WorldWideScience

Sample records for mediating lysophosphatidylcholine synthesis

  1. Lysophosphatidylcholine synthesis by lipase-catalyzed ethanolysis.

    Science.gov (United States)

    Yang, Guolong; Yang, Ruoxi; Hu, Jingbo

    2015-01-01

    Lysophosphatidylcholine (LPC) is amphiphilic substance, and possesses excellent physiological functions. In this study, LPC was prepared through ethanolysis of phosphatidylcholine (PC) in n-hexane or solvent free media catalyzed by Novozym 435 (from Candida antarctica), Lipozyme TLIM (from Thermomcyces lanuginosus) and Lipozyme RMIM (from Rhizomucor miehei). The results showed that three immobilized lipases from Candida Antarctica, Thermomcyces lanuginosus and Rhizomucor miehei could catalyze ethanolysis of PC efficiently. In n-hexane, the LPC conversions of ethanolysis of PC catalyzed by Novozyme 435, Lipozyme TLIM and Lipozyme RMIM could reach to 98.5 ± 1.6%, 94.6 ± 1.4% and 93.7 ± 1.8%, respectively. In solvent free media, the highest LPC conversions of ethanolysis of PC catalyzed by Novozyme 435, Lipozyme TL IM and Lipozyme RM IM were 97.7 ± 1.7%, 93.5 ± 1.2% and 93.8 ± 1.9%, respectively. The catalytic efficiencies of the three lipases were in the order of Novozyme 435 > Lipozyme TLIM > Lipozyme RMIM. Furthermore, their catalytic efficiencies in n-hexane were better than those in solvent free media.

  2. Does de novo synthesis of lysophosphatidylcholine occur in rat lung microsomes?

    NARCIS (Netherlands)

    Aarsman, A.J.; Bosch, H. van den

    1980-01-01

    Incubation of rat lung microsomes with CDP[Me-14C]choline resulted in formation of radioactive lysophosphatidylcholine and phosphatidylcholine. Evidence is provided which suggests that lysophosphatidylcholine formation cannot be ascribed completely to phospholipase A degradation of phosphatidylcholi

  3. Web-Mediated Knowledge Synthesis for Educators

    Science.gov (United States)

    DeSchryver, Michael

    2015-01-01

    Ubiquitous and instant access to information on the Web is challenging what constitutes 21st century literacies. This article explores the notion of Web-mediated knowledge synthesis, an approach to integrating Web-based learning that may result in generative synthesis of ideas. This article describes the skills and strategies that may support…

  4. Effects of lysophosphatidylcholine on β-amyloid-induced neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Zhen-xia QIN; Hui-yan ZHU; Ying-he HU

    2009-01-01

    Aim: We have investigated the effects of lysophosphatidylcholine (LPC), a product of lipid peroxidation, on Aβ1-42-induced SH-SY5Y cell apoptosis.Methods: The viability of cultured SH-SY5Y cells was measured using a CCK-8 kit. Apoptosis was determined by Chip-based flow cytometric assay. The mRNA transcription of Bcl-2, Bax, and caspase-3 were detected by using reverse transcrip-tion and real-time quantitative PCR and the protein levels of Bax and caspase-3 were analyzed by Western blotting. Thecytosolic calcium concentration of SH-SY5Y cells was tested by calcium influx assay. GZA expression in SH-SYSY cells wassilenced by small interfering RNA.Results: Long-term exposure of SH-SY5Y cells to LPC augmented the neurotoxicity of Aβ1-42. Furthermore, after LPC treatment, the Bax/Bcl-XL ratio and the expression levels, as well as the activity of caspase-3 were, elevated, whereas the expression level of TRAF1 was reduced. Because LPC was reported to be a specific ligand for the orphan G-protein coupled receptor, G2A, we investigated LPC-mediated changes in calcium levels in SH-SY5Y cells. Our results demonstrated that LPC can enhance the Aβ1-42-induced elevation of intracellular calcium. Interestingly, Aβ1-42 significantly increased the expression of G2A in SH-SY5Y cells, whereas knockdown of G2A using siRNA reduced the effects of LPC on Aβ1-42-induced neurotoxicity.Conclusion: The effects of LPC on Aβ1-42-induced apoptosis may occur through the signal pathways of the orphan G-protein coupled receptor.

  5. Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids.

    Science.gov (United States)

    Akagi, Sosuke; Kono, Nozomu; Ariyama, Hiroyuki; Shindou, Hideo; Shimizu, Takao; Arai, Hiroyuki

    2016-05-01

    The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by dietary consumption of fatty acids such as saturated fatty acids and polyunsaturated fatty acids (PUFAs). Cells must adapt to changes in composition of membrane fatty acids by regulating lipid-metabolizing enzymes. In this study, we investigated how cells respond to loading with excess PUFAs, such as arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. A lipidomics analysis revealed that dipalmitoylphosphatidylcholine (DPPC) was increased after the production of PUFA-containing phospholipids in cells loaded with PUFAs. An RNA interference screen of lipid-metabolizing enzymes revealed that lysophosphatidylcholine acyltransferase 1 (LPCAT1) was involved in the DPPC production. Moreover, LPCAT1 knockdown markedly enhanced the cytotoxicity induced by excess PUFAs. PUFA-induced cytotoxicity was dependent on caspase and unfolded protein response (UPR) sensor proteins inositol requiring 1α and protein kinase R-like endoplasmic reticulum kinase, suggesting that excess PUFAs trigger UPR-mediated apoptosis. In murine retina, in which PUFAs are highly enriched, DPPC was produced along with increase of PUFA-containing phospholipids. In LPCAT1 knockout mice, DPPC level was reduced and UPR was activated in the retina. Our results provide insight into understanding of the retinal degeneration seen in rd11 mice that lack LPCAT1.-Akagi, S., Kono, N., Ariyama, H., Shindou, H., Shimizu, T., Arai, H. Lysophosphatidylcholine acyltransferase 1 protects against cytotoxicity induced by polyunsaturated fatty acids.

  6. Structure-activity relationship of lysophosphatidylcholines in HL-60 human leukemia cells

    Institute of Scientific and Technical Information of China (English)

    Eun-heeLEE; Mi-ranYUN; Wei-hongWANG; JeeHJUNG; Dong-soonIM

    2004-01-01

    AIM: To explore the structure-activity relationship of lysophosphatidylcholine (LPC) and lysolipid molecules from a marine sponge and ladybirds. METHODS: We tested three synthetic LPCs and four natural lysolipids on Ca2+ mobilization in HL-60 human leukemia cells. RESULTS: We observed lysolipid-mediated Ca2+ mobilization. The activity was the same in both ester-and ether-linked lysolipids, and introduction of a double bond or methoxy group on the alkyl chain did not significantly modulate the activity. However, replacement of trimethylammonium moiety in the choline structure with ammonium moiety reduced the activity. Furthermore, change of the alkyl chain length influenced the Ca2+ response. CONCLUSION: LPC-induced Ca2+ mobilization might be dependent on the length of alkyl chain and the presence of choline moiety in HL-60 leukemia cells.

  7. Structure-activity relationship of lysophosphatidylcholines in HL-60 human leukemia cells

    Institute of Scientific and Technical Information of China (English)

    Eun-hee LEE; Mi-ran YUN; Wei-hong WANG; Jee H JUNG; Dong-soon IM

    2004-01-01

    AIM: To explore the structure-activity relationship of lysophosphatidylcholine (LPC) and lysolipid molecules from a marine sponge and ladybirds. METHODS: We tested three synthetic LPCs and four natural lysolipids on Ca2+mobilization in HL-60 human leukemia cells. RESULTS: We observed lysolipid-mediated Ca2+ mobilization. The activity was the same in both ester- and ether-linked lysolipids, and introduction of a double bond or methoxy group on the alkyl chain did not significantly modulate the activity. However, replacement of trimethylammonium moiety in the choline structure with ammonium moiety reduced the activity. Furthermore, change of the alkyl chain length influenced the Ca2+ response. CONCLUSION: LPC-induced Ca2+ mobilization might be dependent on the length of alkyl chain and the presence of choline moiety in HL-60 leukemia cells.

  8. Production of 1,2-didocosahexaenoyl phosphatidylcholine by bonito muscle lysophosphatidylcholine/transacylase.

    Science.gov (United States)

    Hirano, Kaoru; Matsui, Hidetoshi; Tanaka, Tamotsu; Matsuura, Fumito; Satouchi, Kiyoshi; Koike, Tohru

    2004-10-01

    1,2-Didocosahexaenoyl phosphatidylcholine (PC), which has highly unsaturated fatty acid at both sn-1 and sn-2 positions of glycerol, is a characteristic molecular species of bonito muscle. To examine the involvement of a de novo route in its synthesis, the molecular species of phosphatidic acid (PA) were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a 1,3-bis[bis(pyridin-2-ylmethyl)amino]propan-2-olato dizinc(II) complex, a novel phosphate-capture molecule. However, 1,2-didocosahexaenoyl species could not be detected. Next, 1,2-didocosahexaenoyl PC synthesis by the cytosolic lysophosphatidylcholine (LPC)/transacylase was examined using endogenous LPC from bonito muscle, in which the 2-docosahexaenoyl species is abundant. The LPC/transacylase synthesized 1,2-didocosahexaenoyl PC as the most abundant molecular species. For further characterization, the LPC/transacylase was purified to homogeneity from the 100,000 x g supernatant of bonito muscle. The isolated LPC/transacylase is a labile glycoprotein with molecular mass of 52 kDa including a 5-kDa sugar moiety. The LPC/transacylase showed a PC synthesis (transacylase activity) below and above the critical micelle concentration of substrate LPC, and fatty acid release (lysophospholipase activity) was always smaller than the transacylase activity, even with a monomeric substrate. These results suggest that the LPC/transacylase is responsible for the synthesis of 1,2-didocosahexaenoyl PC.

  9. Molecular characterization of a lysophosphatidylcholine acyltransferase gene belonging to the MBOAT family in Ricinus communis L.

    Science.gov (United States)

    Arroyo-Caro, José María; Chileh, Tarik; Alonso, Diego López; García-Maroto, Federico

    2013-07-01

    Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT, EC 2.3.1.23) catalyzes acylation of lysophosphatidylcholine (lysoPtdCho) to produce phosphatidylcholine (PtdCho), the main phospholipid in cellular membranes. This reaction is a key component of the acyl-editing process, involving recycling of the fatty acids (FA) mainly at the sn-2 position of PtdCho. Growing evidences indicate that the LPCAT reaction controls the direct entry of newly synthesized FA into PtdCho and, at least in some plant species, it has an important impact on the synthesis and composition of triacylglycerols. Here we describe the molecular characterization of the single LPCAT gene found in the genome of Ricinus communis (RcLPCAT) that is homologous to LPCAT genes of the MBOAT family previously described in Arabidopsis and Brassica. RcLPCAT is ubiquitously expressed in all organs of the castor plant. Biochemical properties have been studied by heterologous expression of RcLPCAT in the ale1 yeast mutant, defective in lysophospholipid acyltransferase activity. RcLPCAT preferentially acylates lysoPtdCho against other lysophospholipids (lysoPL) and does not discriminates the acyl chain in the acceptor, displaying a strong activity with alkyl lysoPL. Regarding the acyl-CoA donor, RcLPCAT uses monounsaturated fatty acid thioesters, such as oleoyl-CoA (18:1-CoA), as preferred donors, while it has a low activity with saturated fatty acids and shows a poor utilization of ricinoleoyl-CoA (18:1-OH-CoA). These characteristics are discussed in terms of a possible role of RcLPCAT in regulating the entry of FA into PtdCho and the exclusion from the membranes of the hydroxylated FA.

  10. Titanium(III) chloride mediated synthesis of furan derivatives: Synthesis of (±)-evodone

    Indian Academy of Sciences (India)

    S K Mandal; M Paira; S C Roy

    2010-05-01

    Titanocene(III) chloride (Cp2TiCl) mediated one-pot synthesis of furan derivatives has been accomplished. This radical method has been applied for the synthesis of a furanomonoterpene, evodone. Ti(III) species was prepared in situ from commercially available titanocene dichloride (Cp2TiCl2) and zinc dust in THF.

  11. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) overexpression in human colorectal cancer.

    Science.gov (United States)

    Mansilla, Francisco; da Costa, Kerry-Ann; Wang, Shuli; Kruhøffer, Mogens; Lewin, Tal M; Orntoft, Torben F; Coleman, Rosalind A; Birkenkamp-Demtröder, Karin

    2009-01-01

    The alteration of the choline metabolite profile is a well-established characteristic of cancer cells. In colorectal cancer (CRC), phosphatidylcholine is the most prominent phospholipid. In the present study, we report that lysophosphatidylcholine acyltransferase 1 (LPCAT1; NM_024830.3), the enzyme that converts lysophosphatidylcholine into phosphatidylcholine, was highly overexpressed in colorectal adenocarcinomas when compared to normal mucosas. Our microarray transcription profiling study showed a significant (p mucosas. Immunohistochemical analysis of colon tumors with a polyclonal antibody to LPCAT1 confirmed the upregulation of the LPCAT1 protein. Overexpression of LPCAT1 in COS7 cells localized the protein to the endoplasmic reticulum and the mitochondria and increased LPCAT1 specific activity 38-fold. In cultured cells, overexpressed LPCAT1 enhanced the incorporation of [(14)C]palmitate into phosphatidylcholine. COS7 cells transfected with LPCAT1 showed no growth rate alteration, in contrast to the colon cancer cell line SW480, which significantly (p < 10(-5)) increased its growth rate by 17%. We conclude that LPCAT1 may contribute to total choline metabolite accumulation via phosphatidylcholine remodeling, thereby altering the CRC lipid profile, a characteristic of malignancy.

  12. Protein-mediated synthesis of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra, Pratibha [Department of Life Sciences, University of Mumbai, Kalina, Santacruz (E) 400098, Mumbai (India)], E-mail: Pratibha.kamble@osumc.edu

    2009-07-15

    Our current approach is to synthesize gold nanoparticles utilizing Serrapeptase that serves as both a reducing and stabilizing agent. The investigations further reveal that certain amino acid groups like lysine are involved in reduction and stabilization of these particles. The particles are characterized with UV-vis spectroscopy, Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Proton Nuclear Magnetic Resonance (H NMR) Spectroscopy studies and Sodium dodecyl sulphate-polyacrylamide gel electrophoresis for Serrapeptidase and Au-Serrapeptidase isolation. Transmission electron microscopy studies show particles ranging from 20 nm to 200 nm that are spherical, hexagonal and polygonal in nature. UV-vis spectroscopy shows surface plasmon band at 536 nm that indicates formation of spherical particles whereas, results further add that gold particles are formed inside the nanosphere that is stabilized by interaction of amino acid groups like {gamma}-lysine of peptase. Fourier transform infrared spectroscopy studies reveal that few carboxyl groups are involved during the synthesis process followed by stretching of -CH bonds which has been seen in the case of lysine of Serrapeptase. Current studies therefore show that the method utilized for the synthesis of Au-nanoparticles is a biofriendly method and the nanogold formed can be a useful attribute for various applications.

  13. Seed-Mediated Synthesis of Metal-Organic Frameworks.

    Science.gov (United States)

    Xu, Hai-Qun; Wang, Kecheng; Ding, Meili; Feng, Dawei; Jiang, Hai-Long; Zhou, Hong-Cai

    2016-04-27

    The synthesis of phase-pure metal-organic frameworks (MOFs) is of prime importance but remains a significant challenge because of the flexible and diversified coordination modes between metal ions and organic linkers. In this work, we report the synthesis of phase-pure MOFs via a facile seed-mediated approach. For several "accompanying" pairs of Zr-porphyrinic MOFs that are prone to yield mixtures, by fixing all reaction parameters except introducing seed crystals, MOFs in phase-pure forms have been obtained because the stage of MOF nucleation, which generates mixed nuclei, is bypassed. In addition, phase-pure MOF isomers with distinct pore structures have also been prepared through such an approach, revealing its versatility. To the best of our knowledge, this is an initial report on seed-assisted synthesis of phase-pure MOFs.

  14. Distribution of Starch Lysophosphatidylcholine in Pasting and Gelation of Wheat Starch Suspensions

    National Research Council Canada - National Science Library

    ISHINAGA, Masataka; UEDA, Aiko; MATSUNAKA, Chie; TAMURA, Miho

    2011-01-01

    The amount and fatty acid composition of lysophosphatidylcholine (LPC) in the gelatinization, pasting and gelation of wheat starch were measured under a specific temperature program of a Rapid Visco Analyzer...

  15. Bio-mediated synthesis, characterization and cytotoxicity of gold nanoparticles.

    Science.gov (United States)

    Klekotko, Magdalena; Matczyszyn, Katarzyna; Siednienko, Jakub; Olesiak-Banska, Joanna; Pawlik, Krzysztof; Samoc, Marek

    2015-11-21

    We report here a "green" approach for the synthesis of gold nanoparticles (GNPs) in which the Mentha piperita extract was applied for the bioreduction of chloroauric acid and the stabilization of the formed nanostructures. The obtained GNPs were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). The reduction of gold ions with the plant extract leads to the production of nanoparticles with various shapes (spherical, triangular and hexagonal) and sizes (from 10 to 300 nm). The kinetics of the reaction was monitored and various conditions of the synthesis were investigated. As a result, we established protocols optimized towards the synthesis of nanospheres and nanoprisms of gold. The cytotoxic effect of the obtained gold nanoparticles was studied by performing MTT assay, which showed lower cytotoxicity of the biosynthesized GNPs compared to gold nanorods synthesized using the usual seed-mediated growth. The results suggest that the synthesis using plant extracts may be a useful method to produce gold nanostructures for various biological and medical applications.

  16. Key Building Blocks via Enzyme-Mediated Synthesis

    Science.gov (United States)

    Fischer, Thomas; Pietruszka, Jörg

    Biocatalytic approaches to valuable building blocks in organic synthesis have emerged as an important tool in the last few years. While first applications were mainly based on hydrolases, other enzyme classes such as oxidoreductases or lyases moved into the focus of research. Nowadays, a vast number of biotransformations can be found in the chemical and pharmaceutical industries delivering fine chemicals or drugs. The mild reaction conditions, high stereo-, regio-, and chemoselectivities, and the often shortened reaction pathways lead to economical and ecological advantages of enzymatic conversions. Due to the enormous number of enzyme-mediated syntheses, the present chapter is not meant to be a complete review, but to deliver comprehensive insights into well established enzymatic systems and recent advances in the application of enzymes in natural product synthesis. Furthermore, it is focused on the most frequently used enzymes or enzyme classes not covered elsewhere in the present volume.

  17. Green chemistry-mediated synthesis of nanostructures of afterglow phosphor

    Science.gov (United States)

    Sharma, Pooja; Haranath, D.; Chander, Harish; Singh, Sukhvir

    2008-04-01

    Various nanostructures of SrAl 2O 4:Eu 2+, Dy 3+ (SAC) afterglow phosphor were prepared in a single-step reaction using a green chemistry-mediated modified combustion process. The evolution of hazardous NxOx gases during the customary combustion reaction was completely eliminated by employing an innovative complex formation route. Another fascinating feature of the process was that, a slight change in the processing conditions ensured the synthesis of either nanoparticles or nanowires. The photoluminescence spectrum of nanophosphor showed a slight blue shift in emission (˜511 nm) as compared to the bulk phosphor (˜520 nm). The afterglow (decay) profiles of SAC nanoparticles, nanowires and bulk phosphor were compared. The chemistry underlying the nanostructure synthesis and the probable afterglow mechanism were discussed.

  18. Lysophosphatidylcholines: bioactive lipids generated during storage of blood components.

    Science.gov (United States)

    Maślanka, Krystyna; Smoleńska-Sym, Gabriela; Michur, Halina; Wróbel, Agnieszka; Lachert, Elżbieta; Brojer, Ewa

    2012-02-01

    Transfusion-related acute lung injury (TRALI) is suggested to be a "two hit" event, resulting from priming and activation of pulmonary neutrophils. It is known that neutrophil activation may result from infusion of lysophosphatidylcholines (LysoPCs) accumulated during storage of blood components. The aim of our study was to verify whether the LysoPCs are released into the storage medium of blood components. We measured the LysoPCs concentration in the supernatants from stored apheresis platelet concentrates (PLTs), packed non-leukoreduced red blood cell concentrates (RBCs), leukoreduced red blood cell concentrates (L-RBCs), fresh frozen plasma (FFP) and donor plasma (control). Lipids were separated on high-performance thin-layer chromatography, detected by primulin spray and quantified by photodensitometric scanning. The LysoPCs concentration in donor plasma was similar to that in FFP. During storage the LysoPCs content in PLTs increased almost two-fold as compared to the fresh isolated platelets. In RBCs and L-RBCs the LysoPC level was very low or below detection limit and did not increase throughout the storage period. According to our observations bioactive LysoPCs may be considered a neutrophil-activating factor only following PLT transfusions but not RBCs transfusions.

  19. Synthesis of novel photochromic pyrans via palladium-mediated reactions

    Directory of Open Access Journals (Sweden)

    Christoph Böttcher

    2009-05-01

    Full Text Available Photochromic pyrans for applications in material and life sciences were synthesized via palladium-mediated cyanation, carbonylation and Sonogashira cross-coupling starting from bromo-substituted naphthopyran 1 and benzopyrans 2a/b. A novel photoswitchable benzopyran-based ω-amino acid 6 for Fmoc-based solid-phase peptide synthesis is presented. The photochromic behaviour of the 3-cyano-substituted benzopyran 5a was investigated by time-resolved absorption spectroscopy in the picosecond time domain.

  20. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.

    Science.gov (United States)

    Kim, Tae Yoon; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-04-01

    The search for novel antibacterial agents is necessary to combat microbial resistance to current antibiotics. Silver nanoparticles (AgNPs) have been reported to be effective antibacterial agents. Tannic acid is a polyphenol compound from plants with antioxidant and antibacterial activities. In this report, AgNPs were prepared from silver ions by tannic acid-mediated green synthesis (TA-AgNPs). The reaction process was facile and involved mixing both silver ions and tannic acid. The absorbance at 423 nm in the UV-Visible spectra demonstrated that tannic acid underwent a reduction reaction to produce TA-AgNPs from silver ions. The synthetic yield of TA-AgNPs was 90.5% based on inductively coupled plasma mass spectrometry analysis. High-resolution transmission electron microscopy and atomic force microscopy images indicated that spherical-shaped TA-AgNPs with a mean particle size of 27.7-46.7 nm were obtained. Powder high-resolution X-ray diffraction analysis indicated that the TA-AgNP structure was face-centered cubic with a zeta potential of -27.56 mV. The hydroxyl functional groups of tannic acid contributed to the synthesis of TA-AgNPs, which was confirmed by Fourier transform infrared spectroscopy. The in vitro antibacterial activity was measured using the minimum inhibitory concentration (MIC) method. The TA-AgNPs were more effective against Gram-negative bacteria than Gram-positive bacteria. The MIC for the TA-AgNPs in all of the tested strains was in a silver concentration range of 6.74-13.48 μg/mL. The tannic acid-mediated synthesis of AgNPs afforded biocompatible nanocomposites for antibacterial applications.

  1. Role of lysophosphatidylcholine in brush-border intestinal alkaline phosphatase release and restoration.

    Science.gov (United States)

    Nakano, Takanari; Inoue, Ikuo; Alpers, David H; Akiba, Yasutada; Katayama, Shigehiro; Shinozaki, Rina; Kaunitz, Jonathan D; Ohshima, Susumu; Akita, Masumi; Takahashi, Seiichiro; Koyama, Iwao; Matsushita, Makoto; Komoda, Tsugikazu

    2009-07-01

    Intestinal alkaline phosphatase (IAP) is a brush-border membrane ectoenzyme (BBM-IAP) that is released into the lumen (L-IAP) after a high-fat diet. We examined the effects of oil feeding and the addition of mixed-lipid micelles on the formation of L-IAP in oil-fed rat intestine, Caco-2 cell monolayers, and mouse intestinal loops. We localized IAP in the duodenum of rats fed corn oil using fluorescence microscopy with enzyme-labeled fluorescence-97 as substrate. Four hours after oil feeding, L-IAP increased approximately 10-fold accompanied by the loss of BBM-IAP, consistent with BBM-IAP release. Rat IAP isozyme mRNAs progressively increased 4-6 h after oil feeding, followed by the increase of IAP activity in the subapical location at 6 h, consistent with the restoration of IAP protein. Postprandial lipid-micelle components, sodium taurocholate with or without oleic acid, mono-oleylglycerol, cholesterol, or lysophosphatidylcholine (lysoPC) were applied singly or as mixed-lipid micelles to the apical surface of polarized Caco-2 cell monolayers. LysoPC increased L-IAP >10-fold over basal release. LysoPC released IAP into the apical medium more than other intestinal brush-border enzymes, 5'-nucleotidase, sucrase, aminopeptidase N, and lactase, without comparable lactate dehydrogenase release or cell injury. LysoPC increased human IAP mRNA levels by 1.5-fold in Caco-2 cells. Luminally applied lysoPC also increased release of IAP preferentially in mouse intestinal loops. These data show that lysoPC accelerates the formation of L-IAP from BBM-IAP, followed by enhanced IAP synthesis, suggesting the role that lysoPC might play in the turnover of brush-border proteins.

  2. Recognition of lysophosphatidylcholine by type II NKT cells and protection from an inflammatory liver disease

    Science.gov (United States)

    Maricic, Igor; Girardi, Enrico; Zajonc, Dirk M.; Kumar, Vipin

    2014-01-01

    Summary Lipids presented by the major histocompatibility complex (MHC) class I-like molecule, CD1d, are recognized by natural killer T (NKT) cells, which can be broadly categorized into two subsets. The well-characterized type I NKT cells, express a semi-invariant T cell receptor (TCR) and can recognize both α- and β-linked glycolipids, whereas type II NKT cells are less well studied, express a relatively diverse TCR repertoire, and recognize β-linked lipids. Recent structural studies have shown a distinct mode of recognition of a self-glycolipid sulfatide bound to CD1d by a type II NKT TCR. To further characterize antigen recognition by these cells we have used the structural data and screened other small molecules able to bind to CD1d and activate type II NKT cells. Using plate-bound CD1d and APC-based antigen presentation assay we found that phospholipids such as lysophosphatidylcholine (LPC) can stimulate the sulfatide-reactive type II NKT hybridoma Hy19.3 in a CD1d-dependent manner. Using plasmon resonance studies we found that this type II NKT TCR binds with CD1d-bound LPC with micromolar affinities similar to that for sulfatide. Furthermore LPC-mediated activation of type II NKT cells leads to anergy induction in type I NKT cells and affords protection from ConA-induced hepatitis. These data indicate that, in addition to self-glycolipids, self-lysophospholipids are also recognized by type II NKT cells. Since lysophospholipids are involved during inflammation our findings have implications for not only understanding activation of type II NKT cells in physiological settings but also for the development of immune intervention in inflammatory diseases. PMID:25261475

  3. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert; Hamer, Rob; Loos, Katja

    2015-01-01

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis. Ba

  4. Assessing the susceptibility of amylose-lysophosphatidylcholine complexes to amylase by the use of iodine

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert J. J.; Hamer, Rob J.; Loos, Katja

    2014-01-01

    The formation of amylose-lysophosphatidylcholine (LPC) inclusion complexes renders amylose less susceptible to amylase digestion. In order to better understand this phenomenon on a structural level, the complexation of 9% wheat starch suspensions with 0, 2, 3, and 5% exogenous LPC was developed in R

  5. The effect of temperature and time on the formation of amylose–lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Oudhuis, A.A.C.M.; Hamer, R.J.; Loos, K.

    2014-01-01

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amylose–lysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  6. The effect of temperature and time on the formation of amylose- lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert J. J.; Oudhuis, A. A. C. M. (Lizette); Hamer, Rob J.; Loos, Katja

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amylose-lysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  7. Opsin-mediated inhibition of bacterioruberin synthesis in halophilic Archaea.

    Science.gov (United States)

    Peck, Ronald F; Pleşa, Alexandru M; Graham, Serena M; Angelini, David R; Shaw, Emily L

    2017-08-07

    Halophilic Archaea often inhabit environments with limited oxygen, and many produce ion-pumping rhodopsin complexes that allow them to maintain electrochemical gradients when aerobic respiration is inhibited. Rhodopsins require a protein, opsin, and an organic cofactor, retinal. We have previously demonstrated that, in Halobacterium salinarum, bacterioopsin (BO), when not bound by retinal, inhibits the production of bacterioruberin, a biochemical pathway that shares intermediates with retinal biosynthesis. In this work, we use heterologous expression in a related halophilic Archaeon, Haloferax volcanii, to demonstrate that BO is sufficient to inhibit bacterioruberin synthesis catalyzed by the H. salinarum lycopene elongase (Lye) enzyme. This inhibition was observed both in liquid cultures and in a novel colorimetric assay to quantify bacterioruberin abundance based on the colony color. Addition of retinal to convert BO to the bacteriorhodopsin complex resulted in a partial rescue of bacterioruberin production. To explore if this regulatory mechanism occurs in other organisms, we expressed a Lye homolog and an opsin from Haloarcula vallismortis in H. volcaniiH. vallismortis cruxopsin expression inhibited bacterioruberin synthesis catalyzed by H. vallismortis Lye, but had no effect when bacterioruberin synthesis was catalyzed by H. salinarum or H. volcanii Lye. Conversely, H. salinarum BO did not inhibit H. vallismortis Lye activity. Together, our data suggest that opsin-mediated inhibition of Lye is potentially widespread and represents an elegant regulatory mechanism that allows organisms to efficiently utilize ion-pumping rhodopsins obtained through lateral gene transfer.Importance Many enzymes are complexes of proteins and non-protein organic molecules called cofactors. To ensure efficient formation of functional complexes, organisms must regulate the production of proteins and cofactors. To study this regulation, we use bacteriorhodopsin from the Archaeon

  8. Iodine-mediated synthesis of 3-acylbenzothiadiazine 1,1-dioxides

    Science.gov (United States)

    Xi, Long-Yi; Zhang, Ruo-Yi; Shi, Lei

    2016-01-01

    Summary An iodine-mediated synthesis of 3-acylbenzothiadizine 1,1-dioxides is described. A range of electronically diverse acetophenones reacted well with several 2-aminobenzenesulfonamides, affording 3-acylbenzothiadiazine 1,1-dioxides in good yields. PMID:27340493

  9. Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tufail Ahmad

    2014-01-01

    Full Text Available Metal nanoparticles harbour numerous exceptional physiochemical properties absolutely different from those of bulk metal as a function of their extremely small size and large superficial area to volume. Naked metal nanoparticles are synthesized by various physical and chemical methods. Chemical methods involving metal salt reduction in solution enjoy an extra edge over other protocols owing to their relative facileness and capability of controlling particle size along with the attribute of surface tailoring. Although chemical methods are the easiest, they are marred by the use of hazardous chemicals such as borohydrides. This has led to inclination of scientific community towards eco-friendly agents for the reduction of metal salts to form nanoparticles. Tannic acid, a plant derived polyphenolic compound, is one such agent which embodies characteristics of being harmless and environmentally friendly combined with being a good reducing and stabilizing agent. In this review, first various methods used to prepare metal nanoparticles are highlighted and further tannic acid mediated synthesis of metal nanoparticles is emphasized. This review brings forth the most recent findings on this issue.

  10. Platelet-derived growth factor-BB-mediated glycosaminoglycan synthesis is transduced through Akt.

    Science.gov (United States)

    Cartel, Nicholas J; Wang, Jinxia; Post, Martin

    2002-04-01

    Previously we have demonstrated that the phosphoinositide 3-kinase (PI-3K) signal-transduction pathway mediates platelet-derived growth factor (PDGF)-BB-induced glycosaminoglycan (GAG) synthesis in fetal lung fibroblasts. In the present study we further investigated the signal-transduction pathway(s) that results in PDGF-BB-induced GAG synthesis. Over-expression of a soluble PDGF beta-receptor as well as a mutated form of the beta-receptor, unable to bind PI-3K, diminished GAG synthesis in fetal lung fibroblasts subsequent to PDGF-BB stimulation. The PI-3K inhibitor wortmannin blocked PDGF-BB-induced Akt activity as well as significantly diminishing PDGF-BB-mediated GAG synthesis. Expression of dominant-negative PI-3K also abrogated Akt activity and GAG synthesis. Furthermore, expression of dominant-negative Akt abrogated endogenous Akt activity, Rab3D phosphorylation and GAG synthesis, whereas expression of constitutively activated Akt stimulated Rab3D phosphorylation and GAG synthesis in the absence of PDGF-BB. Over-expression of wild-type PTEN (phosphatase and tensin homologue deleted in chromosome 10) inhibited Akt activity and concomitantly attenuated GAG synthesis in fibroblasts stimulated with PDGF-BB. These data suggest that Akt is an integral protein involved in PDGF-BB-mediated GAG regulation in fetal lung fibroblasts.

  11. Trehalose enhances osmotic tolerance and suppresses lysophosphatidylcholine-induced acrosome reaction in ram spermatozoon.

    Science.gov (United States)

    Ahmad, E; Naseer, Z; Aksoy, M; Küçük, N; Uçan, U; Serin, I; Ceylan, A

    2015-09-01

    This study was aimed to investigate the influence of trehalose on osmotic tolerance and the ability of ram spermatozoon to undergo acrosome reaction induced by lysophosphatidylcholine (LPC). In experiment 1, the diluted ejaculates were exposed to anisosmotic fructose solutions (70, 500, 750 and 1000 mOsm l(-1) ) with or without 50 mm trehalose. The presence of trehalose in hyperosmotic conditions enhanced (P ram spermatozoon and suppresses their ability to undergo LPC and cryo-induced acrosome reaction.

  12. Phosphoric Acid-Mediated Synthesis of Vinyl Sulfones through Decarboxylative Coupling Reactions of Sodium Sulfinates with Phenylpropiolic Acids.

    Science.gov (United States)

    Rong, Guangwei; Mao, Jincheng; Yan, Hong; Zheng, Yang; Zhang, Guoqi

    2015-08-07

    A novel phosphoric acid -mediated synthesis of vinyl sulfones through decarboxylative coupling reactions of sodium sulfinates with phenylpropiolic acids is described. This transformation is efficient and environmentally friendly.

  13. Insulin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland.

    Science.gov (United States)

    Garcia, Rodrigo Antonio Peliciari; Afeche, Solange Castro; Scialfa, Julieta Helena; do Amaral, Fernanda Gaspar; dos Santos, Sabrina Heloísa José; Lima, Fabio Bessa; Young, Martin Elliot; Cipolla-Neto, José

    2008-01-02

    The mammalian pineal gland synthesizes melatonin in a circadian manner, peaking during the dark phase. This synthesis is primarily regulated by sympathetic innervations via noradrenergic fibers, but is also modulated by many peptidergic and hormonal systems. A growing number of studies reveal a complex role for melatonin in influencing various physiological processes, including modulation of insulin secretion and action. In contrast, a role for insulin as a modulator of melatonin synthesis has not been investigated previously. The aim of the current study was to determine whether insulin modulates norepinephrine (NE)-mediated melatonin synthesis. The results demonstrate that insulin (10(- 8)M) potentiated norepinephrine-mediated melatonin synthesis and tryptophan hydroxylase (TPOH) activity in ex vivo incubated pineal glands. When ex vivo incubated pineal glands were synchronized (12h NE-stimulation, followed by 12h incubation in the absence of NE), insulin potentiated NE-mediated melatonin synthesis and arylalkylamine-N-acetyltransferase (AANAT) activity. Insulin did not affect the activity of hydroxyindole-O-methyltranferase (HIOMT), nor the gene expression of tpoh, aanat, or hiomt, under any of the conditions investigated. We conclude that insulin potentiates NE-mediated melatonin synthesis in cultured rat pineal gland, potentially through post-transcriptional events.

  14. Biomolecule mediating synthesis of inorganic nanoparticles and their applications

    Science.gov (United States)

    Wei, Zengyan

    Project 1. The conventional phage display technique focuses on screening peptide sequences that can bind on target substrates, however the selected peptides are not necessary to nucleate and mediate the growth of the target inorganic crystals, and in many cases they only show moderate affinity to the targets. Here we report a novel phage display approach that can directly screen peptides catalytically growing inorganic nanoparticles in aqueous solution at room temperature. In this study, the phage library is incubated with zinc precursor at room temperature. Among random peptide sequences displayed on phages, those phages that can grow zinc oxide (ZnO) nanoparticles are selected with centrifugation. After several rounds of selection, the peptide sequences displayed on the phage viruses are analyzed by DNA sequencing. Our screening protocol provide a simple and convenient route for the discovery of catalytic peptides that can grow inorganic nanoparticles at room temperature. This novel screening protocol can extend the method on finding a wide range of new catalysts. Project 2. Genetically engineered collagen peptides are assembled into freestanding films when quantum dots (QDs) are co-assembled as joints between collagen domains. These peptide-based films show excellent mechanical properties with Young's modulus of 20 GPa, much larger than most of the multi-composite polymer films and previously reported freestanding nanoparticle-assembled sheets, and it is even close to that reported for the bone tissue in nature. These films show little permanent deformation under small indentation while the mechanical hysteresis becomes remarkable when the load approaches near and beyond the rupture point, which is also characteristic of the bone tissue. Project 3. The shape-controlled synthesis of nanoparticles have been established in single-phase solutions by controlling growth directions of crystalline facets on seed nanocrystals kinetically; however, it is difficult to

  15. New Methodology for the Synthesis of Thiobarbiturates Mediated by Manganese(III Acetate

    Directory of Open Access Journals (Sweden)

    Patrice Vanelle

    2012-04-01

    Full Text Available A three step synthesis of various thiobarbiturate derivatives 17–24 was established. The first step is mediated by Mn(OAc3, in order to generate a carbon-carbon bond between a terminal alkene and malonate. Derivatives 1–8 were obtained in moderate to good yields under mild conditions. This key step allows synthesis of a wide variety of lipophilic thiobarbiturates, which could be tested for their anticonvulsive or anesthesic potential.

  16. New methodology for the synthesis of thiobarbiturates mediated by manganese(III) acetate.

    Science.gov (United States)

    Bouhlel, Ahlem; Curti, Christophe; Vanelle, Patrice

    2012-04-10

    A three step synthesis of various thiobarbiturate derivatives 17-24 was established. The first step is mediated by Mn(OAc)₃, in order to generate a carbon-carbon bond between a terminal alkene and malonate. Derivatives 1-8 were obtained in moderate to good yields under mild conditions. This key step allows synthesis of a wide variety of lipophilic thiobarbiturates, which could be tested for their anticonvulsive or anesthesic potential.

  17. Leptin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland.

    Science.gov (United States)

    Peliciari-Garcia, Rodrigo Antonio; Andrade-Silva, Jéssica; Cipolla-Neto, José; Carvalho, Carla Roberta de Oliveira

    2013-01-01

    Pineal melatonin synthesis can be modulated by many peptides, including insulin. Because melatonin appears to alter leptin synthesis, in this work we aimed to investigate whether leptin would have a role on norepinephrine- (NE-)mediated melatonin synthesis in cultured rat pineal glands. According to our data, cultured rat pineal glands express leptin receptor isoform b (Ob-Rb). Pineal expression of Ob-Rb mRNA was also observed in vivo. Administration of leptin (1 nM) associated with NE ( 1 µM) reduced melatonin content as well as arylalkylamine-N-acetyl transferase (AANAT) activity and expression in cultured pineal glands. Leptin treatment per se induced the expression of STAT3 in cultured pineal glands, but STAT3 does not participate in the leptin modulation of NE-mediated pineal melatonin synthesis. In addition, the expression of inducible cAMP early repressor (ICER) was further induced by leptin challenge when associated with NE. In conclusion, leptin inhibition of pineal melatonin synthesis appears to be mediated by a reduction in AANAT activity and expression as well as by increased expression of Icer mRNA. Peptidergic signaling within the pineal gland appears to be one of the most important signals which modulates melatonin synthesis; leptin, as a member of this system, is not an exception.

  18. Leptin Modulates Norepinephrine-Mediated Melatonin Synthesis in Cultured Rat Pineal Gland

    Directory of Open Access Journals (Sweden)

    Rodrigo Antonio Peliciari-Garcia

    2013-01-01

    Full Text Available Pineal melatonin synthesis can be modulated by many peptides, including insulin. Because melatonin appears to alter leptin synthesis, in this work we aimed to investigate whether leptin would have a role on norepinephrine- (NE-mediated melatonin synthesis in cultured rat pineal glands. According to our data, cultured rat pineal glands express leptin receptor isoform b (Ob-Rb. Pineal expression of Ob-Rb mRNA was also observed in vivo. Administration of leptin (1 nM associated with NE (1 µM reduced melatonin content as well as arylalkylamine-N-acetyl transferase (AANAT activity and expression in cultured pineal glands. Leptin treatment per se induced the expression of STAT3 in cultured pineal glands, but STAT3 does not participate in the leptin modulation of NE-mediated pineal melatonin synthesis. In addition, the expression of inducible cAMP early repressor (ICER was further induced by leptin challenge when associated with NE. In conclusion, leptin inhibition of pineal melatonin synthesis appears to be mediated by a reduction in AANAT activity and expression as well as by increased expression of Icer mRNA. Peptidergic signaling within the pineal gland appears to be one of the most important signals which modulates melatonin synthesis; leptin, as a member of this system, is not an exception.

  19. Leptin Modulates Norepinephrine-Mediated Melatonin Synthesis in Cultured Rat Pineal Gland

    OpenAIRE

    Rodrigo Antonio Peliciari-Garcia; Jéssica Andrade-Silva; José Cipolla-Neto; Carla Roberta de Oliveira Carvalho

    2013-01-01

    Pineal melatonin synthesis can be modulated by many peptides, including insulin. Because melatonin appears to alter leptin synthesis, in this work we aimed to investigate whether leptin would have a role on norepinephrine- (NE-)mediated melatonin synthesis in cultured rat pineal glands. According to our data, cultured rat pineal glands express leptin receptor isoform b (Ob-Rb). Pineal expression of Ob-Rb mRNA was also observed in vivo. Administration of leptin (1 nM) associated with NE (1 µM)...

  20. Deciphering the roles of Arabidopsis LPCAT and PAH in phosphatidylcholine homeostasis and pathway coordination for chloroplast lipid synthesis.

    Science.gov (United States)

    Wang, Liping; Kazachkov, Michael; Shen, Wenyun; Bai, Mei; Wu, Hong; Zou, Jitao

    2014-12-01

    Phosphatidylcholine (PC) is a key intermediate in the metabolic network of glycerolipid biosynthesis. Lysophosphatidylcholine acyltransferase (LPCAT) and phosphatidic acid phosphatase (PAH) are two key enzymes of PC homeostasis. We report that LPCAT activity is markedly induced in the Arabidopsis pah mutant. The quadruple pah lpcat mutant, with dual defects in PAH and LPCAT, had a level of lysophosphatidylcholine (LPC) that was much higher than that in the lpcat mutants and a PC content that was higher than that in the pah mutant. Comparative molecular profile analysis of monogalactosyldiacylglycerol and digalactosyldiacylglycerol revealed that both the pah and pah lpcat mutants had increased proportions of 34:6 from the prokaryotic pathway despite differing levels of LPCAT activity. We show that a decreased representation of the C16:0 C18:2 diacylglycerol moiety in PC was a shared feature of pah and pah lpcat, and that this change in PC metabolic profile correlated with the increased prokaryotic contribution to chloroplast lipid synthesis. We detected increased PC deacylation in the pah lpcat mutant that was attributable at least in part to the induced phospholipases. Increased LPC generation was also evident in the pah mutant, but the phospholipases were not induced, raising the possibility that PC deacylation is mediated by the reverse reaction of LPCAT. We discuss possible roles of LPCAT and PAH in PC turnover that impacts lipid pathway coordination for chloroplast lipid synthesis.

  1. Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles.

    Science.gov (United States)

    Jo, Jae H; Singh, Priyanka; Kim, Yeon J; Wang, Chao; Mathiyalagan, Ramya; Jin, Chi-Gyu; Yang, Deok C

    2016-09-01

    The biological synthesis of metal nanoparticles is of great interest in the field of nanotechnology. The present work highlights the extracellular biological synthesis of silver nanoparticles using Pseudomonas deceptionensis DC5. The particles were synthesized in the culture supernatant within 48 h of incubation. Extracellular synthesis of silver nanoparticles in the culture supernatant was confirmed by ultraviolet-visible spectroscopy, which showed the absorption peak at 428 nm, and also under field emission transmission electron microscopy which displayed the spherical shape. In addition, the particles were characterized by X-ray diffraction spectroscopy, which corresponds to the crystalline nature of nanoparticles, and energy-dispersive X-ray analysis which exhibited the intense peak at 3 keV, resembling the silver nanoparticles. Further, the synthesized nanoparticles were examined by elemental mapping which displayed the dominance of the silver element in the synthesized product, and dynamic light scattering which showed the distribution of silver nanoparticles with respect to intensity, volume, and number of particles. Moreover, the silver nanoparticles have been found to be quite active in antimicrobial activity and biofilm inhibition activity against pathogenic microorganisms. Thus, the present work emphasized the prospect of using the P. deceptionensis DC5 to achieve the extracellular synthesis of silver nanoparticles in a facile and environmental manner.

  2. Plant-Mediated Green Synthesis of Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mihir Herlekar

    2014-01-01

    Full Text Available In the recent years, nanotechnology has emerged as a state-of-the-art and cutting edge technology with multifarious applications in a wide array of fields. It is a very broad area comprising of nanomaterials, nanotools, and nanodevices. Amongst nanomaterials, majority of the research has mainly focused on nanoparticles as they can be easily prepared and manipulated. Physical and chemical methods are conventionally used for the synthesis of nanoparticles; however, due to several limitations of these methods, research focus has recently shifted towards the development of clean and eco-friendly synthesis protocols. Magnetic nanoparticles constitute an important class of inorganic nanoparticles, which find applications in different areas by virtue of their several unique properties. Nevertheless, in comparison with biological synthesis protocols for noble metal nanoparticles, limited study has been carried out with respect to biological synthesis of magnetic nanoparticles. This review focuses on various studies outlining the novel routes for biosynthesis of these nanoparticles by plant resources along with outlining the future scope of work in this area.

  3. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract.

    Science.gov (United States)

    Khan, Mujeeb; Khan, Merajuddin; Adil, Syed Farooq; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Alkhathlan, Hamad Z; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H

    2013-01-01

    The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs' surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines.

  4. Streptomyces somaliensis mediated green synthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Meysam Soltani Nejad

    2015-07-01

    Full Text Available Objective(s: The development of reliable and ecofriendly process for the synthesis of nano-metals is an important aspect in the field of nanotechnology. Nano-metals are a special group of materials with broad area of applications. Materials and Methods: In this study, extracellular synthesis of silver nanoparticles (SNPs performed by use of the gram positive soil Streptomycetes. Streptomycetes isolated from rice fields of Guilan Province, Iran (5 isolates. Initial characterization of SNPs was performed by visual change color. To determine the bacterium taxonomical identity, its colonies characterized morphologically by use of scanning electron microscope. The PCR molecular analysis of active isolate represented its identity partially. In this regard, 16S rDNA of isolate G was amplified using universal bacterial primers FD1 and RP2. The PCR products were purified and sequenced. Sequence analysis of 16S rDNA was then conducted using NCBI GenBank database using BLAST. Also SNPs were characterized by, transmission electron microscopy (TEM and X-ray diffraction spectroscopy (XRD. Results: From all 5 collected Streptomyces somaliensis isolates, isolate G showed highest extracellular synthesis of SNPs via in vitro. SNPs were formed immediately by the addition of (AgNO3 solution (1 mM. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 450 nm, which confirmed the presence of SNPs. TEM revealed the extracellular formation of spherical silver nanoparticles in the size range of 5-35 nm. Conclusions: The biological approach for the synthesis of metal nanoparticles offers an environmentally benign alternative to the traditional chemical and physical synthesis methods. So, a simple, environmentally friendly and cost-effective method has been developed to synthesize AgNPs using Streptomycetes.

  5. A concise synthesis of the potent inflammatory mediator 5-oxo-ETE

    DEFF Research Database (Denmark)

    Tyagi, Rahul; Shimpukade, Bharat; Blättermann, Stefanie

    2012-01-01

    A concise and practical method for synthesis of the potent inflammatory mediator 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE, 1) from arachidonic acid in four steps and 70% overall yield is reported. Stability studies indicate that 1 can be safely handled without rigorous precautions...

  6. Microwave-Mediated Synthesis of Lophine: Developing a Mechanism to Explain a Product

    Science.gov (United States)

    Crouch, R. David; Howard, Jessica L.; Zile, Jennifer L.; Barker, Kathryn H.

    2006-01-01

    The microwave-mediated preparation of lophine (2,4,5-triphenylimidazole) is described. This experiment allows for an introduction to the emerging technology of microwave-assisted organic synthesis while providing an opportunity for students to employ the principles of carbonyl chemistry in devising a mechanism to explain the formation of the…

  7. NBS mediated nitriles synthesis through C=C double bond cleavage.

    Science.gov (United States)

    Zong, Xiaolin; Zheng, Qing-Zhong; Jiao, Ning

    2014-02-28

    An NBS mediated nitriles synthesis through C=C double bond cleavage has been developed. TMSN3 was employed as the nitrogen source for this Cu(OAc)2 promoted nitrogenation reaction. This transformation has a relatively high regio-selectivity to form aromatic nitriles.

  8. Copper-mediated pyrazole synthesis from 2,3-allenoates or 2-alkynoates, amines and nitriles.

    Science.gov (United States)

    Chen, Bo; Zhu, Can; Tang, Yang; Ma, Shengming

    2014-07-21

    An efficient copper-mediated three-component reaction of 2,3-allenoates or 2-alkynoates, amines, and nitriles affording fully substituted pyrazoles with a very nice diversity has been developed. A tandem conjugate addition, 1,2-addition, and N-N bond formation mechanism has been proposed for this diverse synthesis of pyrazoles based on mechanistic studies.

  9. A concise synthesis of the potent inflammatory mediator 5-oxo-ETE

    DEFF Research Database (Denmark)

    Tyagi, Rahul; Shimpukade, Bharat; Blättermann, Stefanie;

    2012-01-01

    A concise and practical method for synthesis of the potent inflammatory mediator 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE, 1) from arachidonic acid in four steps and 70% overall yield is reported. Stability studies indicate that 1 can be safely handled without rigorous precautions...

  10. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract

    Directory of Open Access Journals (Sweden)

    Afrah Eltayeb Mohammed

    2015-05-01

    Conclusions: Our findings indicated that extracellular synthesis of AgNPs mediated by E. camaldulensis leaf extract had an efficient bactericidal activity against the bacterial species tested. The exact mechanism of the extracellular biosynthesis of metal NP was not well understood. Further studies are needed to highlight the biosynthesis process of AgNPs and also to characterize the toxicity effect of these particles.

  11. Mn(0)-mediated chemoselective reduction of aldehydes. Application to the synthesis of α-deuterioalcohols.

    Science.gov (United States)

    Jiménez, Tania; Barea, Elisa; Oltra, J Enrique; Cuerva, Juan M; Justicia, José

    2010-10-15

    A mild, simple, safe, chemoselective reduction of different kinds of aldehydes to the corresponding alcohols mediated by the Mn dust/water system is described. In addition to this, the use of D(2)O leads to the synthesis of α-deuterated alcohols and constitutes an efficient, inexpensive alternative for the preparation of these compounds.

  12. A new manganese-mediated, cobalt-catalyzed three-component synthesis of (diarylmethylsulfonamides

    Directory of Open Access Journals (Sweden)

    Antoine Pignon

    2014-02-01

    Full Text Available The synthesis of (diarylmethylsulfonamides and related compounds by a new manganese-mediated, cobalt-catalyzed three-component reaction between sulfonamides, carbonyl compounds and organic bromides is described. This organometallic Mannich-like process allows the formation of the coupling products within minutes at room temperature. A possible mechanism, emphasizing the crucial role of manganese is proposed.

  13. Rhodium(III)-Catalyzed C-H Activation Mediated Synthesis of Isoquinolones from Amides and Cyclopropenes.

    Science.gov (United States)

    Hyster, Todd K; Rovis, Tomislav

    2013-01-01

    We have developed a synthesis of 4-substituted isoquinolones from the Rh(III)-catalyzed, C-H activation mediated, coupling of O-pivaloyl benzhydroxamic acids and 3,3-disubstituted cyclopropenes. Experiments suggest the formation of a [4.1.0] bicyclic-system, which can open under acidic conditions to generate the desired isoquinolone.

  14. Rhodium(III)-Catalyzed C–H Activation Mediated Synthesis of Isoquinolones from Amides and Cyclopropenes

    Science.gov (United States)

    Hyster, Todd K.; Rovis, Tomislav

    2014-01-01

    We have developed a synthesis of 4-substituted isoquinolones from the Rh(III)-catalyzed, C–H activation mediated, coupling of O-pivaloyl benzhydroxamic acids and 3,3-disubstituted cyclopropenes. Experiments suggest the formation of a [4.1.0] bicyclic-system, which can open under acidic conditions to generate the desired isoquinolone. PMID:25346576

  15. Honey Mediated Green Synthesis of Nanoparticles: New Era of Safe Nanotechnology

    Directory of Open Access Journals (Sweden)

    Eranga Roshan Balasooriya

    2017-01-01

    Full Text Available With the advent of nanotechnology, many related industries rapidly developed over the recent past. Generally, top-down and bottom-up approaches are the two major processes used to synthesize nanoparticles; most of these require high temperatures, vacuum conditions, and harsh/toxic chemicals. As a consequence, adverse effects impacted organisms including humans. Some synthesis methods are expensive and time-consuming. As a corollary, the concept of “green nanotechnology” emerged with the green synthesis of nanoparticles commencing a new epoch in nanotechnology. This involves the synthesis of nanomaterial from microorganisms, macroorganisms, and other biological materials. Honey is documented as the world’s oldest food source with exceptional medical, chemical, physical, and pharmaceutical values. Honey mediated green synthesis is a relatively novel concept used during the past few years to synthesize gold, silver, carbon, platinum, and palladium nanoparticles. Honey acts as both a stabilizing and a reducing agent and importantly functions as a precursor in nanoparticle synthesis. This method usually requires room temperature and does not produce toxic byproducts. In conclusion, honey mediated green synthesis of nanoparticles provides a simple, cost effective, biocompatible, reproducible, rapid, and safe method. The special activity of honey functionalized nanoparticles may provide valuable end products with numerous applications in diverse fields.

  16. Nonionic emulsion-mediated synthesis of zeolite beta

    Indian Academy of Sciences (India)

    Yuguo Shen; Ying Zhang; Chao Jin; Ying Cao; Wei Gao; Lishan Cui

    2011-07-01

    Zeolite beta synthesis was first carried out in a newly developed emulsion system containing nonionic polyoxyethylated alkylphenol surfactant, which showed interesting non-conventional features. Compared to the conventional hydrothermal synthesis of zeolite beta, the reported nonionic emulsion system showed a faster nucleation rate. Furthermore, the emulsion system could stabilize the beta product and retarded its further transformation to ZSM-5 even under the high crystallization temperature at 453 K. Additionally, the beta particle size could be tuned by the adoption of different lengths of alkyl chain in the surfactant and cosurfactant. Control experiments showed each emulsion component played a crucial role in the zeolite beta growth. The approach proposed in this paper might be extended to apply for the syntheses of other types of zeolites with particle size under control.

  17. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract

    Directory of Open Access Journals (Sweden)

    Khan M

    2013-04-01

    Full Text Available Mujeeb Khan,1 Merajuddin Khan,1 Syed Farooq Adil,1 Muhammad Nawaz Tahir,2 Wolfgang Tremel,2 Hamad Z Alkhathlan,1 Abdulrahman Al-Warthan,1 Mohammed Rafiq H Siddiqui1 1Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Mainz, Germany Abstract: The green synthesis of metallic nanoparticles (NPs has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet–visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract and precursor solution (silver nitrate, the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs' surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines. Keywords: surface plasmon resonance, metallic nanoparticles, eco-friendly, capping ligand

  18. Chitosan-mediated synthesis of carbon nanotube-gold nanohybrids

    Institute of Scientific and Technical Information of China (English)

    GRAVEL; Edmond; FOILLARD; Stéphanie; DORIS; Eric

    2010-01-01

    Metal-nanotube nanohybrids were produced by in situ synthesis and stabilization of gold nanoparticles on chitosan-functionalized carbon nanotubes.The formation of gold nanoparticles from tetrachloroauric acid was observed after only a few minutes of contact with the functionalized nanotubes,at room temperature.These results suggest that adsorption of chitosan at the surface of carbon nanotubes permits smooth reduction of the metallic salt and efficient anchoring of gold nanoparticles to the nanotubes.

  19. Isolation and identification of molecular species of phosphatidylcholine and lysophosphatidylcholine from jojoba seed meal (Simmondsia chinensis).

    Science.gov (United States)

    Léon, Fabian; Van Boven, Maurits; de Witte, Peter; Busson, Roger; Cokelaere, Marnix

    2004-03-10

    A mixture of lysophosphatidylcholine (LPC) and phosphatidylcholine (PC) has been isolated by column chromatography from a jojoba meal (Simmondsia chinensis) extract. The molecular species of both classes could be separated and isolated by C18 reversed phase HPLC. The two major compounds were identified by 1D and 2D (1)H and (13)C NMR, by MS, and by GC-MS as 1-oleoyl-3-lysophosphatidylcholine and 1,2-dioleoyl-3-phosphatidylcholine. Eight other molecular species of LPC and four other molecular species of PC could be assigned by comparison of the mass spectra of the isolated compounds with the spectra of the two major compounds. Complete characterization of the individual molecular species was achieved by GC and GC-MS analysis of the fatty acyl composition from the isolated compounds. The PC/LPC proportion in the phospholipid mixture from three different samples is 1.6 +/- 0.1. LPC is considered to be an important bioactive compound; the results of this study suggest further research for the evaluation of potential health benefits of jojoba meal phospholipids.

  20. Alteration of Lysophosphatidylcholine-Related Metabolic Parameters in the Plasma of Mice with Experimental Sepsis.

    Science.gov (United States)

    Ahn, Won-Gyun; Jung, Jun-Sub; Kwon, Hyeok Yil; Song, Dong-Keun

    2017-04-01

    Plasma concentration of lysophosphatidylcholine (LPC) was reported to decrease in patients with sepsis. However, the mechanisms of sepsis-induced decrease in plasma LPC levels are not currently well known. In mice subjected to cecal ligation and puncture (CLP), a model of polymicrobial peritoneal sepsis, we examined alterations in LPC-related metabolic parameters in plasma, i.e., the plasma concentration of LPC-related substances (i.e., phosphatidylcholine (PC) and lysophosphatidic acid (LPA)), and activities or levels in the plasma of some enzymes that can be involved in the regulation of plasma LPC concentration (i.e., secretory phospholipase A2 (sPLA2), lecithin:cholesterol acyltransferase (LCAT), acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), and autotaxin (ATX)), as well as plasma albumin concentration. We found that levels of LPC and albumin and enzyme activities of LCAT, ATX, and sPLA2 were decreased, whereas levels of PC, LPA, and LPCAT1-3 were increased in the plasma of mice subjected to CLP. Bacterial peritonitis led to alterations in all the measured LPC-related metabolic parameters in the plasma, which could potentially contribute to sepsis-induced decrease in plasma LPC levels. These findings could lead to the novel biomarkers of sepsis.

  1. Synthesis of novel photochromic pyrans via palladium-mediated reactions

    NARCIS (Netherlands)

    Böttcher, Christoph; Zeyat, Gehad; Ahmed, Saleh A.; Irran, Elisabeth; Cordes, Thorben; Elsner, Cord; Zinth, Wolfgang; Rueck-Braun, Karola

    2009-01-01

    Photochromic pyrans for applications in material and life sciences were synthesized via palladium-mediated cyanation, carbonylation and Sonogashira cross-coupling starting from a bromo-substituted naphthopyran and benzopyrans. A novel photoswitchable benzopyran-based ω-amino acid for Fmoc-based soli

  2. Casein mediated green synthesis and decoration of reduced graphene oxide.

    Science.gov (United States)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Vankayala, Raviraj; Kalluru, Poliraju; Tammina, Sai Kumar; Kiran Kumar, H A

    2014-05-21

    This research is mainly focusing on one-step biosynthesis of graphene from graphene oxide and its stabilization using naturally occurring milk protein, casein. The synthesis of casein reduced graphene oxide (CRGO) was completed within 7h under reflux at 90°C with the formation of few layered fine graphene nanosheets. UV-Vis, XRD, XPS analysis data revealed the reduction process of the graphene oxide. Results of FT-IR, HPLC and TEM analysis have shown that the ensuing material consists of graphene decorated with casein molecules. Aspartic acid and glutamic acid residue present in casein molecules are responsible for the reduction of graphene oxide.

  3. Casein mediated green synthesis and decoration of reduced graphene oxide

    Science.gov (United States)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Vankayala, Raviraj; Kalluru, Poliraju; Tammina, Sai Kumar; Kiran Kumar, H. A.

    This research is mainly focusing on one-step biosynthesis of graphene from graphene oxide and its stabilization using naturally occurring milk protein, casein. The synthesis of casein reduced graphene oxide (CRGO) was completed within 7 h under reflux at 90 °C with the formation of few layered fine graphene nanosheets. UV-Vis, XRD, XPS analysis data revealed the reduction process of the graphene oxide. Results of FT-IR, HPLC and TEM analysis have shown that the ensuing material consists of graphene decorated with casein molecules. Aspartic acid and glutamic acid residue present in casein molecules are responsible for the reduction of graphene oxide.

  4. Titanocene(III) chloride mediated radical induced addition-elimination route to the synthesis of racemic and optically active trisubstituted tetrahydrofurans: Formal synthesis of magnofargesin and 7'-epimagnofargesin

    Indian Academy of Sciences (India)

    P CHAKRABORTY; S K MANDAL; S C ROY

    2016-07-01

    Titanocene(III) Chloride mediated radical induced synthesis of 4-benzylidene substituted tetrahydrofuran, a typical lignan skeleton, has been accomplished in good yield through addition-elimination route in racemic as well as in optically active forms. The method has been applied to the synthesis of furano lignans, magnofargesin (1) and 7'-epimagnofargesin (2) in optically active forms.

