a perennial legume; and fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States. 11 refs.

  11. Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate.

    Science.gov (United States)

    Münzbergová, Zuzana; Hadincová, Věroslava

    2017-07-01

    In spite of the increasing number of studies on the importance of transgenerational plasticity for species response to novel environments, its effects on species ability to respond to climate change are still largely unexplored. We study the importance of transgenerational plasticity for response of a clonal species Festuca rubra . Individuals from four natural populations representing two levels of temperature and two levels of precipitation were cultivated in four growth chambers that simulate the temperature and precipitation of origin of the populations (maternal phase). Each population was represented in each growth chamber. After 6 months, single young ramets of these plants were reshuffled among the growth chambers and let to grow for additional 2 months (offspring phase). The results show that transgenerational effects (i.e., maternal phase conditions) significantly modify species response to novel climates, and the direction and intensity of the response depend on the climate of origin of the plants. For traits related to recourse acquisition, the conditions of maternal phase, either alone or in interaction mainly with climate of origin, had stronger effect than the conditions of cultivation. Overall, the maternal climate interacted more intensively with the climate of origin than with the offspring climate. The direction of the effect of the maternal climate was of different directions and intensities depending on plant origin and trait studied. The data demonstrated strong significant effects of conditions during maternal phase on species response to novel climates. These transgenerational affects were, however, not adaptive. Still, transgenerational plasticity may be an important driver of species response to novel conditions across clonal generations. These effects thus need to be carefully considered in future studies exploring species response to novel climates. This will also have strong effects on species performance under increasingly variable

  12. High-quality draft genome sequence of Ensifer meliloti Mlalz-1, a microsymbiont of Medicago laciniata (L.) miller collected in Lanzarote, Canary Islands, Spain.

    Science.gov (United States)

    Osman, Wan Adnawani Meor; van Berkum, Peter; León-Barrios, Milagros; Velázquez, Encarna; Elia, Patrick; Tian, Rui; Ardley, Julie; Gollagher, Margaret; Seshadri, Rekha; Reddy, T B K; Ivanova, Natalia; Woyke, Tanja; Pati, Amrita; Markowitz, Victor; Baeshen, Mohamed N; Baeshen, Naseebh Nabeeh; Kyrpides, Nikos; Reeve, Wayne

    2017-01-01

    10.1601/nm.1335 Mlalz-1 (INSDC = ATZD00000000) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing nodule of Medicago laciniata (L.) Miller from a soil sample collected near the town of Guatiza on the island of Lanzarote, the Canary Islands, Spain. This strain nodulates and forms an effective symbiosis with the highly specific host M. laciniata . This rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) sequencing project. Here the features of 10.1601/nm.1335 Mlalz-1 are described, together with high-quality permanent draft genome sequence information and annotation. The 6,664,116 bp high-quality draft genome is arranged in 99 scaffolds of 100 contigs, containing 6314 protein-coding genes and 74 RNA-only encoding genes. Strain Mlalz-1 is closely related to 10.1601/nm.1335 10.1601/strainfinder?urlappend=%3Fid%3DIAM+12611 T , 10.1601/nm.1334 A 321 T and 10.1601/nm.17831 10.1601/strainfinder?urlappend=%3Fid%3DORS+1407 T , based on 16S rRNA gene sequences. gANI values of ≥98.1% support the classification of strain Mlalz-1 as 10.1601/nm.1335. Nodulation of M. laciniata requires a specific nodC allele, and the nodC gene of strain Mlalz-1 shares ≥98% sequence identity with nodC of M. laciniata -nodulating 10.1601/nm.1328 strains, but ≤93% with nodC of 10.1601/nm.1328 strains that nodulate other Medicago species. Strain Mlalz-1 is unique among sequenced 10.1601/nm.1335 strains in possessing genes encoding components of a T2SS and in having two versions of the adaptive acid tolerance response lpiA-acvB operon. In 10.1601/nm.1334 strain 10.1601/strainfinder?urlappend=%3Fid%3DWSM+419, lpiA is essential for enhancing survival in lethal acid conditions. The second copy of the lpiA-acvB operon of strain Mlalz-1 has highest sequence identity (> 96%) with that of 10.1601/nm.1334 strains, which suggests genetic

  13. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    Science.gov (United States)

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  14. Historical habitat connectivity affects current genetic structure in a grassland species.

    Science.gov (United States)

    Münzbergová, Z; Cousins, S A O; Herben, T; Plačková, I; Mildén, M; Ehrlén, J

    2013-01-01

    Many recent studies have explored the effects of present and past landscape structure on species distribution and diversity. However, we know little about the effects of past landscape structure on distribution of genetic diversity within and between populations of a single species. Here we describe the relationship between present and past landscape structure (landscape connectivity and habitat size estimated from historical maps) and current genetic structure in a perennial herb, Succisa pratensis. We used allozymes as co-dominant markers to estimate genetic diversity and deviation from Hardy-Weinberg equilibrium in 31 populations distributed within a 5 km(2) agricultural landscape. The results showed that current genetic diversity of populations was related to habitat suitability, habitat age, habitat size and habitat connectivity in the past. The effects of habitat age and past connectivity on genetic diversity were in most cases also significant after taking the current landscape structure into account. Moreover, current genetic similarity between populations was affected by past connectivity after accounting for current landscape structure. In both cases, the oldest time layer (1850) was the most informative. Most populations showed heterozygote excess, indicating disequilibrium due to recent gene flow or selection against homozygotes. These results suggest that habitat age and past connectivity are important determinants of distribution of genetic diversity between populations at a scale of a few kilometres. Landscape history may significantly contribute to our understanding of distribution of current genetic structure within species and the genetic structure may be used to better understand landscape history, even at a small scale. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Mutually Exclusive Alterations in Secondary Metabolism Are Critical for the Uptake of Insoluble Iron Compounds by Arabidopsis and Medicago truncatula1[C][W

    Science.gov (United States)

    Rodríguez-Celma, Jorge; Lin, Wen-Dar; Fu, Guin-Mau; Abadía, Javier; López-Millán, Ana-Flor; Schmidt, Wolfgang

    2013-01-01

    The generally low bioavailability of iron in aerobic soil systems forced plants to evolve sophisticated genetic strategies to improve the acquisition of iron from sparingly soluble and immobile iron pools. To distinguish between conserved and species-dependent components of such strategies, we analyzed iron deficiency-induced changes in the transcriptome of two model species, Arabidopsis (Arabidopsis thaliana) and Medicago truncatula. Transcriptional profiling by RNA sequencing revealed a massive up-regulation of genes coding for enzymes involved in riboflavin biosynthesis in M. truncatula and phenylpropanoid synthesis in Arabidopsis upon iron deficiency. Coexpression and promoter analysis indicated that the synthesis of flavins and phenylpropanoids is tightly linked to and putatively coregulated with other genes encoding proteins involved in iron uptake. We further provide evidence that the production and secretion of phenolic compounds is critical for the uptake of iron from sources with low bioavailability but dispensable under conditions where iron is readily available. In Arabidopsis, homozygous mutations in the Fe(II)- and 2-oxoglutarate-dependent dioxygenase family gene F6′H1 and defects in the expression of PLEIOTROPIC DRUG RESISTANCE9, encoding a putative efflux transporter for products from the phenylpropanoid pathway, compromised iron uptake from an iron source of low bioavailability. Both mutants were partially rescued when grown alongside wild-type Arabidopsis or M. truncatula seedlings, presumably by secreted phenolics and flavins. We concluded that production and secretion of compounds that facilitate the uptake of iron is an essential but poorly understood aspect of the reduction-based iron acquisition strategy, which is likely to contribute substantially to the efficiency of iron uptake in natural conditions. PMID:23735511

  16. Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine

    Science.gov (United States)

    Longcore, J.R.; McAuley, D.G.; Pendelton, G.W.; Bennatti, C.R.; Mingo, T.M.; Stromborg, K.L.

    2006-01-01

    Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low (chemistry, basin characteristics, and avian use of different wetland types. Shallow, beaver (Castor canadensis)-created wetlands with the highest phosphorus levels and abundant and varied macrophyte assemblages supported greater densities of macroinvertebrates and numbers of duck broods (88.3% of all broods) in contrast to deep, glacial type wetlands with sparse vegetation and lower invertebrate densities that supported fewer broods (11.7%). Low pH may have affected some acid-intolerant invertebrate taxa (i.e., Ephemeroptera), but high mean numbers of Insecta per wetland were recorded from wetlands with a pH of 5.51. Other Classes and Orders of invertebrates were more abundant on wetlands with pH > 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ≤ 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.

  17. Endangered Species

    Science.gov (United States)

    EPA's Endangered Species Protection Program helps promote recovery of listed species. The ESPP determines if pesticide use in a geographic area may affect any listed species. Find needed limits on pesticide use in Endangered Species Protection Bulletins.

  18. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis

    Directory of Open Access Journals (Sweden)

    Tang Yuhong

    2009-01-01

    Full Text Available Abstract Background Most vascular flowering plants have the capacity to form symbiotic associations with arbuscular mycorrhizal (AM fungi. The symbiosis develops in the roots where AM fungi colonize the root cortex and form arbuscules within the cortical cells. Arbuscules are enveloped in a novel plant membrane and their establishment requires the coordinated cellular activities of both symbiotic partners. The arbuscule-cortical cell interface is the primary functional interface of the symbiosis and is of central importance in nutrient exchange. To determine the molecular events the underlie arbuscule development and function, it is first necessary to identify genes that may play a role in this process. Toward this goal we used the Affymetrix GeneChip® Medicago Genome Array to document the M. truncatula transcript profiles associated with AM symbiosis, and then developed laser microdissection (LM of M. truncatula root cortical cells to enable analyses of gene expression in individual cell types by RT-PCR. Results This approach led to the identification of novel M. truncatula and G. intraradices genes expressed in colonized cortical cells and in arbuscules. Within the arbuscule, expression of genes associated with the urea cycle, amino acid biosynthesis and cellular autophagy was detected. Analysis of gene expression in the colonized cortical cell revealed up-regulation of a lysine motif (LysM-receptor like kinase, members of the GRAS transcription factor family and a symbiosis-specific ammonium transporter that is a likely candidate for mediating ammonium transport in the AM symbiosis. Conclusion Transcript profiling using the Affymetrix GeneChip® Medicago Genome Array provided new insights into gene expression in M. truncatula roots during AM symbiosis and revealed the existence of several G. intraradices genes on the M. truncatula GeneChip®. A laser microdissection protocol that incorporates low-melting temperature Steedman's wax, was

  19. Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species.

    Science.gov (United States)

    Moravec, Anna R; Siv, Andrew W; Hobby, Chelsea R; Lindsay, Emily N; Norbash, Layla V; Shults, Daniel J; Symes, Steven J K; Giles, David K

    2017-11-15

    The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio 's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the

  20. WATER DEFICIT EFFECT ON YIELD AND FORAGE QUALITY OF MEDICAGO SATIVA POPULATIONS UNDER FIELD CONDITIONS IN MARRAKESH AREA (MOROCCO

    Directory of Open Access Journals (Sweden)

    Mohamed FARISSI

    2014-06-01

    Full Text Available The present study focused the effect of water deficit on agronomic potential and some traits related to forage quality in plants of Moroccan Alfalfa (Medicago sativa L. populations (Taf 1, Taf 2, Dem and Tata originated from Oasis and High Atlas of Morocco and an introduced variety from Australia (Siriver. The experiment was conducted under field conditions in experimental station of INRA-Marrakech and under two irrigation treatments. The first treatment was normal irrigation, providing an amount of water corresponding to the potential evapo-transpiration of the crop, and the second treatment was water deficit stress (one irrigation per cut. For each treatment, the experiment was conducted as a split plot based on a randomized complete block design with four replications. The plants were measured and analyzed over three cuts. Some agronomic traits as, plant height, fresh and dry forage yields were measured. The forage quality was evaluated by leaf:stem ratio and the contents of plants in proteins and nitrogen. The results indicated that the water deficit has negatively affected the plant height and forage yield. The decrease in leaf:stem ratio was observed under water deficit conditions. However, the proteins and nitrogen contents were unaffected. The behavior of tested alfalfa genotypes was significantly different. The Moroccan alfalfa populations were more adapted to water deficit conditions comparatively to Siriver variety and the Tata population was the most adapted one.

  1. The characterization of novel mycorrhiza-specific phosphate transporters from ¤Lycopersicon esculentum¤ and ¤Solanum tuberosum¤ uncovers functional redundancy in symbiotic phosphate transport in solanaceous species

    DEFF Research Database (Denmark)

    Nagy, F.; Karandashov, V.; Chague, W.

    2005-01-01

    , is the transfer of phosphate (Pi) from the AM fungus to the plant, facilitated by plasma membrane-spanning Pi transporter proteins. The first mycorrhiza-specific plant Pi transporter to be identified, was StPT3 from potato [Nature 414 (2004) 462]. Here, we describe novel Pi transporters from the solanaceous...... species tomato, LePT4, and its orthologue StPT4 from potato, both being members of the Pht1 family of plant Pi transporters. Phylogenetic tree analysis demonstrates clustering of both LePT4 and StPT4 with the mycorrhiza-specific Pi transporter from Medicago truncatula [Plant Cell, 14 (2002) 2413] and rice......Solanaceous species are among the >200 000 plant species worldwide forming a mycorrhiza, that is, a root living in symbiosis with soil-borne arbuscular-mycorrhizal (AM) fungi. An important parameter of this symbiosis, which is vital for ecosystem productivity, agriculture, and horticulture...

  2. The photosynthetic and stomatal response of Medicago sativa cv. saranac to free-air CO{sub 2} enrichment (F.A.C.E.) and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bridson, N.P.

    1996-08-01

    Plots of Medicago sativa cv. saranac were grown in the field at ambient (355 {mu}mol CO{sub 2} mol{sup -1} air) or elevated (600{mu}mol CO{sub 2} mol{sup -1} air) CO{sub 2} concentrations. High (200kg yr{sup -1}) or low (20kg yr{sup -1}) nitrogen levels were applied to two isogeneic lines, one able and one unable to use nitrogen fixing bacteria. Plants were in the second year of field growth. Exposure to elevated CO{sub 2} was via a Free-Air CO{sub 2} Enrichment System (FACE). Elevated CO{sub 2} increased diurnal assimilation by between 12% and 92%. Analysis of A/C{sub i} responses showed that effective nitrogen fertilisation was more important to rubisCO and RuBP activity than elevated CO{sub 2}. No acclimation was consistently observed. Leaves lower down the canopy were found to have lower Vc{sub max} and J{sub max} values, though age may be the cause of the latter effect. FACE conditions have only a small effect on these responses. There was some evidence found for the down-regulation of photosynthesis in the late afternoon. The FACE conditions had no affect on stomatal density but did increase epidermal cell density.

  3. Effects of species diversity on seasonal variation in herbage yield and nutritive value of seven binary grass-legume mixtures and pure grass under cutting

    DEFF Research Database (Denmark)

    Elgersma, Anjo; Søegaard, Karen

    2016-01-01

    Intensively managed sown temperate grasslands are generally of low species diversity, although swards based on grass-legume mixtures may have superior productivity and herbage quality than grass-only swards. We conducted a cutting experiment over two years to test the effect of species composition...... and diversity on herbage yield, contents of N, neutral detergent fibre (NDF) and in vitro organic matter digestibility (IVOMD). Perennial ryegrass (PR, Lolium perenne) was sown alone and with each of four forage legumes: red clover (RC, Trifolium pratense), lucerne (LU, Medicago sativa), birdsfoot trefoil (BT......, Lotus corniculatus) and white clover (WC, Trifolium repens); WC was also sown with hybrid ryegrass (HR, Lolium × boucheanum), meadow fescue (MF, Festuca pratensis) and timothy (TI, Phleum pratense). Herbage productivity was lowest in pure PR followed by PR/BT, and highest in PR/RC; this mixture had...

  4. Beneficial contribution of the arbuscular mycorrhizal fungus, Rhizophagus irregularis, in the protection of Medicago truncatula roots against benzo[a]pyrene toxicity.

    Science.gov (United States)

    Lenoir, Ingrid; Fontaine, Joël; Tisserant, Benoît; Laruelle, Frédéric; Lounès-Hadj Sahraoui, Anissa

    2017-07-01

    Arbuscular mycorrhizal fungi are able to improve plant establishment in polluted soils but little is known about the genes involved in the plant protection against pollutant toxicity by mycorrhization, in particular in the presence of polycyclic aromatic hydrocarbons (PAH). The present work aims at studying in both symbiotic partners, Medicago truncatula and Rhizophagus irregularis: (i) expression of genes putatively involved in PAH tolerance (MtSOD, MtPOX, MtAPX, MtGST, MtTFIIS, and MtTdp1α), (ii) activities of antioxidant (SOD, POX) and detoxification (GST) enzymes, and (iii) H 2 O 2 and the heavy PAH, benzo[a]pyrene (B[a]P) accumulation. In the presence of B[a]P, whereas induction of the enzymatic activities was detected in R. irregularis and non-mycorrhizal roots as well as upregulation of the gene expressions in the non-mycorrhizal roots, downregulation of the gene expressions and decrease of enzyme activities were observed in mycorrhizal roots. Moreover, B[a]P increased H 2 O 2 production in non-mycorrhizal roots and in R. irregularis but not in mycorrhizal roots. In addition, a lower B[a]P bioaccumulation in mycorrhizal roots was measured in comparison with non-mycorrhizal roots. Being less affected by pollutant toxicity, mycorrhizal roots did not activate any defense mechanism either at the gene expression regulation level or at the enzymatic level.

  5. Observations of foliar injury to plants by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, A.K.; Chaphekar, S.B.

    1978-01-01

    Morphological and anatomical changes in mature leaves indicated that Raphanus sativus, Commelina benghalensis and Medicago sativa were injured and Pennisetum typhoideum, Alternanthere ficoidea and Mangifera indica (seedlings) were not injured by sulfur dioxide fumigation. The highly susceptible plants like Raphanus, Medicago, and Commelina can be used for monitoring air quality in a polluted atmosphere. Uninjured species like Pennisetum on the other hand, may be grown in polluted areas for maintaining agricultural production. 9 references, 1 table.

  6. Production of aerial biomass and equivalent land use in alfalfa (Medicago sativa L.) intercropping

    International Nuclear Information System (INIS)

    Pereyra, T. W.; Pagliaricci, H. R.; Ohanian, A. E.; Bonvillani, M. J.

    2013-01-01

    Productivity increase has traditionally been associated to yield increase through breeding and crop management practices. Nevertheless, if production is considered per area and time unit, the intercropping system may be another way to improve cost-effectiveness. The objective of the experiment was to determine the produced biomass and the equivalent land use in alfalfa (Medicago sativa L.) monocrop and intercrops with sorghum Sudan (Sorghum sudanense L.) and oat (Avena sativa L.). The aerial biomass of all the treatments (expressed per surface unit) and the equivalent land use were determined. The design was completely randomized, arranged in blocks with two repetitions. The results were subject to an ANAVA and the means were compared through Duncan's test, by means of the statistical pack INFOSTAT. The alfalfa-sorghum intercrop triplicated the alfalfa production with regards to the monocrop, while alfalfa-oat did not exceed the production of pure alfalfa in the winter months. The alfalfa-sorghum intercrop was 57 % more efficient in land use than the respective monocrops, while alfalfa-oat did not surpass the unit. (author)

  7. Resistance and susceptibility of alfalfa (Medicago sativa L.) cultivars to the aphid Therioaphis maculata (Homoptera:Aphididae): insect biology and cultivar evaluation

    Institute of Scientific and Technical Information of China (English)

    ALEXANDRE DE ALMEIDA E SILVA; ELENICE MOURO VARANDA; JOS(E) RICARDO BAROSELA

    2006-01-01

    Biology of the aphid Therioaphis maculata was studied on alfalfa (Medicago sativa L.), including four resistant (Mesa-Sirsa, CUF101, Baker and Lahontan) and two susceptible (ARC and Caliverde) alfalfa cultivars, and one of the most cropped Brazilian cultivars, Crioula. Under controlled conditions, antibiosis (i.e., reduced longevity, fecundity and increased mortality of the aphid) was observed mainly on the resistant alfalfa cultivars,except on Lahontan. Crioula seemed to be tolerant to aphids. Present data support geographic limitation usage of cultivars, and we suggest Baker and Mesa-Sirsa as sources of antibiosis,and provide biological information of a tropical T. maculata biotype on alfalfa.

  8. The effect of fire on the dormancy break of annual legume seeds

    Directory of Open Access Journals (Sweden)

    Fabio Gresta

    2011-07-01

    Full Text Available Fire is a common phenomenon in the Mediterranean environment and strongly influences vegetal population dynamics through its impact on vegetation and the soil seed bank. Fire is able to break down the seed coat of hard-seeded legumes within the soil and trigger germination. To evaluate the effect of fire on the dormancy break in Medicago ciliaris, Medicago rugosa and Scorpiurus muricatus subsp. subvillosus, the seeds were placed at three different depths (surface, 25 mm and 50 mm and subjected to fires at two different intensities (high and low. As a control sample, a batch of seeds was buried at 25 mm for the duration of the trial and not subjected to fire. Soil temperatures during the fire were compared directly to stubble quantity and indirectly related to soil depth. The two Medicago species survived exposure to 90°C for a few minutes and displayed a significant increase in germination with exposure to high temperatures (over 70°C for several minutes. On the other hand, no germination occurred in Scorpiurus, irrespective of treatment. In conclusion, fire had a significant and positive effect in triggering germination of the Medicago species, but the dispersal strategies of these hard-seeded legumes are only partially interrupted by fire as a large number of seeds (>50% remained non-germinated in the soil.

  9. The effect of fire on the dormancy break of three annual legume seeds

    Directory of Open Access Journals (Sweden)

    Fabio Gresta

    2011-07-01

    Full Text Available Fire is a common phenomenon in the Mediterranean environment and strongly influences vegetal population dynamics through its impact on vegetation and the soil seed bank. Fire is able to break down the seed coat of hard-seeded legumes within the soil and trigger germination. To evaluate the effect of fire on the dormancy break in Medicago ciliaris, Medicago rugosa and Scorpiurus muricatus subsp. subvillosus, the seeds were placed at three different depths (surface, 25 mm and 50 mm and subjected to fires at two different intensities (high and low. As a control sample, a batch of seeds was buried at 25 mm for the duration of the trial and not subjected to fire. Soil temperatures during the fire were compared directly to stubble quantity and indirectly related to soil depth. The two Medicago species survived exposure to 90°C for a few minutes and displayed a significant increase in germination with exposure to high temperatures (over 70°C for several minutes. On the other hand, no germination occurred in Scorpiurus, irrespective of treatment. In conclusion, fire had a significant and positive effect in triggering germination of the Medicago species, but the dispersal strategies of these hard-seeded legumes are only partially interrupted by fire as a large number of seeds (>50% remained non-germinated in the soil.

  10. A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula genome.

    Science.gov (United States)

    Li, Xuehui; Wei, Yanling; Acharya, Ananta; Jiang, Qingzhen; Kang, Junmei; Brummer, E Charles

    2014-08-21

    A genetic linkage map is a valuable tool for quantitative trait locus mapping, map-based gene cloning, comparative mapping, and whole-genome assembly. Alfalfa, one of the most important forage crops in the world, is autotetraploid, allogamous, and highly heterozygous, characteristics that have impeded the construction of a high-density linkage map using traditional genetic marker systems. Using genotyping-by-sequencing (GBS), we constructed low-cost, reasonably high-density linkage maps for both maternal and paternal parental genomes of an autotetraploid alfalfa F1 population. The resulting maps contain 3591 single-nucleotide polymorphism markers on 64 linkage groups across both parents, with an average density of one marker per 1.5 and 1.0 cM for the maternal and paternal haplotype maps, respectively. Chromosome assignments were made based on homology of markers to the M. truncatula genome. Four linkage groups representing the four haplotypes of each alfalfa chromosome were assigned to each of the eight Medicago chromosomes in both the maternal and paternal parents. The alfalfa linkage groups were highly syntenous with M. truncatula, and clearly identified the known translocation between Chromosomes 4 and 8. In addition, a small inversion on Chromosome 1 was identified between M. truncatula and M. sativa. GBS enabled us to develop a saturated linkage map for alfalfa that greatly improved genome coverage relative to previous maps and that will facilitate investigation of genome structure. GBS could be used in breeding populations to accelerate molecular breeding in alfalfa. Copyright © 2014 Li et al.

  11. Identification and network-enabled characterization of auxin response factor genes in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    David J. Burks

    2016-12-01

    Full Text Available The Auxin Response Factor (ARF family of transcription factors is an important regulator of environmental response and symbiotic nodulation in the legume Medicago truncatula. While previous studies have identified members of this family, a recent spurt in gene expression data coupled with genome update and reannotation calls for a reassessment of the prevalence of ARF genes and their interaction networks in M. truncatula. We performed a comprehensive analysis of the M. truncatula genome and transcriptome that entailed search for novel ARF genes and the co-expression networks. Our investigation revealed 8 novel M. truncatula ARF (MtARF genes, of the total 22 identified, and uncovered novel gene co-expression networks as well. Furthermore, the topological clustering and single enrichment analysis of several network models revealed the roles of individual members of the MtARF family in nitrogen regulation, nodule initiation, and post-embryonic development through a specialized protein packaging and secretory pathway. In summary, this study not just shines new light on an important gene family, but also provides a guideline for identification of new members of gene families and their functional characterization through network analyses.

  12. The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula.

    Science.gov (United States)

    Mertens, Jan; Pollier, Jacob; Vanden Bossche, Robin; Lopez-Vidriero, Irene; Franco-Zorrilla, José Manuel; Goossens, Alain

    2016-01-01

    Plants respond to stresses by producing a broad spectrum of bioactive specialized metabolites. Hormonal elicitors, such as jasmonates, trigger a complex signaling circuit leading to the concerted activation of specific metabolic pathways. However, for many specialized metabolic pathways, the transcription factors involved remain unknown. Here, we report on two homologous jasmonate-inducible transcription factors of the basic helix-loop-helix family, TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR1 (TSAR1) and TSAR2, which direct triterpene saponin biosynthesis in Medicago truncatula. TSAR1 and TSAR2 are coregulated with and transactivate the genes encoding 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE1 (HMGR1) and MAKIBISHI1, the rate-limiting enzyme for triterpene biosynthesis and an E3 ubiquitin ligase that controls HMGR1 levels, respectively. Transactivation is mediated by direct binding of TSARs to the N-box in the promoter of HMGR1. In transient expression assays in tobacco (Nicotiana tabacum) protoplasts, TSAR1 and TSAR2 exhibit different patterns of transactivation of downstream triterpene saponin biosynthetic genes, hinting at distinct functionalities within the regulation of the pathway. Correspondingly, overexpression of TSAR1 or TSAR2 in M. truncatula hairy roots resulted in elevated transcript levels of known triterpene saponin biosynthetic genes and strongly increased the accumulation of triterpene saponins. TSAR2 overexpression specifically boosted hemolytic saponin biosynthesis, whereas TSAR1 overexpression primarily stimulated nonhemolytic soyasaponin biosynthesis. Both TSARs also activated all genes of the precursor mevalonate pathway but did not affect sterol biosynthetic genes, pointing to their specific role as regulators of specialized triterpene metabolism in M. truncatula. © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. Symbiotic Nitrogen Fixation in Alfalfa (Medicago Sativa L.) by Sinorhizobium Meliloti at Al-Qassim Regions, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Barakah, F. N.; Mridha, M. A. U.

    2016-01-01

    The nodulation status in alfalfa (Medicago sativa L.) plants by Sinorhizobium meliloti under Saudi field condition was assessed in some selected farms in four seasons for two years. In the present study, we also monitored the introduced S. meliloti strains activity under Saudi soil conditions. The samples were collected at regular seasonal intervals from the selected farms. The total number of nodules, morphology of the nodules and the effectiveness of N/sub 2/-fixation was assessed. In general, it was revealed that soils in the selected areas in Saudi Arabia have sufficient bacteria of the proper types to nodulate the alfalfa plants. These nodules are high in number, small in size and white in color. The nodules obtained from most of the selected farms are ineffective for nitrogen fixation. Inoculation of alfalfa seeds with imported S. meliloti strains failed to fix the atmospheric nitrogen sufficiently and also the growth improvement of alfalfa plants. There was a wide variation in the occurrence of number of nodules among the four seasons in two years. It was also observed that summer season severely affected the nodulation making it nearly zero. This low number of nodules exerts a very slow recovery of nodule formation in the next year. The introduced strains were always over competing with the native strains but they did not survive because of hot and dry summer. Nitrogenase activity of the nodules collected from both the inoculated and non-inoculated farms were always very low in all the collected samples, which indicates that the ability of fixing nitrogen by S. meliloti strains in alfalfa under Saudi soils conditions is very low. (author)

  14. Traffic noise affects forest bird species in a protected tropical forest

    Directory of Open Access Journals (Sweden)

    J. Edgardo Arévalo

    2011-06-01

    , these results have conservation as well as management implications. A decrease in bird species richness and bird abundance due to intrusive road noise could negatively affect the use of trails by visitors. Alternatives for noise attenuation in the affected forest area include the enforcement of speed limits and the planting of live barriers. Rev. Biol. Trop. 59 (2: 969-980. Epub 2011 June 01.Las carreteras cerca de bosques alteran la función del ecosistema por fragmentación del hábitat y tienen otros efectos negativos como contaminación, mortalidad de animales y ruido excesivo; sobre todo en animales como ranas y aves que dependen del sonido para comunicarse. Se espera menos abundancia de aves cerca de la carretera donde el ruido es alto. Este estudio evalúa los efectos del ruido por carretera sobre las aves en un bosque tropical de Costa Rica. También realizamos censos de aves y medimos el ruido del 19 al 23 de abril y del 21 al 28 de noviembre 2008. Además, utilizamos redes de niebla para maximizar la detección de aves en la estimación de riqueza de especies. La abundancia de aves así como la riqueza de especies decrecieron significativamente con el incremento del ruido tanto en la estación seca como en la lluviosa. El ruido disminuyó en forma logarítmica con el aumento en la distancia a la carretera y fue más alto durante la estación seca. Nuestros resultados sugieren que las aves tienden generalmente a evitar el ruido del tráfico y tienen implicaciones en la conservación y manejo del área protegida

  15. A Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Wang, J W; Wang, H Q; Xiang, W W; Chai, T Y

    2014-05-09

    We recently cloned MtVP1, a type I vacuolar-type H(+)-translocating inorganic pyrophosphatase from Medicago truncatula. In the present study, we investigated the cellular location and the function of this H(+)-PPase in Arabidopsis and potato (Solanum tuberosum L.). An MtVP1::enhanced green fluorescent protein fusion was constructed, which localized to the plasma membrane of onion epidermal cells. Transgenic Arabidopsis thaliana overexpressing MtVP1 had more robust root systems and redder shoots than wild-type (WT) plants under conditions of cold stress. Furthermore, overexpression of MtVP1 in potato accelerated the formation and growth of vegetative organs. The tuber buds and stem base of transgenic potatoes became redder than those of WT plants, but flowering was delayed by approximately half a month. Interestingly, anthocyanin biosynthesis was promoted in transgenic Arabidopsis seedlings and potato tuber buds. The sucrose concentration of transgenic potato tubers and tuber buds was enhanced compared with that of WT plants. Furthermore, sucrose concentration in tubers was higher than that in tuber buds. Although there was no direct evidence to support Fuglsang's hypothetical model regarding the effects of H(+)-PPase on sucrose phloem loading, we speculated that sucrose concentration was increased in tuber buds owing to the increased concentration in tubers. Therefore, overexpressed MtVP1 enhanced sucrose accumulation of source organs, which might enhance sucrose transport to sink organs, thus affecting anthocyanin biosynthesis.

  16. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks.

    Science.gov (United States)

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G J; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as "papilionoid legume-specific" were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This

  17. Nod factor effects on root hair-specific transcriptome of Medicago truncatula: focus on plasma membrane transport systems and reactive oxygen species networks

    Directory of Open Access Journals (Sweden)

    Isabelle eDAMIANI

    2016-06-01

    Full Text Available Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF for 4 h or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10 percent of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1,176 genes that could be considered as papilionoid legume-specific were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an orthologue in every of the 6 legume genomes that we considered, suggesting their involvement in essential functions

  18. Anthropogenic disturbances affect population size and biomass allocation of two alpine species from the headwater area of the Urumqi River, China

    International Nuclear Information System (INIS)

    Zhao, R.; Zhang, H.; An, L.

    2018-01-01

    The survival of alpine plants are seriously threatened by increasing anthropogenic activity. Saussurea involucrata and Rhodiola quadrifida are particularly affected because of their high medicinal value. To assess the impact of anthropogenic disturbance on the two species, their population size and biomass allocation were examined at three levels of disturbance at low and high altitudes. Anthropogenic disturbance was the most serious threat to the populations and changed the population density, biomass, and biomass allocation of both species significantly (p<0.05). The changes differed with the species and the altitude, and were also affected by the interaction between these two factors. Population density and biomass of the two species decreased with an increase in the level of anthropogenic disturbance. These results imply that the decrease in population size and in biomass allocation to reproductive organs due to anthropogenic disturbances may make the plant populations even smaller and scarce. Meanwhile, change of making their survival dependent on the extent of anthropogenic disturbance: unless such disturbance is checked and the species are protected, they will probably disappear from the headwater area of the Urumqi River. This influence of anthropogenic disturbances may be potential threats to population ability of survival and reproduction. (author)

  19. Fotossíntese em alfafa (Medicago sativa L. sob supressão e ressuprimento de fosfato Photosynthesis in alfalfa (Medicago sativa L. under phosphate suppression and ressuply

    Directory of Open Access Journals (Sweden)

    Fernando Teixeira Gomes

    2003-10-01

    Full Text Available Neste estudo, foram avaliados os efeitos da supressão e do ressuprimento de fosfato (Pi sobre a fotossíntese e eficiência fotoquímica de plantas de Medicago sativa cv. Flórida 77, em diferentes estádios do desenvolvimento vegetativo (V3, V4 e reprodutivo (R6, R8. O ensaio foi conduzido em casa de vegetação e as plantas cultivadas na solução nutritiva de HOAGLAND & ARNON (1950, contendo 0,14mmol L-1 de Pi. A supressão de Pi por dez dias reduziu os teores de fósforo nas folhas amostradas, em todos os estádios do desenvolvimento. Entretanto, com o ressuprimento, somente nos estádios vegetativos, os valores foram semelhantes ao tratamento controle. A fotossíntese por área foliar, em todos os estádios do desenvolvimento diminuiu com a supressão de Pi. De modo geral, o ressuprimento de Pi à solução nutritiva resultou em recuperação na fotossíntese, excetuando-se as plantas no estádio V3, uma indicação de que o período de supressão não causou danos permanentes no aparato fotossintético. Os teores dos pigmentos fotossintéticos e a eficiência fotoquímica do fotossistema II (FS II, avaliada pela relação Fv/Fm, não foram alterados quando as plantas foram submetidas à supressão de Pi. Esse resultado demonstra que o transporte de elétrons através do FS II não limitou a fotossíntese nas folhas amostradas, sob supressão de Pi, sugerindo que a supressão causou efeito mais pronunciado na etapa bioquímica da fotossíntese.This work evaluated the phosphate (Pi suppression and ressupply on photosynthesis and photochemical efficiency from Medicago sativa plants cv. Florida 77, in different growth stages (V3 and V4 and reproductive (R6 and R8. The experiment was performed in a greenhouse, the plants being cultivated in HOAGLAND & ARMOND (1950 nutritive solution containing 0,14mmol L-1 of Pi. Pi suppression for ten days reduced Pi levels in sampled leaves, in all growth stages. However, with the re-supply only in the

  20. Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco.

    Science.gov (United States)

    Charrier, Aurélie; Planchet, Elisabeth; Cerveau, Delphine; Gimeno-Gilles, Christine; Verdu, Isabelle; Limami, Anis M; Lelièvre, Eric

    2012-08-01

    The impact of Medicago truncatula stress-associated protein gene (MtSAP1) overexpression has been investigated in Nicotiana tabacum transgenic seedlings. Under optimal conditions, transgenic lines overexpressing MtSAP1 revealed better plant development and higher chlorophyll content as compared to wild type seedlings. Interestingly, transgenic lines showed a stronger accumulation of nitric oxide (NO), a signaling molecule involved in growth and development processes. This NO production seemed to be partially nitrate reductase dependent. Due to the fact that NO has been also reported to play a role in tolerance acquisition of plants to abiotic stresses, the responses of MtSAP1 overexpressors to osmotic and salt stress have been studied. Compared to the wild type, transgenic lines were less affected in their growth and development. Moreover, NO content in MtSAP1 overexpressors was always higher than that detected in wild seedlings under stress conditions. It seems that this better tolerance induced by MtSAP1 overexpression could be associated with this higher NO production that would enable seedlings to reach a high protection level to prepare them to cope with abiotic stresses.