  5. Terminalia chebula mediated green and rapid synthesis of gold nanoparticles.

    Science.gov (United States)

    Kumar, Kesarla Mohan; Mandal, Badal Kumar; Sinha, Madhulika; Krishnakumar, Varadhan

    2012-02-01

    Biologically inspired experimental process in synthesising nanoparticles is of great interest in present scenario. Biosynthesis of nanoparticles is considered to be one of the best green techniques in synthesising metal nanoparticles. Here, an in situ green biogenic synthesis of gold nanoparticles using aqueous extracts of Terminalia chebula as reducing and stabilizing agent is reported. Gold nanoparticles were confirmed by surface plasmon resonance in the range of 535 nm using UV-visible spectrometry. TEM analysis revealed that the morphology of the particles thus formed contains anisotropic gold nanoparticles with size ranging from 6 to 60 nm. Hydrolysable tannins present in the extract of T. chebula are responsible for reductions and stabilization of gold nanoparticles. Antimicrobial activity of gold nanoparticles showed better activity towards gram positive S. aureus compared to gram negative E. coli using standard well diffusion method.

  6. Lysophosphatidic acid as a phospholipid mediator: pathways of synthesis.

    Science.gov (United States)

    Gaits, F; Fourcade, O; Le Balle, F; Gueguen, G; Gaigé, B; Gassama-Diagne, A; Fauvel, J; Salles, J P; Mauco, G; Simon, M F; Chap, H

    1997-06-23

    From very recent studies, including molecular cloning of cDNA coding for membrane receptors, lysophosphatidic acid (LPA) reached the status of a novel phospholipid mediator with various biological activities. Another strong argument supporting this view was the discovery that LPA is secreted from activated platelets, resulting in its appearance in serum upon blood coagulation. The metabolic pathways as well as the enzymes responsible for LPA production are poorly characterized. However, a survey of literature data indicates some interesting issues which might be used as the basis for further molecular characterization of phospholipases A able to degrade phosphatidic acid.

  7. Fungal mediated silver nanoparticle synthesis using robust experimental design and its application in cotton fabric

    Science.gov (United States)

    Velhal, Sulbha Girish; Kulkarni, S. D.; Latpate, R. V.

    2016-09-01

    Among the different methods employed for the synthesis of nanoparticles, the biological method is most favorable and quite well established. In microorganisms, use of fungi in the biosynthesis of silver nanoparticles has a greater advantage over other microbial mediators. In this study, intracellular synthesis of silver nanoparticles from Aspergillus terrerus (Thom) MTCC632 was carried out. We observed that synthesis of silver nanoparticles depended on factors such as temperature, amount of biomass and concentration of silver ions in the reaction mixture. Hence, optimization of biosynthesis using these parameters was carried out using statistical tool `robust experimental design'. Size and morphology of synthesized nanoparticles were determined using X-ray diffraction technique, field emission scanning electron microscopy, energy dispersion spectroscopy, and transmission electron microscopy. Nano-embedded cotton fabric was further prepared and studied for its antibacterial properties.

  8. Piper betle-mediated green synthesis of biocompatible gold nanoparticles

    Science.gov (United States)

    Punuri, Jayasekhar Babu; Sharma, Pragya; Sibyala, Saranya; Tamuli, Ranjan; Bora, Utpal

    2012-08-01

    Here, we report the novel use of the ethonolic leaf extract of Piper betle for gold nanoparticle (AuNP) synthesis. The successful formation of AuNPs was confirmed by UV-visible spectroscopy, and different parameters such as leaf extract concentration (2%), gold salt concentration (0.5 mM), and time (18 s) were optimized. The synthesized AuNPs were characterized with different biophysical techniques such as transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). TEM experiments showed that nanoparticles were of various shapes and sizes ranging from 10 to 35 nm. FT-IR spectroscopy revealed that AuNPs were functionalized with biomolecules that have primary amine group -NH2, carbonyl group, -OH groups, and other stabilizing functional groups. EDX showed the presence of the elements on the surface of the AuNPs. FT-IR and EDX together confirmed the presence of biomolecules bounded on the AuNPs. Cytotoxicity of the AuNPs was tested on HeLa and MCF-7 cancer cell lines, and they were found to be nontoxic, indicating their biocompatibility. Thus, synthesized AuNPs have potential for use in various biomedical applications.

  9. The t-Butylsulfinamide Lynchpin in Transition Metal-Mediated Multiscaffold Library Synthesis

    Science.gov (United States)

    Bauer, Renato A.; DiBlasi, Christine M.; Tan, Derek S.

    2010-01-01

    A unified synthetic approach to diverse polycyclic scaffolds has been developed using transition metal-mediated cycloaddition and cyclization reactions of enynes and diynes. The t-butylsulfinamide group has been identified as a particularly versatile lynchpin in these reactions, with a reactivity profile uniquely suited for efficient, stereoselective substrate synthesis and downstream transformations. This approach provides ten distinct, functionalized scaffold classes related to common core structures in alkaloid and terpenoid natural products. PMID:20356070

  10. The tert-butylsulfinamide lynchpin in transition-metal-mediated multiscaffold library synthesis.

    Science.gov (United States)

    Bauer, Renato A; DiBlasi, Christine M; Tan, Derek S

    2010-05-07

    A unified synthetic approach to diverse polycyclic scaffolds has been developed using transition-metal-mediated cycloaddition and cyclization reactions of enynes and diynes. The tert-butylsulfinamide group has been identified as a particularly versatile lynchpin in these reactions, with a reactivity profile uniquely suited for efficient, stereoselective substrate synthesis and downstream transformations. This approach provides 10 distinct, functionalized scaffold classes related to common core structures in alkaloid and terpenoid natural products.

  11. Halonium ion mediated synthesis of 2-halomethylene-3-oxoketoxime derivatives from isoxazoline N-oxides.

    Science.gov (United States)

    Raihan, Mustafa J; Rajawinslin, R R; Kavala, Veerababurao; Kuo, Chun-Wei; Kuo, Ting-Shen; He, Chiu-Hui; Huang, Hsiu-Ni; Yao, Ching-Fa

    2013-09-06

    A protocol for the N-bromosuccinimide (NBS)- and trichloroisocyanuric acid (TCCA)-mediated synthesis of novel 2-halomethylene-3-oxoketoximes via one-pot halogenation/oxidation of isoxazoline N-oxide derivatives is described here. The keto functionality of 3-ketoximes was selectively reduced by lithiumaluminum hydride to synthesize an unprecedented type of Baylis-Hillman oxime, which underwent N-O coupling to produce new isoxazoline N-oxide derivative.

  12. Solvent-Free Synthesis of Flavour Esters through Immobilized Lipase Mediated Transesterification

    OpenAIRE

    Vijay Kumar Garlapati; Rintu Banerjee

    2013-01-01

    The synthesis of methyl butyrate and octyl acetate through immobilized Rhizopus oryzae NRRL 3562 lipase mediated transesterification was studied under solvent-free conditions. The effect of different transesterification variables, namely, molarity of alcohol, reaction time, temperature, agitation, addition of water, and enzyme amount on molar conversion (%) was investigated. A maximum molar conversion of 70.42% and 92.35% was obtained in a reaction time of 14 and 12 h with the transesterifica...

  13. Phospholipase D toxins of brown spider venom convert lysophosphatidylcholine and sphingomyelin to cyclic phosphates.

    Science.gov (United States)

    Lajoie, Daniel M; Zobel-Thropp, Pamela A; Kumirov, Vlad K; Bandarian, Vahe; Binford, Greta J; Cordes, Matthew H J

    2013-01-01

    Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using (31)P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation.

  14. Phospholipase D toxins of brown spider venom convert lysophosphatidylcholine and sphingomyelin to cyclic phosphates.

    Directory of Open Access Journals (Sweden)

    Daniel M Lajoie

    Full Text Available Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using (31P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation.

  15. Cytokine-mediated inhibition of ketogenesis is unrelated to nitric oxide or protein synthesis.

    Science.gov (United States)

    Pailla, K; El-Mir, M Y; Cynober, L; Blonde-Cynober, F

    2001-08-01

    Cytokines play an important role in the lipid disturbances commonly associated with sepsis. Ketogenesis is inhibited during sepsis, and tumor necrosis factor alpha (TNF alpha) and interleukin-6 (IL-6) have been suggested to mediate this impairment, irrespective of the ketogenic substrate (fatty acid or branched chain ketoacid). However, the underlying mechanism of cytokine action is still unknown. First we investigated the possible role of the induction of nitric oxide (NO) synthesis, using rat hepatocyte monolayers. Hepatocytes were incubated for 6 h, with either alpha -ketoisocaproate (KIC) (1 mM) or oleic acid (0.5 mM) in the presence or absence of TNF alpha (25 microg/L) and IL-6 (15 microg/L). In some experiments, cells were incubated with NO synthase (NOS) inhibitors. The ketone body (beta -hydroxybutyrate and acetoacetate) production and nitrite production were measured in the incubation medium. Our results indicated no involvement of nitric oxide in the inhibitory action of cytokines on ketogenesis. Secondly, we showed that cycloheximide (10(-4)M) did not counteract the cytokine-mediated ketogenesis decrease; hence, the effects of cytokines on ketogenesis are not protein synthesis-dependent. The cytokine-mediated inhibition of ketogenesis is therefore unrelated to either NO production or protein synthesis.

  16. Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Woong Han, Jae; Kim, Eunsu; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-10-03

    Graphene is the 2D form of carbon that exists as a single layer of atoms arranged in a honeycomb lattice and has attracted great interest in the last decade in view of its physical, chemical, electrical, elastic, thermal, and biocompatible properties. The objective of this study was to synthesize an environmentally friendly and simple methodology for the preparation of graphene using a recombinant enhanced green fluorescent protein (EGFP). The successful reduction of GO to graphene was confirmed using UV-vis spectroscopy, and FT-IR. DLS and SEM were employed to demonstrate the particle size and surface morphology of GO and EGFP-rGO. The results from Raman spectroscopy suggest the removal of oxygen-containing functional groups from the surface of GO and formation of graphene with defects. The biocompatibility analysis of GO and EGFP-rGO in human embryonic kidney (HEK) 293 cells suggests that GO induces significant concentration-dependent cell toxicity in HEK cells, whereas graphene exerts no adverse effects on HEK cells even at a higher concentration (100 μg/mL). Altogether, our findings suggest that recombinant EGFP can be used as a reducing and stabilizing agent for the preparation of biocompatible graphene. The novelty and originality of this work is that it describes a safe, simple, and environmentally friendly method for the production of graphene using recombinant enhanced green fluorescent protein. Furthermore, the synthesized graphene shows excellent biocompatibility with HEK cells; therefore, biologically synthesized graphene can be used for biomedical applications. To the best of our knowledge, this is the first and novel report describing the synthesis of graphene using recombinant EGFP.

  17. A facile BPO-mediated ortho-hydroxylation and benzoylation of N-alkyl anilines for synthesis of 2-benzamidophenols.

    Science.gov (United States)

    Zhang, Zhi-Jing; Quan, Xue-Jing; Ren, Zhi-Hui; Wang, Yao-Yu; Guan, Zheng-Hui

    2014-06-20

    A facile benzoyl peroxide (BPO) mediated ortho-hydroxylation and benzoylation of N-alkyl anilines for the synthesis of 2-benzamidophenols has been developed. The reaction tolerates a wide range of functional groups and is a good method for the straightforward synthesis of valuable 2-benzamidophenols in good yields under mild conditions.

  18. Methanobactin-mediated one-step synthesis of gold nanoparticles.

    Science.gov (United States)

    Xin, Jia-ying; Cheng, Dan-dan; Zhang, Lan-xuan; Lin, Kai; Fan, Hong-chen; Wang, Yan; Xia, Chun-gu

    2013-11-01

    Preparation of gold nanoparticles with a narrow size distribution has enormous importance in nanotechnology. Methanobactin (Mb) is a copper-binding small peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Mb can also bind and catalytically reduce Au (III) to Au (0). In this study, we demonstrate a facile Mb-mediated one-step synthetic route to prepare monodispersed gold nanoparticles. Continuous reduction of Au (III) by Mb can be achieved by using hydroquinone as the reducing agent. The gold nanoparticles have been characterized by UV-visible spectroscopy. The formation and the surface plasmon resonance properties of the gold nanoparticles are highly dependent on the ratio of Au (III) to Mb in solution. X-ray photoelectron spectroscopy (XPS), fluorescence spectra and Fourier transform-infrared spectroscopy (FT-IR) spectra suggest that Mb molecules catalytically reduce Au (III) to Au (0) with the concomitant production of gold nanoparticles, and then, Mb statically adsorbed onto the surface of gold nanoparticles to form an Mb-gold nanoparticles assembly. This avoids secondary nucleation. The formed gold nanoparticles have been demonstrated to be monodispersed and uniform by transmission electron microscopy (TEM) images. Analysis of these particles shows an average size of 14.9 nm with a standard deviation of 1.1 nm. The gold nanoparticles are extremely stable and can resist aggregation, even after several months.

  19. Methanobactin-Mediated One-Step Synthesis of Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2013-11-01

    Full Text Available Preparation of gold nanoparticles with a narrow size distribution has enormous importance in nanotechnology. Methanobactin (Mb is a copper-binding small peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Mb can also bind and catalytically reduce Au (III to Au (0. In this study, we demonstrate a facile Mb-mediated one-step synthetic route to prepare monodispersed gold nanoparticles. Continuous reduction of Au (III by Mb can be achieved by using hydroquinone as the reducing agent. The gold nanoparticles have been characterized by UV-visible spectroscopy. The formation and the surface plasmon resonance properties of the gold nanoparticles are highly dependent on the ratio of Au (III to Mb in solution. X-ray photoelectron spectroscopy (XPS, fluorescence spectra and Fourier transform-infrared spectroscopy (FT-IR spectra suggest that Mb molecules catalytically reduce Au (III to Au (0 with the concomitant production of gold nanoparticles, and then, Mb statically adsorbed onto the surface of gold nanoparticles to form an Mb-gold nanoparticles assembly. This avoids secondary nucleation. The formed gold nanoparticles have been demonstrated to be monodispersed and uniform by transmission electron microscopy (TEM images. Analysis of these particles shows an average size of 14.9 nm with a standard deviation of 1.1 nm. The gold nanoparticles are extremely stable and can resist aggregation, even after several months.

  20. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation.

    Science.gov (United States)

    Jung, Hyejung; Chung, Heesung; Chang, Sung Eun; Choi, Sora; Han, Inn-Oc; Kang, Duk-Hee; Oh, Eok-Soo

    2014-05-01

    Syndecan-2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan-2 in melanogenesis. Syndecan-2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA-mediated knockdown of syndecan-2 was associated with reduced melanin synthesis, whereas overexpression of syndecan-2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan-2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan-2 expression, and this up-regulation of syndecan-2 was required for UVB-induced melanin synthesis. Taken together, these data suggest that syndecan-2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin-associated diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Environmental stress-mediated changes in transcriptional and translational regulation of protein synthesis in crop plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The research described in this final report focused on the influence of stress agents on protein synthesis in crop plants (primarily soybean). Investigations into the `heat shock` (HS) stress mediated changes in transcriptional and translocational regulation of protein synthesis coupled with studies on anaerobic water deficit and other stress mediated alterations in protein synthesis in plants provided the basis of the research. Understanding of the HS gene expression and function(s) of the HSPs may clarify regulatory mechanisms operative in development. Since the reproductive systems of plants if often very temperature sensitive, it may be that the system could be manipulated to provide greater thermotolerance.

  2. Green Synthesis and Regioselective Control of Sn/I2 Mediated Allylation of Carbonyl Compounds with Crotyl Halide in Water

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yan; ZHA,Zhang-Gen; ZHOU,Yu-Qing; WANG,Zhi-Yong

    2004-01-01

    @@ Barbier-type carbonyl allylation is particularly useful due to ease of operation and the availability and tractability of allylic substrates,[1] Metals such as indium, zinc and tin are often used as the mediator. Here we present a green approach toward the synthesis, that is, Sn/I2 mediated allylation of carbonyl compounds with crotyl halide in water.

  3. Identifying intracellular sites of eicosanoid lipid mediator synthesis with EicosaCell assays.

    Science.gov (United States)

    Bandeira-Melo, Christianne; Weller, Peter F; Bozza, Patricia T

    2011-01-01

    Eicosanoids, arachidonic acid-derived signaling lipid mediators, are newly formed and nonstorable molecules that have important roles in physiological and pathological processes. EicosaCell is a microscopic assay that enables the intracellular detection and localization of eicosanoid lipid mediator-synthesizing compartments by means of a strategy to covalently cross-link and immobilize eicosanoids at their sites of synthesis followed by immunofluorescent-based localization of the targeted eicosanoid. EicosaCell is a versatile assay which allows analyses of different types of cell preparations, such as cells isolated from humans or harvested cells from in vivo models of inflammation and adherent or suspension cells stimulated in vitro. EicosaCell assays have been successfully used to identify different intracellular compartments of synthesis of prostaglandins and leukotrienes upon cellular activation. This is of particular interest given that over the past decade intracellular compartmentalization of eicosanoid-synthetic machinery has emerged both as a key component in the regulation of eicosanoid synthesis and in delineating functional intracellular and extracellular actions of eicosanoids. This review covers basics of EicosaCell assay including its selection of reagents, immunodetection design as well as some troubleshooting recommendations.

  4. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, K.A.; Toledo, S.P. (Univ. of California-San Diego, La Jolla (USA))

    1989-09-01

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of (3H)leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of (3H)aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons.

  5. Plasmon-mediated synthesis of silver cubes with unusual twinning structures using short wavelength excitation.

    Science.gov (United States)

    Personick, Michelle L; Langille, Mark R; Zhang, Jian; Wu, Jinsong; Li, Shuyou; Mirkin, Chad A

    2013-06-10

    The plasmon-mediated synthesis of silver nanoparticles is a versatile synthetic method which leverages the localized surface plasmon resonance (LSPR) of nanoscale silver to generate particles with non-spherical shapes and control over dimensions. Herein, a method is reported for controlling the twinning structure of silver nanoparticles, and consequently their shape, via the plasmon-mediated synthesis, solely by varying the excitation wavelength between 400, 450, and 500 nm, which modulates the rate of Ag⁺ reduction. Shorter, higher energy excitation wavelengths lead to faster rates of reaction, which in turn yield structures containing a greater number of twin boundaries. With this method, silver cubes can be synthesized using 450 nm excitation, which represents the first time this shape has been realized by a plasmon-mediated synthetic approach. In addition, these cubes contain an unusual twinning structure composed of two intersecting twin boundaries or multiple parallel twin boundaries. With respect to their twinning structure, these cubes fall between planar-twinned and multiply twinned nanoparticles, which are synthesized using 500 and 400 nm excitation, respectively.

  6. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications

    Science.gov (United States)

    Chung, Ill-Min; Park, Inmyoung; Seung-Hyun, Kim; Thiruvengadam, Muthu; Rajakumar, Govindasamy

    2016-01-01

    Interest in "green nanotechnology" in nanoparticle biosynthesis is growing among researchers. Nanotechnologies, due to their physicochemical and biological properties, have applications in diverse fields, including drug delivery, sensors, optoelectronics, and magnetic devices. This review focuses on the green synthesis of silver nanoparticles (AgNPs) using plant sources. Green synthesis of nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. The sizes of AgNPs are in the range of 1 to 100 nm. Characterization of synthesized nanoparticles is accomplished through UV spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. AgNPs have great potential to act as antimicrobial agents. The green synthesis of AgNPs can be efficiently applied for future engineering and medical concerns. Different types of cancers can be treated and/or controlled by phytonanotechnology. The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.

  7. Urease-mediated room-temperature synthesis of nanocrystalline titanium dioxide.

    Science.gov (United States)

    Johnson, John M; Kinsinger, Nichola; Sun, Chhay; Li, Dongsheng; Kisailus, David

    2012-08-29

    Enzymes are an important class of biological molecules whose specific functionalities can be exploited to perform tasks beyond the reach of conventional chemistry. Because they are operational under environmentally friendly, ambient conditions, the adaptation of these biomacromolecules can potentially be used to replace current energy-intensive and environmentally harsh synthesis methods for materials. Here we used a hydrolytic enzyme, urease, to modify the solution environment around a water-soluble and stable TiO(2) precursor to synthesize nanocrystalline titanium dioxide under environmentally benign conditions. This urease-mediated synthesis yields nearly monodisperse TiO(2) nanostructures with high surface area that can be utilized for numerous energy-based applications such as low-cost photovoltaics and photocatalysts.

  8. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms.

    Science.gov (United States)

    Suganya, K S Uma; Govindaraju, K; Kumar, V Ganesh; Dhas, T Stalin; Karthick, V; Singaravelu, G; Elanchezhiyan, M

    2015-02-01

    Biofunctionalized gold nanoparticles (AuNPs) play an important role in design and development of nanomedicine. Synthesis of AuNPs from biogenic materials is environmentally benign and possesses high bacterial inhibition and bactericidal properties. In the present study, blue green alga Spirulina platensis protein mediated synthesis of AuNPs and its antibacterial activity against Gram positive bacteria is discussed. AuNPs were characterized using Ultraviolet-visible (UV-vis) spectroscopy, Fluorescence spectroscopy, Fourier Transform-Infrared (FTIR) spectroscopy, Raman spectroscopy, High Resolution-Transmission Electron Microscopy (HR-TEM) and Energy Dispersive X-ray analysis (EDAX). Stable, well defined AuNPs of smaller and uniform shape with an average size of ~ 5 nm were obtained. The antibacterial efficacy of protein functionalized AuNPs were tested against Gram positive organisms Bacillus subtilis and Staphylococcus aureus.

  9. Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone

    Science.gov (United States)

    Kumar, Dhiraj; Mutreja, Isha; Sykes, Peter

    2016-09-01

    Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ˜100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV-vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ˜100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering—volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.

  10. Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone.

    Science.gov (United States)

    Kumar, Dhiraj; Mutreja, Isha; Sykes, Peter

    2016-09-02

    Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ∼100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV-vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ∼100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering-volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.

  11. Visualization of phosphatidylcholine, lysophosphatidylcholine and sphingomyelin in mouse tongue body by matrix-assisted laser desorption/ionization imaging mass spectrometry.

    Science.gov (United States)

    Enomoto, Hirofumi; Sugiura, Yuki; Setou, Mitsutoshi; Zaima, Nobuhiro

    2011-06-01

    The mammalian tongue is one of the most important organs during food uptake because it is helpful for mastication and swallowing. In addition, taste receptors are present on the surface of the tongue. Lipids are the second most abundant biomolecules after water in the tongue. Lipids such as phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) are considered to play fundamental roles in the mediation of cell signaling. Imaging mass spectrometry (IMS) is powerful tool for determining and visualizing the distribution of lipids across sections of dissected tissue. In this study, we identified and visualized the PC, LPC, and SM species in a mouse tongue body section with matrix-assisted laser desorption/ionization (MALDI)-IMS. The ion image constructed from the peaks revealed that docosahexaenoic acid (DHA)-containing PC, LPC, linoleic acid-containing PC and SM (d18:1/16:0), and oleic acid-containing PC were mainly distributed in muscle, connective tissue, stratified epithelium, and the peripheral nerve, respectively. Furthermore, the distribution of SM (d18:1/16:0) corresponded to the distribution of nerve tissue relating to taste in the stratified epithelium. This study represents the first visualization of PC, LPC and SM localization in the mouse tongue body.

  12. Plant-mediated synthesis of nanoparticles: A newer and safer tool against mosquito-borne diseases?

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2016-04-01

    Full Text Available Prevention and control of mosquito-borne diseases is a key challenge of huge public health importance. Plant-mediated synthesis of nanoparticles has recently gained attention as a cheap, rapid and eco-friendly method to control mosquito vector populations, with special reference to young instars. Furthermore, plant-fabricated nanoparticles have been successfully employed as dengue virus growth inhibitors. In this Editorial, parasitologists, entomologists and researchers in drug nanosynthesis are encouraged to deal with a number of crucial challenges of public health importance.

  13. Protein mediated synthesis of fluorescent Au-nanoclusters for metal sensory coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Manja; Raff, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Fluorescent Au-nanocluster were successfully synthesized and used for the selective detection of Cu{sup 2} {sup +}. The synthesized Au-BSA-nanoclusters remain functional also after immobilization and show high thermal stability. Additionally, the transfer of the protein mediated Au-nanocluster synthesis route to S-layer proteins was achieved. (The presented work is part of the project BIONEWS dealing with long-term stable cells for the set-up and regeneration of sensor and actor materials for strategic relevant metals, in particular rare earth elements).

  14. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases.

    Science.gov (United States)

    Ahmadi-Abhari, S; Woortman, A J J; Hamer, R J; Loos, K

    2015-05-20

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis. Based on this, to benefit from both the structuring properties of starch and also lower digestibility of the inclusion complexes, the objective of this study is the formation of amylose-LPC inclusion complexes while developing a firm network providing the desired functional properties in a starchy system. To investigate the influence of amylose-LPC complex formation at different stages of starch gelation on the viscosity behavior of wheat starch, 3% (w/w) LPC was added at three different points of the viscosity profile, obtained by rapid visco analyzer (RVA). LPC addition at all points affected the gelation behavior of wheat starch as compared with the reference. LPC addition at half-peak and peak of the viscosity profile resulted in a viscosity increase during cooling. Measuring the dynamic rheological properties of the freshly prepared gelatinized samples showed a decrease of storage modulus (G') and loss modulus (G") in the presence of LPC. During storage, in the presence of LPC, a lower elasticity was observed which indicates a lower rate of amylose retrogradation due to complexation with LPC.

  15. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis.

    Science.gov (United States)

    Leduc, Antoine O H C; Munday, Philip L; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.

  16. Fungus-mediated synthesis of gold nanoparticles: a novel biological approach to nanoparticle synthesis.

    Science.gov (United States)

    Honary, Soheyla; Gharaei-Fathabad, Eshrat; Barabadi, Hamed; Naghibi, Farzaneh

    2013-02-01

    The biological effects of nanoparticles and their uses as molecular probes are research areas of growing interest. The present study demonstrates an eco-friendly biosynthesis of gold nanoparticles. The pure colonies of penicillium aurantiogriseum, penicillium citrinum, and penicillium waksmanii were cultured in fluid czapek dox broth. Then, their supernatants were examined for the ability to produce gold nanoparticles. In this step, 1 mM solution of AuCl added to the reaction matrixes separately. The reactions were performed in a dark environment at 28 degrees C. After 24 hours, it was observed that the color of the solutions turned to dark purple from light yellow. Synthesized gold nanoparticles were characterized by using UV-Visible Spectroscopy, Nano Zeta Sizer, Scanning Electron Microscopy and Fourier transformed infrared spectroscopy. The results showed that the gold nanoparticles were formed fairly uniform with spherical shape with the Z-average diameter of 153.3 nm, 172 nm and 160.1 nm for penicillium aurantiogriseum, penicillium citrinum, and penicillium waksmanii, respectively. The Fourier transformed infrared spectra revealed the presence of different functional groups to gold nanoparticles which were present in the fungal extract. The current approach suggests that the rapid synthesis of nanoparticles would be proper for developing a biological process for mass scale production.

  17. Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach

    Energy Technology Data Exchange (ETDEWEB)

    Hudlikar, Manish; Joglekar, Shreeram [University of Pune, Division of Biochemistry, Department of Chemistry (India); Dhaygude, Mayur [National Chemical Laboratory, Polymer Science and Engineering Division (India); Kodam, Kisan, E-mail: kodam@chem.unipune.ac.in [University of Pune, Division of Biochemistry, Department of Chemistry (India)

    2012-05-15

    A low-cost, green synthesis of ZnS nanoparticles is reported using 0.3 % latex solution prepared from Jatropha curcas L. ZnS nanoparticles were characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis optical absorption and photoluminescence techniques. Fourier Transform Infrared Spectroscopy was performed to find the role of cyclic peptides namely curcacycline A (an octapeptide), curcacycline B (a nonapeptide) and curcain (an enzyme) as a possible reducing and stabilizing agents present in the latex of J. curcas L. The average size of ZnS nanoparticles was found to be 10 nm. Latex of J. curcas L. itself acts as a source of sulphide (S{sup -2}) ions that are donated to Zn ions under present experimental conditions. Source of sulphide (S{sup -2}) ions is still unclear, but we speculate that cysteine or thiol residues present in enzyme curcain may be donating these sulphide (S{sup -2}) ions.

  18. Adiponectin inhibits insulin function in primary trophoblasts by PPARα-mediated ceramide synthesis.

    Science.gov (United States)

    Aye, Irving L M H; Gao, Xiaoli; Weintraub, Susan T; Jansson, Thomas; Powell, Theresa L

    2014-04-01

    Maternal adiponectin (ADN) levels are inversely correlated with birth weight, and ADN infusion in pregnant mice down-regulates placental nutrient transporters and decreases fetal growth. In contrast to the insulin-sensitizing effects in adipose tissue and muscle, ADN inhibits insulin signaling in the placenta. However, the molecular mechanisms involved are unknown. We hypothesized that ADN inhibits insulin signaling and insulin-stimulated amino acid transport in primary human trophoblasts by peroxisome proliferator-activated receptor-α (PPARα)-mediated ceramide synthesis. Primary human term trophoblast cells were treated with ADN and/or insulin. ADN increased the phosphorylation of p38 MAPK and PPARα. ADN inhibited insulin signaling and insulin-stimulated amino acid transport. This effect was dependent on PPARα, because activation of PPARα with an agonist (GW7647) inhibited insulin signaling and function, whereas PPARα-small interfering RNA reversed the effects of ADN on the insulin response. ADN increased ceramide synthase expression and stimulated ceramide production. C2-ceramide inhibited insulin signaling and function, whereas inhibition of ceramide synthase (with Fumonisin B1) reversed the effects of ADN on insulin signaling and amino acid transport. These findings are consistent with the model that maternal ADN limits fetal growth mediated by activation of placental PPARα and ceramide synthesis, which inhibits placental insulin signaling and amino acid transport, resulting in reduced fetal nutrient availability.

  19. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms

    Energy Technology Data Exchange (ETDEWEB)

    Uma Suganya, K.S. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Govindaraju, K., E-mail: govindtu@gmail.com [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Ganesh Kumar, V.; Stalin Dhas, T.; Karthick, V. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Singaravelu, G. [Nanoscience Division, Department of Zoology, Thiruvalluvar University, Vellore 632115 (India); Elanchezhiyan, M. [Department of Microbiology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113 (India)

    2015-02-01

    Biofunctionalized gold nanoparticles (AuNPs) play an important role in design and development of nanomedicine. Synthesis of AuNPs from biogenic materials is environmentally benign and possesses high bacterial inhibition and bactericidal properties. In the present study, blue green alga Spirulina platensis protein mediated synthesis of AuNPs and its antibacterial activity against Gram positive bacteria is discussed. AuNPs were characterized using Ultraviolet–visible (UV–vis) spectroscopy, Fluorescence spectroscopy, Fourier Transform-Infrared (FTIR) spectroscopy, Raman spectroscopy, High Resolution-Transmission Electron Microscopy (HR-TEM) and Energy Dispersive X-ray analysis (EDAX). Stable, well defined AuNPs of smaller and uniform shape with an average size of ∼ 5 nm were obtained. The antibacterial efficacy of protein functionalized AuNPs were tested against Gram positive organisms Bacillus subtilis and Staphylococcus aureus. - Highlights: • Size controlled synthesis of gold nanoparticles from blue green alga Spirulina platensis • Stability of gold nanoparticles at different temperatures • Potent antibacterial efficacy against Gram positive organisms.

  20. Nepenthes khasiana mediated synthesis of stabilized gold nanoparticles: Characterization and biocompatibility studies.

    Science.gov (United States)

    Dhamecha, Dinesh; Jalalpure, Sunil; Jadhav, Kiran

    2016-01-01

    The current study summarizes a unique green process for the synthesis of gold nanoparticles by simple treatment of gold salts with aqueous extract of Nepenthes khasiana (NK)--a red listed medicinal plant and its characterization. Study on the effect of different process parameters like temperature, pH and stirring on surface and stability characteristics has been demonstrated. Formation of GNPs was visually observed by change in color from colorless to wine red and characterized by UV-Visible spectroscopy, FT-IR spectroscopy, Zetasizer, X-RD, ICP-AES, SEM-EDAX, AFM and TEM. In vitro stability studies of gold colloidal dispersion in various blood components suggest that, NK mediated GNPs exhibit remarkable in vitro stability in 2% bovine serum albumin, 2% human serum albumin (HSA), 0.2M histidine, and 0.2M cysteine but unstable in 5% NaCl solution and acidic pH. Biocompatibility of NK stabilized GNPs against normal mouse fibroblasts (L929) cell lines revealed nontoxic nature of GNPs and thus provides exceptional opportunities for their uses as nanomedicine for diagnosis and drug therapy. The role of antioxidant phytochemicals (flavonoids and polyphenols) of NK extract in synthesis of biocompatible and stabilized GNPs was demonstrated by estimating total flavonoid content, total phenolic content and total antioxidant capacity of extract before and after formation of GNPs. Fast and easy synthesis of biocompatible GNPs possesses unique physical and chemical features which serve as an advantage for its use in various biomedical applications. The overall approach designated in the present research investigation for the synthesis of GNPs is based on all 12 principles of green chemistry, in which no man-made chemical other than the gold chloride was used.

  1. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Melissa N Barber

    Full Text Available BACKGROUND: Obesity and type 2 diabetes (T2DM are associated with increased circulating free fatty acids and triacylglycerols. However, very little is known about specific molecular lipid species associated with these diseases. In order to gain further insight into this, we performed plasma lipidomic analysis in a rodent model of obesity and insulin resistance as well as in lean, obese and obese individuals with T2DM. METHODOLOGY/PRINCIPAL FINDINGS: Lipidomic analysis using liquid chromatography coupled to mass spectrometry revealed marked changes in the plasma of 12 week high fat fed mice. Although a number of triacylglycerol and diacylglycerol species were elevated along with of a number of sphingolipids, a particularly interesting finding was the high fat diet (HFD-induced reduction in lysophosphatidylcholine (LPC levels. As liver, skeletal muscle and adipose tissue play an important role in metabolism, we next determined whether the HFD altered LPCs in these tissues. In contrast to our findings in plasma, only very modest changes in tissue LPCs were noted. To determine when the change in plasma LPCs occurred in response to the HFD, mice were studied after 1, 3 and 6 weeks of HFD. The HFD caused rapid alterations in plasma LPCs with most changes occurring within the first week. Consistent with our rodent model, data from our small human cohort showed a reduction in a number of LPC species in obese and obese individuals with T2DM. Interestingly, no differences were found between the obese otherwise healthy individuals and the obese T2DM patients. CONCLUSION: Irrespective of species, our lipidomic profiling revealed a generalized decrease in circulating LPC species in states of obesity. Moreover, our data indicate that diet and adiposity, rather than insulin resistance or diabetes per se, play an important role in altering the plasma LPC profile.

  2. Acute toxicity and depression of phagocytosis in vivo by liposomes: influence of lysophosphatidylcholine.

    Science.gov (United States)

    Lutz, J; Augustin, A J; Jäger, L J; Bachmann, D; Brandl, M

    1995-01-01

    Small unilamellar phospholipid vesicles (liposomes), intended as drug carriers, have recently been demonstrated to reversibly depress phagocytic activity in rats when injected in a single high dose (2g of lipid per kg body weight) as revealed by the carbon clearance test. Depression of the phagocytic function was found to vary widely depending on the lipid used [M. Brandl et al., Pharm. Pharmacol. Lett., 4 (1) 1-4, 1994]. This study has now been extended in two directions: Firstly, liposomes made of the same type of lipid but different batches of raw material were compared in terms of their influence on phagocytosis as well as for their contents of impurities. The test revealed great variability of RES suppression between different batches of hydrogenated soy PC, whereas the reproducibility of the carbon clearance test was satisfactory with liposomes made of a single batch of raw material. Thin layer chromatographic analyses of the used phosphatidylcholines (PCs) and limulus tests on lipopolysaccharides revealed lysophosphatidylcholine (lysoPC) as the only impurity which showed parallels with the observed differences in phagocytosis. Secondly by "spiking" phosphatidylcholine with increasing amounts of lysoPC the latter could be proven to enhance RES depression by liposomes in a dose-dependent manner. At the same time a strong and dose-limiting increase in acute toxicity of PC vesicles was observed with increasing contents of lysoPC. However, in cholesterol-containing vesicles lysoPC-spiking did not significantly alter their behaviour, for lysoPC contents of up to 10%. Only PC/cholesterol-vesicles containing lysoPC contents as high as 15% provoked enhanced RES depression and toxicity compared to lysoPC-free vesicles. LysoPC and cholesterol in liposomes are known to play a destabilizing and stabilizing role respectively within liposomal bilayers which might influence recognition and uptake of vesicles by macrophages and thus modulation of phagocytosis.

  3. Lysophosphatidylcholine enhances carotenoid uptake from mixed micelles by Caco-2 human intestinal cells.

    Science.gov (United States)

    Sugawara, T; Kushiro, M; Zhang, H; Nara, E; Ono, H; Nagao, A

    2001-11-01

    Despite the interest in the beneficial roles of dietary carotenoids in human health, little is known about their solubilization from foods to mixed bile micelles during digestion and the intestinal uptake from the micelles. We investigated the absorption of carotenoids solubilized in mixed micelles by differentiated Caco-2 human intestinal cells, which is a useful model for studying the absorption of dietary compounds by intestinal cells. The micelles were composed of 1 micromol/L carotenoids, 2 mmol/L sodium taurocholate, 100 micromol/L monoacylglycerol, 33.3 micromol/L fatty acid and phospholipid (0-200 micromol/L). The phospholipid content of micelles had profound effects on the cellular uptake of carotenoids. Uptake of micellar beta-carotene and lutein was greatly suppressed by phosphatidylcholine (PC) in a dose-dependent manner, whereas lysophosphatidylcholine (lysoPC), the lipolysis product of PC by phospholipase A2 (PLA2), markedly enhanced both beta-carotene and lutein uptake. The addition of PLA2 from porcine pancreas to the medium also enhanced the uptake of carotenoids from micelles containing PC. Caco-2 cells could take up 15 dietary carotenoids, including epoxy carotenoids, such as violaxanthin, neoxanthin and fucoxanthin, from micellar carotenoids, and the uptakes showed a linear correlation with their lipophilicity, defined as the distribution coefficient in 1-octanol/water (log P(ow)). These results suggest that pancreatic PLA2 and lysoPC are important in regulating the absorption of carotenoids in the digestive tract and support a simple diffusion mechanism for carotenoid absorption by the intestinal epithelium.

  4. Synthesis of a functional polymer with pendent luminescent phenylenevinylene units through nitroxide-mediated free-radical polymerization

    NARCIS (Netherlands)

    Moroni, M.; Hilberer, A; Hadziioannou, G

    1996-01-01

    In this communication we report the synthesis and the efficient polymerization of a PPV trimer, 4-tert-butyl-4'-(4-vinylstyryl)-trans-stilbene. By using the TEMPO (2,2,6,6-tetramethylpiperidin-1-yloxy)-mediated free-radical polymerization method, the corresponding polymer was obtained in high yields

  5. A Meta-Synthesis of Empirical Research on the Effectiveness of Computer-Mediated Communication (CMC) in SLA

    Science.gov (United States)

    Lin, Huifen

    2015-01-01

    This meta-analysis reports the results of a systematic synthesis of primary studies on the effectiveness of computer-mediated communication (CMC) in second language acquisition (SLA) for the period 2000-2012. By extracting information on 21 features from each primary study, this meta-analysis intends to summarize the CMC research literature for…

  6. Tailor-made synthesis of various backbone-substituted imidazolinium salts by triflic anhydride mediated intramolecular cyclisation.

    Science.gov (United States)

    Zhang, Jun; Su, Xiaolong; Fu, Jun; Qin, Xinke; Zhao, Meixin; Shi, Min

    2012-09-21

    We have found a Tf(2)O-mediated intramolecular cyclization reaction and have revealed an intriguing stereoselectivity and a regioselectivity during the preparation of intermediate alcohols, which allow for the tailor-made synthesis of various backbone-substituted imidazolinium salts, and structurally specific syn-4,5-disubstituted imidazolinium salts.

  7. N-Linked Glycosyl Auxiliary-Mediated Native Chemical Ligation on Aspartic Acid: Application towards N-Glycopeptide Synthesis.

    Science.gov (United States)

    Chai, Hua; Le Mai Hoang, Kim; Vu, Minh Duy; Pasunooti, Kalyan; Liu, Chuan-Fa; Liu, Xue-Wei

    2016-08-22

    A practical approach towards N-glycopeptide synthesis using an auxiliary-mediated dual native chemical ligation (NCL) has been developed. The first NCL connects an N-linked glycosyl auxiliary to the thioester side chain of an N-terminal aspartate oligopeptide. This intermediate undergoes a second NCL with a C-terminal thioester oligopeptide. Mild cleavage provides the desired N-glycopeptide.

  8. A Meta-Synthesis of Empirical Research on the Effectiveness of Computer-Mediated Communication (CMC) in SLA

    Science.gov (United States)

    Lin, Huifen

    2015-01-01

    This meta-analysis reports the results of a systematic synthesis of primary studies on the effectiveness of computer-mediated communication (CMC) in second language acquisition (SLA) for the period 2000-2012. By extracting information on 21 features from each primary study, this meta-analysis intends to summarize the CMC research literature for…

  9. Enzyme mediated synthesis of phytochelatin-capped CdS nanocrystals

    Science.gov (United States)

    Liu, Fang; Kang, Seung Hyun; Lee, Young-In; Choa, Yong-ho; Mulchandani, Ashok; Myung, Nosang V.; Chen, Wilfred

    2010-09-01

    We reported the enzyme mediated synthesis of CdS nanocrystals by immobilized phytochelatin synthase, which converts glutathione into the metal-binding peptide phytochelatin (PC). Formation of CdS nanocrystals were observed upon the addition of CdCl2 and Na2S with PC as the capping agent. By varying the reaction times, different compositions of PCs (form PC2 to PC3) can be synthesized, resulting in the formation of highly stable nanocrystals with tunable sizes (from 2.0 to 1.6 nm diameter). This approach may be generalized to guide the in vitro self assembly of a wide range of nanocrystals with different compositions and sizes.

  10. Synthesis and Characterization of Optically Active Fractal Seed Mediated Silver Nickel Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joseph Adeyemi Adekoya

    2014-01-01

    Full Text Available The synthesis of new seed mediated AgNi allied bimetallic nanocomposites was successfully carried out by the successive reduction of the metal ions in diethylene glycol, ethylene glycol, glycerol, and pentaerythritol solutions, with concomitant precipitation of Ag/Ni bimetal sols. The optical measurement revealed the existence of distinct band edge with surface plasmon resonance (SPR in the region of 400–425 nm and excitonic emission with maximum peak at 382 nm which were reminiscent of cluster-in-cluster surface enriched bimetallic silver-nickel sols. The morphological characterization by transmission electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction analyses complimented by surface scan using X-ray photoelectron spectroscopy strongly supported the formation of intimately alloyed face-centered silver/nickel nanoclusters.

  11. An Improved Strategy for the Synthesis of Ethylene Glycol by Oxamate-Mediated Catalytic Hydrogenation.

    Science.gov (United States)

    Satapathy, Anilkumar; Gadge, Sandip T; Bhanage, Bhalchandra M

    2017-04-10

    The present study reports an improved approach for the preparation of ethylene glycol (EG) by using carbon monoxide as C1 chemical by a two-step oxidative carbonylation and hydrogenation sequence. In the first step, oxamates are synthesized through oxidative cross double carbonylation of piperidine and ethanol by using Pd/C catalyst under phosphine ligand-free conditions and subsequently hydrogenated by Milstein's catalyst (carbonylhydrido[6-(di-t-butylphosphinomethylene)-2-(N,N-diethylaminomethyl)-1,6-dihydropyridine]ruthenium(II)). The presented stepwise oxamate-mediated coupling provides the basis for a new strategy for the synthesis of EG by selective upgrading of C1 chemicals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Specific Facets-Dominated Anatase TiO2: Fluorine-Mediated Synthesis and Photoactivity

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Dozzi

    2013-05-01

    Full Text Available Semiconductors crystal facet engineering has become an important strategy for properly tuning and optimizing both the physicochemical properties and the reactivity of photocatalysts. In this review, a concise survey of recent results obtained in the field of specific surface-oriented anatase TiO2 crystals preparation is presented. The attention is mainly focused on the fluorine-mediated hydrothermal and/or solvothermal processes employed for the synthesis and the assembly of anatase micro/nanostructures with dominant {001} facets. Their peculiar photocatalytic properties and potential applications are also presented, with a particular focus on photocatalysis-based environmental clean up and solar energy conversion applications. Finally, the most promising results obtained in the engineering of TiO2 anatase crystal facets obtained by employing alternative, possibly more environmentally friendly methods are critically compared.

  13. Lanthanide-Mediated Dephosphorylation Used for Peptide Cleavage during Solid Phase Peptide Synthesis

    Directory of Open Access Journals (Sweden)

    Byunghee Yoo

    2013-04-01

    Full Text Available Lanthanide(III ions can accelerate the hydrolysis of phosphomonoesters and phosphodiesters in neutral aqueous solution. In this paper, lanthanide-mediated dephosphorylation has been applied in aqueous media as an orthogonal cleavage condition that can be employed in conventional solid phase peptide synthesis (SPPS. A phosphorylated polymeric support for SPPS was developed using Boc chemistry. The cleavage of resin-bound phosphates was investigated with the addition of Eu(III, Yb(III, acid or base, a mixture of solvents or different temperatures. To demonstrate the utility of this approach for SPPS, a peptide sequence was synthesized on a phosphorylated polymeric support and quantitatively cleaved with lanthanide ions in neutral aqueous media. The protecting groups for side chains were retained during peptide cleavage using lanthanide ions. This new methodology provides a mild orthogonal cleavage condition of phosphoester as a linker during SPPS.

  14. Cdk7 mediates RPB1-driven mRNA synthesis in Toxoplasma gondii

    Science.gov (United States)

    Deshmukh, Abhijit S.; Mitra, Pallabi; Maruthi, Mulaka

    2016-01-01

    Cyclin-dependent kinase 7 in conjunction with CyclinH and Mat1 activates cell cycle CDKs and is a part of the general transcription factor TFIIH. Role of Cdk7 is well characterized in model eukaryotes however its relevance in protozoan parasites has not been investigated. This important regulator of key processes warrants closer examination particularly in this parasite given its unique cell cycle progression and flexible mode of replication. We report functional characterization of TgCdk7 and its partners TgCyclinH and TgMat1. Recombinant Cdk7 displays kinase activity upon binding its cyclin partner and this activity is further enhanced in presence of Mat1. The activated kinase phosphorylates C-terminal domain of TgRPB1 suggesting its role in parasite transcription. Therefore, the function of Cdk7 in CTD phosphorylation and RPB1 mediated transcription was investigated using Cdk7 inhibitor. Unphosphorylated CTD binds promoter DNA while phosphorylation by Cdk7 triggers its dissociation from DNA with implications for transcription initiation. Inhibition of Cdk7 in the parasite led to strong reduction in Serine 5 phosphorylation of TgRPB1-CTD at the promoters of constitutively expressed actin1 and sag1 genes with concomitant reduction of both nascent RNA synthesis and 5′-capped transcripts. Therefore, we provide compelling evidence for crucial role of TgCdk7 kinase activity in mRNA synthesis. PMID:27759017

  15. Fungus-Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus

    Directory of Open Access Journals (Sweden)

    Koji Yokoyama

    2011-12-01

    Full Text Available The biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, cost-effective and environmentally friendly technologies for nano-materials synthesis. In this report, silver nanoparticles (AgNPs were synthesized using a reduction of aqueous Ag+ ion with the culture supernatants of Aspergillus terreus. The reaction occurred at ambient temperature and in a few hours. The bioreduction of AgNPs was monitored by ultraviolet-visible spectroscopy, and the AgNPs obtained were characterized by transmission electron microscopy and X-ray diffraction. The synthesized AgNPs were polydispersed spherical particles ranging in size from 1 to 20 nm and stabilized in the solution. Reduced nicotinamide adenine dinucleotide (NADH was found to be an important reducing agent for the biosynthesis, and the formation of AgNPs might be an enzyme-mediated extracellular reaction process. Furthermore, the antimicrobial potential of AgNPs was systematically evaluated. The synthesized AgNPs could efficiently inhibit various pathogenic organisms, including bacteria and fungi. The current research opens a new avenue for the green synthesis of nano-materials.

  16. Replisome-mediated Translesion Synthesis and Leading Strand Template Lesion Skipping Are Competing Bypass Mechanisms*

    Science.gov (United States)

    Gabbai, Carolina B.; Yeeles, Joseph T. P.; Marians, Kenneth J.

    2014-01-01

    A number of different enzymatic pathways have evolved to ensure that DNA replication can proceed past template base damage. These pathways include lesion skipping by the replisome, replication fork regression followed by either correction of the damage and origin-independent replication restart or homologous recombination-mediated restart of replication downstream of the lesion, and bypass of the damage by a translesion synthesis DNA polymerase. We report here that of two translesion synthesis polymerases tested, only DNA polymerase IV, not DNA polymerase II, could engage productively with the Escherichia coli replisome to bypass leading strand template damage, despite the fact that both enzymes are shown to be interacting with the replicase. Inactivation of the 3′ → 5′ proofreading exonuclease of DNA polymerase II did not enable bypass. Bypass by DNA polymerase IV required its ability to interact with the β clamp and act as a translesion polymerase but did not require its “little finger” domain, a secondary region of interaction with the β clamp. Bypass by DNA polymerase IV came at the expense of the inherent leading strand lesion skipping activity of the replisome, indicating that they are competing reactions. PMID:25301949

  17. Plant-Mediated Synthesis of Silver Nanoparticles and Their Stabilization by Wet Stirred Media Milling

    Science.gov (United States)

    Baláž, Matej; Balážová, Ľudmila; Daneu, Nina; Dutková, Erika; Balážová, Miriama; Bujňáková, Zdenka; Shpotyuk, Yaroslav

    2017-02-01

    Within this study, a stable nanosuspension of silver nanoparticles (Ag NPs) was prepared using a two-step synthesis and stabilization approach. The Ag NPs were synthesized from a silver nitrate solution using the Origanum vulgare L. plant extract as the reducing agent. The formation of nanoparticles was finished upon 15 min, and subsequently, stabilization by polyvinylpyrrolidone (PVP) using wet stirred media milling was applied. UV-Vis spectra have shown a maximum at 445 nm, corresponding to the formation of spherical Ag NPs. Infrared spectroscopy was used to examine the interaction between Ag NPs and the capping agents. TEM study has shown the formation of Ag NPs with two different average sizes (38 ± 10 nm and 7 ± 3 nm) after the plant-mediated synthesis, both randomly distributed within the organic matrix. During milling in PVP, the clusters of Ag NPs were destroyed, the Ag NPs were fractionized and embedded in PVP. The nanosuspensions of PVP-capped Ag NPs were stable for more than 26 weeks, whereas for the non-stabilized nanosuspensions, only short-term stability for about 1 week was documented.

  18. Melatonin Supports CYP2D-Mediated Serotonin Synthesis in the Brain.

    Science.gov (United States)

    Haduch, Anna; Bromek, Ewa; Wójcikowski, Jacek; Gołembiowska, Krystyna; Daniel, Władysława A

    2016-03-01

    Melatonin is used in the therapy of sleep and mood disorders and as a neuroprotective agent. The aim of our study was to demonstrate that melatonin supported (via its deacetylation to 5-methoxytryptamine) CYP2D-mediated synthesis of serotonin from 5-methoxytryptamine. We measured serotonin tissue content in some brain regions (the cortex, hippocampus, nucleus accumbens, striatum, thalamus, hypothalamus, brain stem, medulla oblongata, and cerebellum) (model A), as well as its extracellular concentration in the striatum using an in vivo microdialysis (model B) after melatonin injection (100 mg/kg i.p.) to male Wistar rats. Melatonin increased the tissue concentration of serotonin in the brain structures studied of naïve, sham-operated, or serotonergic neurotoxin (5,7-dihydroxytryptamine)-lesioned rats (model A). Intracerebroventricular quinine (a CYP2D inhibitor) prevented the melatonin-induced increase in serotonin concentration. In the presence of pargyline (a monoaminoxidase inhibitor), the effect of melatonin was not visible in the majority of the brain structures studied but could be seen in all of them in 5,7-dihydroxytryptamine-lesioned animals when serotonin storage and synthesis via a classic tryptophan pathway was diminished. Melatonin alone did not significantly increase extracellular serotonin concentration in the striatum of naïve rats but raised its content in pargyline-pretreated animals (model B). The CYP2D inhibitor propafenone given intrastructurally prevented the melatonin-induced increase in striatal serotonin in those animals. The obtained results indicate that melatonin supports CYP2D-catalyzed serotonin synthesis from 5-methoxytryptamine in the brain in vivo, which closes the serotonin-melatonin-serotonin biochemical cycle. The metabolism of exogenous melatonin to the neurotransmitter serotonin may be regarded as a newly recognized additional component of its pharmacological action.

  19. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application.

    Science.gov (United States)

    Karthik, L; Kumar, Gaurav; Kirthi, A Vishnu; Rahuman, A A; Bhaskara Rao, K V

    2014-02-01

    In the present study, the marine actinobacteria mediated biosynthesis of silver nanoparticles (AgNps) was achieved using Streptomyces sp LK3. The synthesized AgNps showed the characteristic absorption spectra in UV-vis at 420 nm, which confirmed the presence of nanoparticles. XRD analysis showed intense peaks at 2θ values of 27.51°, 31.87°, 45.57°, 56.56°, 66.26°, and 75.25° corresponding to (210), (113), (124), (240), (226), and (300) Bragg's reflection based on the fcc structure of AgNps. The FTIR spectra exhibited prominent peaks at 3,417 cm(-1) (OH stretching due to alcoholic group) and 1,578 cm(-1) (C=C ring stretching). TEM micrograph showed that the synthesized AgNps were spherical in shape with an average size of 5 nm. Surface morphology and topographical structure of the synthesized AgNps were dignified by AFM. The synthesized AgNps showed significant acaricidal activity against Rhipicephalus microplus and Haemaphysalis bispinosa with LC50 values of 16.10 and 16.45 mg/L, respectively. Our results clearly indicate that AgNps could provide a safer alternative to conventional acaricidal agents in the form of a topical antiparasitic formulation. The present study aimed to develop a novel, cost-effective, eco-friendly actinobacteria mediated synthesis of AgNps and its antiparasitic activity.

  20. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions.

    Science.gov (United States)

    Liu, Fakeng; Jin, Rui; Liu, Xiuju; Huang, Henry; Wilkinson, Scott C; Zhong, Diansheng; Khuri, Fadlo R; Fu, Haian; Marcus, Adam; He, Yulong; Zhou, Wei

    2016-01-19

    We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells.

  1. Synthesis and Mechanism of Metal-Mediated Polymerization of Phenolic Resins

    Directory of Open Access Journals (Sweden)

    Zhao Yi

    2016-04-01

    Full Text Available Phenol-formaldehyde (PF resin is a high performance adhesive, but has not been widely developed due to its slow curing rate and high curing temperature. To accelerate the curing rate and to lower the curing temperature of PF resin, four types of metal-mediated catalysts were employed in the synthesis of PF resin; namely, barium hydroxide (Ba(OH2, sodium carbonate (Na2CO3, lithium hydroxide (LiOH, and zinc acetate ((CH3COO2Zn. The cure-acceleration effects of these catalysts on the properties of PF resins were measured, and the chemical structures of the PF resins accelerated with the catalysts were investigated by using Fourier transform infrared (FT-IR spectroscopy and quantitative liquid carbon-13 nuclear magnetic resonance (13C NMR. The results showed that the accelerated efficiency of these catalysts to PF resin could be ordered in the following sequence: Na2CO3 > (CH3COO2Zn > Ba(OH2 > LiOH. The catalysts (CH3COO2Zn and Na2CO3 increased the reaction activity of the phenol ortho position and the condensation reaction of ortho methylol. The accelerating mechanism of (CH3COO2Zn on PF resin is probably different from that of Na2CO3, which can be confirmed by the differences in the differential thermogravimetric (DTG curve and thermogravimetric (TG data. Compared to the Na2CO3-accelerated PF resin, the (CH3COO2Zn-accelerated PF resin showed different peaks in the DTG curve and higher weight residues. In the synthesis process, the catalyst (CH3COO2Zn may form chelating compounds (containing a metal-ligand bond, which can promote the linkage of formaldehyde to the phenolic hydroxyl ortho position.

  2. Synthesis of lipid mediators during UVB-induced inflammatory hyperalgesia in rats and mice.

    Directory of Open Access Journals (Sweden)

    Marco Sisignano

    Full Text Available Peripheral sensitization during inflammatory pain is mediated by a variety of endogenous proalgesic mediators including a number of oxidized lipids, some of which serve endogenous modulators of sensory TRP-channels. These lipids are eicosanoids of the arachidonic acid and linoleic acid pathway, as well as lysophophatidic acids (LPAs. However, their regulation pattern during inflammatory pain and their contribution to peripheral sensitization is still unclear. Here, we used the UVB-model for inflammatory pain to investigate alterations of lipid concentrations at the site of inflammation, the dorsal root ganglia (DRGs as well as the spinal dorsal horn and quantified 21 lipid species from five different lipid families at the peak of inflammation 48 hours post irradiation. We found that known proinflammatory lipids as well as lipids with unknown roles in inflammatory pain to be strongly increased in the skin, whereas surprisingly little changes of lipid levels were seen in DRGs or the dorsal horn. Importantly, although there are profound differences between the number of cytochrome (CYP genes between mice and rats, CYP-derived lipids were regulated similarly in both species. Since TRPV1 agonists such as LPA 18∶1, 9- and 13-HODE, 5- and 12-HETE were elevated in the skin, they may contribute to thermal hyperalgesia and mechanical allodynia during UVB-induced inflammatory pain. These results may explain why some studies show relatively weak analgesic effects of cyclooxygenase inhibitors in UVB-induced skin inflammation, as they do not inhibit synthesis of other proalgesic lipids such as LPA 18∶1, 9-and 13-HODE and HETEs.

  3. DFT study of the Lewis acid mediated synthesis of 3-acyltetramic acids.

    Science.gov (United States)

    Mikula, Hannes; Svatunek, Dennis; Skrinjar, Philipp; Horkel, Ernst; Hametner, Christian; Fröhlich, Johannes

    2014-05-01

    The synthesis of 3-acyltetramic acids by C-acylation of pyrrolidine-2,4-diones was studied by density functional theory (DFT). DFT was applied to the mycotoxin tenuazonic acid (TeA), an important representative of these bioactive natural compounds. Lewis acid mediated C-acylation in combination with previous pH-neutral domino N-acylation-Wittig cyclization can be used for the efficient preparation of 3-acyltetramic acids. Nevertheless, quite harsh conditions are still required to carry out this synthetic step, leading to unwanted isomerization of stereogenic centers in some cases. In the presented study, the reaction pathway for the C-acetylation of (5S,6S-5-s-butylpyrrolidine-2,4-dione was studied in terms of mechanism, solvent effects, and Lewis acid activation, in order to obtain an appropriate theoretical model for further investigations. Crucial steps were identified that showed rather high activation barriers and rationalized previously reported experimental discoveries. After in silico optimization, aluminum chlorides were found to be promising Lewis acids that promote the C-acylation of pyrrolidine-2,4-diones, whereas calculations performed in various organic solvents showed that the solvent had only a minor effect on the energy profiles of the considered mechanisms. This clearly indicates that further synthetic studies should focus on the Lewis-acidic mediator rather than other reaction parameters. Additionally, given the results obtained for different reaction routes, the stereochemistry of this C-acylation is discussed. It is assumed that the formation of Z-configured TeA is favored, in good agreement with our previous studies.

  4. Copper(II)-Mediated Self-Assembly of Hairpin Peptides and Templated Synthesis of CuS Nanowires.

    Science.gov (United States)

    Wang, Chengdong; Sun, Yawei; Wang, Jiqian; Xu, Hai; Lu, Jian R

    2015-09-01

    The self-assembly of peptides and proteins under well-controlled conditions underlies important nanostructuring processes that could be harnessed in practical applications. Herein, the synthesis of a new hairpin peptide containing four histidine residues is reported and the self-assembly process mediated by metal ions is explored. The work involves the combined use of circular dichroism, NMR spectroscopy, UV/Vis spectroscopy, AFM, and TEM to follow the structural and morphological details of the metal-coordination-mediated folding and self-assembly of the peptide. The results indicate that by forming a tetragonal coordination geometry with four histidine residues, copper(II) ions selectively trigger the peptide to fold and then self-assemble into nanofibrils. Furthermore, the copper(II)-bound nanofibrils template the synthesis of CuS nanowires, which display a near-infrared laser-induced thermal effect.

  5. NBS/DBU mediated one-pot synthesis of α-acyloxyketones from benzylic secondary alcohols and carboxylic acids.

    Science.gov (United States)

    Zhu, Minghui; Wei, Wei; Yang, Daoshan; Cui, Hong; Cui, Huanhuan; Sun, Xuejun; Wang, Hua

    2016-11-22

    A simple and efficient one-pot NBS/DBU-mediated method has been developed for the synthesis of α-acyloxyketones from various benzylic secondary alcohols and carboxylic acids. Through this methodology, a series of α-acyloxyketones could be obtained in good to excellent yields under mild conditions. Importantly, this new reaction avoids the direct usage of toxic metal catalysts or potentially dangerous peroxide oxidants.

  6. I2-Mediated 2H-indazole synthesis via halogen-bond-assisted benzyl C-H functionalization.

    Science.gov (United States)

    Yi, Xiangli; Jiao, Lei; Xi, Chanjuan

    2016-10-18

    I2-Mediated benzyl C-H functionalization has been developed for the synthesis of 2H-indazoles, which features high efficiency, simple conditions and no need for metals. Mechanistic experiments and DFT calculations have revealed halogen bond assistance and a radical chain process for this reaction. The azo group and the bound iodine cooperate in the hydrogen abstraction step, which circumvents the thermodynamic disfavor of direct hydrogen abstraction by a simple iodine radical.

  7. Stereoselective synthesis of 1,3-anti diols by an Ipc-mediated domino aldol-coupling/reduction sequence.

    Science.gov (United States)

    Dieckmann, Michael; Menche, Dirk

    2013-01-04

    A novel domino process for 1,3-anti diol synthesis by the union of a methyl ketone with an aldehyde is described. The operationally simple procedure is based on an Ipc-boron-aldol coupling and subsequent Ipc-mediated reduction of the intermediate β-hydroxy-ketone. The sequence proceeds with excellent anti-selectivities and enables the rapid construction of complex polyketide fragments.

  8. Synthesis of [18F]Arenes via the Copper-Mediated [18F]Fluorination of Boronic Acids.

    Science.gov (United States)

    Mossine, Andrew V; Brooks, Allen F; Makaravage, Katarina J; Miller, Jason M; Ichiishi, Naoko; Sanford, Melanie S; Scott, Peter J H

    2015-12-04

    A copper-mediated radiofluorination of aryl- and vinylboronic acids with K(18)F is described. This method exhibits high functional group tolerance and is effective for the radiofluorination of a range of electron-deficient, -neutral, and -rich aryl-, heteroaryl-, and vinylboronic acids. This method has been applied to the synthesis of [(18)F]FPEB, a PET radiotracer for quantifying metabotropic glutamate 5 receptors.

  9. Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth.

    Science.gov (United States)

    Xia, Xiaohu; Figueroa-Cosme, Legna; Tao, Jing; Peng, Hsin-Chieh; Niu, Guangda; Zhu, Yimei; Xia, Younan

    2014-08-06

    Iridium nanoparticles have only been reported with roughly spherical shapes and sizes of 1-5 nm, making it impossible to investigate their facet-dependent catalytic properties. Here we report for the first time a simple method based on seed-mediated growth for the facile synthesis of Ir nanocrystals with well-controlled facets. The essence of this approach is to coat an ultrathin conformal shell of Ir on a Pd seed with a well-defined shape at a relatively high temperature to ensure fast surface diffusion. In this way, the facets on the initial Pd seed are faithfully replicated in the resultant Pd@Ir core-shell nanocrystal. With 6 nm Pd cubes and octahedra encased by {100} and {111} facets, respectively, as the seeds, we have successfully generated Pd@Ir cubes and octahedra covered by Ir{100} and Ir{111} facets. The Pd@Ir cubes showed higher H2 selectivity (31.8% vs 8.9%) toward the decomposition of hydrazine compared with Pd@Ir octahedra with roughly the same size.

  10. Towards Direct Synthesis of Alane: A Predicted Defect-Mediated Pathway Confirmed Experimentally.

    Science.gov (United States)

    Wang, Lin-Lin; Herwadkar, Aditi; Reich, Jason M; Johnson, Duane D; House, Stephen D; Peña-Martin, Pamela; Rockett, Angus A; Robertson, Ian M; Gupta, Shalabh; Pecharsky, Vitalij K

    2016-09-01

    Alane (AlH3 ) is a unique energetic material that has not found a broad practical use for over 70 years because it is difficult to synthesize directly from its elements. Using density functional theory, we examine the defect-mediated formation of alane monomers on Al(111) in a two-step process: (1) dissociative adsorption of H2 and (2) alane formation, which are both endothermic on a clean surface. Only with Ti dopant to facilitate H2 dissociation and vacancies to provide Al adatoms, both processes become exothermic. In agreement, in situ scanning tunneling microscopy showed that during H2 exposure, alane monomers and clusters form primarily in the vicinity of Al vacancies and Ti atoms. Moreover, ball milling of the Al samples with Ti (providing necessary defects) showed a 10 % conversion of Al into AlH3 or closely related species at 344 bar H2 , indicating that the predicted pathway may lead to the direct synthesis of alane from elements at pressures much lower than the 10(4)  bar expected from bulk thermodynamics.

  11. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract

    Institute of Scientific and Technical Information of China (English)

    Afrah; Eltayeb; Mohammed

    2015-01-01

    Objective: To investigate the environmental-friendly extracellular biosynthetic technique for the production of the silver nanoparticles(AgN Ps) by using leaf extract of Eucalyptus camaldulensis(E. camaldulensis). Methods: The NP were characterized by colour changes and the UV-visible spectroscopy. The cytotoxic effects of prepared AgN Ps was detected against four types of pathogenic bacteria, including two Gram-negative bacteria(Pseudomonas aeruginosa and Escherichia coli) and two Gram-positive bacteria(Staphylococcus aureus and Bacillus subtilis) by using agar well diffusion method. Results: A peak absorption value between 400-450 nm for the extract and the colour change to dark brown were corresponding to the plasmon absorbance of AgN Ps. On the other hand, aqueous extract of E. camaldulensis leaves could be effective against tested microorganisms which showed inhibition zones of 9.0-14.0 mm. Furthermore, biologically synthesized AgN Ps had higher ability to suppress the growth of the tested microorganisms(12.0-19.0 mm). Conclusions: Our findings indicated that extracellular synthesis of Ag NPs mediated by E. camaldulensis leaf extract had an efficient bactericidal activity against the bacterial species tested. The exact mechanism of the extracellular biosynthesis of metal NP was not well understood. Further studies are needed to highlight the biosynthesis process of AgN Ps and also to characterize the toxicity effect of these particles.

  12. Solvent-Free Synthesis of Flavour Esters through Immobilized Lipase Mediated Transesterification.

    Science.gov (United States)

    Garlapati, Vijay Kumar; Banerjee, Rintu

    2013-01-01

    The synthesis of methyl butyrate and octyl acetate through immobilized Rhizopus oryzae NRRL 3562 lipase mediated transesterification was studied under solvent-free conditions. The effect of different transesterification variables, namely, molarity of alcohol, reaction time, temperature, agitation, addition of water, and enzyme amount on molar conversion (%) was investigated. A maximum molar conversion of 70.42% and 92.35% was obtained in a reaction time of 14 and 12 h with the transesterification variables of 0.6 M methanol in vinyl butyrate and 2 M octanol in vinyl acetate using 80 U and 60 U immobilized lipase with the agitation speed of 200 rpm and 0.2% water addition at 32°C and 36°C for methyl butyrate and octyl acetate, respectively. The immobilized enzyme has retained good relative activity (more than 95%) up to five and six recycles for methyl butyrate and octyl acetate, respectively. Hence, the present investigation makes a great impingement in natural flavour industry by introducing products synthesized under solvent-free conditions to the flavour market.

  13. Solvent-Free Synthesis of Flavour Esters through Immobilized Lipase Mediated Transesterification

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Garlapati

    2013-01-01

    Full Text Available The synthesis of methyl butyrate and octyl acetate through immobilized Rhizopus oryzae NRRL 3562 lipase mediated transesterification was studied under solvent-free conditions. The effect of different transesterification variables, namely, molarity of alcohol, reaction time, temperature, agitation, addition of water, and enzyme amount on molar conversion (% was investigated. A maximum molar conversion of 70.42% and 92.35% was obtained in a reaction time of 14 and 12 h with the transesterification variables of 0.6 M methanol in vinyl butyrate and 2 M octanol in vinyl acetate using 80 U and 60 U immobilized lipase with the agitation speed of 200 rpm and 0.2% water addition at 32°C and 36°C for methyl butyrate and octyl acetate, respectively. The immobilized enzyme has retained good relative activity (more than 95% up to five and six recycles for methyl butyrate and octyl acetate, respectively. Hence, the present investigation makes a great impingement in natural flavour industry by introducing products synthesized under solvent-free conditions to the flavour market.

  14. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig

    2011-01-01

    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  15. Synthesis of carbodiimides by I2/CHP-mediated cross-coupling reaction of isocyanides with amines under metal-free conditions.

    Science.gov (United States)

    Zhu, Tong-Hao; Wang, Shun-Yi; Tao, Yang-Qing; Ji, Shun-Jun

    2015-04-17

    An I2/CHP-mediated cross-coupling reaction of isocyanides with readily accessible amines via C-N formation is described for carbodiimide synthesis in moderate to excellent yields. This represents a metal-free strategy for a coupling reaction of isocyanides with amines, and it provides an efficient approach for symmetric and unsymmetric functionalized carbodiimide derivative synthesis under mild conditions.

  16. Cinnamomum tamala leaf extract-mediated green synthesis of Ag nanoparticles and their use in pyranopyrazles synthesis

    Institute of Scientific and Technical Information of China (English)

    Sneha Yadav; Jitender M. Khurana

    2015-01-01

    A novel, biochemical, and eco-friendly method has been developed for the synthesis of Ag nanopar-ticles using an aqueous leaf extract of readily accessibleCinnamomum tamala as reducing and stabi-lizing agents. These Ag nanoparticles were used to catalyze the synthesis of pyranopyrazoles. The green nature and ease of recovery and reusability of the catalyst, together with high yields of prod-ucts, make this protocol attractive and useful.

  17. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... to these general questions by distinguishing between two concepts: mediation and mediatization. The media effects tradition generally considers the effects of the media to be a result of individuals being exposed to media content, i.e. effects are seen as an outcome of mediated communication. Mediatization...... research is concerned with long-term structural changes involving media, culture, and society, i.e. the influences of the media are understood in relation to how media are implicated in social and cultural changes and how these processes come to create new conditions for human communication and interaction...

  18. The Notch pathway mediates the angiotensin II-induced synthesis of extracellular matrix components in podocytes.

    Science.gov (United States)

    Yao, Min; Wang, Xiaomei; Wang, Xiaomeng; Zhang, Tao; Chi, Yanqing; Gao, Feng

    2015-07-01

    The Notch pathway is known to contribute to the development of glomerular disease. Angiotensin II (Ang II), an important member of the renin-angiotensin system, stimulates the accumulation of extracellular matrix components in glomerular disease; however, the exact mechanisms involved remain to be elucidated. In the present study, we aimed to investigate the effects of the Notch pathway on the synthesis of extracellular matrix components in Ang II-stimulated podocytes. Mouse podocytes were stimulated with Ang II (10-6 mol/l). The activation of the Notch pathway was inhibited by a vector carrying short hairpin RNA (shRNA) targeting Notch1 (sh-Notch1) or by γ-secretase inhibitor (GSI). The protein levels of Notch1, Notch intracellular domain 1 (NICD1), hairy and enhancer of split-1 (Hes1), matrix metalloproteinase (MMP)-2, MMP-9, transforming growth factor-β1 (TGF-β1), type IV collagen and laminin were determined by western blot analysis. The Notch1, Hes1, MMP-2, MMP-9, TGF-β1, type IV collagen and laminin mRNA levels were detected by RT-PCR. The MMP-2 and MMP-9 activity was measured using a cell active fluorescence assay kit. The levels of TGF-β1, type IV collagen and laminin were determined in the culture medium of the podocytes by enzyme-linked immunosorbent assay (ELISA). Our results revealed that Ang II upregulated Notch1, NICD1, Hes1, TGF-β1, type IV collagen and laminin expression and downregulated MMP-2 and MMP-9 expression in the cultured podocytes. The inhibition of the Notch pathway by sh-Notch1 or GSI increased MMP-2 and MMP-9 expression, decreased the TGF-β1 level and suppressed type IV collagen and laminin expression. The inhibition of the Notch pathway by sh-Notch1 or GSI also increased MMP-2 and MMP-9 activity, and decreased TGF-β1 levels, type IV collagen levels and laminin secretion. These findings indicate that the Notch pathway potentially mediates the Ang II-induced synthesis of extracellular matrix components in podocytes through the

  19. Cyclic-AMP mediated drugs: differential or global reduction of eicosanoid synthesis in the isolated rat lung?

    Directory of Open Access Journals (Sweden)

    Mark J. Post

    1992-01-01

    Full Text Available In this study the question was addressed whether cAMP mediated drugs induce a differential reduction of branches of the arachidonic acid metabolism rather than a global reduction of eicosanoid synthesis. The isolated lungs of actively sensitized rats were employed to study prostaglandin and leukotriene release in the presence and absence of the cAMP mediated drugs theophylline, milrinone, sulmazole, isobutyl-methylxanthine and salbutamol. The release of eicosanoids as measured by RIA was predominantly basal and continuous, with a mild antigen induced stimulation only for TXB2 and the leukotrienes. All drugs reduced eicosanoid release globally. It is concluded that cAMP mediated drugs interfere with arachidonic acid metabolism at a site proximal to the branching into lipoxygenase and cyclo-oxygenase pathways.

  20. Synthesis of novel glycopolymer brushes via a combination of RAFT-mediated polymerisation and ATRP

    Directory of Open Access Journals (Sweden)

    Eric T.A. van den Dungen

    2011-03-01

    Full Text Available Glycopolymers (synthetic sugar-containing polymers have become increasingly attractive to polymer chemists because of their role as biomimetic analogues and their potential for commercial applications. Glycopolymers of different structures confer high hydrophilicity and water solubility and can therefore be used for specialised applications, such as artificial materials for a number of biological, pharmaceutical and biomedical uses. The synthesis and characterisation of a series of novel glycopolymer brushes, namely poly(2-(2-bromoisobutyryloxy ethyl methacrylate-g-poly(methyl 6-O-methacryloyl-α-D-glucoside (P(BIEM-g-P(6-O-MMAGIc, poly(2-(2-bromoisobutyryloxy ethyl methacrylate-co-methyl methacrylate-g-poly(methyl 6-O-methacryloyl-α-D-glucoside P(BIEM-co-MMA-g-P(6-O-MMAGIc, poly(2-(2-bromoisobutyryloxy ethyl methacrylate-b-methyl methacrylate-g-poly(methyl 6-O-methacryloyl-α-D-glucoside P(BIEM-b-MMA-g-P(6-O-MMAGIc and poly(4-vinylbenzyl chloride-alt-maleic anhydride-g-poly(methyl 6-O-methacryloyl-α-D-glucoside (P(Sd-alt-MAnh-g-P(6-O-MMAGIc are described in this paper. Reversible addition-fragmentation chain transfer (RAFT-mediated polymerisation was used to synthesise four well-defined atom transfer radical polymerisation (ATRP macroinitiators (the backbone of the glycopolymer brushes. These ATRP macroinitiators were subsequently used in the ‘grafting from’ approach (in which side chains are grown from the backbone to prepare high molar mass and low polydispersity index glycopolymer brushes with different grafting densities along the backbone. The number average molar mass of the glycopolymer brushes was determined using size exclusion chromatography with a multi-angle laser light

  1. Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin

    Energy Technology Data Exchange (ETDEWEB)

    Grijalva-Bustamante, G.A. [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Evans-Villegas, A.G. [Departamento de Ciencias Químico Biológicas, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Castillo-Castro, T. del, E-mail: terecat@polimeros.uson.mx [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Castillo-Ortega, M.M. [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Cruz-Silva, R. [Research Center for Exotic Nanocarbons, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano (Japan); Huerta, F. [Departamento Ingeniería Textil y Papelera, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1, E-03801 Alcoy (Spain); Morallón, E. [Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain)

    2016-06-01

    Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy particles was studied by scanning electron microscopy and transmission electron microscopy whereas the chemical structure was studied by X-ray photoelectron and Fourier transformed infrared spectroscopic techniques. The redox mediators increased the polymerization yield without a significant modification of the electronic structure of PPy. The highest conductivity of PPy was reached when chondroitin sulfate was used simultaneously as dopant and template during pyrrole polymerization. Electroactive properties of PPy obtained from natural precursors were successfully used in the amperometric quantification of uric acid concentrations. PPy increases the amperometric sensitivity of carbon nanotube screen-printed electrodes toward uric acid detection. - Highlights: • A new method of pyrrole polymerization using naturally occurring redox mediators and doping agents was studied. • The catalytic efficiency of different redox mediators toward pyrrole oxidation was evaluated. • Two different naturally occurring polymers were studied as bifunctional steric stabilizer/doping agents. • Polypyrrole improves the amperometric response of carbon nanotube screen printed electrodes toward uric acid sensing.

  2. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract

    Science.gov (United States)

    Ramesh, P. S.; Kokila, T.; Geetha, D.

    2015-05-01

    A green straight forward method of synthesizing silver nanoparticles (AgNPs) in an aqueous medium was designed using Emblica officinalis (EO) fruit extract as stabilizer and reducer. The formation of AgNPs depends on the effect of extract concentration and pH were studied. The AgNPs was synthesized using E.officinalis (fruit extract) and nanoparticles were characterized using UV-Vis spectrophotometer, the presence of biomolecules of E.officinalis capped in AgNPs was found by FT-IR analysis, shape and size were examined by SEM and XRD. The XRD analysis respects the Bragg's law and confirmed the crystalline nature of silver nanoparticles. From XRD the average size of AgNPs was found to be around 15 nm. AFM has proved to be very helpful in the determination and verification of various morphological features and parameters. EO fruit extract mediated AgNPs was synthesized and confirmed through kinetic behavior of nanoparticles. The shape of the bio-synthesized AgNPs was spherical. Potent biomolecules of E.officinalis such as polyphenols, glucose, and fructose was capped with AgNPs which reduces the toxicity. The synthesized AgNPs were tested for its antibacterial activity against the isolates by disc diffusion method. The obtained results confirmed that the E.officinalis fruit extract is a very good bioreductant for the synthesis of AgNPs. It was investigated that the synthesized AgNPs showed inhibition and had significant antibacterial against both gram-positive and gram-negative bacterial strains.

  3. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-03-28

    The "target of rapamycin" (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens.

  4. mu-opioid receptor-stimulated synthesis of reactive oxygen species is mediated via phospholipase D2.

    Science.gov (United States)

    Koch, Thomas; Seifert, Anja; Wu, Dai-Fei; Rankovic, Marija; Kraus, Jürgen; Börner, Christine; Brandenburg, Lars-Ove; Schröder, Helmut; Höllt, Volker

    2009-08-01

    We have recently shown that the activation of the rat mu-opioid receptor (MOPr, also termed MOR1) by the mu-agonist [D-Ala(2), Me Phe(4), Glyol(5)]enkephalin (DAMGO) leads to an increase in phospholipase D2 (PLD2) activity and an induction of receptor endocytosis, whereas the agonist morphine which does not induce opioid receptor endocytosis fails to activate PLD2. We report here that MOPr-mediated activation of PLD2 stimulates production of reactive oxygen molecules via NADH/NADPH oxidase. Oxidative stress was measured with the fluorescent probe dichlorodihydrofluorescein diacetate and the role of PLD2 was assessed by the PLD inhibitor D-erythro-sphingosine (sphinganine) and by PLD2-small interfering RNA transfection. To determine whether NADH/NADPH oxidase contributes to opioid-induced production of reactive oxygen species, mu-agonist-stimulated cells were pre-treated with the flavoprotein inhibitor, diphenylene iodonium, or the specific NADPH oxidase inhibitor, apocynin. Our results demonstrate that receptor-internalizing agonists (like DAMGO, beta-endorphin, methadone, piritramide, fentanyl, sufentanil, and etonitazene) strongly induce NADH/NADPH-mediated ROS synthesis via PLD-dependent signaling pathways, whereas agonists that do not induce MOPr endocytosis and PLD2 activation (like morphine, buprenorphine, hydromorphone, and oxycodone) failed to activate ROS synthesis in transfected human embryonic kidney 293 cells. These findings indicate that the agonist-selective PLD2 activation plays a key role in the regulation of NADH/NADPH-mediated ROS formation by opioids.

  5. Methanobactin-Mediated Synthesis of Gold Nanoparticles Supported over Al2O3 toward an Efficient Catalyst for Glucose Oxidation

    Directory of Open Access Journals (Sweden)

    Jia-Ying Xin

    2014-11-01

    Full Text Available Methanobactin (Mb is a copper-binding peptide that appears to function as an agent for copper sequestration and uptake in methanotrophs. Mb can also bind and reduce Au(III to Au(0. In this paper, Au/Al2O3 catalysts prepared by a novel incipient wetness-Mb-mediated bioreduction method were used for glucose oxidation. The catalysts were characterized, and the analysis revealed that very small gold nanoparticles with a particle size <4 nm were prepared by the incipient wetness-Mb-mediated bioreduction method, even at 1.0% Au loading (w/w. The influence of Au loading, calcination temperature and calcination time on the specific activity of Au/Al2O3 catalysts was systematically investigated. Experimental results showed that decomposing the Mb molecules properly by calcinations can enhance the specific activity of Au/Al2O3 catalysts, though they acted as reductant and protective agents during the catalyst preparation. Au/Al2O3 catalysts synthesized by the method exhibited optimum specific activity under operational synthesis conditions of Au loading of 1.0 wt % and calcined at 450 °C for 2 h. The catalysts were reused eight times, without a significant decrease in specific activity. To our knowledge, this is the first attempt at the preparation of Au/Al2O3 catalysts by Mb-mediated in situ synthesis of gold nanoparticles.

  6. The effect of epidermal levels of urocanic acid on 25-hydroxyvitamin D synthesis and inflammatory mediators upon narrowband UVB irradiation

    DEFF Research Database (Denmark)

    Landeck, Lilla; Jakasa, Ivone; Dapic, Irena

    2016-01-01

    BACKGROUND/PURPOSE: Urocanic acid (UCA) absorbs ultraviolet (UV)B radiation in the epidermis which may interfere with phototherapy. Therefore, the influence of individual levels of UCA on immune reactivity and vitamin D synthesis induced by narrowband UVB radiation was assessed. METHODS: 28 subje...... levels of trans-UCA affect vitamin D synthesis, but not cutaneous immune reactivity upon repeated exposure to suberythemal doses of narrowband UVB radiation. However, this requires further exploration. This article is protected by copyright. All rights reserved.......10/IP-10, CCL2/MCP-1, CCL4/MIP-1β, and the IL-1RA/IL-1α ratio. The levels of IL-1α and CXCL9/MIG showed a trend toward increase. The changes in the levels of inflammatory and immunomodulatory mediators did not depend on baseline levels of trans-UCA. CONCLUSION: The results suggest that epidermal...

  7. Plant-mediated synthesis of nanoparticles:A newer and safer tool against mosquito-borne diseases?

    Institute of Scientific and Technical Information of China (English)

    Giovanni Benelli

    2016-01-01

    Prevention and control of mosquito-borne diseases is a key challenge of huge public health importance.Plant-mediated synthesis of nanoparticles has recently gained attention as a cheap,rapid and eco-friendly method to control mosquito vector populations,with special reference to young instars.Furthermore,plant-fabricated nanoparticles have been successfully employed as dengue virus growth inhibitors.In this Editorial,parasitologists,entomologists and researchers in drug nanosynthesis are encouraged to deal with a number of crucial challenges of public health importance.

  8. Here, There, and Everywhere: The Ubiquitous Distribution of the Immunosignaling Molecule Lysophosphatidylcholine and Its Role on Chagas Disease.

    Science.gov (United States)

    Silva-Neto, Mário Alberto C; Lopes, Angela H; Atella, Georgia C

    2016-01-01

    Chagas disease is a severe illness, which can lead to death if the patients are not promptly treated. The disease is caused by the protozoan parasite Trypanosoma cruzi, which is mostly transmitted by a triatomine insect vector. There are 8-10 million people infected with T. cruzi in the world, but the transmission of such disease by bugs occurs only in the Americas, especially Latin America. Chronically infected patients will develop cardiac diseases (30%) and up digestive, neurological, or mixed disorders (10%). Lysophosphatidylcholine (LPC) is the major phospholipid component of oxidized low-density lipoproteins associated with atherosclerosis-related tissue damage. Insect-derived LPC powerfully attracts inflammatory cells to the site of the insect bite, enhances parasite invasion, and inhibits the production of nitric oxide by T. cruzi-stimulated macrophages. The recognition of the ubiquitous presence of LPC on the vector saliva, its production by the parasite itself and its presence both on patient plasma and its role on diverse host × parasite interaction systems lead us to compare its distribution in nature with the title of the famous Beatles song "Here, There and Everywhere" recorded exactly 50 years ago in 1966. Here, we review the major findings pointing out the role of such molecule as an immunosignaling modulator of Chagas disease transmission. Also, we believe that future investigation of the connection of this ubiquity and the immune role of such molecule may lead in the future to novel methods to control parasite transmission, infection, and pathogenesis.

  9. Small Intestine but Not Liver Lysophosphatidylcholine Acyltransferase 3 (Lpcat3) Deficiency Has a Dominant Effect on Plasma Lipid Metabolism.

    Science.gov (United States)

    Kabir, Inamul; Li, Zhiqiang; Bui, Hai H; Kuo, Ming-Shang; Gao, Guangping; Jiang, Xian-Cheng

    2016-04-01

    Lysophosphatidylcholine acyltransferase 3 (Lpcat3) is involved in phosphatidylcholine remodeling in the small intestine and liver. We investigated lipid metabolism in inducible intestine-specific and liver-specificLpcat3gene knock-out mice. We producedLpcat3-Flox/villin-Cre-ER(T2)mice, which were treated with tamoxifen (at days 1, 3, 5, and 7), to deleteLpcat3specifically in the small intestine. At day 9 after the treatment, we found that Lpcat3 deficiency in enterocytes significantly reduced polyunsaturated phosphatidylcholines in the enterocyte plasma membrane and reduced Niemann-Pick C1-like 1 (NPC1L1), CD36, ATP-binding cassette transporter 1 (ABCA1), and ABCG8 levels on the membrane, thus significantly reducing lipid absorption, cholesterol secretion through apoB-dependent and apoB-independent pathways, and plasma triglyceride, cholesterol, and phospholipid levels, as well as body weight. Moreover, Lpcat3 deficiency does not cause significant lipid accumulation in the small intestine. We also utilized adenovirus-associated virus-Cre to depleteLpcat3in the liver. We found that liver deficiency only reduces plasma triglyceride levels but not other lipid levels. Furthermore, there is no significant lipid accumulation in the liver. Importantly, small intestine Lpcat3 deficiency has a much bigger effect on plasma lipid levels than that of liver deficiency. Thus, inhibition of small intestine Lpcat3 might constitute a novel approach for treating hyperlipidemia.

  10. Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles

    Science.gov (United States)

    Supraja, N.; Prasad, T. N. V. K. V.; Krishna, T. Giridhara; David, E.

    2016-04-01

    Synthesis of metal nanoparticles using biological systems is an expanding research area in nanotechnology. Moreover, search for new nanoscale antimicrobials is been always attractive as they find numerous avenues for application in medicine. Biosynthesis of metallic nanoparticles is cost effective and eco-friendly compared to those of conventional methods of nanoparticles synthesis. Herein, we present the synthesis of zinc oxide nanoparticles using the stem bark extract of Boswellia ovalifoliolata, and evaluation of their antimicrobial efficacy. Stable ZnO nanoparticles were formed by treating 90 ml of 1 mM zinc nitrate aqueous solution with 10 ml of 10 % bark extract. The formation of B. ovalifoliolata bark-extract-mediated zinc oxide nanoparticles (BZnNPs) was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance (LSPR) at 230 nm. Fourier transform infrared spectroscopic (FT-IR) analysis revealed that primary and secondary amine groups in combination with the proteins present in the bark extract are responsible for the reduction and stabilization of the BZnNPs. The morphology and crystalline phase of the nanocrystals were determined by Transmission electron microscopy (TEM). The hydrodynamic diameter (20.3 nm) and a positive zeta potential (4.8 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of BZnNPs was evaluated (in vitro) against fungi, Gram-negative, and Gram-positive bacteria using disk diffusion method which were isolated from the scales formed in drinking water PVC pipelines.

  11. Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia magna

    Directory of Open Access Journals (Sweden)

    Sadia Saif

    2016-11-01

    Full Text Available Research on green production methods for metal oxide nanoparticles (NPs is growing, with the objective to overcome the potential hazards of these chemicals for a safer environment. In this study, facile, ecofriendly synthesis of copper oxide (CuO nanoparticles was successfully achieved using aqueous extract of Pterospermum acerifolium leaves. P. acerifolium-fabricated CuO nanoparticles were further characterized by UV-Visible spectroscopy, field emission scanning electron microscopy (FE-SEM, energy dispersive X-ray (EDX, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS and dynamic light scattering (DLS. Plant-mediated CuO nanoparticles were found to be oval shaped and well dispersed in suspension. XPS confirmed the elemental composition of P. acerifolium-mediated copper nanoparticles as comprised purely of copper and oxygen. DLS measurements and ion release profile showed that P. acerifolium-mediated copper nanoparticles were more stable than the engineered CuO NPs. Copper oxide nanoparticles are used in many applications; therefore, their potential toxicity cannot be ignored. A comparative study was performed to investigate the bio-toxic impacts of plant-synthesized and engineered CuO nanoparticles on water flea Daphnia. Experiments were conducted to investigate the 48-h acute toxicity of engineered CuO NPs and plant-synthesized nanoparticles. Lower EC50 value 0.102 ± 0.019 mg/L was observed for engineered CuO NPs, while 0.69 ± 0.226 mg/L was observed for plant-synthesized CuO NPs. Additionally, ion release from CuO nanoparticles and 48-h accumulation of these nano CuOs in daphnids were also calculated. Our findings thus suggest that the contribution of released ions from nanoparticles and particles/ions accumulation in Daphnia needs to be interpreted with care.

  12. Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia magna.

    Science.gov (United States)

    Saif, Sadia; Tahir, Arifa; Asim, Tayyaba; Chen, Yongsheng

    2016-11-09

    Research on green production methods for metal oxide nanoparticles (NPs) is growing, with the objective to overcome the potential hazards of these chemicals for a safer environment. In this study, facile, ecofriendly synthesis of copper oxide (CuO) nanoparticles was successfully achieved using aqueous extract of Pterospermum acerifolium leaves. P. acerifolium-fabricated CuO nanoparticles were further characterized by UV-Visible spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS). Plant-mediated CuO nanoparticles were found to be oval shaped and well dispersed in suspension. XPS confirmed the elemental composition of P. acerifolium-mediated copper nanoparticles as comprised purely of copper and oxygen. DLS measurements and ion release profile showed that P. acerifolium-mediated copper nanoparticles were more stable than the engineered CuO NPs. Copper oxide nanoparticles are used in many applications; therefore, their potential toxicity cannot be ignored. A comparative study was performed to investigate the bio-toxic impacts of plant-synthesized and engineered CuO nanoparticles on water flea Daphnia. Experiments were conducted to investigate the 48-h acute toxicity of engineered CuO NPs and plant-synthesized nanoparticles. Lower EC50 value 0.102 ± 0.019 mg/L was observed for engineered CuO NPs, while 0.69 ± 0.226 mg/L was observed for plant-synthesized CuO NPs. Additionally, ion release from CuO nanoparticles and 48-h accumulation of these nano CuOs in daphnids were also calculated. Our findings thus suggest that the contribution of released ions from nanoparticles and particles/ions accumulation in Daphnia needs to be interpreted with care.

  13. Os2 MAP kinase-mediated osmostress tolerance in Penicillium digitatum is associated with its positive regulation on glycerol synthesis and negative regulation on ergosterol synthesis.

    Science.gov (United States)

    Wang, Mingshuang; Chen, Changsheng; Zhu, Congyi; Sun, Xuepeng; Ruan, Ruoxin; Li, Hongye

    2014-01-01

    High osmolarity glycerol (HOG) pathway is ubiquitously distributed among eukaryotic organisms and plays an important role in adaptation to changes in the environment. In this study, the Hog1 ortholog in Penicillium digitatum, designated Pdos2, was identified and characterized using a gene knock-out strategy. The ΔPdos2 mutant showed a considerably increased sensitivity to salt stress and cell wall-disturbing agents and a slightly increased resistance to fungicides iprodione and fludioxonil, indicating that Pdos2 is involved in response to hyperosmotic stress, regulation of cell wall integrity and sensitivity to fungicides iprodione and fludioxonil. Surprisingly, the mutant was not affected in response to oxidative stress caused by H2O2. The average lesion size in citrus fruits caused by ΔPdos2 mutant was smaller (approximately 25.0% reduction) than that caused by the wild-type strain of P. digitatum at 4 days post inoculation, which suggests that Pdos2 is needed for full virulence of P. digitatum. Interestingly, in the presence of 0.7 M NaCl, the glycerol content was remarkably increased and the ergosterol was decreased in mycelia of the wide-type P. digitatum, whereas the glycerol content was only slightly increased and the ergosterol content remained stable in the ΔPdos2 mutant, suggesting that Pdos2-mediated osmotic adaption is associated with its positive regulation on glycerol synthesis and negative regulation on ergosterol synthesis.

  14. Periodic Mechanical Stress INDUCES Chondrocyte Proliferation and Matrix Synthesis via CaMKII-Mediated Pyk2 Signaling.

    Science.gov (United States)

    Liang, Wenwei; Li, Zeng; Wang, Zhen; Zhou, Jinchun; Song, Huanghe; Xu, Shun; Cui, Weiding; Wang, Qing; Chen, Zhefeng; Liu, Feng; Fan, Weimin

    2017-01-01

    Periodic mechanical stress can promote chondrocyte proliferation and matrix synthesis to improve the quality of tissue-engineered cartilage. Although the integrin β1-ERK1/2 signal cascade has been implicated in periodic mechanical stress-induced mitogenic effects in chondrocytes, the precise mechanisms have not been fully established. The current study was designed to probe the roles of CaMKII and Pyk2 signaling in periodic mechanical stress-mediated chondrocyte proliferation and matrix synthesis. Chondrocytes were subjected to periodic mechanical stress, proliferation was assessed by direct cell counting and CCK-8 assay; gene expressions were analyzed using quantitative real-time PCR, protein abundance by Western blotting. Mechanical stress, markedly enhanced the phosphorylation levels of Pyk2 at Tyr402 and CaMKII at Thr286. Both suppression of Pyk2 with Pyk2 inhibitor PF431396 or Pyk2 shRNA and suppression of CaMKII with CaMKII inhibitor KN-93 or CaMKII shRNA blocked periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis. Additionally, either pretreatment with KN-93 or shRNA targeted to CaMKII prevented the activation of ERK1/2 and Pyk2 under conditions of periodic mechanical stress. Interestingly, in relation to periodic mechanical stress, in the context of Pyk2 inhibition with PF431396 or its targeted shRNA, only the phosphorylation levels of ERK1/2 were abrogated, while CaMKII signal activation was not affected. Moreover, the phosphorylation levels of CaMKII- Thr286 and Pyk2- Tyr402 were abolished after pretreatment with blocking antibody against integrinβ1 exposed to periodic mechanical stress. Our results collectively indicate that periodic mechanical stress promotes chondrocyte proliferation and matrix synthesis through the integrinβ1-CaMKII-Pyk2-ERK1/2 signaling cascade. © 2017 The Author(s). Published by S. Karger AG, Basel.

  15. Lipase Mediated Isoamyl Acetate Synthesis in Solvent-Free System Using Vinyl Acetate as Acyl Donor

    Directory of Open Access Journals (Sweden)

    Annapurna Kumari

    2009-01-01

    Full Text Available Synthesis of isoamyl acetate, a flavour ester extensively used in food industry, has been carried out in a solvent-free system. In the present study, an attempt has been made to enhance the isoamyl acetate synthesis yield by transesterification of isoamyl alcohol with vinyl acetate using immobilized Rhizopus oryzae NRRL 3562 lipase. In the present synthesis, substrates had no inhibitory effect on immobilized lipase. The effects of various reaction parameters on isoamyl acetate synthesis were studied and maximum conversion was achieved at 16 % (by mass per volume of immobilized lipase, 40 °C and 200 rpm. Under these conditions, 8-hour reaction time was sufficient to reach a high ester conversion of 95 % with 0.5 mol/L of isoamyl alcohol. The structure of the transesterified product was confirmed by infrared and nuclear magnetic resonance spectroscopic studies. Immobilized lipase had Km and vmax values of 306.53 mmol/L and 99 µmol/(h·g respectively, for isoamyl acetate synthesis in a solvent-free system.

  16. Polyoxometalate-mediated electron transfer-oxygen transfer oxidation of cellulose and hemicellulose to synthesis gas.

    Science.gov (United States)

    Sarma, Bidyut Bikash; Neumann, Ronny

    2014-08-01

    Terrestrial plants contain ~70% hemicellulose and cellulose that are a significant renewable bioresource with potential as an alternative to petroleum feedstock for carbon-based fuels. The efficient and selective deconstruction of carbohydrates to their basic components, carbon monoxide and hydrogen, so called synthesis gas, is an important key step towards the realization of this potential, because the formation of liquid hydrocarbon fuels from synthesis gas are known technologies. Here we show that by using a polyoxometalate as an electron transfer-oxygen transfer catalyst, carbon monoxide is formed by cleavage of all the carbon-carbon bonds through dehydration of initially formed formic acid. In this oxidation-reduction reaction, the hydrogen atoms are stored on the polyoxometalate as protons and electrons, and can be electrochemically released from the polyoxometalate as hydrogen. Together, synthesis gas is formed. In a hydrogen economy scenario, this method can also be used to convert carbon monoxide to hydrogen.

  17. Reactive oxygen species-dependent RhoA activation mediates collagen synthesis in hyperoxic lung fibrosis.

    Science.gov (United States)

    Kondrikov, Dmitry; Caldwell, Ruth B; Dong, Zheng; Su, Yunchao

    2011-06-01

    Lung fibrosis is an ultimate consequence of pulmonary oxygen toxicity in human and animal models. Excessive production and deposition of extracellular matrix proteins, e.g., collagen-I, is the most important feature of pulmonary fibrosis in hyperoxia-induced lung injury. In this study, we investigated the roles of RhoA and reactive oxygen species (ROS) in collagen-I synthesis in hyperoxic lung fibroblasts and in a mouse model of oxygen toxicity. Exposure of human lung fibroblasts to hyperoxia resulted in RhoA activation and an increase in collagen-I synthesis and cell proliferation. Inhibition of RhoA by C3 transferase CT-04, dominant-negative RhoA mutant T19N, or RhoA siRNA prevented hyperoxia-induced collagen-I synthesis. The constitutively active RhoA mutant Q63L mimicked the effect of hyperoxia on collagen-I expression. Moreover, the Rho kinase inhibitor Y27632 inhibited collagen-I synthesis in hyperoxic lung fibroblasts and fibrosis in mouse lungs after oxygen toxicity. Furthermore, the ROS scavenger tiron attenuated hyperoxia-induced increases in RhoA activation and collagen-I synthesis in lung fibroblasts and mouse lungs after oxygen toxicity. More importantly, we found that hyperoxia induced separation of guanine nucleotide dissociation inhibitor (GDI) from RhoA in lung fibroblasts and mouse lungs. Further, tiron prevented the separation of GDI from RhoA in hyperoxic lung fibroblasts and mouse lungs with oxygen toxicity. Together, these results indicate that ROS-induced separation of GDI from RhoA leads to RhoA activation with oxygen toxicity. ROS-dependent RhoA activation is responsible for the increase in collagen-I synthesis in hyperoxic lung fibroblasts and mouse lungs.

  18. Evidence that cytochrome b{sub 5} acts as a redox donor in CYP17A1 mediated androgen synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Duggal, Ruchia [Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States); Liu, Yilin [Department of Chemistry, Marquette University, Milwaukee, WI (United States); Gregory, Michael C.; Denisov, Ilia G. [Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States); Kincaid, James R. [Department of Chemistry, Marquette University, Milwaukee, WI (United States); Sligar, Stephen G., E-mail: s-sligar@illinois.edu [Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States); Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States)

    2016-08-19

    Fe−S vibrational frequency. Thus, although Mn-b{sub 5} binds to CYP17A1, it is unable to enhance the lyase reaction, strongly suggesting that cyt b{sub 5} has a redox effector role in enhancement of the CYP17A1 mediated lyase reaction necessary for androgen synthesis. - Highlights: • Cyt b{sub 5} role in human CYP17A1 mediated androgen synthesis was probed in Nanodiscs. • Native cyt b{sub 5} enhances androgen synthesis by CYP17A1. • Redox inactive Mn cyt b{sub 5} does not enhance androgen synthesis by CYP17A1. • Interactions with Cyt b{sub 5} perturb Fe−S and heme Raman modes of CYP17A1. • Cyt b{sub 5} acts as a redox donor for CYP17A1 mediated androgen synthesis.

  19. Direction of aminoacylated transfer RNAs into antibiotic synthesis and peptidoglycan-mediated antibiotic resistance.

    Science.gov (United States)

    Shepherd, Jennifer; Ibba, Michael

    2013-09-17

    Prokaryotic aminoacylated-transfer RNAs often need to be efficiently segregated between translation and other cellular biosynthetic pathways. Many clinically relevant bacteria, including Streptococcus pneumoniae, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa direct some aminoacylated-tRNA species into peptidoglycan biosynthesis and/or membrane phospholipid modification. Subsequent indirect peptidoglycan cross-linkage or change in membrane permeability is often a prerequisite for high-level antibiotic resistance. In Streptomycetes, aminoacylated-tRNA species are used for antibiotic synthesis as well as antibiotic resistance. The direction of coding aminoacylated-tRNA molecules away from translation and into antibiotic resistance and synthesis pathways are discussed in this review.

  20. Irradiation mediated synthesis of a superabsorbent hydrogel network based on polyacrylamide grafted onto salep

    Energy Technology Data Exchange (ETDEWEB)

    Bardajee, Ghasem Rezanejade [Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of); Department of Chemistry, Payame Noor University, Qazvin Branch, Qazvin (Iran, Islamic Republic of); Pourjavadi, Ali [Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of)], E-mail: purjavad@sharif.edu; Soleyman, Rouhollah [Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of); Sheikh, Nasrin [Nuclear Science and Technology Research Institute, Radiation Applications Research School, Kargar Avenue, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of)

    2008-09-15

    The synthesis and swelling behavior of a new superabsorbent hydrogel based on natural salep grafted with polyacrylamide is described. The new biopolymer was synthesized via simultaneous crosslinking and graft copolymerization of acrylamide monomer onto a salep backbone using radiochemical methods. Various parameters such as relative contents of salep and acrylamide, as well as total dose of {gamma}-rays were examined. The best synthesis condition is reported and a mechanism for superabsorbent hydrogel formation suggested. Factors affecting the swelling behavior of hydrogel were also studied.

  1. Sustainable Strategy Utilizing Biomass: Visible-Light-Mediated Synthesis of gamma-Valerolactone

    Data.gov (United States)

    U.S. Environmental Protection Agency — A novel sustainable approach to valued g-valerolactone was investigated. This approach exploits the visible-light-mediated conversion of biomass-derived levulinic...

  2. Facile Synthesis of Thioamides via P2Ss-Mediated Beckmann Rearrangement of Oximes

    Institute of Scientific and Technical Information of China (English)

    李江胜; 程超; 张馨睿; 李志伟; 蔡菲菲; 薛媛; 刘卫东

    2012-01-01

    A facile and efficient approach to the synthesis of secondary thioamides from ketoximes via Beckmann rearrangement has been established, using phosphorus pentasulfide as a dehydrating and thiating agent. It is also efficient for the preparation of primary thiobenzamide from benzaldoxime. This approach features simple-operation, easy-control and good to excellent yields.

  3. Stress-induced cell death is mediated by ceramide synthesis in Neurospora crassa

    DEFF Research Database (Denmark)

    Plesofsky, Nora S; Levery, Steven B; Castle, Sherry A

    2008-01-01

    The combined stresses of moderate heat shock (45 degrees C) and analog-induced glucose deprivation constitute a lethal stress for Neurospora crassa. We found that this cell death requires fatty acid synthesis and the cofactor biotin. In the absence of the cofactor, the stressed cells are particul...

  4. Total Synthesis of the Antimicrotubule Agent (+)-Discodermolide Using Boron-Mediated Aldol Reactions of Chiral Ketones.

    Science.gov (United States)

    Paterson; Florence; Gerlach; Scott

    2000-01-01

    With a similar mechanism of action to taxol, the title compound 1 is a particularly promising candidate for development in cancer chemotherapy. This efficient synthesis, based on stereocontrolled aldol reactions, should help to overcome the scarce natural supply of 1 from the rare sponge source.

  5. Insulin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland

    Science.gov (United States)

    The mammalian pineal gland synthesizes melatonin in a circadian manner, peaking during the dark phase. This synthesis is primarily regulated by sympathetic innervations via noradrenergic fibers, but is also modulated by many peptidergic and hormonal systems. A growing number of studies reveal a comp...

  6. T7 Endonuclease I Mediates Error Correction in Artificial Gene Synthesis.

    Science.gov (United States)

    Sequeira, Ana Filipa; Guerreiro, Catarina I P D; Vincentelli, Renaud; Fontes, Carlos M G A

    2016-09-01

    Efficacy of de novo gene synthesis largely depends on the quality of overlapping oligonucleotides used as template for PCR assembly. The error rate associated with current gene synthesis protocols limits the efficient and accurate production of synthetic genes, both in the small and large scales. Here, we analysed the ability of different endonuclease enzymes, which specifically recognize and cleave DNA mismatches resulting from incorrect impairments between DNA strands, to remove mutations accumulated in synthetic genes. The gfp gene, which encodes the green fluorescent protein, was artificially synthesized using an integrated protocol including an enzymatic mismatch cleavage step (EMC) following gene assembly. Functional and sequence analysis of resulting artificial genes revealed that number of deletions, insertions and substitutions was strongly reduced when T7 endonuclease I was used for mutation removal. This method diminished mutation frequency by eightfold relative to gene synthesis not incorporating an error correction step. Overall, EMC using T7 endonuclease I improved the population of error-free synthetic genes, resulting in an error frequency of 0.43 errors per 1 kb. Taken together, data presented here reveal that incorporation of a mutation-removal step including T7 endonuclease I can effectively improve the fidelity of artificial gene synthesis.

  7. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    Science.gov (United States)

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis.

  8. Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential

    Directory of Open Access Journals (Sweden)

    Ghosh Sougata

    2012-05-01

    Full Text Available Abstract Background Novel approaches for synthesis of gold nanoparticles (AuNPs are of utmost importance owing to its immense applications in diverse fields including catalysis, optics, medical diagnostics and therapeutics. We report on synthesis of AuNPs using Gnidia glauca flower extract (GGFE, its detailed characterization and evaluation of its chemocatalytic potential. Results Synthesis of AuNPs using GGFE was monitored by UV-Vis spectroscopy and was found to be rapid that completed within 20 min. The concentration of chloroauric acid and temperature was optimized to be 0.7 mM and 50°C respectively. Bioreduced nanoparticles varied in morphology from nanotriangles to nanohexagons majority being spherical. AuNPs were characterized employing transmission electron microscopy, high resolution transmission electron microscopy. Confirmation of elemental gold was carried out by elemental mapping in scanning transmission electron microscopic mode, energy dispersive spectroscopy and X-ray diffraction studies. Spherical particles of size ~10 nm were found in majority. However, particles of larger dimensions were in range between 50-150 nm. The bioreduced AuNPs exhibited remarkable catalytic properties in a reduction reaction of 4-nitrophenol to 4-aminophenol by NaBH4 in aqueous phase. Conclusion The elaborate experimental evidences support that GGFE can provide an environmentally benign rapid route for synthesis of AuNPs that can be applied for various purposes. Biogenic AuNPs synthesized using GGFE exhibited excellent chemocatalytic potential.

  9. Efficient synthesis of functionalized butenolides mediated by vinyltriphenylphosphonium salts in aqueous media

    Institute of Scientific and Technical Information of China (English)

    Mohammad A.Khalilzadeh; Adel Hasannia; Mohammad M.Baradarani; Zinatossadat Hossaini

    2011-01-01

    An efficient synthesis of 5-oxo-2,5-dihydro-3-furancarboxylate derivatives via reaction of dialkyl acetylenedicarboxylate with triphenylphosphine(Ph3P) in the presence of activated carbonyl compounds such as ethyl pyruvate,benzil,benzoylcyanide,biacetyle or N-alkylisatins is described.

  10. Timber industry waste-teak ( Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles

    Science.gov (United States)

    Devadiga, Aishwarya; Shetty, K. Vidya; Saidutta, M. B.

    2015-08-01

    The current research article emphasizes efficacious use of teak leaves, an agro -biowaste from world's premier hardwood timber industry, for "green" synthesis of silver nanoparticles (AgNPs). Bioactive compounds of the leaves act as prolific reducing and stabilizing agents in AgNP synthesis. The characterization of the AgNPs synthesized using teak leaves revealed that the particles are spherical with an average size of 28 nm and the presence of bioactive compounds present in teak leaf extract as capping agents on the nanoparticles. A prominent decrease in the content of bioactive compounds such as polyphenols, antioxidants and flavonoids after the biosynthesis of AgNPs signifies that these class of compounds act as reductants and stabilizers during biosynthesis. The biosynthesized silver nanoparticles were also successfully evaluated for their antibacterial characteristics against waterborne pathogens, E. coli and S. aureus, with minimum inhibitory concentration of 25.6 μg/mL. Exploitation of agrowaste resources for synthesis of AgNPs curtails indiscriminate usage of food and commercial plant materials, rather contributing a sustainable way for effective plant waste biomass utilization and management. The biosynthesized AgNps have potential application in water purifiers, antibacterial fabrics, sports wear and in cosmetics as antibacterial agent and the process used for its synthesis being greener is highly beneficial from environmental, energy consumption and economic perspectives.

  11. Calpain-2-mediated PTEN degradation contributes to BDNF-induced stimulation of dendritic protein synthesis.

    Science.gov (United States)

    Briz, Victor; Hsu, Yu-Tien; Li, Yi; Lee, Erin; Bi, Xiaoning; Baudry, Michel

    2013-03-06

    Memory consolidation has been suggested to be protein synthesis dependent. Previous data indicate that BDNF-induced dendritic protein synthesis is a key event in memory formation through activation of the mammalian target of rapamycin (mTOR) pathway. BDNF also activates calpain, a calcium-dependent cysteine protease, which has been shown to play a critical role in learning and memory. This study was therefore directed at testing the hypothesis that calpain activity is required for BDNF-stimulated local protein synthesis, and at identifying the underlying molecular mechanism. In rat hippocampal slices, cortical synaptoneurosomes, and cultured neurons, BDNF-induced mTOR pathway activation and protein translation were blocked by calpain inhibition. BDNF treatment rapidly reduced levels of hamartin and tuberin, negative regulators of mTOR, in a calpain-dependent manner. Treatment of brain homogenates with purified calpain-1 and calpain-2 truncated both proteins. BDNF treatment increased phosphorylation of both Akt and ERK, but only the effect on Akt was blocked by calpain inhibition. Levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatase that inactivates Akt, were decreased following BDNF treatment, and calpain inhibition reversed this effect. Calpain-2, but not calpain-1, treatment of brain homogenates resulted in PTEN degradation. In cultured cortical neurons, knockdown of calpain-2, but not calpain-1, by small interfering RNA completely suppressed the effect of BDNF on mTOR activation. Our results reveal a critical role for calpain-2 in BDNF-induced mTOR signaling and dendritic protein synthesis via PTEN, hamartin, and tuberin degradation. This mechanism therefore provides a link between proteolysis and protein synthesis that might contribute to synaptic plasticity.

  12. Inverse relations of serum phosphatidylcholines and lysophosphatidylcholines with vascular damage and heart rate in patients with atherosclerosis.

    Science.gov (United States)

    Paapstel, K; Kals, J; Eha, J; Tootsi, K; Ottas, A; Piir, A; Jakobson, M; Lieberg, J; Zilmer, M

    2017-08-02

    The rapidly growing discipline of lipidomics allows the study of a wide spectrum of lipid species in body fluids and provides new insights into the pathogenesis of cardiovascular disease. We investigated serum phosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) species in relation to arterial stiffness, hemodynamics, and endothelial dysfunction in symptomatic patients with atherosclerosis and in healthy controls. Thirty-two patients with peripheral arterial disease (age 61.7 ± 9.0 years), 52 patients with coronary artery disease (age 63.2 ± 9.2 years), and 40 apparently healthy controls (age 60.3 ± 7.1 years) were studied. Serum levels of 90 glycerophospholipids were determined with the AbsoluteIDQ™ p180 kit (BIOCRATES Life Sciences AG, Innsbruck, Austria). The technique of applanation tonometry was used for non-invasive pulse wave analysis and carotid-femoral pulse wave velocity (cf-PWV) assessment. Decreased serum levels of several individual PC and lysoPC species (e.g., PC aa C28:1, PC aa C30:0, PC aa C32:2, PC ae C30:0 and PC ae C34:2, lysoPC a C18:2) were observed for the patient groups in comparison to the healthy subjects. In addition, a considerable number of PCs and lysoPCs were inversely related to either cf-PWV, heart rate, asymmetric dimethylarginine (ADMA) or ADMA/arginine for patients with symptomatic atherosclerosis but not for the controls. We found altered relationships between PC and lysoPC profiles, inflammation, and arterial function in atherosclerotic patients, compared to healthy subjects. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  13. Induction by lysophosphatidylcholine, a major phospholipid component of atherogenic lipoproteins, of human coronary artery smooth muscle cell migration.

    Science.gov (United States)

    Kohno, M; Yokokawa, K; Yasunari, K; Minami, M; Kano, H; Hanehira, T; Yoshikawa, J

    1998-07-28

    The objectives of the present study were (1) to determine whether lysophosphatidylcholine (lyso-PC), a prominent component of oxidatively modified LDL, induces migration of human coronary artery smooth muscle cells (SMCs) and, if so, to clarify the mechanism, and (2) to investigate the possible interactions of lyso-PC and platelet-derived growth factor (PDGF)-BB, endothelin- (ET-1), adrenomedullin (AM), or vitamin E on SMC migration by the Boyden's chamber method. Lyso-PC induced SMC migration in a concentration-dependent manner between 10(-6) and 5 x 10(-5) mol/L. By contrast, phosphatidylcholine was without significant activity, and lysophosphatidylinositol and lysophosphatidylserine were much less effective than lyso-PC. Lyso-PC increased basic fibroblast growth factor (bFGF) production in a concentration-dependent manner between 10(-6) and 5 x 10(-5) mol/L in these cells. Furthermore, lyso-PC-induced SMC migration was inhibited by neutralizing antibody to bFGF but not by neutralizing antibody to transforming growth factor-beta1. Lyso-PC-induced migration was significantly enhanced by PDGF-BB or ET-1 but was clearly inhibited by human AM and vitamin E. These results indicate that (1) lyso-PC induces human coronary artery SMC migration at least in part through release of endogenous bFGF and (2) this lyso-PC-induced migration can be further induced by PDGF-BB and ET-1 and can be inhibited by human AM and vitamin E. Lyso-PC may recruit medial SMCs during the process of coronary atherosclerosis in part by releasing bFGF in concert with PDGF-BB or ET-1 in vascular tissues. This lyso-PC-induced SMC migration may be suppressed by AM and vitamin E under certain pathological conditions.

  14. Effects of cardiac natriuretic peptides on oxidized low-density lipoprotein- and lysophosphatidylcholine-induced human mesangial cell migration.

    Science.gov (United States)

    Kohno, M; Yasunari, K; Maeda, K; Kano, H; Minami, M; Hanehira, T; Yoshikawa, J

    2000-04-01

    The objectives of the present study were (1) to determine whether oxidized LDL and lysophosphatidylcholine (lyso-PtdCho), a major phospholipid component of oxidized LDL, stimulate the migration of cultured human mesangial cells and (2) to investigate the possible effects on mesangial cell migration of the cardiac natriuretic peptides atrial and brain natriuretic peptide (ANP and BNP). Oxidized LDL (10 and 100 microg/mL) and lyso-PtdCho (10(-7) to 10(-5) mol/L) stimulated migration in a concentration-dependent manner. In contrast, the effects of native LDL and phosphatidylcholine were modest or nonexistent. Protein kinase C (PKC) inhibitor and downregulation of PKC activity by phorbol ester inhibited oxidized LDL- and lyso-PtdCho-induced migration. Human ANP(1-28) and human BNP-32 significantly inhibited oxidized LDL- and lyso-PtdCho-induced migration in a concentration-dependent manner. C-ANF (des-[Glu(18),Ser(19),Gly(20),Leu(21),Gly(22)]ANP(4-23)), a specific ligand for ANP clearance receptors, could not inhibit oxidized LDL- and lyso-PtdCho-induced migration. Inhibition by ANP and BNP of lyso-PtdCho-induced migration was paralleled by an increase in the cellular level of GMP. Oxidized LDL- and lyso-PtdCho-induced migrations were inhibited by 8-bromo-cGMP. The results suggest that oxidized LDL and lyso-PtdCho stimulate the migration of human mesangial cells, at least in part, through a PKC-dependent process and that ANP and BNP inhibit this stimulated migration, probably through a cGMP-dependent process.

  15. Rh-Mediated Enantioselective Synthesis, Crystal Structures, and Photophysical/Chiroptical Properties of Phenanthrenol-Based [9]Helicene-like Molecules.

    Science.gov (United States)

    Yamano, Ryota; Hara, Jun; Murayama, Koichi; Sugiyama, Haruki; Teraoka, Kota; Uekusa, Hidehiro; Kawauchi, Susumu; Shibata, Yu; Tanaka, Ken

    2017-01-06

    The enantioselective synthesis of phenanthrenol-based [9]helicene-like molecules has been achieved via the rhodium-mediated intramolecular [2 + 2 + 2] cycloadditions of 3-phenanthrenol-linked triynes. Crystal structures and photophysical/chiroptical properties of these [9]helicene-like molecules were compared with the corresponding [7]helicene-like molecules.

  16. Mercury(II) chloride-mediated desulphurization of amidinothioureas: Synthesis and antimicrobial activity of 3-amino-1,2,4-triazole derivatives

    NARCIS (Netherlands)

    Yerande, Swapnil G.; Baviskar, Chetna D.; Newase, Kiran M.; Wang, Wei; Wang, Kan; Dömling, Alexander

    2014-01-01

    The synthesis of 3-amino-1,2,4-triazole via mercury(II) chloride-mediated cyclization of amidinothiourea is described. This procedure offers a general and efficient route to synthesize the title compound by 3 + 2 annulation reaction. On the basis of the literature precedence, the mechanism for the f

  17. Synthesis of cyclic 1-alkenylboronates via Zr-mediated double functionalization of alkynylboronates and sequential Ru-catalyzed ring-closing olefin metathesis.

    Science.gov (United States)

    Nishihara, Yasushi; Suetsugu, Masato; Saito, Daisuke; Kinoshita, Megumi; Iwasaki, Masayuki

    2013-05-17

    Synthesis of novel cyclic 1-alkenylboronates is accomplished through the zirconium-mediated regio- and stereoselective double functionalization of 1-alkynylboronates and the subsequent ruthenium-catalyzed ring-closing metathesis (RCM). The obtained substituted cyclic 1-alkenylboronates are transformed into o-terphenyl and triphenylene derivatives.

  18. Synthesis of 1H-indazoles and 1H-pyrazoles via FeBr3/O2 mediated intramolecular C-H amination.

    Science.gov (United States)

    Zhang, Tianshui; Bao, Weiliang

    2013-02-01

    A new synthesis of substituted 1H-indazoles and 1H-pyrazoles from arylhydrazones via FeBr(3)/O(2) mediated C-H activation/C-N bond formation reactions is reported. The corresponding 1,3-diaryl-substituted indazoles and trisubstituted pyrazoles were obtained in moderate to excellent yields under mild conditions.

  19. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry

    Science.gov (United States)

    Fortea-Pérez, Francisco R.; Mon, Marta; Ferrando-Soria, Jesús; Boronat, Mercedes; Leyva-Pérez, Antonio; Corma, Avelino; Herrera, Juan Manuel; Osadchii, Dmitrii; Gascon, Jorge; Armentano, Donatella; Pardo, Emilio

    2017-07-01

    The development of catalysts able to assist industrially important chemical processes is a topic of high importance. In view of the catalytic capabilities of small metal clusters, research efforts are being focused on the synthesis of novel catalysts bearing such active sites. Here we report a heterogeneous catalyst consisting of Pd4 clusters with mixed-valence 0/+1 oxidation states, stabilized and homogeneously organized within the walls of a metal-organic framework (MOF). The resulting solid catalyst outperforms state-of-the-art metal catalysts in carbene-mediated reactions of diazoacetates, with high yields (>90%) and turnover numbers (up to 100,000). In addition, the MOF-supported Pd4 clusters retain their catalytic activity in repeated batch and flow reactions (>20 cycles). Our findings demonstrate how this synthetic approach may now instruct the future design of heterogeneous catalysts with advantageous reaction capabilities for other important processes.

  20. Studies on the synthesis of peptides containing dehydrovaline and dehydroisoleucine based on copper-mediated enamide formation

    Directory of Open Access Journals (Sweden)

    Franziska Gille

    2016-03-01

    Full Text Available The preparation of peptide fragments containing dehydrovaline and dehydroisoleucine moieties present in the antibiotic myxovalargin is reported. Peptide formation is based on a copper-mediated C–N cross-coupling protocol between an acyl amide and a peptidic vinyl iodide. The presence of a neighboring arginine in the vinyl iodide posed a challenge with respect to the choice of the protecting group and the reaction conditions. It was found that ornithine – a suitable precursor – is better suited than arginine for achieving good yields for the C–N cross-coupling reaction. The optimized conditions were utilized for the synthesis of peptides 32, 33, 39 and 40 containing a neighboring ornithine as well as for the tripeptide 44 containing dehydroisoleucine with the correct stereochemistry.

  1. Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing.

    Science.gov (United States)

    Ahmed, Khan Behlol Ayaz; Senthilnathan, Rajendran; Megarajan, Sengan; Anbazhagan, Veerappan

    2015-10-01

    Owing to the benign nature, plant extracts mediated green synthesis of metal nanoparticles (NPs) is rapidly expanding. In this study, we demonstrated the successful green synthesis of silver nanoparticles (AgNPs) by utilizing natural sunlight and redox protein complex composed of ferredoxin-NADP(+) reductase (FNR) and ferredoxin (FD). The capping and stabilization of the AgNPs by the redox protein was confirmed by Fourier transform infrared spectroscopy. Light and redox protein is the prerequisite factor for the formation of AgNPs. The obtained result shows that the photo generated free radicals by the redox protein is responsible for the reduction of Ag(+) to Ag(0). Transmission electron microscopy revealed the formation of spherical AgNPs with size ranging from 10 to 15 nm. As-prepared AgNPs exhibit excellent catalytic activity toward the degradation of hazardous organic dyes, such as methylene blue, methyl orange and methyl red. These bio-inspired AgNPs is highly sensitive and selective in sensing hazardous mercury ions in the water at micromolar concentration. In addition, FNR/FD extract stabilized AgNPs showed good antimicrobial activity against gram positive and gram negative bacteria.