  1. The physiological effect of fluorene on Triticum aestivum, Medicago sativa, and Helianthus annus

    Directory of Open Access Journals (Sweden)

    Seyed Yahya Salehi-Lisar

    2015-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are widespread pollutants and can negatively affect plants. Fluorene is a prevalent PAH in the contaminated environment. In this study, the effects of higher concentrations of fluorene in soil on rate of seed germination, growth, and the physiological parameters of wheat, sunflower, and alfalfa were studied. The results showed that the higher concentration of fluorene decreased rate of seed germination and seedlings growth of plants. Wheat showed the highest resistance at seed germination and seedlings growth phases, and sunflower was the most sensitive species at both stages. Therefore, it was concluded that higher resistance at seed germination could be followed by the higher resistance of seedlings. Fluorene toxicity also induced oxidative stress in plants as shown by MDA accumulation in the plants. There was a significant correlation between the lower activity of CAT and MDA accumulation in the studied plants. Therefore, CAT could be an important enzyme involved in detoxification of ROS and plants resistance to fluorene toxicity. Depending on plant species and fluorene concentration, photosynthetic pigments content was differently affected.

  2. Genetic factors affecting sexual reproduction in toxigenic Fusarium species

    NARCIS (Netherlands)

    Hornok, L.; Waalwijk, C.; Leslie, J.F.

    2007-01-01

    Mycotoxin producing capability greatly varies within species. In theory, the major source of this variability is meiotic recombination. However, a number of important toxigenic species have no known sexual stage and, therefore, the origin of the intraspecific diversity in these fungi is poorly

  3. Transcription reprogramming during root nodule development in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Sandra Moreau

    Full Text Available Many genes which are associated with root nodule development and activity in the model legume Medicago truncatula have been described. However information on precise stages of activation of these genes and their corresponding transcriptional regulators is often lacking. Whether these regulators are shared with other plant developmental programs also remains an open question. Here detailed microarray analyses have been used to study the transcriptome of root nodules induced by either wild type or mutant strains of Sinorhizobium meliloti. In this way we have defined eight major activation patterns in nodules and identified associated potential regulatory genes. We have shown that transcription reprogramming during consecutive stages of nodule differentiation occurs in four major phases, respectively associated with (i early signalling events and/or bacterial infection; plant cell differentiation that is either (ii independent or (iii dependent on bacteroid differentiation; (iv nitrogen fixation. Differential expression of several genes involved in cytokinin biosynthesis was observed in early symbiotic nodule zones, suggesting that cytokinin levels are actively controlled in this region. Taking advantage of databases recently developed for M. truncatula, we identified a small subset of gene expression regulators that were exclusively or predominantly expressed in nodules, whereas most other regulators were also activated under other conditions, and notably in response to abiotic or biotic stresses. We found evidence suggesting the activation of the jasmonate pathway in both wild type and mutant nodules, thus raising questions about the role of jasmonate during nodule development. Finally, quantitative RT-PCR was used to analyse the expression of a series of nodule regulator and marker genes at early symbiotic stages in roots and allowed us to distinguish several early stages of gene expression activation or repression.

  4. Nutraceutical Potential of New Alfalfa (Medicago sativa) Ingredients for Beverage Preparations.

    Science.gov (United States)

    Soto-Zarazúa, Maria Guadalupe; Bah, Moustapha; Costa, Anabela Silvia Gomes; Rodrigues, Francisca; Pimentel, Filipa Botelho; Rojas-Molina, Isela; Rojas, Alejandra; Oliveira, Maria Beatriz Prior Pinto

    2017-10-01

    Alfalfa (Medicago sativa) has been extensively used as animal feed, due to its fiber, protein, minerals, and vitamins, being also a useful source of phenolic compounds with potential therapeutic benefits. Nevertheless, its potential use as human ingredient is scarce. The aim of this work was to assess the nutritional composition, amino acid profile, and antioxidant capacity (AOC) of freeze-dried juice (FDJ) and fibrous residual material (RM), two new alfalfa-derived products (Adps) recently launched as ingredients for beverage preparations. Results demonstrated a high content of proteins (23-30 g/100 g FDJ and 13-17 g/100 g RM), crude fiber (29 g/100 g RM), and minerals (such as sodium, calcium, iron, and zinc). No significant difference was found in caloric content (4 kcal/g). Essential and nonessential amino acids were quantified in both Adps being leucine and lysine the most abundant. Total phenolic and total flavonoid contents (TPC and TFC, respectively) and their changes along the different harvesting periods of the year were also examined. FDJ presented the highest TPC in May (19 mg gallic acid equivalents/g dry weight [dw]), while in October TFC had the maximum value (4 mg catechin equivalents/g dw). Both products exhibited an interesting AOC by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assays. This study reports the nutraceutical potential of two new types of Adps.

  5. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type.

    Science.gov (United States)

    Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier

    2017-04-01

    Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.

  6. Genome-Wide Association Mapping of Loci Associated with Plant Growth and Forage Production under Salt Stress in Alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Xiang-Ping Liu

    2017-05-01

    Full Text Available Salinity tolerance is highly desirable to sustain alfalfa production in marginal lands that have been rendered saline. In this study, we used a diverse panel of 198 alfalfa accessions for mapping loci associated with plant growth and forage production under salt stress using genome-wide association studies (GWAS. The plants were genotyped using genotyping-by-sequencing (GBS. A greenhouse procedure was used for phenotyping four agronomic and physiological traits affected by salt stress, including dry weight (DW, plant height (PH, leaf chlorophyll content (LCC, and stomatal conductance (SC. For each trait, a stress susceptibility index (SSI was used to evaluate plant performance under stressed and non-stressed conditions. Marker-trait association identified a total of 42 markers significantly associated with salt tolerance. They were located on all chromosomes except chromosome 2 based on the alignment of their flanking sequences to the reference genome (Medicago truncatula. Of those identified, 13 were associated with multiple traits. Several loci identified in the present study were also identified in previous reports. BLAST search revealed that 19 putative candidate genes linked to 24 significant markers. Among them, B3 DNA-binding protein, Thiaminepyrophosphokinase and IQ calmodulin-binding motif protein were identified among multiple traits in the present and previous studies. With further investigation, these markers and candidates would be useful for developing markers for marker-assisted selection in breeding programs to improve alfalfa cultivars with enhanced tolerance to salt stress.

  7. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning.

    Science.gov (United States)

    Li, Jinglong; Sun, Yuqing; Jiang, Xuelian; Chen, Baodong; Zhang, Xin

    2018-08-15

    In a pot experiment, Medicago sativa inoculated with/without arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis were grown in four levels (0, 10, 25, and 75 mg/kg) of arsenic (As)-polluted soil to investigate the influences of AM symbiosis on plant As tolerance. The results showed that mycorrhizal inoculation significantly increased plant biomass, while As addition decreased mycorrhizal colonization and hyphal length density. Mycorrhizal inoculation dramatically improved plant phosphorus (P) nutrition, restricted As uptake and retained more As in roots by upregulating the expression of the AM-induced P transporter gene MsPT4 and the metallothionein gene MsMT2. High soil As content downregulated MsPT4 expression. Dimethylarsenic acid (DMA) was detected only in the shoots of mycorrhizal plants, indicating that AM fungi likely play an essential role in As detoxification by biological methylation. The present investigation allowed deeper insights into the As detoxification mechanisms of AM associations and demonstrated the important role of AM fungi in plant resistance under As-contaminated conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Ozone affects leaf physiology and causes injury to foliage of native tree species from the tropical Atlantic Forest of southern Brazil.

    Science.gov (United States)

    Moura, Bárbara Baêsso; Alves, Edenise Segala; Marabesi, Mauro Alexandre; de Souza, Silvia Ribeiro; Schaub, Marcus; Vollenweider, Pierre

    2018-01-01

    In southern Brazil, the recent increase in tropospheric ozone (O 3 ) concentrations poses an additional threat to the biodiverse but endangered and fragmented remnants of the Atlantic Forest. Given the mostly unknown sensitivity of tropical species to oxidative stress, the principal objective of this study was to determine whether the current O 3 levels in the Metropolitan Region of Campinas (MRC), downwind of São Paulo, affect the native vegetation of forest remnants. Foliar responses to O 3 of three tree species typical of the MRC forests were investigated using indoor chamber exposure experiments under controlled conditions and a field survey. Exposure to 70ppb O 3 reduced assimilation and leaf conductance but increased respiration in Astronium graveolens while gas exchange in Croton floribundus was little affected. Both A. graveolens and Piptadenia gonoacantha developed characteristic O 3 -induced injury in the foliage, similar to visible symptoms observed in >30% of trees assessed in the MRC, while C. floribundus remained asymptomatic. The underlying structural symptoms in both O 3 -exposed and field samples were indicative of oxidative burst, hypersensitive responses, accelerated cell senescence and, primarily in field samples, interaction with photo-oxidative stress. The markers of O 3 stress were thus mostly similar to those observed in other regions of the world. Further research is needed, to estimate the proportion of sensitive forest species, the O 3 impact on tree growth and stand stability and to detect O 3 hot spots where woody species in the Atlantic Forest are mostly affected. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of Shepherd’s Purse (Capsella bursa pastoris (L. Medic. on the Chemical Composition of Lucerne (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Tsvetanka Dimitrova

    2008-01-01

    Full Text Available A study was conducted in a pure stand of lucerne (variety Viktoria under natural weed infestation with shepherd’s purse (Capsella bursa pastoris (L. Medic. on a slightly leached chernozem soil under nonirrigated conditions in the experimental field of the Institute ofForage Crops – Pleven during the 2006-2007 period. The effect of shepherd’s purse Capsella bursa pastoris (L. Medic. on the chemical composition of lucerne Medicago sativa (L. was analyzed.Statistically significant (P<0.05 functional relations were found between the chemical characteristics and percentage of Capsella bursa pastoris (L. Medic. participation in the lucerne sward, and forage quality. These relations indicated a multiple practical relevance and a necessity to control Capsella bursa pastoris (L. Medic. in lucerne stands in order to decrease weed density and improve forage quality.

  10. Experimental tolerance to boron of the plant species Nicotiana glauca, Jacaranda mimosifolia, Tecoma stans, Medicago sativa y Spinacea oleracea in Argentina

    International Nuclear Information System (INIS)

    Viana, Marta L. de; Albarracin Franco, Silvia

    2008-01-01

    The activity of the borate deposits industries constitutes a point source and diffuse pollution of air, soil and water. Therefore, the study and experimentation on possible ways to offset this impact is a priority. A relatively new technique to decontaminate soils is phytoremediation, which uses plants and associated microorganisms. The first step is to identify tolerant plant species, which is the focus of this work. An experiment was conducted in the laboratory to evaluate the germination, survival and growth of different species in different concentrations of boron. At the beginning and end of the experiment was determined concentration of boron in the substrate for each treatment and for substrates with and without vegetation. Significant differences due to treatment, the species and species-treatment interaction. M. sativa, N. glauca and J. mimosifolia were the species most tolerant to boron. The other species showed a decrease in all variables-response function of the concentration of the contaminant. All had low survival in the highest concentration. The decrease of boron was highest in the treatment of 30 ppm of boron with M. sativa and the lowest was recorded in the treatment of 20 ppm of boron with J. mimosifolia and 30 ppm of boron with T. stans and S. oleracea. It is concluded that N. glauca, M. sativa and J. mimosifolia could be considered as promising remediation. (author) [es

  11. Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Gallego-Giraldo, Lina; Jikumaru, Yusuke; Kamiya, Yuji; Tang, Yuhong; Dixon, Richard A

    2011-05-01

    • Downregulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) in alfalfa (Medicago sativa) reduces lignin levels and improves forage quality and saccharification efficiency for bioethanol production. However, the plants have reduced stature. It was previously reported that HCT-down-regulated Arabidopsis have impaired auxin transport, but this has recently been disproved. • To address the basis for the phenotypes of lignin-modified alfalfa, we measured auxin transport, profiled a range of metabolites including flavonoids and hormones, and performed in depth transcriptome analyses. • Auxin transport is unaffected in HCT antisense alfalfa despite increased flavonoid biosynthesis. The plants show increased cytokinin and reduced auxin levels, and gibberellin levels and sensitivity are both reduced. Levels of salicylic, jasmonic and abscisic acids are elevated, associated with massive upregulation of pathogenesis and abiotic stress-related genes and enhanced tolerance to fungal infection and drought. • We suggest that HCT downregulated alfalfa plants exhibit constitutive activation of defense responses, triggered by release of bioactive cell wall fragments and production of hydrogen peroxide as a result of impaired secondary cell wall integrity. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  12. Effects of simulated acidic rain on yields of Raphanus sativus, Lactuca sativa, Triticum aestivum and Medicago sativa

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L.S.; Gmur, N.F.; Mancini, D.

    1982-01-01

    Experiments were performed to determine effects to simulated acidic rain on radishes (Raphanus sativus), lettuce (Lactuca sativa), wheat (Triticum aestivum) and alfalfa (Medicago sativa) grown under greenhouse conditions. Experimental designs allowed the detection of statistically significant differences among means that differed by less than 10%. Simulated rainfalls of 2.5, 25, 63, 398, 100 and 2512 ..mu..eq H/sup +/ 1/sup -1/ (pH 5.6, 4.6, 4.2, 3.4, 3.0 and 2.6, respectively) decreased root yields (fresh mass) of radishes 26, 42, 37, 41, 66 and 73% compared with plants not exposed to rainfalls, Similar reductions were present in radish shoot fresh mass, leaf area, and root diameter. Fresh mass yields of lettuce plants exposed to 100, 794 and 1995 ..mu..eq H/sup +/ 1/sup -1/ (pH 4.0, 3.1 and 2.7, respectively) were 11, 10 and 14%, respectively, below heads of plants not exposed to rainfalls. Yields of plants exposed to simulated rainfalls of 2.0 ..mu..eq H/sup +/ 1/sup -1/ (pH 5.7) were similar to plants not exposed to rainfalls. Although visible foliar injury occurred to lettuce, this injury was present only on wrapper leaves and would not affect marketable quality. Yields of wheat which were applied during anthesis and caryopsis development were not influenced by exposure to 46 simulated rainfalls even as high as 1996 ..mu..eq H/sup +/ 1/sup -1/ (pH 2.7). Alfalfa plants exhibited no overall differences in fresh mass of forage among treatments even after 57 simulated rainfalls of 1996 ..mu..eq H/sup +/ 1/sup -1/ (pH 2.7) over 105 days. 22 references, 2 figures, 7 tables.

  13. Medicago sativa--Sinorhizobium meliloti Symbiosis Promotes the Bioaccumulation of Zinc in Nodulated Roots.

    Science.gov (United States)

    Zribi, Kais; Nouairi, Issam; Slama, Ines; Talbi-Zribi, Ons; Mhadhbi, Haythem

    2015-01-01

    In this study we investigated effects of Zn supply on germination, growth, inorganic solutes (Zn, Ca, Fe, and Mg) partitioning and nodulation of Medicago sativa This plant was cultivated with and without Zn (2 mM). Treatments were plants without (control) and with Zn tolerant strain (S532), Zn intolerant strain (S112) and 2 mM urea nitrogen fertilisation. Results showed that M. sativa germinates at rates of 50% at 2 mM Zn. For plants given nitrogen fertilisation, Zn increased plant biomass production. When grown with symbionts, Zn supply had no effect on nodulation. Moreover, plants with S112 showed a decrease of shoot and roots biomasses. However, in symbiosis with S532, an increase of roots biomass was observed. Plants in symbiosis with S. meliloti accumulated more Zn in their roots than nitrogen fertilised plants. Zn supply results in an increase of Ca concentration in roots of fertilised nitrogen plants. However, under Zn supply, Fe concentration decreased in roots and increased in nodules of plants with S112. Zn supply showed contrasting effects on Mg concentrations for plants with nitrogen fertilisation (increase) and plants with S112 (decrease). The capacity of M. sativa to accumulate Zn in their nodulated roots encouraged its use in phytostabilisation processes.

  14. Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells.

    Science.gov (United States)

    Abreu, Isidro; Saéz, Ángela; Castro-Rodríguez, Rosario; Escudero, Viviana; Rodríguez-Haas, Benjamín; Senovilla, Marta; Larue, Camille; Grolimund, Daniel; Tejada-Jiménez, Manuel; Imperial, Juan; González-Guerrero, Manuel

    2017-11-01

    Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone. © 2017 John Wiley & Sons Ltd.

  15. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms.

    Science.gov (United States)

    Lei, Yunting; Xu, Yuxing; Hettenhausen, Christian; Lu, Chengkai; Shen, Guojing; Zhang, Cuiping; Li, Jing; Song, Juan; Lin, Honghui; Wu, Jianqiang

    2018-02-15

    Soil salinity is an important factor affecting growth, development, and productivity of almost all land plants, including the forage crop alfalfa (Medicago sativa). However, little is known about how alfalfa responds and adapts to salt stress, particularly among different salt-tolerant cultivars. Among seven alfalfa cultivars, we found that Zhongmu-1 (ZM) is relatively salt-tolerant and Xingjiang Daye (XJ) is salt-sensitive. Compared to XJ, ZM showed slower growth under low-salt conditions, but exhibited stronger tolerance to salt stress. RNA-seq analysis revealed 2237 and 1125 differentially expressed genes (DEGs) between ZM and XJ in the presence and absence of salt stress, among which many genes are involved in stress-related pathways. After salt treatment, compared with the controls, the number of DEGs in XJ (19373) was about four times of that in ZM (4833). We also detected specific differential gene expression patterns: In response to salt stress, compared with XJ, ZM maintained relatively more stable expression levels of genes related to the ROS and Ca 2+ pathways, phytohormone biosynthesis, and Na + /K + transport. Notably, several salt resistance-associated genes always showed greater levels of expression in ZM than in XJ, including a transcription factor. Consistent with the suppression of plant growth resulting from salt stress, the expression of numerous photosynthesis- and growth hormone-related genes decreased more dramatically in XJ than in ZM. By contrast, the expression levels of photosynthetic genes were lower in ZM under low-salt conditions. Compared with XJ, ZM is a salt-tolerant alfalfa cultivar possessing specific regulatory mechanisms conferring exceptional salt tolerance, likely by maintaining high transcript levels of abiotic and biotic stress resistance-related genes. Our results suggest that maintaining this specific physiological status and/or plant adaptation to salt stress most likely arises by inhibition of plant growth in ZM through

  16. Setting maximum sustainable yield targets when yield of one species affects that of other species

    DEFF Research Database (Denmark)

    Rindorf, Anna; Reid, David; Mackinson, Steve

    2012-01-01

    species. But how should we prioritize and identify most appropriate targets? Do we prefer to maximize by focusing on total yield in biomass across species, or are other measures targeting maximization of profits or preserving high living qualities more relevant? And how do we ensure that targets remain...

  17. Environmental impact assessment of alfalfa (Medicago sativa L.) hay production.

    Science.gov (United States)

    Bacenetti, Jacopo; Lovarelli, Daniela; Tedesco, Doriana; Pretolani, Roberto; Ferrante, Valentina

    2018-09-01

    On-farm production of hay and high-protein-content feed has several advantages such as diversification of on-farm cultivated crops, reduction of off-farm feed concentrates transported over long distances and a reduction in runoff during the winter season if grown crops are perennial. Among those crops cultivated for high-protein-content feed, alfalfa (Medicago sativa L.) is one of the most important in the Italian context. Nevertheless, up to now, only a few studies have assessed the environmental performance of alfalfa hay production. In this study, using the Life Cycle Assessment approach, the environmental impact of alfalfa hay production in Northern Italy was analyzed. More in detail, two production practices (without and with irrigation) were compared. The results show that alfalfa hay production in irrigated fields has a better environmental performance compared to non-irrigated production, mainly because of the yield increase achieved with irrigation. In particular, for the Climate Change impact category, the impact is equal to 84.54 and 80.21kgCO 2 /t of hay for the scenario without and with irrigation, respectively. However, for two impact categories (Ozone Depletion and Human Toxicity-No Cancer Effect), the impact of irrigation completely offsets the yield increase, and the cultivation practice without irrigation shows the best environmental performance. For both scenarios, the mechanization of harvest is the main environmental hotspot, mostly due to fuel consumption and related combustion emissions. Wide differences were highlighted by comparing the two scenarios with the Ecoinvent process of alfalfa hay production; these differences are mostly due to the cultivation practice and, in particular, to the more intensive fertilization in Swiss production. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Diurnal Human Activity and Introduced Species Affect Occurrence of Carnivores in a Human-Dominated Landscape.

    Directory of Open Access Journals (Sweden)

    Dario Moreira-Arce

    Full Text Available Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250 m and 500 m radius buffers was stronger during the night for the Darwin's fox and cougar. Road density at 250 m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500 m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin's fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in

  19. Diurnal Human Activity and Introduced Species Affect Occurrence of Carnivores in a Human-Dominated Landscape.

    Science.gov (United States)

    Moreira-Arce, Dario; Vergara, Pablo M; Boutin, Stan

    2015-01-01

    Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250 m and 500 m radius buffers was stronger during the night for the Darwin's fox and cougar. Road density at 250 m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500 m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin's fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in native forest remnants

  20. Tolerancia experimental de las especies vegetales Nicotiana glauca, Jacaranda mimosifolia, Tecoma stans, Medicago sativa y Spinacea oleracea al boro, en Argentina

    Directory of Open Access Journals (Sweden)

    Marta L. de Viana

    2008-09-01

    Full Text Available La actividad de las industrias borateras constituye una fuente puntual y difusa de contaminación del aire, suelo y aguas superficiales y profundas. Por lo tanto, el estudio y experimentación acerca de las posibles formas de contrarrestar este impacto constituye una prioridad. Una técnica relativamente nueva para descontaminar suelos es la fitorremediación, que emplea plantas y microorganismos asociados. El primer paso es detectar las especies vegetales tolerantes, lo que constituye el objetivo de este trabajo. Se realizó un experimento en laboratorio para evaluar la germinación, la supervivencia y el crecimiento de distintas especies en diferentes concentraciones de boro. Al comienzo y al final del experimento se determinó la concentración de boro en el sustrato para cada tratamiento y para sustratos con y sin vegetación. Se encontraron diferencias significativas debidas al tratamiento, la especie y la interacción especie *tratamiento. M. sativa, N. glauca y J. mimosifolia fueron las especies de mayor tolerancia al boro. Las otras especies presentaron una disminución en todas las variables-respuesta en función de la concentración del contaminante. Todas presentaron una baja supervivencia en la máxima concentración. La disminución de boro fue máxima en el tratamiento de 30 ppm de boro con M. sativa y la menor se registró en los tratamiento de 20 ppm de boro con J. mimosifolia y de 30 ppm de boro con T. stans y S. oleraceae. Se concluye que N. glauca, M. sativa y J. mimosifolia podrían considerarse como prometedoras en remediación.Experimental tolerance to boron of the plant species Nicotiana glauca, Jacaranda mimosifolia, Tecoma stans, Medicago sativa y Spinacea oleracea in Argentina. The activity of boron industries is a punctual and diffuse source of air, soil and water pollution. Therefore, it is a priority to study possible ways of reducing this impact. A relatively new technology for reducing soil pollution is

  1. Investigation of Antileishmanial Effect of Alcoholic Extract and Essential Oil of Medicinal Plant Leaf Black Alfalfa (Medicago Lupulina), on The Number of Clinical Isolates of Leishmania Major Promastigotes in Vitro

    OpenAIRE

    E Gharirvand Eskandari; M Doudi

    2016-01-01

    Introduction: Leishmaniasis has created enormous global health problems. Side effects, drug resistance and the lack of effective vaccines had led to the new effective compounds effective of plants. The aim of this study was to introduce a traditional medicinal plant called Black alfalfa (Medicago Lupulina) that can be used as a valuable resource against cutaneous leishmaniasis. Methods: In this experimental study, alcoholic extract was prepared by maceration and essential oil by distillat...

  2. Quantitative 3-dimensional imaging of auxin and cytokinin levels in transgenic soybean and medicago truncatula roots via two-photon induced fluorescence imaging

    Science.gov (United States)

    Fisher, Jon; Gaillard, Paul; Nurmalasari, Ni Putu Dewi; Fellbaum, Carl; Subramaniam, Sen; Smith, Steve

    2018-02-01

    Industrial nitrogen fertilizers account for nearly 50% of the fossil fuel costs in modern agriculture and contribute to soil and water pollution. Therefore, significant interest exists in understanding and characterizing the efficiency of nitrogen fixation, and the biochemical signaling pathways which orchestrate the plant-microbial symbiosis through which plants fix nitrogen. Legume plant species exhibit a particularly efficient nitrogen uptake mechanism, using root nodules which house nitrogen-fixing rhizobial bacteria. While nodule development has been widely studied, there remain significant gaps in understanding the regulatory hormones' role in plant development. In this work, we produce 3-dimensional maps of auxin (AX) and cytokinin (CK) hormone concentrations within model plant root tips and nodules with respect to root architecture and cell type. Soybean and Medicago plants were transfected with a two-color fluorescent vector with AXsensitive green fluorescent protein (GFP) and CK-sensitive TdTomato (TdT). 3D images of soybean root nodules were captured using two-photon induced fluorescence microscopy. The resulting images were computationally analyzed using the localization code first developed by Weeks and later adapted by Kilfoil, and analyzed in the context of the root architecture. Statistical analysis of the resulting 3D hormone level maps reproduce-well the known roles of AX and CK in developing plant roots, and are the first quantitative description of these regulatory hormones tied to specific plant architecture. The analytical methods used, and the spatial distribution of these key regulatory hormones in plant roots, nodule primordia and root nodules, and their statistical interpretation are presented.

  3. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere.

    Science.gov (United States)

    Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A

    2010-06-01

    The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.

  4. Arbuscular mycorrhizal (Funneliformis mosseae improves alfalfa (Medicago sativa L. re-growth ability in saline soil through enhanced nitrogen remobilization and improved nutritional balance

    Directory of Open Access Journals (Sweden)

    Amin Namdari

    2018-03-01

    Full Text Available In current study, the influence of arbuscular mycorrhizal fungi (AMF on salinity tolerance in terms of root’s reserves remobilization to shoot and its relationship with re-growth ability and ionic status of alfalfa (Medicago sativa L. plants were investigated. In a pot experiment, a factorial experiment in base of randomized complete blocks design in three replications was carried out. Alfalfa plants (Iranian cultivar-Baghdadi inoculated with AMF (Funneliformis mosseae or retained as un-inoculated, were grown in soil and irrigated with three salt concentrations including 1.4 (control, 7 and 12 dS/m. Three harvests were carried out at 10% of flowering stage. AMF inoculation increased the size of root sugars and soluble N pools at harvest time. The shoot biomass production following harvest had a close correlation with nitrogen (N remobilization from root (r=0.92, P≤0.01. However salinity stress significantly reduced amount and percentage of N remobilization to re-growing shoot but AMF plants exhibited greater amount and percentage of root N pools dedicated to remobilization. AMF inoculation also affected ionic relations of plants as AM+ plants contained greater K+ within both root and shoot organs while Ca2+ and Na+ were affected by AMF only within shoot tissue. AMF plants exhibited higher K+/Na+ within shoot and Ca+2/Na+ within root organs. There was a high positive correlation coefficient between K+/Na+, Ca+2/Na+ ratios and N remobilization from root (respectively, r=0.92, 0.88; P≤0.01. To sum up, ionic status within both root and shoot organs, got more balanced by AMF inoculation so that AMF reduced limitations within both source (root and sink (re-growing shoot organs concerning N remobilization to re-growing shoot.

  5. Some coagulase-negative Staphylococcus species affect udder health more than others.

    Science.gov (United States)

    Supré, K; Haesebrouck, F; Zadoks, R N; Vaneechoutte, M; Piepers, S; De Vliegher, S

    2011-05-01

    A longitudinal study in 3 dairy herds was conducted to profile the distribution of coagulase-negative Staphylococcus (CNS) species causing bovine intramammary infection (IMI) using molecular identification and to gain more insight in the pathogenic potential of CNS as a group and of the most prevalent species causing IMI. Monthly milk samples from 25 cows in each herd as well as samples from clinical mastitis were collected over a 13-mo period. Coagulase-negative staphylococci were identified to the species level using transfer-RNA intergenic spacer PCR. The distribution of CNS causing IMI was highly herd-dependent, but overall, Staphylococcus chromogenes, Staphylococcus xylosus, Staphylococcus cohnii, and Staphylococcus simulans were the most prevalent. No CNS species were found to cause clinical mastitis. The effect of the most prevalent species on the quarter milk somatic cell count (SCC) was analyzed using a linear mixed model, showing that Staph. chromogenes, Staph. simulans, and Staph. xylosus induced an increase in the SCC that is comparable with that of Staphylococcus aureus. Almost all CNS species were able to cause persistent IMI, with Staph. chromogenes causing the most persistent infections. In conclusion, accurate species identification cannot be ignored when studying the effect of CNS on udder health, as the effect on SCC differs between species and species distribution is herd-specific. Staphylococcus chromogenes, Staph. simulans, and Staph. xylosus seem to be the more important species and deserve special attention in further studies. Reasons for herd dependency and possible cow- and quarter-level risk factors should be examined in detail for the different species, eventually leading to cost-benefit analyses for management changes and, if needed, treatment recommendations. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Changes in the protein profile of Habanero pepper (Capsicum ...

    African Journals Online (AJOL)

    2012-06-12

    Jun 12, 2012 ... been achieved for a variety of plant species, including angiosperms and .... Similar studies have been conducted on Hyoscyamus niger L. (Ebrahimzadeh et al.,. 2007) ..... Proteome reference maps of Medicago truncatula.

  7. Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil.

    Science.gov (United States)

    Zhang, Xin; Ren, Bai-Hui; Wu, Song-Lin; Sun, Yu-Qing; Lin, Ge; Chen, Bao-Dong

    2015-01-01

    In two pot experiments, wild type and a non-mycorrhizal mutant (TR25:3-1) of Medicago truncatula were grown in arsenic (As)-contaminated soil to investigate the influences of arbuscular mycorrhizal fungi (AMF) on As accumulation and speciation in host plants. The results indicated that the plant biomass of M. truncatula was dramatically increased by AM symbiosis. Mycorrhizal colonization significantly increased phosphorus concentrations and decreased As concentrations in plants. Moreover, mycorrhizal colonization generally increased the percentage of arsenite in total As both in shoots and roots, while dimethylarsenic acid (DMA) was only detected in shoots of mycorrhizal plants. The results suggested that AMF are most likely to get involved in the methylating of inorganic As into less toxic organic DMA and also in the reduction of arsenate to arsenite. The study allowed a deeper insight into the As detoxification mechanisms in AM associations. By using the mutant M. truncatula, we demonstrated the importance of AMF in plant As tolerance under natural conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Molecular mobility in Medicago truncatula seed during early stage of germination: Neutron scattering and NMR investigations

    Energy Technology Data Exchange (ETDEWEB)

    Falourd, Xavier [UR1268 Biopolymères Interactions Assemblages, INRA, F-44316 Nantes (France); Natali, Francesca [CNR-IOM-OGG, c/o Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France); Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France); Peters, Judith [Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France); Université Joseph Fourier UFR PhITEM, BP 53, 38041 Grenoble Cedex 9 (France); Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1 (France); Foucat, Loïc, E-mail: Loic.Foucat@nantes.inra.fr [UR1268 Biopolymères Interactions Assemblages, INRA, F-44316 Nantes (France)

    2014-01-15

    Highlights: • Neutron scattering and NMR approaches were used to characterize seed germination. • A parallel between macromolecular motions and water dynamics was established. • Freezing/thawing cycle revealed a hysteresis connected to the seed hydration level. - Abstract: First hours of Medicago truncatula (MT) seeds germination were investigated using elastic incoherent neutron scattering (EINS) and nuclear magnetic resonance (NMR), to follow respectively how macromolecular motions and water mobility evolve when water permeates into the seed. From EINS results, it was shown that there is an increase in macromolecular mobility with the water uptake. Changes in NMR relaxation parameters reflected microstructural changes associated with the recovery of the metabolic processes. The EINS investigation of the effect of temperature on macromolecular motions showed that there is a relationship between the amount of water in the seeds and the effect of freezing–thawing cycle. The NMR relaxometry results obtained at 253 K allowed establishing possible link between the freezing of water molecules tightly bound to macromolecules and their drastic motion restriction around 250 K, as observed with EINS at the highest water content.

  9. Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species.

    Science.gov (United States)

    Naumburg, Elke; Ellsworth, David S

    2002-04-01

    Instantaneous measurements of photosynthesis are often implicitly or explicitly scaled to longer time frames to provide an understanding of plant performance in a given environment. For plants growing in a forest understory, results from photosynthetic light response curves in conjunction with diurnal light data are frequently extrapolated to daily photosynthesis (A(day)), ignoring dynamic photosynthetic responses to light. In this study, we evaluated the importance of two factors on A(day) estimates: dynamic physiological responses to photosynthetic photon flux density (PPFD); and time-resolution of the PPFD data used for modeling. We used a dynamic photosynthesis model to investigate how these factors interact with species-specific photosynthetic traits, forest type, and sky conditions to affect the accuracy of A(day) predictions. Increasing time-averaging of PPFD significantly increased the relative overestimation of A(day) similarly for all study species because of the nonlinear response of photosynthesis to PPFD (15% with 5-min PPFD means). Depending on the light environment characteristics and species-specific dynamic responses to PPFD, understory tree A(day) can be overestimated by 6-42% for the study species by ignoring these dynamics. Although these overestimates decrease under cloudy conditions where direct sunlight and consequently understory sunfleck radiation is reduced, they are still significant. Within a species, overestimation of A(day) as a result of ignoring dynamic responses was highly dependent on daily sunfleck PPFD and the frequency and irradiance of sunflecks. Overall, large overestimates of A(day) in understory trees may cause misleading inferences concerning species growth and competition in forest understories with sunlight. We conclude that comparisons of A(day) among co-occurring understory species in deep shade will be enhanced by consideration of sunflecks by using high-resolution PPFD data and understanding the physiological

  10. Which factors affect the success or failure of eradication campaigns against alien species?

    Directory of Open Access Journals (Sweden)

    Therese Pluess

    Full Text Available Although issues related to the management of invasive alien species are receiving increasing attention, little is known about which factors affect the likelihood of success of management measures. We applied two data mining techniques, classification trees and boosted trees, to identify factors that relate to the success of management campaigns aimed at eradicating invasive alien invertebrates, plants and plant pathogens. We assembled a dataset of 173 different eradication campaigns against 94 species worldwide, about a half of which (50.9% were successful. Eradications in man-made habitats, greenhouses in particular, were more likely to succeed than those in (semi-natural habitats. In man-made habitats the probability of success was generally high in Australasia, while in Europe and the Americas it was higher for local infestations that are easier to deal with, and for international campaigns that are likely to profit from cross-border cooperation. In (semi- natural habitats, eradication campaigns were more likely to succeed for plants introduced as an ornamental and escaped from cultivation prior to invasion. Averaging out all other factors in boosted trees, pathogens, bacteria and viruses were most, and fungi the least likely to be eradicated; for plants and invertebrates the probability was intermediate. Our analysis indicates that initiating the campaign before the extent of infestation reaches the critical threshold, starting to eradicate within the first four years since the problem has been noticed, paying special attention to species introduced by the cultivation pathway, and applying sanitary measures can substantially increase the probability of eradication success. Our investigations also revealed that information on socioeconomic factors, which are often considered to be crucial for eradication success, is rarely available, and thus their relative importance cannot be evaluated. Future campaigns should carefully document

  11. Nonphotosynthetic CO2 fixation by alfalfa (Medicago sativa L.) roots and nodules

    International Nuclear Information System (INIS)

    Anderson, M.P.; Heichel, G.H.; Vance, C.P.

    1987-01-01

    The dependence of alfalfa (Medicago sativa L.) root and nodule nonphotosynthetic CO 2 fixation on the supply of currently produced photosynthate and nodule nitrogenase activity was examined a various times after phloem-girdling and exposure of nodules to Ar:O 2 . Phloem-girdling was effected 20 hours and exposure to Ar:O 2 was effected 2 to 3 hours before initiation of experiments. Nodule and root CO 2 fixation rates of phloem-girdled plants were reduced to 38 and 50%, respectively, of those of control plants. Exposure to Ar:O 2 decreased nodule CO 2 fixation rates to 45%, respiration rates to 55%, and nitrogenase activities to 51% of those of the controls. The products of nodule CO 2 fixation were exported through the xylem to the shoot mainly as amino acids within 30 to 60 minutes after exposure to 14 CO 2 . In contrast to nodules, roots exported very little radioactivity, and most of the 14 C was exported as organic acids. The nonphotosynthetic CO 2 fixation rate of roots and nodules averaged 26% of the gross respiration rate, i.e. the sum of net respiration and nonphotosynthetic CO 2 assimilation. Nodules fixed CO 2 at a rate 5.6 times that of roots, but since nodules comprised a small portion of root system mass, roots accounted for 76% of the nodulated roots system CO 2 fixation. The results indicate that nodule CO 2 fixation in alfalfa is associated with N assimilation

  12. Comparison of species-rich cover crop mixtures in Hungarian vineyards

    Science.gov (United States)

    Donkó, Adam; Miglécz, Tamas; Valkó, Orsolya; Török, Peter; Deák, Balazs; Kelemen, Andras; Zanathy, Gabor; Drexler, Dora

    2014-05-01

    In case of vine growing, agricultural practices of the past decades - as mechanical cultivation on steep vineyard slopes - can endanger the soil of vineyards. Moreover, climate change scenarios predict heavier rainstorms, which can also promote the degradation of the soil. These are some of the reasons why sustainable floor management plays an increasingly important role in viticulture recently. The use of cover crops in the inter-row has a special importance, especially on steep slopes and in case of organic farming to provide conditions for environmental friendly soil management. Species-rich cover crop seed mixtures may help to prevent erosion and create easier cultivation circumstances. Furthermore they have a positive effect on soil structure, soil fertility and ecosystem functions. However, it is important to find suitable seed mixtures for specific production sites, consisting ideally of native species from local provenance, adapted to the local climate/vine region/vineyard. Requirements for suitable cover crop species are as follows: they should save the soil from erosion and also from compaction caused by the movement of workers and machines, they should not compete significantly with the grapevines, or influence produce quality. We started to develop and apply several species-rich cover crop seed mixtures in spring 2012. During the experiments, three cover crop seed mixtures (Biocont-Ecovin mixture, mixture of legumes, mixture of grasses and herbs) were compared in vineyards of the Tokaj and Szekszárd vine regions of Hungary. Each mixture was sown in three consecutive inter-rows at each experimental site (all together 10 sites). Besides botanical measurements, yield, must quality, and pruning weight was studied in every treatment. The botanical survey showed that the following species of the mixtures established successfully and prospered during the years 2012 and 2013: Coronilla varia, Lotus corniculatus, Medicago lupulina, Onobrychis viciifolia

  13. Non-enzymatic access to the plasma membrane of Medicago root hairs by laser microsurgery

    Energy Technology Data Exchange (ETDEWEB)

    Kurkdjian, A.; Leitz, G.; Manigault, P.; Harim, A.; Greulich, K. O.