  2. Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal: Investigation of the leading biomolecules.

    Science.gov (United States)

    Xiao, Zhengli; Yuan, Min; Yang, Bin; Liu, Zhaoyan; Huang, Jiale; Sun, Daohua

    2016-05-01

    The eco-friendly synthesis and application of Fe nanoparticles (Fe NPs) with higher activity and stability has aroused wide attention in the field of pollutant remediation. In this work, 15 plants extracts were selected for the plant-mediated synthesis of Fe NPs. The as-synthesized particles' morphology and structure were characterized by transmission electron microscopy, X-ray diffraction and UV-Vis spectroscopy. The contents of four main active biomolecules in the 15 extracts were determined, and comparative studies were further carried out to clarify the key component closely related to the reducing capacity. The results demonstrate that polyphenol is the leading ingredient involved in the biosynthesis of Fe NPs. Then Fe products synthesized by three extracts with distinct content of polyphenol were employed to remove Cr (VI) in the aqueous solution, indicating that the activity of the Fe NPs for Cr (VI) removal is consistent with the reducing capacity of the extracts. Furthermore, the Fe NPs synthesized by S. jambos(L.) Alston extract (SJA-Fe NPs) showed significant removal capacity of Cr(VI) with 698.6 mg Cr(VI) per g of iron.

  3. Local serotonin mediates cyclic strain-induced phenotype transformation, matrix degradation, and glycosaminoglycan synthesis in cultured sheep mitral valves.

    Science.gov (United States)

    Lacerda, Carla M R; Kisiday, John; Johnson, Brennan; Orton, E Christopher

    2012-05-15

    This study addressed the following questions: 1) Does cyclic tensile strain induce protein expression patterns consistent with myxomatous degeneration in mitral valves? 2) Does cyclic strain induce local serotonin synthesis in mitral valves? 3) Are cyclic strain-induced myxomatous protein expression patterns in mitral valves dependent on local serotonin? Cultured sheep mitral valve leaflets were subjected to 0, 10, 20, and 30% cyclic strain for 24 and 72 h. Protein levels of activated myofibroblast phenotype markers, α-smooth muscle actin (α-SMA) and nonmuscle embryonic myosin (SMemb); matrix catabolic enzymes, matrix metalloprotease (MMP) 1 and 13, and cathepsin K; and sulfated glycosaminoglycan (GAG) content in mitral valves increased with increased cyclic strain. Serotonin was present in the serum-free media of cultured mitral valves and concentrations increased with cyclic strain. Expression of the serotonin synthetic enzyme tryptophan hydroxylase 1 (TPH1) increased in strained mitral valves. Pharmacologic inhibition of the serotonin 2B/2C receptor or TPH1 diminished expression of phenotype markers (α-SMA and SMemb) and matrix catabolic enzyme (MMP1, MMP13, and cathepsin K) expression in 10- and 30%-strained mitral valves. These results provide first evidence that mitral valves synthesize serotonin locally. The results further demonstrate that tensile loading modulates local serotonin synthesis, expression of effector proteins associated with mitral valve degeneration, and GAG synthesis. Inhibition of serotonin diminishes strain-mediated protein expression patterns. These findings implicate serotonin and tensile loading in mitral degeneration, functionally link the pathogeneses of serotoninergic (carcinoid, drug-induced) and degenerative mitral valve disease, and have therapeutic implications.

  4. Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study.

    Science.gov (United States)

    Iram, Fozia; Iqbal, Mohammad S; Athar, Muhammad M; Saeed, Muhammad Z; Yasmeen, Abida; Ahmad, Riaz

    2014-04-15

    A green synthesis of gold and silver nanoparticles having exceptional high stability is reported. The synthesis involves the use of glucoxylans isolated from seeds of Mimosa pudica and excludes the use of conventional reducing and capping agents. The average particle sizes were 40 and 6 nm for gold and silver, respectively. The size of gold particles obtained in this work is suitable for drug delivery as they are non-cytotoxic. In phyto-toxicity tests the gold and silver nanoparticles did not show any significant effect on germination of radish seeds, whereas in radish seedling root growth assay the two particles behaved differently. The silver nanoparticles exhibited a concentration-dependent stimulatory effect on root length, whereas the gold nanoparticles had no significant effect in this test. The likely mechanism of these effects is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    Science.gov (United States)

    Majumdar, Rakhi; Bag, Braja Gopal; Ghosh, Pooja

    2016-04-01

    The bark extract of Mimusops elengi is rich in different types of plant secondary metabolites such as flavonoids, tannins, triterpenoids and saponins. The present study shows the usefulness of the bark extract of Mimusops elengi for the green synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete within a few minutes without any extra stabilizing or capping agents and the polyphenols present in the bark extract acted as both reducing as well as stabilizing agents. The synthesized colloidal gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 3-nitrophenol and 4-nitrophenol to their corresponding aminophenols in water at room temperature.

  6. Algae mediated synthesis of cadmium sulphide nanoparticles and their application in bioremediation

    Science.gov (United States)

    Prasad Mandal, Ranju; Sekh, Sanoyaz; Sarkar, Neera Sen; Chattopadhyay, Dipankar; De, Swati

    2016-05-01

    The present work is a study on the biological synthesis of cadmium sulphide (CdS) nanoparticles using blue-green algae that is popularly used as a food supplement. This synthesis is unique in the sense that no external sulphur precursor is required, the CdS nanoparticles are synthesized in situ in the algal medium. The CdS nanoparticles thus synthesized are photoluminescent and can act as highly efficient photocatalysts for degradation of the dye pollutant malachite green. Thus the CdS nanoparticles synthesized in situ in the algae conform to the desired criteria of waste water treatment i.e. biosorption of the pollutant and its subsequent degradation. The novelty of this work also lies in its potential for use in bioremediation by conversion of the toxic Cd(II) ion to less toxic CdS nanoparticles within the algal framework.

  7. Straightforward synthesis of 1,2-dicyanoalkanes from nitroalkenes and silyl cyanide mediated by tetrabutylammonium fluoride.

    Science.gov (United States)

    Kiyokawa, Kensuke; Nagata, Takaya; Hayakawa, Junpei; Minakata, Satoshi

    2015-01-12

    A straightforward synthesis of 1,2-dicyanoalkanes by reacting nitroalkenes with trimethylsilyl cyanide in the presence of tetrabutylammonium fluoride is described. The reaction proceeds through a tandem double Michael addition under mild conditions. Employing the hypervalent silicate generated from trimethylsilyl cyanide and tetrabutylammonium fluoride is essential for achieving this transformation. Mechanistic studies suggest that a small amount of water included in the reaction media plays a key role. This protocol is applicable to various types of substrates including electron-rich and electron-deficient aromatic nitroalkenes, and aliphatic nitroalkenes. Moreover, vinyl sulfones were found to be good alternatives, particularly for electron-deficient nitroalkenes. The broad substrate scope and functional group tolerance of the reaction makes this approach a practical method for the synthesis of valuable 1,2-dicyanoalkanes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Drug Uptake, Lipid Rafts, and Vesicle Trafficking Modulate Resistance to an Anticancer Lysophosphatidylcholine Analogue in Yeast*

    Science.gov (United States)

    Cuesta-Marbán, Álvaro; Botet, Javier; Czyz, Ola; Cacharro, Luis M.; Gajate, Consuelo; Hornillos, Valentín; Delgado, Javier; Zhang, Hui; Amat-Guerri, Francisco; Acuña, A. Ulises; McMaster, Christopher R.; Revuelta, José Luis; Zaremberg, Vanina; Mollinedo, Faustino

    2013-01-01

    The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane. PMID:23335509

  9. Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast.

    Science.gov (United States)

    Cuesta-Marbán, Álvaro; Botet, Javier; Czyz, Ola; Cacharro, Luis M; Gajate, Consuelo; Hornillos, Valentín; Delgado, Javier; Zhang, Hui; Amat-Guerri, Francisco; Acuña, A Ulises; McMaster, Christopher R; Revuelta, José Luis; Zaremberg, Vanina; Mollinedo, Faustino

    2013-03-22

    The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane.

  10. Cu-Mediated Stille Reactions of Sterically Congested Fragments: Towards the Total Synthesis of Zoanthamine

    DEFF Research Database (Denmark)

    Nielsen, Thomas E.; Le Quement, Sebastian; Juhl, Martin;

    2005-01-01

    A study on the Stille reaction of alkenyl iodides and starmanes with structural resemblance to retrosynthetic fragments of a projected total synthesis of the marine alkaloid zoanthamine was carried out. A range of reaction conditions was examined, and a protocol developed by Corey utilizing excess...... copper(I) chloride and lithium chloride was found to be most efficient. The methodology was successfully applied to join two major fragments of the zoanthamine skeleton. (c) 2005 Elsevier Ltd. All rights reserved....

  11. AKAP3 synthesis is mediated by RNA binding proteins and PKA signaling during mouse spermiogenesis.

    Science.gov (United States)

    Xu, Kaibiao; Yang, Lele; Zhao, Danyun; Wu, Yaoyao; Qi, Huayu

    2014-06-01

    Mammalian spermatogenesis is regulated by coordinated gene expression in a spatiotemporal manner. The spatiotemporal regulation of major sperm proteins plays important roles during normal development of the male gamete, of which the underlying molecular mechanisms are poorly understood. A-kinase anchoring protein 3 (AKAP3) is one of the major components of the fibrous sheath of the sperm tail that is formed during spermiogenesis. In the present study, we analyzed the expression of sperm-specific Akap3 and the potential regulatory factors of its protein synthesis during mouse spermiogenesis. Results showed that the transcription of Akap3 precedes its protein synthesis by about 2 wk. Nascent AKAP3 was found to form protein complex with PKA and RNA binding proteins (RBPs), including PIWIL1, PABPC1, and NONO, as revealed by coimmunoprecipitation and protein mass spectrometry. RNA electrophoretic gel mobility shift assay showed that these RBPs bind sperm-specific mRNAs, of which proteins are synthesized during the elongating stage of spermiogenesis. Biochemical and cell biological experiments demonstrated that PIWIL1, PABPC1, and NONO interact with each other and colocalize in spermatids' RNA granule, the chromatoid body. In addition, NONO was found in extracytoplasmic granules in round spermatids, whereas PIWIL1 and PABPC1 were diffusely localized in cytoplasm of elongating spermatids, indicating their participation at different steps of mRNA metabolism during spermatogenesis. Interestingly, type I PKA subunits colocalize with PIWIL1 and PABPC1 in the cytoplasm of elongating spermatids and cosediment with the RBPs in polysomal fractions on sucrose gradients. Further biochemical analyses revealed that activation of PKA positively regulates AKAP3 protein synthesis without changing its mRNA level in elongating spermatids. Taken together, these results indicate that PKA signaling directly participates in the regulation of protein translation in postmeiotic male germ cells

  12. Microwave-Mediated Hetero Diels-Alder reaction: Synthesis of biologically active compounds

    OpenAIRE

    D’Aurizio, Antonio

    2009-01-01

    Heterocyclic compounds represent almost two-thirds of all the known organic compounds: they are widely distributed in nature and play a key role in a huge number of biologically important molecules including some of the most significant for human beings. A powerful tool for the synthesis of such compounds is the hetero Diels-Alder reaction (HDA), that involve a [4+2] cycloaddition reaction between heterodienes and suitable dienophiles. Among heterodienes to be used in such six-membered ...

  13. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    Directory of Open Access Journals (Sweden)

    Peter Hesemann

    2014-04-01

    Full Text Available The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA, mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  14. Green synthesis, characterisation and bioactivity of plant-mediated silver nanoparticles using Decalepis hamiltonii root extract.

    Science.gov (United States)

    Rashmi, Venkatasubbaiah; Sanjay, Konasur R

    2017-04-01

    Consistent search of plants for green synthesis of silver nanoparticles (SNPs) is an important arena in Nanomedicine. This study focuses on synthesis of SNPs using bioreduction of silver nitrate (AgNO3) by aqueous root extract of Decalepis hamiltonii. The biosynthesis of SNPs was monitored by UV-vis analysis at absorbance maxima 432 nm. The fluorescence emission spectra of SNPs illustrated the broad emission peak 450-483 nm at different excitation wavelengths. The surface characteristics were studied by scanning electron microscope and atomic force microscopy, showed spherical shape of SNPs and dynamic light scattering analysis confirmed the average particle size 32.5 nm and the presence of metallic silver was confirmed by energy dispersive X-ray. Face centred cubic structure with crystal size 33.3 nm was revealed by powder X-ray diffraction. Fourier transform infrared spectroscopy indicated the biomolecules involved in the reduction mainly polyols and phenols present in root extracts were found to be responsible for the synthesis of SNPs. The stability and charge on SNPs were revealed by zeta potential analysis. In addition, on therapeutic forum, the synthesised SNPs elicit antioxidant and antimicrobial activity against Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.

  15. Dioscorea bulbifera Mediated Synthesis of Novel AucoreAgshell Nanoparticles with Potent Antibiofilm and Antileishmanial Activity

    Directory of Open Access Journals (Sweden)

    Sougata Ghosh

    2015-01-01

    Full Text Available Dioscorea bulbifera is a potent medicinal plant used in both Indian and Chinese traditional medicine owing to its rich phytochemical diversity. Herein, we report the rapid synthesis of novel AucoreAgshell nanoparticles by D. bulbifera tuber extract (DBTE. AucoreAgshell NPs synthesis was completed within 5 h showing a prominent peak at 540 nm. HRTEM analysis revealed 9 nm inner core of elemental gold covered by a silver shell giving a total particle diameter upto 15 nm. AucoreAgshellNPs were comprised of 57.34±1.01% gold and 42.66±0.97% silver of the total mass. AucoreAgshellNPs showed highest biofilm inhibition upto 83.68±0.09% against A. baumannii. Biofilms of P. aeruginosa, E. coli, and S. aureus were inhibited up to 18.93±1.94%, 22.33±0.56%, and 30.70±1.33%, respectively. Scanning electron microscopy (SEM and atomic force microscopy (AFM confirmed unregulated cellular efflux through pore formation leading to cell death. Potent antileishmanial activity of AucoreAgshellNPs (MIC=32 µg/mL was confirmed by MTT assay. Further SEM micrographs showed pronounced deformity in the spindle shaped cellular morphology changing to spherical. This is the first report of synthesis, characterization, antibiofilm, and antileishmanial activity of AucoreAgshellNPs synthesized by D. bulbifera.

  16. Virus-mediated FCC iron nanoparticle induced synthesis of uranium dioxide nanocrystals.

    Science.gov (United States)

    Ling, Tao; Yu, Huimin; Shen, Zhongyao; Wang, Hui; Zhu, Jing

    2008-03-19

    A reducing system involving M13 virus-mediated FCC Fe nanoparticles was employed to achieve uranium reduction and synthesize uranium dioxide nanocrystals. Here we show that metastable face-centered cubic (FCC) Fe nanoparticles were fabricated around the surface of the M13 virus during the specific adsorption of the virus towards Fe ions under a reduced environment. The FCC phase of these Fe nanoparticles was confirmed by careful TEM characterization. Moreover, this virus-mediated FCC Fe nanoparticle system successfully reduced contaminable U(VI) into UO(2) crystals with diameters of 2-5 nm by a green and convenient route.

  17. TMSBr-mediated solvent- and work-up-free synthesis of α-2-deoxyglycosides from glycals

    Science.gov (United States)

    Hsu, Mei-Yuan; Liu, Yi-Pei; Lam, Sarah; Lin, Su-Ching

    2016-01-01

    Summary The thio-additions of glycals were efficiently promoted by a stoichiometric amount of trimethylsilyl bromide (TMSBr) to produce S-2-deoxyglycosides under solvent-free conditions in good to excellent yields. In addition, with triphenylphosphine oxide as an additive, the TMSBr-mediated direct glycosylations of glycals with a large range of alcohols were highly α-selective. PMID:27559420

  18. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    Science.gov (United States)

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  19. Copper(II) mediated facile and ultra fast peptide synthesis in methanol.

    Science.gov (United States)

    Mali, Sachitanand M; Jadhav, Sandip V; Gopi, Hosahudya N

    2012-07-18

    A novel, ultrafast, mild and scalable amide bond formation strategy in methanol using simple thioacids and amines is described. The mechanism suggests that the coupling reactions are initially mediated by CuSO(4)·5H(2)O and subsequently catalyzed by in situ generated copper sulfide. The pure peptides were isolated in satisfactory yields in less than 5 minutes.

  20. Regioselective synthesis of heteroaryl triflones by LDA (lithium diisopropylamide)-mediated anionic thia-Fries rearrangement.

    Science.gov (United States)

    Xu, Xiu-Hua; Wang, Xin; Liu, Guo-kai; Tokunaga, Etsuko; Shibata, Norio

    2012-05-18

    Novel heteroaryl triflones including oxindole, pyrazolone, pyridine, and quinoline derivatives have been regioselectively synthesized by LDA-mediated thia-Fries rearrangement for the first time. These reactions are also the first examples of the application of anionic thia-Fries rearrangement in heteroaromatic compounds.

  1. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Venil, Chidambaram Kulandaisamy, E-mail: ckvenil@gmail.com [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Sathishkumar, Palanivel [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Malathi, Mahalingam [Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu (India); Usha, Rajamanickam [Department of Microbiology, Karpagam University, Coimbatore 641 023, Tamil Nadu (India); Jayakumar, Rajarajeswaran [Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusoff, Abdull Rahim Mohd [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Ahmad, Wan Azlina, E-mail: azlina@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia)

    2016-02-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ({sup 1}H NMR and {sup 13}C NMR), UV–Vis, and LC–MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36 μg mL{sup −1}. This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. - Highlights: • First report on flexirubin mediated silver nanoparticles • Silver nanoparticles synthesised using flexirubin • Flexirubin mediated silver nanoparticles found to possess in vitro anti-cancer activity.

  2. Conductive polymer-based nanoparticles for laser-mediated photothermal ablation of cancer: synthesis, characterization, and in vitro evaluation

    Science.gov (United States)

    Cantu, Travis; Walsh, Kyle; Pattani, Varun P; Moy, Austin J; Tunnell, James W; Irvin, Jennifer A; Betancourt, Tania

    2017-01-01

    Laser-mediated photothermal ablation of cancer cells aided by photothermal agents is a promising strategy for localized, externally controlled cancer treatment. We report the synthesis, characterization, and in vitro evaluation of conductive polymeric nanoparticles (CPNPs) of poly(diethyl-4,4′-{[2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-1,4-phenylene] bis(oxy)}dibutanoate) (P1) and poly(3,4-ethylenedioxythiophene) (PEDOT) stabilized with 4-dodecylbenzenesulfonic acid and poly(4-styrenesulfonic acid-co-maleic acid) as photothermal ablation agents. The nanoparticles were prepared by oxidative-emulsion polymerization, yielding stable aqueous suspensions of spherical particles of <100 nm diameter as determined by dynamic light scattering and electron microscopy. Both types of nanoparticles show strong absorption of light in the near infrared region, with absorption peaks at 780 nm for P1 and 750 nm for PEDOT, as well as high photothermal conversion efficiencies (~50%), that is higher than commercially available gold-based photothermal ablation agents. The nanoparticles show significant photostability as determined by their ability to achieve consistent temperatures and to maintain their morphology upon repeated cycles of laser irradiation. In vitro studies in MDA-MB-231 breast cancer cells demonstrate the cytocompatibility of the CPNPs and their ability to mediate complete cancer cell ablation upon irradiation with an 808-nm laser, thereby establishing the potential of these systems as agents for laser-induced photothermal therapy. PMID:28144143

  3. Conductive polymer-based nanoparticles for laser-mediated photothermal ablation of cancer: synthesis, characterization, and in vitro evaluation.

    Science.gov (United States)

    Cantu, Travis; Walsh, Kyle; Pattani, Varun P; Moy, Austin J; Tunnell, James W; Irvin, Jennifer A; Betancourt, Tania

    2017-01-01

    Laser-mediated photothermal ablation of cancer cells aided by photothermal agents is a promising strategy for localized, externally controlled cancer treatment. We report the synthesis, characterization, and in vitro evaluation of conductive polymeric nanoparticles (CPNPs) of poly(diethyl-4,4'-{[2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-1,4-phenylene] bis(oxy)}dibutanoate) (P1) and poly(3,4-ethylenedioxythiophene) (PEDOT) stabilized with 4-dodecylbenzenesulfonic acid and poly(4-styrenesulfonic acid-co-maleic acid) as photothermal ablation agents. The nanoparticles were prepared by oxidative-emulsion polymerization, yielding stable aqueous suspensions of spherical particles of <100 nm diameter as determined by dynamic light scattering and electron microscopy. Both types of nanoparticles show strong absorption of light in the near infrared region, with absorption peaks at 780 nm for P1 and 750 nm for PEDOT, as well as high photothermal conversion efficiencies (~50%), that is higher than commercially available gold-based photothermal ablation agents. The nanoparticles show significant photostability as determined by their ability to achieve consistent temperatures and to maintain their morphology upon repeated cycles of laser irradiation. In vitro studies in MDA-MB-231 breast cancer cells demonstrate the cytocompatibility of the CPNPs and their ability to mediate complete cancer cell ablation upon irradiation with an 808-nm laser, thereby establishing the potential of these systems as agents for laser-induced photothermal therapy.

  4. Proresolution lipid mediators in multiple sclerosis - differential, disease severity-dependent synthesis - a clinical pilot trial.

    Directory of Open Access Journals (Sweden)

    Harald Prüss

    Full Text Available BACKGROUND: The severity and longevity of inflammation is controlled by endogenous counter-regulatory signals. Among them are long-chain polyunsaturated fatty acid (PUFA-derived lipid mediators, which promote the resolution of inflammation, an active process for returning to tissue homeostasis. OBJECTIVE: To determine whether endogenous production of lipid-derived resolution agonists is regulated differentially in patients with highly active and less active multiple sclerosis (MS. DESIGN: Matched-pairs study in University hospital Neurology department. PATIENTS: Based on clinical (relapse frequency and paraclinical (MRI lesions, contrast enhancement criteria, 10 pairs of age- and sex-matched patients with relapsing-remitting MS were assigned either to a group with highly active or less active MS. Lipid mediators were quantified in serum and cerebrospinal fluid using LC-MS/MS-based lipidomics. RESULTS: Levels of the key arachidonic (ω-6 and docosahexaenoic acid (ω-6-derived mediators prostaglandins (PG, leukotrienes, hydroxyeicosatetraenoic acids (HETE and resolution agonists lipoxin A(4 (LXA(4, resolvin D1 (RvD1 and neuroprotectin D1 (NPD1 were quantified. In the patient group with highly active MS, 15-HETE and PGE(2 were increased, which are products of the 15-lipoxygenase and cyclooxygenase pathways. The proresolution mediator RvD1 was significantly upregulated and NPD1 was detected in the highly active group only. LXA(4 levels were not increased in patients with highly active MS. CONCLUSIONS: Lipid mediator pathways are regulated differentially in the cerebrospinal fluid of MS patients, depending on disease severity. Non-exhaustive or possibly 'delayed' resolution pathways may suggest a defective resolution program in patients with highly active MS. Longitudinal analyses are required to hetero-typify this differential resolution capacity, which may be associated with disease progression, longevity and eventual termination.

  5. Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Sun, Yuhua [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Chen, Xiaofang [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhu, Peizhi, E-mail: pzzhu@umich.edu [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Wei, Shicheng, E-mail: sc-wei@pku.edu.cn [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2013-07-01

    Biomimetic synthesis of carbonated apatites with good biocompatibility is a promising strategy for the broadening application of apatites for bone tissue engineering. Most researchers were interested in collagen or gelatin-based templates for synthesis of apatite minerals. Inspired by recent findings about the important role of polysaccharides in bone biomineralization, here we reported that heparin, a mucopolysaccharide, was used to synthesize carbonated apatites in vitro. The results indicated that the Ca/P ratio, carbon content, crystallinity and morphology of the apatites varied depending on the heparin concentration and the initial pH value. The morphology of apatite changed from flake-shaped to needle-shaped, and the degree of crystallinity decreased with the increasing of heparin concentration. Biocompatibility of the apatites was tested by proliferation and alkaline phosphatase activity of MC3T3-E1 cells. The results suggested that carbonated apatites synthesized in the presence of heparin were more favorable to the proliferation and differentiation of MC3T3-E1 cells compared with traditional method. In summary, the heparin concentration and the initial pH value play a key role in the chemical constitution and morphology, as well as biological properties of apatites. These biocompatible nano-apatite crystals hold great potential to be applied as bioactive materials for bone tissue engineering. - Highlights: • Heparin was used as a template to synthesize needle-shaped nano-apatite. • Changing the pH value and concentration led to different properties of apatite. • Apatite prepared by heparin was more favorable to the osteogenic differentiation. • Possible synthesis mechanism of apatite templated by heparin was described.

  6. Dendrimer-mediated synthesis of platinum nanoparticles: new insights from dialysis and atomic force microscopy measurements

    Science.gov (United States)

    Xie, Hong; Gu, Yunlong; Ploehn, Harry J.

    2005-07-01

    In this work, we use AFM measurements in conjunction with dialysis experiments to study the synthesis mechanism and physical state of dendrimer-stabilized platinum nanoparticles. For characterizing particle size distributions by high resolution transmission electron microscopy and AFM, sample preparation by drop evaporation presumably minimizes the risk of sample bias that might be found in spin coating or dip-and-rinse methods. However, residual synthesis by-products (mainly salts) must be removed from solutions of dendrimer-stabilized metal nanoparticles prior to AFM imaging. Purification by dialysis is effective for this purpose. We discovered, by UV-visible spectrophotometry and atomic absorption (AA) spectroscopy, that dialysis using 'regular' cellulose dialysis tubing (12 000 Da cut-off) used in all previous work leads to substantial losses of poly(amidoamine) (PAMAM) dendrimer (G4OH), PAMAM-Pt(+2) complex, and PAMAM-stabilized Pt nanoparticles. Use of benzoylated dialysis tubing (1200 Da cut-off) shows no losses of G4OH or G4OH-Pt mixtures. We use AFM to see whether selective filtration during dialysis introduces sampling bias in the measurement of particle size distributions. We compare results (UV-visible spectra, AA results, and AFM-based particle size distributions) for a sample of G4OH-Pt40 divided into two parts, one part dialysed with regular dialysis tubing and the other with benzoylated tubing. Exhaustive dialysis using benzoylated tubing may lead to the loss of colloidal Pt nanoparticles stabilized by adsorbed dendrimer, but not Pt nanoparticles encapsulated by the dendrimer. The comparisons also lead to new insights concerning the underlying synthesis mechanisms for PAMAM-stabilized Pt nanoparticles.

  7. ZnCl2-mediated practical protocol for the synthesis of Amadori ketoses.

    Science.gov (United States)

    Harohally, Nanishankar V; Srinivas, Sudhanva M; Umesh, Sushma

    2014-09-01

    An efficient and practical protocol for the synthesis of Amadori ketoses N-(1-deoxy-D-fructose-1-yl) amino acid (amino acid=L-valine (1), L-leucine (2), L-isoleucine (3), L-tryptophan (4), L-phenylalanine (5), L-arginine (6) has been accomplished by employing ZnCl2 as a catalyst. The developed method circumvents protection and deprotection steps as well as tedious ion-exchange and column chromatographic techniques. The accomplished Amadori ketoses showed moderate to weak angiotensin I converting enzyme (ACE) inhibitory activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Silver Nanoparticles Mediated by Costus afer Leaf Extract: Synthesis, Antibacterial, Antioxidant and Electrochemical Properties.

    Science.gov (United States)

    Elemike, Elias E; Fayemi, Omolola E; Ekennia, Anthony C; Onwudiwe, Damian C; Ebenso, Eno E

    2017-04-29

    Synthesis of metallic and semiconductor nanoparticles through physical and chemical routes has been extensively reported. However, green synthesized metal nanoparticles are currently in the limelight due to the simplicity, cost-effectiveness and eco-friendliness of their synthesis. This study explored the use of aqueous leaf extract of Costus afer in the synthesis of silver nanoparticles (CA-AgNPs). The optical and structural properties of the resulting silver nanoparticles were studied using UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infra-red spectrophotometer (FTIR). TEM images of the silver nanoparticles confirmed the existence of monodispersed spherical nanoparticles with a mean size of 20 nm. The FTIR spectra affirmed the presence of phytochemicals from the Costus afer leaf extract on the surface of the silver nanoparticles. The electrochemical characterization of a CA-AgNPs/multiwalled carbon nanotubes (MWCNT)-modified electrode was carried out to confirm the charge transfer properties of the nanocomposites. The comparative study showed that the CA-AgNPs/MWCNT-modified electrode demonstrated faster charge transport behaviour. The anodic current density of the electrodes in Fe(CN)₆](4-)/[Fe(CN)₆](3-) redox probe follows the order: GCE/CA-Ag/MWCNT (550 mA/cm²) > GCE/MWCNT (270 mA/cm²) > GCE (80 mA/cm²) > GCE/CA-Ag (7.93 mA/cm²). The silver nanoparticles were evaluated for their antibacterial properties against Gram negative (Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa) and Gram positive (Bacillus subtilis and Staphylococcus aureus) pathogens. The nanoparticles exhibited better inhibition of the bacterial strains compared to the precursors (leaf extract of Costus afer and silver nitrate). Furthermore, the ability of the nanoparticles to scavenge DPPH radicals at different concentrations was studied using the DPPH radical scavenging assay and compared to

  9. Silver Nanoparticles Mediated by Costus afer Leaf Extract: Synthesis, Antibacterial, Antioxidant and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Elias E. Elemike

    2017-04-01

    Full Text Available Synthesis of metallic and semiconductor nanoparticles through physical and chemical routes has been extensively reported. However, green synthesized metal nanoparticles are currently in the limelight due to the simplicity, cost-effectiveness and eco-friendliness of their synthesis. This study explored the use of aqueous leaf extract of Costus afer in the synthesis of silver nanoparticles (CA-AgNPs. The optical and structural properties of the resulting silver nanoparticles were studied using UV-visible spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM and Fourier transform infra–red spectrophotometer (FTIR. TEM images of the silver nanoparticles confirmed the existence of monodispersed spherical nanoparticles with a mean size of 20 nm. The FTIR spectra affirmed the presence of phytochemicals from the Costus afer leaf extract on the surface of the silver nanoparticles. The electrochemical characterization of a CA-AgNPs/multiwalled carbon nanotubes (MWCNT-modified electrode was carried out to confirm the charge transfer properties of the nanocomposites. The comparative study showed that the CA-AgNPs/MWCNT-modified electrode demonstrated faster charge transport behaviour. The anodic current density of the electrodes in Fe(CN6]4−/[Fe(CN6]3− redox probe follows the order: GCE/CA-Ag/MWCNT (550 mA/cm2 > GCE/MWCNT (270 mA/cm2 > GCE (80 mA/cm2 > GCE/CA-Ag (7.93 mA/cm2. The silver nanoparticles were evaluated for their antibacterial properties against Gram negative (Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa and Gram positive (Bacillus subtilis and Staphylococcus aureus pathogens. The nanoparticles exhibited better inhibition of the bacterial strains compared to the precursors (leaf extract of Costus afer and silver nitrate. Furthermore, the ability of the nanoparticles to scavenge DPPH radicals at different concentrations was studied using the DPPH radical scavenging assay and compared to

  10. (Thiourea-mediated synthesis of functionalized six-membered rings with multiple chiral centers

    Directory of Open Access Journals (Sweden)

    Giorgos Koutoulogenis

    2016-03-01

    Full Text Available Organocatalysis, now running its second decade of life, is being considered one of the main tools a synthetic chemist has to perform asymmetric catalysis. In this review the synthesis of six-membered rings, that contain multiple chiral centers, either by a ring closing process or by a functionalization reaction on an already existing six-membered ring, utilizing bifunctional (thioureas will be summarized. Initially, the use of primary amine-thioureas as organocatalysts for the above transformation is being discussed, followed by the examples employing secondary amine-thioureas. Finally, the use of tertiary amine-thioureas and miscellaneous examples are presented.

  11. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation.

    Science.gov (United States)

    Mazumder, Vismadeb; Sun, Shouheng

    2009-04-08

    We report a facile synthesis of monodisperse Pd nanoparticles by the reduction of Pd(acac)(2) with oleylamine and borane tributylamine complex. The oleylamine-coated Pd nanoparticles are readily "cleaned" with a 99% acetic acid wash, and the Pd particles supported on Ketjen carbon are catalytically active for formic acid oxidation in HClO(4) solution. The catalyst shows no obvious activity degradation after 1500 cyclic voltammetry cycles under ambient conditions. These Pd particles hold promise as a highly active non-Pt catalyst for fuel cell applications.

  12. (Thio)urea-mediated synthesis of functionalized six-membered rings with multiple chiral centers

    Science.gov (United States)

    Koutoulogenis, Giorgos; Kaplaneris, Nikolaos

    2016-01-01

    Summary Organocatalysis, now running its second decade of life, is being considered one of the main tools a synthetic chemist has to perform asymmetric catalysis. In this review the synthesis of six-membered rings, that contain multiple chiral centers, either by a ring closing process or by a functionalization reaction on an already existing six-membered ring, utilizing bifunctional (thio)ureas will be summarized. Initially, the use of primary amine-thioureas as organocatalysts for the above transformation is being discussed, followed by the examples employing secondary amine-thioureas. Finally, the use of tertiary amine-thioureas and miscellaneous examples are presented. PMID:27340441

  13. Nickel-mediated radioiodination of aryl and heteroaryl bromides: rapid synthesis of tracers for SPECT imaging.

    Science.gov (United States)

    Cant, Alastair A; Champion, Sue; Bhalla, Rajiv; Pimlott, Sally L; Sutherland, Andrew

    2013-07-22

    Rapid and efficient radioiodination of aryl and heteroaryl bromides has been achieved using a nickel(0)-mediated halogen-exchange reaction. This transformation gives direct access to [(123)I]- and [(125)I]-imaging agents for single photon emission computed tomography (SPECT), such as 5-[(123)I]-A85380 (see scheme, Boc = tert-butyloxycarbonyl, cod = 1,5-cyclooctadiene, TFA = trifluoroacetic acid). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications.

    Science.gov (United States)

    Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Abbas, Khawar; Youssif, Bahaa Gm; Bashir, Sajid; Yuk, Soon Hong; Bukhari, Syed Nasir Abbas

    2017-01-01

    Polysaccharides are being extensively employed for the synthesis of silver nanoparticles (Ag NPs) having diverse morphology and applications. Herein, we present a novel and green synthesis of Ag NPs without using any physical reaction conditions. Linseed hydrogel (LSH) was used as a template to reduce Ag(+) to Ag(0). AgNO3 (10, 20, and 30 mmol) solutions were mixed with LSH suspension in deionized water and exposed to diffused sunlight. Reaction was monitored by noting the change in the color of reaction mixture up to 10 h. Ag NPs showed characteristic ultraviolet-visible (UV/Vis) absorptions from 410 to 437 nm in the case of sunlight and 397-410 nm in the case of temperature study. Transmission electron microscopy images revealed the formation of spherical Ag NPs in the range of 10-35 nm. Face-centered cubic array of Ag NPs was confirmed by characteristic diffraction peaks in powder X-ray diffraction spectrum. Ag NPs were stored in LSH thin films, and UV/Vis spectra recorded after 6 months indicated that Ag NPs retained their texture over the storage period. Significant antimicrobial activity was observed when microbial cultures (bacteria and fungi) were exposed to the synthesized Ag NPs. Wound-healing studies revealed that Ag NP-impregnated LSH thin films could have potential applications as an antimicrobial dressing in wound management procedures.

  15. Copper Nanoparticles Mediated by Chitosan: Synthesis and Characterization via Chemical Methods

    Directory of Open Access Journals (Sweden)

    Muhammad Sani Usman

    2012-12-01

    Full Text Available Herein we report a synthesis of copper nanoparticles (Cu-NPs in chitosan (Cts media via a chemical reaction method. The nanoparticles were synthesized in an aqueous solution in the presence of Cts as stabilizer and CuSO4·5H2O precursor. The synthesis proceeded with addition of NaOH as pH moderator, ascorbic acid as antioxidant and hydrazine as the reducing agent. The characterization of the prepared NPs was done using ultraviolet-visible spectroscopy, which showed a 593 nm copper band. The Field Emission Scanning Electron Microscope (FESEM images were also observed, and found to be in agreement with the UV-Vis result, confirming the formation of metallic Cu-NPs. The mean size of the Cu-NPs was estimated to be in the range of 35–75 nm using X-ray diffraction. XRD was also used in analysis of the crystal structure of the NPs. The interaction between the chitosan and the synthesized NPs was studied using Fourier transform infrared (FT-IR spectroscopy, which showed the capping of the NPs by Cts.

  16. Facile Synthesis of Sub-20 nm Silver Nanowires through a Bromide-Mediated Polyol Method.

    Science.gov (United States)

    da Silva, Robson Rosa; Yang, Miaoxin; Choi, Sang-Il; Chi, Miaofang; Luo, Ming; Zhang, Chao; Li, Zhi-Yuan; Camargo, Pedro H C; Ribeiro, Sidney José Lima; Xia, Younan

    2016-08-23

    Essentially all of the Ag nanowires reported in the literature have sizes larger than 30 nm in diameter. In this article, we report a simple and robust approach to the synthesis of Ag nanowires with diameters below 20 nm and aspect ratios over 1000 using a one-pot polyol method. The Ag nanowires took a penta-twinned structure, and they could be obtained rapidly (85% of the as-obtained solid product) under atmospheric pressure. The key to the success of this synthesis is to restrain the nanowires from lateral growth by employing both Br(-) ions and poly(vinylpyrrolidone) with a high molecular weight of 1 300 000 g/mol to cap the {100} side faces, together with the use of a syringe pump to slowly introduce AgNO3 into the reaction solution. By optimizing the ratios between the capping agents and AgNO3, we were able to slow down the reduction kinetics and effectively direct the Ag nanowires to grow along the longitudinal direction only. The nanowires showed great mechanical flexibility and could be bent with acute angles without breaking. Because of their small diameters, the transverse localized surface plasmon resonance peak of the Ag nanowires could be pushed down to the ultraviolet region, below 400 nm, making them ideal conductive elements for the fabrication of touch screens, solar cells, and smart windows.

  17. Sugar-mediated semidian oscillation of gene expression in the cassava storage root regulates starch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Baguma, Yona; Sun, Chuanxin; Boren, Mats; Olsson, Helena; Rosenqvist, Sara; Mutisya, Joel; Rubaihayo, Patrick R.; Jansson, Christer

    2008-01-15

    Starch branching enzyme (SBE) activity in the cassava storage root exhibited a diurnal fluctuation, dictated by a transcriptional oscillation of the corresponding SBE genes. The peak of SBE activity coincided with the onset of sucrose accumulation in the storage, and we conclude that the oscillatory mechanism keeps the starch synthetic apparatus in the storage root sink in tune with the flux of sucrose from the photosynthetic source. When storage roots were uncoupled from the source, SBE expression could be effectively induced by exogenous sucrose. Turanose, a sucrose isomer that cannot be metabolized by plants, mimicked the effect of sucrose, demonstrating that downstream metabolism of sucrose was not necessary for signal transmission. Also glucose and glucose-1-P induced SBE expression. Interestingly, induction by sucrose, turanose and glucose but not glucose-1-P sustained an overt semidian (12-h) oscillation in SBE expression and was sensitive to the hexokinase (HXK) inhibitor glucosamine. These results suggest a pivotal regulatory role for HXK during starch synthesis. Abscisic acid (ABA) was another potent inducer of SBE expression. Induction by ABA was similar to that of glucose-1-P in that it bypassed the semidian oscillator. Both the sugar and ABA signaling cascades were disrupted by okadaic acid, a protein phosphatase inhibitor. Based on these findings, we propose a model for sugar signaling in regulation of starch synthesis in the cassava storage root.

  18. THE MEDIATING ROLE OF SCIENCE MUSEUM IN STRUCTURING AND SYNTHESIS OF LEARNING

    Directory of Open Access Journals (Sweden)

    Fanny Angulo Delgado

    2016-10-01

    Full Text Available Understanding the mediating role of science museum in learning scientific content in school, it involves reflecting on the contributions of research to the question of what and how people learn in non-conventional educational settings. It has been shown that most people spend less than 3% of their lives learning in school, which emphasizes the importance of conceptualizing what they are and how much of their learning take place. While that question is resolved, it speaks at this bioassay on the complementary relationship between the museum and the school, as both institutions share the same educational purpose, but differ in the ways of achieving it. The science museum joins the class as a mediator that facilitates student learning as part of an education that promotes understanding of the phenomena of the world through models, which means that school learning goes in stages, one of which is that students have opportunity to structure new knowledge and synthesize on its own model. For this it is necessary that students speak, read, listen and write in science class, while the thought is expressed in language to attest to the facts. These communication skills arise in science class as indicators of mediation exercised by the museum and allow us to understand that it takes place in at least two dimensions: museographic and didactics.

  19. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling

    Directory of Open Access Journals (Sweden)

    Felty Quentin

    2006-04-01

    Full Text Available Abstract Background Since estrogen is known to increase vascular endothelial cell growth, elevated estrogen exposure from hormone replacement therapy or oral contraceptives has the potential to contribute in the development of abnormal proliferative vascular lesions and subsequent thickening of the vasculature. How estrogen may support or promote vascular lesions is not clear. We have examined in this study whether estrogen exposure to vascular endothelial cells increase the formation of reactive oxygen species (ROS, and estrogen-induced ROS is involved in the growth of endothelial cells. Methods The effect of estrogen on the production of intracellular oxidants and the role of estrogen-induced ROS on cell growth was studied in human umbilical vein endothelial cells. ROS were measured by monitoring the oxidation of 2'7'-dichlorofluorescin by spectrofluorometry. Endothelial cell growth was measured by a colorimetric immunoassay based on BrdU incorporation into DNA. Results Physiological concentrations of estrogen (367 fmol and 3.67 pmol triggered a rapid 2-fold increase in intracellular oxidants in endothelial cells. E2-induced ROS formation was inhibited to basal levels by cotreatment with the mitochondrial inhibitor rotenone (2 μM and xanthine oxidase inhibitor allopurinol (50 μM. Inhibitors of NAD(PH oxidase, apocynin and DPI, did not block E2-induced ROS formation. Furthermore, the NOS inhibitor, L-NAME, did not prevent the increase in E2-induced ROS. These findings indicate both mitochondria and xanthine oxidase are the source of ROS in estrogen treated vascular endothelial cells. E2 treated cells showed a 2-fold induction of BrdU incorporation at 18 h which was not observed in cells exposed to vehicle alone. Cotreatment with ebselen (20 μM and NAC (1 mM inhibited E2-induced BrdU incorporation without affecting the basal levels of DNA synthesis. The observed inhibitory effect of NAC and ebselen on E2-induced DNA synthesis was also shown

  20. Total synthesis of marinomycin A using salicylate as a molecular switch to mediate dimerization

    Science.gov (United States)

    Evans, P. Andrew; Huang, Mu-Hua; Lawler, Michael J.; Maroto, Sergio

    2012-08-01

    Antibiotics play a significant role in human health because of their ability to treat life-threatening bacterial infections. The growing problems with antibiotic resistance have made the development of new antibiotics a World Health Organization priority. Marinomycin A is a member of a new class of bis-salicylate-containing polyene macrodiolides, which have potent antibiotic activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Herein, we describe a triply convergent synthesis of this agent using the salicylate as a novel molecular switch for the chemoselective construction of the macrodiolide. This strategy raises new questions regarding the biosynthetic role of the salicylate and its potential impact on the mechanism of action of these types of agents. For instance, in contrast to penicillin, which enhances the electrophilicity of the cyclic amide through ring strain, salicylates reduce the electrophilicity of the aryl ester through an intramolecular resonance-assisted hydrogen bond to provide an amide surrogate.

  1. Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens

    Science.gov (United States)

    Das, J.; Paul Das, M.; Velusamy, P.

    2013-03-01

    Simple, effective and rapid approach for the green synthesis of silver nanoparticles (AgNPs) using leaf extract of Sesbania grandiflora and their in vitro antibacterial activity against selected human pathogens has been demonstrated in the study. Various instrumental techniques were adopted to characterize the synthesized AgNPs viz. UV-Vis, FTIR, XRD, TEM, EDX and AFM. Surface Plasmon spectra for AgNPs are centered at 422 nm with dark brown color. The synthesized AgNPs were found to be spherical in shape with size in the range of 10-25 nm. The presence of water soluble proteins in the leaf extract was identified by FTIR which were found to be responsible for the reduction of silver ions (Ag+) to AgNPs. Moreover, the synthesized AgNPs showed potent antibacterial activity against multi-drug resistant (MDR) bacteria such as Salmonella enterica and Staphylococcus aureus.

  2. Piper betle-mediated synthesis, characterization, antibacterial and rat splenocyte cytotoxic effects of copper oxide nanoparticles.

    Science.gov (United States)

    Praburaman, Loganathan; Jang, Jum-Suk; Muthusamy, Govarthanan; Arumugam, Sengottaiyan; Manoharan, Koildhasan; Cho, Kwang-Min; Min, Cho; Kamala-Kannan, Seralathan; Byung-Taek, Oh

    2016-09-01

    The study reports a simple, inexpensive, and eco-friendly synthesis of copper oxide nanoparticles (CuONPs) using Piper betle leaf extract. Formation of CuONPs was confirmed by UV-visible spectroscopy at 280 nm. Transmission electron microscopy (TEM) images showed that the CuONPs were spherical, with an average size of 50-100 nm. The scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) peak was observed approximately at 1 and 8 keV. The X-ray diffraction (XRD) studies indicated that the particles were crystalline in nature. CuONPs effectively inhibited the growth of phytopathogens Ralstonia solanacearum and Xanthomonas axonopodis. The cytotoxic effect of the synthesized CuONPs was analyzed using rat splenocytes. The cell viability was decreased to 94% at 300 μg/mL.

  3. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method

    Directory of Open Access Journals (Sweden)

    Yadollah Abdollahi

    2012-05-01

    Full Text Available The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG, and β-d-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD, zeta potential measurements and Fourier transform infrared (FT-IR. The use of green chemistry reagents, such as glucose, provides green and economic features to this work.

  4. PHYTOCHEMICAL SCREENING AND ANTIBACTERIAL ACTIVITY FROM NERIUM OLEANDER AND EVALUVATE THEIR PLANT MEDIATED NANOPARTICLE SYNTHESIS

    Directory of Open Access Journals (Sweden)

    R.S. Suganya

    2012-05-01

    Full Text Available Phytochemical and antibacterial activity of essential oils obtained from Nerium oleander leaf with the help of three different extracts like ethanol, Methanol, and acetone. In this aqueous leaf extracts confirms the presence of various phytochemicals. To evaluate the antibacterial activities of these aqueous extracts were determined by disc diffusion method. From these three extracts methanol shows strong antibacterial effect on Klebsiella, Pseudomonas, Alkaligenes except Acinetobacter. None of the leaf extracts show no more activity in Acinetobacter. Biologically synthesized nanoparticles have been widely used in the field of medicine. Shade dried leaves of Nerium oleander was used for the synthesis of silver nanoparticles. UV- Visible spectroscopy studies were carried out to assess the formation of Ag nanoparticles. Scanning electron microscope (SEM was used to characterize the Ag nanoparticle. To compare the antimicrobial activity of silver nanoparticles with the different leaf extracts.

  5. Plant-mediated synthesis of biosilver nanoparticles using Pandanus amaryllifolius extract and its bactericidal activity

    Energy Technology Data Exchange (ETDEWEB)

    Akhir, Rabiatuladawiyah Md.; Fairuzi, Afiza Ahmad [School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450 Selangor Darul Ehsan (Malaysia); Ismail, Nur Hilwani [School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450 Selangor Darul Ehsan Malaysia (Malaysia)

    2015-08-28

    In this work, we describe a cost effective, easily scaled up and environmental friendly technique for green synthesis of silver nanoparticles (AgNPs) from 5 mM AgNO{sub 3} solution using aqueous extract of Pandanus amaryllifolius (P. amaryllifolius) leaves as reducing agent. Biosynthesized silver nanoparticles was confirmed by sampling the reaction mixture at regular intervals and the absorption maxima was scanned by Ultraviolet-Visible (UV-Vis) spectroscopy at wavelength of 200-500 nm. Images from Field Emission Scanning Electron Microscope (FESEM) have shown that the silver nanoparticles are 17-30 nm in range and assembled in mostly spherical shape. Elemental composition analysis by using Energy Dispersive X-ray (EDX) confirmed the presence of silver. Low concentration of biosynthesized silver nanoparticles have been found to exhibit good antibacterial activity against Staphylococcus aureus bacteria with average mean diameter of zone of inhibition (ZOI) of 16 mm.

  6. Opuntia ficus indica peel derived pectin mediated hydroxyapatite nanoparticles: Synthesis, spectral characterization, biological and antimicrobial activities

    Science.gov (United States)

    Gopi, D.; Kanimozhi, K.; Kavitha, L.

    2015-04-01

    In the present study, we have adapted a facile and efficient green route for the synthesis of HAP nanoparticles using pectin as a template which was extracted from the peel of prickly pear (Opuntia ficus indica) fruits. The concentration of pectin plays a major role in the behavior of crystallinity, purity, morphology as well as biological property of the as-synthesized HAP nanoparticles. The extracted pectin and the as-synthesized nanoparticles were characterized by various analytical techniques. The in vitro apatite formation on the surface of the as-synthesized nanoparticles in simulated body fluid (SBF) for various days showed an enhanced bioactivity. Also, the antimicrobial activity was investigated using various microorganisms. All the results revealed the formation of pure, low crystalline and discrete granular like HAP nanoparticles of size around 25 nm with enhanced biological and antimicrobial activities. Hence the as-synthesized nanoparticles can act as a better bone regenerating material in the field of biomedicine.

  7. Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications.

    Science.gov (United States)

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar

    2013-01-01

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV)-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications.

  8. Chrysopogon zizanioides aqueous extract mediated synthesis characterization of crystalline silver and gold nanoparticles for biomedical applications

    Directory of Open Access Journals (Sweden)

    Arunachalam KD

    2013-07-01

    Full Text Available Kantha D Arunachalam, Sathesh Kumar Annamalai Center for Environmental Nuclear Research, Directorate of Research, SRM University, Chennai, Tamil Nadu, India Abstract: The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3 and chloroauric acid (HAuCl4 respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV-visible spectroscopy, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDAX, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications. Keywords: nanoparticles, bioreduction, SEM, silver, gold

  9. Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay

    Directory of Open Access Journals (Sweden)

    Wang S

    2011-12-01

    Full Text Available Shige Wang1, Shihui Wen2, Mingwu Shen2, Rui Guo2, Xueyan Cao2, Jianhua Wang3, Xiangyang Shi1,2,41State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, 2College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 3Department of Biochemistry and Molecular Cell Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China; 4Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, PortugalBackground: We report on aminopropyltriethoxysilane (APTS-mediated surface modification of nanohydroxyapatite with different surface functional groups for potential biomedical applications. In this study, nanohydroxyapatite covalently linked with APTS (n-HA-APTS was reacted with acetic anhydride or succinic anhydride to produce neutralized (n-HA-APTS.Ac or negatively charged (n-HA-APTS.SAH nanohydroxyapatite, respectively. Nanohydroxyapatite formed with amine, acetyl, and carboxyl groups was extensively characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectroscopy, and zeta potential measurements.Results: In vitro 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric assay revealed that the slight toxicity of the amine-functionalized n-HA-APTS could be eliminated by post-functionalization of APTS amines to form acetyl and carboxyl groups. Blood compatibility assessment demonstrated that the negligible hemolytic activity of the pristine nanohydroxyapatite particles did not appreciably change after APTS-mediated surface functionalization.Conclusion: APTS-mediated functionalization of nanohydroxyapatite with different surface groups may be useful for further functionalization of nanohydroxyapatite with biologically active materials, thereby providing possibilities for a broad range of

  10. Silk-mediated synthesis and modification of photoluminescent ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Han Jie; Su Huilan, E-mail: hlsu@sjtu.edu.cn; Xu Jia; Song Weiqiang; Gu Yu; Chen Ying [Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites (China); Moon, Won-Jin [Gwangju Center, Korea Basic Science Institute (Korea, Republic of); Zhang Di, E-mail: zhangdi@sjtu.edu.cn [Shanghai Jiao Tong University, State Key Lab of Metal Matrix Composites (China)

    2012-02-15

    In this article, a bio-inspired silk-mediated method was established to produce natural material-modified photoluminescent zinc oxide nanoparticles (nano-ZnO). Silk fibroin fibers were employed as the reactive substrates to synthesize nano-ZnO, and silk fibroins (SF) were taken as the biocompatible stabilizers to modify dispersed nano-ZnO. As-prepared nano-ZnO were mainly hexagonal phase particles with diameter around 13 nm. The resulting nano-ZnO/SF hybrids displayed orange emission and good biocompatibility in aqueous system.

  11. Piperidine-mediated synthesis of thiazolyl chalcones and their derivatives as potent antimicrobial agents.

    Science.gov (United States)

    Venkatesan, P; Maruthavanan, T

    2012-01-01

    A series of new thiazolyl chalcones, 1-[2-amino-4-methyl-1,3-thiazol-5-yl]-3-aryl-prop-2-en-1-one were prepared by piperidine mediated Claisen-Schmidt condensation of thiazolyl ketone with aromatic aldehyde. These chalcones on cyclisation gave 2-amino-6-(2-amino-4-methyl-1,3-thiazol-5-yl)-4-aryl-4H-pyridine-3-carbonitrile and 2-amino-6-(2-amino-4-methyl-1,3-thiazol-5-yl)-4-aryl-4H-pyran-3-carbonitrile. The result showed that the compounds exhibited marked potency as antimicrobial agents.

  12. Malate synthesis and secretion mediated by a manganese-enhanced malate dehydrogenase confers superior manganese tolerance in Stylosanthes guianensis.

    Science.gov (United States)

    Chen, Zhijian; Sun, Lili; Liu, Pandao; Liu, Guodao; Tian, Jiang; Liao, Hong

    2015-01-01

    Manganese (Mn) toxicity is a major constraint limiting plant growth on acidic soils. Superior Mn tolerance in Stylosanthes spp. has been well documented, but its molecular mechanisms remain largely unknown. In this study, superior Mn tolerance in Stylosanthes guianensis was confirmed, as reflected by a high Mn toxicity threshold. Furthermore, genetic variation of Mn tolerance was evaluated using two S. guianensis genotypes, which revealed that the Fine-stem genotype had higher Mn tolerance than the TPRC2001-1 genotype, as exhibited through less reduction in dry weight under excess Mn, and accompanied by lower internal Mn concentrations. Interestingly, Mn-stimulated increases in malate concentrations and exudation rates were observed only in the Fine-stem genotype. Proteomic analysis of Fine-stem roots revealed that S. guianensis Malate Dehydrogenase1 (SgMDH1) accumulated in response to Mn toxicity. Western-blot and quantitative PCR analyses showed that Mn toxicity resulted in increased SgMDH1 accumulation only in Fine-stem roots, but not in TPRC2001-1. The function of SgMDH1-mediated malate synthesis was verified through in vitro biochemical analysis of SgMDH1 activities against oxaloacetate, as well as in vivo increased malate concentrations in yeast (Saccharomyces cerevisiae), soybean (Glycine max) hairy roots, and Arabidopsis (Arabidopsis thaliana) with SgMDH1 overexpression. Furthermore, SgMDH1 overexpression conferred Mn tolerance in Arabidopsis, which was accompanied by increased malate exudation and reduced plant Mn concentrations, suggesting that secreted malate could alleviate Mn toxicity in plants. Taken together, we conclude that the superior Mn tolerance of S. guianensis is achieved by coordination of internal and external Mn detoxification through malate synthesis and exudation, which is regulated by SgMDH1 at both transcription and protein levels.

  13. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens

    Science.gov (United States)

    Adavallan, K.; Krishnakumar, N.

    2014-06-01

    Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15-53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition.

  14. Malate Synthesis and Secretion Mediated by a Manganese-Enhanced Malate Dehydrogenase Confers Superior Manganese Tolerance in Stylosanthes guianensis1

    Science.gov (United States)

    Chen, Zhijian; Sun, Lili; Liu, Pandao; Liu, Guodao; Tian, Jiang; Liao, Hong

    2015-01-01

    Manganese (Mn) toxicity is a major constraint limiting plant growth on acidic soils. Superior Mn tolerance in Stylosanthes spp. has been well documented, but its molecular mechanisms remain largely unknown. In this study, superior Mn tolerance in Stylosanthes guianensis was confirmed, as reflected by a high Mn toxicity threshold. Furthermore, genetic variation of Mn tolerance was evaluated using two S. guianensis genotypes, which revealed that the Fine-stem genotype had higher Mn tolerance than the TPRC2001-1 genotype, as exhibited through less reduction in dry weight under excess Mn, and accompanied by lower internal Mn concentrations. Interestingly, Mn-stimulated increases in malate concentrations and exudation rates were observed only in the Fine-stem genotype. Proteomic analysis of Fine-stem roots revealed that S. guianensis Malate Dehydrogenase1 (SgMDH1) accumulated in response to Mn toxicity. Western-blot and quantitative PCR analyses showed that Mn toxicity resulted in increased SgMDH1 accumulation only in Fine-stem roots, but not in TPRC2001-1. The function of SgMDH1-mediated malate synthesis was verified through in vitro biochemical analysis of SgMDH1 activities against oxaloacetate, as well as in vivo increased malate concentrations in yeast (Saccharomyces cerevisiae), soybean (Glycine max) hairy roots, and Arabidopsis (Arabidopsis thaliana) with SgMDH1 overexpression. Furthermore, SgMDH1 overexpression conferred Mn tolerance in Arabidopsis, which was accompanied by increased malate exudation and reduced plant Mn concentrations, suggesting that secreted malate could alleviate Mn toxicity in plants. Taken together, we conclude that the superior Mn tolerance of S. guianensis is achieved by coordination of internal and external Mn detoxification through malate synthesis and exudation, which is regulated by SgMDH1 at both transcription and protein levels. PMID:25378694

  15. Seeding a New Kind of Garden: Synthesis of Architecturally Defined Multimetallic Nanostructures by Seed-Mediated Co-Reduction.

    Science.gov (United States)

    Weiner, Rebecca G; Kunz, Meredith R; Skrabalak, Sara E

    2015-10-20

    Bimetallic nanoparticles display unique optical and catalytic properties that depend on crystallite size and shape, composition, and overall architecture. They may serve as multifunctional platforms as well. Unfortunately, many routes toward shape and architecturally controlled bimetallic nanocrystals yield polydisperse samples on account of the challenges associated with homogeneously nucleating a defined bimetallic phase by co-reduction methods. Developed by the Skrabalak laboratory, seed-mediated co-reduction (SMCR) involves the simultaneous co-reduction of two metal precursors to deposit metal onto shape-controlled metal nanocrystalline seeds. The central premise is that seeds will serve as preferential and structurally defined platforms for bimetallic deposition, where the shape of the seeds can be transferred to the shells. With Au-Pd as a model system, a set of design principles has been established for the bottom-up synthesis of shape-controlled bimetallic nanocrystals by SMCR. This strategy is successful at synthesizing symmetrically stellated Au-Pd nanocrystals with a variety of symmetries and core@shell Au@Au-Pd nanocrystals. Achieving nanocrystals with high morphological control via SMCR is governed by the following parameters: seed size, shape, and composition as well as the kinetics of seeded growth (through manipulation of synthetic parameters such as pH and metal precursor ratios). For example, larger seeds yield larger nanocrystals as does increasing the amount of metal deposited relative to the number of seeds. This increase in nanocrystal size leads to red-shifts in their localized surface plasmon resonance. Additionally, seed shape directs the overgrowth process during SMCR so the resultant nanocrystals adopt related symmetries. The ability to tune structure is important due to the size-, shape- and composition-dependent optical properties of bimetallic nanocrystals. Using this toolkit, the light scattering and absorption properties of Au

  16. Synthesis and in vitro antineoplastic evaluation of silver nanoparticles mediated by Agrimoniae herba extract

    Directory of Open Access Journals (Sweden)

    Qu D

    2014-04-01

    Full Text Available Ding Qu,1,* Wenjie Sun,1,2,* Yan Chen,1,2 Jing Zhou,1 Congyan Liu11Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, 2Department of Pharmaceutics, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China*These authors contributed equally to this workAbstract: A rapid synthesis of silver nanoparticles (AgNPs using Agrimoniae herba extract as reducing agent and stabilizer (A. herba-conjugated AgNPs [AH-AgNPs] were designed, characterized, and evaluated for antitumor therapy feasibility. In this study, critical factors in the preparation of silver nanoparticles, including extraction time, reaction temperature, the concentration of AgNO3, and A. herba extract amount, were investigated using ultraviolet-visible spectroscopy. AH-AgNPs with well-defined spherical shape, homogeneous distributional small size (30.34 nm, narrow polydispersity index (0.142, and high negative zeta potential (−36.8 mV were observed by transmission electron microscopy and dynamic light scattering. Furthermore, the results of X-ray diffraction and Fourier-transform infrared spectroscopy further indicated successful preparation of AH-AgNPs. Acceptable long-term storage stability of AH-AgNPs was also confirmed. More importantly, AH-AgNPs displayed significantly higher antiproliferative effect against a human lung carcinoma cell line (A549 cells compared with A. herba extract and bare AgNPs prepared by sodium citrate. The half-maximal inhibitory concentrations of AH-AgNPs, bare AgNPs, and A. herba extract were 38.13 µg · mL-1, 184.87 µg · mL-1, and 1.147 × 104 µg · mL-1, respectively. It is suggested that AH-AgNPs exhibit a strong antineoplastic effect on A549 cells, pointing to feasibility of antitumor treatment in the future.Keywords: rapid synthesis, Agrimoniae herba extract, silver nanoparticles, A549 cells, antitumor

  17. Internal ribosome entry site mediates protein synthesis in yeast Pichia pastoris.

    Science.gov (United States)

    Liang, Shuli; Lin, Ying; Li, Cheng; Ye, Yanrui

    2012-05-01

    The imitation of translation, as mediated by internal ribosome entry sites, has not yet been reported in Pichia pastoris. An IRES element from Saccharomyces cerevisiae was demonstrated to direct the translation of a dicistronic mRNA in P. pastoris. The 5′-untranslated region of GPR1 mRNA, termed GPR, was cloned into a dual reporter construct containing an upstream Rhizomucor miehei lipase (RML) and a downstream β-galactosidase gene (lacZ) from Escherichia coli BL21. After being transformed into P. pastoris, the RML gene and lacZ were simultaneously expressed. The possibility of DNA rearrangement, spurious splicing, or cryptic promoter in the GPR sequence were eliminated, indicating that expression of a second ORF was IRES-dependent. These findings strongly suggested that the IRES-dependent translation initiation mechanism is conserved in P. pastoris and provides a useful means to express multiple genes simultaneously.

  18. Activin A-Smad Signaling Mediates Connective Tissue Growth Factor Synthesis in Liver Progenitor Cells.

    Science.gov (United States)

    Ding, Ze-Yang; Jin, Guan-Nan; Wang, Wei; Sun, Yi-Min; Chen, Wei-Xun; Chen, Lin; Liang, Hui-Fang; Datta, Pran K; Zhang, Ming-Zhi; Zhang, Bixiang; Chen, Xiao-Ping

    2016-03-22

    Liver progenitor cells (LPCs) are activated in chronic liver damage and may contribute to liver fibrosis. Our previous investigation reported that LPCs produced connective tissue growth factor (CTGF/CCN2), an inducer of liver fibrosis, yet the regulatory mechanism of the production of CTGF/CCN2 in LPCs remains elusive. In this study, we report that Activin A is an inducer of CTGF/CCN2 in LPCs. Here we show that expression of both Activin A and CTGF/CCN2 were upregulated in the cirrhotic liver, and the expression of Activin A positively correlates with that of CTGF/CCN2 in liver tissues. We go on to show that Activin A induced de novo synthesis of CTGF/CCN2 in LPC cell lines LE/6 and WB-F344. Furthermore, Activin A contributed to autonomous production of CTGF/CCN2 in liver progenitor cells (LPCs) via activation of the Smad signaling pathway. Smad2, 3 and 4 were all required for this induction. Collectively, these results provide evidence for the fibrotic role of LPCs in the liver and suggest that the Activin A-Smad-CTGF/CCN2 signaling in LPCs may be a therapeutic target of liver fibrosis.

  19. Synthesis, optical, and electrical properties of RNA-mediated Ag/PVA nanobiocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Vidhi, E-mail: nutan.tomar@gmail.com; Bhowmick, Anil K., E-mail: director@iitp.ac.in [Indian Institute of Technology Patna, Department of Chemistry (India)

    2013-03-15

    Synthesis of RNA-templated Ag/PVA nanobiocomposites of controlled morphology was investigated. Surface morphologies of the composites and size distributions of the nanofillers were analyzed by means of field emission scanning electron microscopy. Interfacial interaction between the different components was followed by monitoring the surface plasmon resonance of silver nanoparticles in nanobiocomposites. The band gap approximations suggested semiconducting behavior of the nanobiocomposites with larger band gap than that of the conventional semiconductors. RNA-stabilized Ag/PVA nanobiocomposites revealed the presence of well-dispersed and spherical Ag nanoparticles in PVA matrix with a size distribution of 14-23 nm. IR spectra of the nanobiocomposites demonstrated the complex behavior of RNA with Ag nanoparticles in the polymer matrix due to the presence of noncovalent interactions (electrostatic/van der Waals) between RNA, Ag, and PVA molecules. The effects of the loading of RNA-capped Ag nanoparticles on the electrical properties of PVA were also observed by analyzing I-V characteristics of nanobiocomposites which displayed a large increase ( Almost-Equal-To 89 %) at low concentration relative to neat PVA. The drastic improvement in optical and electrical properties of the nanobiocomposites indicated their promising applications in nanobiotechnology.

  20. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications

    Directory of Open Access Journals (Sweden)

    Sutanuka Pattanayak

    2017-09-01

    Full Text Available The work deals with an environmentally benign process for the synthesis of silver nanoparticle using Butea monosperma bark extract which is used both as a reducing as well as capping agent at room temperature. The reaction mixture turned brownish yellow after about 24 h and an intense surface plasmon resonance (SPR band at around 424 nm clearly indicates the formation of silver nanoparticles. Fourier transform-Infrared (FT-IR spectroscopy showed that the nanoparticles were capped with compounds present in the plant extract. Formation of crystalline fcc silver nanoparticles is analysed by XRD data and the SAED pattern obtained also confirms the crystalline behaviour of the Ag nanoparticles. The size and morphology of these nanoparticles were studied using High Resolution Transmission Electron Microscopy (HRTEM which showed that the nanoparticles had an average dimension of ∼35 nm. A larger DLS data of ∼98 nm shows the presence of the stabilizer on the nanoparticles surface. The bio-synthesized silver nanoparticles revealed potent antibacterial activity against human bacteria of both Gram types. In addition these biologically synthesized nanoparticles also proved to exhibit excellent cytotoxic effect on human myeloid leukemia cell line, KG-1A with IC50 value of 11.47 μg/mL.

  1. BF3 x Et2O-mediated cascade cyclizations: synthesis of schweinfurthins F and G.

    Science.gov (United States)

    Mente, Nolan R; Neighbors, Jeffrey D; Wiemer, David F

    2008-10-17

    The total synthesis of the natural stilbene (+)-schweinfurthin G (8) has been accomplished through a sequence based on an efficient cationic cascade cyclization. This cascade process is initiated by Lewis acid promoted ring opening of an epoxide and terminated through a novel reaction with a phenolic oxygen "protected" as its MOM ether. Several Lewis acids have been examined for their ability to induce this new reaction, and BF3 x Et2O was found to be the most effective. The only major byproduct under these conditions was one where the expected secondary alcohol was found as its MOM ether derivative (e.g., 30). While this byproduct could be converted to the original target compound through hydrolysis, it also could be employed as a protected alcohol to allow preparation of a benzylic phosphonate (43) without dehydration of the secondary alcohol. The resulting phosphonate was employed in a Horner-Wadsworth-Emmons condensation with an aldehyde representing the right half of the target compounds, an approach complementary to previous studies based on condensation of a right-half phosphonate and a left-half aldehyde.

  2. Gum Tragacanth-Mediated Synthesis of Nanocrystalline ZnO Powder for Use in Varistors

    Science.gov (United States)

    Liu, Ting-Ting; Wang, Mao-Hua; Su, Hang; Chen, Xi; Chen, Chao; Zhang, Ruo-Chen

    2015-10-01

    Zinc oxide nanopowders were synthesized by a sol-gel method with gum tragacanth and zinc nitrate as raw materials. Gum tragacanth was used as stabilizer to control the mobility of zinc cations and the growth of the nanopowders. Thermo-gravimetric analysis, x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, and scanning electron microscopy were used to characterize the as-prepared samples. Zinc oxide (ZnO) nanoparticles calcined at different temperatures had a hexagonal wurtzite structure with average particle size ranging from 32.29 nm to 42.83 nm. The crystallinity of ZnO nanoparticles was improved by increasing the calcination temperature. The density of ZnO varistor ceramics sintered at 1150°C for 2 h in air was 5.46 g/cm3, which was 97.5% of the theoretical density, their breakdown voltage was 4572 V/cm, and their nonlinear coefficient was ~16.8. This method can be used as an excellent alternative method for synthesis of ZnO nanoparticles with a plant extract as a raw material. Our experimental results show our method had the advantage of improving the electrical performance of ZnO varistors.

  3. Fungus-mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis.

    Science.gov (United States)

    Tidke, Pritish R; Gupta, Indarchand; Gade, Aniket K; Rai, Mahendra

    2014-12-01

    We report the extracellular biosynthesis of gold nanoparticles (AuNPs) using a fungus Fusarium acuminatum. Mycosynthesis of Au-NPs was carried out by challenging the fungal cells filtrate with HAuCl 4 solution (1 mM), as nanoparticles synthesizing enzyme secrete extracellularly by the fungi. The AuNPs were characterized with the help of UV-Visible spectrophotometer, Fourier Transform Infrared spectroscopy, Zeta Potential, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). We observed absorbance peak in between 520 nm-550 nm corresponding to the surface plasmon absorbance of the gold nanoparticles. The nanoparticles synthesized in the present investigation were found to be capped by proteins. XRD results showed that the distinctive formation of crystalline gold nanoparticles in the solution. The spherical and polydispersed AuNPs in the range 8 to 28 nm with average size of 17 nm were observed by TEM analysis. We also standardized the parameters like the effect of pH, temperature and salt concentration on the biosynthesis of gold nanoparticles. It was found that acidic pH, 1 mM salt concentration and 37 (°)C temperature were found to be optimum for the synthesis of Au-NPs. Therefore, the present study introduces the easy, better and cheaper method for biosynthesis of AuNPs.

  4. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    Science.gov (United States)

    Caicedo, Hector M.; Dempere, Luisa A.; Vermerris, Wilfred

    2012-03-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells.

  5. Synthesis, characterization, and photoactivated DNA cleavage by copper (II)/cobalt (II) mediated macrocyclic complexes.

    Science.gov (United States)

    Naik, H R Prakash; Naik, H S Bhojya; Aravinda, T; Lamani, D S

    2010-01-01

    We report the synthesis of new photonuclease consisting of two Co(II)/Cu(II) complexes of macrocyclic fused quinoline. Metal complexes are [MLX(2)], type where M = Co(II) (5), Cu(II) (6), and X = Cl, and are well characterized by elemental analysis, Fourier transform infrared spectroscopy, (1)H-NMR and electronic spectra. We have shown that photocleavage of plasmid DNA is markedly enhanced when this ligand is irradiated in the presence of Cu(II), and more so than that of cobalt. The chemistry of ternary and binary Co(II) complexes showing efficient light induced (360 nm) DNA cleavage activity is summarized. The role of the metal in photoinduced DNA cleavage reactions is explored by designing complex molecules having macrocyclic structure. The mechanistic pathways are found to be concentration dependent on Co(II)/Cu(II) complexes and the photoexcitation energy photoredox chemistry. Highly effective DNA cleavage ability of 6 is attributed to the effective cooperation of the metal moiety.

  6. HYDROTHERMAL MEDIATED SYNTHESIS OF ZnO NANORODS AND THEIR ANTIBACTERIAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    R. S. Subhasree

    2012-03-01

    Full Text Available Nanoceramics which possess antibacterial activity have recently received much attention as new inorganic antibacterial materials. Herein, we report the synthesis of nanostructured zinc oxide (ZnO by surfactant assisted hydrothermal route using zinc acetate and hexamethylenetetramine (HMT. The as prepared ZnO nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR, Ultraviolet- visible spectroscopy (UV-Vis, Photoluminescence spectroscopy, X-ray diffraction (XRD and Field emission- scanning electron microscopy (FE-SEM. The XRD diffraction pattern corresponds to wurtzite structure of ZnO (JCPDS No.36:1451. The average crystallite size of the nanoparticles calculated from XRD, using Scherrer’s equation, is approximately 10 nm. FE-SEM shows the as prepared ZnO are in the form of hexagonal nanorods. The antibacterial behavior of suspension of ZnO nanorods against Escherichia coli (Gram-negative and Staphylococcus aureus (Gram-positive showed an enhanced antibacterial activity as compared to the bulk ZnO.

  7. Uniting anion relay chemistry with Pd-mediated cross coupling: design, synthesis and evaluation of bifunctional aryl and vinyl silane linchpins.

    Science.gov (United States)

    Smith, Amos B; Kim, Won-Suk; Tong, Rongbiao

    2010-02-05

    Union of type II Anion Relay Chemistry (ARC) with Pd-induced Cross Coupling Reactions (CCR) has been achieved, in conjunction with the design, synthesis, and evaluation of a new class of bifunctional linchpins, comprising a series of vinyl silanes bearing beta- or gamma-electrophilic sites. The synthetic tactic permits both alkylation and Pd-mediated CCR of the anions derived via 1,4-silyl C(sp(2))-->O Brook Rearrangements.

  8. Acid-mediated reactions under microfluidic conditions: A new strategy for practical synthesis of biofunctional natural products

    Directory of Open Access Journals (Sweden)

    Katsunori Tanaka

    2009-08-01

    Full Text Available Microfluidic conditions were applied to acid-mediated reactions, namely, glycosylation, reductive opening of the benzylidene acetal groups, and dehydration, which are the keys to the practical synthesis of N-glycans and the immunostimulating natural product, pristane. A distinctly different reactivity from that in conventional batch stirring was found; the vigorous micromixing of the reactants with the concentrated acids is critical especially for the “fast” reactions to be successful. Such a common feature might be due to the integration of all favorable aspects of microfluidic conditions, i.e., efficient mixing, precise temperature control, and the easy handling of the reactive intermediate by controlling the residence time. The microfluidic reactions cited in this review indicate the need to reinvestigate the traditional or imaginary reactions which have so far been performed and evaluated only in batch apparatus, and therefore they could be recognized as a new strategy in synthesizing natural products of prominent biological activity in a “practical” and a “industrial” manner.

  9. Cocos nucifera coir-mediated green synthesis of Pd NPs and its investigation against larvae and agricultural pest.

    Science.gov (United States)

    Elango, Ganesh; Mohana Roopan, Selvaraj; Abdullah Al-Dhabi, Naif; Arasu, Mariadhas Valan; Irukatla Damodharan, Kasinathan; Elumalai, Kuppuswamy

    2016-12-01

    In recent decades, several scientists focused their process towards nanoparticles synthesis by using various sustainable approaches. Cocos nucifera (C. nucifera) was one of the versatile trees in tropical regions which also can act as a thrust quencher in all over the world. Cocos nucifera coir was one of the waste by-products in all coconut-refining industries and with the help C. nucifera coir, Palladium nanoparticles (Pd NPs) were synthesized. Green-synthesized spherical-shape Pd NPs were over layered by secondary metabolites from C. nucifera coir extract and with an average particle size of 62 ± 2 nm, which were confirmed by morphological analysis. Eco-friendly mediated Pd NPs were further subjected to several biological applications like larvicidal against Aedes aegypti (A. aegypti) and anti-feedent, ovicidal, and oviposition deterrent against agricultural pest Callasobruchus maculates (C. maculates) and compared with C. nuciferacoir methanolic extract, which results in LC50 value of 288.88 ppm and LC90 value of 483.06 ppm using LSD-Tukey's test against dengue vector (A. aegypti). Cocos nucifera coir methanolic extract shows significant output while compared with Pd NPs towards anti-feedent assays; ovicidal activity and oviposition deterrent were discussed here.

  10. Fluorescent light mediated a green synthesis of silver nanoparticles using the protein extract of weaver ant larvae.

    Science.gov (United States)

    Khamhaengpol, Arunrat; Siri, Sineenat

    2016-10-01

    Alternative to crude plant extracts, a crude protein extract derived from animal cells is one of the potential sources of biomolecules for mediating a reduction of silver ions and a formation of silver nanoparticles (AgNPs) under a mild condition, which very few works have been reported. This work demonstrated a use of the protein extract of weaver ant larvae as a bio-facilitator for a simple, green synthesis of AgNPs under fluorescent light at room temperature. The protein extract of weaver ant larvae exhibited the reducing and antioxidant activities, which assisted a formation of AgNPs in the reaction containing only silver nitrate under light exposure. Transmission electron microscopy images revealed the dispersed, spherical AgNPs with an average size of 7.87±2.54nm. The maximum surface plasmon resonance (SPR) band of the synthesized AgNPs was at 435nm. The energy-dispersive X-ray analysis revealed that silver was a major element of the particles. The identity of AgNPs was confirmed by X-ray diffraction pattern, selected area electron diffraction and high resolution transmission electron microscopy analyses, which demonstrated the planes of face centered cubic silver. The synthesized AgNPs showed antibacterial activity against both Escherichia coli and Staphylococcus aureus with the minimum bactericidal concentration (MBC) values equally at 250μg/ml, suggesting their potential application as an effective antibacterial agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Polyoxometalate-mediated one-pot synthesis of Pd nanocrystals with controlled morphologies for efficient chemical and electrochemical catalysis.

    Science.gov (United States)

    Kim, Dongheun; Seog, Ji Hyun; Kim, Minjune; Yang, MinHo; Gillette, Eleanor; Lee, Sang Bok; Han, Sang Woo

    2015-03-27

    Polyoxometalates (POMs), as inorganic ligands, can endow metal nanocrystals (NCs) with unique reactivities on account of their characteristic redox properties. In the present work, we present a facile POM-mediated one-pot aqueous synthesis method for the production of single-crystalline Pd NCs with controlled shapes and sizes. The POMs could function as both reducing and stabilizing agents in the formation of NCs, and thus gave a fine control over the nucleation and growth kinetics of NCs. The prepared POM-stabilized Pd NCs exhibited excellent catalytic activity and stability for electrocatalytic (formic acid oxidation) and catalytic (Suzuki coupling) reactions compared to Pd NCs prepared without the POMs. This shows that the POMs play a pivotal role in determining the catalytic performance, as well as the growth, of NCs. We envision that the present approach can offer a convenient way to develop efficient NC-based catalyst systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation

    Science.gov (United States)

    Wang, Peikun; Chang, Fei; Gao, Wenbo; Guo, Jianping; Wu, Guotao; He, Teng; Chen, Ping

    2017-01-01

    Ammonia synthesis under mild conditions is a goal that has been long sought after. Previous investigations have shown that adsorption and transition-state energies of intermediates in this process on transition metals (TMs) scale with each other. This prevents the independent optimization of these energies that would result in the ideal catalyst: one that activates reactants well, but binds intermediates relatively weakly. Here we demonstrate that these scaling relations can be broken by intervening in the TM-mediated catalysis with a second catalytic site, LiH. The negatively charged hydrogen atoms of LiH act as strong reducing agents, which remove activated nitrogen atoms from the TM or its nitride (TMN), and as an immediate source of hydrogen, which binds nitrogen atoms to form LiNH2. LiNH2 further splits H2 heterolytically to give off NH3 and regenerate LiH. This synergy between TM (or TMN) and LiH creates a favourable pathway that allows both early and late 3d TM-LiH composites to exhibit unprecedented lower-temperature catalytic activities.

  13. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential.

    Science.gov (United States)

    Mittal, Amit Kumar; Kumar, Sanjay; Banerjee, Uttam Chand

    2014-10-01

    In this study a synthetic approach for the stable, mono-dispersed high yielding bimetallic (Ag-Se) nanoparticles by quercetin and gallic acid is described. The bimetallic nanoparticles were synthesized at room temperature. Different reaction parameters (concentration of quercetin, gallic acid and Ag/Se salt, pH, temperature and reaction time) were optimized to control the properties of nanoparticles. The nanoparticles were characterized by various analytical techniques and their size was determined to be 30-35 nm. Our findings suggest that both the reduction as well as stabilization of nanoparticles were achieved by the flavonoids and phenolics. This study describes the efficacy of quercetin and gallic acid mediated synthesis of bimetallic (Ag-Se) nanoparticles and their in vitro antioxidant, antimicrobial (Gram-positive and Gram-negative bacteria) and antitumor potentials. The synthesized Ag-Se nanoparticles were used as anticancer agents for Dalton lymphoma (DL) cells and in in vitro 80% of its viability was reduced at 50 μg/mL. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Seed-mediated synthesis of gold nanorods: control of the aspect ratio by variation of the reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Koeppl, Susanne; Ghielmetti, Nico [ETH Zurich, Laboratory for Nanometallurgy, Department of Materials (Switzerland); Caseri, Walter, E-mail: wcaseri@mat.ethz.ch [ETH Zurich, Polymer Technology, Department of Materials (Switzerland); Spolenak, Ralph [ETH Zurich, Laboratory for Nanometallurgy, Department of Materials (Switzerland)

    2013-03-15

    Seed-mediated growth methods involving reduction of tetrachloroaurate(III) with ascorbic acid are common for the synthesis of gold nanorods. This study shows, however, that simply by appropriate choice of the reducing agent a drastic influence on the aspect ratio can be attained. Weaker reducing agents, such as dihydroxybenzene isomers (hydroquinone, catechol or resorcinol) or glucose can increase the aspect ratio of the nanorods by an order of magnitude, up to values as high as 100 (nanowires). The increase in aspect ratio is mainly a consequence of an increase in length of the particles (up to 1-3 {mu}m). This effect is probably associated with a decrease in the reduction rate of gold(III) species by dihydroxybenzenes or glucose compared to ascorbic acid. The reduction potential of the reducing agents strongly depends on the pH value, and related effects on the dimensions of the nanoparticles are also reflected in this study. The nanorods exhibited penta-twinned nature without noteworthy defects (e.g. stacking faults and dislocations).

  15. Seed-mediated growth and manipulation of Au nanorods via size-controlled synthesis of Au seeds

    Energy Technology Data Exchange (ETDEWEB)

    Liu Juncheng; Duggan, Jennifer N.; Morgan, Joshua; Roberts, Christopher B., E-mail: croberts@eng.auburn.edu [Auburn University, Department of Chemical Engineering (United States)

    2012-12-15

    Seed-mediated growth of gold (Au) nanorods with highly controllable length, width, and aspect ratio was accomplished via carefully size-controlled synthesis of the original Au seeds. A slow dynamic growth of Au nanoparticle seeds was observed after reduction of the Au salt (i.e., hydrogen tetrachloroaurate (III) hydrate) by sodium borohydride (NaBH{sub 4}) in the presence of cetyltrimethyl ammonium bromide (CTAB). As such, the size of the Au nanoparticle seeds can therefore be manipulated through control over the duration of the reaction period (i.e., aging times of 2, 8, 48, 72, and 144 h were used in this study). These differently sized Au nanoparticles were subsequently used as seeds for the growth of Au nanorods, where the additions of Au salt, CTAB, AgNO{sub 3}, and ascorbic acid were employed. Smaller Au nanoparticle seeds obtained via short growth/aging time resulted in Au nanorods with higher aspect ratio and thus longer longitudinal surface plasmon wavelength (LSPW). The larger Au nanoparticle seeds obtained via longer growth/aging time resulted in Au nanorods with lower aspect ratio and shorter LSPW.

  16. Quasi-spherical silver nanoparticles: aqueous synthesis and size control by the seed-mediated Lee-Meisel method.

    Science.gov (United States)

    Wan, Yu; Guo, Zhirui; Jiang, Xiaoli; Fang, Kun; Lu, Xiang; Zhang, Yu; Gu, Ning

    2013-03-15

    Silver nanoparticles (AgNPs) are attracting tremendous attention in biomedicine, and their related performances are shape and size-dependent. For biomedical applications, water-soluble AgNPs are necessary. However, aqueous syntheses of AgNPs with controlled shape and size are relatively difficult as the balance between nucleation and growth is hard to regulate. This paper describes a robust method for controllable synthesis of quasi-spherical AgNPs based on the combination of the seed-mediated growth and the Lee-Meisel method by thermal reduction of AgNO(3) with citrate. In the presented method, citrate-stabilized AgNPs with tunable sizes up to 80 nm were achieved through one-step or stepwise growth process using qualified spherical 4 nm AgNPs as starter seeds. Specially, the two main difficulties (formation of nanorods and secondary nucleation during the growth stage) in the previous studies have been effectively overcome by tailoring the experimental parameters such as the reaction temperature and the seed amount, without extra additives, pH adjustment, and laser treatment. The crucial factors that affect the uniformity of the resulting AgNPs are discussed.

  17. Effects of cadmium on estrogen receptor mediated signaling and estrogen induced DNA synthesis in T47D human breast cancer cells.

    Science.gov (United States)

    Zang, Yu; Odwin-Dacosta, Shelly; Yager, James D

    2009-01-30

    Cadmium (Cd) has been shown to bind to the human estrogen receptor (ER), yet studies on Cd's estrogenic effects have yielded inconsistent results. In this study, we investigated the effects of Cd on DNA synthesis and its simultaneous effects on both genomic (mediated by nuclear ER (nER)) and non-genomic (mediated by membrane-bound ER (mER)) signaling in human breast cancer derived T47D cells. No effects on DNA synthesis were observed for non-cytotoxic concentrations of CdCl(2) (0.1-1000 nM), and Cd did not increase progesterone receptor (PgR) or pS2 mRNA levels. However, Cd stimulated phosphorylation of ERK1/2 MAPK, detectable following 10 min and 18 h of treatment. The sustained Cd-induced ERK1/2 phosphorylation was inhibited by the ER antagonist ICI 182,780, suggesting the involvement of ER. In addition, Cd enhanced DNA synthesis and pS2 mRNA levels in estrogen (10 pM estradiol) treated T47D cells. The MEK1/2 specific inhibitor U0126 blocked DNA synthesis stimulated by estradiol (E2) and the E2-Cd mixtures. These findings indicate that the ERK1/2 signaling is critical in E2-related DNA synthesis. The sustained ERK1/2 phosphorylation may contribute to the Cd-induced enhancement of DNA synthesis and pS2 mRNA in mixture with low-concentration E2.

  18. Contribution of various carbon sources toward isoprene synthesis mediated by altered atmospheric CO2 concentrations

    Science.gov (United States)

    Trowbridge, A. M.; Asensio, D.; Eller, A. S.; Wilkinson, M. J.; Schnitzler, J.; Jackson, R. B.; Monson, R. K.

    2010-12-01

    Biogenically released isoprene is abundant in the troposphere, and has an essential function in determining atmospheric chemistry and important implications for plant metabolism. As a result, considerable effort has been made to understand the underlying mechanisms driving isoprene synthesis, particularly in the context of a rapidly changing environment. Recently, a number of studies have focused on the contribution of recently assimilated carbon as opposed to stored/alternative intracellular or extracellular carbon sources in the context of environmental stress. Results from these studies can offer clues about the importance of various carbon pools for isoprene production and elucidate the corresponding physiological changes that are responsible for these dynamic shifts in carbon allocation. We performed a 13CO2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of the incorporation of recently assimilated photosynthate into isoprene emitted from poplar (Poplar x canescens) under sub-ambient, ambient, and elevated CO2 growth conditions. We also monitored the importance of pyruvate-derived carbon for isoprene biosynthesis and obtained a detailed account of where individual carbons are derived from by analyzing the ratio of the 3C subunit of isoprene (M41+) (a fragment which contains two carbons from pyruvate) to the ratio of the parent isoprene molecule (M69+). Dynamics in the M41+:M69+ ratio indicate that recently assimilated carbon is incorporated into the pyruvate carbon pool slowly across all CO2 treatments and is therefore accessible for isoprene synthesis at a slower rate when compared to substrates derived directly from photosynthesis. Analysis of the rates of change for individual masses indicated that the carbon pools in trees grown in sub-ambient CO2 (200 ppm) are labeled ~2 times faster than those of trees grown in ambient or elevated CO2. Analysis of the total isoprene emission rates between treatments

  19. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications.

    Science.gov (United States)

    Vijayakumar, Sekar; Vaseeharan, Baskaralingam; Malaikozhundan, Balasubramanian; Shobiya, Malaikkarasu

    2016-12-01

    The present study reports the green synthesis of zinc oxide nanoparticles using the aqueous leaf extract of Laurus nobilis (Ln-ZnO NPs) by co-precipitation method. The synthesized Ln-ZnO NPs were characterized by UV-Vis spectroscopy, FTIR, XRD, TEM, SEM and EDX. Ln-ZnO NPs were crystalline in nature, flower like and have hexagonal wurtzite structure with a mean particle size of 47.27nm. The antibacterial activity of Ln-ZnO NPs was greater against Gram positive (Staphylococcus aureus) bacteria than Gram negative (Pseudomonas aeruginosa) bacteria. The zone of inhibition against S. aureus was 11.4, 12.6 and 14.2mm at 25, 50 and 75μgmL(-1). The zone of inhibition against P. aeruginosa was 9.8, 10.2 and 11.3mm at 25, 50 and 75μgmL(-1). The light and confocal laser scanning microscopic images evidenced that Ln-ZnO NPs effectively inhibited the biofilm growth of S. aureus and P. aeruginosa at 75μgmL(-1). The cytotoxicity studies revealed that Ln-ZnO NPs showed no effect on normal murine RAW264.7 macrophage cells. On the other hand, Ln-ZnO NPs were effective in inhibiting the viability of human A549 lung cancer cells at higher concentrations of 80μgmL(-1). The morphological changes in the Ln-ZnO NPs treated A549 lung cancer cells were observed under phase contrast microscope.

  20. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    Science.gov (United States)

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878

  1. Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power

    Science.gov (United States)

    Iacovita, Cristian; Stiufiuc, Rares; Radu, Teodora; Florea, Adrian; Stiufiuc, Gabriela; Dutu, Alina; Mican, Sever; Tetean, Romulus; Lucaciu, Constantin M.

    2015-10-01

    Iron oxide magnetic nanoparticles (IOMNPs) have been successfully synthesized by means of solvothermal reduction method employing polyethylene glycol (PEG200) as a solvent. The as-synthesized IOMNPs are poly-dispersed, highly crystalline, and exhibit a cubic shape. The size of IOMNPs is strongly dependent on the reaction time and the ration between the amount of magnetic precursor and PEG200 used in the synthesis method. At low magnetic precursor/PEG200 ratio, the cubic IOMNPs coexist with polyhedral IOMNPs. The structure and morphology of the IOMNPs were thoroughly investigated by using a wide range of techniques: TEM, XRD, XPS, FTIR, and RAMAN. XPS analysis showed that the IOMNPs comprise a crystalline magnetite core bearing on the outer surface functional groups from PEG200 and acetate. The presence of physisorbed PEG200 on the IOMNP surface is faintly detected through FT-IR spectroscopy. The surface of IOMNPs undergoes oxidation into maghemite as proven by RAMAN spectroscopy and the occurrence of satellite peaks in the Fe2p XP spectra. The magnetic studies performed on powder show that the blocking temperature (TB) of IOMNPs is around 300 K displaying a coercive field in between 160 and 170 Oe. Below the TB, the field-cooled (FC) curves turn concave and describe a plateau indicating that strong magnetic dipole-dipole interactions are manifested in between IOMNPs. The specific absorption rate (SAR) values increase with decreasing nanoparticle concentrations for the IOMNPs dispersed in water. The SAR dependence on the applied magnetic field, studied up to magnetic field amplitude of 60 kA/m, presents a sigmoid shape with saturation values up to 1700 W/g. By dispersing the IOMNPs in PEG600 (liquid) and PEG1000 (solid), it was found that the SAR values decrease by 50 or 75 %, indicating that the Brownian friction within the solvent was the main contributor to the heating power of IOMNPs.

  2. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Elavazhagan T

    2011-06-01

    Full Text Available Tamizhamudu Elavazhagan, Kantha D ArunachalamCentre for Interdisciplinary Research, Directorate of Research, SRM University, Kattankulathur-603203, Tamilnadu, IndiaAbstract: We used an aqueous leaf extract of Memecylon edule (Melastomataceae to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray analysis (EDAX and Fourier transform infra-red spectroscopy (FTIR. The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.Keywords: Memecylon edule, nanoparticles, bioreduction, electron microscopy, FTIR

  3. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.

    Science.gov (United States)

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.

  4. Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase.

    Science.gov (United States)

    Bursy, Jan; Pierik, Antonio J; Pica, Nathalie; Bremer, Erhard

    2007-10-26

    By using natural abundance (13)C NMR spectroscopy, we investigated the types of compatible solutes synthesized in a variety of Bacilli under high salinity growth conditions. Glutamate, proline, and ectoine were the dominant compatible solutes synthesized by the various Bacillus species. The majority of the inspected Bacilli produced the tetrahydropyrimidine ectoine in response to high salinity stress, and a subset of these also synthesized a hydroxylation derivative of ectoine, 5-hydroxyectoine. In Salibacillus salexigens, a representative of the ectoine- and 5-hydroxyectoine-producing species, ectoine production was linearly correlated with the salinity of the growth medium and dependent on an ectABC biosynthetic operon. The formation of 5-hydroxyectoine was primarily a stationary growth phase phenomenon. The enzyme responsible for ectoine hydroxylation (EctD) was purified from S. salexigens to apparent homogeneity. The EctD protein was shown in vitro to directly hydroxylate ectoine in a reaction dependent on iron(II), molecular oxygen, and 2-oxoglutarate. We identified the structural gene (ectD) for the ectoine hydroxylase in S. salexigens. Northern blot analysis showed that the transcript levels of the ectABC and ectD genes increased as a function of salinity. Many EctD-related proteins can be found in data base searches in various Bacteria. Each of these bacterial species also contains an ectABC ectoine biosynthetic gene cluster, suggesting that 5-hydroxyectoine biosynthesis strictly depends on the prior synthesis of ectoine. Our data base searches and the biochemical characterization of the EctD protein from S. salexigens suggest that the EctD-related ectoine hydroxylases are members of a new subfamily within the non-heme-containing, iron(II)- and 2-oxoglutarate-dependent dioxygenase superfamily (EC 1.14.11).

  5. Transport properties of Gum mediated synthesis of Indium Oxide (In2O3 Nano fluids

    Directory of Open Access Journals (Sweden)

    Ch. Kanchana Latha

    2016-01-01

    Full Text Available Two- Step method has been applied to prepare stable In2O3 nano fluids in Ethylene Glycol with PVP (Polyvinyl pyrrolidone used as stabilizing agent having In2O3 concentrations of 1% by volume, where the In2O3 nano particles are obtained by biosynthesis of Indium (III Acetyl Acetonate and Gum Acacia. Since the two-step method is more versatile as it provides the opportunity to disperse a wide variety of nano particles in different types of base fluids. The nano fluids were characterised by UV-vis spectroscopy, FTIR, SEM, EDAX, and TEM, and systematically investigated for Thermal conductivity (TC, density, viscosity, specific gravity and electrical conductivity for different polymer concentrations. The size of nano particles was found to be in the range of 5-30nm for two different nano particle to PVP ratios. For higher concentration of polymer in nano fluid, nano particles were 20nm in size showing increase in Thermal conductivity but a decrease in density and viscosity which is due to the polymer structure around nano particles. It is observed that the viscosity, density & specific gravity increases with the increase in PVP concentration and decreases with temperature. The thermal conductivity measurements of nano fluids show substantial increment relative to the base fluid (Ethylene glycol. Effect of PVP Polymer on viscosity, density, specific gravity can have a significant effect on magnitude and behaviour of the Thermal conductivity enhancement confirming the Newtonian behaviour of nano fluid. This offers tremendous scope for developing compact and effective heat transfer equipment. An enhancement of 20-25% for 1:5 volume concentration are observed at an average voltage of 60V when compared with EG (Ethylene glycol at the same voltage. This method is simple, fast and reliable for the synthesis of Newtonian nano fluids containing In2O3 nano particles.

  6. Microemulsion mediated synthesis of triangular shape SnO{sub 2} nanoparticles: Luminescence application

    Energy Technology Data Exchange (ETDEWEB)

    Luwang, Meitram Niraj, E-mail: mn.luwang@ncl.res.in

    2014-01-30

    The triangular prism shapes of SnO{sub 2}·xH{sub 2}O nanoparticles are prepared using microemulsion route. The effect of variation of water pool value on the formation of SnO{sub 2} nanoparticles was studied. There is the quantum size effect in absorption study of SnO{sub 2} nanoparticles. With the increase of the water pool value, there is a decrease in the band edge absorption energy suggesting the weak quantum confinement effect (QCE) in SnO{sub 2} nanoparticles. Quenching effect increases with increase of water to surfactant ratio in luminescence. There is no significant effect in lifetime values for SnO{sub 2} nanoparticles in both microemulsion and powder form. SnO{sub 2} nanoparticles show green emission due to oxygen vacancy. SnO{sub 2} nanoparticles when doped with Eu{sup 3+} ions give the enhanced luminescence of Eu{sup 3+} due to the surface mediated energy transfer from SnO{sub 2} to Eu{sup 3+} ion.

  7. Controllable synthesis of ultrathin vanadium oxide nanobelts via an EDTA-mediated hydrothermal process

    Science.gov (United States)

    Yu-Xiang, Qin; Cheng, Liu; Wei-Wei, Xie; Meng-Yang, Cui

    2016-02-01

    Ultrathin VO2 nanobelts with rough alignment features are prepared on the induction layer-coated substrates by an ethylenediaminetetraacetic acid (EDTA)-mediated hydrothermal process. EDTA acts as a chelating reagent and capping agent to facilitate the one-dimensional (1D) preferential growth of ultrathin VO2 nanobelts with high crystallinities and good uniformities. The annealed induction layer and concentration of EDTA are found to play crucial roles in the formation of aligned and ultrathin nanobelts. Variation in EDTA concentration can change the VO2 morphology of ultrathin nanobelts into that of thick nanoplates. Mild annealing of ultrathin VO2 nanobelts at 350 °C in air results in the formation of V2O5 nanobelts with a nearly unchanged ultrathin structure. The nucleation and growth mechanism involved in the formations of nanobelts and nanoplates are proposed. The ethanol gas sensing properties of the V2O5 nanobelt networks-based sensor are investigated in a temperature range from 100 °C to 300 °C over ethanol concentrations ranging from 3 ppm to 500 ppm. The results indicate that the V2O5 nanobelt network sensor exhibits high sensitivity, good reversibility, and fast response-recovery characteristics with an optimal working temperature of 250 °C. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274074, 61271070, and 61574100).

  8. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    Science.gov (United States)

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji Won; Rondinone, Adam J.; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

    2014-06-24

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component containing at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  9. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won; Rondinone, Adam Justin; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

    2017-09-19

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  10. Biocombinatorial Synthesis of Novel Lipopeptides by COM Domain-Mediated Reprogramming of the Plipastatin NRPS Complex

    Directory of Open Access Journals (Sweden)

    Hongxia Liu

    2016-11-01

    Full Text Available Both donors and acceptors of communication-mediating (COM domains are essential for coordinating intermolecular communication within nonribosomal peptides synthetases (NRPSs complexes. Different sets of COM domains provide selectivity, allowing NRPSs to utilise different natural biosynthetic templates. In this study, novel lipopeptides were synthesised by reprogramming the plipastatin biosynthetic machinery. A Thr-to-Asp point mutation was sufficient to shift the selectivity of the donor COM domain of ppsB toward that of ppsD. Deletion and/or interchangeability established donor and acceptor function. Variations in acceptor COM domain did not result in novel product formation in the presence of its partner donor, whereas plipastatin formation was completely abrogated by altering donor modules. Five novel lipopeptides (cyclic pentapeptide, linear hexapeptide, nonapeptide, heptapeptide and cyclic octapeptide were identified and verified by high-resolution LC-ESI-MS/MS. In addition, we demonstrated the potential to generate novel strains with the antimicrobial activity by selecting compatible COM domains, and the novel lipopeptides exhibited antimicrobial activity against five of the fungal species at a contention of 31.25-125 μg/ml.

  11. Cellular mechanisms by which oxytocin mediates ovine endometrial prostaglandin F2alpha synthesis: role of G(i) proteins and mitogen-activated protein kinases.

    Science.gov (United States)

    Burns, P D; Mendes, J O; Yemm, R S; Clay, C M; Nelson, S E; Hayes, S H; Silvia, W J

    2001-10-01

    Oxytocin stimulates a rapid increase in ovine endometrial prostaglandin (PG) F2alpha synthesis. The overall objective of these experiments was to investigate the cellular mechanisms by which oxytocin induces endometrial PGF2alpha synthesis. The objective of experiment 1 was to determine whether G(i) proteins mediate oxytocin-induced PGF2alpha synthesis. Uteri were collected from four ovary-intact ewes on Day 14 postestrus. Caruncular endometrial explants were dissected and subjected to in vitro incubation. Pertussis toxin, an inhibitor of G(i) proteins, had no effect on the ability of oxytocin to induce PGF2alpha synthesis (P > 0.10). The objective of experiment 2 was to determine whether any of the three mitogen-activated protein kinases (MAPKs), extracellular signal regulated protein kinase (ERK1/2), c-Jun N-terminal/stress-activated protein kinase (JNK/SAPK), or p38 MAPK, mediate oxytocin-induced PGF(2alpha) synthesis. Eleven ovary-intact ewes were given an injection of oxytocin (10 IU; i.v.; n = 5) or physiological saline (i.v.; n = 6) on Day 15 postestrus. Uteri were collected 15 min after injection and caruncular endometrium was dissected. Endometrial homogenates were prepared and subjected to Western blotting. Membranes were probed for both total and phosphorylated forms of all three classes of MAPK. All classes of MAPK were detected in ovine endometrium, but oxytocin treatment had no effect on the expression of these proteins (P > 0.10). ERK1/2 was the only phosphorylated MAPK detected and its concentrations were higher in oxytocin-treated ewes (P Day 14 postestrus. Caruncular endometrial explants were dissected and subjected to in vitro incubation. PD98059, a specific inhibitor of ERK1/2 activity, blocked the ability of oxytocin to stimulate PGF(2alpha synthesis in a dose-dependent manner (P < 0.05). These results indicate that the ovine oxytocin receptor is not coupled to G(i) proteins. These results indicate that oxytocin induces phosphorylation of ERK1

  12. Synthesis colloidal Kyllinga brevifolia-mediated silver nanoparticles at different temperature for methylene blue removal

    Science.gov (United States)

    Isa, Norain; Sarijo, Siti Halimah; Aziz, Azizan; Lockman, Zainovia

    2017-09-01

    Metallic nanoparticles are well known of having wide applications in various fields such as, catalysis, electronics, energy, chemistry and medicine due to its unique physico-chemical properties. In this study, nanocatalyst Kyllinga brevifolia-mediated silver nanoparticles (AgNPs) were prepared by reduction of silver nitrate using aqueous extract of Kyllinga brevifolia at different temperature. The formations of AgNPs were monitored using UV-visible spectroscopy. Transmission electron microscope (TEM) results reveal that the AgNPs well dispersed with average particle size are 22.34 and 6.73 nm for synthesized at room temperature and cold temperature respectively. The biomolecules present in the Kyllinga brevifolia aqueous extract responsible for the formation of AgNPs were identified using Fourier transform infrared (FTIR). Our AgNPs performed excellent catalytic activity in degradation of methylene blue (MB) dyes via electron relay effect. MB is toxic to ecological system and also has carcinogenic properties. The AgNPs nanocatalysts synthesized in this study are highly dispersed, quasi-spherical and due to their size in nanoscale, they have shown effectiveness for degradation of MB dyes. More importantly, our AgNPs were prepared using biomolecules as capping and reducing agent, which make our product "greener" than available AgNPs that are commonly prepared using hydrazine and borohydride; which are harmful substances to human and environment. Not only the AgNPs can act as nanocatalyst for degradation of MB, they can also be expected to degrade other types of toxic dyes used in textiles industry.

  13. Synthesis of mixed silylene-carbene chelate ligands from N-heterocyclic silylcarbenes mediated by nickel.

    Science.gov (United States)

    Tan, Gengwen; Enthaler, Stephan; Inoue, Shigeyoshi; Blom, Burgert; Driess, Matthias

    2015-02-01

    The Ni(II) -mediated tautomerization of the N-heterocyclic hydrosilylcarbene L(2) Si(H)(CH2 )NHC 1, where L(2) =CH(CCH2 )(CMe)(NAr)2 , Ar=2,6-iPr2 C6 H3 ; NHC=3,4,5-trimethylimidazol-2-yliden-6-yl, leads to the first N-heterocyclic silylene (NHSi)-carbene (NHC) chelate ligand in the dibromo nickel(II) complex [L(1) Si:(CH2 )(NHC)NiBr2 ] 2 (L(1) =CH(MeCNAr)2 ). Reduction of 2 with KC8 in the presence of PMe3 as an auxiliary ligand afforded, depending on the reaction time, the N-heterocyclic silyl-NHC bromo Ni(II) complex [L(2) Si(CH2 )NHCNiBr(PMe3 )] 3 and the unique Ni(0) complex [η(2) (Si-H){L(2) Si(H)(CH2 )NHC}Ni(PMe3 )2 ] 4 featuring an agostic SiH→Ni bonding interaction. When 1,2-bis(dimethylphosphino)ethane (DMPE) was employed as an exogenous ligand, the first NHSi-NHC chelate-ligand-stabilized Ni(0) complex [L(1) Si:(CH2 )NHCNi(dmpe)] 5 could be isolated. Moreover, the dicarbonyl Ni(0) complex 6, [L(1) Si:(CH2 )NHCNi(CO)2 ], is easily accessible by the reduction of 2 with K(BHEt3 ) under a CO atmosphere. The complexes were spectroscopically and structurally characterized. Furthermore, complex 2 can serve as an efficient precatalyst for Kumada-Corriu-type cross-coupling reactions.

  14. Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level

    Directory of Open Access Journals (Sweden)

    Wallace Victoria C

    2009-06-01

    Full Text Available Abstract Background The mammalian target of rapamycin (mTOR is a key regulator of mRNA translation whose action can be inhibited by the drug rapamycin. Forms of long-term plasticity require protein synthesis and evidence indicates that mRNA in dendrites, axon terminals and cell bodies is essential for long-term synaptic plasticity. Specific to pain, shifts in pain thresholds and responsiveness are an expression of neuronal plasticity and this likely contributes to persistent pain. We investigated this by inhibiting the activity of mTOR with rapamycin at the spinal level, of rats that were subjected to the formalin test, using both behavioural and electrophysiological techniques. Results For in vivo electrophysiology, Sprague Dawley rats were fully anaesthetised and single-unit extracellular recordings were obtained from lamina V wide dynamic range (WDR dorsal horn spinal neurones at the region where input is received from the hind paw. Neuronal responses from naive rats showed that rapamycin-sensitive pathways were important in nociceptive-specific C-fibre mediated transmission onto WDR neurones as well mechanically-evoked responses since rapamycin was effective in attenuating these measures. Formalin solution was injected into the hind paw prior to which, rapamycin or vehicle was applied directly onto the exposed spinal cord. When rapamycin was applied to the spinal cord prior to hind paw formalin injection, there was a significant attenuation of the prolonged second phase of the formalin test, which comprises continuing afferent input to the spinal cord, neuronal hyperexcitability and an activated descending facilitatory drive from the brainstem acting on spinal neurones. In accordance with electrophysiological data, behavioural studies showed that rapamycin attenuated behavioural hypersensitivity elicited by formalin injection into the hind paw. Conclusion We conclude that mTOR has a role in maintaining persistent pain states via m

  15. Finding new equilibria: Directed synthesis of lanthanide materials via sodium azide mediated pathways

    Science.gov (United States)

    Moore, Brian Freeman

    This dissertation covers the synthesis and characterization of three unique classes of lanthanide materials produced exclusively by the addition of sodium azide (NaN3) into solution based lanthanide reactions. The products were achieved through transmetallation and redox reactions between rare earth chalcogenolate reagents (Lnx(EPh)y), NaN 3 and elemental chalcogenides (E = O, S, Se, Te). The products displayed atypical structural and physical properties including; unique coordination geometries, high nuclearities, tunable detonation/deflagration, strong NIR emissions, and unexpected magnetic ordering behaviors. The introduction of NaN3, Na2O, Cd, elemental Se and Te into Ln (EPh)2 and Ln(EPh)3 pyridine (py) solutions led to the production of (py) 2Na2(EPh)2 and 5 structurally distinct azide encapsulated rare earth clusters; (Py) 10Sm6O2(N3)16Na2, (py)8Ln6O2(N3)12(SePh) 2, (py)10Ln6O2(Se2) 2(N3)10 (Ln=Er, Ho), and (py)16Sm 8Se(O2)Na2(Te2)6(N 3)8. Each system was encapsulated by a variety of azide bridging moieties, while exhibiting a [Ln]/[N3] dependent correlation with detonation and deflagration temperatures. The inclusion of NaN3 in Ln(SePh)3 pyridine solutions with elemental Se, led to the discovery of the (py)16Ln17 NaSe18(SePh)16; (Ln= Ce, Pr, and Nd). Emission studies of the Nd17 analogue, revealed a 35% quantum efficiency for the 4F3/2 - 4I11/2 transition (1070 nm emission), and a near solid state emission intensity for the 4F3/2 → 4I15/2 transition (1822 nm emission). The novel Eu(EPh)4Na2•2DME; (E=S,Se), specimens were synthesized by the combination of Eu(EPh)2 with NaN3 in dimethoxyethane (DME). The europium coordination sphere was solvent free and resembles the coordinations of europium monochalcogenides (EuE). Comparative structural analysis and magnetic susceptibility studies of the Eu3+ product, ((py)6Eu2(mu4-S 2)2(OC6F5)2) revealed paramagnetic ordering at low temperature for Eu(EPh)4Na2•2DME; (E=S,Se), while ferrimagnetic ordering was found

  16. Conductive polymer-based nanoparticles for laser-mediated photothermal ablation of cancer: synthesis, characterization, and in vitro evaluation

    Directory of Open Access Journals (Sweden)

    Cantu T

    2017-01-01

    Full Text Available Travis Cantu,1 Kyle Walsh,2 Varun P Pattani,3 Austin J Moy,3 James W Tunnell,3 Jennifer A Irvin,1,2 Tania Betancourt1,2 1Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX, USA; 2Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA; 3Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA Abstract: Laser-mediated photothermal ablation of cancer cells aided by photothermal agents is a promising strategy for localized, externally controlled cancer treatment. We report the synthesis, characterization, and in vitro evaluation of conductive polymeric nanoparticles (CPNPs of poly(diethyl-4,4'-{[2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl-1,4-phenylene]bis(oxy}dibutanoate (P1 and poly(3,4-ethylenedioxythiophene (PEDOT stabilized with 4-dodecylbenzenesulfonic acid and poly(4-styrenesulfonic acid-co-maleic acid as photothermal ablation agents. The nanoparticles were prepared by oxidative-emulsion polymerization, yielding stable aqueous suspensions of spherical particles of <100 nm diameter as determined by dynamic light scattering and electron microscopy. Both types of nanoparticles show strong absorption of light in the near infrared region, with absorption peaks at 780 nm for P1 and 750 nm for PEDOT, as well as high photothermal conversion efficiencies (~50%, that is higher than commercially available gold-based photothermal ablation agents. The nanoparticles show significant photostability as determined by their ability to achieve consistent temperatures and to maintain their morphology upon repeated cycles of laser irradiation. In vitro studies in MDA-MB-231 breast cancer cells demonstrate the cytocompatibility of the CPNPs and their ability to mediate complete cancer cell ablation upon irradiation with an 808-nm laser, thereby establishing the potential of these systems as agents for laser-induced photothermal therapy. Keywords

  17. Enhancement of antibacterial properties of silver nanoparticles-ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis.

    Science.gov (United States)

    Harshiny, Muthukumar; Matheswaran, Manickam; Arthanareeswaran, Gangasalam; Kumaran, Shanmugam; Rajasree, Shanmuganathan

    2015-11-01

    Green synthesis of nanoparticles with low range of toxicity and conjugation to antibiotics has become an attractive area of research for several biomedical applications. Nanoconjugates exhibited notable increase in biological activity compared to free antibiotic molecules. With this perception, we report the biosynthesis of silver nanoparticles using aqueous extract of leaves of Mukia maderaspatana and subsequent conjugation of the silver nanoparticles to antibiotic ceftriaxone. The leaves of this plant are known to be a rich source of phenolic compounds with high antioxidant activity that are used as reducing agents. The size, morphology, crystallinity, composition of the synthesized silver nanoparticles and conjugation of ceftriaxone to silver nanoparticles were studied using analytical techniques. The activity of the conjugates against Bacillus subtilis (MTCC 1790), Klebsiella pneumoniae (MTCC 3384), Staphylococcus aureus (ATCC 25923), and Salmonella typhi (MTCC 3224) was compared to ceftriaxone and unconjugated nanoparticles using disc diffusion method. The effect of silver nanoparticles on the reduction of biofilms of Pseudomonas fluorescens (MTCC 6732) was determined by micro plate assay method. The antioxidant activities of extract, silver nitrate, silver nanoparticles, ceftriaxone and conjugates of nanoparticles were evaluated by radical scavenging 1, 1- diphenyl-2-picrylhydrazyl test. Ultraviolet visible spectroscopy and Fourier transform infrared spectroscopy confirmed the formation of metallic silver nanoparticles and conjugation to ceftriaxone. Atomic force microscopy, transmission electron microscopy and particle size analysis showed that the formed particles were of spherical morphology with appreciable nanosize and the conjugation was confirmed by slight increase in surface roughness. The results thus showed that the conjugation of ceftriaxone with silver nanoparticles has better antioxidant and antimicrobial effects than ceftriaxone and unconjugated

  18. Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization.

    Science.gov (United States)

    Gopi, D; Kanimozhi, K; Bhuvaneshwari, N; Indira, J; Kavitha, L

    2014-01-24

    Hydroxyapatite [HAP, Ca10(PO4)6(OH)2] is the main inorganic component of natural bone and is widely used in various biomedical applications. In this paper, we have reported the synthesis of HAP nanoparticles by banana peel pectin mediated green template method. The pectin extracted from the peels of banana and its various concentrations were exploited in our study to achieve a controlled crystallinity, particle size as well as uniform morphology of HAP. The extracted pectin was characterized by spectral techniques like Fourier transform infrared spectroscopy (FTIR) for the functional group analysis, proton-1 nuclear magnetic resonance spectroscopy ((1)H NMR) and carbon-13 nuclear magnetic resonance spectroscopy ((13)C NMR) for the identification of H and C atoms in the extracted pectin, respectively. The HAP nanoparticles were synthesized using different concentrations of the as-extracted pectin. The purity, crystallinity and morphology of the as-synthesized HAP nanoparticles were evaluated by FTIR, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX) and transmission electron microscopy (TEM), respectively. Moreover the antibacterial activity of HAP nanoparticles was evaluated against the gram positive and negative bacteria like Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The experimental results revealed that the HAP nanoparticles synthesized in the presence of an optimized concentration of pectin are pure, low crystalline, spherical and discrete particles with reduced size. Also, the HAP sample derived in the presence of pectin showed an enhanced antibacterial activity than that of the HAP synthesized in the absence of pectin. Hence, the HAP nanoparticles synthesized using pectin as a green template can act as a good biomaterial for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization

    Science.gov (United States)

    Gopi, D.; Kanimozhi, K.; Bhuvaneshwari, N.; Indira, J.; Kavitha, L.

    2014-01-01

    Hydroxyapatite [HAP, Ca10(PO4)6(OH)2] is the main inorganic component of natural bone and is widely used in various biomedical applications. In this paper, we have reported the synthesis of HAP nanoparticles by banana peel pectin mediated green template method. The pectin extracted from the peels of banana and its various concentrations were exploited in our study to achieve a controlled crystallinity, particle size as well as uniform morphology of HAP. The extracted pectin was characterized by spectral techniques like Fourier transform infrared spectroscopy (FTIR) for the functional group analysis, proton-1 nuclear magnetic resonance spectroscopy (1H NMR) and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) for the identification of H and C atoms in the extracted pectin, respectively. The HAP nanoparticles were synthesized using different concentrations of the as-extracted pectin. The purity, crystallinity and morphology of the as-synthesized HAP nanoparticles were evaluated by FTIR, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX) and transmission electron microscopy (TEM), respectively. Moreover the antibacterial activity of HAP nanoparticles was evaluated against the gram positive and negative bacteria like Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The experimental results revealed that the HAP nanoparticles synthesized in the presence of an optimized concentration of pectin are pure, low crystalline, spherical and discrete particles with reduced size. Also, the HAP sample derived in the presence of pectin showed an enhanced antibacterial activity than that of the HAP synthesized in the absence of pectin. Hence, the HAP nanoparticles synthesized using pectin as a green template can act as a good biomaterial for biomedical applications.

  20. Aegle marmelos Mediated Green Synthesis of Different Nanostructured Metal Hexacyanoferrates: Activity against Photodegradation of Harmful Organic Dyes

    Directory of Open Access Journals (Sweden)

    Vidhisha Jassal

    2016-01-01

    Full Text Available Prussian blue analogue potassium metal hexacyanoferrate (KMHCF nanoparticles Fe4[Fe(CN6]3 (FeHCF, K2Cu3[Fe(CN6]2 (KCuHCF, K2Ni[Fe(CN6]·3H2O (KNiHCF, and K2Co[Fe(CN6] (KCoHCF have been synthesized using plant based biosurfactant Aegle marmelos (Bael and water as a green solvent. It must be emphasized here that no harmful reagent or solvent was used throughout the study. Plant extracts are easily biodegradable and therefore do not cause any harm to the environment. Hence, the proposed method of synthesis of various KMHCF nanoparticles followed a green path. The synthesized nanoparticles were characterized by powder X-ray diffraction (PXRD, Field-Emission Scanning Electron Microscopy (FE-SEM, Transmission Electron Microscopy (TEM, and Fourier Transform Infrared Spectroscopy (FT-IR. MHCF nanoparticles were used for the photocatalytic degradation of toxic dyes like Malachite Green (MG, Eriochrome Black T (EBT, Methyl Orange (MO, and Methylene Blue (MB. Under optimized reaction conditions, maximum photocatalytic degradation was achieved in case of KCuHCF nanoparticles mediated degradation process (MG: 96.06%, EBT: 83.03%, MB: 94.72%, and MO: 63.71% followed by KNiHCF (MG: 95%, EBT: 80.32%, MB: 91.35%, and MO: 59.42%, KCoHCF (MG: 91.45%, EBT: 78.84%, MB: 89.28%, and MO: 58.20%.

  1. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Sahni, Abha [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Wang, Nadan [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Alexis, Jeffrey, E-mail: jeffrey_alexis@urmc.rochester.edu [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States)

    2013-02-15

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.

  2. Facile synthesis of carbon-mediated porous nanocrystallite anatase TiO2 for improved sodium insertion capabilities as an anode for sodium-ion batteries

    Science.gov (United States)

    Wu, Feng; Luo, Rui; Xie, Man; Li, Li; Zhang, Xiaoxiao; Zhao, Luzi; Zhou, Jiahui; Wang, KangKang; Chen, Renjie

    2017-09-01

    Porous carbon-mediated nanocrystallite anatase TiO2 composites are synthesized successfully via a simple dilatory hydrolysis-calcination method. The structural and morphological characterizations reveal that carbon-mediated TiO2 with a carbon content of 9.9 wt % (C2-TiO2) shows a combination of mesoporous and macroporous structures with a pore volume of 0.20 cm3 g-1 and surface area of 40.3 m2 g-1. Notably, C2-TiO2 delivered enhanced electrochemical performances of a high charge capacity of 259 mA h g-1 at 0.1 C and a high rate performance of 110 mA h g-1 after 150 cycles, even at 1 C. A significant decrease is also observed in the electrochemical impedance of the carbon-mediated samples, which explains superior electrochemical performance. Compared with the bare anatase TiO2 (B-TiO2), improved sodium storage capabilities of carbon-mediated samples are attributed to the participation of carbon to form a symbiotic structure with TiO2, which not only increases pore volume of the samples but serves as highly conductive network to provide a Na+ diffusion path during the insertion/de-insertion of sodium ions. All of these encouraging results suggest that carbon-mediated TiO2 has a great potential for improving sodium insertion capabilities with a facile and low-cost synthesis process.

  3. Copper(I) mediated facile synthesis of potent tubulin polymerization inhibitor, 9-amino-α-noscapine from natural α-noscapine.

    Science.gov (United States)

    Manchukonda, Naresh K; Sridhar, Balasubramanian; Naik, Pradeep K; Joshi, Harish C; Kantevari, Srinivas

    2012-04-15

    Facile synthesis of natural α-noscapine analogue, 9-amino-α-noscapine, a potent inhibitor of tubulin polymerization for cancer therapy, is achieved via copper(I) iodide mediated in situ aromatic azidation and reduction of 9-bromo-α-noscapine (obtained by bromination of natural α-noscapine) with NaN(3) in DMSO at 130°C in the presence of L-proline as an amino acid promoter. The protocol developed here avoided isolation of 9-azido-α-noscapine and did not cleave the sensitive C-C bond between two heterocyclic phthalide and isoquinoline units.

  4. Production of phosphatidylcholine containing conjugated linoleic acid mediated by phospholipase A2

    OpenAIRE

    Yamamoto, Yukihiro; Hosokawa, Masashi; Miyashita, Kazuo

    2006-01-01

    Esterification of lysophosphatidylcholine (LPC) with conjugated linoleic acid (CLA) was carried out using porcine pancreatic phospholipase A2 (PLA2). PLA2 only slightly synthesized phosphatidylcholine containing CLA (CLA-PC) at 2.6% by the addition of water. Addition of formamide in place of water markedly increased the yield of CLA-PC. In addition, synthesis of CLA-PC by PLA2 was affected by the amount of substrate CLA and PLA2 in the reaction system. Under optimal reaction conditions using ...

  5. Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications—photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains

    Science.gov (United States)

    Iyyappa Rajan, P.; Vijaya, J. Judith; Jesudoss, S. K.; Kaviyarasu, K.; Kennedy, L. John; Jothiramalingam, R.; Al-Lohedan, Hamad A.; Vaali-Mohammed, Mansoor-Ali

    2017-08-01

    With aim of promoting the employability of green fuels in the synthesis of nano-scaled materials with new kinds of morphologies for multiple applications, successful synthesis of self-assembled NiO nano-sticks was achieved through a 100% green-fuel-mediated hot-plate combustion reaction. The synthesized NiO nano-sticks show excellent photocatalytic activity on Rose Bengal dye and superior antibacterial potential towards both Gram-positive and Gram-negative bacteria.