    1993-07-01

    Using UV laser microsurgery, the cell walls of root hairs from Medicago sativa (alfalfa) were perforated under plasmolysing conditions, giving direct access to the plasma membrane without enzyme treatment. The opening in the cell wall of a few μm in diameter results in immediate movement of the protoplasm and partial or complete extrusion of the cell contents. The movement of the protoplasm is retarded by increases in calcium concentration. The calcium-dependency of the movement of the protoplasm allows us to obtain preferentially the extrusion of protoplasm, or to gain access to a small area of plasma membrane in situ. The complete protoplasm can be expelled, to form a protoplast. Fluorescein diacetate staining indicated esterase activity and membrane integrity of the protoplasts. Microscopic examination revealed organelle movement and the presence of a nucleus. The plasma membrane was free from cell wall fragments, as shown by Tinopal staining. Conditions for obtaining plasmolysis without disturbing the physiology of the root hairs too much were achieved by slow, stepwise and reversible plasmolysis. Cytoplasmic streaming in root hairs was maintained during plasmolysis and laser microperforation. This laser technique should be suitable for the performance of electrophysiological studies using the patch-clamp technique on plasma membrane from non-enzyme-treated cells. (author)

  14. High-Throughput Agrobacterium-mediated Transformation of Medicago Truncatula in Comparison to Two Expression Vectors

    International Nuclear Information System (INIS)

    Sultana, T.; Deeba, F.; Naqvi, S. M. S.

    2016-01-01

    Legumes have been turbulent to efficient Agrobacterium-mediated transformation for a long time. The selection of Medicago truncatula as a model legume plant for molecular analysis resulted in the development of efficient Agrobacterium-mediated transformation protocols. In current study, M. truncatula transformed plants expressing OsRGLP1 were obtained through GATEWAY technology using pGOsRGLP1 (pH7WG2.0=OsRGLP1). The transformation efficiency of this vector was compared with expression vector from pCAMBIA series over-expressing same gene (pCOsRGLP1). A lower number of explants generated hygromycin resistant plantlet for instance, 18.3 with pGOsRGLP1 vector as compared to 35.5 percent with pCOsRGLP1 vector. Transformation efficiency of PCR positive plants generated was 9.4 percent for pGOsRGLP1 while 21.6 percent for pCOsRGLP1. Furthermore 24.4 percent of explants generated antibiotic resistant plantlet on 20 mgl/sup -1/ of hygromycin which was higher than on 15 mgl/sup -1/ of hygromycin such as 12.2 percent. T/sub 1/ progeny analysis indicated that the transgene was inherited in Mendelian manner. The functionally active status of transgene was monitored by high level of Superoxide dismutase (SOD) activity in transformed progeny. (author)

  15. Non-enzymatic access to the plasma membrane of Medicago root hairs by laser microsurgery

    International Nuclear Information System (INIS)

    Kurkdjian, A.; Leitz, G.; Manigault, P.; Harim, A.; Greulich, K.O.

    1993-01-01

    Using UV laser microsurgery, the cell walls of root hairs from Medicago sativa (alfalfa) were perforated under plasmolysing conditions, giving direct access to the plasma membrane without enzyme treatment. The opening in the cell wall of a few μm in diameter results in immediate movement of the protoplasm and partial or complete extrusion of the cell contents. The movement of the protoplasm is retarded by increases in calcium concentration. The calcium-dependency of the movement of the protoplasm allows us to obtain preferentially the extrusion of protoplasm, or to gain access to a small area of plasma membrane in situ. The complete protoplasm can be expelled, to form a protoplast. Fluorescein diacetate staining indicated esterase activity and membrane integrity of the protoplasts. Microscopic examination revealed organelle movement and the presence of a nucleus. The plasma membrane was free from cell wall fragments, as shown by Tinopal staining. Conditions for obtaining plasmolysis without disturbing the physiology of the root hairs too much were achieved by slow, stepwise and reversible plasmolysis. Cytoplasmic streaming in root hairs was maintained during plasmolysis and laser microperforation. This laser technique should be suitable for the performance of electrophysiological studies using the patch-clamp technique on plasma membrane from non-enzyme-treated cells. (author)

  16. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees.

    Science.gov (United States)

    McFrederick, Quinn S; Wcislo, William T; Hout, Michael C; Mueller, Ulrich G

    2014-05-01

    Social transmission and host developmental stage are thought to profoundly affect the structure of bacterial communities associated with honey bees and bumble bees, but these ideas have not been explored in other bee species. The halictid bees Megalopta centralis and M. genalis exhibit intrapopulation social polymorphism, which we exploit to test whether bacterial communities differ by host social structure, developmental stage, or host species. We collected social and solitary Megalopta nests and sampled bees and nest contents from all stages of host development. To survey these bacterial communities, we used 16S rRNA gene 454 pyrosequencing. We found no effect of social structure, but found differences by host species and developmental stage. Wolbachia prevalence differed between the two host species. Bacterial communities associated with different developmental stages appeared to be driven by environmentally acquired bacteria. A Lactobacillus kunkeei clade bacterium that is consistently associated with other bee species was dominant in pollen provisions and larval samples, but less abundant in mature larvae and pupae. Foraging adults appeared to often reacquire L. kunkeei clade bacteria, likely while foraging at flowers. Environmental transmission appears to be more important than social transmission for Megalopta bees at the cusp between social and solitary behavior. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Salicornia europaea L. Na⁺/H⁺ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zhang, L Q; Niu, Y D; Huridu, H; Hao, J F; Qi, Z; Hasi, A

    2014-07-24

    In order to obtain a salt-tolerant perennial alfalfa (Medicago sativa L.), we transferred the halophyte Salicornia europaea L. Na(+)/H(+) antiporter gene, SeNHX1, to alfalfa by using the Agrobacterium-mediated transformation method. The transformants were confirmed by both PCR and RT-PCR analyses. Of 197 plants that were obtained after transformation, 36 were positive by PCR analysis using 2 primer pairs for the CaMV35S-SeNHX1 and SeNHX1-Nos fragments; 6 plants survived in a greenhouse. RT-PCR analysis revealed that SeNHX1 was expressed in 5 plants. The resultant transgenic alfalfa had better salt tolerance. After stress treatment for 21 days with 0.6% NaCl, the chlorophyll and MDA contents in transgenic plants were lower, but proline content and SOD, POD, and CAT activities were higher than those in wild-type plants. These results suggest that the salt tolerance of transgenic alfalfa was improved by the overexpression of the SeNHX1 gene.

  18. Unraveling the involvement of ABA in the water deficit-induced modulation of nitrogen metabolism in Medicago truncatula seedlings.

    Science.gov (United States)

    Planchet, Elisabeth; Rannou, Olivier; Ricoult, Claudie; Limami, Anis M

    2011-07-01

    Effects of water deficit and/or abscisic acid (ABA) were investigated on early seedling growth of Medicago truncatula, and on glutamate metabolism under dark conditions. Water deficit (simulated by polyethylene glycol, PEG), ABA and their combination resulted in a reduction in growth rate of the embryo axis, and also in a synergistic increase of free amino acid (AA) content. However, the inhibition of water uptake retention induced by water deficit seemed to occur in an ABA-independent manner. Expression of several genes involved in glutamate metabolism was induced during water deficit, whereas ABA, in combination or not with PEG, repressed them. The only exception came from a gene encoding 1-pyrroline-5-carboxylate synthetase (P5CS) which appeared to be induced in an ABA-dependent manner under water deficit. Our results demonstrate clearly the involvement of an ABA-dependent and an ABA-independent regulatory system, governing growth and glutamate metabolism under water deficit.

  19. Experimentally reducing species abundance indirectly affects food web structure and robustness.

    Science.gov (United States)

    Barbosa, Milton; Fernandes, G Wilson; Lewis, Owen T; Morris, Rebecca J

    2017-03-01

    Studies on the robustness of ecological communities suggest that the loss or reduction in abundance of individual species can lead to secondary and cascading extinctions. However, most such studies have been simulation-based analyses of the effect of primary extinction on food web structure. In a field experiment we tested the direct and indirect effects of reducing the abundance of a common species, focusing on the diverse and self-contained assemblage of arthropods associated with an abundant Brazilian shrub, Baccharis dracunculifolia D.C. (Asteraceae). Over a 5-month period we experimentally reduced the abundance of Baccharopelma dracunculifoliae (Sternorrhyncha: Psyllidae), the commonest galling species associated with B. dracunculifolia, in 15 replicate plots paired with 15 control plots. We investigated direct effects of the manipulation on parasitoids attacking B. dracunculifoliae, as well as indirect effects (mediated via a third species or through the environment) on 10 other galler species and 50 associated parasitoid species. The experimental manipulation significantly increased parasitism on B. dracunculifoliae in the treatment plots, but did not significantly alter either the species richness or abundance of other galler species. Compared to control plots, food webs in manipulated plots had significantly lower values of weighted connectance, interaction evenness and robustness (measured as simulated tolerance to secondary extinction), even when B. dracunculifoliae was excluded from calculations. Parasitoid species were almost entirely specialized to individual galler species, so the observed effects of the manipulation on food web structure could not have propagated via the documented trophic links. Instead, they must have spread either through trophic links not included in the webs (e.g. shared predators) or non-trophically (e.g. through changes in habitat availability). Our results highlight that the inclusion of both trophic and non

  20. Potencial de espécies vegetais para a remediação do herbicida trifloxysulfuron-sodium Potential of plant species for remediation of trifloxysulfuron-sodium

    Directory of Open Access Journals (Sweden)

    S.O. Procópio

    2005-03-01

    Full Text Available Este trabalho teve como objetivo avaliar a eficiência de espécies vegetais na remediação do herbicida trifloxysulfuron-sodium em solos, utilizando o feijão (Phaseolus vulgaris como planta indicadora. Os tratamentos foram compostos pela combinação entre as espécies Calopogonium mucunoides, Crotalaria juncea, Crotalaria spectabilis, Vicia sativa, Cajanus cajan, Canavalia ensiformis, Medicago sativa, Dolichus lab lab, Penisetum glaucum, Stylosantes guianensis, Mucuna deeringiana, Mucuna cinereum, Mucuna aterrima, Raphanus sativus e Lupinus albus. Todas as espécies foram semeadas em vasos no dia seguinte à aplicação do trifloxysulfuron-sodium em três doses (0,00; 3,75; e 15,00 g ha-1. Após 80 dias da semeadura, as espécies vegetais foram cortadas na altura do coleto e a parte aérea destas descartada. A seguir, foi realizada a semeadura do feijão (cultivar Pérola. Aos 45 dias após a emergência das plantas de feijão avaliaram-se a altura e a massa seca da parte aérea das plantas. Melhor eficiência na descontaminação do trifloxysulfuron-sodium em solo foi obtida pelas espécies M. aterrima e C. ensiformis.This work aimed to evaluate the efficiency of vegetable species in the remediation of the herbicide trifloxysulfuron-sodium in soils using the common bean (Phaseolus vulgaris as a bio indicator. The treatments were composed by the combination of the species Calopogonium mucunoides,Crotalaria juncea, Crotalaria spectabilis, Vicia sativa, Cajanus cajan, Canavalia ensiformis, Medicago sativa, Dolichus lab lab, Penisetum glaucum, Stylosantes guianensis, Mucuna deeringiana, Mucuna cinereum, Mucuna aterrima, Raphanus sativus and Lupinus albus, sown in vases the day following application of the herbicide at three doses (0.00; 3.75; and 15.00 g ha-1. Eighty days after sowing, the plants were cut and the shoot discarded, followed by bean ("Perola" cultivar sowing. At 45 days post emergence, bean height and shoot dry matter were

  1. Microbial environment affects innate immunity in two closely related earthworm species Eisenia andrei and Eisenia fetida.

    Directory of Open Access Journals (Sweden)

    Jiří Dvořák

    Full Text Available Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins.

  2. Cytotoxicity and apoptosis induced by alfalfa (Medicago sativa) leaf extracts in sensitive and multidrug-resistant tumor cells.

    Science.gov (United States)

    Gatouillat, Grégory; Magid, Abdulmagid Alabdul; Bertin, Eric; Okiemy-Akeli, Marie-Genevieve; Morjani, Hamid; Lavaud, Catherine; Madoulet, Claudie

    2014-01-01

    Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy.

  3. Trait-fitness relationships determine how trade-off shapes affect species coexistence.

    Science.gov (United States)

    Ehrlich, Elias; Becks, Lutz; Gaedke, Ursula

    2017-12-01

    Trade-offs between functional traits are ubiquitous in nature and can promote species coexistence depending on their shape. Classic theory predicts that convex trade-offs facilitate coexistence of specialized species with extreme trait values (extreme species) while concave trade-offs promote species with intermediate trait values (intermediate species). We show here that this prediction becomes insufficient when the traits translate non-linearly into fitness which frequently occurs in nature, e.g., an increasing length of spines reduces grazing losses only up to a certain threshold resulting in a saturating or sigmoid trait-fitness function. We present a novel, general approach to evaluate the effect of different trade-off shapes on species coexistence. We compare the trade-off curve to the invasion boundary of an intermediate species invading the two extreme species. At this boundary, the invasion fitness is zero. Thus, it separates trait combinations where invasion is or is not possible. The invasion boundary is calculated based on measurable trait-fitness relationships. If at least one of these relationships is not linear, the invasion boundary becomes non-linear, implying that convex and concave trade-offs not necessarily lead to different coexistence patterns. Therefore, we suggest a new ecological classification of trade-offs into extreme-favoring and intermediate-favoring which differs from a purely mathematical description of their shape. We apply our approach to a well-established model of an empirical predator-prey system with competing prey types facing a trade-off between edibility and half-saturation constant for nutrient uptake. We show that the survival of the intermediate prey depends on the convexity of the trade-off. Overall, our approach provides a general tool to make a priori predictions on the outcome of competition among species facing a common trade-off in dependence of the shape of the trade-off and the shape of the trait

  4. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Zhang, Zhiqiang; Wang, Yafang; Chang, Leqin; Zhang, Tong; An, Jie; Liu, Yushi; Cao, Yuman; Zhao, Xia; Sha, Xuyang; Hu, Tianming; Yang, Peizhi

    2016-02-01

    The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.

  5. Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco

    Directory of Open Access Journals (Sweden)

    Udupa Sripada M

    2010-01-01

    Full Text Available Abstract Background Sinorhizobium meliloti and S. medicae are symbiotic nitrogen fixing bacteria in root nodules of forage legume alfalfa (Medicago sativa L.. In Morocco, alfalfa is usually grown in marginal soils of arid and semi-arid regions frequently affected by drought, extremes of temperature and soil pH, soil salinity and heavy metals, which affect biological nitrogen fixing ability of rhizobia and productivity of the host. This study examines phenotypic diversity for tolerance to the above stresses and genotypic diversity at Repetitive Extragenic Pallindromic DNA regions of Sinorhizobium nodulating alfalfa, sampled from marginal soils of arid and semi-arid regions of Morocco. Results RsaI digestion of PCR amplified 16S rDNA of the 157 sampled isolates, assigned 136 isolates as S. meliloti and the rest as S. medicae. Further phenotyping of these alfalfa rhizobia for tolerance to the environmental stresses revealed a large degree of variation: 55.41%, 82.16%, 57.96% and 3.18% of the total isolates were tolerant to NaCl (>513 mM, water stress (-1.5 MPa, high temperature (40°C and low pH (3.5, respectively. Sixty-seven isolates of S. meliloti and thirteen isolates of S. medicae that were tolerant to salinity were also tolerant to water stress. Most of the isolates of the two species showed tolerance to heavy metals (Cd, Mn and Zn and antibiotics (chloramphenicol, spectinomycin, streptomycin and tetracycline. The phenotypic clusters observed by the cluster analysis clearly showed adaptations of the S. meliloti and S. medicae strains to the multiple stresses. Genotyping with rep-PCR revealed higher genetic diversity within these phenotypic clusters and classified all the 157 isolates into 148 genotypes. No relationship between genotypic profiles and the phenotypes was observed. The Analysis of Molecular Variance revealed that largest proportion of significant (P Conclusion High degree of phenotypic and genotypic diversity is present in S

  6. Genetic sorting of subordinate species in grassland modulated by intraspecific variation in dominant species.

    Directory of Open Access Journals (Sweden)

    Danny J Gustafson

    Full Text Available Genetic variation in a single species can have predictable and heritable effects on associated communities and ecosystem processes, however little is known about how genetic variation of a dominant species affects plant community assembly. We characterized the genetic structure of a dominant grass (Sorghastrum nutans and two subordinate species (Chamaecrista fasciculata, Silphium integrifolium, during the third growing season in grassland communities established with genetically distinct (cultivated varieties or local ecotypes seed sources of the dominant grasses. There were genetic differences between subordinate species growing in the cultivar versus local ecotype communities, indicating that intraspecific genetic variation in the dominant grasses affected the genetic composition of subordinate species during community assembly. A positive association between genetic diversity of S. nutans, C. fasciculata, and S. integrifolium and species diversity established the role of an intraspecific biotic filter during community assembly. Our results show that intraspecific variation in dominant species can significantly modulate the genetic composition of subordinate species.

  7. Tree Species Identity Shapes Earthworm Communities

    DEFF Research Database (Denmark)

    Schelfhout, Stephanie; Mertens, Jan; Verheyen, Kris

    2017-01-01

    Earthworms are key organisms in forest ecosystems because they incorporate organic material into the soil and affect the activity of other soil organisms. Here, we investigated how tree species affect earthworm communities via litter and soil characteristics. In a 36-year old common garden...... of soil and foliar litter, and determined the forest floor turnover rate and the density and biomass of the earthworm species occurring in the stands. Tree species significantly affected earthworm communities via leaf litter and/or soil characteristics. Anecic earthworms were abundant under Fraxinus, Acer...

  8. Arsenic species in ecosystems affected by arsenic-rich spring water near an abandoned mine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.T. [Department of Earth System Science, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Gu, Seoul 120-749 (Korea, Republic of); Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Yoon, H.O., E-mail: dunee@kbsi.re.k [Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Yoon, C. [Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Woo, N.C., E-mail: ncwoo@yonsei.ac.k [Department of Earth System Science, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Gu, Seoul 120-749 (Korea, Republic of)

    2009-12-15

    The objectives of this study were to quantitatively estimate the distribution of arsenic with its speciation and to identify potential pathways for transformation of arsenic species from samples of water, sediments, and plants in the ecosystem affected by the Cheongog Spring, where As(V) concentration reached levels up to 0.270 mg L{sup -1}. After flowing about 100 m downstream, the arsenic level showed a marked reduction to 0.044 mg L{sup -1} (about 84% removal) without noticeable changes in major water chemistry. The field study and laboratory hydroponic experiments with the dominant emergent plants along the creek (water dropwort and thunbergian smartweed) indicated that arsenic distribution, reduction, and speciation appear to be controlled by, (i) sorption onto stream sediments in exchangeable fractions, (ii) bioaccumulation by and possible release from emergent plants, and (iii) transformation of As(V) to As(III) and organic species through biological activities. - Biogeochemical reactions with emergent plants and sediments control the fate of arsenic along creeks originating from a high-As Spring.

  9. Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators.

    Directory of Open Access Journals (Sweden)

    Hamada AbdElgawad

    Full Text Available Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C, under ambient CO2 (392 ppm and elevated CO2 (620 ppm. As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P and magnesium (Mg contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C, nitrogen (N contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will

  10. Climate Extreme Effects on the Chemical Composition of Temperate Grassland Species under Ambient and Elevated CO2: A Comparison of Fructan and Non-Fructan Accumulators

    Science.gov (United States)

    Zinta, Gaurav; Van den Ende, Wim; Janssens, Ivan A.; Asard, Han

    2014-01-01

    Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N) fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C), under ambient CO2 (392 ppm) and elevated CO2 (620 ppm). As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P) and magnesium (Mg) contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C), nitrogen (N) contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will be less

  11. Factors affecting people's response to invasive species management

    Science.gov (United States)

    Paul H. Gobster

    2011-01-01

    Natural areas managers contend with an increasingly diverse array of invasive species in their mission to conserve the health and integrity of ecosystems under their charge. As users, nearby neighbours and de facto 'owners' of the lands where many significant natural areas reside, the public is often highly supportive of broad programme goals for management...

  12. The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells.

    Directory of Open Access Journals (Sweden)

    Marian Uhe

    Full Text Available Different symbiotic and pathogenic plant-microbe interactions involve the production of cysteine-rich antimicrobial defensins. In Medicago truncatula, the expression of four MtDefMd genes, encoding arbuscular mycorrhiza-dependent defensins containing an N-terminal signal peptide and exhibiting some differences to non-symbiotic defensins, raised over the time of fungal colonization. Whereas the MtDefMd1 and MtDefMd2 promoters were inactive in cells containing young arbuscules, cells with fully developed arbuscules displayed different levels of promoter activities, indicating an up-regulation towards later stages of arbuscule formation. MtDefMd1 and MtDefMd2 expression was absent or strongly down-regulated in mycorrhized ram1-1 and pt4-2 mutants, known for defects in arbuscule branching or premature arbuscule degeneration, respectively. A ~97% knock-down of MtDefMd1/MtDefMd2 expression did not significantly affect arbuscule size. Although overexpression of MtDefMd1 in arbuscule-containing cells led to an up-regulation of MtRam1, encoding a key transcriptional regulator of arbuscule formation, no morphological changes were evident. Co-localization of an MtDefMd1-mGFP6 fusion with additional, subcellular markers revealed that this defensin is associated with arbuscules in later stages of their life-cycle. MtDefMd1-mGFP6 was detected in cells with older arbuscules about to collapse, and ultimately in vacuolar compartments. Comparisons with mycorrhized roots expressing a tonoplast marker indicated that MtDefMd1 acts during late restructuring processes of arbuscule-containing cells, upon their transition into a post-symbiotic state.

  13. Effect of Temperature Rising on the Stygobitic Crustacean Species Diacyclops belgicus: Does Global Warming Affect Groundwater Populations?

    Directory of Open Access Journals (Sweden)

    Tiziana Di Lorenzo

    2017-12-01

    Full Text Available The average global temperature is predicted to increase by 3 °C by the end of this century due to human-induced climate change. The overall metabolism of the aquatic biota will be directly affected by rising temperatures and associated changes. Since thermal stability is a characteristic of groundwater ecosystems, global warming is expected to have a profound effect on the groundwater fauna. The prediction that stygobitic (obligate groundwater dweller species are vulnerable to climate change includes assumptions about metabolic effects that can only be tested by comparisons across a thermal gradient. To this end, we investigated the effects of two different thermal regimes on the metabolism of the stygobitic copepod species Diacyclops belgicus (Kiefer, 1936. We measured the individual-based oxygen consumption of this species as a proxy of possible metabolic reactions to temperature rising from 14 to 17 °C. We used a sealed glass microplate equipped with planar oxygen sensor spots with optical isolation glued onto the bottom of 80-μL wells integrated with a 24-channel fluorescence-based respirometry system. The tests have provided controversial results according to which the D. belgicus populations should be prudently considered at risk under a global warming scenario.

  14. [Determination of Hard Rate of Alfalfa (Medicago sativa L.) Seeds with Near Infrared Spectroscopy].

    Science.gov (United States)

    Wang, Xin-xun; Chen, Ling-ling; Zhang, Yun-wei; Mao, Pei-sheng

    2016-03-01

    Alfalfa (Medicago sativa L.) is the most commonly grown forage crop due to its better quality characteristics and high adaptability in China. However, there was 20%-80% hard seeds in alfalfa which could not be identified easily from non hard seeds which would cause the loss of seed utilization value and plant production. This experiment was designed for 121 samples of alfalfa. Seeds were collected according to different regions, harvested year and varieties. 31 samples were artificial matched as hard rates ranging from 20% to 80% to establish a model for hard seed rate by near infrared spectroscopy (NIRS) with Partial Least Square (PLS). The objective of this study was to establish a model and to estimate the efficiency of NIRS for determining hard rate of alfalfa seeds. The results showed that the correlation coefficient (R2(cal)) of calibration model was 0.981 6, root mean square error of cross validation (RMSECV) was 5.32, and the ratio of prediction to deviation (RPD) was 3.58. The forecast model in this experiment presented the satisfied precision. The proposed method using NIRS technology is feasible for identification and classification of hard seed in alfalfa. A new method, as nondestructive testing of hard seed rate, was provided to theoretical basis for fast nondestructive detection of hard seed rates in alfalfa.

  15. Taxonomy Icon Data: barrel medic [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available barrel medic Medicago truncatula Medicago_truncatula_L.png Medicago_truncatula_NL.png Medi...cago_truncatula_S.png Medicago_truncatula_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Medi...cago+truncatula&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Medicago+truncatula&t=NL http://biosci...encedbc.jp/taxonomy_icon/icon.cgi?i=Medicago+truncatula&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Medicago+truncatula&t=NS ...

  16. Invasive Species Science Branch: research and management tools for controlling invasive species

    Science.gov (United States)

    Reed, Robert N.; Walters, Katie D.

    2015-01-01

    Invasive, nonnative species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like “biological wildfires,” they can quickly spread and affect nearly all terrestrial and aquatic ecosystems. Invasive species have become one of the greatest environmental challenges of the 21st century in economic, environmental, and human health costs, with an estimated effect in the United States of more than $120 billion per year. Managers of the Department of the Interior and other public and private lands often rank invasive species as their top resource management problem. The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. To disseminate this information, branch scientists are developing platforms to share invasive species information with DOI cooperators, other agency partners, and the public. From these and other data, branch scientists are constructing models to understand and predict invasive species distributions for more effective management. The branch also has extensive herpetological and population biology expertise that is applied to harmful reptile invaders such as the Brown Treesnake on Guam and Burmese Python in Florida.

  17. Piper and Vismia species from Colombian Amazonia differentially affect cell proliferation of hepatocarcinoma cells.

    Science.gov (United States)

    Lizcano, Leandro J; Siles, Maite; Trepiana, Jenifer; Hernández, M Luisa; Navarro, Rosaura; Ruiz-Larrea, M Begoña; Ruiz-Sanz, José Ignacio

    2014-12-30

    There is an increasing interest to identify plant-derived natural products with antitumor activities. In this work, we have studied the effects of aqueous leaf extracts from Amazonian Vismia and Piper species on human hepatocarcinoma cell toxicity. Results showed that, depending on the cell type, the plants displayed differential effects; thus, Vismia baccifera induced the selective killing of HepG2, while increasing cell growth of PLC-PRF and SK-HEP-1. In contrast, these two last cell lines were sensitive to the toxicity by Piper krukoffii and Piper putumayoense, while the Piperaceae did not affect HepG2 growth. All the extracts induced cytotoxicity to rat hepatoma McA-RH7777, but were innocuous (V. baccifera at concentrations Piper genera with opposite effects as a model system to study the mechanisms of the antitumoral activity against different types of hepatocarcinoma.

  18. Transgenic alfalfa (Medicago sativa) with increased sucrose phosphate synthase activity shows enhanced growth when grown under N2-fixing conditions.

    Science.gov (United States)

    Gebril, Sayed; Seger, Mark; Villanueva, Fabiola Muro; Ortega, Jose Luis; Bagga, Suman; Sengupta-Gopalan, Champa

    2015-10-01

    Overexpression of SPS in alfalfa is accompanied by early flowering, increased plant growth and an increase in elemental N and protein content when grown under N2-fixing conditions. Sucrose phosphate synthase (SPS; EC 2.3.1.14) is the key enzyme in the synthesis of sucrose in plants. The outcome of overexpression of SPS in different plants using transgenic approaches has been quite varied, but the general consensus is that increased SPS activity is associated with the production of new sinks and increased sink strength. In legumes, the root nodule is a strong C sink and in this study our objective was to see how increasing SPS activity in a legume would affect nodule number and function. Here we have transformed alfalfa (Medicago sativa, cv. Regen SY), with a maize SPS gene driven by the constitutive CaMV35S promoter. Our results showed that overexpression of SPS in alfalfa, is accompanied by an increase in nodule number and mass and an overall increase in nitrogenase activity at the whole plant level. The nodules exhibited an increase in the level of key enzymes contributing to N assimilation including glutamine synthetase and asparagine synthetase. Moreover, the stems of the transformants showed higher level of the transport amino acids, Asx, indicating increased export of N from the nodules. The transformants exhibited a dramatic increase in growth both of the shoots and roots, and earlier flowering time, leading to increased yields. Moreover, the transformants showed an increase in elemental N and protein content. The overall conclusion is that increased SPS activity improves the N status and plant performance, suggesting that the availability of more C in the form of sucrose enhances N acquisition and assimilation in the nodules.

  19. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1.

    Science.gov (United States)

    Ariel, Federico; Diet, Anouck; Verdenaud, Marion; Gruber, Véronique; Frugier, Florian; Chan, Raquel; Crespi, Martin

    2010-07-01

    The adaptation of root architecture to environmental constraints is a major agricultural trait, notably in legumes, the third main crop worldwide. This root developmental plasticity depends on the formation of lateral roots (LRs) emerging from primary roots. In the model legume Medicago truncatula, the HD-Zip I transcription factor HB1 is expressed in primary and lateral root meristems and induced by salt stress. Constitutive expression of HB1 in M. truncatula roots alters their architecture, whereas hb1 TILLING mutants showed increased lateral root emergence. Electrophoretic mobility shift assay, promoter mutagenesis, and chromatin immunoprecipitation-PCR assays revealed that HB1 directly recognizes a CAATAATTG cis-element present in the promoter of a LOB-like (for Lateral Organ Boundaries) gene, LBD1, transcriptionally regulated by auxin. Expression of these genes in response to abscisic acid and auxin and their behavior in hb1 mutants revealed an HB1-mediated repression of LBD1 acting during LR emergence. M. truncatula HB1 regulates an adaptive developmental response to minimize the root surface exposed to adverse environmental stresses.

  20. Soil bulk electrical resistivity and forage ground cover: nonlinear models in an alfalfa (Medicago sativa L. case study

    Directory of Open Access Journals (Sweden)

    Roberta Rossi

    2015-12-01

    Full Text Available Alfalfa is a highly productive and fertility-building forage crop; its performance, can be highly variable as influenced by within-field soil spatial variability. Characterising the relations between soil and forage- variation is important for optimal management. The aim of this work was to model the relationship between soil electrical resistivity (ER and plant productivity in an alfalfa (Medicago sativa L. field in Southern Italy. ER mapping was accomplished by a multi-depth automatic resistivity profiler. Plant productivity was assessed through normalised difference vegetation index (NDVI at 2 dates. A non-linear relationship between NDVI and deep soil ER was modelled within the framework of generalised additive models. The best model explained 70% of the total variability. Soil profiles at six locations selected along a gradient of ER showed differences related to texture (ranging from clay to sandy-clay loam, gravel content (0 to 55% and to the presence of a petrocalcic horizon. Our results prove that multi-depth ER can be used to localise permanent soil features that drive plant productivity.

  1. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn

    International Nuclear Information System (INIS)

    Chen Baodong; Xiao Xueyi; Zhu Yongguan; Smith, F. Andrew; Miao Xie, Z.; Smith, Sally E.

    2007-01-01

    Mycorrhizal fungi may play an important role in protecting plants against arsenic (As) contamination. However, little is known about the direct and indirect involvement of arbuscular mycorrhizal fungi (AMF) in detoxification mechanisms. A compartmented pot cultivation system ('cross-pots') is used here to investigate the roles of AMF Glomus mosseae in plant phosphorus (P) and As acquisition by Medicago sativa, and P-As interactions. The results indicate that fungal colonization dramatically increased plant dry weight by a factor of around 6, and also substantially increased both plant P and As contents (i.e. total uptake). Irrespective of P and As addition levels, AM plants had shoot and root P concentrations 2 fold higher, but As concentrations significantly lower, than corresponding uninoculated controls. The decreased shoot As concentrations were largely due to 'dilution effects' that resulted from stimulated growth of AM plants and reduced As partitioning to shoots. The study provides further evidence for the protective effects of AMF on host plants against As contamination, and have uncovered key aspects of underlying mechanisms. The possible application of AMF in remediation practices is discussed

  2. Determining the factors affecting the distribution of Muscari latifolium, an endemic plant of Turkey, and a mapping species distribution model.

    Science.gov (United States)

    Yilmaz, Hatice; Yilmaz, Osman Yalçın; Akyüz, Yaşar Feyza

    2017-02-01

    Species distribution modeling was used to determine factors among the large predictor candidate data set that affect the distribution of Muscari latifolium , an endemic bulbous plant species of Turkey, to quantify the relative importance of each factor and make a potential spatial distribution map of M. latifolium . Models were built using the Boosted Regression Trees method based on 35 presence and 70 absence records obtained through field sampling in the Gönen Dam watershed area of the Kazdağı Mountains in West Anatolia. Large candidate variables of monthly and seasonal climate, fine-scale land surface, and geologic and biotic variables were simplified using a BRT simplifying procedure. Analyses performed on these resources, direct and indirect variables showed that there were 14 main factors that influence the species' distribution. Five of the 14 most important variables influencing the distribution of the species are bedrock type, Quercus cerris density, precipitation during the wettest month, Pinus nigra density, and northness. These variables account for approximately 60% of the relative importance for determining the distribution of the species. Prediction performance was assessed by 10 random subsample data sets and gave a maximum the area under a receiver operating characteristic curve (AUC) value of 0.93 and an average AUC value of 0.8. This study provides a significant contribution to the knowledge of the habitat requirements and ecological characteristics of this species. The distribution of this species is explained by a combination of biotic and abiotic factors. Hence, using biotic interaction and fine-scale land surface variables in species distribution models improved the accuracy and precision of the model. The knowledge of the relationships between distribution patterns and environmental factors and biotic interaction of M. latifolium can help develop a management and conservation strategy for this species.

  3. The single evolutionary origin of chlorinated auxin provides a phylogenetically informative trait in the Fabaceae.

    Science.gov (United States)

    Lam, Hong Kiat; Ross, John J; McAdam, Erin L; McAdam, Scott A M

    2016-07-02

    Chlorinated auxin (4-chloroindole-3-acetic acid, 4-Cl-IAA), a highly potent plant hormone, was once thought to be restricted to species of the tribe Fabeae within the Fabaceae, until we recently detected this hormone in the seeds of Medicago, Melilotus and Trifolium species. The absence of 4-Cl-IAA in the seeds of the cultivated species Cicer aeritinum from the Cicerae tribe, immediately basal to the Fabeae and Trifolieae tribes, suggested a single evolutionary origin of 4-Cl-IAA. Here, we provide a more robust phylogenetic placement of the ability to produce chlorinated auxin by screening key species spanning this evolutionary transition. We report no detectable level of 4-Cl-IAA in Cicer echinospermum (a wild relative of C. aeritinum) and 4 species (Galega officinalis, Parochetus communis, Astragalus propinquus and A. sinicus) from tribes or clades more basal or sister to the Cicerae tribe. We did detect 4-Cl-IAA in the dry seeds of 4 species from the genus Ononis that are either basal to the genera Medicago, Melilotus and Trigonella or basal to, but still within, the Fabeae and Trifolieae (ex. Parochetus) clades. We conclude that the single evolutionary origin of this hormone in seeds can be used as a phylogenetically informative trait within the Fabaceae.

  4. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase.

    Science.gov (United States)

    Swainsbury, David J K; Zhou, Liang; Oldroyd, Giles E D; Bornemann, Stephen

    2012-09-04

    A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.