  6. β-Hydroxybutyrate Facilitates Fatty Acids Synthesis Mediated by Sterol Regulatory Element-Binding Protein1 in Bovine Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2015-11-01

    Full Text Available Background/Aims: In dairy cows, β-hydroxybutyrate (BHBA is utilized as precursors of de novo synthesized fatty acids in mammary gland. Ketotic cows are characterized by excessive negative energy balance (NEB, which can further increase the blood BHBA concentration. Sterol regulatory element-binding protein1 (SREBP1 and cell death-inducing DNA fragmentation factor-alpha-like effector α (Cidea play crucial roles in lipid synthesis. Therefore, we hypothesized that BHBA could stimulate SREBP1/Cidea pathway to increase milk fat synthesis in bovine mammary epithelial cells. Methods: Bovine mammary epithelial cells were treated with different concentrations of BHBA and transfected with adenovirus to silence SREBP1 expression. The effects of BHBA on the lipid synthesis in bovine mammary epithelial cells were investigated. Results: The results showed that BHBA could significantly increase the expression of SREBP1, fatty acid synthase (FAS, acetyl-CoA carboxylase α (ACC-α, Cidea and diacylglycerol transferase-1 (DGAT-1, as well as the triglycerides (TG content in bovine mammary epithelial cells. BHBA treatment also increased the transfer of mature SREBP1 to nucleus compared with control group. However, SREBP1 silencing could significantly down-regulate the overexpression of FAS, ACC-α, Cidea and DGAT-1, as well as TG content induced by BHBA. Conclusion: The present data indicate that BHBA can significantly increase TG secretion mediated by SREBP1 in bovine mammary epithelial cells.

  7. Acylation of lysophosphatidylcholine and glycerolphosphate and fatty acid pattern in phosphatidylcholine and -ethanolamine in microsomes of normal and dystrophic human muscle.

    Science.gov (United States)

    Kunze, D; Rüstow, B; Kuksis, A; Myher, J J

    1986-02-01

    Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were isolated from microsomes obtained from normal and dystrophic human muscle and the fatty acid (FA) pattern estimated by GLC. In PC a decrease of the fatty acids of 16:0 and 18:2 and an increase of 18:0 and 18:1 was observed. In PE the decrease measured 18:2 and the increase 18:0 and 18:1. The acylation of lysophosphatidylcholine (LPC) and glycerol-3-phosphate (G3P) was measured in a microsomal system containing exogenously added LPC or G3P and labelled palmitic and oleic acid CoA esters. The incorporation of both labelled fatty acids in LPC-forming PC is reduced in dystrophic microsomes. On the other hand the acylation of glycerolphosphate and the formation of phosphatidic acid (PA) is greater in dystrophic microsomes when compared with normal controls. Possible correlations between the shifted FA pattern and the acylation rate by dystrophic microsomes measured in vitro in the two systems are discussed.

  8. Suppression by eicosapentaenoic acid of oxidized low-density lipoprotein and lysophosphatidylcholine-induced migration in cultured rat vascular smooth muscle cells.

    Science.gov (United States)

    Kohno, M; Yasunari, K; Minami, M; Kano, H; Maeda, K; Yoshikawa, J

    2000-05-01

    The migration of medial smooth muscle cells into the intima is proposed to be an initial process of intimal thickening in atherosclerotic lesions. The present study was designed to determine whether pretreatment with the antiatherogenic agent eicosapentaenoic acid (EPA) inhibits the migration induced by oxidized low-density lipoprotein (LDL) and its major phospholipid component, lysophosphatidylcholine (lyso-PC), in cultured rat vascular smooth muscle cells (VSMCs) using Boyden's chamber method. The effects of EPA pretreatment on angiotensin II (Ang II)- and platelet-derived growth factor BB (PDGF BB)-induced migration were also examined in these cells. Oxidized LDL and lyso-PC induced migration in a concentration-dependent manner. EPA pretreatment clearly suppressed oxidized LDL (200 microg/mL)- and lyso-PC (10(-5) mol/L)-induced migration between 40 and 160 micromol/L. EPA pretreatment also suppressed Ang 11 (10(-7) mol/L)- and PDGF BB (5 ng/mL)-induced migration at a concentration of 80 and 160 micromol/L. However, in a trypan blue exclusion test, dead cells stained with trypan blue were not found 24 hours after treatment with EPA. These results suggest that EPA suppresses VSMC migration induced by oxidized LDL and lyso-PC, as well as Ang II and PDGF BB. These preliminary data concerning the effects of EPA may partly explain the antiatherosclerotic effects of this agent.

  9. Stereoselective Synthesis of trans-Olefins by the Copper-Mediated SN2′ Reaction of Vinyl Oxazines with Grignard Reagents. Asymmetric Synthesis of D-threo-Sphingosines

    OpenAIRE

    Singh, Om V; Han, Hyunsoo

    2007-01-01

    The SN2′ reaction of 6-vinyl-5,6-dihydro-4H-[1,3]oxazines with Grignard reagents in the presence of CuCN was studied, and high trans selectivity for the formation of double bond was observed with a variety of RMgX. The SN2′ reaction, coupled with regioselective asymmetric aminohydroxylation reaction, provided a highly efficient route for the asymmetric synthesis of D-threo-N-acetylsphingosine.

  10. Glycine betaine catabolism contributes to Pseudomonas syringae tolerance to hyperosmotic stress by relieving betaine-mediated suppression of compatible solute synthesis.

    Science.gov (United States)

    Li, Shanshan; Yu, Xilan; Beattie, Gwyn A

    2013-05-01

    Many bacteria can accumulate glycine betaine for osmoprotection and catabolize it as a growth substrate, but how they regulate these opposing roles is poorly understood. In Pseudomonas syringae B728a, expression of the betaine catabolism genes was reduced by an osmotic upshift to an intermediate stress level, consistent with betaine accumulation, but was increased by an upshift to a high stress level, as confirmed by an accompanying increase in degradation of radiolabeled betaine. Deletion of the gbcAB betaine catabolism genes reduced osmotolerance at a high osmolarity, and this reduction was due to the relief of betaine-mediated suppression of compatible solute synthesis. This conclusion was supported by the findings that, at high osmolarity, the ΔgbcAB mutant accumulated high betaine levels and low endogenous solutes and exhibited reduced expression of the solute synthesis genes. Moreover, the ΔgbcAB mutant and a mutant deficient in the synthesis of the compatible solutes NAGGN and trehalose exhibited similar reductions in osmotolerance and also in fitness on bean leaves. Activation of betaine catabolism at high osmotic stress resulted, in part, from induction of gbdR, which encodes the transcriptional activator GbdR. Betaine catabolism was subject to partial repression by succinate under hyperosmotic stress conditions, in contrast to strong repression in the absence of stress, suggesting that betaine functions both in nutrition and as an intracellular signal modulating solute synthesis under hyperosmotic stress conditions. Collectively, these results begin to provide a detailed mechanistic understanding of how P. syringae transitions from reliance on exogenously derived betaine to the use of endogenous solutes during adaptation to hyperosmotic conditions.

  11. Plant mediated synthesis of silver nanoparticles using a bryophyte: Fissidens minutus and its anti-microbial activity.

    Directory of Open Access Journals (Sweden)

    SRIVASTAVA A.A

    2011-12-01

    Full Text Available Biological methods of synthesis have paved way for the “greener synthesis” of nanoparticles. These have proven to be better methods due to slower kinetics, they offer better manipulation and control over crystal growth and their stabilization. The synthesis of silver nanoparticles by a Bryophyte, Fissidens minutus is reported in this paper. Aqueous Extract of Fissidens minutus treated with 0.5 mM silver nitrate solution produced silver nanoparticles at room temperature rapidly. Nanoparticles were characterized by means of UV–Vis spectroscopy, Scanning electron microscopy (SEM and Energy Dispersive Spectrometry (EDS. Nanosilver has proved as a potent antibacterial agent showing its activity against both gram positive and gram negative organisms. The present study emphasizes the use of primitive plant form for the synthesis of silver nanoparticles.

  12. TORC1 Inhibits GSK3-Mediated Elo2 Phosphorylation to Regulate Very Long Chain Fatty Acid Synthesis and Autophagy

    DEFF Research Database (Denmark)

    Zimmermann, Christine; Santos, Aline; Gable, Kenneth;

    2013-01-01

    Very long chain fatty acids (VLCFAs) are essential fatty acids with multiple functions, including ceramide synthesis. Although the components of the VLCFA biosynthetic machinery have been elucidated, how their activity is regulated to meet the cell's metabolic demand remains unknown. The goal...... of this study was to identify mechanisms that regulate the rate of VLCFA synthesis, and we discovered that the fatty acid elongase Elo2 is regulated by phosphorylation. Elo2 phosphorylation is induced upon inhibition of TORC1 and requires GSK3. Expression of nonphosphorylatable Elo2 profoundly alters...... of autophagy. Together, our data reveal a function for TORC1 and GSK3 in the regulation of VLCFA synthesis that has important implications for autophagy and cell homeostasis....

  13. Phenylalanine-Rich Peptide Mediated Binding with Graphene Oxide and Bioinspired Synthesis of Silver Nanoparticles for Electrochemical Sensing

    Directory of Open Access Journals (Sweden)

    Li Wang

    2017-02-01

    Full Text Available We demonstrated that a phenylalanine-rich peptide molecule, (FEFEFKFK2, could be used for the biofunctionalization of graphene oxide (GO and the bioinspired synthesis of silver nanoparticles (AgNPs for the creation of functional GO–AgNPs nanohybrids. The successful synthesis of GO–AgNPs nanohybrids was proven by the characterizations of atomic force microscopy, transmission electron microscope, and X-ray photoelectron spectroscopy. The fabricated electrochemical H2O2 sensor based on the synthesized GO–AgNPs nanohybrids showed high performances with a linear detection range 0.02–18 mM and a detection limit of 0.13 μM. The design of graphene-binding peptides is of benefit to the biofunctionalization of graphene-based materials, the synthesis of novel graphene–peptide nanohybrids, and the potential applications of graphene in biomedical fields.

  14. An efficient PEG-400 mediated catalyst free green synthesis of 2-amino-thiazoles from α-diazoketones and thiourea

    Indian Academy of Sciences (India)

    B HARI BABU; K VIJAY; K BALA MURALI KRISHNA; N SHARMILA; M BABY RAMANA

    2016-09-01

    A simple and efficient method has been developed for the synthesis of 2-aminothiazoles from α-diazoketones using PEG-400 solvent system. This novel synthetic approach involves the reaction between thiourea and α-diazoketones in PEG-400 at 100 ◦C to yield the corresponding 2-aminothiazoles in good yields.The method is simple, rapid and generates thiazole derivatives in excellent yields without the use of any catalysts. This green protocol can be utilized for fast synthesis of various 2-aminothiazoles in good yields.

  15. Metal free synthesis of functionalized 1-aryl isoquinolines via iodine mediated oxidative dehydrogenation and ring opening of lactam in isoindoloisoquinolinones

    Indian Academy of Sciences (India)

    KAMSALI MURALI MOHAN ACHARI; MUTHUPANDI KARTHICK; CHINNASAMY RAMARAJ RAMANATHAN

    2017-06-01

    A facile and convenient method for the synthesis of substituted 2-(isoquinolin-1-yl)benzoic acids from isoindoloisoquinolinones in the presence of molecular iodine under sealed tube condition at 100◦C has been developed. This methodology involves the oxidative dehydrogenation and ring opening of hydroxylactam/methoxy lactam to furnish the 2-(isoquinolin-1-yl)benzoic acids. Some of these acids are successfully cyclized to furnish the azabenzanthrone derivatives, the potential precursors for the synthesis of menisporphine alkaloids and daurioxoisoaporphines.

  16. A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study

    Science.gov (United States)

    Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu

    2014-10-01

    Green synthesis of nanoparticles is widely accepted due to the less toxicity in comparison with chemical methods. But there are certain drawbacks like slow formation of nanoparticles, difficulty to control particle size and shape make them less convenient. Here we report a novel cost-effective and eco-friendly method for the rapid green synthesis of silver nanoparticles using leaf extracts of Piper nigrum. Our results suggest that this method can be used for obtaining silver nanoparticles with controllable size within a few minutes. The fabricated nanoparticles possessed excellent antibacterial property against both Gram-positive and Gram-negative bacteria.

  17. Isoxazole mediated synthesis of 4-(1H)pyridones: improved preparation of antimalarial candidate GSK932121.

    Science.gov (United States)

    Fernández, Jorge; Chicharro, Jesús; Bueno, José M; Lorenzo, Milagros

    2016-08-09

    A new synthesis of the antimalarial clinical candidate GSK932121 is described. This approach has two key reactions, the selective acylation of an unprotected 3-hydroxymethyl-5-methyl isoxazole and the reductive N-O bond cleavage of the previously functionalized isoxazole derivative, to give the 4-(1H)pyridone ring present in the final structure. The complete synthesis consists of 5 steps (versus 10 steps in previously published reports) and has enabled the preparation of the material in kilogram scale to support clinical studies.

  18. Indium-mediated Facile Synthesis of (6-Chloropyridine-3-yl)methyl Heterocyclic Thioether Derivatives in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    Bao An SONG; Gang LIU; De Yu HU; Hua ZHANG

    2004-01-01

    A series of substituted (6-chloropyridine-3-yl)methyl heterocyclic thioether derivatives were prepared by indium mediating in water. The preliminary biological tests showed that compound 3d exhibited good antiviral activity.

  19. Alcohol mediated synthesis of 4-oxo-2-aryl-4H-chromene-3-carboxylate derivatives from 4-hydroxycoumarins.

    Science.gov (United States)

    Zanwar, Manoj R; Raihan, Mustafa J; Gawande, Sachin D; Kavala, Veerababurao; Janreddy, Donala; Kuo, Chun-Wei; Ambre, Ram; Yao, Ching-Fa

    2012-08-03

    The unusual alcohol mediated formation of 4-oxo-2-aryl-4H-chromene-3-carboxylate (flavone-3-carboxylate) derivatives from 4-hydroxycoumarins and β-nitroalkenes in an alcoholic medium is described. The transformation occurs via the in situ formation of a Michael adduct, followed by the alkoxide ion mediated rearrangement of the intermediate. The effect of the different alcohol and nonalcohol media on the reaction was investigated.

  20. TORC1 Inhibits GSK3-Mediated Elo2 Phosphorylation to Regulate Very Long Chain Fatty Acid Synthesis and Autophagy

    Directory of Open Access Journals (Sweden)

    Christine Zimmermann

    2013-11-01

    Full Text Available Very long chain fatty acids (VLCFAs are essential fatty acids with multiple functions, including ceramide synthesis. Although the components of the VLCFA biosynthetic machinery have been elucidated, how their activity is regulated to meet the cell’s metabolic demand remains unknown. The goal of this study was to identify mechanisms that regulate the rate of VLCFA synthesis, and we discovered that the fatty acid elongase Elo2 is regulated by phosphorylation. Elo2 phosphorylation is induced upon inhibition of TORC1 and requires GSK3. Expression of nonphosphorylatable Elo2 profoundly alters the ceramide spectrum, reflecting aberrant VLCFA synthesis. Furthermore, VLCFA depletion results in constitutive activation of autophagy, which requires sphingoid base phosphorylation. This constitutive activation of autophagy diminishes cell survival, indicating that VLCFAs serve to dampen the amplitude of autophagy. Together, our data reveal a function for TORC1 and GSK3 in the regulation of VLCFA synthesis that has important implications for autophagy and cell homeostasis.

  1. Water mediated eco-friendly green protocol for one-pot synthesis of -aminophosphonates at ambient conditions

    Indian Academy of Sciences (India)

    Santhosh Reddy Mandha; Manjula Alla; Vittal Rao Bommena

    2014-05-01

    Increasing environmental awareness and economic concerns have led to the consideration of highly efficient one-pot, three-component, green approaches for important organic synthons. We describe here a simple, elegant and high yielding protocol for the synthesis of -aminophosphonates in totally solvent-free, catalyst-free conditions by reacting aldehydes, amines and trimethyl phosphite at ambient temperature.

  2. Asymmetric Construction of All-Carbon Quaternary Stereocenters by Chiral-Auxiliary-Mediated Claisen Rearrangement and Total Synthesis of (+-Bakuchiol

    Directory of Open Access Journals (Sweden)

    Kin-ichi Tadano

    2012-11-01

    Full Text Available An asymmetric Claisen rearrangement using Oppolzer’s camphorsultam was developed. Under thermal conditions, a geraniol-derived substrate underwent the rearrangement with good stereoselectivity. The absolute configuration of the newly formed all-carbon quaternary stereocenter was confirmed by the total synthesis of (+-bakuchiol from the rearrangement product.

  3. Intestinal FXR-mediated FGF15 production contributes to diurnal control of hepatic bile acid synthesis in mice

    NARCIS (Netherlands)

    Stroeve, Johanna H. M.; Brufau, Gemma; Stellaard, Frans; Gonzalez, Frank J.; Staels, Bart; Kuipers, Folkert

    2010-01-01

    Hepatic bile acid synthesis is subject to complex modes of transcriptional control, in which the bile acid-activated nuclear receptor farnesoid X receptor (FXR) in liver and intestine-derived, FXR-controlled fibroblast growth factor 15 (Fgf15) are involved. The Fgf15 pathway is assumed to contribute

  4. Synthesis of benzo[α]carbazole derivatives from β-(2-arylindolyl)nitroalkanes via Mn(OAc){sub 3}-mediated cyclization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Yeon; Lim, Jin Woo; Min, Beom Kyu; Kim, Jae Nyoung [Dept. of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju (Korea, Republic of)

    2016-11-15

    We also reported the synthesis of benzo[a]carbazoles from 2-arylindoles via sequential propargylation, propargyl–allenyl isomerization, and 6π-electrocyclization approach, as shown in Scheme. Various 5-benzyl- and 5-methylbenzo[a]carbazoles have been synthesized; however, 5-unsubstituted benzo[a]carbazoles could not be synthesized by the approach. In order to develop a synthetic method of 5-unsubstituted benzo[a]carbazoles, we decided to examine the reaction of a new synthetic method of benzo[a]carbazoles has been developed from β-(2-phenylindolyl)nitroalkanes via Mn(OAc){sub 3}-mediated cyclization protocol. Various 5-unsubstituted benzo[a]carbazoles could be synthesized, when compared with previous approach to 5-benzylbenzo [a]carbazoles involving 6π-electrocyclization reaction.

  5. First DMAP-mediated direct conversion of Morita–Baylis–Hillman alcohols into γ-ketoallylphosphonates: Synthesis of γ-aminoallylphosphonates

    Directory of Open Access Journals (Sweden)

    Marwa Ayadi

    2016-12-01

    Full Text Available An efficient synthesis of a series of γ-ketoallylphosphonates through a direct conversion of both primary and secondary Morita–Baylis–Hillman (MBH alcohols by trialkyl phosphites with or without DMAP, used as additive, and under solvent-free conditions, is described herein for the first time. Subsequently, a highly regioselective Luche reduction of the primary phosphonate 2a (R = H gave the corresponding γ-hydroxyallylphosphonate 5 that further reacted with tosylamines in the presence of diiodine (15 mol % as a catalyst, affording the corresponding SN2-type products 6a–d in 63 to 70% isolated yields. Alternatively, the alcohol 5 produced the corresponding acetate 7 which, mediated by Ce(III, was successfully converted into the corresponding γ-aminoallylphosphonates 8a–d.

  6. Copper triflate-mediated synthesis of 1,3,5-triarylpyrazoles in [bmim][PF6] ionic liquid and evaluation of their anticancer activities.

    Science.gov (United States)

    Rao, V Kameshwara; Tiwari, Rakesh; Chhikara, Bhupender S; Shirazi, Amir Nasrolahi; Parang, Keykavous; Kumar, Anil

    2013-09-21

    A simple, efficient, and environment friendly protocol for the synthesis of 1,3,5-triarylpyrazole and 1,3,5-triarylpyrazolines in [bimm][PF6] ionic liquid mediated by Cu(OTf)2 is described. The reaction protocol gave 1,3,5-triarylpyrazoles in good to high yields (71-84%) via a one-pot addition-cyclocondensation between chalcones and arylhydrazines, and oxidative aromatization without requirement for an additional oxidizing reagent. The catalyst can be reused up to four cycles without much loss in the catalytic activity. The pyrazoles (4a-o) and pyrazolines (3a-n) were evaluated for antiproliferative activity in SK-OV-3, HT-29, and HeLa human cancer cells lines. Among all compounds, 3b inhibited cell proliferation of HeLa cells by 80% at a concentration of 50 μM.

  7. Altered plasma lysophosphatidylcholines and amides in non-obese and non-diabetic subjects with borderline-to-moderate hypertriglyceridemia: a case-control study.

    Directory of Open Access Journals (Sweden)

    Sae Young Lee

    Full Text Available Hypertriglyceridemia (HTG is a risk factor for atherosclerotic cardiovascular disease (CVD. We investigated alterations in plasma metabolites associated with borderline-to-moderate HTG (triglycerides (TG 150-500 mg/dL. Using UPLC-LTQ-Orbitrap mass spectrometry analysis, the metabolomics profiles of 111 non-diabetic and non-obese individuals with borderline-to-moderate HTG were compared with those of 111 age- and sex-matched controls with normotriglyceridemia (NTG, TG <150 mg/dL. When compared to the NTG control group, the HTG group exhibited higher plasma levels of lysophosphatidylcholines (lysoPCs, including C14:0 (q = 0.001 and C16:0 (q = 1.8E-05, and several amides, including N-ethyldodecanamide (q = 2.9E-05, N-propyldodecanamide (q = 3.5E-05, palmitoleamide (q = 2.9E-06, and palmitic amide (q = 0.019. The metabolomic profiles of the HTG group also exhibited lower plasma levels of cis-4-octenedioic acid (q<1.0E-9 and docosanamide (q = 0.002 compared with those of the NTG controls. LysoPC 16:0 and palmitoleamide emerged as the primary metabolites able to discriminate the HTG group from the NTG group in a partial least-squares discriminant analysis and were positively associated with the fasting triglyceride levels. We identified alterations in lysoPCs, amides, and cis-4-octenedioic acid among non-diabetic and non-obese individuals with borderline-to-moderate HTG. These results provide novel insights into the metabolic alterations that occur in the early metabolic stages of HTG. This information may facilitate the design of early interventions to prevent disease progression.

  8. Altered Plasma Lysophosphatidylcholines and Amides in Non-Obese and Non-Diabetic Subjects with Borderline-To-Moderate Hypertriglyceridemia: A Case-Control Study

    Science.gov (United States)

    Jung, Saem; Lee, Sang-Hyun; Lee, Jong Ho

    2015-01-01

    Hypertriglyceridemia (HTG) is a risk factor for atherosclerotic cardiovascular disease (CVD). We investigated alterations in plasma metabolites associated with borderline-to-moderate HTG (triglycerides (TG) 150-500 mg/dL). Using UPLC-LTQ-Orbitrap mass spectrometry analysis, the metabolomics profiles of 111 non-diabetic and non-obese individuals with borderline-to-moderate HTG were compared with those of 111 age- and sex-matched controls with normotriglyceridemia (NTG, TG <150 mg/dL). When compared to the NTG control group, the HTG group exhibited higher plasma levels of lysophosphatidylcholines (lysoPCs), including C14:0 (q = 0.001) and C16:0 (q = 1.8E-05), and several amides, including N-ethyldodecanamide (q = 2.9E-05), N-propyldodecanamide (q = 3.5E-05), palmitoleamide (q = 2.9E-06), and palmitic amide (q = 0.019). The metabolomic profiles of the HTG group also exhibited lower plasma levels of cis-4-octenedioic acid (q<1.0E-9) and docosanamide (q = 0.002) compared with those of the NTG controls. LysoPC 16:0 and palmitoleamide emerged as the primary metabolites able to discriminate the HTG group from the NTG group in a partial least-squares discriminant analysis and were positively associated with the fasting triglyceride levels. We identified alterations in lysoPCs, amides, and cis-4-octenedioic acid among non-diabetic and non-obese individuals with borderline-to-moderate HTG. These results provide novel insights into the metabolic alterations that occur in the early metabolic stages of HTG. This information may facilitate the design of early interventions to prevent disease progression. PMID:25856314

  9. Supplementing female rats with DHA-lysophosphatidylcholine increases docosahexaenoic acid and acetylcholine contents in the brain and improves the memory and learning capabilities of the pups

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, A.; Nieto, S.; Sanhueza, J.; Morgado, N.; Rojas, I.; Zanartu, P.

    2010-07-01

    Docosahexaenoic acid (Dha) is supplied to the foetus and newborn through the mother from their own reserves and their diet. No consensus about the best form to supplement DHA has been established. We propose that DHA containing lysophosphatidylcholine (DHA-LPC), obtained from DHA-rich eggs may be a suitable form of DHA and choline (the precursor of acetylcholine) supplementation. We evaluated the effectiveness of DHA-LPC to increase DHA and acetylcholine concentration in the brain of pups born from female rats supplemented with DHA-LPC before and during pregnancy. We also evaluated the effect of DHA supplementation on learning and memory capabilities of pups through the Skinner test for operant conditioning. Female Wistar rats received 40-day supplementation of DHA-LPC (8 mg DHA/kg b.w/daily.), before and during pregnancy. After delivery, plasma, erythrocyte, liver, and adipose tissue DHA and plasma choline were analyzed. Brains from 60 day-old pups separated into frontal cortex, cerebellum, striatum, hippocampus, and occipital cortex, were assessed for DHA, acetylcholine, and acetylcholine transferase (CAT) activity. Pups were subjected to the Skinner box test. DHA-LPC supplementation produces higher choline and liver DHA contents in the mothers plasma and increases the pups DHA and acetylcholine in the cerebellum and hippocampus. CAT was not modified by supplementation. The Skinner test shows that pups born from DHA-LPC supplemented mothers exhibit better scores of learning and memory than the controls. Conclusion: DHA-LPC may be an adequate form for DHA supplementation during the perinatal period. (Author) 66 refs.

  10. Cyclohexanone and 3-aminopropyltrimethoxysilane mediated controlled synthesis of mixed nickel-iron hexacyanoferrate nanosol for selective sensing of glutathione and hydrogen peroxide.

    Science.gov (United States)

    Pandey, Prem Chandra; Pandey, Ashish Kumar

    2013-02-21

    We report the cyclohexanone and 3-aminopropyltrimethoxysilane (3-APTMS) mediated controlled synthesis of mixed nickel-iron hexacyanoferrate (Ni-Fehcf) nanosol of 34 nm average size. The new method allows the synthesis of a variety of mixed metal hexacyanoferrate (Mhcf) nanodispersion along with option for controlling the inversion of electrochemichemical behavior of Prussian blue(PB) into desired Mhcf. The typical process involves the mixing of 3-APTMS treated potassium ferricyanide with desired concentrations of nickel sulfate containing fixed amount of cyclohexanone resulting in a uniform spherical nanodispersion of mixed Ni-Fehcf. The different molar ratio of Ni : Fe (i.e. 1 : 1; 1 : 5 and 1 : 10) yielded a mixed Ni-Fehcf showing three different electrochemical properties ascribed to nickel hexacyanoferrate (Nihcf); both Nihcf and PB, and PB respectively. The mixed Ni-Fehcf resulting from a 1 : 5 Ni : Fe molar ratio has been found to be an excellent material for selective electroanalytic applications attributed to hydrogen peroxide and glutathione sensing due to the presence of PB and Nihcf behaviors respectively. The electrocatalytic property of Nihcf in mixed Ni-Fehcf is significantly better than that of conventional Nihcf for glutathione analysis and further increases on the incorporation of AuNPs.

  11. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    Energy Technology Data Exchange (ETDEWEB)

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G., E-mail: deborah.murdock@vanderbilt.edu

    2013-11-15

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.

  12. Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging

    Science.gov (United States)

    Oza, Goldie; Ravichandran, M.; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S.; Sharon, Madhuri; Sharon, Maheshwar

    2016-01-01

    A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent. PMID:26905737

  13. Saraca indica bark extract mediated green synthesis of polyshaped gold nanoparticles and its application in catalytic reduction

    Science.gov (United States)

    Dash, Shib Shankar; Majumdar, Rakhi; Sikder, Arun Kanti; Bag, Braja Gopal; Patra, Biplab Kumar

    2014-04-01

    The bark extract of the traditional ayurvedic medicinal plant Saraca indica containing redox active polyphenolic compounds has been utilized for the one-step synthesis of gold nanoparticles at room temperature. The polyphenolic compounds acted as the reducing agent as well as the stabilizing agent without any additional capping agent. The synthesis of the gold nanoparticles of 15-23 nm size was complete in several minutes and no photo irradiation or heat treatment was necessary. Surface plasmon resonance, HRTEM, AFM, X-ray diffraction, and FTIR studies have been carried out to characterize the nanoparticles. Gold nanoparticles synthesized were of triangular, tetragonal, pentagonal, hexagonal, and spherical shapes. The synthesized gold nanoparticles have been used as a catalyst for the reduction of 4-nitrophenol to 4-aminophenol at room temperature and the kinetics of the reduction reaction has been studied spectrophotometrically.

  14. Water Mediated Synthesis of N′-Arylmethylene-4,5,6,7-tetrahydro-2H-indazole-3-carbohydrazide Library

    Directory of Open Access Journals (Sweden)

    Mahesh M. Savant

    2014-01-01

    Full Text Available A novel two-step synthesis of 4,5,6,7-tetrahydro-2H-indazole-3-carbohydrazide has been developed. The library of N′-arylmethylene-4,5,6,7-tetrahydro-2H-indazole-3-carbohydrazide was generated by coupling of hydrazide to various aromatic and heterocyclic aldehydes in water media at ambient temperature with great flexibility regarding reaction time and yield.

  15. Water Mediated Synthesis of N′-Arylmethylene-4,5,6,7-tetrahydro-2H-indazole-3-carbohydrazide Library

    OpenAIRE

    Savant, Mahesh M.; Pansuriya, Akshay M.; Bhuva, Chirag V.; Naval Kapuriya; Yogesh T. Naliapara

    2014-01-01

    A novel two-step synthesis of 4,5,6,7-tetrahydro-2H-indazole-3-carbohydrazide has been developed. The library of N′-arylmethylene-4,5,6,7-tetrahydro-2H-indazole-3-carbohydrazide was generated by coupling of hydrazide to various aromatic and heterocyclic aldehydes in water media at ambient temperature with great flexibility regarding reaction time and yield.

  16. 1,6-asymmetric induction in boron-mediated aldol reactions: application to a practical total synthesis of (+)-discodermolide.

    Science.gov (United States)

    Paterson, Ian; Delgado, Oscar; Florence, Gordon J; Lyothier, Isabelle; Scott, Jeremy P; Sereinig, Natascha

    2003-01-01

    By relying solely on substrate-based stereocontrol, a practical total synthesis of the microtubule-stabilizing anticancer agent (+)-discodermolide has been realized. This exploits a novel aldol bond construction with 1,6-stereoinduction from the boron enolate of (Z)-enone 3 in addition to aldehyde 2. The 1,3-diol 7 is employed as a common building block for the C(1)-C(5), C(9)-C(16), and C(17)-C(24) subunits. [reaction--see text

  17. Pd/C-mediated dual C-C bond forming reaction in water: synthesis of 2,4-dialkynylquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Ellanki A.; Islam, Aminul; Venu, Bolla K. [Dr. Reddy' s Laboratories Limited, Hyderabad, Andhra Pradesh (India); Mukkanti, K. [JNT University, Hyderabad, Andhra Pradesh (India). Inst. of Science and Technology. Chemistry Division; Pal, Manojit, E-mail: manojitpal@rediffmail.co [Matrix Laboratories Ltd., Medak District, Andra Pradesh (India). New Drug Discovery. R and D Center

    2010-07-01

    Pd/C facilitated dual C-C bond forming reaction between 2,4-diiodoquinoline and terminal alkynes in water providing a practical and one-step synthesis of 2,4-dialkynylquinolines. A number of related quinoline derivatives were prepared in good to excellent yields using this water-based methodology. The use of other palladium catalysts and solvents was examined and the mechanism of the reaction has been discussed. (author)

  18. Detection of Burkholderia pseudomallei toxin-mediated inhibition of protein synthesis using a Caenorhabditis elegans ugt–29 biosensor

    Science.gov (United States)

    Wong, Rui-Rui; Kong, Cin; Lee, Song-Hua; Nathan, Sheila

    2016-01-01

    Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host’s attempt to clear bacterial toxic molecules. One of these genes, ugt–29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt–29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt–29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT–29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt–29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis. PMID:27273550

  19. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita, E-mail: nayakb@nitrkl.ac.in

    2016-01-01

    In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV–vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. - Highlights: • Rapid, cost effective, benign synthesis of AgNPs using novel bark extracts • Color change and absorbance peak observed at 426 and 420 nm due to SPR phenomenon • Crystalline and spherical nanoparticles having average size of ~ 40 and ~ 50 nm each • Highly enhanced antimicrobial activity against human nosocomial strains • Demonstrated dose dependent toxicity towards osteosarcoma MG-63 cell lines.

  20. SYNTHESIS OF STYRYL-CAPPED POLYPROPYLENE via METALLOCENE-MEDIATED COORDINATION POLYMERIZATION: APPLY TO POLYPROPYLENE MACROMOLECULAR ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    Hua-hua Huang; Chuan-hui Zhang; Ya-wei Qin; Hui Niu; Jin-yong Dong

    2013-01-01

    In this paper,we review our recent progress in the synthesis and application of styryl-capped polypropylene (PP-tSt),an excellent reactive polyolefin that is both convenient and efficient in synthesis and facile and versatile in application for preparing advanced polypropylene materials via macromolecular engineering.The synthesis of PP-t-St is made possible by a unique chain transfer reaction coordinated by a bis-styrenic molecule,such as 1,4-divinylbenzene (DVB) and 1,2-bis(4-vinylphenyl)ethane (BVPE),and hydrogen in typical C2-symmetric metallocene (e.g.rac-Me2Si(2-Me-4-Ph-Ind)2ZrC12,in association with methylaluminocene,MAO) catalyzed propylene polymerization.The regio-selective 2,1-insertion of the styrenic double bond in DVB or BVPE into the overwhelmingly 1,2-fashioned Zr-PP propagating chain enables substantial dormancy of the catalyst active site,which triggers selective hydrogen chain transfer that,with the formed Zr-H species ultimately saturated by the insertion of propylene monomer,results in an exclusive capping of the afforded PP chains by styryl group at the termination end.With a highly reactive styryl group at chain end,PP-t-St has been used as a facile building block in PP macromolecular engineering together with the employment of state-of-the-art synthetic polymer chemistry to fabricate broad types of new polypropylene architectures.

  1. Microwave-Mediated Green Synthesis of Silver Nanoparticles Using Ficus Elastica Leaf Extract and Application in Air Pollution Controlling Studies

    Directory of Open Access Journals (Sweden)

    N. Gandhi,

    2014-01-01

    Full Text Available Silver Nanoparticles are applied in various fields due to its anti bacterial properties. A conventional method for synthesis of AgNP requires dangerous chemical and large amount of energy is released in the process. Environmental friendly techniques are adopted for the synthesis of nanoparticles of silver. The present research work summarizes the green synthesis of silver nanoparticles by using leaf extract of Ficus Elastica and alternative energy sources micro wave irradiation. The synthesized Nanoparticles are characterized by uv- visible spectroscopy and by SEM. The synthesized nanoparticles are applied for controlling SO2 and NO2 from aqueous solution of SO2 and NO2. Batch adsorption studies are carried out. The effect of the temperature on adsorption of aqueous solution is studied at different temperature. A comparison of kinetic models applied to the adsorption of on silver Nanoparticles was evaluated for the pseudo first order, pseudo second order, Elovich and intraparticle diffusion models respectively. Results show that pseudo second order model was found to correlate the experimental data. Data fitted perfectly into and Freundlich adsorption isotherms.

  2. The selective target of capsaicin on FASN expression and de novo fatty acid synthesis mediated through ROS generation triggers apoptosis in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Hathaichanok Impheng

    Full Text Available The inhibition of the mammalian de novo synthesis of long-chain saturated fatty acids (LCFAs by blocking the fatty acid synthase (FASN enzyme activity in tumor cells that overexpress FASN can promote apoptosis, without apparent cytotoxic to non-tumor cells. The present study aimed to focus on the potent inhibitory effect of capsaicin on the fatty acid synthesis pathway inducing apoptosis of capsaicin in HepG2 cells. The use of capsaicin as a source for a new FASN inhibitor will provide new insight into its possible application as a selective anti-cancer therapy. The present findings showed that capsaicin promoted apoptosis as well as cell cycle arrest in the G0/G1 phase. The onset of apoptosis was correlated with a dissipation of mitochondrial membrane potential (ΔΨm. Apoptotic induction by capsaicin was mediated by inhibition of FASN protein expression which was accompanied by decreasing its activity on the de novo fatty acid synthesis. The expression of FASN was higher in HepG2 cells than in normal hepatocytes that were resistant to undergoing apoptosis following capsaicin administration. Moreover, the inhibitory effect of capsaicin on FASN expression and activity was found to be mediated by an increase of intracellular reactive oxygen species (ROS generation. Treatment of HepG2 cells with capsaicin failed to alter ACC and ACLY protein expression, suggesting ACC and ACLY might not be the specific targets of capsaicin to induce apoptosis. An accumulation of malonyl-CoA level following FASN inhibition represented a major cause of mitochondrial-dependent apoptotic induction instead of deprivation of fatty acid per se. Here, we also obtained similar results with C75 that exhibited apoptosis induction by reducing the levels of fatty acid without any change in the abundance of FASN expression along with increasing ROS production. Collectively, our results provide novel evidence that capsaicin exhibits a potent anti-cancer property by targeting

  3. The Selective Target of Capsaicin on FASN Expression and De Novo Fatty Acid Synthesis Mediated through ROS Generation Triggers Apoptosis in HepG2 Cells

    Science.gov (United States)

    Impheng, Hathaichanok; Pongcharoen, Sutatip; Richert, Lysiane; Pekthong, Dumrongsak; Srisawang, Piyarat

    2014-01-01

    The inhibition of the mammalian de novo synthesis of long-chain saturated fatty acids (LCFAs) by blocking the fatty acid synthase (FASN) enzyme activity in tumor cells that overexpress FASN can promote apoptosis, without apparent cytotoxic to non-tumor cells. The present study aimed to focus on the potent inhibitory effect of capsaicin on the fatty acid synthesis pathway inducing apoptosis of capsaicin in HepG2 cells. The use of capsaicin as a source for a new FASN inhibitor will provide new insight into its possible application as a selective anti-cancer therapy. The present findings showed that capsaicin promoted apoptosis as well as cell cycle arrest in the G0/G1 phase. The onset of apoptosis was correlated with a dissipation of mitochondrial membrane potential (ΔΨm). Apoptotic induction by capsaicin was mediated by inhibition of FASN protein expression which was accompanied by decreasing its activity on the de novo fatty acid synthesis. The expression of FASN was higher in HepG2 cells than in normal hepatocytes that were resistant to undergoing apoptosis following capsaicin administration. Moreover, the inhibitory effect of capsaicin on FASN expression and activity was found to be mediated by an increase of intracellular reactive oxygen species (ROS) generation. Treatment of HepG2 cells with capsaicin failed to alter ACC and ACLY protein expression, suggesting ACC and ACLY might not be the specific targets of capsaicin to induce apoptosis. An accumulation of malonyl-CoA level following FASN inhibition represented a major cause of mitochondrial-dependent apoptotic induction instead of deprivation of fatty acid per se. Here, we also obtained similar results with C75 that exhibited apoptosis induction by reducing the levels of fatty acid without any change in the abundance of FASN expression along with increasing ROS production. Collectively, our results provide novel evidence that capsaicin exhibits a potent anti-cancer property by targeting FASN protein in Hep

  4. Co(salen)-mediated enantioselective radiofluorination of epoxides. Synthesis and biological evaluation of both enantiomers of [18F]FMISO

    DEFF Research Database (Denmark)

    Revunov, Evgeny V.

    -fluoride) in a combination with chiral base ((-)tetramisole), chiral Lewis acid ((R,R)-Co(salen)) and hexafluoroisopropanol, providing the corresponding (S)-[18F]fluorohydrines enantioselectively (20-46% enantiomeric excess) with high yields (78-93 % radiochemical yield). The enantioselective Co(salen)-mediated no...

  5. Efficient one-pot synthesis of 2-oxazolines from benzoylacetonitrile and -aminoalcohols mediated by ZnCl2

    Indian Academy of Sciences (India)

    Mei Luo; Jing Cheng Zhang; Hao Yin

    2015-01-01

    A series of 2-oxazolines were synthesized using a simple, one-pot method under inert, moisturefree conditions from the benzoylacetonitrile and -aminoalcohols mediated by 115-172 mol% ZnCl2. Structures of products were fully characterized by NMR, IR and MS.

  6. Enantioselective synthesis of (thiolan-2-yl)diphenylmethanol and its application in asymmetric, catalytic sulfur ylide-mediated epoxidation.

    Science.gov (United States)

    Wu, Hsin-Yi; Chang, Chih-Wei; Chein, Rong-Jie

    2013-06-07

    This work describes an expeditious and efficient preparation of enantiopure (thiolan-2-yl)diphenylmethanol (2) featuring a double nucleophilic substitution and Shi epoxidation as key steps. One of the applications of its benzyl ether derivative to asymmetric sulfur ylide-mediated epoxidation with up to 92% ee (14 examples) was also demonstrated herein.

  7. USING OF Agrobacterium-MEDIATED TRANSFORMATION FOR THE BIOTECHNOLOGICAL IMPROVEMENT OF COMPOSITAE PLANTS. ІІ. SYNTHESIS OF BIOACTIVE COMPOUNDS IN TRANSGENIC PLANTS AND «HAIRY» ROOTS

    Directory of Open Access Journals (Sweden)

    N. A. Matvieieva

    2015-04-01

    Full Text Available The review focused on the data concerning current state in the field of Compositae “hairy” roots and transgenic plants construction using A.tumefaciens- and A. rhizogenes-mediated transformation to obtain biologically active compounds, including recombinant proteins. The article presents data on the results of genetic transformation of Cichorium intybus, Lactuca sativa, Artemisia annua, Artemisia vulgaris, Calendula officinalis, Withania somnifera and other Compositae plants as well as studies on the artemisinin, flavonoids, polyphenols, fructans and other compounds accumulation in transgenic plants and roots. The data show that the use of biotechnological approaches for construction of "hairy" roots and transgenic plants with new features are of great interest. The possibility of increase in the accumulation of naturally synthesized bioactive compounds and recombinant proteins production via A. tumefaciens and A. rhizogenes-mediated transformation have been shown. In vitro cultivation of transgenic plants characterized by high level of bioactive compounds accumulation and synthesis of recombinant proteins makes it possible to obtain guaranteed pure raw material. Using of biotechnological approaches preserved natural populations of plants is particularly important for rare and endangered plant species.

  8. Synthesis of robust hierarchical silica monoliths by surface-mediated solution/precipitation reactions over different scales: designing capillary microreactors for environmental applications.

    Science.gov (United States)

    García-Aguilar, J; Miguel-García, I; Berenguer-Murcia, Á; Cazorla-Amorós, D

    2014-12-24

    A synthetic procedure to prepare novel materials (surface-mediated fillings) based on robust hierarchical monoliths is reported. The methodology includes the deposition of a (micro- or mesoporous) silica thin film on the support followed by growth of a porous monolithic SiO2 structure. It has been demonstrated that this synthesis is viable for supports of different chemical nature with different inner diameters without shrinkage of the silica filling. The formation mechanism of the surface-mediated fillings is based on a solution/precipitation process and the anchoring of the silica filling to the deposited thin film. The interaction between the two SiO2 structures (monolith and thin film) depends on the porosity of the thin film and yields composite materials with different mechanical stability. By this procedure, capillary microreactors have been prepared and have been proved to be highly active and selective in the total and preferential oxidation of carbon monoxide (TOxCO and PrOxCO).

  9. Arginine Supplementation Recovered the IFN-γ-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2α Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells.

    Science.gov (United States)

    Xia, Xiaojing; Che, Yanyi; Gao, Yuanyuan; Zhao, Shuang; Ao, Changjin; Yang, Hongjian; Liu, Juxiong; Liu, Guowen; Han, Wenyu; Wang, Yuping; Lei, Liancheng

    2016-05-31

    During the lactation cycle of the bovine mammary gland, autophagy is induced in bovine mammary epithelial cells (BMECs) as a cellular homeostasis and survival mechanism. Interferon gamma (IFN-γ) is an important antiproliferative and apoptogenic factor that has been shown to induce autophagy in multiple cell lines in vitro. However, it remains unclear whether IFN-γ can induce autophagy and whether autophagy affects milk synthesis in BMECs. To understand whether IFN-γ affects milk synthesis, we isolated and purified primary BMECs and investigated the effect of IFN-γ on milk synthesis in primary BMECs in vitro. The results showed that IFN-γ significantly inhibits milk synthesis and that autophagy was clearly induced in primary BMECs in vitro within 24 h. Interestingly, autophagy was observed following IFN-γ treatment, and the inhibition of autophagy can improve milk protein and milk fat synthesis. Conversely, upregulation of autophagy decreased milk synthesis. Furthermore, mechanistic analysis confirmed that IFN-γ mediated autophagy by depleting arginine and inhibiting the general control nonderepressible-2 kinase (GCN2)/eukaryotic initiation factor 2α (eIF2α) signaling pathway in BMECs. Then, it was found that arginine supplementation could attenuate IFN-γ-induced autophagy and recover milk synthesis to some extent. These findings may not only provide a novel measure for preventing the IFN-γ-induced decrease in milk quality but also a useful therapeutic approach for IFN-γ-associated breast diseases in other animals and humans.

  10. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide.

    Science.gov (United States)

    Siekkinen, Andrew R; McLellan, Joseph M; Chen, Jingyi; Xia, Younan

    2006-12-11

    This paper describes the fastest route to monodispersed silver nanocubes. By adding a trace amount of sodium sulfide (Na(2)S) or sodium hydrosulfide (NaHS) to the conventional polyol synthesis, the reaction time was significantly shortened from 16-26 hours to 3-8 minutes. By merely adjusting the reaction time, monodispersed silver nanocubes of 25-45 nm in edge length were rapidly and routinely produced on relatively large scales. These small nanocubes are of great interest for biomedical applications by way of generating gold nanocages with plasmon resonance peaks tunable to the near-infrared region through a galvanic replacement reaction.

  11. Water mediated synthesis of pyrano[2, 3-c]pyrazoles using L-histidine as an effective catalyst

    Science.gov (United States)

    Khatri, Taslimahemad Talab; Khursheed, Aadil; Kumar, Pushpendra

    2017-07-01

    Pyranopyrazoles are known to show various biological activities, hence is an important class of heterocyclic compounds. Herein we are reporting very first time a convenient and reliable L-histidine catalyzed one pot synthesis of a series of pyrano[2,3-c]pyrazoles from hydrazines, ethyl acetoacetate, malano nitrile and aromatic aldehydes. The reaction presumably involves a sequence of hydrazine formation, arylidine formation, Michael addition followed by cyclization. The yields are high and the reaction takes 1-2 hours for completion, moreover reusability of the catalyst is four times without effecting much on the percentage yield formation.

  12. Chlorophyll-Catalyzed Visible-Light-Mediated Synthesis of Tetrahydroquinolines from N,N-Dimethylanilines and Maleimides.

    Science.gov (United States)

    Guo, Jun-Tao; Yang, Da-Cheng; Guan, Zhi; He, Yan-Hong

    2017-02-17

    Natural pigment chlorophyll was used as a green photosensitizer for the first time in a visible-light photoredox catalysis for the efficient synthesis of tetrahydroquinolines from N,N-dimethylanilines and maleimides in an air atmosphere. The reaction involves direct cyclization via an sp(3) C-H bond functionalization process to afford products in moderate to high yields (61-98%) from a wide range of substrates with a low loading of chlorophyll under mild conditions. This work demonstrates the potential benefits of chlorophyll as photosensitizer in visible light catalysis.

  13. Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens

    Indian Academy of Sciences (India)

    P VANATHI; P RAJIV; RAJESHWARI SIVARAJ

    2016-09-01

    In this paper, we report the biosynthesis and characterization of copper oxide nanoparticles from an aquatic noxious weed, Eichhornia crassipes by green chemistry approach. The aim of this work is to synthesize copper oxide nanoparticles by simple, cost-effective and ecofriendly method as an alternative to other available techniques. The synthesized copper oxide nanoparticles were characterized by UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM) and Energy dispersive X-ray spectroscopy (EDX) analyses. The synthesized particles were highly stable, spherical in shape with an average diameter of $28\\pm 4$ nm. The synthesized nanoparticles were then explored to antifungal activity against plant pathogens. Highest zone of inhibition were observed in 100 $\\mu$g ml$^{−1}$ of Eichhornia-mediated copper oxide nanoparticle against Fusarium culmorum and Aspergillus niger. This Eichhornia-mediated copper oxide nanoparticles wereproved to be good antifungal agents against plant fungal pathogens.

  14. Conductive polymer-based nanoparticles for laser-mediated photothermal ablation of cancer: synthesis, characterization, and in vitro evaluation

    OpenAIRE

    Cantu T; Walsh K; Pattani VP; Moy AJ; Tunnell JW; Irvin JA; Betancourt T

    2017-01-01

    Travis Cantu,1 Kyle Walsh,2 Varun P Pattani,3 Austin J Moy,3 James W Tunnell,3 Jennifer A Irvin,1,2 Tania Betancourt1,2 1Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX, USA; 2Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA; 3Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA Abstract: Laser-mediated photothermal ablation of cancer cells aided by photothermal age...

  15. Role of Protein Synthesis Initiation Factors in Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression

    Science.gov (United States)

    2012-03-01

    Manuscript s • Submitted to the Journal of Nutritional Biochemistry (Feb 21, 2012) “The soy isoflavone equol may increase cancer malignancy via upregulation...29] Ko KP, Park SK, Park B et al. Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean...Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression. PRINCIPAL INVESTIGATOR: Columba de la Parra Simental CONTRACTING

  16. Cellulose nanocrystals as templates for cetyltrimethylammonium bromide mediated synthesis of Ag nanoparticles and their novel use in PLA films.

    Science.gov (United States)

    Yalcinkaya, E E; Puglia, D; Fortunati, E; Bertoglio, F; Bruni, G; Visai, L; Kenny, J M

    2017-02-10

    In the present paper, we reported how cellulose nanocrystals (CNC) from microcrystalline cellulose have the capacity to assist in the synthesis of metallic nanoparticles chains. A cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as modifier for CNC surface. Silver nanoparticles were synthesized on CNC, and nanoparticle density and size were optimized by varying concentrations of nitrate and reducing agents, and the reduction time. The experimental conditions were optimized for the synthesis and the resulting Ag grafted CNC (Ag-g-CNC) were characterized by means of TGA, SEM, FTIR and XRD, and then introduced in PLA matrix. PLA nanocomposite containing silver grafted cellulose nanocrystals (PLA/0.5Ag-g-1CNC) was characterized by optical and thermal analyses and the obtained data were compared with results from PLA nanocomposites containing 1% wt. of CNC (PLA/1CNC), 0.5% wt. of silver nanoparticles (PLA/0.5Ag) and hybrid system containing CNC and silver in the same amount (PLA/1CNC/0.5Ag). The results demonstrated that grafting of silver nanoparticles on CNC positively affected the thermal degradation process and cold crystallization processes of PLA matrix. Finally, the antibacterial activity of the different systems was studied at various incubation times and temperatures, showing the best performance for PLA/1CNC/0.5Ag based nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma.

    Science.gov (United States)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita

    2016-01-01

    In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV-vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity.

    Science.gov (United States)

    Sathishkumar, M; Sneha, K; Won, S W; Cho, C-W; Kim, S; Yun, Y-S

    2009-10-15

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The present study reports the synthesis of silver (Ag) nanoparticles from silver precursor using the bark extract and powder of novel Cinnamon zeylanicum. Water-soluble organics present in the plant materials were mainly responsible for the reduction of silver ions to nano-sized Ag particles. TEM and XRD results confirmed the presence of nano-crystalline Ag particles. The pH played a major role in size control of the particles. Bark extract produced more Ag nanoparticles than the powder did, which was attributed to the large availability of the reducing agents in the extract. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The EC(50) value of the synthesized nanoparticles against Escherichia coli BL-21 strain was 11+/-1.72 mg/L. Thus C. zeylanicum bark extract and powder are a good bio-resource/biomaterial for the synthesis of Ag nanoparticles with antimicrobial activity.

  19. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum

    Directory of Open Access Journals (Sweden)

    Arunachalam KD

    2013-03-01

    Full Text Available Kantha D Arunachalam, Sathesh Kumar Annamalai, Shanmugasundaram HariCenter for Environmental Nuclear Research, Directorate of Research, SRM University, Chennai, Tamil Nadu, IndiaAbstract: In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production.Keywords: green synthesis, phytochemicals, saponins, nanoparticles, transmission electron microscopy

  20. Toward Spatiotemporally Controlled Synthesis of Photoresponsive Polymers: Computational Design of Azobenzene-Containing Monomers for Light-Mediated ROMP.

    Science.gov (United States)

    Zhou, Qunfei; Fursule, Ishan; Berron, Brad J; Beck, Matthew J

    2016-09-15

    Density functional theory calculations have been used to identify the optimum design for a novel, light-responsive ring monomer expected to allow spatial and temporal control of ring-opening metathesis polymerization (ROMP) via light-mediated changes in ring strain energy. The monomer design leverages ring-shaped molecules composed of 4,4'-diaminoazobenzene (ABn) closed by alkene-α,ω-dioic acid linkers. The atomic geometries, formation enthalpies and ring strain energies of azobenzene (AB)-containing rings with various length linkers have been calculated. The AB(2,2) monomer is identified as having optimal properties for light-mediated ROMP, including high thermodynamic stability, low ring strain energy (RSE) with cis-AB, and high RSE with trans-AB. Time-dependent DFT calculations have been used to explore the photoisomerization mechanism of isolated AB and AB-containing rings, and calculations show that trans-to-cis and cis-to-trans photoisomerization of the optimal AB(2,2) ring molecule can be achieved with monochromatic green and blue light, respectively. The AB(2,2) monomer identified here is expected to allow precise, reversible, spatial and temporal light-mediated control of ROMP through AB photoisomerization, and to have promising potential applications in the fabrication of patterned and/or responsive AB-containing polymer materials.

  1. Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent

    Directory of Open Access Journals (Sweden)

    M.S. Geetha

    2016-09-01

    Full Text Available Presently the progress of green chemistry in the synthesis of nanoparticles with the use of plants has engrossed a great attention. This study reports the synthesis of ZnO using latex of Euphorbia Jatropa as reducing agent. As prepared product was characterized by powder X-ray diffractometer (PXRD, Fourier transform infra-red spectroscopy (FTIR, scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS, transmission electron microscopy (TEM, X-ray photo electron spectroscopy (XPS, Rietveld refinement, UV–Visible spectroscopy and photoluminescence (PL. The concentration of plant latex plays an important role in controlling the size of the particle and its morphology. PXRD graphs showed the well crystallisation of the particles. The average particle size was calculated using Scherrer equation and advanced Williamson Hall (WH plots. The average particle size was around 15 nm. This result was also supported by SEM and TEM analyses. FTIR shows the characteristic peak of ZnO at 435 cm−1. SEM and TEM micrographs show that the particles were almost hexagonal in nature. EDS of SEM analysis confirmed that the elements are only Zn and O. EDS confirmed purity of ZnO. Atomic states were confirmed by XPS results. Crystal parameters were determined using Rietveld refinement. From UV–Visible spectra average energy gap was calculated which is ∼3.63 eV. PL studies showed UV emission peak at 392 nm and broad band visible emission centred in the range 500–600 nm. The Commission International de I'Eclairage and colour correlated temperature coordinates were estimated for ZnO prepared using 2 ml, 4 ml and 6 ml Jatropa latex. The results indicate that the phosphor may be suitable for white light emitting diode (WLED. The study fruitfully reveals simple, fast, economical and eco friendly method of synthesis of multifunctional ZnO nanoparticles (Nps.

  2. Abroma augusta Linn bark extract-mediated green synthesis of gold nanoparticles and its application in catalytic reduction

    Science.gov (United States)

    Das, Subhajit; Bag, Braja Gopal; Basu, Ranadhir

    2014-11-01

    The bark extract of Abroma augusta Linn is rich in medicinally important phytochemicals including antioxidants and polyphenols. First one step green synthesis of gold nanoparticles (AuNPs) has been described utilizing the bark extract of Abroma augusta L. and chloroauric acid under very mild reaction conditions. The phytochemicals present in the bark extract acted both as a reducing as well as a stabilizing agent, and no additional stabilizing and capping agents were needed. Detailed characterizations of the stabilized AuNPs were carried out by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles has been demonstrated for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol, and the kinetics of the reduction reaction have been studied spectrophotometrically.

  3. Room temperature synthesis of microemulsion mediated rutile TiO{sub 2} nanoparticles showing remarkable photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ovhal, Sheetal; Thakur, Pragati; Haram, Santosh [Pune Univ. (India). Dept. of Chemistry

    2013-01-15

    We report a simple low cost method at room temperature and normal pressure for the synthesis of mono-dispersed spherical rutile titania nanoparticles using the water in oil microemulsion process. The as-synthesized and calcined TiO{sub 2} nanoparticles were characterized by means of X-ray diffractometry, Fourier transform infrared spectroscopy, thermogravimetric and differential thermal analysis, Brunauer-Emmett-Teller surface area analysis, scanning electron microscopy and transmission electron microscopy. The effect of calcination temperature on the crystalline phase, particle size, specific surface area and surfactant concentration was studied in detail. As-synthesized rutile TiO{sub 2} nanoparticles showed remarkable photocatalytic activity for the degradation of methyl orange dye as a model pollutant. The reaction was found to follow first order kinetics. Chemical oxygen demand results show substantial degradation and mineralization of targeted dye. (orig.)

  4. Ligand mediated synthesis of AgInSe{sub 2} nanoparticles with tetragonal/orthorhombic crystal phases

    Energy Technology Data Exchange (ETDEWEB)

    Abazovic, Nadica D., E-mail: kiki@vinca.rs; Comor, Mirjana I.; Mitric, Miodrag N. [University of Belgrade, Vinca Institute of Nuclear Sciences (Serbia); Piscopiello, Emanuela [ENEA, Department of Advanced Physics Technology and New Materials (FIM) (Italy); Radetic, Tamara [Lawrence Berkeley National Laboratory (United States); Jankovic, Ivana A.; Nedeljkovic, Jovan M. [University of Belgrade, Vinca Institute of Nuclear Sciences (Serbia)

    2012-03-15

    Nanosized AgInSe{sub 2} particles (d {approx} 7-25 nm) were synthesized using colloidal chemistry method at 270 Degree-Sign C. As solvents/surface ligands 1-octadecene, trioctylphosphine, and oleylamine were used. It was shown that choice of ligand has crucial impact not only on final crystal phase of nanoparticles, but also at mechanism of crystal growth. X-ray diffraction and TEM/HRTEM techniques were used to identify obtained crystal phases and to measure average size and shape of nanoparticles. UV/Vis data were used to estimate band-gap energies of obtained samples. It was shown that presented routes can provide synthesis of nanoparticles with desired crystal phase (tetragonal and/or orthorhombic), with band-gap energies in the range from 1.25 to 1.53 eV.

  5. Alpha-2 adrenoceptors and imidazoline receptors in cardiomyocytes mediate counterbalancing effect of agmatine on NO synthesis and intracellular calcium handling.

    Science.gov (United States)

    Maltsev, Alexander V; Kokoz, Yuri M; Evdokimovskii, Edward V; Pimenov, Oleg Y; Reyes, Santiago; Alekseev, Alexey E

    2014-03-01

    Evidence suggests that intracellular Ca(2+) levels and contractility of cardiomyocytes can be modulated by targeting receptors other than already identified adrenergic or non-adrenergic sarcolemmal receptors. This study uncovers the presence in myocardial cells of adrenergic α2 (α2-AR) and imidazoline I1 (I1R) receptors. In isolated left ventricular myocytes generating stationary spontaneous Ca(2+) transients in the absence of triggered action potentials, the prototypic agonist of both receptors agmatine can activate corresponding signaling cascades with opposing outcomes on nitric oxide (NO) synthesis and intracellular Ca(2+) handling. Specifically, activation of α2-AR signaling through PI3 kinase and Akt/protein kinase B stimulates NO production and abolishes Ca(2+) transients, while targeting of I1R signaling via phosphatidylcholine-specific phospholipase C (PC-PLC) and protein kinase C (PKC) suppresses NO synthesis and elevates averaged intracellular Ca(2+). We identified that endothelial NO synthase (eNOS) is a major effector for both signaling cascades. According to the established eNOS transitions between active (Akt-dependent) and inactive (PKC-dependent) conformations, we suggest that balance between α2-AR and I1R signaling pathways sets eNOS activity, which by defining operational states of myocellular sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) can adjust Ca(2+) re-uptake and thereby cardiac inotropy. These results indicate that the conventional catalog of cardiomyocyte sarcolemmal receptors should be expanded by the α2-AR and I1R populations, unveiling previously unrecognized targets for endogenous ligands as well as for existing and potential pharmacological agents in cardiovascular medicine.

  6. Progesterone-adenine hybrids as bivalent inhibitors of P-glycoprotein-mediated multidrug efflux: design, synthesis, characterization and biological evaluation.

    Science.gov (United States)

    Zeinyeh, Waël; Mahiout, Zahia; Radix, Sylvie; Lomberget, Thierry; Dumoulin, Axel; Barret, Roland; Grenot, Catherine; Rocheblave, Luc; Matera, Eva-Laure; Dumontet, Charles; Walchshofer, Nadia

    2012-10-01

    Bivalent ligands were designed on the basis of the described close proximity of the ATP-site and the putative steroid-binding site of P-glycoprotein (ABCB1). The syntheses of 19 progesterone-adenine hybrids are described. Their abilities to inhibit P-glycoprotein-mediated daunorubicin efflux in K562/R7 human leukemic cells overexpressing P-glycoprotein were evaluated versus progesterone. The hybrid with a hexamethylene linker chain showed the best inhibitory potency. The efficiency of these progesterone-adenine hybrids depends on two main factors: (i) the nature of the linker and (ii) its attachment point on the steroid skeleton.

  7. Synthesis of Poly(styrene-b-isoprene-b-styrene) via Nitroxide-mediated Radical Polymerization by a Novel Alkoxyamine

    Institute of Scientific and Technical Information of China (English)

    GAO Long-cheng; PAN Qi-wei; FAN Xing-he; CHEN Xiao-fang; WAN Xin-hua; ZHOU Qi-feng

    2005-01-01

    Bifunctional alkoxyamine bis-TIPNO derived from 2,2,5-trimethyl-4-phenyl-3-azahexane-3-oxyl(TIPNO) and α, ω-alkyl bromide by atom transfer radical addition(ATRA) was employed as "biradical initiator" for nitroxide-mediated radical polymerization(NMRP) of isoprene and styrene. The kinetics study for the polymerization of styrene at different time showed living features. The poly(styrene-b-isoprene-b-styrene)(SIS) copolymers have two glass transition temperatures, indicating the immiscibility of the corresponding blocks.

  8. Citrate-stabilized Q-CdSe seed-mediated synthesis of silver nanoparticles: The role of citrate moieties anchored to the Q-CdSe surface

    Science.gov (United States)

    Ingole, Pravin P.; Bhat, Mohsin A.

    2016-03-01

    Here, we try to explore a new dimension/role for citrate molecules in the bound state, i.e. anchored to the surface of cadmium selenide quantum dots (Q-CdSe), in the synthesis of metal nanoparticles (MNPs). Being labile, the citrate molecule is considered a good candidate for the stabilization of semiconductor quantum dots (QDs) such as Q-CdSe that can be used for further functionalization/modification of the surface properties of the QDs. In its free/ionic form (i.e. not bound to the surface), it is well known for its role as a reducing as well as a capping agent in the synthesis of silver and gold MNPs. A simple strategy for the preparation of silver MNPs following the chemical reduction of silver ions that is mediated by citrate-stabilized Q-CdSe seeds without addition of an external reducing agent is presented. The citrate moieties anchored to the surface of Q-CdSe are found to play an important role in the chemical reduction of silver ions. The obtained product was analysed by spectroscopic, microscopic and structural characterization techniques such as surface plasmon resonance (SPR), transmission electron microscopy (TEM) and cyclic voltammetry. The characteristic redox behaviour observed in cyclic voltammograms (CVs) also supports the formation of Ag MNPs in the samples. Further, the impact of the reaction solution pH on the feasibility of silver ion reduction by Q-CdSe seeds resulting into the formation of Ag MNPs is also briefly discussed.

  9. Prostaglandin (PG) E3 synthesis elicted by adrenergic stimuli in guinea-pig trachea (GPT) is mediated primarily by B2 adrenergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nadel, G.L.; Malik, K.U.; Lew, D.B. (Univ. of Tennessee, Memphis (United States))

    1990-02-26

    The purpose of this study was to examine arachidonic acid (AA) metabolism and to characterize the type of adrenergic receptor (AR) involved in the production of the major metabolite of this fatty acid. ({sup 14}C)AA was incubated with GPT-rings and the radiolabelled products were extracted and separated by TLC method. The medium was also assayed for radiolabelled immunoreactive PG's (iPG's) and leukotrienes (LT) B4 and C4 by RIA or Enzyme immunoassay (EIA) after exposure to various AR agonists. ({sup 14}C)AA was incorporated into GPT-rings and metabolized mainly into iPGE2 and smaller amounts into PGF2{alpha}. Trace amounts of PGD2 and 6-keto-PGF1{alpha} but not LTB4 or LTC4 were detected by RIA and/or EIA. Incubation of GPT rings for 15 minutes with isoproterenol and salbutamol resulted in a significant increase of PGE2 synthesis (optimum conc: 10{sup {minus}7}, 10{sup {minus}7}M respectively). In contrast, dobutamine, norepinephrine, phenylnephrine and xylazine (up to 10{sup {minus}6}M) did not significantly increase PGE2 production. Isoproterenol-induced iPGE2 production was inhibited by a selective {beta}2 antagonist, butoxamine (70%: 10{sup {minus}7}M, 91%: 10{sup {minus}6}M) and somewhat reduced by {beta}1 antagonists practolol and metoprolol (30-64%:10{sup {minus}6}M). These data suggest that isoproterenol induced iPGE2 synthesis is primarily mediated via activation of {beta}2 adrenergic receptor.

  10. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors.

    Science.gov (United States)

    Wu, Yuxiang; Pan, Miaobo; Dai, Yuxuan; Liu, Baomin; Cui, Jian; Shi, Wei; Qiu, Qianqian; Huang, Wenlong; Qian, Hai

    2016-05-15

    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50>100μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors.

  11. Design, synthesis and evaluation of novel triazole core based P-glycoprotein-mediated multidrug resistance reversal agents.

    Science.gov (United States)

    Jiao, Lei; Qiu, Qianqian; Liu, Baomin; Zhao, Tianxiao; Huang, Wenlong; Qian, Hai

    2014-12-15

    A novel series of triazol-N-ethyl-tetrahydroisoquinoline based compounds were designed and synthesized via click chemistry. Most of the synthesized compounds showed P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) reversal activities. Among them, compound 7 with little cytotoxicity towards GES-1 cells (IC50 >80μM) and K562/A02 cells (IC50 >80μM) exhibited more potency than verapamil (VRP) on increasing anticancer drug accumulation in K562/A02 cells. Moreover, compound 7 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 7 in reversing MDR revealed that it could remarkably increase the intracellular accumulation of both rhodamine-123 (Rh123) and adriamycin (ADM) in K562/A02 cells as well as inhibit their efflux from the cells. These results suggested that compound 7 showed more potency than the classical P-gp inhibitor VRP under the same conditions, which may be a promising P-gp-mediated MDR modulator for further development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Phosphorylation of the human respiratory syncytial virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins.

    Science.gov (United States)

    Asenjo, Ana; Villanueva, Nieves

    2016-01-04

    The M2-2 protein regulates the balance between human respiratory syncytial virus (HRSV) transcription and replication. Here it is shown that M2-2 mediated transcriptional inhibition is managed through P protein phosphorylation. Transcription inhibition by M2-2 of the HRSV based minigenome pRSVluc, required P protein phosphorylation at serines (S) in positions 116, 117, 119 and increased inhibition is observed if S232 or S237 is also phosphorylated. Phosphorylation of these residues is required for viral particle egression from infected cells. Viral RNA synthesis complementation assays between P protein variants, suggest that two types of P proteins participate in the process as components of RNA dependent RNA polymerase (RdRp). Type I is only functional when, as a homotetramer, it is bound to N and L proteins through residues 203-241. Type II is functionally independent of these interactions and binds to N protein at a region outside residues 232-241. P protein type I phosphorylation at S116, S117 and S119, did not affect the activity of RdRp but this phosphorylation in type II avoids its interaction with N protein and impairs RdRp functionality for transcription and replication. Structural changes in the RdRp, mediated by phosphorylation turnover at the indicated residues, in the two types of P proteins, may result in a fine adjustment, late in the infectious cycle, of transcription, replication and progression in the morphogenetic process that ends in egression of the viral particles from infected cells.

  13. Photo-mediated optimized synthesis of silver nanoparticles for the selective detection of Iron(III), antibacterial and antioxidant activity.

    Science.gov (United States)

    Kumar, Vijay; Mohan, Sweta; Singh, Devendra K; Verma, Devendra K; Singh, Vikas Kumar; Hasan, Syed Hadi

    2017-02-01

    The AgNPs synthesized by green method have shown great potential in several applications such as biosensing, biomedical, catalysis, electronic etc. The present study deals with the selective colorimetric detection of Fe(3+) using photoinduced green synthesized AgNPs. For the synthesis purpose, an aqueous extract of Croton bonplandianum (AEC) was used as a reducing and stabilizing agent. The biosynthesis was confirmed by UV-visible spectroscopy where an SPR band at λmax 436nm after 40s and 428nm after 30min corresponded to the existence of AgNPs. The optimum conditions for biosynthesis of AgNPs were 30min sunlight exposure time, 5.0% (v/v) AEC inoculum dose and 4mM AgNO3 concentration. The stability of synthesized AgNPs was monitored up to 9months. The size and shape of AgNPs with average size 19.4nm were determined by Field Emission Scanning Electron Microscope (FE-SEM) and High-Resolution Transmission Electron Microscope (HR-TEM). The crystallinity was determined by High-Resolution X-ray Diffractometer (HR-XRD) and Selected Area Electron Diffraction (SAED) pattern. The chemical and elemental compositions were determined by Fourier Transformed Infrared Spectroscopy (FTIR) and Energy Dispersive X-ray Spectroscopy (EDX) respectively. The Atomic Force Microscopy (AFM) images represented the lateral and 3D topological characteristics of AgNPs. The XPS analysis confirmed the presence of two individual peaks which attributed to the Ag 3d3/2 and Ag 3d5/2 binding energies corresponding to the presence of metallic silver. The biosynthesized AgNPs showed potent antibacterial activity against both gram-positive and gram-negative bacterial strains as well as antioxidant activity. On the basis of results and facts, a probable mechanism was also proposed to explore the possible route of AgNPs synthesis, colorimetric detection of Fe(3+), antibacterial and antioxidant activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum.

    Science.gov (United States)

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

    2013-01-01

    In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production.

  15. ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP synthesis in Pseudomonas aeruginosa.

    Science.gov (United States)

    Kong, Weina; Zhao, Jingru; Kang, Huaping; Zhu, Miao; Zhou, Tianhong; Deng, Xin; Liang, Haihua

    2015-09-30

    AlgR is a key transcriptional regulator required for the expression of multiple virulence factors, including type IV pili and alginate in Pseudomonas aeruginosa. However, the regulon and molecular regulatory mechanism of AlgR have yet to be fully elucidated. Here, among 157 loci that were identified by a ChIP-seq assay, we characterized a gene, mucR, which encodes an enzyme that synthesizes the intracellular second messenger cyclic diguanylate (c-di-GMP). A ΔalgR strain produced lesser biofilm than did the wild-type strain, which is consistent with a phenotype controlled by c-di-GMP. AlgR positively regulates mucR via direct binding to its promoter. A ΔalgRΔmucR double mutant produced lesser biofilm than did the single ΔalgR mutant, demonstrating that c-di-GMP is a positive regulator of biofilm formation. AlgR controls the levels of c-di-GMP synthesis via direct regulation of mucR. In addition, the cognate sensor of AlgR, FimS/AlgZ, also plays an important role in P. aeruginosa virulence. Taken together, this study provides new insights into the AlgR regulon and reveals the involvement of c-di-GMP in the mechanism underlying AlgR regulation.

  16. Flavonoids Induce the Synthesis and Secretion of Neurotrophic Factors in Cultured Rat Astrocytes: A Signaling Response Mediated by Estrogen Receptor

    Directory of Open Access Journals (Sweden)

    Sherry L. Xu

    2013-01-01

    Full Text Available Neurotrophic factors are playing vital roles in survival, growth, and function of neurons. Regulation of neurotrophic factors in the brain has been considered as one of the targets in developing drug or therapy against neuronal disorders. Flavonoids, a family of multifunctional natural compounds, are well known for their neuronal beneficial effects. Here, the effects of flavonoids on regulating neurotrophic factors were analyzed in cultured rat astrocytes. Astrocyte is a major secreting source of neurotrophic factors in the brain. Thirty-three flavonoids were screened in the cultures, and calycosin, isorhamnetin, luteolin, and genistein were identified to be highly active in inducing the synthesis and secretion of neurotrophic factors, including nerve growth factor (NGF, glial-derived neurotrophic factor (GDNF, and brain-derived neurotrophic factor (BDNF. The inductions were in time- and dose-dependent manners. In cultured astrocytes, the phosphorylation of estrogen receptor was triggered by application of flavonoids. The phosphorylation was blocked by an inhibitor of estrogen receptor, which in parallel reduced the flavonoid-induced expression of neurotrophic factors. The results proposed the role of flavonoids in protecting brain diseases, and therefore these flavonoids could be developed for health food supplement for patients suffering from neurodegenerative diseases.

  17. RALDH2, the enzyme for retinoic acid synthesis, mediates meiosis initiation in germ cells of the female embryonic chickens.

    Science.gov (United States)

    Yu, Minli; Yu, Ping; Leghari, Imdad H; Ge, Chutian; Mi, Yuling; Zhang, Caiqiao

    2013-02-01

    Meiosis is a process unique to the differentiation of germ cells and exhibits sex-specific in timing. Previous studies showed that retinoic acid (RA) as the vitamin A metabolite is crucial for controlling Stra8 (Stimulated by retinoic acid gene 8) expression in the gonad and to initiate meiosis; however, the mechanism by which retinoid-signaling acts has remained unclear. In the present study, we investigated the role of the enzyme retinaldehyde dehydrogenase 2 (RALDH2) which catalyzes RA synthesizes by initiating meiosis in chicken ovarian germ cells. Meiotic germ cells were first detected at day 15.5 in chicken embryo ovary when the expression of synaptonemal complex protein 3 (Scp3) and disrupted meiotic cDNA 1 homologue (Dmc1) became elevated, while Stra8 expression was specifically up-regulated at day 12.5 before meiosis onset. It was observed from the increase in Raldh2 mRNA expression levels and decreases in Cyp26b1 (the enzyme for RA catabolism) expression levels during meiosis that requirement for RA accumulation is essential to sustain meiosis. This was also revealed by RA stimulation of the cultured ovaries with the initiation of meiosis response, and the knocking down of the Raldh2 expression during meiosis, leading to abolishment of RA-dependent action. Altogether, these studies indicate that RA synthesis by the enzyme RALDH2 and signaling through its receptor is crucial for meiosis initiation in chicken embryonic ovary.

  18. Mechanism and microstructural evolution of polyol mediated synthesis of nanostructured M-type SrFe12O19

    Science.gov (United States)

    Tenorio Gonzalez, F. N.; Bolarín Miró, A. M.; Sánchez De Jesús, F.; Cortés Escobedo, C. A.; Ammar, S.

    2016-06-01

    The synthesis mechanism of nanostructured M-type strontium hexaferrite SrFe12O19 with high coercivity (5.7 kOe) obtained by a polyol process and annealing is proposed. The results show that the hexaferrite is synthesized through the formation of a complex with diethylene glycol during the hydrolysis and solvation stage, followed by the condensation of magnetite and strontium oxide. The results of the monitoring of the process by X-ray diffraction (XRD) of synthesized powders, magnetization hysteresis loops and micromorphology are presented and discussed. The proposed mechanism suggests the intermediate formation of the magnetite phase, which shows coercivity near zero at room temperature and confirms the nanoscale of the particles. Results of thermogravimetric and differential thermal analysis indicate that this phase is followed by the formation of the hematite phase after a heat treatment up to 543 °C in an oxidizing atmosphere. Finally, the hexagonal phase is obtained after application of annealing at 836 °C through the reaction between hematite and strontium oxide.

  19. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 degrees C.

    Science.gov (United States)

    Percec, Virgil; Guliashvili, Tamaz; Ladislaw, Janine S; Wistrand, Anna; Stjerndahl, Anna; Sienkowska, Monika J; Monteiro, Michael J; Sahoo, Sangrama

    2006-11-01

    Conventional metal-catalyzed organic radical reactions and living radical polymerizations (LRP) performed in nonpolar solvents, including atom-transfer radical polymerization (ATRP), proceed by an inner-sphere electron-transfer mechanism. One catalytic system frequently used in these polymerizations is based on Cu(I)X species and N-containing ligands. Here, it is reported that polar solvents such as H(2)O, alcohols, dipolar aprotic solvents, ethylene and propylene carbonate, and ionic liquids instantaneously disproportionate Cu(I)X into Cu(0) and Cu(II)X(2) species in the presence of a diversity of N-containing ligands. This disproportionation facilitates an ultrafast LRP in which the free radicals are generated by the nascent and extremely reactive Cu(0) atomic species, while their deactivation is mediated by the nascent Cu(II)X(2) species. Both steps proceed by a low activation energy outer-sphere single-electron-transfer (SET) mechanism. The resulting SET-LRP process is activated by a catalytic amount of the electron-donor Cu(0), Cu(2)Se, Cu(2)Te, Cu(2)S, or Cu(2)O species, not by Cu(I)X. This process provides, at room temperature and below, an ultrafast synthesis of ultrahigh molecular weight polymers from functional monomers containing electron-withdrawing groups such as acrylates, methacrylates, and vinyl chloride, initiated with alkyl halides, sulfonyl halides, and N-halides.

  20. Pharmacologic inhibition of the CK2-mediated phosphorylation of B23/NPM in cancer cells selectively modulates genes related to protein synthesis, energetic metabolism, and ribosomal biogenesis.

    Science.gov (United States)

    Perera, Yasser; Pedroso, Seidy; Borras-Hidalgo, Orlando; Vázquez, Dania M; Miranda, Jamilet; Villareal, Adelaida; Falcón, Viviana; Cruz, Luis D; Farinas, Hernán G; Perea, Silvio E

    2015-06-01

    B23/NPM is a multifunctional nucleolar protein frequently overexpressed, mutated, or rearranged in neoplastic tissues. B23/NPM is involved in diverse biological processes and is mainly regulated by heteroligomer association and posttranslational modification, phosphorylation being a major posttranslational event. While the role of B23/NPM in supporting and/or driving malignant transformation is widely recognized, the particular relevance of its CK2-mediated phosphorylation remains unsolved. Interestingly, the pharmacologic inhibition of such phosphorylation event by CIGB-300, a clinical-grade peptide drug, was previously associated to apoptosis induction in tumor cell lines. In this work, we sought to identify the biological processes modulated by CIGB-300 in a lung cancer cell line using subtractive suppression hybridization and subsequent functional annotation clustering. Our results indicate that CIGB-300 modulates a subset of genes involved in protein synthesis (ES = 8.4, p NPM in cancer cells, revealing at the same time the potentialities of its pharmacological manipulation for cancer therapy. Finally, this work also suggests several candidate gene biomarkers to be evaluated during the clinical development of the anti-CK2 peptide CIGB-300.

  1. Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper reports the chitosan-mediated synthesis of porous hematite nanoparticles with FeCl3 as the precursor via a hydrothermal approach at 160℃.A series of porous chitosan/iron oxide hybrid nanoparticles were obtained via changing the ratio of chitosan to FeCl3,FeCl3 concentration and pH value of the reaction solution,and producing porous iron oxide nanoparticles after calcination.The as-prepared samples were characterized by means of X-ray diffraction,transmission electron microscopy,thermal gravimetric analysis,Fourier transform infrared,and N2 sorption.The particle sizes of these metal oxides were less than 100 nm,and the pore sizes were in the range of 2-16 nm.It was demonstrated that chitosan played a key role in the formation of the porous structures.The resultant α-Fe2O3 nanoparticles were used as the support to immobilize Au or Pd nanoparticles,producing Au/α-Fe2O3 or Pd/α-Fe2O3 nanoparticles.The as-prepared α-Fe2O3 nanocatalyst exhibited high selectivity towards cyclohexanone and cyclohexanol for catalyzing cyclohexane oxidation with O2 at 150℃.

  2. Bio-mediated route for the synthesis of shape tunable Y₂O₃: Tb³⁺ nanoparticles: Photoluminescence and antibacterial properties.

    Science.gov (United States)

    Prasannakumar, J B; Vidya, Y S; Anantharaju, K S; Ramgopal, G; Nagabhushana, H; Sharma, S C; Daruka Prasad, B; Prashantha, S C; Basavaraj, R B; Rajanaik, H; Lingaraju, K; Prabhakara, K R; Nagaswarupa, H P

    2015-01-01

    The study reports green mediated combustion route for the synthesis of Tb(3+) ion activated Y2O3 nanophosphors using Aloe Vera gel as fuel. The concentration of Tb(3+) plays a key role in controlling the morphology of Y2O3 nanostructures. The formation of different morphologies of Y2O3: Tb(3+) nanophosphors were characterized by PXRD, SEM, TEM and HRTEM. PXRD data and Rietveld analysis evident the formation of single phase Y2O3 with cubic crystal structure. The influence of Tb(3+) ion concentration on structural morphology, UV-visible absorption and PL emission were investigated systematically. The PL emission of Y2O3: Tb(3+) (1-11 mol%) nanophosphors were studied in detail under 271 and 304nm excitation wavelengths. The CIE coordinates lies well within green region and correlated color temperature values were found to be 6221 and 5562K under different excitations. Thus, the present phosphor can serve as an excellent candidate for LEDs. Further, prismatic Y2O3: Tb(3+) (3 mol%) nanophosphor showed significant antibacterial activity against Pseudomonas desmolyticum and Staphylococcus aureus. The present study successfully demonstrates Y2O3: Tb(3+) nanophosphors can be used for display applications as well as in medical applications for controlling pathogenic bacteria.

  3. Lithium chloride-mediated stereoselective synthesis of cyclopropanecarboxamides from γ,δ-epoxy malonates through a domino cyclopropanation/lactonization/aminolysis process.

    Science.gov (United States)

    Marques, Marcelo V; Sá, Marcus M

    2014-05-16

    The stereoselective synthesis of novel multifunctionalized cyclopropanes from γ,δ-epoxy malonates and amines mediated by LiCl under mild conditions was carried out. This domino reaction involves the initial cyclopropanation via intramolecular ring-opening of γ,δ-epoxy malonates through the cooperative catalysis of LiCl (acting as a Lewis acid) and a Brønsted base (a primary or, in selected cases, a secondary amine). The sequential events consisted of lactonization and aminolysis of the lactone ring, which ultimately furnished cyclopropanecarboxamides with different substitution patterns in good isolated yields. In all cases, a quaternary stereogenic center could be perfectly assembled, with a single diastereoisomer being obtained. This method proceeds with high atom economy, is remarkably modular and operationally simple, and tolerates a variety of functional groups. The involvement of readily available starting materials, the broad scope, and the use of a sustainable solvent (methanol or ethanol) at ambient temperature make this domino process highly effective. A reaction mechanism is proposed on the basis of the experimental observations involving the preparation and reactivity of cyclopropylidene lactones as possible intermediates of the domino process.

  4. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation.

    Science.gov (United States)

    Parl, Angelika; Mitchell, Sabrina L; Clay, Hayley B; Reiss, Sara; Li, Zhen; Murdock, Deborah G

    2013-11-15

    Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.

  5. Lovastatin decreases the synthesis of inflammatory mediators during epileptogenesis in the hippocampus of rats submitted to pilocarpine-induced epilepsy.

    Science.gov (United States)

    Gouveia, T L F; Scorza, F A; Iha, H A; Frangiotti, M I B; Perosa, S R; Cavalheiro, E A; Silva, J A; Feliciano, R S; de Almeida, A C; Naffah-Mazzacoratti, M G

    2014-07-01

    Statins may act on inflammatory responses, decreasing oxidative stress and also reducing brain inflammation in several brain disorders. Epileptogenesis is a process in which a healthy brain becomes abnormal and predisposed to generating spontaneous seizures. We previously reported that lovastatin could prevent neuroinflammation in pilocarpine-induced status epilepticus (SE). In this context, this study investigated the long-lasting effects of lovastatin on mRNA expression of proinflammatory cytokines (interleukin-1β, tumor necrosis factor α, interleukin-6) and the antiinflammatory cytokine IL-10 in the hippocampus during epileptogenesis by immunohistochemistry and real time polymerase chain reaction (RT-PCR) during the latent and chronic phases in the epilepsy model induced by pilocarpine in rats. For these purposes, four groups of rats were employed: saline (CONTROL), lovastatin (LOVA), pilocarpine (PILO), and pilocarpine plus lovastatin (PILO+LOVA). After pilocarpine injection (350mg/kg, i.p.), the rats were treated with 20mg/kg of lovastatin via an esophagic probe 2h after SE onset. All surviving rats were continuously treated during 15days, twice/day. The pilocarpine plus lovastatin group showed a significant decrease in the levels of IL-1β, TNF-α, and IL-6 during the latent phase and a decreased expression of IL-1β and TNF-α in the chronic phase when compared with the PILO group. Moreover, lovastatin treatment also induced an increased expression of the antiinflammatory cytokine, IL-10, in the PILO+LOVA group when compared with the PILO group in the chronic phase. Thus, our data suggest that lovastin may reduce excitotoxicity during epileptogenesis induced by pilocarpine by increasing the synthesis of IL-10 and decreasing proinflammatory cytokines in the hippocampus.

  6. Synthesis and characterisation of neem leaf extract, 2, 3-dehydrosalanol and quercetin dihydrate mediated silver nano particles for therapeutic applications.

    Science.gov (United States)

    Avinash, Bodaballa; Venu, Ravipati; Prasad, Tollamadugu N V K V; Alpha Raj, Mekapogu; Srinivasa Rao, Kothapalli; Srilatha, Chintamaneni

    2017-06-01

    The utility of green silver nanoparticles (AgNPs) in veterinary medicine is steadily increasing as they have many therapeutic applications against pathogens and arthropods of livestock. In this study, green AgNPs using neem (N-AgNPs), 2,3-dehydrosalanol (2,3-DHS-AgNPs) and quercetin dihydrate (QDH-AgNPs) were synthesised and characterised. Synthesised compounds were characterised by UV-Vis spectroscopy and the peak absorbance was recorded at 370 nm for neem extract. For N-AgNPs, 2,3-DHS-AgNPs and QDH-AgNPs, the maximum absorbance peaks were at 430, 230 and 220 nm, respectively. The FTIR analysis confirmed the synthesis of green AgNPs. The XRD pattern of N-AgNPs showed the peaks corresponding to whole spectra of 2 θ values ranging from 10-80. The relatively higher intensity of (111, 222) planes in face centred cubic crystalline structure supports the formation of synthesised AgNPs. In DLS analysis, the hydrodynamic diameter of neem leaf extract was found to be 259.8 nm, followed by 5.3, 6.7 and 261.8 nm for 2,3-DHS-AgNPs, N-AgNPs and QDH-AgNPs, respectively. Based on the transmission electron microscopy and scanning electron microscopy image analyses, confirmed the formation of N-AgNPs, 2,3-DHS-AgNPs and QDH-AgNPs. These eco-friendly phyto-AgNPs may be of use as an effective alternative to chemical control methods against the arthropods of livestock.

  7. Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells

    Directory of Open Access Journals (Sweden)

    Lu RQ

    2012-04-01

    Full Text Available Renquan Lu1, Dapeng Yang2, Daxiang Cui2, Zhongyang Wang3, Lin Guo11Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 2Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 3College of Chemistry and Chemical Engineering, Yantai University, Shan Dong Province, People's Republic of ChinaAbstract: A simple, cost-effective, and environmentally friendly approach to the aqueous-phase synthesis of silver (Ag nanoparticles was demonstrated using silver nitrate (AgNO3 and freshly extracted egg white. The bio-conjugates were characterized by UV-visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectrometry, and dynamic light scattering. These results indicated that biomolecule-coated Ag nanoparticles are predominantly spherical in shape with an average size of 20 nm. The proteins of egg white, which have different functional groups, played important roles in reducing Ag+ and maintaining product attributes such as stability and dispersity. In vitro cytotoxicity assays showed that these Ag-protein bio-conjugates showed good biocompatibility with mouse fibroblast cell lines 3T3. Furthermore, X-ray irradiation tests on 231 tumor cells suggested that the biocompatible Ag-protein bio-conjugates enhanced the efficacy of irradiation, and thus may be promising candidates for use during cancer radiation therapy.Keywords: green chemistry, biosynthesis, egg white, Ag nanoparticles, X-ray irradiation

  8. Induction of a cytoplasmic activator of DNA synthesis in lymphocytes is mediated through a membrane-associated protein kinase.

    Science.gov (United States)

    Autieri, M V; Fresa, K L; Coffman, F D; Katz, M E; Cohen, S

    1990-12-01

    We have shown previously that cytoplasmic extracts from actively dividing lymphoid cells are capable of inducing DNA synthesis in isolated nuclei. One of the factors involved in this activity, ADR, appears to be a greater than 90 kDa heat-labile protease. Cytoplasmic extracts prepared from nonproliferating lymphocytes express little to no ADR activity. However, ADR activity can be generated in these extracts by brief exposure to a membrane-enriched fraction of spontaneously proliferating, leukemic human T lymphoblastoid (MOLT-4) cells. This suggests that ADR activity is present in the resting cytoplasm in an inactive or precursor form. This in vitro generation of ADR activity can be inhibited in a dose-dependent manner by the isoquinolinesulfonamide derivative, H-7 (1-(5-isoquinoline-sulfonyl)-2-methylpiperazine dihydrochloride), an inhibitor of both cyclic adenosine monophosphate (cAMP)-dependent protein kinases and protein kinase C (PKC). However, more specific inhibitors of cAMP-dependent protein kinases, including N-[( 2-methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H8) and N-(2-gua-nidinoethyl)-5-isoquinolinesulfonamide (HA-1004), had little to no effect on the in vitro generation of ADR activity. Furthermore, membranes from MOLT-4 cells depleted of PKC by long-term exposure (24 h) to phorbol esters and calcium ionophores were unable to induce ADR activity in resting peripheral blood lymphocytes extracts. The results of these studies suggest 1) ADR activity is present in resting cell cytoplasm in an inactive or precursor form; and 2) ADR activity can be induced in this resting cytoplasm through a mechanism involving a membrane-associated protein kinase, possibly PKC. The ability of alkaline phosphatase to deplete the activity of preformed ADR suggests the possibility that ADR itself is phosphoprotein.

  9. Metal-mediated gem-Difluoroallylation of N-Acylhydrazones: Highly Efficient Synthesis of a,a-Difluorohomoallylic Amines

    Institute of Scientific and Technical Information of China (English)

    YUE Xuyi; QIU Xiaolong; QING Fengling

    2009-01-01

    Indium-mediated gem-difluoroallylation of aldehyde-derived N-acylhydrazones 1a-1q and 4a-4g with 3-bromo-3,3-difluoropropene 2 afforded a,a-difluorohomoallylic hydrazides 3a-3q and 5a-5g in high yields, re-spectively. Functional groups such as nitro, phenolic hydroxyl, benzyloxy and even C=C bonds of a,fl-unsaturated aldehydes were compatible under this mild and operationally simple gem-difluoroallylic reaction condition. By means of substitution of Zn powder for indium, gem-difluoroallylation of ketone-derived N-acylhydrazones 6a-6d also provided the corresponding a,a-difluorohomoallylic hydrazides 7a-7d in medium yields. The N-N bond cleavage of the hydrazide 3a proceeded smoothly to give the corresponding primary gem-difluorohomoallylic amine 8, which could be converted to gem-difluoro-δ-substituted α,β-unsaturated lactam 11 via acryloylation fol-lowed by ring closing metathesis (RCM) reaction.

  10. Synthesis and characterization of boric acid mediated metal-organic frameworks based on trimesic acid and terephthalic acid

    Science.gov (United States)

    Ozer, Demet; Köse, Dursun A.; Şahin, Onur; Oztas, Nursen Altuntas

    2017-08-01

    The new metal-organic framework materials based on boric acid reported herein. Sodium and boron containing metal-organic frameworks were synthesized by one-pot self-assembly reaction in the presence of trimesic acid and terephthalic acid in water/ethanol solution. Boric acid is a relatively cheap boron source and boric acid mediated metal-organic framework prepared mild conditions compared to the other boron source based metal-organic framework. The synthesized compounds were characterized by FT-IR, p-XRD, TGA/DTA, elemental analysis, 13C-MAS NMR, 11B-NMR and single crystal measurements. The molecular formulas of compounds were estimated as C18H33B2Na5O28 and C8H24B2Na2O17 according to the structural analysis. The obtained complexes were thermally stable. Surface properties of inorganic polymer complexes were investigated by BET analyses and hydrogen storage properties of compound were also calculated.

  11. Influence of plant growth regulators on callus mediated regeneration and secondary metabolites synthesis in Withania somnifera (L.) Dunal.

    Science.gov (United States)

    Chakraborty, Nilanjan; Banerjee, Debarupa; Ghosh, Moumita; Pradhan, Prakash; Gupta, Namrata Shanu; Acharya, Krishnendu; Banerjee, Maitreyi

    2013-01-01

    Withania somnifera (L.) Dunal, is an important medicinal plant being the source of extremely important compounds like withanolides and withaferin. Influence of different plant growth regulators (PGRs) were evaluated for induction of callus, callus mediated regeneration and production of secondary metabolites in them. Explants for callusing were collected from plants grown in vitro and maximum callusing (98 %) was obtained on MS medium supplemented with a combination of 2,4-dichlorophenoxy acetic acid (2,4-D) (0.5 mg l(-1)) and kinetin (KN) (0.2 mg l(-1)). Among different types of calli, best shoot regeneration was observed on green, compact calli produced on MS medium with a combination of 6-benzylamino purine (BAP) and indole butyric acid (IBA). MS medium supplemented with BAP (2 mg l(-1)) showed highest frequency (98 %) of shoot bud regeneration. The micro-shoots were efficiently rooted on MS media supplemented with 0.5 mg l(-1) IBA. Rooted plants were transferred to soil-vermi-compost (1:3; w/w) medium in greenhouse for acclimatization. Presence of withanolide A and withaferin A in calli was validated through high performance thin layer chromatography (HPTLC). It was interesting to observe that the PGRs showed significant influence on the secondary metabolites production in callus and 2,4-D having the least effect. Histological studies revealed the origin of shoot tip in the callus during regeneration.

  12. Design and synthesis of structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization chemistry

    Institute of Scientific and Technical Information of China (English)

    Dong Jinyong

    2006-01-01

    Functionalization of polyolefins is an industrially important yet scientifically challenging research subject.This paper summarizes our recent effort to access structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization.In one approach,polypropylenes containing side chain functional groups of controlled concentrations were obtained by Ziegler-Natta-catalyzed copolymerization of propylene in combination with either living anionic or controlled radical polymerization of polar monomers.The copolymerization of propylene with 1,4-divinylbenzene using an isospecific MgC12-supported TIC14 catalyst yielded potypropylenes containing pendant styrene moieties.Both metalation reaction with n-butyllithium and hydrochlorination reaction with dry hydrogen chloride selectively and quantitatively occurred at the pendant reactive sites,generating polymeric benzyllithium and 1-chloroethylbenzene species.These species initiated living anionic polymerization of styrene(S)and atom transfer radical polymerization(in the presence of CuC1 and pentamethyldiethylenetriamine) of methyl methacrylate(MMA),respectively,resulting in functional polypropylene graft copolymers(PP-g-PS and PP-g-PMMA)with controllable graft lengths.In another approach,chain end-functionalized polypropylenes containing a terminal OH-group with controlled molecular weights were directly prepared by propylene polymerization with a metaUocene catalyst through a selective aluminum chain transfer reaction.Both approaches proved to be desirable polyolefin functionalization routes in terms of efficiency and polymer structure controllability.

  13. Seed-mediated synthesis of copper nanoparticles on carbon nanotubes and their application in nonenzymatic glucose biosensors.

    Science.gov (United States)

    Lu, Li-Min; Zhang, Xiao-Bing; Shen, Guo-Li; Yu, Ru-Qin

    2012-02-17

    In this paper, for the first time, Cu nanoparticles (CuNPs) were prepared by seed-mediated growth method with Au nanoparticles (AuNPs) playing the role of seeds. Carbon nanotubes (CNTs) and AuNPs were first dropped on the surface of glassy carbon (GC) electrode, and then the electrode was immersed into growth solution that contained CuSO(4) and hydrazine. CuNPs were successfully grown on the surface of the CNTs. The modified electrode showed a very high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium, which was utilized as the basis of the fabrication of a nonenzymatic biosensor for electrochemical detection of glucose. The biosensor can be applied to the quantification of glucose with a linear range covering from 1.0×10(-7) to 5×10(-3)M and a low detection limit of 3×10(-8)M. Furthermore, the experiment results also showed that the biosensor exhibited good reproducibility and long-term stability, as well as high selectivity with no interference from other oxidable species. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Synthesis of Gold Mediated Biocompatible Nanocomposite of Lactone Enriched Fraction from Sahadevi (Vernonia cinerea Lees): An Assessment of Antimalarial Potential.

    Science.gov (United States)

    Jyotshna; Shanker, Karuna; Khare, Puja; Tiwari, Nimisha; Mohanty, Shilpa; Bawankule, Dnyaneshwar U; Pal, Anirban

    2016-01-01

    Metals reduction into submicro/nano size through bhasma preparations for therapeutic use is well established in ancient traditional system of Indian medicines i.e. Ayurveda. Recently, nanotechnology has drawn the attention of researchers to develeope various size and shape nanoparicles / composite for number of applications.In this article, we report the enrichment of lactone enriched fraction (LEF) by liquid-liquid portioning of Vernonia cinerea metabolic extract and sysnthesis of mediated nano-gold composite (LEF-AuNPs) in single step process. The morphological characteristic based on transmission electron microscope (TEM) image analysis showed that LEF-AuNPs were predominantly nanopolygons and nanobots in shapes ranging from 50-200 nm in size. Abundance of phytochemicals in both LEF and LEF-AuNPs was dissimilar. In LEF, montanol- a diterpenoid, while in LEF-AuNPs, neophytadiene- a phytanes was the major compound. HPLC profile of relatively polar compounds also varied drastically. In-vitro biocompatibility, cytotoxicity [MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) based assay] and storage stabilitiy of LEF-AuNPs were evaluated. The moderate ability of LEF-AuNPs to restrict parasitaemia, extended mean survival time of mice infected with Plasmodium berghei and lack of any evident toxicity provides new opportunities for the safe delivery and applications of such nanocomposites in malaria therapy.

  15. Low temperature synthesis of seed mediated CuO bundle of nanowires, their structural characterisation and cholesterol detection

    Energy Technology Data Exchange (ETDEWEB)

    Ibupoto, Z.H., E-mail: zafar.hussin.ibupoto@liu.se [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden); Khun, K. [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden); Liu, X. [Department of Physics, Chemistry, and Biology (IFM), Linköping University, 58183 Linköping Sweden (Sweden); Willander, M. [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden)

    2013-10-15

    In this study, we have successfully synthesised CuO bundle of nanowires using simple, cheap and low temperature hydrothermal growth method. The growth parameters such as precursor concentration and time for duration of growth were optimised. The field emission scanning electron microscopy (FESEM) has demonstrated that the CuO bundles of nanowires are highly dense, uniform and perpendicularly oriented to the substrate. The high resolution transmission electron microscopy (HRTEM) has demonstrated that the CuO nanostructures consist of bundle of nanowires and their growth pattern is along the [010] direction. The X-ray diffraction (XRD) technique described that CuO bundle of nanowires possess the monoclinic crystal phase. The surface and chemical composition analyses were carried out with X-ray photoelectron spectroscopy (XPS) technique and the obtained results suggested the pure crystal state of CuO nanostructures. In addition, the CuO nanowires were used for the cholesterol sensing application by immobilising the cholesterol oxidase through electrostatic attraction. The infrared reflection absorption spectroscopy study has also revealed that CuO nanostructures are consisting of only Cu-O bonding and has also shown the possible interaction of cholesterol oxidase with the sharp edge surface of CuO bundle of nanowires. The proposed cholesterol sensor has demonstrated the wide range of detection of cholesterol with good sensitivity of 33.88 ± 0.96 mV/decade. Moreover, the CuO bundle of nanowires based sensor electrode has revealed good repeatability, reproducibility, stability, selectivity and a fast response time of less than 10 s. The cholesterol sensor based on the immobilised cholesterol oxidase has good potential applicability for the determination of cholesterol from the human serum and other biological samples. - Highlights: • This study describes the synthesis of bundle of CuO nanowires by hydrothermal method. • CuO nanostructures exhibit good alignment and

  16. Supplementing female rats with DHA-lysophosphatidylcholine increases docosahexaenoic acid and acetylcholine contents in the brain and improves the memory and learning capabilities of the pups.

    Directory of Open Access Journals (Sweden)

    Rojas, I.

    2010-03-01

    Full Text Available Docosahexaenoic acid (DHA is supplied to the foetus and newborn through the mother from their own reserves and their diet. No consensus about the best form to supplement DHA has been established. We propose that DHAcontaining lysophosphatidylcholine (DHA-LPC, obtained from DHA-rich eggs may be a suitable form of DHA and choline (the precursor of acetylcholine supplementation. We evaluated the effectiveness of DHA-LPC to increase DHA and acetylcholine concentration in the brain of pups born from female rats supplemented with DHA-LPC before and during pregnancy. We also evaluated the effect of DHA supplementation on learning and memory capabilities of pups through the Skinner test for operant conditioning. Female Wistar rats received 40-day supplementation of DHA-LPC (8 mg DHA/kg b.w/daily., before and during pregnancy. After delivery, plasma, erythrocyte, liver, and adipose tissue DHA and plasma choline were analyzed. Brains from 60 day-old pups separated into frontal cortex, cerebellum, striatum, hippocampus, and occipital cortex, were assessed for DHA, acetylcholine, and acetylcholine transferase (CAT activity. Pups were subjected to the Skinner box test. DHA-LPC supplementation produces higher choline and liver DHA contents in the mother’s plasma and increases the pups’ DHA and acetylcholine in the cerebellum and hippocampus. CAT was not modified by supplementation. The Skinner test shows that pups born from DHA-LPC supplemented mothers exhibit better scores of learning and memory than the controls. Conclusion: DHA-LPC may be an adequate form for DHA supplementation during the perinatal period.El ácido docosahexaenoico (DHA que requiere el feto y el recién nacido lo aporta la madre desde sus reservas y la dieta, por lo cual se sugiere suplementar a la madre con DHA. No hay consenso sobre la mejor forma de suplementación. Proponemos que un lisofosfolípido que contiene DHA y colina (DHA-LPC obtenido de huevos con alto contenido de DHA es

  17. Endoplasmic Reticulum Stress Induced Synthesis of a Novel Viral Factor Mediates Efficient Replication of Genotype-1 Hepatitis E Virus.

    Directory of Open Access Journals (Sweden)

    Vidya P Nair

    2016-04-01

    Full Text Available Hepatitis E virus (HEV causes acute hepatitis in many parts of the world including Asia, Africa and Latin America. Though self-limiting in normal individuals, it results in ~30% mortality in infected pregnant women. It has also been reported to cause acute and chronic hepatitis in organ transplant patients. Of the seven viral genotypes, genotype-1 virus infects humans and is a major public health concern in South Asian countries. Sporadic cases of genotype-3 and 4 infection in human and animals such as pigs, deer, mongeese have been reported primarily from industrialized countries. Genotype-5, 6 and 7 viruses are known to infect animals such as wild boar and camel, respectively. Genotype-3 and 4 viruses have been successfully propagated in the laboratory in mammalian cell culture. However, genotype-1 virus replicates poorly in mammalian cell culture and no other efficient model exists to study its life cycle. Here, we report that endoplasmic reticulum (ER stress promotes genotype-1 HEV replication by inducing cap-independent, internal initiation mediated translation of a novel viral protein (named ORF4. Importantly, ORF4 expression and stimulatory effect of ER stress inducers on viral replication is specific to genotype-1. ORF4 protein sequence is mostly conserved among genotype-1 HEV isolates and ORF4 specific antibodies were detected in genotype-1 HEV patient serum. ORF4 interacted with multiple viral and host proteins and assembled a protein complex consisting of viral helicase, RNA dependent RNA polymerase (RdRp, X, host eEF1α1 (eukaryotic elongation factor 1 isoform-1 and tubulinβ. In association with eEF1α1, ORF4 stimulated viral RdRp activity. Furthermore, human hepatoma cells that stably express ORF4 or engineered proteasome resistant ORF4 mutant genome permitted enhanced viral replication. These findings reveal a positive role of ER stress in promoting genotype-1 HEV replication and pave the way towards development of an efficient

  18. Antisense Oligonucleotide-mediated Suppression of Muscle Glycogen Synthase 1 Synthesis as an Approach for Substrate Reduction Therapy of Pompe Disease

    Directory of Open Access Journals (Sweden)

    Nicholas P Clayton

    2014-01-01

    Full Text Available Pompe disease is an autosomal recessive disorder caused by a deficiency of acid α-glucosidase (GAA; EC 3.2.1.20 and the resultant progressive lysosomal accumulation of glycogen in skeletal and cardiac muscles. Enzyme replacement therapy using recombinant human GAA (rhGAA has proven beneficial in addressing several aspects of the disease such as cardiomyopathy and aberrant motor function. However, residual muscle weakness, hearing loss, and the risks of arrhythmias and osteopenia persist despite enzyme therapy. Here, we evaluated the relative merits of substrate reduction therapy (by inhibiting glycogen synthesis as a potential adjuvant strategy. A phosphorodiamidate morpholino oligonucleotide (PMO designed to invoke exon skipping and premature stop codon usage in the transcript for muscle specific glycogen synthase (Gys1 was identified and conjugated to a cell penetrating peptide (GS-PPMO to facilitate PMO delivery to muscle. GS-PPMO systemic administration to Pompe mice led to a dose-dependent decrease in glycogen synthase transcripts in the quadriceps, and the diaphragm but not the liver. An mRNA response in the heart was seen only at the higher dose tested. Associated with these decreases in transcript levels were correspondingly lower tissue levels of muscle specific glycogen synthase and activity. Importantly, these reductions resulted in significant decreases in the aberrant accumulation of lysosomal glycogen in the quadriceps, diaphragm, and heart of Pompe mice. Treatment was without any overt toxicity, supporting the notion that substrate reduction by GS-PPMO-mediated inhibition of muscle specific glycogen synthase represents a viable therapeutic strategy for Pompe disease after further development.

  19. Seed-mediated synthesis of acanthosphere-like gold microstructures with tunable LSPR in the NIR region using gemini surfactants as directing agents for SERS applications

    Science.gov (United States)

    Xia, Yan; Gao, Zhinong; Liao, Xueming; Wei, Wanying; Pan, Chenchen

    2017-08-01

    Acanthosphere-like gold microstructures (AGMs) were synthesized using a facile, two-step, seed-mediated method and butanediyl-1,4- bis(dimethylhexadecylammonium bromide) (16-4-16) as a structure-directing agent. The morphologies and sizes of the products were controlled during the synthesis process by adjusting the concentrations of 16-4-16, the AgNO3 feed, HAuCl4, ascorbic acid, the amount of Ag seeds and the types of gemini surfactants used through systematic inquiry; particle sizes ranging from 130 to 800 nm were well prepared. Correspondingly, the morphology of the products changed between regular and irregular AGMs, and the products presented a number of new morphologies, such as open-mouthed submicrostructures and ribbon nanowires. In particular, with the increase in the 16-4-16 concentration, the structural morphology of the thorns clearly changed from a tip to a lamellar structure. A UV-vis spectroscopic analysis indicated that the localized surface plasmon resonance (LSPR) peak of the AGMs could be adjusted by changing the above factors, which extended from 500 to 1350 nm in the near-infrared (NIR) region, enabling a tremendous potential for using the AGMs as platforms for various biomedical applications. Based on the intermediate products, we propose a two-stage growth mechanism for the AGMs in which their solid cores and tips are generated successively. Surface-enhanced Raman scattering (SERS) measurements indicate that the AGMs can serve as sensitive SERS substrates; a SERS detection limit of 5 × 10-7 M is presented for rhodamine B molecules. [Figure not available: see fulltext.

  20. A Concise Li/liq. NH{sub 3} Mediated Synthesis of (4E,10Z)-Tetradeca-4,10-dienyl Acetate: The Major Sex Pheromone of Apple Leafminer Moth, Phyllonorycter ringoniella

    Energy Technology Data Exchange (ETDEWEB)

    Prem Kumar, B.; Vijaykumar, B. V. D.; Harshavardhan, S. J.; Jung, Haedong; Xie, Yongsheng; Shin, Dongsoo; Jang, Kiwan [Changwon National Univ., Changwon (Korea, Republic of); Lee, Dong Ha [Hanbat National Univ., Daejeon (Korea, Republic of); Yoon, Yongjin [Gyeongsang National Univ., Jinju (Korea, Republic of)

    2014-01-15

    We have accomplished a protection free, concise, Li/liq. NH3 mediated and gram scale synthesis of (4E,10Z)-tetradeca-4,10-dienyl acetate (1), the major sex pheromone of apple leafminer moth, Phyllonorycter ringoniella starting from commercially available 1-pentyne, 1,4- dibromobutane and 4-petyne-1-ol in 24% overall yield. The Li/liq. NH3 based mono-alkynylation of dibromobutane has been introduced for the first time. The stereoselective formation of 10(Z) and 4(E) olefins are accomplished by partial hydrogenation (Lindlar's catalyst) and birch reduction respectively. The economy, efficiency, simplicity and high stereo chemical purity of this synthesis allow the potential use of pheromone 1 in integrated field studies to understand the behavioral responses of male apple leaf miner moth.

  1. Protein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast.

    Science.gov (United States)

    Su, Wen-Min; Han, Gil-Soo; Casciano, Jessica; Carman, George M

    2012-09-28

    Pah1p, which functions as phosphatidate phosphatase (PAP) in the yeast Saccharomyces cerevisiae, plays a crucial role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate and its product diacylglycerol. The diacylglycerol produced by PAP is used for the synthesis of triacylglycerol as well as for the synthesis of phospholipids via the Kennedy pathway. Pah1p is a highly phosphorylated protein in vivo and has been previously shown to be phosphorylated by the protein kinases Pho85p-Pho80p and Cdc28p-cyclin B. In this work, we showed that Pah1p was a bona fide substrate for protein kinase A, and we identified by mass spectrometry and mutagenesis that Ser-10, Ser-677, Ser-773, Ser-774, and Ser-788 were the target sites of phosphorylation. Protein kinase A-mediated phosphorylation of Pah1p inhibited its PAP activity by decreasing catalytic efficiency, and the inhibitory effect was primarily conferred by phosphorylation at Ser-10. Analysis of the S10A and S10D mutations (mimicking dephosphorylation and phosphorylation, respectively), alone or in combination with the seven alanine (7A) mutations of the sites phosphorylated by Pho85p-Pho80p and Cdc28p-cyclin B, indicated that phosphorylation at Ser-10 stabilized Pah1p abundance and inhibited its association with membranes, PAP activity, and triacylglycerol synthesis. The S10A mutation enhanced the physiological effects imparted by the 7A mutations, whereas the S10D mutations attenuated the effects of the 7A mutations. These data indicated that the protein kinase A-mediated phosphorylation of Ser-10 functions in conjunction with the phosphorylations mediated by Pho85p-Pho80p and Cdc28p-cyclin B and that phospho-Ser-10 should be dephosphorylated for proper PAP function.

  2. Synthesis of 4-amino-5-H-2,3-dihydroisothiazole-1,1-dioxide ring systems on sugar templates via carbanion-mediated sulfonamide intramolecular cyclization reactions (CSIC protocols) of glyco-alpha-sulfonamidonitriles.

    Science.gov (United States)

    Domínguez, Laura; van Nhien, Albert Nguyen; Tomassi, Cyrille; Len, Christophe; Postel, Denis; Marco-Contelles, José

    2004-02-01

    The carbanion-mediated sulfonate intramolecular cyclizations (CSIC protocols) of glyco-alpha-sulfonamidonitriles derived from readily available monosaccharides have been extensively investigated using potassium carbonate, cesium carbonate, n-BuLi, and LDA as bases. As a result, a series of enantiomerically pure spiro(4-amino-5-H-2,3-dihydroisothiazole-1,1-dioxide) derivatives have been prepared efficiently and isolated in good yield. The synthesis of these new bicyclic systems is key to accessing a novel range of aza analogues of TSAO nucleosides (ATSAOs).

  3. Tandem metal-mediated synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.T.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Boronic acids RB(OH){sub 2} are currently of interest for applications involving molecular recognition such as amine and sugar sensors and selective transport of biomolecules. They have also been shown to be powerful enzyme inhibitors and alpha-aminoboronic acids (ABAs) are particularly selective inhibitors of serine proteases. Unfortunately, current multistep synthetic routes to the latter compounds do not allow for the incorporation of a wide variety of organic substituents R that may lead to new, more selective enzyme inhibitors. In this work the author describes several direct routes to ABAs based on metal-catalyzed addition of diboron compounds to imines and nitriles. Several other applications of diboron additions to heteroatom-containing unsaturated organics are also described.

  4. Stimulation of prostaglandin E2-synthesis by noradrenaline in primary cell cultures from rabbit splenic pulpa is mediated by atypical alpha-adrenoceptors.

    Science.gov (United States)

    Brückner-Schmidt, R; Jackisch, R; Hertting, G

    1981-02-01

    In primary cell cultures originating from rabbit splenic pulpa the effects of various adrenoceptor agonists on prostaglandin (PG)-synthesis were studied. The cells - microscopically identified as fibroblasts - released PGs into the medium: especially PGE2 besides small amounts of PGF2alpha and PGD2. Noradrenaline increased dose-dependently the amount of PGs released into the medium. Besides noradrenaline, only the catecholamines adrenaline and alpha-methylnoradrenaline strongly activated PG-synthesis. Other alpha-adrenoceptor agonists like the phenylethylamine and imidazoline derivatives were only weak agonists or completely ineffective. All adrenoceptor agonists without intrinsic activity in these cells antagonized the noradrenaline effect on PG-synthesis, the imidazolines being more potent antagonists than the phenylethylamines. The beta-adrenoceptor agonist isoprenaline stimulated PG-synthesis at high concentration only. The effects of both noradrenaline and isoprenaline were inhibited by low concentrations of phentolamine phenoxybenzamine, but not by propranolol. The preferential alpha2-adrenoceptor antagonists yohimbine and rauwolscine were about 50 times more potent in blocking the noradrenaline effect on PG-synthesis than the more alpha1-specific antagonist corynanthine. However, prazosin, another alpha1-adrenoceptor antagonist, was about equipotent with yohimbine. It is concluded that noradrenaline elicits PG-synthesis in rabbit splenic fibroblasts via alpha-adrenoceptor stimulation. The alpha-adrenoceptor involved has properties which are different from those reported so far for alpha1- or alpha2-adrenoceptors.

  5. Autoclave mediated one-pot-one-minute synthesis of AgNPs and Au-Ag nanocomposite from Melia azedarach bark extract with antimicrobial activity against food pathogens.

    Science.gov (United States)

    Pani, Alok; Lee, Joong Hee; Yun, Soon-Ii

    2016-01-01

    The increasing use of nanoparticles and nanocomposite in pharmaceutical and processed food industry have increased the demand for nontoxic and inert metallic nanostructures. Chemical and physical method of synthesis of nanostructures is most popular in industrial production, despite the fact that these methods are labor intensive and/or generate toxic effluents. There has been an increasing demand for rapid, ecofriendly and relatively cheaper synthesis of nanostructures. Here, we propose a strategy, for one-minute green synthesis of AgNPs and a one-pot one-minute green synthesis of Au-Ag nanocomposite, using Melia azedarach bark aqueous extract as reducing agent. The hydrothermal mechanism of the autoclave technology has been successfully used in this study to accelerate the nucleation and growth of nano-crystals. The study also presents high antimicrobial potential of the synthesized nano solutions against common food and water born pathogens. The multistep characterization and analysis of the synthesized nanomaterial samples, using UV-visible spectroscopy, ICP-MS, FT-IR, EDX, XRD, HR-TEM and FE-SEM, also reveal the reaction dynamics of AgNO3, AuCl3 and plant extract in synthesis of the nanoparticles and nanocomposite. The antimicrobial effectiveness of the synthesized Au-Ag nanocomposite, with high gold to silver ratio, reduces the dependency on the AgNPs, which is considered to be environmentally more toxic than the gold counterpart. We hope that this new strategy will change the present course of green synthesis. The rapidity of synthesis will also help in industrial scale green production of nanostructures using Melia azedarach.

  6. Primary metabolism and medium-chain fatty acid alterations precede long-chain fatty acid changes impacting neutral lipid metabolism in response to an anti-cancer lysophosphatidylcholine analogue in yeast.

    Science.gov (United States)

    Tambellini, Nicolas P; Zaremberg, Vanina; Krishnaiah, Saikumari; Turner, Raymond Joseph; Weljie, Aalim M

    2017-08-29

    The non-metabolizable lysophosphatidylcholine (LysoPC) analogue edelfosine is the prototype of a class of compounds being investigated for their potential as selective chemotherapeutic agents. Edelfosine targets membranes, disturbing cellular homeostasis. Is not clear at this point how membrane alterations are communicated between intracellular compartments leading to growth inhibition and eventual cell death. In the present study, a combined metabolomics/lipidomics approach for the unbiased identification of metabolic pathways altered in yeast treated with sub-lethal concentrations of the LysoPC analogue was employed. Mass spectrometry of polar metabolites, fatty acids and lipidomic profiling was used to study the effects of edelfosine on yeast metabolism. Amino acid and sugar metabolism, the Krebs cycle, and fatty acid profiles were most disrupted, with polar metabolites and short-medium chain fatty acid changes preceding long and very long-chain fatty acid variations. Initial increase in metabolites like trehalose, proline and gamma-amino butyric acid with a concomitant decrease in metabolites of the Krebs cycle, citrate and fumarate, are interpreted as a cellular attempt to offset oxidative stress in response to mitochondrial dysfunction induced by the treatment. Notably, alanine, inositol and myristoleic acid showed a steady increase during the period analyzed (2,4 and 6 hours after treatment). Of importance was the finding that edelfosine induced significant alterations in neutral glycerolipid metabolism resulting in a significant increase in the signalling lipid diacylglycerol.

  7. Mechanisms mediating the effects of alcohol and HIV anti-retroviral agents on mTORC1,mTORC2 and protein synthesis in myocytes

    Institute of Scientific and Technical Information of China (English)

    Ly; Q; Hong-Brown; Abid; A; Kazi; Charles; H; Lang

    2012-01-01

    Alcoholism and acquired immune deficiency syndrome are associated with severe muscle wasting.This impairment in nitrogen balance arises from increased protein degradation and a decreased rate of protein synthesis.The regulation of protein synthesis is a complex process involving alterations in the phosphorylation state and protein-protein interaction of various components of the translation machinery and mammalian target of rapamycin(mTOR) complexes.This review describes mechanisms that regulate protein synthesis in cultured C2C12 myocytes following exposure to either alcohol or human immunodeficiency virus antiretroviral drugs.Particular attention is given to the upstream regulators of mTOR complexes and the downstream targets which play an important role in translation.Gaining a better understanding of these molecular mechanisms could have important implications for preventing changes in lean body mass in patients with catabolic conditions or illnesses.

  8. Activation of protein synthesis in mouse uterine epithelial cells by estradiol-17β is mediated by a PKC-ERK1/2-mTOR signaling pathway.

    Science.gov (United States)

    Wang, Yuxiang; Zhu, Liyin; Kuokkanen, Satu; Pollard, Jeffrey W

    2015-03-17

    The uterine epithelium of mice and humans undergoes cyclical waves of cell proliferation and differentiation under the regulation of estradiol-17β (E2) and progesterone (P4). These epithelial cells respond to E2 with increased protein and DNA synthesis, whereas P4 inhibits only the E2-induced DNA synthetic response. Here we show that E2 regulates protein synthesis in these epithelial cells through activating PKC that in turn stimulates ERK1/2 to phosphorylate and thereby activate the central regulator of protein synthesis mechanistic target of rapamycin (mTOR). This mTOR pathway is not inhibited by P4. Inhibitor studies with an estrogen receptor (ESR1) antagonist showed the dependence of this mTOR pathway on ESR1 but that once activated, a phosphorylation cascade independent of ESR1 propagates the pathway. E2 also stimulates an IGF1 receptor (IGF1R) to PI3 kinase to AKT to GSK-3β pathway required for activation of the canonical cell cycle machinery that is inhibited by P4. PKC activation did not stimulate this pathway nor does inhibition of PKC or ERK1/2 affect it. These studies therefore indicate a mechanism whereby DNA and protein synthesis are regulated by two ESR1-activated pathways that run in parallel with only the one responsible for the initiation of DNA synthesis blocked by P4. Inhibition of mTOR by rapamycin in vivo resulted in inhibition of E2-induced protein and DNA synthesis. Proliferative diseases of the endometrium such as endometriosis and cancer are common and E2 dependent. Thus, defining this mTOR pathway suggests that local (intrauterine or peritoneal) rapamycin administration might be a therapeutic option for these diseases.

  9. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  10. Jak1/STAT3 pathway mediates the inhibition of lipoxin A4 on TNF-α-induced DNA synthesis of glomerular mesangial cells in rats

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To examine whether lipoxin A4 (LXA4) has an inhibitory effect on tumor necrosis factor-α(TNF-α)-induced DNA synthesis of glomerular mesangial cells of rat, and explore the molecular mechanisms of LXA4 action. Methods: Glomerular mesangial cells of rat were cultured and preincubated with LXA4 at different concentrations, and then treated with TNF-α( 10 ng/ml). DNA synthesis was assessed by the incorporation of [3H]-thymidine in mesangial cells. Expression of cyclin E protein was determined by Western blotting analysis. Activities of signal transducers and activators of transcription-3 (STAT3) were analyzed by electrophoretic mobility shift assay (EMSA). Results: TNF-α-stimulated DNA synthesis of mesangial cells, upregulation of cyclin E protein and STAT3 activities were inhibited by LXA4 in a dose-dependent manner. Conclusion: TNF-α-induced DNA synthesis of mesangial cells can be inhibited by TXA4probably through the mechanism of Jak1/STAT3 pathway-dependent signal transduction.

  11. Synthesis of Arylzinc Thiolates Containing Perfluoroalkyl Chains : Model Catalyst Precursors for the Enantioselective Zinc-Mediated 1,2-Addition of Dialkylzincs to Aldehydes in Fluorous Biphase Systems

    NARCIS (Netherlands)

    Koten, G. van; Kleijn, H.; Rijnberg, E.; Jastrzebski, J.T.B.H.