  5. Interplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-05-01

    Full Text Available Suppression of host innate immunity appears to be required for the establishment of symbiosis between rhizobia and host plants. In this study, we established a system that included a host plant, a bacterial pathogen and a symbiotic rhizobium to study the role of innate immunity during symbiotic interactions. A pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000, was shown to cause chlorosis in Medicago truncatula A17. Sinorhizobium meliloti strain Sm2011 (Sm2011 and Pst DC3000 strain alone induced similar defense responses in M. truncatula. However, when co-inoculated, Sm2011 specifically suppressed the defense responses induced by Pst DC3000, such as MAPK activation and ROS production. Inoculation with Sm2011 suppressed the transcription of defense-related genes triggered by Pst DC3000 infection, including the receptor of bacterial flagellin (FLS2, pathogenesis-related protein 10 (PR10, and the transcription factor WRKY33. Interestingly, inoculation with Pst DC3000 specifically inhibited the expression of the symbiosis marker genes nodule inception and nodulation pectate lyase and reduced the numbers of infection threads and nodules on M. truncatula A17 roots, indicating that Pst DC3000 inhibits the establishment of symbiosis in M. truncatula. In addition, defense-related genes, such as MAPK3/6, RbohC, and WRKY33, exhibited a transient increase in their expression in the early stage of symbiosis with Sm2011, but the expression dropped down to normal levels at later symbiotic stages. Our results suggest that plant innate immunity plays an antagonistic role in symbiosis by directly reducing the numbers of infection threads and nodules.

  6. Does species richness affect fine root biomass and production in young forest plantations?

    Science.gov (United States)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-02-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

  7. Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising Plant Probiotic Bacteria.

    Science.gov (United States)

    Martínez-Hidalgo, Pilar; Galindo-Villardón, Purificación; Trujillo, Martha E; Igual, José M; Martínez-Molina, Eustoquio

    2014-09-17

    Biotic interactions can improve agricultural productivity without costly and environmentally challenging inputs. Micromonospora strains have recently been reported as natural endophytes of legume nodules but their significance for plant development and productivity has not yet been established. The aim of this study was to determine the diversity and function of Micromonospora isolated from Medicago sativa root nodules. Micromonospora-like strains from field alfalfa nodules were characterized by BOX-PCR fingerprinting and 16S rRNA gene sequencing. The ecological role of the interaction of the 15 selected representative Micromonospora strains was tested in M. sativa. Nodulation, plant growth and nutrition parameters were analyzed. Alfalfa nodules naturally contain abundant and highly diverse populations of Micromonospora, both at the intra- and at interspecific level. Selected Micromonospora isolates significantly increase the nodulation of alfalfa by Ensifer meliloti 1021 and also the efficiency of the plant for nitrogen nutrition. Moreover, they promote aerial growth, the shoot-to-root ratio, and raise the level of essential nutrients. Our results indicate that Micromonospora acts as a Rhizobia Helper Bacteria (RHB) agent and has probiotic effects, promoting plant growth and increasing nutrition efficiency. Its ecological role, biotechnological potential and advantages as a plant probiotic bacterium (PPB) are also discussed.

  8. Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulex species complex

    Directory of Open Access Journals (Sweden)

    Cristescu Melania E

    2011-07-01

    Full Text Available Abstract Background Evidence for historical, demographic and selective factors affecting enzyme evolution can be obtained by examining nucleotide sequence variation in candidate genes such as Lactate dehydrogenase (Ldh. Two closely related Daphnia species can be distinguished by their electrophoretic Ldh genotype and habitat. Daphnia pulex populations are fixed for the S allele and inhabit temporary ponds, while D. pulicaria populations are fixed for the F allele and inhabit large stratified lakes. One locus is detected in most allozyme surveys, but genome sequencing has revealed two genes, LdhA and LdhB. Results We sequenced both Ldh genes from 70 isolates of these two species from North America to determine if the association between Ldh genotype and habitat shows evidence for selection, and to elucidate the evolutionary history of the two genes. We found that alleles in the pond-dwelling D. pulex and in the lake-dwelling D. pulicaria form distinct groups at both loci, and the substitution of Glutamine (S for Glutamic acid (F at amino acid 229 likely causes the electrophoretic mobility shift in the LDHA protein. Nucleotide diversity in both Ldh genes is much lower in D. pulicaria than in D. pulex. Moreover, the lack of spatial structuring of the variation in both genes over a wide geographic area is consistent with a recent demographic expansion of lake populations. Neutrality tests indicate that both genes are under purifying selection, but the intensity is much stronger on LdhA. Conclusions Although lake-dwelling D. pulicaria hybridizes with the other lineages in the pulex species complex, it remains distinct ecologically and genetically. This ecological divergence, coupled with the intensity of purifying selection on LdhA and the strong association between its genotype and habitat, suggests that experimental studies would be useful to determine if variation in molecular function provides evidence that LDHA variants are adaptive.

  9. Concerted changes in N and C primary metabolism in alfalfa (Medicago sativa) under water restriction.

    Science.gov (United States)

    Aranjuelo, Iker; Tcherkez, Guillaume; Molero, Gemma; Gilard, Françoise; Avice, Jean-Christophe; Nogués, Salvador

    2013-02-01

    Although the mechanisms of nodule N(2) fixation in legumes are now well documented, some uncertainty remains on the metabolic consequences of water deficit. In most cases, little consideration is given to other organs and, therefore, the coordinated changes in metabolism in leaves, roots, and nodules are not well known. Here, the effect of water restriction on exclusively N(2)-fixing alfalfa (Medicago sativa L.) plants was investigated, and proteomic, metabolomic, and physiological analyses were carried out. It is shown that the inhibition of nitrogenase activity caused by water restriction was accompanied by concerted alterations in metabolic pathways in nodules, leaves, and roots. The data suggest that nodule metabolism and metabolic exchange between plant organs nearly reached homeostasis in asparagine synthesis and partitioning, as well as the N demand from leaves. Typically, there was (i) a stimulation of the anaplerotic pathway to sustain the provision of C skeletons for amino acid (e.g. glutamate and proline) synthesis; (ii) re-allocation of glycolytic products to alanine and serine/glycine; and (iii) subtle changes in redox metabolites suggesting the implication of a slight oxidative stress. Furthermore, water restriction caused little change in both photosynthetic efficiency and respiratory cost of N(2) fixation by nodules. In other words, the results suggest that under water stress, nodule metabolism follows a compromise between physiological imperatives (N demand, oxidative stress) and the lower input to sustain catabolism.

  10. Animal species endangerment: The role of environmental pollution

    Science.gov (United States)

    Pattee, Oliver H.; Fellows, Valerie L.; Bounds, Dixie L.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    2003-01-01

    Multiple factors contribute to the decline of species. Habitat destruction is the primary factor that threatens species. affecting 73 % of endangered species. The second major factor causing species decline is the introduction of nonnative species. affecting 68% of endangered species. Pollution and overharvesting were identified as impacting, respectively, 38 and 15% of endangered species. Other factors affecting species decline include hybridization, competition, disease, and other interspecific interactions. Once a species is reduced to a remnant of its former population size and distribution, its vulnerability to catastrophic pollution events increases, frequently exceeding or replacing the factors responsible for the initial decline. Small, isolated populations are particularly vulnerable to catastrophic loss by an acute event. such as a chemical spill or pesticide application. However, when it comes to surviving a single disaster, widespread subpopulations of a species are far more resilient and ensure genetic survival. Hypothesizing theoretical concerns of potential factors that could affect an endangered species could predispose the scientific and political communities to jeopardizing threats. The user of recovery plans as a data source must be aware of the bias within the data set. These data should be used with the caveat that the source of information in recovery plans is not always based on scientific research and rigorous data collection. Over 58% of the information identifying species threats is based on estimates or personal communication. while only 42% is based on peer reviewed literature, academic research. or government reports. Many recovery plans were written when a species was initially listed in the 1970s or 1980s. Politics, human disturbance, and habitat demand issues evolve over a 20- to 30-year period. leaving much of the threats facing endangered species outdated and inadequate. These data are most valuable when used to facilitate reviews

  11. Trans-specific gene silencing of acetyl-CoA carboxylase in a root-parasitic plant.

    Science.gov (United States)

    Bandaranayake, Pradeepa C G; Yoder, John I

    2013-05-01

    Parasitic species of the family Orobanchaceae are devastating agricultural pests in many parts of the world. The control of weedy Orobanchaceae spp. is challenging, particularly due to the highly coordinated life cycles of the parasite and host plants. Although host genetic resistance often provides the foundation of plant pathogen management, few genes that confer resistance to root parasites have been identified and incorporated into crop species. Members of the family Orobanchaceae acquire water, nutrients, macromolecules, and oligonucleotides from host plants through haustoria that connect parasite and host plant roots. We are evaluating a resistance strategy based on using interfering RNA (RNAi) that is made in the host but inhibitory in the parasite as a parasite-derived oligonucleotide toxin. Sequences from the cytosolic acetyl-CoA carboxylase (ACCase) gene from Triphysaria versicolor were cloned in hairpin conformation and introduced into Medicago truncatula roots by Agrobacterium rhizogenes transformation. Transgenic roots were recovered for four of five ACCase constructions and infected with T. versicolor against parasitic weeds. In all cases, Triphysaria root viability was reduced up to 80% when parasitizing a host root bearing the hairpin ACCase. Triphysaria root growth was recovered by exogenous application of malonate. Reverse-transcriptase polymerase chain reaction (RT-PCR) showed that ACCase transcript levels were dramatically decreased in Triphysaria spp. parasitizing transgenic Medicago roots. Northern blot analysis identified a 21-nucleotide, ACCase-specific RNA in transgenic M. truncatula and in T. versicolor attached to them. One hairpin ACCase construction was lethal to Medicago spp. unless grown in media supplemented with malonate. Quantitative RT-PCR showed that the Medicago ACCase was inhibited by the Triphysaria ACCase RNAi. This work shows that ACCase is an effective target for inactivation in parasitic plants by trans-specific gene

  12. Soil nitrogen mineralization not affected by grass species traits

    Science.gov (United States)

    Maged Ikram Nosshi; Jack Butler; M. J. Trlica

    2007-01-01

    Species N use traits was evaluated as a mechanism whereby Bromus inermis (Bromus), an established invasive, might alter soil N supply in a Northern mixed-grass prairie. We compared soils under stands of Bromus with those from three representative native grasses of different litter C/N: Andropogon...

  13. Incorporating Context Dependency of Species Interactions in Species Distribution Models.

    Science.gov (United States)

    Lany, Nina K; Zarnetske, Phoebe L; Gouhier, Tarik C; Menge, Bruce A

    2017-07-01

    Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same

  14. Protectiveness of Species Sensitivity Distribution Hazard Concentrations for Acute Toxicity Used in Endangered Species Risk Assessment

    Science.gov (United States)

    A primary objective of threatened and endangered species conservation is to ensure that chemical contaminants and other stressors do not adversely affect listed species. Assessments of the ecological risks of chemical exposures to listed species often rely on the use of surrogate...

  15. Intra-specific downsizing of frugivores affects seed germination of fleshy-fruited plant species

    Science.gov (United States)

    Pérez-Méndez, Néstor; Rodríguez, Airam; Nogales, Manuel

    2018-01-01

    The loss of largest-bodied individuals within species of frugivorous animals is one of the major consequences of defaunation. The gradual disappearance of large-bodied frugivores is expected to entail a parallel deterioration in seed dispersal functionality if the remaining smaller-sized individuals are not so effective as seed dispersers. While the multiple impacts of the extinction of large bodied species have been relatively well studied, the impact of intraspecific downsizing (i.e. the extinction of large individuals within species) on seed dispersal has rarely been evaluated. Here we experimentally assessed the impact of body-size reduction in the frugivorous lizard Gallotia galloti (Lacertidae), an endemic species of the Canary Islands, on the seed germination patterns of two fleshy-fruited plant species (Rubia fruticosa and Withania aristata). Seed germination curves and the proportions of germinated seeds were compared for both plant species after being defecated by large-sized individuals and small-sized individuals. The data show that seeds of W. aristata defecated by larger-sized lizards germinated faster and in a higher percentage than those defecated by small-sized lizards, while no differences were found for R. fruticosa seeds. Our results suggest that disappearance of the largest individuals of frugivorous species may impair recruitment of some plant species by worsening seed germination. They also warn us of a potential cryptic loss of seed dispersal functionality on defaunated ecosystems, even when frugivorous species remain abundant.

  16. Does species richness affect fine root biomass and production in young forest plantations?

    DEFF Research Database (Denmark)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie

    2015-01-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass...... and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined...... be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested...

  17. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Ken S Moriuchi

    Full Text Available High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within

  18. AI-2 quorum-sensing inhibitors affect the starvation response and reduce virulence in several Vibrio species, most likely by interfering with LuxPQ.

    Science.gov (United States)

    Brackman, Gilles; Celen, Shari; Baruah, Kartik; Bossier, Peter; Van Calenbergh, Serge; Nelis, Hans J; Coenye, Tom

    2009-12-01

    The increase of disease outbreaks caused by Vibrio species in aquatic organisms as well as in humans, together with the emergence of antibiotic resistance in Vibrio species, has led to a growing interest in alternative disease control measures. Quorum sensing (QS) is a mechanism for regulating microbial gene expression in a cell density-dependent way. While there is good evidence for the involvement of auto-inducer 2 (AI-2)-based interspecies QS in the control of virulence in multiple Vibrio species, only few inhibitors of this system are known. From the screening of a small panel of nucleoside analogues for their ability to disturb AI-2-based QS, an adenosine derivative with a p-methoxyphenylpropionamide moiety at C-3' emerged as a promising hit. Its mechanism of inhibition was elucidated by measuring the effect on bioluminescence in a series of Vibrio harveyi AI-2 QS mutants. Our results indicate that this compound, as well as a truncated analogue lacking the adenine base, block AI-2-based QS without interfering with bacterial growth. The active compounds affected neither the bioluminescence system as such nor the production of AI-2, but most likely interfered with the signal transduction pathway at the level of LuxPQ in V. harveyi. The most active nucleoside analogue (designated LMC-21) was found to reduce the Vibrio species starvation response, to affect biofilm formation in Vibrio anguillarum, Vibrio vulnificus and Vibrio cholerae, to reduce pigment and protease production in V. anguillarum, and to protect gnotobiotic Artemia from V. harveyi-induced mortality.

  19. Macropores and earthworm species affected by agronomic intensification

    DEFF Research Database (Denmark)

    Krogh, Paul Henning; Pérès, Guénola

    project EcoFINDERS we investigated the relationsship between earthworm biodiversity, macropores and three agricultural landuse types. A field campaign was conducted in October-November 2011. Earthworm burrow distribution was quantified at 10, 20, 30, 50 and 100 20 cm horizontal layer intervals down...... the soil profile to 1 meter depth and correlated with the earthworm community consisting of 12 species dominated by the endogeics Aporrectodea caliginosa and Aporrectodea chlorotica and the anecics Aporrectodea longa and Lumbricus centralis. Medium-small macropores in the ploughing layer with diameters (Ø...

  20. Identification and Expression Analysis of Medicago truncatula Isopentenyl Transferase Genes (IPTs Involved in Local and Systemic Control of Nodulation

    Directory of Open Access Journals (Sweden)

    Mahboobeh Azarakhsh

    2018-03-01

    Full Text Available Cytokinins are essential for legume plants to establish a nitrogen-fixing symbiosis with rhizobia. Recently, the expression level of cytokinin biosynthesis IPTs (ISOPENTENYLTRANSFERASES genes was shown to be increased in response to rhizobial inoculation in Lotus japonicus, Medicago truncatula and Pisum sativum. In addition to its well-established positive role in nodule primordium initiation in root cortex, cytokinin negatively regulates infection processes in the epidermis. Moreover, it was reported that shoot-derived cytokinin inhibits the subsequent nodule formation through AON (autoregulation of nodulation pathway. In L. japonicus, LjIPT3 gene was shown to be activated in the shoot phloem via the components of AON system, negatively affecting nodulation. However, in M. truncatula, the detailed analysis of MtIPTs expression, both in roots and shoots, in response to nodulation has not been performed yet, and the link between IPTs and AON has not been studied so far. In this study, we performed an extensive analysis of MtIPTs expression levels in different organs, focusing on the possible role of MtIPTs in nodule development. MtIPTs expression dynamics in inoculated roots suggest that besides its early established role in the nodule primordia development, cytokinin may be also important for later stages of nodulation. According to expression analysis, MtIPT3, MtIPT4, and MtIPT5 are activated in the shoots in response to inoculation. Among these genes, MtIPT3 is the only one the induction of which was not observed in leaves of the sunn-3 mutant defective in CLV1-like kinase, the key component of AON, suggesting that MtIPT3 is activated in the shoots in an AON-dependent manner. Taken together, our findings suggest that MtIPTs are involved in the nodule development at different stages, both locally in inoculated roots and systemically in shoots, where their expression can be activated in an AON-dependent manner.

  1. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn

    Energy Technology Data Exchange (ETDEWEB)

    Chen Baodong [Department of Soil Environmental Sciences/State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Xiao Xueyi [Department of Soil Environmental Sciences/State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhu Yongguan [Department of Soil Environmental Sciences/State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)]. E-mail: ygzhu@rcees.ac.en; Smith, F. Andrew [Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, South Australia 5005 (Australia); Miao Xie, Z. [Department of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Smith, Sally E. [Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, South Australia 5005 (Australia)

    2007-07-01

    Mycorrhizal fungi may play an important role in protecting plants against arsenic (As) contamination. However, little is known about the direct and indirect involvement of arbuscular mycorrhizal fungi (AMF) in detoxification mechanisms. A compartmented pot cultivation system ('cross-pots') is used here to investigate the roles of AMF Glomus mosseae in plant phosphorus (P) and As acquisition by Medicago sativa, and P-As interactions. The results indicate that fungal colonization dramatically increased plant dry weight by a factor of around 6, and also substantially increased both plant P and As contents (i.e. total uptake). Irrespective of P and As addition levels, AM plants had shoot and root P concentrations 2 fold higher, but As concentrations significantly lower, than corresponding uninoculated controls. The decreased shoot As concentrations were largely due to 'dilution effects' that resulted from stimulated growth of AM plants and reduced As partitioning to shoots. The study provides further evidence for the protective effects of AMF on host plants against As contamination, and have uncovered key aspects of underlying mechanisms. The possible application of AMF in remediation practices is discussed.

  2. Duration of plant damage by host larvae affects attraction of two parasitoid species (Microplitis croceipes and Cotesia marginiventris) to cotton: implications for interspecific competition.

    Science.gov (United States)

    Morawo, Tolulope; Fadamiro, Henry

    2014-12-01

    Volatile organic compounds (VOCs) released by herbivore-damaged plants can guide parasitoids to their hosts. The quantity and quality of VOC blends emitted by plants may be affected by the duration of plant damage by herbivores, which could have potential ramifications on the recruitment of competing parasitoids. We used two parasitoid species, Microplitis croceipes and Cotesia marginiventris (Hymenoptera: Braconidae), to address the question of whether duration of plant damage affects parasitoid use of plant VOCs for host location. Both wasp species are larval endoparasitoids of Heliothis virescens (Lepidoptera: Noctuidae), an important pest of cotton. Attraction of the two parasitoid species to odors emitted by undamaged (UD), fresh (6 h infestation) damage (FD), and old (24 h infestation) damage (OD) cotton plants infested by H. virescens larvae was investigated using a headspace volatile collection system coupled with four-choice olfactometer bioassay. Both sexes of M. croceipes showed a preference for FD- and OD-plant odors over UD-plants. On the other hand, more C. marginiventris females were attracted to UD- and FD-plants than to OD-plants. GC/MS analyses showed qualitative and quantitative differences in the VOC profiles of UD, FD, and OD-plants, which may explain the observed preferences of the parasitoids. These results suggest a temporal partitioning in the recruitment of M. croceipes and C. marginiventris to H. virescens-damaged cotton, and may have potential implications for interspecific competition between the two parasitoid species.

  3. Natural isotopes abundance of 15N and 13C in leaves of some N2-fixing and non N2-fixing trees and shrubs in Syria

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Shamma'a, M.

    2007-12-01

    Variability in the natural abundance isotopes of 15 N and 13 C in leaves of several legume and non-legume plant species grown at different sites of two areas in semi-arid regions of Syria was determined. In the first area (non-saline soil), the 15 N values of a number of fixing and non-fixing reference plants ranged from -2.09 to +9.46, depending on plant species and studied site. 15 N in a number of legume species including Acacia cyanopylla (-1.73), Acacia farnesiana (-0.55), Prosopis juliflora (-1.64) and Medicago arborea (+1.6) were close to the atmospheric value pointing to a major contribution of N 2 fixing in these species; whereas, those of reference plants were highly positive (between +3.6 and +9.46%). In the actinorhizal tree, Elaeagnus angustifolia, the 15 N abundance was far lower (-0.46 to -2.1%) strongly suggesting that the plant obtained large proportional contribution from BNF. In contrast, δ 15 N values in some other legumes and actinorhizal plants were relatively similar to those of reference plants, suggesting that the contribution of fixed N 2 is negligible. On the other hand, δ 13 C% values in leaves of C3 plants were affected by plant species, ranging from a minimum of -28.67% to a maximum of -23%. However, they were the same within each plant species although they were grown at different sites. Moreover, dual stable isotope analysis in leaves of Prosopis juliflora and other non- legumes grown on a salt affected soil (second area) was also conducted. Results showed that salinity did not affect C assimilation in this woody legume since a higher carbon discrimination was obtained indicating that this plant is a salt tolerant species; whereas, N2-fixation was drastically affected (δ 15 N= +7.03). (Author)

  4. Seed Density Significantly Affects Species Richness and Composition in Experimental Plant Communities

    Czech Academy of Sciences Publication Activity Database

    Münzbergová, Zuzana

    2012-01-01

    Roč. 7, č. 10 (2012), e46704 E-ISSN 1932-6203 R&D Projects: GA ČR GAP505/10/0593 Institutional support: RVO:67985939 Keywords : species richness * seed rain * species composition Subject RIV: EF - Botanics Impact factor: 3.730, year: 2012

  5. Affective Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    . In particular, mapping environmental damage, endangered species, and human made disasters has become one of the focal point of affective knowledge production. These ‘more-than-humangeographies’ practices include notions of species, space and territory, and movement towards a new political ecology. This type...... of digital cartographies has been highlighted as the ‘processual turn’ in critical cartography, whereas in related computational journalism it can be seen as an interactive and iterative process of mapping complex and fragile ecological developments. This paper looks at computer-assisted cartography as part...

  6. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    Science.gov (United States)

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.

  7. Impact of Soil Salinity on the Structure of the Bacterial Endophytic Community Identified from the Roots of Caliph Medic (Medicago truncatula).

    Science.gov (United States)

    Yaish, Mahmoud W; Al-Lawati, Abbas; Jana, Gerry Aplang; Vishwas Patankar, Himanshu; Glick, Bernard R

    2016-01-01

    In addition to being a forage crop, Caliph medic (Medicago truncatula) is also a model legume plant and is used for research focusing on the molecular characterization of the interaction between rhizobia and plants. However, the endophytic microbiome in this plant is poorly defined. Endophytic bacteria play a role in supplying plants with the basic requirements necessary for growth and development. Moreover, these bacteria also play a role in the mechanism of salinity stress adaptation in plants. As a prelude to the isolation and utilization of these bacteria in Caliph medic farming, 41 bacterial OTUs were identified in this project from within the interior of the roots of this plant by pyrosequencing of the small ribosomal subunit gene (16S rDNA) using a cultivation-independent approach. In addition, the differential abundance of these bacteria was studied following exposure of the plants to salinity stress. About 29,064 high-quality reads were obtained from the sequencing of six libraries prepared from control and salinity-treated tissues. Statistical analysis revealed that the abundance of ~70% of the OTUs was significantly (p ≤ 0.05) altered in roots that were exposed to salinity stress. Sequence analysis showed a similarity between some of the identified species and other, known, growth-promoting bacteria, marine and salt-stressed soil-borne bacteria, and nitrogen-fixing bacterial isolates. Determination of the amendments to the bacterial community due to salinity stress in Caliph medic provides a crucial step toward developing an understanding of the association of these endophytes, under salt stress conditions, in this model plant. To provide direct evidence regarding their growth promoting activity, a group of endophytic bacteria were isolated from inside of plant roots using a cultivation-dependent approach. Several of these isolates were able to produce ACC-deaminase, ammonia and IAA; and to solubilize Zn+2 and PO4-3. This data is consistent with the

  8. Climate driven range divergence among host species affects range-wide patterns of parasitism

    Directory of Open Access Journals (Sweden)

    Richard E. Feldman

    2017-01-01

    Full Text Available Species interactions like parasitism influence the outcome of climate-driven shifts in species ranges. For some host species, parasitism can only occur in that part of its range that overlaps with a second host species. Thus, predicting future parasitism may depend on how the ranges of the two hosts change in relation to each other. In this study, we tested whether the climate driven species range shift of Odocoileus virginianus (white-tailed deer accounts for predicted changes in parasitism of two other species from the family Cervidae, Alces alces (moose and Rangifer tarandus (caribou, in North America. We used MaxEnt models to predict the recent (2000 and future (2050 ranges (probabilities of occurrence of the cervids and a parasite Parelaphostrongylus tenuis (brainworm taking into account range shifts of the parasite’s intermediate gastropod hosts. Our models predicted that range overlap between A. alces/R. tarandus and P. tenuis will decrease between 2000 and 2050, an outcome that reflects decreased overlap between A. alces/R. tarandus and O. virginianus and not the parasites, themselves. Geographically, our models predicted increasing potential occurrence of P. tenuis where A. alces/R. tarandus are likely to decline, but minimal spatial overlap where A. alces/R. tarandus are likely to increase. Thus, parasitism may exacerbate climate-mediated southern contraction of A. alces and R. tarandus ranges but will have limited influence on northward range expansion. Our results suggest that the spatial dynamics of one host species may be the driving force behind future rates of parasitism for another host species.

  9. Phytotoxic Activity of Ocimum tenuiflorum Extracts on Germination and Seedling Growth of Different Plant Species

    Directory of Open Access Journals (Sweden)

    A. K. M. Mominul Islam

    2014-01-01

    Full Text Available Phytotoxic activity of Ocimum tenuiflorum (Lamiaceae plant extracts was investigated against the germination and seedling growth of cress (Lepidium sativum, lettuce (Lactuca sativa, alfalfa (Medicago sativa, Italian ryegrass (Lolium multiflorum, barnyard grass (Echinochloa crus-galli, and timothy (Phleum pratense at four different concentrations. The plant extracts at concentrations greater than 30 mg dry weight equivalent extract mL−1 reduced significantly the total germination percent (GP, germination index (GI, germination energy (GE, speed of emergence (SE, seedling vigour index (SVI, and coefficient of the rate of germination (CRG of all test species except barnyard grass and GP of lettuce. In contrast, time required for 50% germination (T50 and mean germination time (MGT were increased at the same or higher than this concentration. The increasing trend of T50 and MGT and the decreasing trend of other indices indicated a significant inhibition or delay of germination of the test species by O. tenuiflorum plant extracts and vice versa. In addition, the shoot and root growth of all test species were significantly inhibited by the extracts at concentrations greater than 10 mg dry weight equivalent extract mL−1. The I50 values for shoot and root growth were ranged from 26 to 104 mg dry weight equivalent extract mL−1. Seedling growth was more sensitive to the extracts compared to seed germination. Results of this study suggest that O. tenuiflorum plant extracts have phytotoxic properties and thus contain phytotoxic substances. Isolation and characterization of those substances from this plant may act as a tool for new natural, biodegradable herbicide development to control weeds.

  10. Changes in mycorrhiza development in maize induced by crop management practices

    DEFF Research Database (Denmark)

    Gavito, M.E.; Miller, M.H.

    1998-01-01

    (Zea mays L.) or with the original plant species in the field site, bromegrass (Bromus inermis Leys.) and alfalfa (Medicago sativa L.). The delay in mycorrhiza development after cropping with canola was also observed in samples taken from the field and in a bioassay, both conducted at the beginning...

  11. Establishing vegetation on Kimberlite mine tailings: 2. Field trials. | N ...

    African Journals Online (AJOL)

    A series of field experiments were carried out on Kimberlite mine tailing located at Cullinan in the Transvaal. The most successful species in pure sward were Chloris gayana, Cynodon aethiopicus, Eragrostis curvula, E. tef, Pennisetum purpureum, Melilotus alban and Medicago sativa. Growth of grasses in the absence of ...

  12. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe

    Science.gov (United States)

    Jens-Christian Svenning; Matthew C. Fitzpatrick; Signe Normand; Catherine H. Graham; Peter B. Pearman; Louis R. Iverson; Flemming. Skov

    2010-01-01

    Environmental conditions and biotic interactions are generally thought to influence local species richness. However, immigration and the evolutionary and historical factors that shape regional species pools should also contribute to determining local species richness because local communities arise by assembly from regional species pools. Using the European tree flora...

  13. Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin.

    Science.gov (United States)

    Ziebell, Angela; Gracom, Kristen; Katahira, Rui; Chen, Fang; Pu, Yunqiao; Ragauskas, Art; Dixon, Richard A; Davis, Mark

    2010-12-10

    The lignin content of biomass can impact the ease and cost of biomass processing. Lignin reduction through breeding and genetic modification therefore has potential to reduce costs in biomass-processing industries (e.g. pulp and paper, forage, and lignocellulosic ethanol). We investigated compositional changes in two low-lignin alfalfa (Medicago sativa) lines with antisense down-regulation of p-coumarate 3-hydroxylase (C3H) or hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase (HCT). We investigated whether the difference in reactivity during lignification of 4-coumaryl alcohol (H) monomers versus the naturally dominant sinapyl alcohol and coniferyl alcohol lignin monomers alters the lignin structure. Sequential base extraction readily reduced the H monomer content of the transgenic lines, leaving a residual lignin greatly enriched in H subunits; the extraction profile highlighted the difference between the control and transgenic lines. Gel permeation chromatography of isolated ball-milled lignin indicated significant changes in the weight average molecular weight distribution of the control versus transgenic lines (CTR1a, 6000; C3H4a, 5500; C3H9a, 4000; and HCT30a, 4000).

  14. In vitro regeneration of some Iranian alfalfa (Medicago sativa L. genotypes via somatic embryogenesis

    Directory of Open Access Journals (Sweden)

    Majid Shokrpour

    2014-12-01

    Full Text Available An effective in vitro regeneration system is one of the prerequisites for genetic manipulation of alfalfa (Medicago sativa L. varieties and genotypes. In this research, somatic embryogenesis of four alfalfa genotypes, 6-18 (synthetic, 4-14 (Kara Yonje- Karakozlu, 3-27 (Kara Yonje Maraghe and y-6 (Regen-SY, were investigated using leaf and petiole explants. Formation of callus and somatic embryogenesis was significantly influenced by the explant type and interaction of genotype and culture medium. Petiole explants of genotype 4-14 produced the highest yield of callus (0.406 gr fresh weight of callus. Percentage of somatic embryogenesis and the number of embryos per callus in petiole explants of genotype 4-14 was higher than those of other genotypes and explants. In genotype 6-18, the highest percentage of somatic embryogenesis was achieved on MS medium containing 5 mg/L 2,4-D and 2 mg/L kinetin. There was no significant differences between genotypes and explants in terms of embryo conversion to plantlet, and on average, 58% of somatic embryos converted to plantlet on MS medium. The petiole explants of genotype 6-18 did not exhibit somatic embryogenesis response in medium containing low ratio of 2,4-D:Kinetin (5 mg/L 2,4-D and 2 mg/L kinetin. While, these explants showed somatic embryogenesis in higher ratio of 2,4-D:Kinetin (5:1. The plantlet conversion efficiency of somatic embryos produced through this study was relatively higher and therefore, the method presented in this study could be used in alfalfa genetic manipulation and molecular studies.

  15. The effect of Medicago arabica, M. hybrida and M. sativa saponins on the growth and development of Fusarium oxysporum Schlecht f. sp. tulipae apt.

    Directory of Open Access Journals (Sweden)

    Anna Jarecka

    2012-12-01

    Full Text Available In the present work it was shown that total saponins originated from M. hybrida and M. sativa substantially limited mycelium growth of F. oxysporum f. sp. tulipae and symptoms of fusariosis on tulip bulbs. Out of 15 individual tested saponins originated from M. arabica, M. hybrida and M. sativa, four compounds: 3-O-[β-D-glucopyranosyl (1→2α-L-arabinopyranosyl] hederagenin, hederagenin 3-O-β-D-glucopyranoside, medicagenic acid, medicagenic acid 3-O-β-D-glucopyranoside had the strongest inhibitory effect on mycelium growth of Fusarium oxysporum f. sp. tulipae on PDA medium. The total saponins from M. arabica, M. hybrida and M. sativa inhibited the number of colony forming units of Fusarium oxysporum f. sp. tulipae in artificially infested substrate. The use of saponins originated from Medicago as a fungicide is suggested.

  16. Regulatory patterns of a large family of defensin-like genes expressed in nodules of Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Sumitha Nallu

    Full Text Available Root nodules are the symbiotic organ of legumes that house nitrogen-fixing bacteria. Many genes are specifically induced in nodules during the interactions between the host plant and symbiotic rhizobia. Information regarding the regulation of expression for most of these genes is lacking. One of the largest gene families expressed in the nodules of the model legume Medicago truncatula is the nodule cysteine-rich (NCR group of defensin-like (DEFL genes. We used a custom Affymetrix microarray to catalog the expression changes of 566 NCRs at different stages of nodule development. Additionally, bacterial mutants were used to understand the importance of the rhizobial partners in induction of NCRs. Expression of early NCRs was detected during the initial infection of rhizobia in nodules and expression continued as nodules became mature. Late NCRs were induced concomitantly with bacteroid development in the nodules. The induction of early and late NCRs was correlated with the number and morphology of rhizobia in the nodule. Conserved 41 to 50 bp motifs identified in the upstream 1,000 bp promoter regions of NCRs were required for promoter activity. These cis-element motifs were found to be unique to the NCR family among all annotated genes in the M. truncatula genome, although they contain sub-regions with clear similarity to known regulatory motifs involved in nodule-specific expression and temporal gene regulation.

  17. The Medicago truncatula GRAS protein RAD1 supports arbuscular mycorrhiza symbiosis and Phytophthora palmivora susceptibility.

    Science.gov (United States)

    Rey, Thomas; Bonhomme, Maxime; Chatterjee, Abhishek; Gavrin, Aleksandr; Toulotte, Justine; Yang, Weibing; André, Olivier; Jacquet, Christophe; Schornack, Sebastian

    2017-12-16

    The roots of most land plants are colonized by symbiotic arbuscular mycorrhiza (AM) fungi. To facilitate this symbiosis, plant genomes encode a set of genes required for microbial perception and accommodation. However, the extent to which infection by filamentous root pathogens also relies on some of these genes remains an open question. Here, we used genome-wide association mapping to identify genes contributing to colonization of Medicago truncatula roots by the pathogenic oomycete Phytophthora palmivora. Single-nucleotide polymorphism (SNP) markers most significantly associated with plant colonization response were identified upstream of RAD1, which encodes a GRAS transcription regulator first negatively implicated in root nodule symbiosis and recently identified as a positive regulator of AM symbiosis. RAD1 transcript levels are up-regulated both in response to AM fungus and, to a lower extent, in infected tissues by P. palmivora where its expression is restricted to root cortex cells proximal to pathogen hyphae. Reverse genetics showed that reduction of RAD1 transcript levels as well as a rad1 mutant are impaired in their full colonization by AM fungi as well as by P. palmivora. Thus, the importance of RAD1 extends beyond symbiotic interactions, suggesting a general involvement in M. truncatula microbe-induced root development and interactions with unrelated beneficial and detrimental filamentous microbes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake

    International Nuclear Information System (INIS)

    Xu Pengliang; Christie, Peter; Liu Yu; Zhang Junling; Li Xiaolin

    2008-01-01

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg -1 ) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake. - G. mosseae was more tolerant than M. truncatula to As and may have conferred enhanced host tolerance by restricting root As uptake and enhancing P nutrition

  19. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake

    Energy Technology Data Exchange (ETDEWEB)

    Xu Pengliang [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Christie, Peter [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Agricultural and Environmental Science Department, Queen' s University Belfast, Belfast BT9 5PX (United Kingdom); Liu Yu [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Zhang Junling [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)], E-mail: junlingz@cau.edu.cn; Li Xiaolin [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)

    2008-11-15

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg{sup -1}) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake. - G. mosseae was more tolerant than M. truncatula to As and may have conferred enhanced host tolerance by restricting root As uptake and enhancing P nutrition.

  20. Foraging intention affects whether willow tits call to attract members of mixed-species flocks.

    Science.gov (United States)

    Suzuki, Toshitaka N; Kutsukake, Nobuyuki

    2017-06-01

    Understanding how individual behaviour influences the spatial and temporal distribution of other species is necessary to resolve the complex structure of species assemblages. Mixed-species bird flocks provide an ideal opportunity to investigate this issue, because members of the flocks are involved in a variety of behavioural interactions between species. Willow tits ( Poecile montanus ) often produce loud calls when visiting a new foraging patch to recruit other members of mixed-species flocks. The costs and benefits of flocking would differ with individual foraging behaviours (i.e. immediate consumption or caching); thus, willow tits may adjust the production of loud calls according to their foraging intention. In this study, we investigated the link between foraging decisions and calling behaviour in willow tits and tested its influence on the temporal cohesion with members of mixed-species flocks. Observations at experimental foraging patches showed that willow tits produced more calls when they consumed food items compared with when they cached them. Playback experiments revealed that these calls attracted flock members and helped to maintain their presence at foraging patches. Thus, willow tits adjusted calling behaviour according to their foraging intention, thereby coordinating the associations with members of mixed-species flocks. Our findings demonstrate the influence of individual decision-making on temporal cohesion with other species and highlight the importance of interspecific communication in mixed-species flocking dynamics.

  1. Strontium-90 in alfalfa (Medicago sativa) around the Hanford site in southeastern Washington state: an evaluation of surveillance data

    International Nuclear Information System (INIS)

    Poston, T.M.; Jaquish, R.E.; Antonio, E.J.; Patton, G.W.

    1998-01-01

    From 1988–1994, 90 Sr concentrations in alfalfa (Medicago sativa) grown in areas receiving irrigation water from the Columbia River downstream of Hanford have exceeded concentrations observed in alfalfa grown nearby using other irrigation water sources. Surveillance data indicate that the relationship is not linked to atmospheric releases from Hanford. Attributing the apparent differences in 90 Sr concentrations to irrigation water is equivocal. Evaluations of 90 Sr in Columbia River water fail to consistently show a statistically significant (P > 0.05) contribution at locations immediately downstream of Hanford. Modeling of past 90 Sr fallout accumulation in soil indicates that the potential contribution from Hanford liquid effluents entering the Columbia River, subsequently used as irrigation water from 1972 to 1992, would account for ~ 2% of 90 Sr in soil. The remaining 98% arises from historic atomic weapons testing fallout. Radiological doses modeled for an alfalfa-cow's milk-human pathway indicate that the maximum 50 year effective dose equivalent to a standard man who consumes 270 l of milk per year was 0.9 μSv, which is < 0.03% of the 3 mSv annual dose resulting from natural sources of radiation exposure

  2. Evaluating species richness: biased ecological inference results from spatial heterogeneity in species detection probabilities

    Science.gov (United States)

    McNew, Lance B.; Handel, Colleen M.

    2015-01-01

    Accurate estimates of species richness are necessary to test predictions of ecological theory and evaluate biodiversity for conservation purposes. However, species richness is difficult to measure in the field because some species will almost always be overlooked due to their cryptic nature or the observer's failure to perceive their cues. Common measures of species richness that assume consistent observability across species are inviting because they may require only single counts of species at survey sites. Single-visit estimation methods ignore spatial and temporal variation in species detection probabilities related to survey or site conditions that may confound estimates of species richness. We used simulated and empirical data to evaluate the bias and precision of raw species counts, the limiting forms of jackknife and Chao estimators, and multi-species occupancy models when estimating species richness to evaluate whether the choice of estimator can affect inferences about the relationships between environmental conditions and community size under variable detection processes. Four simulated scenarios with realistic and variable detection processes were considered. Results of simulations indicated that (1) raw species counts were always biased low, (2) single-visit jackknife and Chao estimators were significantly biased regardless of detection process, (3) multispecies occupancy models were more precise and generally less biased than the jackknife and Chao estimators, and (4) spatial heterogeneity resulting from the effects of a site covariate on species detection probabilities had significant impacts on the inferred relationships between species richness and a spatially explicit environmental condition. For a real dataset of bird observations in northwestern Alaska, the four estimation methods produced different estimates of local species richness, which severely affected inferences about the effects of shrubs on local avian richness. Overall, our results

  3. Fort Collins Science Center: Invasive Species Science

    Science.gov (United States)

    Stohlgren, Tom

    2004-01-01

    Invasive, non-native species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like "biological wildfires," they can quickly spread, and they affect nearly all terrestrial and aquatic ecosystems. Invasive species have become the greatest environmental challenge of the 21st century in terms of economic, environmental, and human health costs, with an estimated impact in the U.S. of over $138 billion per year. Managers of Department of the Interior and other public and private lands and waters rank invasive species as their top resource management problem.

  4. Fisheries oceanography of northern pelagic fish species

    DEFF Research Database (Denmark)

    Tsoukali, Stavroula

    for marine organisms. One of the impacts will be the time that species start to spawn, and there is already evidence for earlier spawning in some North Sea fish species. A change like that may likely have a chain reaction, affecting larval stages and whether they will live in environments with high food...... of the species they consume now and increased availability of new species. In addition, there will likely be economic impacts on the local fishing communities. How species respond to climate change is a field of research that receives great attention because the responses will affect the management of fisheries......People are familiar with marine fish species and the great variety of different species that are available in the market, such as herring, cod and sole. What may not be well known is that every individual fish goes through a long, risky journey during its life before reaching maturity. Most...

  5. Proteomic Identification of Differentially Expressed Proteins during Alfalfa (Medicago sativa L.) Flower Development.

    Science.gov (United States)

    Chen, Lingling; Chen, Quanzhu; Zhu, Yanqiao; Hou, Longyu; Mao, Peisheng

    2016-01-01

    Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa ( Medicago sativa L.) seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1), pollination (S2), and the post-pollination senescence period (S3). Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD). Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs), carbonic anhydrase, and NADPH: quinone oxidoreductase-like protein. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower development and

  6. Antifungal activity of saponins originated from Medicago hybrida against some ornamental plant pathogens

    Directory of Open Access Journals (Sweden)

    Alicja Saniewska

    2012-12-01

    Full Text Available Antifungal activity of total saponins originated from roots of Medicago hybrida (Pourret Trautv. were evaluated in vitro against six pathogenic fungi and eight individual major saponin glycosides were tested against one of the most susceptible fungi. The total saponins showed fungitoxic effect at all investigated concentrations (0.01%, 0.05% and 0.1% but their potency was different for individual fungi. The highest saponin concentration (0.1% was the most effective and the inhibition of Fusarium oxysporum f. sp. callistephi, Botrytis cinerea, Botrytis tulipae, Phoma narcissi, Fusarium oxysporum f. sp. narcissi was 84.4%, 69.9%, 68.6%, 57.2%, 55.0%, respectively. While Fusarium oxysporum Schlecht., a pathogen of Muscari armeniacum, was inhibited by 9.5% only. Eight major saponin glycosides isolated from the total saponins of M. hybrida roots were tested against the mycelium growth of Botrytis tulipae. The mycelium growth of the pathogen was greatly inhibited by hederagenin 3-O-β-D-glucopyranoside and medicagenic acid 3-O-β-D-glucopyranoside. Medicagenic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside and oleanolic acid 3-O-[β-D-glucuronopyranosyl(1→2-α-L-galactopyranosyl]-28-O-β-D-glucopyranoside showed low fungitoxic activity. Medicagenic acid 3-O-a-D-glucopyranosyl- 28-O-β-D-glucopyranoside, hederagenin 3-O-[α-L- hamnopyranosyl(1→2-β-D-glucopyranosyl(1→2-β-D-glucopyranosyl]- 28-O-α-D-glucopyranoside and hederagenin 3-O-β-D-glucuronopyranosyl-28-O-β-D- lucopyranoside did not limit or only slightly inhibited growth of the tested pathogen. While 2β, 3β-dihydroxyolean-12 ene-23-al-28-oic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside slightly stimulated mycelium growth of B. tulipae.

  7. Factors affecting the species composition of arable field boundary vegetation

    NARCIS (Netherlands)

    Kleijn, D.; Verbeek, M.

    2000-01-01

    1. In recent decades the botanical diversity of arable field boundaries has declined drastically. To determine the most important factors related to the species composition of arable field boundaries, the vegetation composition of 105 herbaceous boundaries, 1-m wide, in the central and eastern

  8. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition.

    Science.gov (United States)

    Burleigh, S H; Harrison, M J

    1997-05-01

    A cDNA clone (Mt4) was isolated as a result of a differential screen to identify genes showing altered expression during the interaction between Medicago truncatula and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus versiforme. Mt4 represents a M. truncatula mRNA that contains numerous short open reading frames, the two longest of which are predicted to encode polypeptides of 51 amino acids each. One of these open reading frames shares a short region of identity with a phosphate starvation-inducible gene from tomato. Mt4 gene expression is regulated in response to colonization by mycorrhizal fungi: transcripts were detected in non-colonized roots and levels decreased in both M. truncatula and M. sativa (alfalfa) roots after colonization by G. versiforme. Transcript levels also decreased during the incomplete interaction between G. versiforme and a M. sativa mycorrhizal minus (myc-) line, indicating that the down-regulation of this gene occurs early during the interaction between the fungus and its host plant. Phosphate levels in the nutrient media also affected the expression of the Mt4 gene: transcripts were present in the roots of plants grown under phosphate-deficient conditions, but were undetectable in the roots of plants grown under phosphate sufficient conditions. Furthermore, expression was only observed when plants were grown under nitrogen-sufficient conditions. Northern blot analyses indicate that Mt4 transcripts are present primarily in roots and barely detectable in stems or leaves. Thus, Mt4 represents a M. truncatula gene whose expression is regulated in response to both colonization by mycorrhizal fungi and to the phosphate status of the plant.

  9. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula.

    Science.gov (United States)

    Zhao, Qiao; Tobimatsu, Yuki; Zhou, Rui; Pattathil, Sivakumar; Gallego-Giraldo, Lina; Fu, Chunxiang; Jackson, Lisa A; Hahn, Michael G; Kim, Hoon; Chen, Fang; Ralph, John; Dixon, Richard A

    2013-08-13

    There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis indicated that the lignin is derived almost exclusively from coniferaldehyde and sinapaldehyde and is therefore strikingly different from classical lignins, which are derived mainly from coniferyl and sinapyl alcohols. Despite such a major alteration in lignin structure, the plants appear normal under standard conditions in the greenhouse or growth chamber. However, the plants are dwarfed when grown at 30 °C. Glycome profiling revealed an increased extractability of some xylan and pectin epitopes from the cell walls of the cad1-1 mutant but decreased extractability of others, suggesting that aldehyde-dominant lignin significantly alters cell wall structure.

  10. Identification of genes that regulate phosphate acquisition and plant performance during arbuscular my corrhizal symbiosis in medicago truncatula and brachypodium distachyon

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Maria J [Boyce Thompson Institute, Ithaca, NY (United States); Hudson, Matthew E [Univ. of Illinois, Champaign, IL (United States)

    2015-11-24

    Most vascular flowering plants have the ability to form symbiotic associations with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots and can have a profound effect on plant productivity, largely through improvements in plant mineral nutrition. Within the root cortical cells, the plant and fungus create novel interfaces specialized for nutrient transfer, while the fungus also develops a network of hyphae in the rhizosphere. Through this hyphal network, the fungus acquires and delivers phosphate and nitrogen to the root. In return, the plant provides the fungus with carbon. In addition, to enhancing plant mineral nutrition, the AM symbiosis has an important role in the carbon cycle, and positive effects on soil health. Here we identified and characterized plant genes involved in the regulation and functioning of the AM symbiosis in Medicago truncatula and Brachypodium distachyon. This included the identification and and characterization of a M. truncatula transcription factors that are required for symbiosis. Additionally, we investigated the molecular basis of functional diversity among AM symbioses in B. distachyon and analysed the transcriptome of Brachypodium distachyon during symbiosis.

  11. Species richness, area and climate correlates

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Bastos Araujo, Miguel

    2006-01-01

    affects: (1) the selection of climate variables entering a species richness model; and (2) the accuracy of models in predicting species richness in unsampled grid cells. Location Western Europe. Methods Models are developed for European plant, breeding bird, mammal and herptile species richness using...... seven climate variables. Generalized additive models are used to relate species richness, climate and area. Results We found that variation in the grid cell area was large (50 × 50 km: 8-3311 km2; 220 × 220: 193-55,100 km2), but this did not affect the selection of variables in the models. Similarly...... support the assumption that variation in near-equal area cells may be of second-order importance for models explaining or predicting species richness in relation to climate, although there is a possibility that drops in accuracy might increase with grid cell size. The results are, however, contingent...

  12. Identification of molecular markers associated with Verticillium wilt resistance in alfalfa (Medicago sativa L.) using high-resolution melting.

    Science.gov (United States)

    Zhang, Tiejun; Yu, Long-Xi; McCord, Per; Miller, David; Bhamidimarri, Suresh; Johnson, David; Monteros, Maria J; Ho, Julie; Reisen, Peter; Samac, Deborah A

    2014-01-01

    Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs.

  13. Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules.

    Science.gov (United States)

    Larrainzar, Estíbaliz; Molenaar, Johanna A; Wienkoop, Stefanie; Gil-Quintana, Erena; Alibert, Bénédicte; Limami, Anis M; Arrese-Igor, Cesar; González, Esther M

    2014-09-01

    Symbiotic nitrogen fixation is one of the first physiological processes inhibited in legume plants under water-deficit conditions. Despite the progress made in the last decades, the molecular mechanisms behind this regulation are not fully understood yet. Recent proteomic work carried out in the model legume Medicago truncatula provided the first indications of a possible involvement of nodule methionine (Met) biosynthesis and related pathways in response to water-deficit conditions. To better understand this involvement, the drought-induced changes in expression and content of enzymes involved in the biosynthesis of Met, S-adenosyl-L-methionine (SAM) and ethylene in M. truncatula root and nodules were analyzed using targeted approaches. Nitrogen-fixing plants were subjected to a progressive water deficit and a subsequent recovery period. Besides the physiological characterization of the plants, the content of total sulphur, sulphate and main S-containing metabolites was measured. Results presented here show that S availability is not a limiting factor in the drought-induced decline of nitrogen fixation rates in M. truncatula plants and provide evidences for a down-regulation of the Met and ethylene biosynthesis pathways in roots and nodules in response to water-deficit conditions. © 2014 John Wiley & Sons Ltd.

  14. Factors affecting unintentional harvesting selectivity in a monomorphic species.

    Science.gov (United States)

    Bunnefeld, Nils; Baines, David; Newborn, David; Milner-Gulland, E J

    2009-03-01

    1. Changes in the abundance of populations have always perplexed ecologists but long-term studies are revealing new insights into population dynamic processes. Long-term data are often derived from harvest records although many wild populations face high harvesting pressures leading to overharvesting and extinction. Additionally, harvest records used to describe population processes such as fluctuations in abundance and reproductive success often assume a random off-take. 2. Selective harvesting based on phenotypic characteristics occurs in many species (e.g. trophy hunting, fisheries) and has important implications for population dynamics, conservation and management. 3. In species with no marked morphological differences between the age and sex classes, such as the red grouse Lagopus lagopus scoticus during the shooting season, hunters cannot consciously select for a specific sex or age class during the shooting process but harvest records could still give a biased reflection of the population structure because of differences in behaviour between age and sex classes. 4. This study compared age and sex ratios in the bag with those in the population before shooting for red grouse at different points in the shooting season and different densities, which has rarely been tested before. 5. More young than old grouse were shot at large bag sizes and vice versa for small bag sizes than would be expected from the population composition before shooting. The susceptibility of old males to shooting compared to females increased with bag size and was high at the first time the area was shot but decreased with the number of times an area was harvested. 6. These findings stress that the assumption made in many studies that harvest records reflect the age and sex ratio of the population and therefore reflect productivity can be misleading. 7. In this paper, as in the literature, it is also shown that number of grouse shot reflects grouse density and therefore that hunting

  15. Multiple cis-regulatory elements are involved in the complex regulation of the sieve element-specific MtSEO-F1 promoter from Medicago truncatula.

    Science.gov (United States)

    Bucsenez, M; Rüping, B; Behrens, S; Twyman, R M; Noll, G A; Prüfer, D

    2012-09-01

    The sieve element occlusion (SEO) gene family includes several members that are expressed specifically in immature sieve elements (SEs) in the developing phloem of dicotyledonous plants. To determine how this restricted expression profile is achieved, we analysed the SE-specific Medicago truncatula SEO-F1 promoter (PMtSEO-F1) by constructing deletion, substitution and hybrid constructs and testing them in transgenic tobacco plants using green fluorescent protein as a reporter. This revealed four promoter regions, each containing cis-regulatory elements that activate transcription in SEs. One of these segments also contained sufficient information to suppress PMtSEO-F1 transcription in the phloem companion cells (CCs). Subsequent in silico analysis revealed several candidate cis-regulatory elements that PMtSEO-F1 shares with other SEO promoters. These putative sieve element boxes (PSE boxes) are promising candidates for cis-regulatory elements controlling the SE-specific expression of PMtSEO-F1. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Natural abundances of 15N and 13C in leaves of some N2- fixing and non N2- fixing trees and shrubs in Syria

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Shamma'a, M.

    2010-01-01

    A survey study was conducted on man-made plantations located at two different areas in the arid region of Syria to determine the variations in natural abundances of the 12 N and 13 C isotopes in leaves of several woody legume and non-legume species, and to better understand the consequence of such variations on nitrogen fixation and carbon assimilation. In the first study area (non-saline soil), the δ 15 N values in four legume species (Acacia cyanopylla, -1.73 %; Acacia farnesiana, -0.55%; Prosopis juliflora, -1.64%, and Medicago arborea, +1.6%) and one actinorhizal plant (Elaeagnus angustifolia, -0.46 to -2.1%) were found to be close to that of the atmospheric value pointing to a major contribution of N 2 fixing in these species; whereas, δ 15 N values of the non-fixing plant species were highly positive.δ 13 C% in leaves of the C 3 plants were found to be affected by plant species, ranging from a minimum of -28.67% to a maximum of -23%. However, they were relatively similar within each plant species although they were grown at different sites. In the second study area (salt affected soil) a higher carbon discrimination value (Δ 3 C%) was exhibited by Prosopis juliflora indicating that the latter is a salt tolerant species; however, its δ 15 N was highly positive (+7.03%) suggesting a negligible contribution of the fixed N 2 . Hence, it was concluded that the enhancement of N 2 fixation might be achieved by selection of salt-tolerant rhizobium strains. (author)

  17. Factors affecting post-control reinvasion by seed of an invasive species, Phragmites australis, in the central Platte River, Nebraska.

    Science.gov (United States)

    Galatowitsch, Susan M.; Larson, Diane L.; Larson, Jennifer L.

    2016-01-01

    Invasive plants, such as Phragmites australis, can profoundly affect channel environments of large rivers by stabilizing sediments and altering water flows. Invasive plant removal is considered necessary where restoration of dynamic channels is needed to provide critical habitat for species of conservation concern. However, these programs are widely reported to be inefficient. Post-control reinvasion is frequent, suggesting increased attention is needed to prevent seed regeneration. To develop more effective responses to this invader in the Central Platte River (Nebraska, USA), we investigated several aspects of Phragmites seed ecology potentially linked to post-control reinvasion, in comparison to other common species: extent of viable seed production, importance of water transport, and regeneration responses to hydrology. We observed that although Phragmites seed does not mature until very late in the ice-free season, populations produce significant amounts of viable seed (>50 % of filled seed). Most seed transported via water in the Platte River are invasive perennial species, although Phragmites abundances are much lower than species such as Lythrum salicaria, Cyperus esculentus and Phalaris arundinacea. Seed regeneration of Phragmites varies greatly depending on hydrology, especially timing of water level changes. Flood events coinciding with the beginning of seedling emergence reduced establishment by as much as 59 % compared to flood events that occurred a few weeks later. Results of these investigations suggest that prevention of seed set (i.e., by removal of flowering culms) should be a priority in vegetation stands not being treated annually. After seeds are in the seedbank, preventing reinvasion using prescribed flooding has a low chance of success given that Phragmites can regenerate in a wide variety of hydrologic microsites.

  18. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range.

    Science.gov (United States)

    Zheng, Yulong; Liao, Zhiyong

    2017-11-22

    Invasive plant species often form dense mono-dominant stands in areas they have invaded, while having only sparse distribution in their native ranges, and the reasons behind this phenomenon are a key point of research in invasive species biology. Differences in species composition between native and invasive ranges may contribute to the difference in distribution status. In this study, we found that the high-density condition had a more negative effect on C. odorata than the low-density condition when co-grown with neighbor plants from its native range in Mexico, while this pattern was not in evidence when it was grown with neighbors from its invasive range in China. Different competitive ability and coevolutionary history with C. odorata between native-range neighbors and invasive-range neighbors may lead to the inconsistent patterns.

  19. Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities.

    Directory of Open Access Journals (Sweden)

    John F Grider

    Full Text Available Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain active through winter, thus decreasing their susceptibility to WNS and/or mortality associated with migration to wintering grounds. These areas could act as a refugia and be important for the persistence of local populations. To determine if warmer temperatures affect bat activity, we compared year-round activity of bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that differ in winter temperature. We established six recording stations, four along a 295-kilometer north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We recorded bat activity over two years. We supplemented our recordings with mist-net data. Although bat activity was lower during winter at all sites, the odds of recording a bat during winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats in the Piedmont had a lower level of winter activity compared to summer activity than bats in the Coastal Plain that had more similar levels of activity in the winter and summer. We found high bat species richness on the Coastal Plain in winter, with winter-active species including those known to hibernate throughout most of their range and others known to be long distance migrants. In particular, two species impacted by WNS, the northern long-eared bat (Myotis septentrionalis and tricolored bat (Perimyotis subflavus, were present year round in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus

  20. Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities.

    Science.gov (United States)

    Grider, John F; Larsen, Angela L; Homyack, Jessica A; Kalcounis-Rueppell, Matina C

    2016-01-01

    Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS) and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain active through winter, thus decreasing their susceptibility to WNS and/or mortality associated with migration to wintering grounds. These areas could act as a refugia and be important for the persistence of local populations. To determine if warmer temperatures affect bat activity, we compared year-round activity of bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that differ in winter temperature. We established six recording stations, four along a 295-kilometer north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We recorded bat activity over two years. We supplemented our recordings with mist-net data. Although bat activity was lower during winter at all sites, the odds of recording a bat during winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats in the Piedmont had a lower level of winter activity compared to summer activity than bats in the Coastal Plain that had more similar levels of activity in the winter and summer. We found high bat species richness on the Coastal Plain in winter, with winter-active species including those known to hibernate throughout most of their range and others known to be long distance migrants. In particular, two species impacted by WNS, the northern long-eared bat (Myotis septentrionalis) and tricolored bat (Perimyotis subflavus), were present year round in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus) was active in the

  1. Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1

    Science.gov (United States)

    Ng, Jason Liang Pin; Hassan, Samira; Truong, Thy T.; Hocart, Charles H.; Laffont, Carole; Frugier, Florian; Mathesius, Ulrike

    2015-01-01

    Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation. PMID:26253705

  2. Tree Species Identity Shapes Earthworm Communities

    Directory of Open Access Journals (Sweden)

    Stephanie Schelfhout

    2017-03-01

    Full Text Available Earthworms are key organisms in forest ecosystems because they incorporate organic material into the soil and affect the activity of other soil organisms. Here, we investigated how tree species affect earthworm communities via litter and soil characteristics. In a 36-year old common garden experiment, replicated six times over Denmark, six tree species were planted in blocks: sycamore maple (Acer pseudoplatanus, beech (Fagus sylvatica, ash (Fraxinus excelsior, Norway spruce (Picea abies, pedunculate oak (Quercus robur and lime (Tilia cordata. We studied the chemical characteristics of soil and foliar litter, and determined the forest floor turnover rate and the density and biomass of the earthworm species occurring in the stands. Tree species significantly affected earthworm communities via leaf litter and/or soil characteristics. Anecic earthworms were abundant under Fraxinus, Acer and Tilia, which is related to calcium-rich litter and low soil acidification. Epigeic earthworms were indifferent to calcium content in leaf litter and were shown to be mainly related to soil moisture content and litter C:P ratios. Almost no earthworms were found in Picea stands, likely because of the combined effects of recalcitrant litter, low pH and low soil moisture content.

  3. Complete nucleotide sequence of Alfalfa mosaic virus isolated from alfalfa (Medicago sativa L.) in Argentina.

    Science.gov (United States)

    Trucco, Verónica; de Breuil, Soledad; Bejerman, Nicolás; Lenardon, Sergio; Giolitti, Fabián

    2014-06-01

    The complete nucleotide sequence of an Alfalfa mosaic virus (AMV) isolate infecting alfalfa (Medicago sativa L.) in Argentina, AMV-Arg, was determined. The virus genome has the typical organization described for AMV, and comprises 3,643, 2,593, and 2,038 nucleotides for RNA1, 2 and 3, respectively. The whole genome sequence and each encoding region were compared with those of other four isolates that have been completely sequenced from China, Italy, Spain and USA. The nucleotide identity percentages ranged from 95.9 to 99.1 % for the three RNAs and from 93.7 to 99 % for the protein 1 (P1), protein 2 (P2), movement protein and coat protein (CP) encoding regions, whereas the amino acid identity percentages of these proteins ranged from 93.4 to 99.5 %, the lowest value corresponding to P2. CP sequences of AMV-Arg were compared with those of other 25 available isolates, and the phylogenetic analysis based on the CP gene was carried out. The highest percentage of nucleotide sequence identity of the CP gene was 98.3 % with a Chinese isolate and 98.6 % at the amino acid level with four isolates, two from Italy, one from Brazil and the remaining one from China. The phylogenetic analysis showed that AMV-Arg is closely related to subgroup I of AMV isolates. To our knowledge, this is the first report of a complete nucleotide sequence of AMV from South America and the first worldwide report of complete nucleotide sequence of AMV isolated from alfalfa as natural host.

  4. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    Directory of Open Access Journals (Sweden)

    Su Zhen

    2011-07-01

    Full Text Available Abstract Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants.

  5. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    Science.gov (United States)

    2011-01-01

    Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548

  6. Do arbuscular mycorrhizal fungi with contrasting life-history strategies differ in their responses to repeated defoliation?

    Science.gov (United States)

    Ijdo, Marleen; Schtickzelle, Nicolas; Cranenbrouck, Sylvie; Declerck, Stéphane

    2010-04-01

    Arbuscular mycorrhizal (AM) fungi obligatorily depend on carbon (C) resources provided via the plant and therefore fluctuations in C availability may strongly and differently affect AM fungi with different life-history strategies (LHS). In the present study, we examined the effect of repeated defoliation of in vitro grown barrel medic (Medicago truncatula) on the spore and auxiliary cell (AC) production dynamics of a presumed r-strategist (Glomus intraradices) and a presumed K-strategist (Dentiscutata reticulata). Glomus intraradices modulated the production of spores directly to C availability, showing direct investment in reproduction as expected for r-strategists. In contrast, AC production of D. reticulata was not affected after a single defoliation and thus showed higher resistance to fluctuating C levels, as expected for K-strategists. Our results demonstrate that plant defoliation affects the production of extraradical C storage structures of G. intraradices and D. reticulata differently. Our results contribute towards revealing differences in LHS among AM fungal species, a step further towards understanding their community dynamics in natural ecosystems and agroenvironments.

  7. Hydraulic lift and tolerance to salinity of semiarid species: consequences for species interactions.

    Science.gov (United States)

    Armas, Cristina; Padilla, Francisco M; Pugnaire, Francisco I; Jackson, Robert B

    2010-01-01

    The different abilities of plant species to use ephemeral or permanent water sources strongly affect physiological performance and species coexistence in water-limited ecosystems. In addition to withstanding drought, plants in coastal habitats often have to withstand highly saline soils, an additional ecological stress. Here we tested whether observed competitive abilities and C-water relations of two interacting shrub species from an arid coastal system were more related to differences in root architecture or salinity tolerance. We explored water sources of interacting Juniperus phoenicea Guss. and Pistacia lentiscus L. plants by conducting physiology measurements, including water relations, CO2 exchange, photochemical efficiency, sap osmolality, and water and C isotopes. We also conducted parallel soil analyses that included electrical conductivity, humidity, and water isotopes. During drought, Pistacia shrubs relied primarily on permanent salty groundwater, while isolated Juniperus plants took up the scarce and relatively fresh water stored in upper soil layers. As drought progressed further, the physiological activity of Juniperus plants nearly stopped while Pistacia plants were only slightly affected. Juniperus plants growing with Pistacia had stem-water isotopes that matched Pistacia, unlike values for isolated Juniperus plants. This result suggests that Pistacia shrubs supplied water to nearby Juniperus plants through hydraulic lift. This lifted water, however, did not appear to benefit Juniperus plants, as their physiological performance with co-occurring Pistacia plants was poor, including lower water potentials and rates of photosynthesis than isolated plants. Juniperus was more salt sensitive than Pistacia, which withstood salinity levels similar to that of groundwater. Overall, the different abilities of the two species to use salty water appear to drive the outcome of their interaction, resulting in asymmetric competition where Juniperus is negatively

  8. Offsets and conservation of the species of the EU habitats and birds directives.

    Science.gov (United States)

    Regnery, Baptiste; Couvet, Denis; Kerbiriou, Christian

    2013-12-01

    Biodiversity offsets are intended to achieve no net loss of biodiversity due to economic and human development. A variety of biodiversity components are addressed by offset policies. It is required that loss of protected species due to development be offset under the EU Habitats and Birds Directives in Europe. We call this type of offset a species-equality offset because the offset pertains to the same species affected by the development project. Whether species equality can be achieved by offset design is unknown. We addressed this gap by reviewing derogation files (i.e., specific files that describe mitigation measures to ensure no net loss under the EU Habitats and Birds Directives) from 85 development projects in France (2009-2010). We collected information on type of effect (reversible vs. irreversible) and characteristics of affected and offset sites (i.e., types of species, total area). We analyzed how the type of effect and the affected-site characteristics influenced the occurrence of offset measures. The proportion of species targeted by offset measures (i.e., offset species) increased with the irreversibility of the effect of development and the conservation status of the species affected by development (i.e., affected species). Not all effects on endangered species (International Union for Conservation of Nature Red List) were offset; on average, 82% of affected species would be offset. Twenty-six percent of species of least concern were offset species. Thirty-five percent of development projects considered all affected species in their offset measures. Species richness was much lower in offset sites than in developed sites even after offset proposals. For developed areas where species richness was relatively high before development, species richness at offset sites was 5-10 times lower. The species-equality principle appears to have been applied only partially in offset policies, as in the EU directives. We suggest the application of this principle

  9. Does residence time affect responses of alien species richness to environmental and spatial processes?

    Directory of Open Access Journals (Sweden)

    Matteo Dainese

    2012-08-01

    Full Text Available One of the most robust emerging generalisations in invasion biology is that the probability of invasion increases with the time since introduction (residence time. We analysed the spatial distribution of alien vascular plant species in a region of north-eastern Italy to understand the influence of residence time on patterns of alien species richness. Neophytes were grouped according to three periods of arrival in the study region (1500–1800, 1800–1900, and > 1900. We applied multiple regression (spatial and non-spatial with hierarchical partitioning to determine the influence of climate and human pressure on species richness within the groups. We also applied variation partitioning to evaluate the relative importance of environmental and spatial processes. Temperature mainly influenced groups with speciesa longer residence time, while human pressure influenced the more recently introduced species, although its influence remained significant in all groups. Partial regression analyses showed that most of the variation explained by the models is attributable to spatially structured environmental variation, while environment and space had small independent effects. However, effects independent of environment decreased, and spatially independent effects increased, from older to the more recent neophytes. Our data illustrate that the distribution of alien species richness for species that arrived recently is related to propagule pressure, availability of novel niches created by human activity, and neutral-based (dispersal limitation processes, while climate filtering plays a key role in the distribution of species that arrived earlier. This study highlights the importance of residence time, spatial structure, and environmental conditions in the patterns of alien species richness and for a better understanding of its geographical variation.

  10. Ecological factors differentially affect mercury levels in two species of sympatric marine birds of the North Pacific

    International Nuclear Information System (INIS)

    Hipfner, J.M.; Hobson, K.A.; Elliott, J.E.

    2011-01-01

    In 2003 and 2004, we measured mercury concentrations and δ 15 N and δ 13 C values in the whole blood of adults of two species of seabirds, Cassin's auklet (Ptychoramphus aleuticus) and rhinoceros auklet (Cerorhinca monocerata), during their prelaying, incubation, and provisioning periods. We also collected whole blood from the offspring of both seabirds. Among prey items, δ 15 N values were higher in fish than in crustaceans, while δ 13 C did not vary systematically between prey types. Mercury concentrations in prey showed little relationship with either stable isotope. In the zooplanktivorous Cassin's auklet, year, reproductive stage, and δ 15 N and δ 13 C stable isotope values explained only 14% of the variation in mercury concentrations in adult blood, and none of these variables had a statistically significant effect. In contrast, these same variables explained 41% of the variation in mercury levels in the more piscivorous rhinoceros auklet, and all but δ 15 N values had statistically significant effects. Mercury concentrations in adult rhinoceros auklets were higher in 2003 than in 2004; higher prior to laying than during the incubation or provisioning periods; and increased with δ 13 C values - but in just one of two years. In both species, mercury concentrations were substantially higher in adults than in nestlings. Our results accord with previous studies in showing that mercury concentrations can vary among years, species and age classes, while the marked variation with reproductive stage is noteworthy because it is so rarely considered. Our results may help to explain the disparate conclusions of previous studies: while many factors influence mercury concentrations in marine predators, they apparently do so in a manner that defies easy characterization. We believe that there is a need for more studies that consider a range of physiological, ecological and behavioral factors that might affect mercury burdens in marine predators. - Research

  11. Effects of the mycorrhizal fungus ¤Glomus intraradices¤ on uranium uptake and accumulation by ¤Medicago truncatula¤ L. from uranium-contaminated soil

    DEFF Research Database (Denmark)

    Chen, B.D.; Jakobsen, I.; Roos, P.

    2005-01-01

    cultivation system facilitating the specific measurement of U uptake by roots, AM roots and extraradical hyphae of AM fungi and the measurement of U partitioning between root and shoot. A soil-filled plastic pot constituted the main root compartment (C-A) which contained a plastic vial filled with U......-contaminated soil amended with 0, 50 or 200 mg KH2PO4-P kg(-1) soil (C-B). The vial was sealed by coarse or fine nylon mesh, permitting the penetration of both roots and hyphae or of just hyphae. Medicago truncatula plants grown in C-A were inoculated with G. intraradices or remained uninoculated. Dry weight...... in C-A, but decreased shoot U concentrations. Root U concentrations and contents were significantly higher when only hyphae could access U inside C-B than when roots could also directly access this U pool. The proportion of plant U content partitioned to shoots was decreased by root exclusion from C...

  12. Novel organisms: comparing invasive species, GMOs, and emerging pathogens.

    Science.gov (United States)

    Jeschke, Jonathan M; Keesing, Felicia; Ostfeld, Richard S

    2013-09-01

    Invasive species, range-expanding species, genetically modified organisms (GMOs), synthetic organisms, and emerging pathogens increasingly affect the human environment. We propose a framework that allows comparison of consecutive stages that such novel organisms go through. The framework provides a common terminology for novel organisms, facilitating knowledge exchange among researchers, managers, and policy makers that work on, or have to make effective decisions about, novel organisms. The framework also indicates that knowledge about the causes and consequences of stage transitions for the better studied novel organisms, such as invasive species, can be transferred to more poorly studied ones, such as GMOs and emerging pathogens. Finally, the framework advances understanding of how climate change can affect the establishment, spread, and impacts of novel organisms, and how biodiversity affects, and is affected by, novel organisms.

  13. Species composition of a soil invertebrate multi-species test system determines the level of ecotoxicity

    International Nuclear Information System (INIS)

    Sechi, Valentina; D'Annibale, Alessandra; Maraldo, Kristine; Johansen, Anders; Bossi, Rossana; Jensen, John; Krogh, Paul Henning

    2014-01-01

    A soil multi-species, SMS, experimental test system consisting of the natural microbial community, five collembolan species and a predatory mite along with either Enchytraeus crypticus or the earthworm Eisenia fetida were exposed to α-cypermethrin. A comparison of the performance of these two types of SMSs is given to aid the development of a standard test system. E. fetida had a positive effect on the majority of the species, reducing the negative insecticide effect. E. fetida affected the species sensitivity and decreased the degradation of the insecticide due to the organic matter incorporation of earthworm food. After 8 weeks, the EC50 was 0.76 mg kg −1 for enchytraeids and ranged between 2.7 and 18.9 mg kg −1 for collembolans, more sensitive than previously observed with single species. Changes observed in the community structure and function illustrates the strength of a multi-species test system as an ecotoxicological tool compared to single species tests. -- Highlights: • Degradation of alpha-cypermethrin was faster with enchytraeids than with earthworms. • Lumbricid castings and bioturbation explains bioavailability of α-cypermethrin. • Pesticide effects on soil arthropods alter with the community composition. • Multispecies test systems are feasible with either an enchytraeid or a lumbricid. • Collembolans are more sensitive to cypermethrin with enchytraeids than with earthworms. -- Soil ecotoxicological fate and effects in multispecies test systems are affected by earthworm activity

  14. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors.

    Science.gov (United States)

    Thatcher, Louise F; Williams, Angela H; Garg, Gagan; Buck, Sally-Anne G; Singh, Karam B

    2016-11-03

    Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity

  15. Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate

    OpenAIRE

    M?nzbergov?, Zuzana; Hadincov?, V?roslava

    2017-01-01

    Abstract In spite of the increasing number of studies on the importance of transgenerational plasticity for species response to novel environments, its effects on species ability to respond to climate change are still largely unexplored. We study the importance of transgenerational plasticity for response of a clonal species Festuca rubra. Individuals from four natural populations representing two levels of temperature and two levels of precipitation were cultivated in four growth chambers th...

  16. [Effects of simulated nitrogen deposition on weeds growth and nitrogen uptake].

    Science.gov (United States)

    Jiang, Qiqing; Tang, Jianjun; Chen, Xin; Chen, Jing; Yang, Ruyi; Hu, S

    2005-05-01

    In this paper, a greenhouse experiment was conducted to study the responses of different functional groups weeds to simulated nitrogen deposition (4.0 g N.m(-2).yr(-1)). Native weed species Poa annua, Lolium perenne, Avena fatua, Medicago lupulina, Trifolium repens, Plantago virginica, Veronica didyma, Echinochloa crusgalli var. mitis, Eleusine indica and Amaranthus spinosus in orchard ecosystem were used test materials, and their above-and underground biomass and nitrogen uptake were measured. The results showed that under simulated N deposition, the total biomass, shoot biomass and root biomass of all weed species tended increase, while the total biomass was differed for different functional groups of weeds. The biomass of C4 grass, legumes and C3 grass was significantly increased under N deposition, while that of C3 and C4 forbs was not significantly impacted. The root/shoot biomass ratio of Avena fatua and Plantago virginica was enhanced by N deposition, but that of Poa annu, Lolium perenne, Medicago lupulina, Trifolium repens and Amarathus spinosus was not impacted significantly. N deposition had no significant effect on plant N concentration, but significantly enhanced the N uptake of all test weed species except Amarathus spinosus, Poa annua and Veronica didyma. was suggested that the further increase of N deposition might speed up the changes of the community structure weed species due to their different responses to N deposition.

  17. Impact of Soil Salinity on the Structure of the Bacterial Endophytic Community Identified from the Roots of Caliph Medic (Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Mahmoud W Yaish

    Full Text Available In addition to being a forage crop, Caliph medic (Medicago truncatula is also a model legume plant and is used for research focusing on the molecular characterization of the interaction between rhizobia and plants. However, the endophytic microbiome in this plant is poorly defined. Endophytic bacteria play a role in supplying plants with the basic requirements necessary for growth and development. Moreover, these bacteria also play a role in the mechanism of salinity stress adaptation in plants. As a prelude to the isolation and utilization of these bacteria in Caliph medic farming, 41 bacterial OTUs were identified in this project from within the interior of the roots of this plant by pyrosequencing of the small ribosomal subunit gene (16S rDNA using a cultivation-independent approach. In addition, the differential abundance of these bacteria was studied following exposure of the plants to salinity stress. About 29,064 high-quality reads were obtained from the sequencing of six libraries prepared from control and salinity-treated tissues. Statistical analysis revealed that the abundance of ~70% of the OTUs was significantly (p ≤ 0.05 altered in roots that were exposed to salinity stress. Sequence analysis showed a similarity between some of the identified species and other, known, growth-promoting bacteria, marine and salt-stressed soil-borne bacteria, and nitrogen-fixing bacterial isolates. Determination of the amendments to the bacterial community due to salinity stress in Caliph medic provides a crucial step toward developing an understanding of the association of these endophytes, under salt stress conditions, in this model plant. To provide direct evidence regarding their growth promoting activity, a group of endophytic bacteria were isolated from inside of plant roots using a cultivation-dependent approach. Several of these isolates were able to produce ACC-deaminase, ammonia and IAA; and to solubilize Zn+2 and PO4-3. This data is

  18. Disentangling urban habitat and matrix effects on wild bee species.

    Science.gov (United States)

    Fischer, Leonie K; Eichfeld, Julia; Kowarik, Ingo; Buchholz, Sascha

    2016-01-01

    In face of a dramatic decline of wild bee species in many rural landscapes, potential conservation functions of urban areas gain importance. Yet effects of urbanization on pollinators, and in particular on wild bees, remain ambiguous and not comprehensively understood. This is especially true for amenity grassland and extensively managed wastelands within large-scale residential housing areas. Using Berlin as a study region, we aimed to investigate (a) if these greenspaces are accepted by wild bee assemblages as foraging habitats; (b) how assemblage structure of bees and individual bee species are affected by different habitat (e.g., management, flower density) and urban matrix variables (e.g., isolation, urbanization); and (c) to what extent grassland restoration can promote bees in urban environments. In summer 2012, we collected 62 bee species belonging to more than 20% of the taxa known for Berlin. Urbanization significantly affected species composition of bees; 18 species were affiliated to different levels of urbanization. Most bee species were not affected by any of the environmental variables tested, and urbanization had a negative effect only for one bee species. Further, we determined that restoration of diverse grasslands positively affected bee species richnesss in urban environments. We conclude that differently structured and managed greenspaces in large-scale housing areas can provide additional foraging habitats and refuges for pollinators. This supports approaches towards a biodiversity friendly management within urban regions and may be of particular importance given that anthropogenic pressure is increasing in many rural landscapes.

  19. "Ménage à trois"

    DEFF Research Database (Denmark)

    Ehlers, Bodil K; Grøndahl, Eva; Ronfort, Joëlle

    2012-01-01

    of both partners. So far these studies have been typically carried out in a single environment. Here, we ask if the genetic correlation between fitness of the host plant Medicago truncatula (Fabaceae) and its bacterial symbiont Sinorhizobium meliloti is affected by the presence/absence of a monoterpene...

  20. Identification of molecular markers associated with Verticillium wilt resistance in alfalfa (Medicago sativa L. using high-resolution melting.

    Directory of Open Access Journals (Sweden)

    Tiejun Zhang

    Full Text Available Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L. worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR and single nucleotide polymorphism (SNP markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs.

  1. Phytoextraction of Heavy Metals from Soil Polluted with Waste Mining by Using Forage Plants in Successive Cultures

    Directory of Open Access Journals (Sweden)

    Anca Pricop

    2010-10-01

    Full Text Available During two years, was studied the phytoextraction potential of some perennial species (Medicago sativa and Trifolium pretense, Festuca arundinacea and Lolium perenne, for Zn, Cd, and Pb from soils polluted with waste mining. The experiment was done on kernozem soil with adding of 20 kg waste mining/m2 and 8 kg biosolid/m2. The results showed that in all experiments, rye-grass is a good extractor for Zn and Cd, and leguminous species for Pb. Both leguminous species, especially M. sativa, presented a high tolerance for lead toxicity, even with 3-4 times greater values than maximum allowable level from actual legislation. In all cases, regardless of the experimental variant, raygrass (Lolium perenne is a good accumulator of Zn and Cd, and red clover (Trifolium pratense of Pb. The values of metal bioaccumulation increase gradually with their concentration in soil. Quality of very good extractor of Pb displayed by Trifolium pratense species are kept even in case of excessive pollution with Pb, when it exceed 3.4 times the maximum permissible norms. This proves, as Medicago sativa species, a good tolerance and resistance to toxicity of this metal. In case of addition of natural zeolite-volcanic tuff there was no increase in the rate of Zn bioaccumulation. Only in case of Cd at Lolium perenne and Pb at Trifolium pratense appear the favourable effect of metallic ions bioavailability in soil for plants.

  2. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Wang Xiaojuan; Song, Yu; Ma Yanhua; Zhuo Renying; Jin Liang

    2011-01-01

    In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible. - Highlights: → Evaluate Cd tolerance in wide sources of alfalfa accessions. → Identify Cd-hyperaccumulators potentially useful for restoring Cd-contaminated environments. → Cloned differentially expressed metallothionein (MT) genes. → Characteristics and deduced protein sequence of MsMT2a and MsMT2b were analyzed. → MsMT2a might be a universally gene of alfalfa but MsMT2b might be an inductive gene. - Two Cd tolerant alfalfa genotypes were screened and their metallothionein genes were cloned which showed that MsMT2a was universally expressed but MsMT2b was Cd inducible expression.

  3. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaojuan, E-mail: xiaojuanwang@lzu.edu.cn [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China); Song, Yu [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China); Environment Management College of China, Qinhuangdao 066004 (China); Ma Yanhua [Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhuo Renying [Key Lab of Tree Genomics, Research Institute of Subtropical of Forest, Chinese Academy of Forest, Fuyang 311400 (China); Jin Liang [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China)

    2011-12-15

    In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible. - Highlights: > Evaluate Cd tolerance in wide sources of alfalfa accessions. > Identify Cd-hyperaccumulators potentially useful for restoring Cd-contaminated environments. > Cloned differentially expressed metallothionein (MT) genes. > Characteristics and deduced protein sequence of MsMT2a and MsMT2b were analyzed. > MsMT2a might be a universally gene of alfalfa but MsMT2b might be an inductive gene. - Two Cd tolerant alfalfa genotypes were screened and their metallothionein genes were cloned which showed that MsMT2a was universally expressed but MsMT2b was Cd inducible expression.

  4. Sexual Polyploidization in Medicago sativa L.: Impact on the Phenotype, Gene Transcription, and Genome Methylation.

    Science.gov (United States)

    Rosellini, Daniele; Ferradini, Nicoletta; Allegrucci, Stefano; Capomaccio, Stefano; Zago, Elisa Debora; Leonetti, Paola; Balech, Bachir; Aversano, Riccardo; Carputo, Domenico; Reale, Lara; Veronesi, Fabio

    2016-04-07

    Polyploidization as the consequence of 2n gamete formation is a prominent mechanism in plant evolution. Studying its effects on the genome, and on genome expression, has both basic and applied interest. We crossed two diploid (2n = 2x = 16) Medicago sativa plants, a subsp. falcata seed parent, and a coerulea × falcata pollen parent that form a mixture of n and 2n eggs and pollen, respectively. Such a cross produced full-sib diploid and tetraploid (2n = 4x = 32) hybrids, the latter being the result of bilateral sexual polyploidization (BSP). These unique materials allowed us to investigate the effects of BSP, and to separate the effect of intraspecific hybridization from those of polyploidization by comparing 2x with 4x full sib progeny plants. Simple sequence repeat marker segregation demonstrated tetrasomic inheritance for all chromosomes but one, demonstrating that these neotetraploids are true autotetraploids. BSP brought about increased biomass, earlier flowering, higher seed set and weight, and larger leaves with larger cells. Microarray analyses with M. truncatula gene chips showed that several hundred genes, related to diverse metabolic functions, changed their expression level as a consequence of polyploidization. In addition, cytosine methylation increased in 2x, but not in 4x, hybrids. Our results indicate that sexual polyploidization induces significant transcriptional novelty, possibly mediated in part by DNA methylation, and phenotypic novelty that could underpin improved adaptation and reproductive success of tetraploid M. sativa with respect to its diploid progenitor. These polyploidy-induced changes may have promoted the adoption of tetraploid alfalfa in agriculture. Copyright © 2016 Rosellini et al.

  5. Sexual Polyploidization in Medicago sativa L.: Impact on the Phenotype, Gene Transcription, and Genome Methylation

    Directory of Open Access Journals (Sweden)

    Daniele Rosellini

    2016-04-01

    Full Text Available Polyploidization as the consequence of 2n gamete formation is a prominent mechanism in plant evolution. Studying its effects on the genome, and on genome expression, has both basic and applied interest. We crossed two diploid (2n = 2x = 16 Medicago sativa plants, a subsp. falcata seed parent, and a coerulea × falcata pollen parent that form a mixture of n and 2n eggs and pollen, respectively. Such a cross produced full-sib diploid and tetraploid (2n = 4x = 32 hybrids, the latter being the result of bilateral sexual polyploidization (BSP. These unique materials allowed us to investigate the effects of BSP, and to separate the effect of intraspecific hybridization from those of polyploidization by comparing 2x with 4x full sib progeny plants. Simple sequence repeat marker segregation demonstrated tetrasomic inheritance for all chromosomes but one, demonstrating that these neotetraploids are true autotetraploids. BSP brought about increased biomass, earlier flowering, higher seed set and weight, and larger leaves with larger cells. Microarray analyses with M. truncatula gene chips showed that several hundred genes, related to diverse metabolic functions, changed their expression level as a consequence of polyploidization. In addition, cytosine methylation increased in 2x, but not in 4x, hybrids. Our results indicate that sexual polyploidization induces significant transcriptional novelty, possibly mediated in part by DNA methylation, and phenotypic novelty that could underpin improved adaptation and reproductive success of tetraploid M. sativa with respect to its diploid progenitor. These polyploidy-induced changes may have promoted the adoption of tetraploid alfalfa in agriculture.

  6. Contaminant Effects on California Bay–Delta Species and Human Health

    Directory of Open Access Journals (Sweden)

    Stephanie Fong

    2016-12-01

    Full Text Available doi: https://doi.org/10.15447/sfews.2016v14iss4art5Many contaminants in the California Bay–Delta (Bay–Delta exceed regulatory standards, affect aquatic species, and potentially affect human health. Recent studies provide multiple lines of evidence that contaminants affect species of concern in the Bay–Delta (e.g., the decline of several important fish species referred to as the “Pelagic Organism Decline” or POD. Contaminants occur as dynamic complex mixtures and exert effects at multiple levels of biological organization. Multiple chemicals impair processes at cellular and physiological levels (measured as growth, development, and behavior abnormalities, and when viability and reproductive output are affected, populations are affected. As an important example, the population decline of the endangered Delta Smelt (Hypomesus transpacificus is significantly associated with multiple stressors, including insecticide use. New analyses presented in this paper show significant correlations between pyrethroid use and declining abundance of POD fish species. Water sampled from the Bay–Delta causes multiple deleterious effects in fish, and Delta Smelt collected from the Bay–Delta exhibit contaminant effects. Fish prey items are also affected by contaminants; this may have an indirect effect on their populations. Co-occurrence with thermal changes or disease can exacerbate contaminant effects. Contaminants also pose threats to human health via consumption of fish and shellfish, drinking water, and contact recreation, in particular, mercury, cyanobacteria toxins, disinfection byproducts, pathogens, pesticides, and pharmaceuticals and personal care products. The role of contaminants in the decline of Bay–Delta species is difficult to accurately assess in a complex, dynamic system. However, tools and approaches are available to evaluate contaminant effects on Bay–Delta species, and separate the effects of multiple stressors. Integrated

  7. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8.

    Science.gov (United States)

    Li, Penghui; Chen, Beibei; Zhang, Gaoyang; Chen, Longxiang; Dong, Qiang; Wen, Jiangqi; Mysore, Kirankumar S; Zhao, Jian

    2016-05-01

    The MYB- basic helix-loop-helix (bHLH)-WD40 complexes regulating anthocyanin and proanthocyanidin (PA) biosynthesis in plants are not fully understood. Here Medicago truncatula bHLH MtTT8 was characterized as a central component of these ternary complexes that control anthocyanin and PA biosynthesis. Mttt8 mutant seeds have a transparent testa phenotype with reduced PAs and anthocyanins. MtTT8 restores PA and anthocyanin productions in Arabidopsis tt8 mutant. Ectopic expression of MtTT8 restores anthocyanins and PAs in mttt8 plant and hairy roots and further enhances both productions in wild-type hairy roots. Transcriptomic analyses and metabolite profiling of mttt8 mutant seeds and M. truncatula hairy roots (mttt8 mutant, mttt8 mutant complemented with MtTT8, or MtTT8 overexpression lines) indicate that MtTT8 regulates a subset of genes involved in PA and anthocyanin biosynthesis. MtTT8 is genetically regulated by MtLAP1, MtPAR and MtWD40-1. Combinations of MtPAR, MtLAP1, MtTT8 and MtWD40-1 activate MtTT8 promoter in yeast assay. MtTT8 interacts with these transcription factors to form regulatory complexes. MtTT8, MtWD40-1 and an MYB factor, MtPAR or MtLAP1, interacted and activated promoters of anthocyanidin reductase and anthocyanidin synthase to regulate PA and anthocyanin biosynthesis, respectively. Our results provide new insights into the complex regulation of PA and anthocyanin biosynthesis in M. truncatula. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Polyamines contribute to salinity tolerance in the symbiosis Medicago truncatula-Sinorhizobium meliloti by preventing oxidative damage.

    Science.gov (United States)

    López-Gómez, Miguel; Hidalgo-Castellanos, Javier; Muñoz-Sánchez, J Rubén; Marín-Peña, Agustín J; Lluch, Carmen; Herrera-Cervera, José A

    2017-07-01

    Polyamines (PAs) such as spermidine (Spd) and spermine (Spm) are small ubiquitous polycationic compounds that contribute to plant adaptation to salt stress. The positive effect of PAs has been associated to a cross-talk with other anti-stress hormones such as brassinosteroids (BRs). In this work we have studied the effects of exogenous Spd and Spm pre-treatments in the response to salt stress of the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti by analyzing parameters related to nitrogen fixation, oxidative damage and cross-talk with BRs in the response to salinity. Exogenous PAs treatments incremented the foliar and nodular Spd and Spm content which correlated with an increment of the nodule biomass and nitrogenase activity. Exogenous Spm treatment partially prevented proline accumulation which suggests that this polyamine could replace the role of this amino acid in the salt stress response. Additionally, Spd and Spm pre-treatments reduced the levels of H 2 O 2 and lipid peroxidation under salt stress. PAs induced the expression of genes involved in BRs biosynthesis which support a cross-talk between PAs and BRs in the salt stress response of M. truncatula-S. meliloti symbiosis. In conclusion, exogenous PAs improved the response to salinity of the M. truncatula-S. meliloti symbiosis by reducing the oxidative damage induced under salt stress conditions. In addition, in this work we provide evidences of the cross-talk between PAs and BRs in the adaptive responses to salinity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Natural isotopes abundance of sup 1 sup 5 N and sup 1 sup 3 C in leaves of some N sub 2 -fixing and non N sub 2 -fixing trees and shrubs in Syria

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Shamma'a, M.

    2009-01-01

    Varability in the natural abundance isotopes of sup 1 sup 5 N and sup 1 sup 3 C in leaves of several legume and non-legume plant species grown at different sites of two areas in semi-arid regions of Syria was determined. In the first area (non-saline soil), the sup 1 sup 5 N values of a number of fixing and non-fixing reference plants ranged from -2.09 to +9.46, depending on plant species and studied site. sup 1 sup 5 N in a number of legume species including Acacia cyanopylla (-1.73), Acacia farnesiana (-0.55), Prosopis juliflora (-1.64) and Medicago arborea (+1.6) were close to the atmospheric value pointing to a major contribution of N sub 2 fixing in these species; whereas, those of reference plants were highly positive (between +3.6 and +9.46%). In the actinorhizal tree, Elaeagnus angustifolia, the sup 1 sup 5 N abundance was far lower (-0.46 to -2.1%) strongly suggesting that the plant obtained large proportional contribution from BNF. In contrast, delta sup 1 sup 5 N values in some other legumes and actinorhizal plants were relatively similar to those of reference plants, suggesting that the contribution of fixed N sub 2 is negligible. On the other hand, delta sup 1 sup 3 C% values in leaves of C3 plants were affected by plant species, ranging from a minimum of -28.67% to a maximum of -23%. However, they were the same within each plant species although they were grown at different sites. Moreover, dual stable isotope analysis in leaves of Prosopis juliflora and other non- legumes grown on a salt affected soil (second area) was also conducted. Results showed that salinity did not affect C assimilation in this woody legume since a higher carbon discrimination was obtained indicating that this plant is a salt tolerant species; whereas, N2-fixation was drastically affected (delta sup 1 sup 5 N= +7.03). (Author)

  10. Observed fitness may affect niche overlap in competing species via selective social information use.

    Science.gov (United States)

    Loukola, Olli J; Seppänen, Janne-Tuomas; Krams, Indrikis; Torvinen, Satu S; Forsman, Jukka T

    2013-10-01

    Social information transmission is important because it enables horizontal spread of behaviors, not only between conspecifics but also between individuals of different species. Because interspecific social information use is expected to take place among species with similar resource needs, it may have major consequences for the emergence of local adaptations, resource sharing, and community organization. Social information use is expected to be selective, but the conditions promoting it in an interspecific context are not well known. Here, we experimentally test whether pied flycatchers (Ficedula hypoleuca) use the clutch size of great tits (Parus major) in determining the quality of the observed individual and use it as a basis of decision making. We show that pied flycatchers copied or rejected a novel nest site feature preference of great tits experimentally manipulated to exhibit high or low fitness (clutch size), respectively. Our results demonstrate that the social transmission of behaviors across species can be highly selective in response to observed fitness, plausibly making the phenomenon adaptive. In contrast with the current theory of species coexistence, overlap between realized niches of species could dynamically increase or decrease depending on the observed success of surrounding individuals.

  11. ALIEN SPECIES: THEIR ROLE IN AMPHIBIAN POPULATION DECLINES AND RESTORATION

    Science.gov (United States)

    Alien species (also referred to as exotic, invasive, introduced, or normative species) have been implicated as causal agents in population declines of many amphibian species. Herein, we evaluate the relative contributions of alien species and other factors in adversely affecting ...

  12. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe

    DEFF Research Database (Denmark)

    Svenning, J.-C.; Fitzpatrick, Matthew C.; Normand, Signe

    2010-01-01

    by assembly from regional species pools. Using the European tree flora as our study system, we implemented a novel approach to assess the relative importance of local and regional mechanisms that control local species richness. We first identified species pools that tolerate particular local environments....../P richness ratio estimates, but we found consistent support for a negative effect of regional geographic fragmentation and a positive topographic effect. We also identified fairly broad support for the predicted effect of accessibility. We conclude that local tree assemblages in Europe often fail to realize...

  13. Proteomic identification of differentially expressed proteins during alfalfa (Medicago sativa L. flower development

    Directory of Open Access Journals (Sweden)

    Lingling Chen

    2016-10-01

    Full Text Available Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa (Medicago sativa L. seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1, pollination (S2, and the post-pollination senescence period (S3. Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD. Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs, carbonic anhydrase (CA, and NADPH: quinone oxidoreductase-like protein (NQOLs. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower

  14. Detection of cryptic species

    International Nuclear Information System (INIS)

    Cockburn, A.F.; Jensen, T.; Seawright, J.A.

    1998-01-01

    Morphologically similar cryptic species are common in insects. In Anopheles mosquitoes morphologically described species are complexes of cryptic species. Cryptic species are of great practical importance for two reasons: first, one or more species of the complex might not be a pest and control efforts directed at the complex as a whole would therefore be partly wasted; and second, genetic (and perhaps biological) control strategies directed against one species of the complex would not affect other species of the complex. At least one SIT effort has failed because the released sterile insect were of a different species and therefore did not mate with the wild insects being targeted. We use a multidisciplinary approach for detection of cryptic species complexes, focusing first on identifying variability in wild populations using RFLPs of mitochondrial and ribosomal RNA genes (mtDNA and rDNA); followed by confirmation using a variety of other techniques. For rapid identification of wild individuals of field collections, we use a DNA dot blot assay. DNA probes can be isolated by differential screening, however we are currently focusing on the sequencing of the rDNA extragenic spacers. These regions are repeated several hundred times per genome in mosquitoes and evolve rapidly. Molecular drive tends to keen the individual genes homogeneous within a species. (author)

  15. Natural abundances of 15N and 13C in leaves of some N2-fixing and non-N2-fixing trees and shrubs in Syria.

    Science.gov (United States)

    Kurdali, F; Al-Shamma'a, M

    2009-09-01

    A survey study was conducted on man-made plantations located at two different areas in the arid region of Syria to determine the variations in natural abundances of the (15)N and (13)C isotopes in leaves of several woody legume and non-legume species, and to better understand the consequence of such variations on nitrogen fixation and carbon assimilation. In the first study area (non-saline soil), the delta(15)N values in four legume species (Acacia cyanophylla,-1.73 per thousand Acacia farnesiana,-0.55 per thousand Prosopis juliflora,-1.64 per thousand; and Medicago arborea,+1.6 \\textperthousand) and one actinorhizal plant (Elaeagnus angustifolia,-0.46 to-2.1 per thousand) were found to be close to that of the atmospheric value pointing to a major contribution of N(2) fixing in these species; whereas, delta(15)N values of the non-fixing plant species were highly positive. delta(13)C per thousand; in leaves of the C3 plants were found to be affected by plant species, ranging from a minimum of-28.67 per thousand; to a maximum of-23 per thousand. However, they were relatively similar within each plant species although they were grown at different sites. In the second study area (salt affected soil), a higher carbon discrimination value (Delta(13)C per thousand) was exhibited by P. juliflora, indicating that the latter is a salt tolerant species; however, its delta(15)N was highly positive (+7.03 per thousand) suggesting a negligible contribution of the fixed N(2). Hence, it was concluded that the enhancement of N(2) fixation might be achieved by selection of salt-tolerant Rhizobium strains.

  16. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Science.gov (United States)

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  17. Disentangling urban habitat and matrix effects on wild bee species

    Directory of Open Access Journals (Sweden)

    Leonie K. Fischer

    2016-11-01

    Full Text Available In face of a dramatic decline of wild bee species in many rural landscapes, potential conservation functions of urban areas gain importance. Yet effects of urbanization on pollinators, and in particular on wild bees, remain ambiguous and not comprehensively understood. This is especially true for amenity grassland and extensively managed wastelands within large-scale residential housing areas. Using Berlin as a study region, we aimed to investigate (a if these greenspaces are accepted by wild bee assemblages as foraging habitats; (b how assemblage structure of bees and individual bee species are affected by different habitat (e.g., management, flower density and urban matrix variables (e.g., isolation, urbanization; and (c to what extent grassland restoration can promote bees in urban environments. In summer 2012, we collected 62 bee species belonging to more than 20% of the taxa known for Berlin. Urbanization significantly affected species composition of bees; 18 species were affiliated to different levels of urbanization. Most bee species were not affected by any of the environmental variables tested, and urbanization had a negative effect only for one bee species. Further, we determined that restoration of diverse grasslands positively affected bee species richnesss in urban environments. We conclude that differently structured and managed greenspaces in large-scale housing areas can provide additional foraging habitats and refuges for pollinators. This supports approaches towards a biodiversity friendly management within urban regions and may be of particular importance given that anthropogenic pressure is increasing in many rural landscapes.

  18. Does temperature-mediated reproductive success drive the direction of species displacement in two invasive species of leafminer fly?

    Directory of Open Access Journals (Sweden)

    Haihong Wang

    Full Text Available Liriomyza sativae and L. trifolii (Diptera: Agromyzidae are two highly invasive species of leafmining flies, which have become established as pests of horticultural crops throughout the world. In certain regions where both species have been introduced, L. sativae has displaced L. trifolii, whereas the opposite has occurred in other regions. These opposing outcomes suggest that neither species is an inherently superior competitor. The regions where these displacements have been observed (southern China, Japan and western USA are climatically different. We determined whether temperature differentially affects the reproductive success of these species and therefore if climatic differences could affect the outcome of interspecific interactions where these species are sympatric. The results of life table parameters indicate that both species can develop successfully at all tested temperatures (20, 25, 31, 33°C. L. sativae had consistently higher fecundities at all temperatures, but L. trifolii developed to reproductive age faster. Age-stage specific survival rates were higher for L. sativae at low temperatures, but these were higher for L. trifolii at higher temperatures. We then compared the net reproductive rates (R0 for both species in pure and mixed cultures maintained at the same four constant temperatures. Both species had significantly lower net reproductive rates in mixed species cultures compared with their respective pure species cultures, indicating that both species are subject to intense interspecific competition. Net reproductive rates were significantly greater for L. sativae than for L. trifolii in mixed species groups at the lower temperatures, whereas the opposite occurred at the higher temperature. Therefore, interactions between the species are temperature dependent and small differences could shift the competitive balance between the species. These temperature mediated effects may contribute to the current ongoing displacement

  19. Differences in Foliage Affect Performance of the Lappet Moth, Streblote panda: Implications for Species Fitness

    Science.gov (United States)

    Calvo, D.; Molina, J.M.

    2010-01-01

    Implications for adults' fitness through the foliage effects of five different host plants on larval survival and performance of the lappet moth, Streblote panda Hübner (Lepidoptera: Lasiocampidae), as well as their effect on species fitness were assayed. Larvae were reared under controlled laboratory conditions on excised foliage. Long-term developmental experiments were done using first instar larvae to adult emergence, and performance experiments were done using fifth instar larvae. Survival, development rates, and food use were measured. Foliar traits analysis indicated that leaves of different host plants varied, significantly affecting larvae performance and adult fitness. Pistacia lentiscus L. (Sapindales: Anacardiaceae), Arbutus unedo L. (Ericales: Ericaceae), and Retama sphaerocarpa (L.) Boiss. (Fabales: Fabaceae) were the most suitable hosts. Larvae fed on Tamarix gallica L. (Caryophyllales: Tamaricaceae) and Spartium junceum L. (Fabales: Fabaceae) showed the lowest survival, rates of development and pupal and adult weight. In general, S. panda showed a relatively high capacity to buffer low food quality, by reducing developmental rates and larvae development thereby reaching the minimum pupal weight that ensures adult survival. Less suitable plants seem to have indirect effects on adult fitness, producing smaller adults that could disperse to other habitats. PMID:21062148

  20. Study of some characteristic Mediterranean vegetation species best suited for renaturalization of terminal-phase municipal solid waste (MSW) landfills in Puglia (Southern Italy)

    Science.gov (United States)

    De Mei, Massimiliano; Di Mauro, Mariaida

    2006-07-01

    Natural recovery of worked-out or closed municipal solid waste (MSW) landfills is a current topic, but knowledge about the adaptability of Mediterranean vegetation species to such stressful conditions is still quite poor. Autochthonous plants were selected to withstand the stresses such as hot climate and drought typical of Mediterranean areas; this characteristic potentially allows the plants an easier, efficient adaptation. Our aim was to provide information in order to obtain an adequate quality of environmental renewal of a landfill and a reduced management cost while ensuring rehabilitation to an acceptable naturalistic state. The investigation lasted 3 years; some Mediterranean scrub native plant species were selected and monitored in their morphological (total and relative height, basal diameter, number of inter-nodes) and physiological (photosynthetic rate and water potential) activity. In order to test dependence on CO 2 concentration, different meteorological parameters were also monitored. Ceratonia siliqua, Phillyrea latifolia, Olea europaea and Quercus ilex showed considerable adaptability, reacting positively to every improvement in environmental conditions, particularly those of a meteorological nature. Survival and growth was satisfactory in Hedysarum coronarium, Medicago sativa, Lotus corniculatus, Rosmarinus officinalis, Myrtus communis and Viburnum tinus. Fraxinus ornus and Acer campestre suffered stress during the summer dry period and recovered quickly when atmospheric conditions improved. A drop irrigation system to ensure a satisfactory soil moisture during summer dry periods was the fundamental element for survival.

  1. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice

    Directory of Open Access Journals (Sweden)

    Liu Jin-Song

    2008-08-01

    Full Text Available Abstract Background Long terminal repeat retrotransposons (LTR elements are ubiquitous Eukaryotic TEs that transpose through RNA intermediates. Accounting for significant proportion of many plant genomes, LTR elements have been well established as one of the major forces underlying the evolution of plant genome size, structure and function. The accessibility of more than 40% of genomic sequences of the model legume Medicago truncatula (Mt has made the comprehensive study of its LTR elements possible. Results We use a newly developed tool LTR_FINDER to identify LTR retrotransposons in the Mt genome and detect 526 full-length elements as well as a great number of copies related to them. These elements constitute about 9.6% of currently available genomic sequences. They are classified into 85 families of which 64 are reported for the first time. The majority of the LTR retrotransposons belong to either Copia or Gypsy superfamily and the others are categorized as TRIMs or LARDs by their length. We find that the copy-number of Copia-like families is 3 times more than that of Gypsy-like ones but the latter contribute more to the genome. The analysis of PBS and protein-coding domain structure of the LTR families reveals that they tend to use only 4–5 types of tRNAs and many families have quite conservative ORFs besides known TE domains. For several important families, we describe in detail their abundance, conservation, insertion time and structure. We investigate the amplification-deletion pattern of the elements and find that the detectable full-length elements are relatively young and most of them were inserted within the last 0.52 MY. We also estimate that more than ten million bp of the Mt genomic sequences have been removed by the deletion of LTR elements and the removal of the full-length structures in Mt has been more rapid than in rice. Conclusion This report is the first comprehensive description and analysis of LTR retrotransposons in the

  2. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula[OPEN

    Science.gov (United States)

    2015-01-01

    Accumulation of anthocyanins and proanthocyanidins (PAs) is limited to specific cell types and developmental stages, but little is known about how antagonistically acting transcriptional regulators work together to determine temporal and spatial patterning of pigmentation at the cellular level, especially for PAs. Here, we characterize MYB2, a transcriptional repressor regulating both anthocyanin and PA biosynthesis in the model legume Medicago truncatula. MYB2 was strongly upregulated by MYB5, a major regulator of PA biosynthesis in M. truncatula and a component of MYB-basic helix loop helix-WD40 (MBW) activator complexes. Overexpression of MYB2 abolished anthocyanin and PA accumulation in M. truncatula hairy roots and Arabidopsis thaliana seeds, respectively. Anthocyanin deposition was expanded in myb2 mutant seedlings and flowers accompanied by increased anthocyanin content. PA mainly accumulated in the epidermal layer derived from the outer integument in the M. truncatula seed coat, starting from the hilum area. The area of PA accumulation and ANTHOCYANIDIN REDUCTASE expression was expanded into the seed body at the early stage of seed development in the myb2 mutant. Genetic, biochemical, and cell biological evidence suggests that MYB2 functions as part of a multidimensional regulatory network to define the temporal and spatial pattern of anthocyanin and PA accumulation linked to developmental processes. PMID:26410301

  3. Individual species affect plant traits structure in their surroundings: evidence of functional mechanisms of assembly.

    Science.gov (United States)

    Chacón-Labella, Julia; de la Cruz, Marcelino; Pescador, David S; Escudero, Adrián

    2016-04-01

    Evaluating community assembly through the use of functional traits is a promising tool for testing predictions arising from Niche and Coexistence theories. Although interactions among neighboring species and their inter-specific differences are known drivers of coexistence with a strong spatial signal, assessing the role of individual species on the functional structure of the community at different spatial scales remains a challenge. Here, we ask whether individual species exert a measurable effect on the spatial organization of different functional traits in local assemblages. We first propose and compute two functions that describe different aspects of functional trait organization around individual species at multiple scales: individual weighted mean area relationship and individual functional diversity area relationship. Secondly, we develop a conceptual model on the relationship and simultaneous variation of these two metrics, providing five alternative scenarios in response to the ability of some target species to modify its neighbor environment and the possible assembly mechanisms involved. Our results show that some species influence the spatial structure of specific functional traits, but their effects were always restricted to the finest spatial scales. In the basis of our conceptual model, the observed patterns point to two main mechanisms driving the functional structure of the community at the fine scale, "biotic" filtering meditated by individual species and resource partitioning driven by indirect facilitation rather than by competitive mechanisms.

  4. Development of Genomic Resources in the Species of Trifolium L. and Its Application in Forage Legume Breeding

    Directory of Open Access Journals (Sweden)

    Leif Skøt

    2012-05-01

    Full Text Available Clovers (genus Trifolium are a large and widespread genus of legumes. A number of clovers are of agricultural importance as forage crops in grassland agriculture, particularly temperate areas. White clover (Trifolium repens L. is used in grazed pasture and red clover (T. pratense L. is widely cut and conserved as a winter feed. For the diploid red clover, genetic and genomic tools and resources have developed rapidly over the last five years including genetic and physical maps, BAC (bacterial artificial chromosome end sequence and transcriptome sequence information. This has paved the way for the use of genome wide selection and high throughput phenotyping in germplasm development. For the allotetraploid white clover progress has been slower although marker assisted selection is in use and relatively robust genetic maps and QTL (quantitative trait locus information now exist. For both species the sequencing of the model legume Medicago truncatula gene space is an important development to aid genomic, biological and evolutionary studies. The first genetic maps of another species, subterranean clover (Trifolium subterraneum L. have also been published and its comparative genomics with red clover and M. truncatula conducted. Next generation sequencing brings the potential to revolutionize clover genomics, but international consortia and effective use of germplasm, novel population structures and phenomics will be required to carry out effective translation into breeding. Another avenue for clover genomic and genetic improvement is interspecific hybridization. This approach has considerable potential with regard to crop improvement but also opens windows of opportunity for studies of biological and evolutionary processes.

  5. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Directory of Open Access Journals (Sweden)

    Eliana Martínez

    Full Text Available The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  6. Experimental tolerance to boron of the plant species Nicotiana glauca, Jacaranda mimosifolia, Tecoma stans, Medicago sativa y Spinacea oleracea in Argentina; Tolerancia experimental de las especies vegetales Nicotiana glauca, Jacaranda mimosifolia, Tecoma stans, Medicago sativa y Spinacea oleracea al boro, en Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Marta L. de; Albarracin Franco, Silvia [Univ. Nacional de Salta, Inst. de Ecologia y Ambiente Humano, CIUNSa, Buenos Aires No. 177, 4400, Salta (Argentina)], E-mail: mldeviana@arnet.com.ar

    2008-09-15

    The activity of the borate deposits industries constitutes a point source and diffuse pollution of air, soil and water. Therefore, the study and experimentation on possible ways to offset this impact is a priority. A relatively new technique to decontaminate soils is phytoremediation, which uses plants and associated microorganisms. The first step is to identify tolerant plant species, which is the focus of this work. An experiment was conducted in the laboratory to evaluate the germination, survival and growth of different species in different concentrations of boron. At the beginning and end of the experiment was determined concentration of boron in the substrate for each treatment and for substrates with and without vegetation. Significant differences due to treatment, the species and species-treatment interaction. M. sativa, N. glauca and J. mimosifolia were the species most tolerant to boron. The other species showed a decrease in all variables-response function of the concentration of the contaminant. All had low survival in the highest concentration. The decrease of boron was highest in the treatment of 30 ppm of boron with M. sativa and the lowest was recorded in the treatment of 20 ppm of boron with J. mimosifolia and 30 ppm of boron with T. stans and S. oleracea. It is concluded that N. glauca, M. sativa and J. mimosifolia could be considered as promising remediation. (author) [Spanish] La actividad de las industrias borateras constituye una fuente puntual y difusa de contaminacion del aire, suelo y aguas superficiales y profundas. Por lo tanto, el estudio y experimentacion acerca de las posibles formas de contrarrestar este impacto constituye una prioridad. Una tecnica relativamente nueva para descontaminar suelos es la fitorremediacion, que emplea plantas y microorganismos asociados. El primer paso es detectar las especies vegetales tolerantes, lo que constituye el objetivo de este trabajo. Se realizo un experimento en laboratorio para evaluar la

  7. The long-term effects of alfalfa on soil water content in the Loess ...

    African Journals Online (AJOL)

    Administrator

    2011-05-23

    May 23, 2011 ... affect the water content in deep soil and continuous growing alfalfa ... Wasteland, wheat field and six seeded alfalfa (Medicago sativa L.) grasslands with ... The crops (wheat, maize, potato, beans and millet) had been rainfed on all ..... Productivity dynamic of alfalfa and its effects on water eco-environment.

  8. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula.

    Science.gov (United States)

    Jun, Ji Hyung; Liu, Chenggang; Xiao, Xirong; Dixon, Richard A

    2015-10-01

    Accumulation of anthocyanins and proanthocyanidins (PAs) is limited to specific cell types and developmental stages, but little is known about how antagonistically acting transcriptional regulators work together to determine temporal and spatial patterning of pigmentation at the cellular level, especially for PAs. Here, we characterize MYB2, a transcriptional repressor regulating both anthocyanin and PA biosynthesis in the model legume Medicago truncatula. MYB2 was strongly upregulated by MYB5, a major regulator of PA biosynthesis in M. truncatula and a component of MYB-basic helix loop helix-WD40 (MBW) activator complexes. Overexpression of MYB2 abolished anthocyanin and PA accumulation in M. truncatula hairy roots and Arabidopsis thaliana seeds, respectively. Anthocyanin deposition was expanded in myb2 mutant seedlings and flowers accompanied by increased anthocyanin content. PA mainly accumulated in the epidermal layer derived from the outer integument in the M. truncatula seed coat, starting from the hilum area. The area of PA accumulation and ANTHOCYANIDIN REDUCTASE expression was expanded into the seed body at the early stage of seed development in the myb2 mutant. Genetic, biochemical, and cell biological evidence suggests that MYB2 functions as part of a multidimensional regulatory network to define the temporal and spatial pattern of anthocyanin and PA accumulation linked to developmental processes. © 2015 American Society of Plant Biologists. All rights reserved.

  9. Detection of cryptic species

    Energy Technology Data Exchange (ETDEWEB)

    Cockburn, A F; Jensen, T; Seawright, J A [United States Dept. of Agriculture, Agricultural Research Service, Medical and Veterinary Entomology Research Lab., Gainesville, FL (United States)

    1998-01-01

    Morphologically similar cryptic species are common in insects. In Anopheles mosquitoes morphologically described species are complexes of cryptic species. Cryptic species are of great practical importance for two reasons: first, one or more species of the complex might not be a pest and control efforts directed at the complex as a whole would therefore be partly wasted; and second, genetic (and perhaps biological) control strategies directed against one species of the complex would not affect other species of the complex. At least one SIT effort has failed because the released sterile insect were of a different species and therefore did not mate with the wild insects being targeted. We use a multidisciplinary approach for detection of cryptic species complexes, focusing first on identifying variability in wild populations using RFLPs of mitochondrial and ribosomal RNA genes (mtDNA and rDNA); followed by confirmation using a variety of other techniques. For rapid identification of wild individuals of field collections, we use a DNA dot blot assay. DNA probes can be isolated by differential screening, however we are currently focusing on the sequencing of the rDNA extragenic spacers. These regions are repeated several hundred times per genome in mosquitoes and evolve rapidly. Molecular drive tends to keen the individual genes homogeneous within a species. (author). 11 refs, 2 figs, 2 tabs.

  10. Cryptic species as a window into the paradigm shift of the species concept.

    Science.gov (United States)

    Fišer, Cene; Robinson, Christopher T; Malard, Florian

    2018-02-01

    The species concept is the cornerstone of biodiversity science, and any paradigm shift in the delimitation of species affects many research fields. Many biologists now are embracing a new "species" paradigm as separately evolving populations using different delimitation criteria. Individual criteria can emerge during different periods of speciation; some may never evolve. As such, a paradigm shift in the species concept relates to this inherent heterogeneity in the speciation process and species category-which is fundamentally overlooked in biodiversity research. Cryptic species fall within this paradigm shift: they are continuously being reported from diverse animal phyla but are poorly considered in current tests of ecological and evolutionary theory. The aim of this review is to integrate cryptic species in biodiversity science. In the first section, we address that the absence of morphological diversification is an evolutionary phenomenon, a "process" counterpart to the long-studied mechanisms of morphological diversification. In the next section regarding taxonomy, we show that molecular delimitation of cryptic species is heavily biased towards distance-based methods. We also stress the importance of formally naming of cryptic species for better integration into research fields that use species as units of analysis. Finally, we show that incorporating cryptic species leads to novel insights regarding biodiversity patterns and processes, including large-scale biodiversity assessments, geographic variation in species distribution and species coexistence. It is time for incorporating multicriteria species approaches aiming to understand speciation across space and taxa, thus allowing integration into biodiversity conservation while accommodating for species uncertainty. © 2018 John Wiley & Sons Ltd.

  11. Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals.

    Science.gov (United States)

    Panksepp, Jaak

    2011-01-01

    The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates. The relevant lines of evidence are as follows: 1) It is easy to elicit powerful unconditioned emotional responses using localized electrical stimulation of the brain (ESB); these effects are concentrated in ancient subcortical brain regions. Seven types of emotional arousals have been described; using a special capitalized nomenclature for such primary process emotional systems, they are SEEKING, RAGE, FEAR, LUST, CARE, PANIC/GRIEF and PLAY. 2) These brain circuits are situated in homologous subcortical brain regions in all vertebrates tested. Thus, if one activates FEAR arousal circuits in rats, cats or primates, all exhibit similar fear responses. 3) All primary-process emotional-instinctual urges, even ones as complex as social PLAY, remain intact after radical neo-decortication early in life; thus, the neocortex is not essential for the generation of primary-process emotionality. 4) Using diverse measures, one can demonstrate that animals like and dislike ESB of brain regions that evoke unconditioned instinctual emotional behaviors: Such ESBs can serve as 'rewards' and 'punishments' in diverse approach and escape/avoidance learning tasks. 5) Comparable ESB of human brains yield comparable affective experiences. Thus, robust evidence indicates that raw primary-process (i.e., instinctual, unconditioned) emotional behaviors and feelings emanate from homologous brain functions in all mammals (see Appendix S1), which are regulated by higher brain regions. Such findings suggest

  12. Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals.

    Directory of Open Access Journals (Sweden)

    Jaak Panksepp

    Full Text Available BACKGROUND: The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates. PRINCIPAL FINDINGS: The relevant lines of evidence are as follows: 1 It is easy to elicit powerful unconditioned emotional responses using localized electrical stimulation of the brain (ESB; these effects are concentrated in ancient subcortical brain regions. Seven types of emotional arousals have been described; using a special capitalized nomenclature for such primary process emotional systems, they are SEEKING, RAGE, FEAR, LUST, CARE, PANIC/GRIEF and PLAY. 2 These brain circuits are situated in homologous subcortical brain regions in all vertebrates tested. Thus, if one activates FEAR arousal circuits in rats, cats or primates, all exhibit similar fear responses. 3 All primary-process emotional-instinctual urges, even ones as complex as social PLAY, remain intact after radical neo-decortication early in life; thus, the neocortex is not essential for the generation of primary-process emotionality. 4 Using diverse measures, one can demonstrate that animals like and dislike ESB of brain regions that evoke unconditioned instinctual emotional behaviors: Such ESBs can serve as 'rewards' and 'punishments' in diverse approach and escape/avoidance learning tasks. 5 Comparable ESB of human brains yield comparable affective experiences. Thus, robust evidence indicates that raw primary-process (i.e., instinctual, unconditioned emotional behaviors and feelings emanate from homologous brain functions in all mammals (see Appendix S1, which are regulated by

  13. W342F Mutation in CCaMK Enhances Its Affinity to Calmodulin But Compromises Its Role in Supporting Root Nodule Symbiosis in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Edgard Jauregui

    2017-11-01

    Full Text Available The calcium/calmodulin-dependent protein kinase (CCaMK is regulated by free Ca2+ and Ca2+-loaded calmodulin. This dual binding is believed to be involved in its regulation and associated physiological functions, although direct experimental evidence for this is lacking. Here we document that site-directed mutations in the calmodulin-binding domain of CCaMK alters its binding capacity to calmodulin, providing an effective approach to study how calmodulin regulates CCaMK in terms of kinase activity and regulation of rhizobial symbiosis in Medicago truncatula. We observed that mutating the tryptophan at position 342 to phenylalanine (W342F markedly increased the calmodulin-binding capability of the mutant. The mutant CCaMK underwent autophosphorylation and catalyzed substrate phosphorylation in the absence of calcium and calmodulin. When the mutant W342F was expressed in ccamk-1 roots, the transgenic roots exhibited an altered nodulation phenotype. These results indicate that altering the calmodulin-binding domain of CCaMK could generate a constitutively activated kinase with a negative role in the physiological function of CCaMK.

  14. Alfalfa virus S, a new species in the family Alphaflexiviridae.

    Directory of Open Access Journals (Sweden)

    Lev G Nemchinov

    Full Text Available A new species of the family Alphaflexiviridae provisionally named alfalfa virus S (AVS was discovered in alfalfa samples originating from Sudan. A complete nucleotide sequence of the viral genome consisting of 8,349 nucleotides excluding the 3' poly(A tail was determined by high throughput sequencing (HTS on an Illumina platform. NCBI BLAST searches revealed that the virus shares the greatest degree of sequence identity with members of the family Alphaflexiviridae, genus Allexivirus. The AVS genome contains six computationally-predicted open reading frames (ORF encoding viral replication protein, triple gene block protein 1 (TGB1, TGB2, TGB3-like protein, unknown 38.4 kDa protein resembling serine-rich 40 kDa protein characteristic for allexiviruses, and coat protein (CP. AVS lacks a clear 3' proximal ORF that encodes a nucleic acid-binding protein typical for allexiviruses. The identity of the virus was confirmed by RT-PCR with primers derived from the HTS-generated sequence, dot blot hybridization with DIG-labeled virus-specific RNA probes, and Western blot analysis with antibodies produced against a peptide derived from the CP sequence. Transmission electron microscopic observations of the infected tissues showed the presence of filamentous particles similar to allexiviruses in their length and appearance. To the best of our knowledge, this is the first report on the identification of a putative allexivirus in alfalfa (Medicago sativa. The genome sequence of AVS has been deposited in NCBI GenBank on 03/02/2016 as accession № KY696659.

  15. Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L.

    Science.gov (United States)

    Hu, Yajun; Wu, Songlin; Sun, Yuqing; Li, Tao; Zhang, Xin; Chen, Caiyan; Lin, Ge; Chen, Baodong

    2015-02-01

    Elevated night temperature, one of the main climate warming scenarios, can have profound effects on plant growth and metabolism. However, little attention has been paid to the potential role of mycorrhizal associations in plant responses to night warming, although it is well known that symbiotic fungi can protect host plants against various environmental stresses. In the present study, physiological traits of Medicago truncatula L. in association with the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis were investigated under simulated night warming. A constant increase in night temperature of 1.53 °C significantly reduced plant shoot and root biomass, flower and seed number, leaf sugar concentration, and shoot Zn and root P concentrations. However, the AM association essentially mitigated these negative effects of night warming by improving plant growth, especially through increased root biomass, root to shoot ratio, and shoot Zn and root P concentrations. A significant interaction was observed between R. irregularis inoculation and night warming in influencing both root sucrose concentration and expression of sucrose synthase (SusS) genes, suggesting that AM symbiosis and increased night temperature jointly regulated plant sugar metabolism. Night warming stimulated AM fungal colonization but did not influence arbuscule abundance, symbiosis-related plant or fungal gene expression, or growth of extraradical mycelium, indicating little effect of night warming on the development or functioning of AM symbiosis. These findings highlight the importance of mycorrhizal symbiosis in assisting plant resilience to climate warming.

  16. [Allelopathic effects of invasive weed Solidago canadensis on native plants].

    Science.gov (United States)

    Mei, Lingxiao; Chen, Xin; Tang, Jianjun

    2005-12-01

    With growth chamber method, this paper studied the allelopathic potential of invasive weed Solidago canadensis on native plant species. Different concentration S. canadensis root and rhizome extracts were examined, and the test plants were Trifolium repens, Trifolium pretense, Medicago lupulina, Lolium perenne, Suaeda glauca, Plantago virginica, Kummerowia stipulacea, Festuca arundinacea, Ageratum conyzoides, Portulaca oleracea, and Amaranthus spinosus. The results showed that the allelopathic inhibitory effect of the extracts from both S. canadensis root and rhizome was enhanced with increasing concentration, and rhizome extracts had a higher effect than root extracts. At the lowest concentration (1:60), root extract had little effect on the seed germination and seedling growth of T. repens, but rhizome extract could inhibit the germination of all test plants though the inhibitory effect varied with different species. The inhibition was the greatest for grass, followed by forb and legume. 1:60 (m:m) rhizome extract had similar effects on seed germination and radicel growth, but for outgrowth, the extract could inhibit Kummerowia stipulacea, Amaranthus spinosus and Festuca arundinacea, had no significant impact on Lolium perenne, Plantago virginica, Ageratum conyzoides, Portulaca oleracea and Amaranthus spinosus, and stimulated Trifolium repens, Trifolium pretense and Medicago lupulina.

  17. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress.

    Science.gov (United States)

    Kong, Zhaoyu; Mohamad, Osama Abdalla; Deng, Zhenshan; Liu, Xiaodong; Glick, Bernard R; Wei, Gehong

    2015-08-01

    The effects of rhizobial symbiosis on the growth, metal uptake, and antioxidant responses of Medicago lupulina in the presence of 200 mg kg(-1) Cu(2+) throughout different stages of symbiosis development were studied. The symbiosis with Sinorhizobium meliloti CCNWSX0020 induced an increase in plant growth and nitrogen content irrespective of the presence of Cu(2+). The total amount of Cu uptake of inoculated plants significantly increased by 34.0 and 120.4% in shoots and roots, respectively, compared with non-inoculated plants. However, although the rhizobial symbiosis promoted Cu accumulation both in shoots and roots, the increase in roots was much higher than in shoots, thus decreasing the translocation factor and helping Cu phytostabilization. The rate of lipid peroxidation was significantly decreased in both shoots and roots of inoculated vs. non-inoculated plants when measured either 8, 13, or 18 days post-inoculation. In comparison with non-inoculated plants, the activities of superoxide dismutase and ascorbate peroxidase of shoots of inoculated plants exposed to excess Cu were significantly elevated at different stages of symbiosis development; similar increases occurred in the activities of superoxide dismutase, catalase, and glutathione reductase of inoculated roots. The symbiosis with S. meliloti CCNWSX0020 also upregulated the corresponding genes involved in antioxidant responses in the plants treated with excess Cu. The results indicated that the rhizobial symbiosis with S. meliloti CCNWSX0020 not only enhanced plant growth and metal uptake but also improved the responses of plant antioxidant defense to excess Cu stress.

  18. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    Science.gov (United States)

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula.

    Science.gov (United States)

    Kafle, Arjun; Garcia, Kevin; Wang, Xiurong; Pfeffer, Philip E; Strahan, Gary D; Bücking, Heike

    2018-06-02

    Legumes form tripartite interactions with arbuscular mycorrhizal (AM) fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the SUT and SWEET family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits. This article is protected by copyright. All rights reserved.

  20. MtCAS31 Aids Symbiotic Nitrogen Fixation by Protecting the Leghemoglobin MtLb120-1 Under Drought Stress in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Xin Li

    2018-05-01

    Full Text Available Symbiotic nitrogen fixation (SNF in legume root nodules injects millions of tons of nitrogen into agricultural lands and provides ammonia to non-legume crops under N-deficient conditions. During plant growth and development, environmental stresses, such as drought, salt, cold, and heat stress are unavoidable. This raises an interesting question as to how the legumes cope with the environmental stress along with SNF. Under drought stress, dehydrin proteins are accumulated, which function as protein protector and osmotic substances. In this study, we found that the dehydrin MtCAS31 (cold-acclimation-specific 31 functions in SNF in Medicago truncatula during drought stress. We found that MtCAS31 is expressed in nodules and interacts with leghemoglobin MtLb120-1. The interaction between the two proteins protects MtLb120-1 from denaturation under thermal stress in vivo. Compared to wild type, cas31 mutants display a lower nitrogenase activity, a lower ATP/ADP ratio, higher expression of nodule senescence genes and higher accumulation of amyloplasts under dehydration conditions. The results suggested that MtCAS31 protects MtLb120-1 from the damage of drought stress. We identified a new function for dehydrins in SNF under drought stress, which enriches the understanding of the molecular mechanism of dehydrins.

  1. Genome-Wide Identification, Evolutionary Analysis and Expression Profiles of LATERAL ORGAN BOUNDARIES DOMAIN Gene Family in Lotus japonicus and Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Tianquan Yang

    Full Text Available The LATERAL ORGAN BOUNDARIES DOMAIN (LBD gene family has been well-studied in Arabidopsis and play crucial roles in the diverse growth and development processes including establishment and maintenance of boundary of developmental lateral organs. In this study we identified and characterized 38 LBD genes in Lotus japonicus (LjLBD and 57 LBD genes in Medicago truncatula (MtLBD, both of which are model legume plants that have some specific development features absent in Arabidopsis. The phylogenetic relationships, their locations in the genome, genes structure and conserved motifs were examined. The results revealed that all LjLBD and MtLBD genes could be distinctly divided into two classes: Class I and II. The evolutionary analysis showed that Type I functional divergence with some significantly site-specific shifts may be the main force for the divergence between Class I and Class II. In addition, the expression patterns of LjLBD genes uncovered the diverse functions in plant development. Interestingly, we found that two LjLBD proteins that were highly expressed during compound leaf and pulvinus development, can interact via yeast two-hybrid assays. Taken together, our findings provide an evolutionary and genetic foundation in further understanding the molecular basis of LBD gene family in general, specifically in L. japonicus and M. truncatula.

  2. Molluscan indicator species and their potential use in ecological status assessment using species distribution modeling.

    Science.gov (United States)

    Moraitis, Manos L; Tsikopoulou, Irini; Geropoulos, Antonios; Dimitriou, Panagiotis D; Papageorgiou, Nafsika; Giannoulaki, Marianna; Valavanis, Vasilis D; Karakassis, Ioannis

    2018-05-24

    Marine habitat assessment using indicator species through Species Distribution Modeling (SDM) was investigated. The bivalves: Corbula gibba and Flexopecten hyalinus were the indicator species characterizing disturbed and undisturbed areas respectively in terms of chlorophyll a concentration in Greece. The habitat suitability maps of these species reflected the overall ecological status of the area. The C. gibba model successfully predicted the occurrence of this species in areas with increased physical disturbance driven by chlorophyll a concentration, whereas the habitat map for F. hyalinus showed an increased probability of occurrence in chlorophyll-poor areas, affected mainly by salinity. We advocate the use of C. gibba as a proxy for eutrophication and the incorporation of this species in monitoring studies through SDM methods. For the Mediterranean Sea we suggest the use of F. hyalinus in SDM as an indicator of environmental stability and a possible forecasting tool for salinity fluctuations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Producción, evaluación y caracterización microbiológica de un biofertilizante artesanal para la fijación de nitrógeno en especies vegetales forrajeras.

    OpenAIRE

    Reyes Villegas, María Isabel

    2016-01-01

    The increased production of grasslands in Ecuador has necessitated the use of chemical fertilizers, as in the case of commercial urea, which has caused impacts on agricultural land. As an alternative to this chemical fertilizer , developed , tested and characterized a craft biofertilizer made from roots of alfalfa ( Medicago sativa) , White Clover ( Trifolium repens ) and rye grass ( Lolium perenne), which has diazotrophic microbiological activity of bacterial species such...

  4. Toxicities of TNT and RDX to Terrestrial Plants in Five Soils with Contrasting Characteristics

    Science.gov (United States)

    2013-07-01

    lettuce ( Lactuca sativa (L.)) and barley (Hordeum vulgare (L.)), respectively, at analytically determined soil concentrations up to and including 3320... sativa L.), Japanese millet (J. millet; Echinochloa crus-galli L. [Beauv.]), and perennial ryegrass (Lolium perenne L.) in five natural soils that...of the test. The test species in these studies were Medicago sativa (L.) var. Canada no. 1 (alfalfa), Echinochloa crus-galli (L.) P. Beauv. var

  5. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    Science.gov (United States)

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Diego Rubiales

    2009-07-01

    Full Text Available Abstract Background Parasitic angiosperm Orobanche crenata infection represents a major constraint for the cultivation of legumes worldwide. The level of protection achieved to date is either incomplete or ephemeral. Hence, an efficient control of the parasite requires a better understanding of its interaction and associated resistance mechanisms at molecular levels. Results In order to study the plant response to this parasitic plant and the molecular basis of the resistance we have used a proteomic approach. The root proteome of two accessions of the model legume Medicago truncatula displaying differences in their resistance phenotype, in control as well as in inoculated plants, over two time points (21 and 25 days post infection, has been compared. We report quantitative as well as qualitative differences in the 2-DE maps between early- (SA 27774 and late-resistant (SA 4087 genotypes after Coomassie and silver-staining: 69 differential spots were observed between non-inoculated genotypes, and 42 and 25 spots for SA 4087 and SA 27774 non-inoculated and inoculated plants, respectively. In all, 49 differential spots were identified by peptide mass fingerprinting (PMF following MALDI-TOF/TOF mass spectrometry. Many of the proteins showing significant differences between genotypes and after parasitic infection belong to the functional category of defense and stress-related proteins. A number of spots correspond to proteins with the same function, and might represent members of a multigenic family or post-transcriptional forms of the same protein. Conclusion The results obtained suggest the existence of a generic defense mechanism operating during the early stages of infection and differing in both genotypes. The faster response to the infection observed in the SA 27774 genotype might be due to the action of proteins targeted against key elements needed for the parasite's successful infection, such as protease inhibitors. Our data are discussed and

  7. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits.

    Science.gov (United States)

    Biazzi, Elisa; Nazzicari, Nelson; Pecetti, Luciano; Brummer, E Charles; Palmonari, Alberto; Tava, Aldo; Annicchiarico, Paolo

    2017-01-01

    Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3-0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits

  8. Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula.

    Science.gov (United States)

    Castillejo, Ma Angeles; Maldonado, Ana M; Dumas-Gaudot, Eliane; Fernández-Aparicio, Mónica; Susín, Rafael; Diego, Rubiales; Jorrín, Jesús V

    2009-07-03

    Parasitic angiosperm Orobanche crenata infection represents a major constraint for the cultivation of legumes worldwide. The level of protection achieved to date is either incomplete or ephemeral. Hence, an efficient control of the parasite requires a better understanding of its interaction and associated resistance mechanisms at molecular levels. In order to study the plant response to this parasitic plant and the molecular basis of the resistance we have used a proteomic approach. The root proteome of two accessions of the model legume Medicago truncatula displaying differences in their resistance phenotype, in control as well as in inoculated plants, over two time points (21 and 25 days post infection), has been compared. We report quantitative as well as qualitative differences in the 2-DE maps between early- (SA 27774) and late-resistant (SA 4087) genotypes after Coomassie and silver-staining: 69 differential spots were observed between non-inoculated genotypes, and 42 and 25 spots for SA 4087 and SA 27774 non-inoculated and inoculated plants, respectively. In all, 49 differential spots were identified by peptide mass fingerprinting (PMF) following MALDI-TOF/TOF mass spectrometry. Many of the proteins showing significant differences between genotypes and after parasitic infection belong to the functional category of defense and stress-related proteins. A number of spots correspond to proteins with the same function, and might represent members of a multigenic family or post-transcriptional forms of the same protein. The results obtained suggest the existence of a generic defense mechanism operating during the early stages of infection and differing in both genotypes. The faster response to the infection observed in the SA 27774 genotype might be due to the action of proteins targeted against key elements needed for the parasite's successful infection, such as protease inhibitors. Our data are discussed and compared with those previously obtained with pea 1 and

  9. Comparative gene expression profiles between heterotic and non-heterotic hybrids of tetraploid Medicago sativa

    Directory of Open Access Journals (Sweden)

    Nettleton Dan

    2009-08-01

    Full Text Available Abstract Background Heterosis, the superior performance of hybrids relative to parents, has clear agricultural value, but its genetic control is unknown. Our objective was to test the hypotheses that hybrids expressing heterosis for biomass yield would show more gene expression levels that were different from midparental values and outside the range of parental values than hybrids that do not exhibit heterosis. Results We tested these hypotheses in three Medicago sativa (alfalfa genotypes and their three hybrids, two of which expressed heterosis for biomass yield and a third that did not, using Affymetrix M. truncatula GeneChip arrays. Alfalfa hybridized to approximately 47% of the M. truncatula probe sets. Probe set signal intensities were analyzed using MicroArray Suite v.5.0 (MAS and robust multi-array average (RMA algorithms. Based on MAS analysis, the two heterotic hybrids performed similarly, with about 27% of genes showing differential expression among the parents and their hybrid compared to 12.5% for the non-heterotic hybrid. At a false discovery rate of 0.15, 4.7% of differentially expressed genes in hybrids (~300 genes showed nonadditive expression compared to only 0.5% (16 genes in the non-heterotic hybrid. Of the nonadditively expressed genes, approximately 50% showed expression levels that fell outside the parental range in heterotic hybrids, but only one of 16 showed a similar profile in the non-heterotic hybrid. Genes whose expression differed in the parents were three times more likely to show nonadditive expression than genes whose parental transcript levels were equal. Conclusion The higher proportions of probe sets with expression level that differed from the parental midparent value and that were more extreme than either parental value in the heterotic hybrids compared to a non-heterotic hybrid were also found using RMA. We conclude that nonadditive expression of transcript levels may contribute to heterosis for biomass

  10. Optimizing growth and conidia production of Cercospora medicaginis

    Directory of Open Access Journals (Sweden)

    Naceur DJEBALI

    2010-09-01

    Full Text Available The fungus Cercospora medicaginis is pathogenic to annual and perennial Medicago species. It grows slowly and produces only few conidia. To test the pathogenicity or virulence of C. medicaginis and to breed resistant lines of Medicago truncatula we optimized in vitro the growth and the conidium production of four isolates of C. medicaginis derived from M. truncatula and M. polymorpha. Of the eight media tested, that with wheat bran juice (WBJ yielded optimal growth and conidium production with most strains. The optimum growth temperature on WBJ medium was 25–30°C. Growth and conidia production were better in conditions of alternating light and darkness than with constant darkness. The best growth in the liquid WBJ medium occurred at pH 6–7, but the greatest number of conidia in that medium was obtained at pH 8–9.

  11. Plastic ingestion in aquatic-associated bird species in southern Portugal.

    Science.gov (United States)

    Nicastro, Katy R; Lo Savio, Roberto; McQuaid, Christopher D; Madeira, Pedro; Valbusa, Ugo; Azevedo, Fábia; Casero, Maria; Lourenço, Carla; Zardi, Gerardo I

    2018-01-01

    Excessive use of plastics in daily life and the inappropriate disposal of plastic products are severely affecting wildlife species in both coastal and aquatic environments. Birds are top-predators, exposed to all threats affecting their environments, making them ideal sentinel organisms for monitoring ecosystems change. We set a baseline assessment of the prevalence of marine plastic litter affecting multi-species populations of aquatic birds in southern Portugal. By examining 160 stomach contents from 8 species of aquatic birds, we show that 22.5% were affected by plastic debris. Plastic was found in Ciconia ciconia, Larus fuscus and L. michahellis. Ciconia ciconia ingested the highest amount (number of items and total mass) of plastic debris. Polydimethylsiloxane (PDMS, silicones) was the most abundant polymer and was recorded only in C. ciconia. Plastic ingestion baseline data are of crucial importance to evaluate changes through time and among regions and to define management and conservation strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 75 FR 69221 - Endangered and Threatened Wildlife and Plants; Review of Native Species That Are Candidates for...

    Science.gov (United States)

    2010-11-10

    ... threats to their survival; to provide advance knowledge of potential listings that could affect decisions... as: The number of populations and/or extent of range of the species affected by the threat(s); the... characteristics of the species and its current abundance and distribution; whether the threats affect the species...

  13. Expression of an alfalfa (Medicago sativa L.) peroxidase gene in transgenic Arabidopsis thaliana enhances resistance to NaCl and H2O2.

    Science.gov (United States)

    Teng, K; Xiao, G Z; Guo, W E; Yuan, J B; Li, J; Chao, Y H; Han, L B

    2016-05-23

    Peroxidases (PODs) are enzymes that play important roles in catalyzing the reduction of H2O2 and the oxidation of various substrates. They function in many different and important biological processes, such as defense mechanisms, immune responses, and pathogeny. The POD genes have been cloned and identified in many plants, but their function in alfalfa (Medicago sativa L.) is not known, to date. Based on the POD gene sequence (GenBank accession No. L36157.1), we cloned the POD gene in alfalfa, which was named MsPOD. MsPOD expression increased with increasing H2O2. The gene was expressed in all of the tissues, including the roots, stems, leaves, and flowers, particularly in stems and leaves under light/dark conditions. A subcellular analysis showed that MsPOD was localized outside the cells. Transgenic Arabidopsis with MsPOD exhibited increased resistance to H2O2 and NaCl. Moreover, POD activity in the transgenic plants was significantly higher than that in wild-type Arabidopsis. These results show that MsPOD plays an important role in resistance to H2O2 and NaCl.

  14. Alfalfa (Medicago sativa L.) is tolerant to higher levels of salinity than previous guidelines indicated: Implications of field and greenhouse studies

    Science.gov (United States)

    Putnam, Daniel H.; Benes, Sharon; Galdi, Giuliano; Hutmacher, Bob; Grattan, Steve

    2017-04-01

    Alfalfa (Medicago sativa L.) is the most widely grown leguminous forage crop in North America and is valued for high productivity, quality, economic value, and for dairy productivity. Alfalfa has historically been classified as moderately sensitive to saline conditions, with yield declines predicted at >2 dS/m in the saturated soil paste extract. However, greenhouse, sand tank, and field studies over the past five years have confirmed that alfalfa can be grown with limited negative effects at much higher salinity levels. A broad collection of alfalfa varieties has exhibited a range of resistance at irrigation water salinities >5 dS/m ECw in greenhouse trials, with significant variation due to variety. USDA-ARS sand tank studies indicated similar or greater tolerances closer to 8 dS/m in the soil water, in addition to confirmation of significant varietal differences. A three-year field study on clay loam soil with applications of 5-7 dS/m ECw irrigation water indicated normal yields and excellent stand survivability. A second field study in the same soil type with levels from 8-10 dS/m ECw showed yield reductions of 10-15% but economic yields were still achieved at those levels. Field and greenhouse studies were conducted with mixed salt saline sodic waters typical of the San Joaquin Valley of California. Field evaluation of variety performance was subject to greater variation due to secondary salinity-soil interactions including water infiltration and crusting problems, not only salinity per-se. Thus, adequate irrigation water availability to the crop may be as important as salinity in impacting yields under field conditions. Once established, the deep-rooted characteristics of alfalfa enable utilization of deeper subsurface moisture, even at moderate to high salinity levels, as documented by USDA lysimeter studies. Significant advantages to salinity-tolerant varieties have been observed. It will be important to consider specific management factors which may enable

  15. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L.

    Science.gov (United States)

    Ghnaya, Tahar; Mnassri, Majda; Ghabriche, Rim; Wali, Mariem; Poschenrieder, Charlotte; Lutts, Stanley; Abdelly, Chedly

    2015-01-01

    Besides their role in nitrogen supply to the host plants as a result of symbiotic N fixation, the association between legumes and Rhizobium could be useful for the rehabilitation of metal-contaminated soils by phytoextraction. A major limitation presents the metal-sensitivity of the bacterial strains. The aim of this work was to explore the usefulness of Sinorhizobium meliloti originated from a mining site for Cd phytoextraction by Medicago sativa. Inoculated and non-inoculated plants were cultivated for 60 d on soils containing 50 and/or 100 mg Cd kg(-1) soil. The inoculation hindered the occurrence of Cd- induced toxicity symptoms that appeared in the shoots of non-inoculated plants. This positive effect of S. meliloti colonization was accompanied by an increase in biomass production and improved nutrient acquisition comparatively to non-inoculated plants. Nodulation enhanced Cd absorption by the roots and Cd translocation to the shoots. The increase of plant biomass concomitantly with the increase of Cd shoot concentration in inoculated plants led to higher potential of Cd-phytoextraction in these plants. In the presence of 50 mg Cd kg(-1) in the soil, the amounts of Cd extracted in the shoots were 58 and 178 μg plant(-1) in non-inoculated and inoculated plants, respectively. This study demonstrates that this association M. sativa-S. meliloti may be an efficient biological system to extract Cd from contaminated soils.

  16. Genetic transformation and analysis of rice OsAPx2 gene in Medicago sativa.

    Directory of Open Access Journals (Sweden)

    Qingjie Guan

    Full Text Available The OsAPx2 gene from rice was cloned to produce PBI121::OsAPx2 dual-expression plants, of which expression level would be increasing under stressful conditions. The enzyme ascorbate peroxidase (APX in the leaves and roots of the plants increased with increasing exposure time to different sodium chloride (NaCl and hydrogen peroxide (H(2O(2concentrations, as indicated by protein gel blot analysis. The increased enzyme yield improved the ability of the plants to resist the stress treatments. The OsAPx2 gene was localized in the cytoplasm of epidermal onion cells as indicated by the instantaneous expression of green fluorescence. An 80% regeneration rate was observed in Medicago sativa L. plants transformed with the OsAPx2 gene using Agrobacterium tumefaciens, as indicated by specific primer PCR. The OsAPx2 gene was expressed at the mRNA level and the individual M. sativa (T#1,T#2,T#5 were obtained through assaying the generation of positive T2 using RNA gel blot analysis. When the seeds of the wild type (WT and the T2 (T#1,T#5 were incubated in culture containing MS with NaCl for 7 days, the results as shown of following: the root length of transgenic plant was longer than WT plants, the H(2O(2 content in roots of WT was more than of transgenic plants, the APX activity under stresses increased by 2.89 times compared with the WT, the malondialdehyde (MDA content of the WT was higher than the transgenic plants, the leaves of the WT turned yellow, but those of the transgenic plants remained green and remained healthy. The chlorophyll content in the WT leaves was less than in the transgenic plants, after soaking in solutions of H(2O(2, sodium sulfite (Na(2SO(3, and sodium bicarbonate (NaHCO(3. Therefore, the OsAPx2 gene overexpression in transgenic M. sativa improves the removal of H(2O(2 and the salt-resistance compared with WT plants. A novel strain of M. sativa carrying a salt-resistance gene was obtained.

  17. Litter Quality of Populus Species as Affected by Free-Air CO2

    NARCIS (Netherlands)

    Vermue, E.; Buurman, P.; Hoosbeek, M.R.

    2009-01-01

    The effect of elevated CO2 and nitrogen fertilization on the molecular chemistry of litter of three Populus species and associated soil organic matter (SOM) was investigated by pyrolysis-gas chromatography/mass spectrometry. The results are based on 147 quantified organic compounds in 24 litter

  18. Ultrastructural and Molecular Analyses Reveal Enhanced Nucleolar Activity in Medicago truncatula Cells Overexpressing the MtTdp2α Gene

    Science.gov (United States)

    Macovei, Anca; Faè, Matteo; Biggiogera, Marco; de Sousa Araújo, Susana; Carbonera, Daniela; Balestrazzi, Alma

    2018-01-01

    The role of tyrosyl-DNA phosphodiesterase 2 (Tdp2) involved in the repair of 5′-end-blocking DNA lesions is still poorly explored in plants. To gain novel insights, Medicago truncatula suspension cultures overexpressing the MtTdp2α gene (Tdp2α-13C and Tdp2α-28 lines, respectively) and a control (CTRL) line carrying the empty vector were investigated. Transmission electron microscopy (TEM) revealed enlarged nucleoli (up to 44% expansion of the area, compared to CTRL), the presence of nucleolar vacuoles, increased frequency of multinucleolate cells (up to 4.3-fold compared to CTRL) and reduced number of ring-shaped nucleoli in Tdp2α-13C and Tdp2α-28 lines. Ultrastructural data suggesting for enhanced nucleolar activity in MtTdp2α-overexpressing lines were integrated with results from bromouridine incorporation. The latter revealed an increase of labeled transcripts in both Tdp2α-13C and Tdp2α-28 cells, within the nucleolus and in the extra-nucleolar region. MtTdp2α-overexpressing cells showed tolerance to etoposide, a selective inhibitor of DNA topoisomerase II, as evidenced by DNA diffusion assay. TEM analysis revealed etoposide-induced rearrangements within the nucleolus, resembling the nucleolar caps observed in animal cells under transcription impairment. Based on these findings it is evident that MtTdp2α-overexpression enhances nucleolar activity in plant cells. PMID:29868059

  19. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zhang, Jiyu; Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Wang, Yanrong

    2016-03-25

    Drought and high salinity are two major abiotic factors that restrict alfalfa productivity. A dehydrin protein, CsLEA, from the desert grass Cleistogenes songorica was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation using the bar gene as a selectable marker, and the drought and salt stress tolerances of the transgenic plants were assessed. Thirty-nine of 119 transformants were positive, as screened by Basta, and further molecularly authenticated using PCR and RT-PCR. Phenotype observations revealed that the transgenic plants grew better than the wild-type (WT) plants after 15d of drought stress and 10d of salt stress: the leaves of WT alfalfa turned yellow, whereas the transgenic alfalfa leaves only wilted; after rewatering, the transgenic plants returned to a normal state, though the WT plants could not be restored. Evaluation of physiologic and biochemical indices during drought and salt stresses showed a relatively lower Na(+) content in the leaves of the transgenic plants, which would reduce toxic ion effects. In addition, the transgenic plants were able to maintain a higher relative water content (RWC), higher shoot biomass, fewer photosystem changes, decreased membrane injury, and a lower level of osmotic stress injury. These results demonstrate that overexpression of the CsLEA gene can enhance the drought and salt tolerance of transgenic alfalfa; in addition, carrying the bar gene in the genome may increase herbicide resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ultrastructural and Molecular Analyses Reveal Enhanced Nucleolar Activity in Medicago truncatula Cells Overexpressing the MtTdp2α Gene

    Directory of Open Access Journals (Sweden)

    Anca Macovei

    2018-05-01

    Full Text Available The role of tyrosyl-DNA phosphodiesterase 2 (Tdp2 involved in the repair of 5′-end-blocking DNA lesions is still poorly explored in plants. To gain novel insights, Medicago truncatula suspension cultures overexpressing the MtTdp2α gene (Tdp2α-13C and Tdp2α-28 lines, respectively and a control (CTRL line carrying the empty vector were investigated. Transmission electron microscopy (TEM revealed enlarged nucleoli (up to 44% expansion of the area, compared to CTRL, the presence of nucleolar vacuoles, increased frequency of multinucleolate cells (up to 4.3-fold compared to CTRL and reduced number of ring-shaped nucleoli in Tdp2α-13C and Tdp2α-28 lines. Ultrastructural data suggesting for enhanced nucleolar activity in MtTdp2α-overexpressing lines were integrated with results from bromouridine incorporation. The latter revealed an increase of labeled transcripts in both Tdp2α-13C and Tdp2α-28 cells, within the nucleolus and in the extra-nucleolar region. MtTdp2α-overexpressing cells showed tolerance to etoposide, a selective inhibitor of DNA topoisomerase II, as evidenced by DNA diffusion assay. TEM analysis revealed etoposide-induced rearrangements within the nucleolus, resembling the nucleolar caps observed in animal cells under transcription impairment. Based on these findings it is evident that MtTdp2α-overexpression enhances nucleolar activity in plant cells.

  1. The alternative Medicago truncatula defense proteome of ROS – defective transgenic roots during early microbial infection

    Directory of Open Access Journals (Sweden)

    Leonard Muriithi Kiirika

    2014-07-01

    Full Text Available ROP-type GTPases of plants function as molecular switches within elementary signal transduction pathways such as the regulation of ROS synthesis via activation of NADPH oxidases (RBOH-respiratory burst oxidase homologue in plants. Previously, we reported that silencing of the Medicago truncatula GTPase MtROP9 led to reduced ROS production and suppressed induction of ROS-related enzymes in transgenic roots (MtROP9i infected with pathogenic (Aphanomyces euteiches and symbiotic microorganisms (Glomus intraradices, Sinorhizobium meliloti. While fungal infections were enhanced, S. meliloti infection was drastically impaired. In this study, we investigate the temporal proteome response of M. truncatula MtROP9i transgenic roots during the same microbial interactions under conditions of deprived potential to synthesize ROS. In comparison with control roots (Mtvector, we present a comprehensive proteomic analysis using sensitive MS protein identification. For four early infection time-points (1, 3, 5, 24 hpi, 733 spots were found to be different in abundance: 213 spots comprising 984 proteins (607 unique were identified after S. meliloti infection, 230 spots comprising 796 proteins (580 unique after G. intraradices infection, and 290 spots comprising 1240 proteins (828 unique after A. euteiches infection. Data evaluation by GelMap in combination with a heatmap tool allowed recognition of key proteome changes during microbial interactions under conditions of hampered ROS synthesis. Overall, the number of induced proteins in MtROP9i was low as compared with controls, indicating a dual function of ROS in defense signaling as well as alternative response patterns activated during microbial infection. Qualitative analysis of induced proteins showed that enzymes linked to ROS production and scavenging were highly induced in control roots, while in MtROP9i the majority of proteins were involved in alternative defense pathways such as cell wall and protein

  2. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate

    2015-01-01

    -interaction models to describe how species' interactions influenced diversity-productivity relationships. Communities with more species had higher total biomass than did monoculture communities, but native and nonnative communities diverged in root : shoot ratios and the mechanism responsible for increased......Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired...... native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity...

  3. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture

    International Nuclear Information System (INIS)

    Torreira, Eva; Seabra, Ana Rita; Marriott, Hazel; Zhou, Min; Llorca, Óscar; Robinson, Carol V.; Carvalho, Helena G.; Fernández-Tornero, Carlos; Pereira, Pedro José Barbosa

    2014-01-01

    The experimental models of dicotyledonous cytoplasmic and plastid-located glutamine synthetases unveil a conserved eukaryotic-type decameric architecture, with subtle structural differences in M. truncatula isoenzymes that account for their distinct herbicide resistance. The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants

  4. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture

    Energy Technology Data Exchange (ETDEWEB)

    Torreira, Eva [Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Seabra, Ana Rita [IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); Marriott, Hazel; Zhou, Min [University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Llorca, Óscar [Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Robinson, Carol V. [University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Carvalho, Helena G. [IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); Fernández-Tornero, Carlos, E-mail: cftornero@cib.csic.es [Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Pereira, Pedro José Barbosa, E-mail: cftornero@cib.csic.es [IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)

    2014-04-01

    The experimental models of dicotyledonous cytoplasmic and plastid-located glutamine synthetases unveil a conserved eukaryotic-type decameric architecture, with subtle structural differences in M. truncatula isoenzymes that account for their distinct herbicide resistance. The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants.

  5. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    Science.gov (United States)

    Coleman-Derr, Devin; Desgarennes, Damaris; Fonseca-Garcia, Citlali; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; North, Gretchen; Visel, Axel; Partida-Martinez, Laila P; Tringe, Susannah G

    2016-01-01

    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions. No claim to US Government works. New Phytologist © 2015 New Phytologist Trust.

  6. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.

    Science.gov (United States)

    Pislariu, Catalina I; Murray, Jeremy D; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; Benedito, Vagner A; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Chen, Rujin; Udvardi, Michael K

    2012-08-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.

  7. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  8. Effects of cutting frequency on alfalfa yield and yield components in ...

    African Journals Online (AJOL)

    Effects of cutting frequency on alfalfa yield and yield components in Songnen Plain, Northeast China. J Chen, F Tang, R Zhu, C Gao, G Di, Y Zhang. Abstract. The productivity and quality of alfalfa (Medicago sativa L.) is strongly influenced by cutting frequency (F). To clarify that the yield and quality of alfalfa if affected by F, ...

  9. Biodiversity in the cyclic competition system of three species according to the emergence of mutant species

    Science.gov (United States)

    Park, Junpyo

    2018-05-01

    Understanding mechanisms which promote or hinder existing ecosystems are important issues in ecological sciences. In addition to fundamental interactions such as competition and migration among native species, existing ecosystems can be easily disturbed by external factors, and the emergence of new species may be an example in such cases. The new species which does not exist in a current ecosystem can be regarded as either alien species entered from outside or mutant species born by mutation in existing normal species. Recently, as existing ecosystems are getting influenced by various physical/chemical external factors, mutation due to anthropogenic and environmental factors can occur more frequently and is thus attracting much attention for the maintenance of ecosystems. In this paper, we consider emergences of mutant species among self-competing three species in the cyclic dominance. By defining mutation as the birth of mutant species, we investigate how mutant species can affect biodiversity in the existing ecosystem. Through microscopic and macroscopic approaches, we have found that the society of existing normal species can be disturbed by mutant species either the society is maintained accompanying with the coexistence of all species or jeopardized by occupying of mutant species. Due to the birth of mutant species, the existing society may be more complex by constituting two different groups of normal and mutant species, and our results can be contributed to analyze complex ecosystems of many species. We hope our findings may propose a new insight on mutation in cyclic competition systems of many species.

  10. Co-downregulation of the hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase and coumarate 3-hydroxylase significantly increases cellulose content in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Tong, Zongyong; Li, Heng; Zhang, Rongxue; Ma, Lei; Dong, Jiangli; Wang, Tao

    2015-10-01

    Lignin is a component of the cell wall that is essential for growth, development, structure and pathogen resistance in plants, but high lignin is an obstacle to the conversion of cellulose to ethanol for biofuel. Genetically modifying lignin and cellulose contents can be a good approach to overcoming that obstacle. Alfalfa (Medicago sativa L.) is rich in lignocellulose biomass and used as a model plant for the genetic modification of lignin in this study. Two key enzymes in the lignin biosynthesis pathway-hydroxycinnamoyl -CoA:shikimate hydroxycinnamoyl transferase (HCT) and coumarate 3-hydroxylase (C3H)-were co-downregulated. Compared to wild-type plants, the lignin content in the modified strain was reduced by 38%, cellulose was increased by 86.1%, enzyme saccharification efficiency was increased by 10.9%, and cell wall digestibility was increased by 13.0%. The modified alfalfa exhibited a dwarf phenotype, but normal above ground biomass. This approach provides a new strategy for reducing lignin and increasing cellulose contents and creates a new genetically modified crop with enhanced value for biofuel. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests.

    Science.gov (United States)

    Marchand, Charlotte; Hogland, William; Kaczala, Fabio; Jani, Yahya; Marchand, Lilian; Augustsson, Anna; Hijri, Mohamed

    2016-11-01

    Several Gentle Remediation Options (GRO), e.g., plant-based options (phytoremediation), singly and combined with soil amendments, can be simultaneously efficient for degrading organic pollutants and either stabilizing or extracting trace elements (TEs). Here, a 5-month greenhouse trial was performed to test the efficiency of Medicago sativa L., singly and combined with a compost addition (30% w/w), to treat soils contaminated by petroleum hydrocarbons (PHC), Co and Pb collected at an auto scrap yard. After 5 months, total soil Pb significantly decreased in the compost-amended soil planted with M. sativa, but not total soil Co. Compost incorporation into the soil promoted PHC degradation, M. sativa growth and survival, and shoot Pb concentrations [3.8 mg kg(-1) dry weight (DW)]. Residual risk assessment after the phytoremediation trial showed a positive effect of compost amendment on plant growth and earthworm development. The O2 uptake by soil microorganisms was lower in the compost-amended soil, suggesting a decrease in microbial activity. This study underlined the benefits of the phytoremediation option based on M. sativa cultivation and compost amendment for remediating PHC- and Pb-contaminated soils.

  12. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest.

    Science.gov (United States)

    Heather Erickson; Eric A. Davidson; Michael Keller

    2002-01-01

    Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species...

  13. Characterization of genetic structure of alfalfa (Medicago sp.) from ...

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... region of Ladakh (Jammu and Kashmir) were analyzed using inter simple sequence repeats (ISSRs) and ..... perennials pollinated by bumble bees which largely ... species facilitates the loading of pollen on the body of the.

  14. Characterization of Sensitive Species and Habitats Affected by the Operation of USACE Water Resource Development Projects

    National Research Council Canada - National Science Library

    Kasul, Richard

    2000-01-01

    ...) work unit titled "Reservoir Operations - Impacts on Target Species." Current knowledge regarding the occurrence of sensitive species that have been identified as a management concern in the operation of Corps projects is reviewed...

  15. Species decline: A perspective on extinction, recovery, and propagation

    Science.gov (United States)

    Carpenter, J.W.

    1983-01-01

    This keynote address was presented at the Conference on the Conservation of Endangered Species in Zoological Parks and Aquariums on April 18, 1982 at the National Aquarium in Baltimore. It outlines 1) future trends in the world's environment, resources, and population; 2) factors affecting species decline; 3) reasons for preserving life forms; and 4) techniques, with emphasis on captive propagation, used to assist in species recovery.

  16. Bias correction in species distribution models: pooling survey and collection data for multiple species.

    Science.gov (United States)

    Fithian, William; Elith, Jane; Hastie, Trevor; Keith, David A

    2015-04-01

    Presence-only records may provide data on the distributions of rare species, but commonly suffer from large, unknown biases due to their typically haphazard collection schemes. Presence-absence or count data collected in systematic, planned surveys are more reliable but typically less abundant.We proposed a probabilistic model to allow for joint analysis of presence-only and survey data to exploit their complementary strengths. Our method pools presence-only and presence-absence data for many species and maximizes a joint likelihood, simultaneously estimating and adjusting for the sampling bias affecting the presence-only data. By assuming that the sampling bias is the same for all species, we can borrow strength across species to efficiently estimate the bias and improve our inference from presence-only data.We evaluate our model's performance on data for 36 eucalypt species in south-eastern Australia. We find that presence-only records exhibit a strong sampling bias towards the coast and towards Sydney, the largest city. Our data-pooling technique substantially improves the out-of-sample predictive performance of our model when the amount of available presence-absence data for a given species is scarceIf we have only presence-only data and no presence-absence data for a given species, but both types of data for several other species that suffer from the same spatial sampling bias, then our method can obtain an unbiased estimate of the first species' geographic range.

  17. Species Identification, Strain Differentiation, and Antifungal Susceptibility of Dermatophyte Species Isolated From Clinically Infected Arabian Horses

    DEFF Research Database (Denmark)

    El Damaty, Hend M; Tartor, Yasmine H; Mahmmod, Yasser Saadeldien Ibrahim

    2017-01-01

    Arabian horses, the eldest equine breeds, have great economic and social significance for its long, unique, and storied history. Molecular characterization of dermatophyte species affecting Arabian horses is a crucial necessity for epidemiologic and therapeutic purposes. The objective of this study...... are more effective against T. mentagrophytes and T. verrucosum. In conclusion, PCR-RFLP technique is a reliable tool for the identification of dermatophyte species from Arabian horses. Internal transcribed spacer sequencing provides a precise and useful technique for the identification and differentiation...

  18. Evaluation of Perennial Forage Legumes and Herbs in Six Mediterranean Environments Evaluación de Leguminosas y Hierbas Forrajeras Perennes en Seis Medioambientes Mediterráneos

    Directory of Open Access Journals (Sweden)

    Daniel Real

    2011-09-01

    Full Text Available There is an absence of drought tolerant herbaceous perennial forage legume and herb options other than lucerne (Medicago sativa L. for environments with Mediterranean-like climates common in extensive areas of Southern Australia, the Mediterranean basin, and Chile. Therefore, a collection of 174 forage perennial legume and herb entries from 103 species and 32 genera was evaluated for adaptation in a diverse range of Mediterranean climatic environments in Southern Australia. The seasonal rainfall distribution varied from moderately to highly winter dominant with long term average annual rainfall ranging from 318 to 655 mm. The entries were rated for productivity and persistence over 3 yr. The 12 entries identified as the most promising for winter, summer, or all-year round production included Bituminaria bituminosa (L. C.H. Stirt. var. albomarginata; Cichorium intybus L.; Cullen australasicum (Schltdl. J.W. Grimes; Dorycnium hirsutum (L. Ser.; Kennedia prostrata R. Br.; Lotononis bainesii Baker, Lotus pedunculatus Cav.; L. corniculatus L.; L. cytisoides L.; Medicago sativa subsp. sativa L.; Medicago sativa subsp. caerulea (Less. ex Ledeb. Schmalh., and M. sativa subsp. falcata (L. Arcang. These entries maintained production and persisted for the period of the evaluation, with the exception of C. intybus and L. corniculatus that declined in persistence over time. The potential role of these species in extensive grazing systems in Mediterranean climatic zones, their attributes and limitations, and current progress in developing them as useful forage plants was discussed.Existe una escasez de leguminosas y hierbas perennes herbáceas además de alfalfa (Medicago sativa L. tolerantes a sequía para ambientes con clima mediterráneo como los que se encuentran en el Sur de Australia, el Mediterráneo y Chile. Por lo tanto, una colección de 174 leguminosas perennes y hierbas correspondientes a 103 especies y 32 géneros fue evaluada por su adaptaci

  19. An influence of abiotic factors on the germinability of Agrostis species and Poa species

    Directory of Open Access Journals (Sweden)

    Pavel Knot

    2006-01-01

    Full Text Available The objective of this contribution is to interpret the impact of some abiotic factors on the germinability. Primarily was observed the stress that they cause on germinability and also on the energy of other perennial grass caryopsis' germinability. Withal there were considered differences in germinability of some perennial grass species, variances of strains and the influence of today`s seeds dressing technologies, which are used to improve the germination. The light factor has the biggest influence of all factors on germination of Agrostis stolonifera (Penn G-2, Providence, Poa supina (Supranova and Poa pratensis (Julius, Julius PreGerm. All these species had germination evidential higher in the light, than in the dark. With species Poa pratensis (Coctail, Coctail Headstart and Poa annua were not observed any essential variations between the dark and the light variants. Only with Poa annua there were reached noticeably lower values with variant in the light, where was used polyethyleneglycol, than in the dark. The analysis of variance demonstrated, that the biggest influence had the factor of stratification together with the light factor with Agrostis capilaris (Bardot and Agrostis stolonifera Providence. With Poa annua there was established the biggest influence of the light factor together with the factor of the used medium. The factor of stratification noticeably affected only the germination of Agrostis capillaris Bardot. The germination of Agrostis stolonifera Providence, Poa pratensis Cocktail, Cocktail Headstart, Julius and Poa annua was not noticeably affected by stratification. The reaction on the factor of stratification was with Agrostis capillaris Bardot in the dark adverse and in the light minimal. Poa pratensis Julius PreGerm germination was negative in the dark as well as in the light. With Poa supina Supranova it was not the most important factor, but still affected the germination significiantly. The nitrogen nutrition, as the

  20. Aphid secondary symbionts do not affect prey attractiveness to two species of predatory lady beetles.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kovacs

    Full Text Available Heritable symbionts have been found to mediate interactions between host species and their natural enemies in a variety of organisms. Aphids, their facultative symbionts, and their potential fitness effects have been particularly well-studied. For example, the aphid facultative symbiont Regiella can protect its host from infection from a fungal pathogen, and aphids with Hamiltonella are less likely to be parasitized by parasitic wasps. Recent work has also found there to be negative fitness effects for the larvae of two species of aphidophagous lady beetles that consumed aphids with facultative symbionts. In both species, larvae that consumed aphids with secondary symbionts were significantly less likely to survive to adulthood. In this study we tested whether adult Harmonia axyridis and Hippodamia convergens lady beetles avoided aphids with symbionts in a series of choice experiments. Adults of both lady beetle species were as likely to choose aphids with symbionts as those without, despite the potential negative fitness effects associated with consuming aphids with facultative symbionts. This may suggest that under natural conditions aphid secondary symbionts are not a significant source of selection for predatory lady beetles.

  1. Track plate enclosures: Box designs affecting attractiveness to riparian mammals

    Science.gov (United States)

    Loukmas, J.J.; Mayack, D.T.; Richmond, M.E.

    2003-01-01

    We examined the efficacy of four track plate enclosure designs for monitoring the abundance of small and medium-sized mammals along 10 streams in New York State. Box size and clarity of view through the box were evaluated as factors affecting visitation. We checked track plate stations weekly from September 1999 to March 2000. Eleven mammalian species or species groups visited the track plate stations. Raccoons (Procyon lotor) (P = 0.020) and feral cats (Felis catus) (P = 0.008) visited large enclosures significantly more than small enclosures. Feral cats visited clear-view enclosures significantly more than obstructed-view enclosures (P = 0.025). Enclosure size and view did not significantly affect visitation by other species; however, a large box with a clear view was the most effective design.

  2. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    Science.gov (United States)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community

  3. The Army Priority List of At-Risk Species: 2009-2010 Status Update

    Science.gov (United States)

    2010-09-01

    modification through conifer en- croachment, invasive nonnative plants, roadside maintenance, and grass- land/meadow management activities such as...will be secondarily affecting the species through reduced genetic diversity and limited natural reproduction . Ex- tant populations still occur in the...nonnative plants that compete for light and nutrients; and by the loss of pollinators that negatively affect the reproductive viability of the species

  4. Phytoextraction of rhenium by lucerne (Medicago sativa) and erect milkvetch (Astragalus adsurgens) from alkaline soils amended with coal fly ash.

    Science.gov (United States)

    He, Honghua; Dong, Zhigang; Pang, Jiayin; Wu, Gao-Lin; Zheng, Jiyong; Zhang, Xingchang

    2018-07-15

    Coal fly ash (CFA) is an industrial waste generated in huge amounts worldwide, and the management of CFA has become an environmental concern. Recovery of valuable metals from CFA is one of the beneficial reuse options of CFA. Rhenium (Re) is one of the rarest metals in the Earth's crust and one of the most expensive metals of strategic significance in the world market. A CFA at the Jungar Thermal Power Plant, Inner Mongolia, China, contains more Re than two alkaline soils in the surrounding region. Pot experiments were undertaken to grow lucerne (Medicago sativa) and erect milkvetch (Astragalus adsurgens) in a loessial soil and an aeolian sandy soil amended with different rates (5%, 10%, 20%, and 40%) of CFA. The results show that plant growth was considerably enhanced and Re concentration in plants was significantly increased when CFA was applied to the alkaline soils at rates of ≤20%; while in some cases plant growth was also markedly enhanced by the 40% CFA treatment, which increased plant Re concentration the most of all treatments. Both lucerne and erect milkvetch showed potential for phytoextracting Re from CFA-amended alkaline soils. Using CFA for soil amendment not only offers a potential solution for the waste disposal problem of CFA, but the phytoextraction of Re by both lucerne and erect milkvetch may also bring an economic profit in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities.

    Science.gov (United States)

    Zaller, Johann G; Parth, Myriam; Szunyogh, Ilona; Semmelrock, Ines; Sochurek, Susanne; Pinheiro, Marcia; Frank, Thomas; Drapela, Thomas

    2013-05-13

    Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms' specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms containing more plant

  6. Multiple-purpose trees for pastoral farming in New Zealand: with emphasis on tree legumes. [Lucerne Tree: Medick Tree

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D J.G.; Macfarlane, R P

    1979-01-01

    The potential for soil conservation and agroforestry of several native and exotic legumes is discussed. Flowering period, chemical composition of leaves/pods, hardiness to frost and drought, timber value, forage potential for livestock and bees, ornamental value and other products are tabulated with information on up to 38 species. Two low-growing species that have proved useful for slope stabilization as well as forage are tree lucerne (Cytisus palmensis) and tree medick (Medicago arborea), the latter being shrubby and more suitable for cold districts. Gleditsia triacanthos is recommended as a shade and fodder tree for farm pasture.

  7. AFLP and AMP Fingerprints as Markers to Evaluate Genetic Differences between Medicago truncatula Line Jemalong and 2HA, a New Line Produced by in vitro Culture Selection

    Directory of Open Access Journals (Sweden)

    R.R. Irwanto

    2008-09-01

    Full Text Available A new line, Medicago truncatula cv. Jemalong 2HA (herein known as 2HA has been developed via repetitive regeneration and selection of M. truncatula cv. Jemalong. During somatic embryogenesis, 2HA produces 500 times more embryos than its progenitor, Jemalong. It is interesting to study if those two lines are isogenic or has genetic differences. The main objectives of the study was to evaluate the genotypic differences between Jemalong and 2HA also to evaluate the methylation event in 2HA utilized two DNA fingerprinting techniques, i.e AFLP fingerprints (Amplified Length of Polymorphism and AMP (Amplified Methylation Polymorphism. The results showed that AFLP analysis using eight primers combinations could not detect any differences between Jemalong and 2HA. However, using AMP methylation sensitive primers it could detect 15 polymorphisms out of 840 markers. These results lead to a conclusion that Jemalong and 2HA are isogenic lines. 2HA may have higher regeneration capacities due to methylation process which occurs during the production of 2HA through repetitive regeneration cycles.

  8. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species.

    Science.gov (United States)

    Symanczik, Sarah; Courty, Pierre-Emmanuel; Boller, Thomas; Wiemken, Andres; Al-Yahya'ei, Mohamed N

    2015-11-01

    Field studies have revealed the impact of changing water regimes on the structure of arbuscular mycorrhizal fungal (AMF) communities, but it is not known what happens to the abundance of individual AMF species within the community when the water conditions in the rhizosphere change. The behavior of four AMF species isolated from the Arabian desert (Diversispora aurantia, Diversispora omaniana, Septoglomus africanum, and an undescribed Paraglomus species) was investigated when assembled in microcosms containing Sorghum bicolor as host plant, and treated with various water regimes. Furthermore, the impact of invasion of these assemblages by Rhizophagus irregularis, an AMF species widely used in commercial inocula, was studied. The abundance of each AMF species in sorghum roots was measured by determining the transcript numbers of their large ribosomal subunit (rLSU) by real-time PCR, using cDNA and species-specific primers. Plant biomass and length of AMF extraradical hyphae were also measured. The abundance of each AMF species within the sorghum roots was influenced by both the water regime and the introduction of R. irregularis. Under dry conditions, the introduction of R. irregularis reduced the total abundance of all native AMF species in roots and also led to a reduction in the amount of extraradical mycelium, as well as to a partial decrease in plant biomass. The results indicate that both water regime and the introduction of an invasive AMF species can strongly alter the structure of an AMF native assemblage with a consequent impact on the entire symbiotic mycorrhizal relationship.

  9. Hexavalent chromium-induced differential disruption of cortical microtubules in some Fabaceae species is correlated with acetylation of α-tubulin.

    Science.gov (United States)

    Eleftheriou, Eleftherios P; Adamakis, Ioannis-Dimosthenis S; Michalopoulou, Vasiliki A

    2016-03-01

    The effects of hexavalent chromium [Cr(VI)] on the cortical microtubules (MTs) of five species of the Fabaceae family (Vicia faba, Pisum sativum, Vigna sinensis, Vigna angularis, and Medicago sativa) were investigated by confocal laser scanning microscopy after immunolocalization of total tubulin with conventional immunofluorescence techniques and of acetylated α-tubulin with the specific 6-11B-1 monoclonal antibody. Moreover, total α-tubulin and acetylated α-tubulin were quantified by Western immunoblotting and scanning densitometry. Results showed the universality of Cr(VI) detrimental effects to cortical MTs, which proved to be a sensitive and reliable subcellular marker for monitoring Cr(VI) toxicity in plant cells. However, a species-specific response was recorded, and a correlation of MT disturbance with the acetylation status of α-tubulin was demonstrated. In V. faba, MTs were depolymerized at the gain of cytoplasmic tubulin background and displayed low α-tubulin acetylation, while in P. sativum, V. sinensis, V. angularis, and M. sativa, MTs became bundled and changed orientation from perpendicular to oblique or longitudinal. Bundled MTs were highly acetylated as determined by both immunofluorescence and Western immunoblotting. Tubulin acetylation in P. sativum and M. sativa preceded MT bundling; in V. sinensis it followed MT derangement, while in V. angularis the two phenomena coincided. Total α-tubulin remained constant in all treatments. Should acetylation be an indicator of MT stabilization, it is deduced that bundled MTs became stabilized, lost their dynamic properties, and were rendered inactive. Results of this report allow the conclusion that Cr(VI) toxicity disrupts MTs and deranges the MT-mediated functions either by depolymerizing or stabilizing them.

  10. Telecoupling framework for research on migratory species in the Anthropocene

    Directory of Open Access Journals (Sweden)

    Jacqueline Hulina

    2017-03-01

    Full Text Available Migratory species are an important component of biodiversity and provide essential ecosystem services for humans, but many are threatened and endangered. Numerous studies have been conducted on the biology of migratory species, and there is an increased recognition of the major role of human dimensions in conserving migratory species. However, there is a lack of systematic integration of socioeconomic and environmental factors. Because human activities affect migratory species in multiple places, integrating socioeconomic and environmental factors across space is essential, but challenging. The holistic framework of telecoupling (socioeconomic and environmental interactions over distances has the potential to help meet this challenge because it enables researchers to integrate human and natural interactions across multiple distant places. The use of the telecoupling framework may also lead to new conservation strategies and actions. To demonstrate its potential, we apply the framework to Kirtland’s warblers ('Setophaga kirtlandii' , a conservation-reliant migratory songbird. Results show accomplishments from long-term research and recovery efforts on the warbler in the context of the telecoupling framework. The results also show 24 research gaps even though the species has been relatively well-studied compared to many other species. An important gap is a lack of systematic studies on feedbacks among breeding, wintering, and stopover sites, as well as other “spillover” systems that may affect and be affected by migration (e.g., via tourism, land use, or climate change. The framework integrated scattered information and provided useful insights about new research topics and flow-centered management approaches that encapsulate the full annual cycle of migration. We also illustrate the similarities and differences between Kirtland’s warblers and several other migratory species, indicating the applicability of the telecoupling framework to

  11. A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut

    Directory of Open Access Journals (Sweden)

    Nagy Ervin D

    2012-09-01

    Full Text Available Abstract Background Cultivated peanut (Arachis hypogaea is an allotetraploid species whose ancestral genomes are most likely derived from the A-genome species, A. duranensis, and the B-genome species, A. ipaensis. The very recent (several millennia evolutionary origin of A. hypogaea has imposed a bottleneck for allelic and phenotypic diversity within the cultigen. However, wild diploid relatives are a rich source of alleles that could be used for crop improvement and their simpler genomes can be more easily analyzed while providing insight into the structure of the allotetraploid peanut genome. The objective of this research was to establish a high-density genetic map of the diploid species A. duranensis based on de novo generated EST databases. Arachis duranensis was chosen for mapping because it is the A-genome progenitor of cultivated peanut and also in order to circumvent the confounding effects of gene duplication associated with allopolyploidy in A. hypogaea. Results More than one million expressed sequence tag (EST sequences generated from normalized cDNA libraries of A. duranensis were assembled into 81,116 unique transcripts. Mining this dataset, 1236 EST-SNP markers were developed between two A. duranensis accessions, PI 475887 and Grif 15036. An additional 300 SNP markers also were developed from genomic sequences representing conserved legume orthologs. Of the 1536 SNP markers, 1054 were placed on a genetic map. In addition, 598 EST-SSR markers identified in A. hypogaea assemblies were included in the map along with 37 disease resistance gene candidate (RGC and 35 other previously published markers. In total, 1724 markers spanning 1081.3 cM over 10 linkage groups were mapped. Gene sequences that provided mapped markers were annotated using similarity searches in three different databases, and gene ontology descriptions were determined using the Medicago Gene Atlas and TAIR databases. Synteny analysis between A. duranensis, Medicago

  12. Species and structural diversity affect growth of oak, but not pine, in uneven-aged mature forests

    NARCIS (Netherlands)

    Vanhellemont, Margot; Bijlsma, Rienk Jan; Keersmaeker, De Luc; Vandekerkhove, Kris; Verheyen, Kris

    2018-01-01

    The effects of mixing tree species on tree growth and stand production have been abundantly studied, mostly looking at tree species diversity effects while controlling for stand density and structure. Regarding the shift towards managing forests as complex adaptive systems, we also need insight into

  13. Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions.

    Science.gov (United States)

    Bourcy, Marie; Brocard, Lysiane; Pislariu, Catalina I; Cosson, Viviane; Mergaert, Peter; Tadege, Millon; Mysore, Kirankumar S; Udvardi, Michael K; Gourion, Benjamin; Ratet, Pascal

    2013-03-01

    Medicago truncatula and Sinorhizobium meliloti form a symbiotic association resulting in the formation of nitrogen-fixing nodules. Nodule cells contain large numbers of bacteroids which are differentiated, nitrogen-fixing forms of the symbiotic bacteria. In the nodules, symbiotic plant cells home and maintain hundreds of viable bacteria. In order to better understand the molecular mechanism sustaining the phenomenon, we searched for new plant genes required for effective symbiosis. We used a combination of forward and reverse genetics approaches to identify a gene required for nitrogen fixation, and we used cell and molecular biology to characterize the mutant phenotype and to gain an insight into gene function. The symbiotic gene DNF2 encodes a putative phosphatidylinositol phospholipase C-like protein. Nodules formed by the mutant contain a zone of infected cells reduced to a few cell layers. In this zone, bacteria do not differentiate properly into bacteroids. Furthermore, mutant nodules senesce rapidly and exhibit defense-like reactions. This atypical phenotype amongst Fix(-) mutants unravels dnf2 as a new actor of bacteroid persistence inside symbiotic plant cells. © 2012 CNRS. New Phytologist © 2012 New Phytologist Trust.

  14. Resistant and susceptible responses in alfalfa (Medicago sativa to bacterial stem blight caused by Pseudomonas syringae pv. syringae.

    Directory of Open Access Journals (Sweden)

    Lev G Nemchinov

    Full Text Available Bacterial stem blight caused by Pseudomonas syringae pv. syringae is a common disease of alfalfa (Medicago sativa L. Little is known about host-pathogen interactions and host defense mechanisms. Here, individual resistant and susceptible plants were selected from cultivars Maverick and ZG9830 and used for transcript profiling at 24 and 72 hours after inoculation (hai with the isolate PssALF3. Bioinformatic analysis revealed a number of differentially expressed genes (DEGs in resistant and susceptible genotypes. Although resistant plants from each cultivar produced a hypersensitive response, transcriptome analyses indicated that they respond differently at the molecular level. The number of DEGs was higher in resistant plants of ZG9830 at 24 hai than in Maverick, suggesting that ZG9830 plants had a more rapid effector triggered immune response. Unique up-regulated genes in resistant ZG9830 plants included genes encoding putative nematode resistance HSPRO2-like proteins, orthologs for the rice Xa21 and soybean Rpg1-b resistance genes, and TIR-containing R genes lacking both NBS and LRR domains. The suite of R genes up-regulated in resistant Maverick plants had an over-representation of R genes in the CC-NBS-LRR family including two genes for atypical CCR domains and a putative ortholog of the Arabidopsis RPM1 gene. Resistance in both cultivars appears to be mediated primarily by WRKY family transcription factors and expression of genes involved in protein phosphorylation, regulation of transcription, defense response including synthesis of isoflavonoids, and oxidation-reduction processes. These results will further the identification of mechanisms involved in resistance to facilitate selection of parent populations and development of commercial varieties.

  15. Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions.

    Science.gov (United States)

    Clare, David S; Spencer, Matthew; Robinson, Leonie A; Frid, Christopher L J

    2016-01-01

    Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.

  16. Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions.

    Directory of Open Access Journals (Sweden)

    David S Clare

    Full Text Available Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive or antagonistic (negative depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.

  17. DNA damage by reactive species: Mechanisms, mutation and repair

    Indian Academy of Sciences (India)

    DNA is continuously attacked by reactive species that can affect its structure and function severely. Structural modifications to DNA mainly arise from modifications in its bases that primarily occur due to their exposure to different reactive species. Apart from this, DNA strand break, inter- and intra-strand crosslinks and ...

  18. Oceanographic and climatic factors differentially affect reproduction performance of Antarctic skuas

    NARCIS (Netherlands)

    Hahn, S.M.; Reinhardt, K.; Ritz, M.S.; Janicke, T.; Montalti, D.; Peter, H.-U.

    2007-01-01

    We studied how environmental conditions affect reproduction in sympatric skua species that differ in their reliance on marine resources: the exclusively marine foraging south polar skua Catharacta maccormicki, the terrestrially foraging brown skua C. antarctica lonnbergi and mixed species pairs with

  19. A novel enterovirus species identified from severe diarrheal goats

    OpenAIRE

    Wang, Mingyue; He, Jia; Lu, Haibing; Liu, Yajing; Deng, Yingrui; Zhu, Lisai; Guo, Changming; Tu, Changchun; Wang, Xinping

    2017-01-01

    Backgrounds The Enterovirus genus of the family of Picornaviridae consists of 9 species of Enteroviruses and 3 species of Rhinoviruses based on the latest virus taxonomy. Those viruses contribute significantly to respiratory and digestive disorders in human and animals. Out of 9 Enterovirus species, Enterovirus E-G are closely related to diseases affecting on livestock industry. While enterovirus infection has been increasingly reported in cattle and swine, the enterovirus infections in small...

  20. Dicty_cDB: FC-BN21 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available BC26G02 of cDNA library MtBC from arbuscular mycorrhiza of cultivar Jemalong of Medicago truncatula (barrel ...ead. 56 6e-04 1 AL384688 |AL384688.1 Medicago truncatula EST MtBC23G08F1 : T3 end of clone MtBC23G08 of cDNA library MtBC from arbusc...ular mycorrhiza of cultivar Jemalong of Medicago truncat