    1999-01-01

    The synthesis of perfluoroalkyl-functionalized arene trimethylsilyl ethers and their conversion to ethylzinc thiolates is described. These compounds have been successfully applied as catalysts in the enantioselective addition of diethylzinc to benzaldehyde. This is the first example of a two-phase o

  12. Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in

    Institute of Scientific and Technical Information of China (English)

    Chenhui Huang; Xueyu Dai; Weihang Chai

    2012-01-01

    Telomere maintenance is critical for genome stability.The newly-identified Ctc1/Stn1/Ten1 complex is important for telomere maintenance,though its precise role is unclear.We report here that depletion of hStn1 induces catastrophic telomere shortening,DNA damage response,and early senescence in human somatic cells.These phenotypes are likely due to the essential role of hStn1 in promoting efficient replication of lagging-strand telomeric DNA.Downregulation of hStn1 accumulates single-stranded G-rich DNA specifically at lagging-strand telomeres,increases telomere fragility,hinders telomere DNA synthesis,as well as delays and compromises telomeric C-strand synthesis.We further show that hStn1 deficiency leads to persistent and elevated association of DNA polymerase α(polα)to telomeres,suggesting that hStn1 may modulate the DNA synthesis activity of polα rather than controlling the loading of polα to telomeres.Additionally,our data suggest that hStn1 is unlikely to be part of the telomere capping complex.We propose that the hStn1 assists DNA polymerases to efficiently duplicate lagging-strand telomeres in order to achieve complete synthesis of telomeric DNA,therefore preventing rapid telomere loss.

  13. Mechanism and microstructural evolution of polyol mediated synthesis of nanostructured M-type SrFe{sub 12}O{sub 19}

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio Gonzalez, F.N.; Bolarín Miró, A.M. [Área Académica de Ciencias de la Tierra y Materiales, UAEH, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42184 Pachuca, Hidalgo (Mexico); Sánchez De Jesús, F., E-mail: fsanchez@uaeh.edu.mx [Área Académica de Ciencias de la Tierra y Materiales, UAEH, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42184 Pachuca, Hidalgo (Mexico); Cortés Escobedo, C.A. [Centro de Investigación e Innovación Tecnológica del IPN, Cda. CECATI S/N, Col. Sta. Catarina, C. P. 02250 Azcapotzalco, D. F. (Mexico); Ammar, S. [Université Paris Diderot, Paris 7, Laboratoire Interfaces, Traitements, Organisation et Dynamiqué des Systéme UMR, 7086, Paris (France)

    2016-06-01

    The synthesis mechanism of nanostructured M-type strontium hexaferrite SrFe{sub 12}O{sub 19} with high coercivity (5.7 kOe) obtained by a polyol process and annealing is proposed. The results show that the hexaferrite is synthesized through the formation of a complex with diethylene glycol during the hydrolysis and solvation stage, followed by the condensation of magnetite and strontium oxide. The results of the monitoring of the process by X-ray diffraction (XRD) of synthesized powders, magnetization hysteresis loops and micromorphology are presented and discussed. The proposed mechanism suggests the intermediate formation of the magnetite phase, which shows coercivity near zero at room temperature and confirms the nanoscale of the particles. Results of thermogravimetric and differential thermal analysis indicate that this phase is followed by the formation of the hematite phase after a heat treatment up to 543 °C in an oxidizing atmosphere. Finally, the hexagonal phase is obtained after application of annealing at 836 °C through the reaction between hematite and strontium oxide. - Highlights: • SrFe{sub 12}O{sub 19} was successfully obtained by a polyol-assisted synthesis. • Magnetite nanoparticles have been obtained as intermediate phase. • A synthesis mechanism for the growing stage of magnetite is proposed. • A reaction sequence and the synthesis mechanism to obtain hexaferrite is presented.

  14. Rhodium-Catalyzed/Copper-Mediated Tandem C(sp(2))-H Alkynylation and Annulation: Synthesis of 11-Acylated Imidazo[1,2-a:3,4-a']dipyridin-5-ium-4-olates from 2H-[1,2'-Bipyridin]-2-ones and Propargyl Alcohols.

    Science.gov (United States)

    Li, Ting; Wang, Zhiqiang; Xu, Kun; Liu, Wenmin; Zhang, Xu; Mao, Wutao; Guo, Yongming; Ge, Xiaolin; Pan, Fei

    2016-03-01

    A rhodium-catalyzed/copper-mediated tandem C(sp(2))-H alkynylation and intramolecular annulation of 2H-[1,2'-bipyridin]-2-ones with propargyl alcohols for the synthesis of 11-acylated imidazo[1,2-a:3,4-a']dipyridin-5-ium-4-olates is described.

  15. Metal-mediated controllable creation of secondary, tertiary, and quaternary carbon centers: a powerful strategy for the synthesis of iron, cobalt, and copper complexes with in situ generated substituted 1-pyridineimidazo[1,5-a]pyridine ligands.

    Science.gov (United States)

    Chen, Yanmei; Li, Lei; Chen, Zhou; Liu, Yonglu; Hu, Hailiang; Chen, Wenqian; Liu, Wei; Li, Yahong; Lei, Tao; Cao, Yanyuan; Kang, Zhenghui; Lin, Miaoshui; Li, Wu

    2012-09-17

    An efficient strategy for the synthesis of a wide variety of coordination complexes has been developed. The synthetic protocol involves a solvothermal in situ metal-ligand reaction of picolinaldehyde, ammonium acetate, and transition-metal ions, leading to the generation of 12 coordination complexes supported by a novel class of substituted 1-pyridineimidazo[1,5-a]pyridine ligands (L1-L5). The ligands L1-L5 were afforded by metal-mediated controllable conversion of the aldehyde group of picolialdehyde into a ketone and secondary, tertiary, and quaternary carbon centers, respectively. Complexes of various nuclearities were obtained: from mono-, di-, and tetranuclear to 1D chain polymers. The structures of the in situ formed complexes could be controlled rationally via the choice of appropriate starting materials and tuning of the ratio of the starting materials. The plausible mechanisms for the formation of the ligands L1-L5 were proposed.

  16. Mechanochemical organic synthesis.

    Science.gov (United States)

    Wang, Guan-Wu

    2013-09-21

    Recently, mechanical milling using a mixer mill or planetary mill has been fruitfully utilized in organic synthesis under solvent-free conditions. This review article provides a comprehensive overview of various solvent-free mechanochemical organic reactions, including metal-mediated or -catalyzed reactions, condensation reactions, nucleophilic additions, cascade reactions, Diels-Alder reactions, oxidations, reductions, halogenation/aminohalogenation, etc. The ball milling technique has also been applied to the synthesis of calixarenes, rotaxanes and cage compounds, asymmetric synthesis as well as the transformation of biologically active compounds.

  17. The total synthesis of psymberin.

    Science.gov (United States)

    Huang, Xianhai; Shao, Ning; Palani, Anandan; Aslanian, Robert; Buevich, Alexei

    2007-06-21

    The total synthesis of a new member of the pederin family of natural products, psymberin 1, was accomplished. Using a recently reported novel and efficient PhI(OAc)2 mediated oxidative entry to 2-(N-acylaminal)-substituted tetrahydropyrans as the key step, this total synthesis was executed in a convergent and efficient manner. The longest linear sequence of this synthesis was 22 steps starting from known 6.

  18. Oleanolic Acid Diminishes Liquid Fructose-Induced Fatty Liver in Rats: Role of Modulation of Hepatic Sterol Regulatory Element-Binding Protein-1c-Mediated Expression of Genes Responsible for De Novo Fatty Acid Synthesis

    Directory of Open Access Journals (Sweden)

    Changjin Liu

    2013-01-01

    Full Text Available Oleanolic acid (OA, contained in more than 1620 plants and as an aglycone precursor for naturally occurred and synthesized triterpenoid saponins, is used in China for liver disorders in humans. However, the underlying liver-protecting mechanisms remain largely unknown. Here, we found that treatment of rats with OA (25 mg/kg/day, gavage, once daily over 10 weeks diminished liquid fructose-induced excess hepatic triglyceride accumulation without effect on total energy intake. Attenuation of the increased vacuolization and Oil Red O staining area was evident on histological examination of liver in OA-treated rats. Hepatic gene expression profile demonstrated that OA suppressed fructose-stimulated overexpression of sterol regulatory element-binding protein-(SREBP- 1/1c mRNA and nuclear protein. In accord, overexpression of SREBP-1c-responsive genes responsible for fatty acid synthesis was also downregulated. In contrast, overexpressed nuclear protein of carbohydrate response element-binding protein and its target genes liver pyruvate kinase and microsomal triglyceride transfer protein were not altered. Additionally, OA did not affect expression of peroxisome proliferator-activated receptor-gamma- and -alpha and their target genes. It is concluded that modulation of hepatic SREBP-1c-mediated expression of the genes responsible for de novo fatty acid synthesis plays a pivotal role in OA-elicited diminishment of fructose-induced fatty liver in rats.

  19. Surfactant-assisted sacrificial template-mediated synthesis, characterization and photoluminescent properties of LaPO₄ : Eu³⁺ phosphor

    Indian Academy of Sciences (India)

    HEENA KHAJURIA; JIGMET LADOL; RAJINDER SINGH; HAQ NAWAZ SHEIKH; VINAY KUMAR

    2017-06-01

    In this paper, we report a surfactant-assisted self-sacrificing route for synthesis of Eu³⁺ doped LaPO4 nanostructures under hydrothermal conditions using the La(OH)CO₃ : Eu³⁺ precursor as a template andNH₄H₂PO₄ as the phosphate source. The synthesis was carried out in the absence and presence of surfactant [cetyltrimethyl ammonium bromide (CTAB)] and two different solvents (water and ethylene glycol). The precursor and products were characterized by powder X-ray diffraction, fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopyand photoluminescence studies. Influence of surfactant and solvents on morphology and luminescence of the final product in sacrificial template-assisted method has been investigated in detail.

  20. Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity.

    Science.gov (United States)

    Momeni, Seyedeh Samaneh; Nasrollahzadeh, Mahmoud; Rustaiyan, Abdolhossein

    2016-06-15

    A green synthesis process was developed for the preparation of the Cu/ZnO nanoparticles (NPs) using Euphorbia prolifera leaf extract as a mild, renewable and non-toxic reducing agent and efficient stabilizer without using dangerous, hazardous and toxic materials. The approach of biosynthesis appears to be cost efficient eco-friendly and easy alternative to conventional methods of the Cu/ZnO NPs synthesis. The Cu/ZnO NPs were characterized by FESEM, EDS, elemental mapping, TEM and XRD. TEM micrograph has shown the formation of Cu NPs with the size in the range of 5-17 nm. In addition, the synthesized Cu/ZnO NPs presented excellent catalytic activity for the degradation of Methylene blue (MB) and Congo red (CR) in the presence of NaBH4 in water at room temperature. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Recent Advances in the Application of SelectfluorTMF-TEDA-BF4 as a Versatile Mediator or Catalyst in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Stojan Stavber

    2011-07-01

    Full Text Available SelectfluorTM F-TEDA-BF4 (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo [2.2.2]octane bis(tetrafluoroborate is not only one of the most efficient and popular reagents for electrophilic fluorination, but as a strong oxidant is also a convenient mediator or catalyst of several “fluorine-free” functionalizations of organic compounds. Its applications as a mediator in transformations of oxidizable functional groups or gold-catalyzed C-C and C-heteroatom oxidative coupling reactions, a catalyst in formation of various heterocyclic rings, a reagent or catalyst of various functionalizations of electron-rich organic compounds (iodination, bromination, chlorination, nitration, thiocyanation, sulfenylation, alkylation, alkoxylation, a catalyst of one-pot-multi-component coupling reactions, a catalyst of regioselective ring opening of epoxides, a deprotection reagent for various protecting groups, and a mediator for stereoselective rearrangement processes of bicyclic compounds are reviewed and discussed.

  2. Mitogen-activated protein kinases mediate the oxidative burst and saponin synthesis induced by chitosan in cell cultures of Panax ginseng

    Institute of Scientific and Technical Information of China (English)

    HU Xiangyang; Steven J.NEILL; FANG Jianying; CAI Weiming; TANG Zhangcheng

    2004-01-01

    Chitosan(CHN)specially induced the activities of 39 kD and 42 kD protein kinases in ginseng cells,which could be suppressed by an inhibitor of mitogen-activated protein kinase(MAPK)pathway,PD98059.The immunoprecipitation(IP)using MAPK antibody or kinase assay in vitro also showed that CHN-induced 42 kD and 39 kD protein kinases belonged to the MAPK family.PD98059 suppressed CHN-induced transcriptions of ginseng squalene synthase and ginseng squalene epoxidase genes(gss and gse),CHN-induced accumulation of β-Amyrin synthase(β-AS)and synthesis of saponin.These results showed that CHN-induced activities of MAPKs were necessary for the CHN-induced saponin synthesis.EGTA and LaCI3 suppressed CHN-induced 39 kD and 42 kD MAPK activities.Ruthenium red(RR)could suppress CHN-induced 39 kD activity.All of them suppressed CHN-induced saponin synthesis.These results indicated that CHN-induced increment of cytosolic calcium was necessary for CHN-induced saponin synthesis.PD98059 also suppressed CHN-induced oxidative burst(including the increment of activity of plasma membrane NADPH oxidase and production of H2O2),but diphenylene iodonium(DPI),dimethylthiourea(DMTU)and 2,5-dihydroxycinnamic acid methyl ester(DHC)could not suppress CHN-induced MAPK activities,which indicated that MAPK was possibly function upstream of CHN-induced oxidative burst.

  3. Ultrasound promoted and SiO2/CCl3COOH mediated synthesis of 2-aryl-1-arylmethyl-1-benzimidazole derivatives in aqueous media: An eco-friendly approach

    Indian Academy of Sciences (India)

    Brajesh Kumar; Kumari Smita; Brajendra Kumar; Luis Cumbal

    2014-11-01

    Ultrasonic irradiation is an efficient and innocuous technique of reagent activation for synthesizing organic compounds. First one-pot synthesis of 2-aryl-1-arylmethyl-1H- benzimidazole derivatives from o- phenylenediamine and an aromatic aldehyde in the presence of silica gel supported trichloroacetic acid (SiTCA) was carried out with excellent yields at 50°C by sonication. This method provided several advantages such as green solvent, inexpensive catalyst, simple experimental methodology, shorter reaction time and higher yield.

  4. An efficient and rapid synthesis of 3-hydroxy-3-alkyl-2-oxindoles via Zn-mediated barbier-type reaction under aqueous conditions

    Indian Academy of Sciences (India)

    L RAJU CHOWHAN; MARRI SAMEER REDDY; NANDIGAMA SATISH KUMAR

    2017-08-01

    A robust and rapid synthesis of 3-hydroxy-3-alkyl-2-oxindoles from isatins is described. This method introduces an ecofriendly, un-activated Zn dust, solid NH₄Cl and substrates under aqueous conditions, which has produced the product in moderate to good yields. Without using column chromatography, majority of the compounds were isolated in analytically pure form. The progress of the reaction could be visualized by naked eye.

  5. Pyridinium Trifluoro Acetate Mediated Synthesis of 3,4-Dihydropyrimidin-2(1H-ones and Tetrazolo[1,5-a]pyrimidine-6-carboxylates

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2012-01-01

    Full Text Available A simple and economic synthesis of 3,4-dihydropyrimidin-2(1H-ones using pyridinium triflate as catalyst under microwave condition was attempted with an easy work-up protocol. Further tetrazolo [1,5-a] pyrimidine-6-carboxylates were synthesized by three-component coupling reaction of β-ketoesters with a mixture of aromatic aldehyde and 5-aminotetrazole. The products were well characterized with IR, NMR (1H and 13C NMR and mass spectrometry.

  6. Synthesis of vinyl-terminated Au nanoprisms and nanooctahedra mediated by 3-butenoic acid: direct Au@pNIPAM fabrication with improved SERS capabilities.

    Science.gov (United States)

    Casado-Rodriguez, M A; Sanchez-Molina, M; Lucena-Serrano, A; Lucena-Serrano, C; Rodriguez-Gonzalez, B; Algarra, M; Diaz, A; Valpuesta, M; Lopez-Romero, J M; Perez-Juste, J; Contreras-Caceres, R

    2016-02-28

    Here we describe the first seedless synthesis of vinyl-terminated Au nanotriangular prisms (AuNTPs) and nanooctahedra (AuNOC) in aqueous media. This synthesis is performed by chemical reduction of chloroauric acid (HAuCl4) with 3-butenoic acid (3BA) in the presence of benzyldimethylammonium chloride (BDAC). The principal novelties of the presented method are the use of a mixture of 3BA and BDAC, the synthesis of gold prisms and octahedra with controllable size, and the presence of terminal double bonds on the metal surface. Initially this method produces a mixture of triangular gold nanoprisms and octahedra; however, both morphologies are successfully separated by surfactant micelle induced depletion interaction, reaching percentages up to ∼90%. Moreover, the alkene moieties present on the gold surface are exploited for the fabrication of hybrid core@shell particles. Gold octahedra and triangular prisms are easily encapsulated by free radical polymerization of N-isopropylacrylamide (NIPAM). Finally, in order to obtain a gold core with the most number of tips, AuNTP@pNIPAM microgels were subjected to gold core overgrowth, thus resulting in star-shaped nanoparticles (AuSTs@pNIPAM). We use 4-amino-benzenethiol as the model analyte for SERS investigations. As expected, gold cores with tips and high curvature sites produced the highest plasmonic responses.

  7. HipA-triggered growth arrest and β-lactam tolerance in Escherichia coli are mediated by RelA-dependent ppGpp synthesis.

    Science.gov (United States)

    Bokinsky, Gregory; Baidoo, Edward E K; Akella, Swetha; Burd, Helcio; Weaver, Daniel; Alonso-Gutierrez, Jorge; García-Martín, Héctor; Lee, Taek Soon; Keasling, Jay D

    2013-07-01

    Persistence is a phenomenon whereby a subpopulation of bacterial cells enters a transient growth-arrested state that confers antibiotic tolerance. While entrance into persistence has been linked to the activities of toxin proteins, the molecular mechanisms by which toxins induce growth arrest and the persistent state remain unclear. Here, we show that overexpression of the protein kinase HipA in Escherichia coli triggers growth arrest by activating synthesis of the alarmone guanosine tetraphosphate (ppGpp) by the enzyme RelA, a signal typically associated with amino acid starvation. We further demonstrate that chemically suppressing ppGpp synthesis with chloramphenicol relieves inhibition of DNA replication initiation and RNA synthesis in HipA-arrested cells and restores vulnerability to β-lactam antibiotics. HipA-arrested cells maintain glucose uptake and oxygen consumption and accumulate amino acids as a consequence of translational inhibition. We harness the active metabolism of HipA-arrested cells to provide a bacteriophage-resistant platform for the production of biotechnologically relevant compounds, which may represent an innovative solution to the costly problem of phage contamination in industrial fermentations.

  8. Mechanochemical solid-state synthesis of 2-aminothiazoles, quinoxalines and benzoylbenzofurans from ketones by one-pot sequential acid- and base-mediated reactions.

    Science.gov (United States)

    Nagarajaiah, Honnappa; Mishra, Abhaya Kumar; Moorthy, Jarugu Narasimha

    2016-04-26

    α-Chloroketones - obtained by the atom-economical chlorination of ketones with trichloroisocyanuric acid (TCCA) in the presence of p-TSA under ball-milling conditions - were set up for a sequential base-mediated condensation reaction with thiourea/thiosemicarbazides, o-phenylenediamine and salicylaldehyde to afford 2-aminothiazoles, 2-hydrazinylthiazoles, quinoxalines and benzoylbenzofurans, respectively, in respectable yields. The viability of one-pot sequential acid- and base-mediated reactions in the solid state under ball-milling conditions is thus demonstrated.

  9. Poly(2-hydroxyethyl methacrylate) (PHEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fabric by γ-initiation: Synthesis, characterization and benefits of RAFT mediation

    Science.gov (United States)

    Kodama, Yasko; Barsbay, Murat; Güven, Olgun

    2014-12-01

    Polyethylene/polypropylene (PE/PP) nonwoven fabrics were functionalized by γ-initiated RAFT mediated grafting of 2-hydroxyethyl methacrylate (HEMA), and the characterization of the grafted samples was carried out using various techniques. FTIR and XPS analysis showed an increase in the oxygenated content till a certain degree of grafting. The results implied a grafting process following the concept of ‘front mechanism’. The initial grafting occurred on the topmost surface layer, and then moved further into the bulk of the polymer matrix. Reversible addition-fragmentation chain transfer (RAFT) mediated grafting yielded a better controlled grafting when compared to those obtained in conventional grafting.

  10. Synthesis of 2,1-benzisoxazole-3(1H)-ones by base-mediated photochemical N–O bond-forming cyclization of 2-azidobenzoic acids

    Science.gov (United States)

    Dzhons, Daria Yu

    2016-01-01

    Summary The base-mediated photochemical cyclization of 2-azidobenzoic acids with the formation of 2,1-benzisoxazole-3(1H)-ones is reported. The optimization and scope of this cyclization reaction is discussed. It is shown that an essential step of the ring closure of 2-azidobenzoic acids is the formation and photolysis of 2-azidobenzoate anions. PMID:27340478

  11. Synthesis of 3,3-disubstituted oxindoles by visible-light-mediated radical reactions of aryl diazonium salts with N-arylacrylamides.

    Science.gov (United States)

    Fu, Weijun; Xu, Fengjuan; Fu, Yuqin; Zhu, Mei; Yu, Jiaqi; Xu, Chen; Zou, Dapeng

    2013-12-06

    A mild and efficient visible-light-mediated diarylation of N-arylacrylamides with aryl diazonium salts under mild conditions has been developed. This method provides convenient access to a variety of useful 3,3-disubstituted oxindoles by constructing two C-C bonds in one step.

  12. Indium Trichloride-Mediated Facile Synthesis of 3-(Substituted methylthio)-4-phenyl-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole in Water

    Institute of Scientific and Technical Information of China (English)

    YANG Song; LIU,Jie; SONG,Bao-An; JIN,Lin-Hong; HU,De-Yu

    2006-01-01

    An environmentally benign and efficient process for the preparation of 3-(substituted methylthio)-4-phenyl-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole was achieved by the reaction of 4-phenyl-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiol with different halides in aqueous media mediated by indium trichloride in high yields.

  13. Synthesis of 2,1-benzisoxazole-3(1H-ones by base-mediated photochemical N–O bond-forming cyclization of 2-azidobenzoic acids

    Directory of Open Access Journals (Sweden)

    Daria Yu. Dzhons

    2016-05-01

    Full Text Available The base-mediated photochemical cyclization of 2-azidobenzoic acids with the formation of 2,1-benzisoxazole-3(1H-ones is reported. The optimization and scope of this cyclization reaction is discussed. It is shown that an essential step of the ring closure of 2-azidobenzoic acids is the formation and photolysis of 2-azidobenzoate anions.

  14. Synthesis of 2,1-benzisoxazole-3(1H)-ones by base-mediated photochemical N-O bond-forming cyclization of 2-azidobenzoic acids.

    Science.gov (United States)

    Dzhons, Daria Yu; Budruev, Andrei V

    2016-01-01

    The base-mediated photochemical cyclization of 2-azidobenzoic acids with the formation of 2,1-benzisoxazole-3(1H)-ones is reported. The optimization and scope of this cyclization reaction is discussed. It is shown that an essential step of the ring closure of 2-azidobenzoic acids is the formation and photolysis of 2-azidobenzoate anions.

  15. Methyl 6-Amino-6-deoxy-d-pyranoside-Conjugated Platinum(II) Complexes for Glucose Transporter (GLUT)-Mediated Tumor Targeting: Synthesis, Cytotoxicity, and Cellular Uptake Mechanism.

    Science.gov (United States)

    Li, Taoli; Gao, Xiangqian; Yang, Liu; Shi, Yunli; Gao, Qingzhi

    2016-05-19

    Methyl 6-aminodeoxy-d-pyranoside-derived platinum(II) glycoconjugates were designed and synthesized based on the clinical drug oxaliplatin for glucose transporter (GLUT)-mediated tumor targeting. In addition to a substantial improvement in water solubility, the conjugates exhibited cytotoxicity similar to or higher than that of oxaliplatin in six different human cancer cell lines. GLUT-mediated transport of the complexes was investigated with a cell-based fluorescence competition assay and GLUT-inhibitor-mediated cytotoxicity analysis in a GLUT-overexpressing human colorectal adenocarcinoma (HT29) cell line. The antitumor effect of the aminodeoxypyranoside-conjugated platinum(II) complexes was found to depend significantly on the GLUT inhibitor, and the cellular uptake of the molecules was regulated by GLUT-mediated transport. The results from this study demonstrate the potential advantages of aminodeoxypyranosides as sugar motifs for glycoconjugation for Warburg-effect-targeted drug design. These fundamental results also support the potential of aminodeoxypyranoside-conjugated platinum(II) complexes as lead compounds for further preclinical evaluation.

  16. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera

    Science.gov (United States)

    Matus, José Tomás; Loyola, Rodrigo; Vega, Andrea; Peña-Neira, Alvaro; Bordeu, Edmundo; Arce-Johnson, Patricio; Alcalde, José Antonio

    2009-01-01

    Anthocyanins, flavan-3-ols, and flavonols are the three major classes of flavonoid compounds found in grape berry tissues. Several viticultural practices increase flavonoid content in the fruit, but the underlying genetic mechanisms responsible for these changes have not been completely deciphered. The impact of post-veraison sunlight exposure on anthocyanin and flavonol accumulation in grape berry skin and its relation to the expression of different transcriptional regulators known to be involved in flavonoid synthesis was studied. Treatments consisting of removing or moving aside the basal leaves which shade berry clusters were applied. Shading did not affect sugar accumulation or gene expression of HEXOSE TRANSPORTER 1, although in the leaf removal treatment, these events were retarded during the first weeks of ripening. Flavonols were the most drastically reduced flavonoids following shading and leaf removal treatments, related to the reduced expression of FLAVONOL SYNTHASE 4 and its putative transcriptional regulator MYB12. Anthocyanin accumulation and the expression of CHS2, LDOX, OMT, UFGT, MYBA1, and MYB5a genes were also affected. Other regulatory genes were less affected or not affected at all by these treatments. Non-transcriptional control mechanisms for flavonoid synthesis are also suggested, especially during the initial stages of ripening. Although berries from the leaf removal treatment received more light than shaded fruits, malvidin-3-glucoside and total flavonol content was reduced compared with the treatment without leaf removal. This work reveals that flavonol-related gene expression responds rapidly to field changes in light levels, as shown by the treatment in which shaded fruits were exposed to light in the late stages of ripening. Taken together, this study establishes MYB-specific responsiveness for the effect of sun exposure and sugar transport on flavonoid synthesis. PMID:19129169

  17. Activation of p38 and JNK MAPK pathways abrogates requirement for new protein synthesis for phorbol ester mediated induction of select MMP and TIMP genes.

    Science.gov (United States)

    Sampieri, Clara L; Nuttall, Robert K; Young, David A; Goldspink, Deborah; Clark, Ian M; Edwards, Dylan R

    2008-03-01

    The human matrix metalloproteinase (MMP) gene family includes 24 genes whose regulated expression, together with that of four tissue inhibitors of metalloproteinases (TIMPs), is essential in tissue remodelling and cell signalling. Quantitative real-time-PCR (qPCR) analysis was used to evaluate the shared and unique patterns of control of these two gene families in human MRC-5 and WI-38 fibroblasts in response to the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (PMA). The requirement for ongoing translation was analysed using three protein synthesis inhibitors, anisomycin, cycloheximide and emetine. PMA induced MMP1, 3, 8, 9, 10, 12, 13, 14 and TIMP1 and TIMP3 RNAs after 4-8 h, and induction of all except MMP9 and TIMP3 was blocked by all protein synthesis inhibitors. However, even though all inhibitors effectively blocked translation, PMA-induction of MMP9 and TIMP3 was blocked by emetine but was insensitive to cycloheximide and anisomycin. Anisomycin alone induced MMP9 and TIMP3, along with MMP25 and MMP19. The extracellular signal-regulated kinases (ERKs)-1/2 were strongly activated by PMA, while anisomycin activated the c-Jun N-terminal kinase (JNK) and p38 pathways, and cycloheximide activated p38, but emetine had no effect on the stress-activated mitogen-activated protein kinase (MAPK) pathways. The involvement of the p38 and JNK pathways in the selective effects of anisomycin and cycloheximide on MMP/TIMP expression was supported by use of pharmacological inhibitors. These data confirm that most inducible MMPs and TIMP1 behave as "late" activated, protein synthesis-dependent genes in fibroblasts. However, the requirement of protein synthesis for PMA-induction of MMPs and TIMPs is not universal, since it is abrogated for MMP9 and TIMP3 by stimulation of the stress-activated MAPK pathways. The definition of clusters of co-regulated genes among the two gene families will aid in bioinformatic dissection of control mechanisms.

  18. Green coconut ( Cocos nucifera Linn) shell extract mediated size controlled green synthesis of polyshaped gold nanoparticles and its application in catalysis

    Science.gov (United States)

    Paul, Koushik; Bag, Braja Gopal; Samanta, Kousik

    2014-08-01

    The shell extract of green coconut ( Cocos nucifera Linn) has been utilized for the synthesis of gold nanoparticles at room temperature under very mild condition without any extra stabilizing or capping agents. The size of the synthesized gold nanoparticles could be controlled by varying the concentration of the shell extract. The stabilized gold nanoparticles were analyzed by surface plasmon resonance spectroscopy, HRTEM, Energy dispersive X-ray spectroscopy and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles was studied for the sodium borohydride reduction of 4-nitrophenol and the kinetics of the reduction reaction were studied spectrophotometrically.

  19. Hexafluoroisopropyl alcohol mediated synthesis of 2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-ones

    Science.gov (United States)

    Alam, Mohammad A.; Alsharif, Zakeyah; Alkhattabi, Hessa; Jones, Derika; Delancey, Evan; Gottsponer, Adam; Yang, Tianhong

    2016-11-01

    An efficient synthesis of novel 2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-ones has been reported. Inexpensive and readily available substrates, environmentally benign reaction condition, and product formation up to quantitative yield are the key features of this methodology. Products are formed by the aza-Michael addition followed by intramolecular acyl substitution in a domino process. The polar nature and strong hydrogen bond donor capability of 1,1,1,3,3,3-hexafluoropropan-2-ol is pivotal in this cascade protocol.

  20. (CF3CO2O/CF3SO3H-mediated synthesis of 1,3-diketones from carboxylic acids and aromatic ketones

    Directory of Open Access Journals (Sweden)

    JungKeun Kim

    2014-09-01

    Full Text Available A very simple and convenient reaction for 1,3-diketone preparation from carboxylic acids and aromatic ketones in TFAA/TfOH system is described. When the β-phenylpropionic acids were used as starting materials, they initially gave 1-indanones and then underwent further acylation with the formation of 2-(β-phenylpropionyl-1-indanones as the main reaction products. In addition, the application of the proposed protocol allowed for the synthesis of selected polysubstituted pyrazoles in a one-pot procedure directly from acids and ketones.

  1. Enzymatic synthesis of vanillin

    NARCIS (Netherlands)

    van den Heuvel, RHH; Fraaije, MW; Laane, C; van Berkel, WJH; Heuvel, Robert H.H. van den; Berkel, Willem J.H. van

    2001-01-01

    Due to increasing interest in natural vanillin, two enzymatic routes for the synthesis of vanillin were developed. The flavoprotein vanillyl alcohol oxidase (VAO) acts on a wide range of phenolic compounds and converts both creosol and vanillylamine to vanillin with high yield. The VAO-mediated conv

  2. Regioselective Synthesis of Indanones

    NARCIS (Netherlands)

    van Leeuwen, Thomas; Neubauer, Thomas M.; Feringa, Ben L.

    2014-01-01

    The degree of hydrolysis of polyphosphoric acid (PPA) has a crucial effect on the regioselectivity of the PPA-mediated synthesis of indanones. It was found that the regioselectivity can be switched by employing PPA with either a high or low content of P2O5. This methodology was used for the regiosel

  3. Microwave-mediated reductive amination-cyclization of 4-aryl-4-oxobutanoates: Facile synthesis of 3-methylidene-5-phenyl-2,3-dihydropyrrolidones

    Indian Academy of Sciences (India)

    H Surya Prakash Rao; S P Senthilkumar

    2004-03-01

    Microwave-mediated three-component condensation of 4-aryl-4-oxobutanoates with ammonium formate furnishes 3-methylidene-5-phenyl-2,3-dihydropyrrolidones in good yield within 2 min. The pyrrolidone products were characterized on the basis of spectral data and X-ray crystal structure analysis. The reaction is found to be general and a variation in the ester and aryl moieties is possible. However, when alkylammonium formate is used only amide products are formed.

  4. Synthesis of 1,2,4-Triazolo[4,3-a]pyridines and Related Heterocycles by Sequential Condensation and Iodine-Mediated Oxidative Cyclization.

    Science.gov (United States)

    Li, Ertong; Hu, Zhiyuan; Song, Lina; Yu, Wenquan; Chang, Junbiao

    2016-07-25

    A facile and efficient approach to access 1,2,4-triazolo[4,3-a]pyridines and related heterocycles has been accomplished through condensation of readily available aryl hydrazines with corresponding aldehydes followed by iodine-mediated oxidative cyclization. This transition-metal-free synthetic process is broadly applicable to a variety of aromatic, aliphatic, and α,β-unsaturated aldehydes, and can be conveniently conducted on the gram scale.

  5. Substituent-controlled selective synthesis of N-acyl 2-aminothiazoles by intramolecular Zwitterion-mediated C-N bond cleavage.

    Science.gov (United States)

    Wang, Yang; Zhao, Fei; Chi, Yue; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-11-21

    The cleavage of C-N bonds is an interesting and challenging subject in modern organic synthesis. We have achieved the first zwitterion-controlled C-N bond cleavage in the MCR reaction among lithium alkynethiolates, bulky carbodiimides, and acid chlorides to construct N-acyl 2-aminothiazoles. This is a simple, highly efficient, and general method for the preparation of N-acyl 2-aminothiazoles with a broad range of substituents. The selective synthesis of N-acyl 2-aminothiazoles significantly depends on the steric hindrance of carbodiimides. The result is in striking contrast with our previous convergent reaction giving 5-acyl-2-iminothiazolines via 1,5-acyl migration. It is indeed interesting that the slight change of the substituents on the carbodiimides can completely switch the product structure. Experimental and theoretical results demonstrate the reason why the C-N bond cleavage in the present system is prior to the acyl migration. The intramolecular hydrogen relay via unprecedented Hofmann-type elimination is essential for this totally new zwitterion-controlled C-N bond cleavage.

  6. Rapid PCR-mediated synthesis of competitor molecules for accurate quantification of beta(2) GABA(A) receptor subunit mRNA.

    Science.gov (United States)

    Vela, J; Vitorica, J; Ruano, D

    2001-12-01

    We describe a fast and easy method for the synthesis of competitor molecules based on non-specific conditions of PCR. RT-competitive PCR is a sensitive technique that allows quantification of very low quantities of mRNA molecules in small tissue samples. This technique is based on the competition established between the native and standard templates for nucleotides, primers or other factors during PCR. Thus, the most critical parameter is the use of good internal standards to generate a standard curve from which the amount of native sequences can be properly estimated. At the present time different types of internal standards and methods for their synthesis have been described. Normally, most of these methods are time-consuming and require the use of different sets of primers, different rounds of PCR or specific modifications, such as site-directed mutagenesis, that need subsequent analysis of the PCR products. Using our method, we obtained in a single round of PCR and with the same primer pair, competitor molecules that were successfully used in RT-competitive PCR experiments. The principal advantage of this method is high versatility and economy. Theoretically it is possible to synthesize a specific competitor molecule for each primer pair used. Finally, using this method we have been able to quantify the increase in the expression of the beta(2) GABA(A) receptor subunit mRNA that occurs during rat hippocampus development.

  7. Integrin alpha1beta1 controls reactive oxygen species synthesis by negatively regulating epidermal growth factor receptor-mediated Rac activation.

    Science.gov (United States)

    Chen, Xiwu; Abair, Tristin D; Ibanez, Maria R; Su, Yan; Frey, Mark R; Dise, Rebecca S; Polk, D Brent; Singh, Amar B; Harris, Raymond C; Zent, Roy; Pozzi, Ambra

    2007-05-01

    Integrins control many cell functions, including generation of reactive oxygen species (ROS) and regulation of collagen synthesis. Mesangial cells, found in the glomerulus of the kidney, are able to produce large amounts of ROS via the NADPH oxidase. We previously demonstrated that integrin alpha1-null mice develop worse fibrosis than wild-type mice following glomerular injury and this is due, in part, to excessive ROS production by alpha1-null mesangial cells. In the present studies, we describe the mechanism whereby integrin alpha1-null mesangial cells produce excessive ROS. Integrin alpha1-null mesangial cells have constitutively increased basal levels of activated Rac1, which result in its increased translocation to the cell membrane, excessive ROS production, and consequent collagen IV deposition. Basal Rac1 activation is a direct consequence of ligand-independent increased epidermal growth factor receptor (EGFR) phosphorylation in alpha1-null mesangial cells. Thus, our study demonstrates that integrin alpha1beta1-EGFR cross talk is a key step in negatively regulating Rac1 activation, ROS production, and excessive collagen synthesis, which is a hallmark of diseases characterized by irreversible fibrosis.

  8. Citrate mediated synthesis of uniform monazite LnPO4 (Ln = La, Ce) and Ln:LaPO4 (Ln = Eu, Ce, Ce + Tb) spheres and their photoluminescence.

    Science.gov (United States)

    Nuñez, Nuria O; Liviano, Sonia R; Ocaña, Manuel

    2010-09-15

    A simple method for the synthesis of spherical LaPO(4) (monazite) particles with narrow size distribution and tailored size in the 150-500 nm range is reported. The procedure is based on a homogeneous precipitation process at low temperature (120 degrees C) from solutions containing La(3+), citrate and phosphate ions under a very restrictive set of experimental conditions, which involves the use of La nitrate, citric acid and phosphoric acid as precursors and ethylene glycol as solvent. The growth mechanism of the spheres was investigated aiming at explaining the differences in particle size and shape observed when varying the experimental conditions. The applicability of this method for the synthesis of spherical particles of other lanthanide (Ce, Tb, Eu) phosphates is also analyzed. Finally, it is shown that the developed procedure can be used to dope the lanthanum phosphate particles with lanthanide cations, which resulted in spherical phosphors as illustrated for the Eu-doped, Ce-doped and Ce, Tb codoped systems, whose luminescent properties are also evaluated.

  9. Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors.

    Science.gov (United States)

    Pan, Aizhao; He, Bo; Fan, Xiaoyun; Liu, Zeke; Urban, Jeffrey J; Alivisatos, A Paul; He, Ling; Liu, Yi

    2016-08-23

    While convenient solution-based procedures have been realized for the synthesis of colloidal perovskite nanocrystals, the impact of surfactant ligands on the shape, size, and surface properties still remains poorly understood, which calls for a more detailed structure-morphology study. Herein we have systematically varied the hydrocarbon chain composition of carboxylic acids and amines to investigate the surface chemistry and the independent impact of acid and amine on the size and shape of perovskite nanocrystals. Solution phase studies on purified nanocrystal samples by (1)H NMR and IR spectroscopies have confirmed the presence of both carboxylate and alkylammonium ligands on surfaces, with the alkylammonium ligand being much more mobile and susceptible to detachment from the nanocrystal surfaces during polar solvent washes. Moreover, the chain length variation of carboxylic acids and amines, ranging from 18 carbons down to two carbons, has shown independent correlation to the size and shape of nanocrystals in addition to the temperature effect. We have additionally demonstrated that employing a more soluble cesium acetate precursor in place of the universally used Cs2CO3 results in enhanced processability without sacrificing optical properties, thus offering a more versatile recipe for perovskite nanocrystal synthesis that allows the use of organic acids and amines bearing chains shorter than eight carbon atoms. Overall our studies have shed light on the influence of ligand chemistry on crystal growth and stabilization of the nanocrystals, which opens the door to functionalizable perovskite nanocrsytals through surface ligand manipulation.

  10. Gold-Catalyzed Synthesis of Heterocycles

    Science.gov (United States)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  11. Intercultural Mediation

    OpenAIRE

    Dragos Marian Radulescu; Denisa Mitrut

    2012-01-01

    The Intercultural Mediator facilitates exchanges between people of different socio-cultural backgrounds and acts as a bridge between immigrants and national and local associations, health organizations, services and offices in order to foster integration of every single individual. As the use mediation increases, mediators are more likely to be involved in cross-cultural mediation, but only the best mediators have the opportunity to mediate cross border business disputes or international poli...

  12. Plant Extract Mediated Eco-Friendly Synthesis of Pd@Graphene Nanocatalyst: An Efficient and Reusable Catalyst for the Suzuki-Miyaura Coupling

    Directory of Open Access Journals (Sweden)

    Mujeeb Khan

    2017-01-01

    Full Text Available Suzuki-Miyaura coupling reaction catalyzed by the palladium (Pd-based nanomaterials is one of the most versatile methods for the preparation of biaryls. However, use of organic solvents as reaction medium causes a big threat to environment due to the generation of toxic byproducts as waste during the work up of these reactions. Therefore, the use of water as reaction media has attracted tremendous attention due to its environmental, economic, and safety benefits. In this study, we report on the synthesis of green Pd@graphene nanocatalyst based on an in situ functionalization approach which exhibited excellent catalytic activity towards the Suzuki–Miyaura cross-coupling reactions of phenyl halides with phenyl boronic acids under facile conditions in water. The green and environmentally friendly synthesis of Pd@graphene nanocatalyst (PG-HRG-Pd is carried out by simultaneous reduction of graphene oxide (GRO and PdCl2 using Pulicaria glutinosa extract (PGE as reducing and stabilizing agent. The phytomolecules present in the plant extract (PE not only facilitated the reduction of PdCl2, but also helped to stabilize the surface of PG-HRG-Pd nanocatalyst, which significantly enhanced the dispersibility of nanocatalyst in water. The identification of PG-HRG-Pd was established by various spectroscopic and microscopic techniques, including, high-resolution transmission electron microscopy (HRTEM, X-ray diffraction (XRD, ultraviolet–visible spectroscopy (UV-Vis, Fourier transform infrared spectroscopy (FT-IR, and Raman spectroscopy. The as-prepared PG-HRG-Pd nanocatalyst demonstrated excellent catalytic activity towards the Suzuki-Miyaura cross coupling reactions under aqueous, ligand free, and aerobic conditions. Apart from this the reusability of the catalyst was also evaluated and the catalyst yielded excellent results upon reuse for several times with marginal loss of its catalytic performance. Therefore, the method developed for the green

  13. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.

    Science.gov (United States)

    Dennis, Michael D; Jefferson, Leonard S; Kimball, Scot R

    2012-12-14

    Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.

  14. A Short Synthesis of (+)-Cyclophellitol

    DEFF Research Database (Denmark)

    Hansen, Flemming Gundorph; Bundgaard, Eva; Madsen, Robert

    2005-01-01

    A new synthesis of (+)-cyclophellitol, a potent b-glucosidase inhibitor, has been completed in nine steps from D-xylose. The key transformations involve a zinc-mediated fragmentation of benzyl-protected methyl 5-deoxy-5-iodo-xylofuranoside followed by a highly diastereoselective indium-mediated c......A new synthesis of (+)-cyclophellitol, a potent b-glucosidase inhibitor, has been completed in nine steps from D-xylose. The key transformations involve a zinc-mediated fragmentation of benzyl-protected methyl 5-deoxy-5-iodo-xylofuranoside followed by a highly diastereoselective indium......-mediated coupling with ethyl 4-bromocrotonate. Subsequent ring-closing olefin metathesis, ester reduction, olefin epoxidation, and deprotection then afford the natural product. This constitutes the shortest synthesis of (+)-cyclophellitol reported to date....

  15. Ionic liquid-mediated three-component synthesis of fluorinated spiro-thiazine derivatives and their antimycobacterial and DNA cleavage activities

    Indian Academy of Sciences (India)

    Anshu Dandia; Ruby Singh; Deepti Saini

    2013-09-01

    A simple, green and catalyst-free novel protocol is developed for the synthesis of medicinally important spiro[indole-3,2'[1,3]-thiazine]-2,4'-dione and spiro[acenaphthylene-1,2'-[1,3]thiazine]dione libraries by the tandem reaction of readily available reagents in 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6]. The ionic liquid has been used as a solvent as well as catalyst for this reaction. This reaction proceeded smoothly in good to excellent yields and offered several other advantages including short reaction time, simple experimental workup procedure and no by-products. The synthesized compounds were subjected to antimycobacterial efficacy against Mycobacterium tuberculosis H37Rv strain and DNA cleavage activity.

  16. Pore-structure-mediated hierarchical SAPO-34: Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins

    Institute of Scientific and Technical Information of China (English)

    Yu Cui; Qiang Zhang; Jie He; Yao Wang; Fei Wei

    2013-01-01

    Hierarchical cross-like SAPO-34 catalysts with different pore size distributions were obtained via hydrothermal synthesis with polyethylene glycol (PEG) as the mesopore-generating agent.The hierarchical SAPO-34 molecular sieves were characterized using X-ray diffraction,scanning electron microscopy,N2 adsorption-desorption,thermogravimetric analysis,and temperature-programmed NH3 desorption.The cross-like SAPO-34 catalysts exhibited enriched multi-porosity,and the sizes of their mesopores ranged from 10 to 50 nm.Both the mesoporous structures and morphologies of the hierarchical SAPO-34 could be further tuned through adjustments of the amount of PEG used.The as-obtained SAPO-34 showed dramatic catalytic performance in the conversion of dimethyl ether into olefins.A maximum selectivity of olefins of 96% was achieved,which was attributed to the rapid transport of the reactants and products in zeolitic micropores through mesopores.

  17. Protein kinase D1 mediates stimulation of DNA synthesis and proliferation in intestinal epithelial IEC-18 cells and in mouse intestinal crypts.

    Science.gov (United States)

    Sinnett-Smith, James; Rozengurt, Nora; Kui, Robert; Huang, Carlos; Rozengurt, Enrique

    2011-01-07

    We examined whether protein kinase D1 (PKD1), the founding member of a new protein kinase family, plays a critical role in intestinal epithelial cell proliferation. Our results demonstrate that PKD1 activation is sustained, whereas that of PKD2 is transient in intestinal epithelial IEC-18 stimulated with the G(q)-coupled receptor agonists angiotensin II or vasopressin. PKD1 gene silencing utilizing small interfering RNAs dramatically reduced DNA synthesis and cell proliferation in IEC-18 cells stimulated with G(q)-coupled receptor agonists. To clarify the role of PKD1 in intestinal epithelial cell proliferation in vivo, we generated transgenic mice that express elevated PKD1 protein in the intestinal epithelium. Transgenic PKD1 exhibited constitutive catalytic activity and phosphorylation at the activation loop residues Ser(744) and Ser(748) and on the autophosphorylation site, Ser(916). To examine whether PKD1 expression stimulates intestinal cell proliferation, we determined the rate of crypt cell DNA synthesis by detection of 5-bromo-2-deoxyuridine incorporated into the nuclei of crypt cells of the ileum. Our results demonstrate a significant increase (p < 0.005) in DNA-synthesizing cells in the crypts of two independent lines of PKD1 transgenic mice as compared with non-transgenic littermates. Morphometric analysis showed a significant increase in the length and in the total number of cells per crypt in the transgenic PKD1 mice as compared with the non-transgenic littermates (p < 0.01). Thus, transgenic PKD1 signaling increases the number of cells per crypt by stimulating the rate of crypt cell proliferation. Collectively, our results indicate that PKD1 plays a role in promoting cell proliferation in intestinal epithelial cells both in vitro and in vivo.

  18. Down-regulation of collagen synthesis and matrix metalloproteinase expression in myofibroblasts from Dupuytren nodule using adenovirus-mediated relaxin gene therapy.

    Science.gov (United States)

    Kang, Young-Mi; Choi, Yun-Rak; Yun, Chae-Ok; Park, Jin-Oh; Suk, Kyung-Soo; Kim, Hak-Sun; Park, Moon-Soo; Lee, Byung-Ho; Lee, Hwan-Mo; Moon, Seong-Hwan

    2014-04-01

    Dupuytren's disease is a fibroproliferative connective tissue disorder characterized by contracture of the palmer fascia of the hand. Relaxin (RLN) is a multifunctional factor which contributes to the remodeling of the pelvic ligament by inhibiting fibrosis and inflammatory activities. The aim of this study was to investigate the effect of the RLN gene on the inhibition of fibrosis in myofibroblastic cells. Myofibroblast cells with adenovirus LacZ (Ad-LacZ) as a marker gene or adenovirus relaxin (Ad-RLN) as therapeutic gene showed transgene expressions in beta-galactosidase assay and Western blot analysis. Myofibroblastic cells with Ad-RLN demonstrated a 22% and 48% reduction in collagen I and III mRNA expressions respectively, a 50% decrease in MMP-1, 70% decrease in MMP-2, 80% decrease in MMP-9, and a 15% reduction in MMP-13 protein expression compared with cultures with viral control and saline control. In addition, myofibroblastic cells with Ad-RLN showed a 40% decrease in TIMP 1 and a 15% increase in TIMP 3 protein expression at 48 h compared to cultures with viral control and saline control. Also, myofibroblastic cell with Ad-RLN demonstrated a 74% inhibition of fibronectin and a 52% decrease in total collagen synthesis at 48 h compared with cultures with viral control and saline control. In conclusion, the RLN gene render antifibrogenic effect on myofibroblastic cells from Dupuytren's nodule via direct inhibition of collagen synthesis not through collagenolytic pathway such as MMP-1, -13, TIMP 1, and 3. Therefore relaxin can be an alternative therapeutic strategy in initial stage of Dupuytren's disease by its antifibrogenic effect.

  19. A base-mediated self-propagative Lossen rearrangement of hydroxamic acids for the efficient and facile synthesis of aromatic and aliphatic primary amines.

    Science.gov (United States)

    Ohtsuka, Naoya; Okuno, Moriaki; Hoshino, Yujiro; Honda, Kiyoshi

    2016-10-14

    A variety of aromatic and aliphatic hydroxamic acids were converted to the corresponding primary amines via base-mediated rearrangement. This rearrangement could proceed with less than 1 equiv. of K2CO3 in polar solvents under thermal conditions with no external reagents. This rearrangement has several features including no external activating agents needed for promoting the rearrangement, less than one equivalent of a base is sufficient for the reaction, and a clean reaction in which only carbon dioxide is produced as a by-product. A self-propagating mechanism via an isocyanate intermediate is proposed and elementary reaction steps, namely, chain propagation reactions are supported by experiments.

  20. Room-temperature synthesis of pure perovskite-related Cs4PbBr6 nanocrystals and their ligand-mediated evolution into highly luminescent CsPbBr3 nanosheets

    Science.gov (United States)

    Yang, Liu; Li, Dongmei; Wang, Cong; Yao, Wei; Wang, Hao; Huang, Kaixiang

    2017-07-01

    Currently, all-inorganic cesium lead-halide perovskite nanocrystals have attracted enormous attentions owing to their excellent optical performances. While great efforts have been devoted to CsPbBr3 nanocrystals, the perovskite-related Cs4PbBr6 nanocrystals, which were newly reported, still remained poorly understood. Here, we reported a novel room-temperature reaction strategy to synthesize pure perovskite-related Cs4PbBr6 nanocrystals. Size of the products could be adjusted through altering the amount of ligands, simply. A mixture of two good solvents with different polarity was innovatively used as precursor solvent, being one key to the high-yield Cs4PbBr6 nanocrystals synthesis. Other two keys were Cs+ precursor concentration and surface ligands. Ingenious experiments were designed to reveal the underlying reaction mechanism. No excitonic emission was observed from the prepared Cs4PbBr6 nanocrystals in our work. We considered the green emission which was observed in other reports originated from the avoidless transformation of Cs4PbBr6 into CsPbBr3 nanocrystals. Indeed, the new-prepared Cs4PbBr6 nanocrystals could transform into CsPbBr3 nanosheets with surface ligands mediated. The new-transformed two-dimensional CsPbBr3 nanosheets could evolve into large-size nanosheets. The influences of surface ligand density on the fluorescent intensity and stability of transformed CsPbBr3 nanosheets were also explained. Notably, the photoluminescence quantum yield of the as-transformed CsPbBr3 nanosheets could reach as high as 61.6% in the form of thin film. The fast large-scale synthesis of Cs4PbBr6 nanocrystals and their ligand-mediated transformation into high-fluorescent CsPbBr3 nanosheets will be beneficial to the future optoelectronic applications. Our work provides new approaches to understand the structural evolution and light-emitting principle of perovskite nanocrystals. [Figure not available: see fulltext.

  1. Synthesis of new steroidal inhibitors of P-glycoprotein-mediated multidrug resistance and biological evaluation on K562/R7 erythroleukemia cells.

    Science.gov (United States)

    de Ravel, Marc Rolland; Alameh, Ghina; Melikian, Maxime; Mahiout, Zahia; Emptoz-Bonneton, Agnès; Matera, Eva-Laure; Lomberget, Thierry; Barret, Roland; Rocheblave, Luc; Walchshofer, Nadia; Beltran, Sonia; El Jawad, Lucienne; Mappus, Elisabeth; Grenot, Catherine; Pugeat, Michel; Dumontet, Charles; Le Borgne, Marc; Cuilleron, Claude Yves

    2015-02-26

    A simple route for improving the potency of progesterone as a modulator of P-gp-mediated multidrug resistance was established by esterification or etherification of hydroxylated 5α/β-pregnane-3,20-dione or 5β-cholan-3-one precursors. X-ray crystallography of representative 7α-, 11α-, and 17α-(2'R/S)-O-tetrahydropyranyl ether diastereoisomers revealed different combinations of axial-equatorial configurations of the anomeric oxygen. Substantial stimulation of accumulation and chemosensitization was observed on K562/R7 erythroleukemia cells resistant to doxorubicin, especially using 7α,11α-O-disubstituted derivatives of 5α/β-pregnane-3,20-dione, among which the 5β-H-7α-benzoyloxy-11α-(2'R)-O-tetrahydropyranyl ether 22a revealed promising properties (accumulation index 2.9, IC50 0.5 μM versus 1.2 and 10.6 μM for progesterone), slightly overcoming those of verapamil and cyclosporin A. Several 7α,12α-O-disubstituted derivatives of 5β-cholan-3-one proved even more active, especially the 7α-O-methoxymethyl-12α-benzoate 56 (accumulation index 3.8, IC50 0.2 μM). The panel of modulating effects from different O-substitutions at a same position suggests a structural influence of the substituent completing a simple protection against stimulating effects of hydroxyl groups on P-gp-mediated transport.

  2. Ipomoea batatas (Convolvulaceae)-mediated synthesis of silver nanoparticles for controlling mosquito vectors of Aedes albopictus, Anopheles stephensi, and Culex quinquefasciatus (Diptera:Culicidae).

    Science.gov (United States)

    Pavithra Bharathi, V; Ragavendran, C; Murugan, N; Natarajan, D

    2016-12-08

    We proposed an effective and eco-friendly control of dengue, malaria, and filariasis-causing vectors. We tested Ipomoea batatas leaves-mediated silver nanoparticles (AgNPs) against first to fourth instar larvae and adults of Aedes albopictus, Anopheles stephensi, and Culex quinquefasciatus at different concentrations. The synthesized AgNPs showed broad spectrum of larvicidal and adulticidal effects after 48 h of exposure. The characterization of synthesized AgNPs was done using various spectral and microscopy analyses. The maximum efficacy was observed in synthesized AgNPs against the adult of Ae. albopictus with the LC50 and LC90 values were 10.069 and 15.657 μg/mL, respectively, followed by others.

  3. Remarkable rate acceleration of SmI3-mediated iodination of acetates of Baylis-Hillman adducts in ionic liquid: facile synthesis of (Z)-allyl iodides

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Stereoselective transformation of Baylis-Hillman acetates 1 into corresponding (Z)-allyl iodides 2 has been achieved by treatment of 1 with samarium triiodide in THF. Remarkable rate acceleration of samarium triiodide-mediated iodination of 1 was found when ionic liquid 1-n-butyl-3-methyl-imidazolium tetrafluroborate ([bmim]BF4) was used as reaction media in stead of THF. This novel approach proceeds readily at 50 ℃ within a few minutes to afford (Z)-allyl iodides 2 in excellent yields. A mechanism involving stereoselective iodination of the acetates of Baylis-Hillman adducts by samarium triiodide is described, in which a six-membered ring transition state played a key role in the stereoselective formation of 2.

  4. l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis.

    Science.gov (United States)

    Mandal, Abhishek; Das, Sushmita; Kumar, Ajay; Roy, Saptarshi; Verma, Sudha; Ghosh, Ayan Kumar; Singh, Ruby; Abhishek, Kumar; Saini, Savita; Sardar, Abul Hasan; Purkait, Bidyut; Kumar, Ashish; Mandal, Chitra; Das, Pradeep

    2017-01-01

    The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL), depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM) with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS) expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important therapeutic and

  5. Synthesis, Crystal Structure of Ruthenium 1,2-Naphthoquinone-1-oxime Complex and Its Mediated C-C Coupling Reactions of Terminal Alkynes

    Institute of Scientific and Technical Information of China (English)

    SUN, Ke; WONG, Wing-Tak; LIU, Xiao-Xia; ZHANG, Bao-Yan

    2003-01-01

    Substituted decarbonylation reaction of ruthenium 1,2-naphthoquinone-1-oxime (1-nqo) complex, cis-, cis-[Ru{ η2-N(O)C10-H6O}2(CO)2] (1), with acetonitrile gave cis-, cis-[Ru { η2-N(O)C10H6O}2(CO)(NCMe)] (2). Complex 2 was fully characterized by 1H NMR, FAB MS, IR spectra and single crystal X-ray analysis. Complex 2 maintains the coordination structure of 1 with the two naphthoquinonic oxygen atoms, as well as the two oximato nitrogen atoms located cis to each other, showing that there is no ligand rearrangement of the 1-nqo ligands during the substitution reaction. The carbonyl group originally trans to the naphthoquinonic oxygen in one 1-nqo ligand is left in its original position [O(5)-Ru-C(1), 174.0(6)°], while the other one originally trans to the oximato group of the other 1-nqo llgand is substituted by NCMe [N(1)-Ru-N(3), 170.6(6)°].This shows that the carbonyl trans to oximato group is more labile than the one trans to naphthoquinonic O atom towards substitution. This is probably due to the comparatively stronger π back bonding from ruthenium metal to the carbonyl group trans to naphthoquinonic O atom, than the one trans to oximato group, resulting in the comparatively weaker Ru-CO bond for the latter and consequently easier replacement of this carbonyl. Selected coupling of phenylacetylene mediated by 2 gave a single trans-dimerization product 3, while 2 mediated coupling reaction of methyl propiolate produced three products:one trans-dimerization product 4 and two cyclotrimeric products 5 and 6.

  6. Gripe water-mediated green synthesis of silver nanoparticles and their applications in nonlinear optics and surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Kirubha, E.; Vishista, K.; Palanisamy, P. K.

    2014-11-01

    In the present study, silver nanoparticles were synthesized from aqueous silver nitrate through a simple, eco-friendly and `green' method using gripe water as reducing as well as stabilizing agent. Control over the dispersity of silver (Ag) nanoparticles was attained by altering the synthesis process. The size and morphology of the particles were perceived using high-resolution transmission electron microscope and the surface plasmon resonance of the prepared nanoparticles was observed by UV-VIS spectrum. Herein, we report the nonlinear optical behavior and surface-enhanced Raman spectroscopy of silver nanoparticles with different particle size and dispersity. The nonlinear optical behavior was studied by single beam Z-scan technique using tunable Ti: Sapphire mode-locked femtosecond laser as source. The nonlinear optical parameters such as the nonlinear refractive index, nonlinear absorption coefficient β and the third-order nonlinear susceptibility χ 3 of the prepared Ag nanoparticles were obtained for various wavelengths by tuning the wavelength of the laser from 700 to 950 nm. Surface-enhanced Raman spectroscopy (SERS) is an inspiring phenomenon especially in the case of silver nanoparticles. The as-synthesized silver nanoparticles show huge enhancements in the order of 109 in the Raman spectrum of rhodamine 6G dye.

  7. Synthesis, microsome-mediated metabolism, and identification of major metabolites of environmental pollutant naphtho(8,1,2-ghi)chrysene

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.K.; Gowdahalli, K.; Gimbor, M.; Amin, S. [Penn State College of Medicine, Hershey, PA (United States)

    2008-05-15

    Naphtho(8,1,2-ghi)chrysene, commonly known as naphtho(1,2-e)pyrene (N(1,2-e)P) is a widespread environmental pollutant, identified in coal tar extract, air borne particulate matter, marine sediment, cigarette smoke condensate, and vehicle exhaust. Herein, we determined the ability of rat liver microsomes to metabolize N(1,2-e)P and an unequivocal assignment of the metabolites by comparing them with independently,synthesized standards. We developed the synthesis of both the fjord region and the K-region dihydrodiols and various phenolic derivatives for metabolite identification. In summary, N(1,2-e)P trans-11, 12-dihydrodiol was the major metabolite formed along with N(1,2-e)P 4,5-trtins-dihydrodiol and 12-OH-N(1,2-e)P on exposure of rat liver microsomes to N(1,2-e)P. The presence of N(1,2-e)P in the environment and formation of fjord region dihydrodiol 14 as a major metabolite in in vitro metabolism studies strongly suggest the role of N(1,2-e)P as a potential health hazard.

  8. Plant-mediated synthesis of silver nanoparticles using parsley ( Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-11-01

    Synthesis of nanomaterials may involve various routes including physical, chemical and biological approaches. Here, the biological green route was chosen to prepare silver nanoparticles from silver salts to avoid the requirement of costly instruments and involvement of hazardous chemicals as well. To make the process clean and green, leaf extract of parsley ( Petroselinum crispum) was used to synthesize Ag nanoparticles at room temperature. The formation of Ag-nanoparticles was monitored by UV-Vis spectroscopy. The presence of silver in the sample and its crystalline nature were verified by X-ray diffraction (XRD) analysis. The size distribution profile and particle size in the suspension were manipulated from dynamic light scattering (DLS) pattern. The shape, size and morphology of the biogenic nanoparticles were studied using high resolution transmission electron microscope (TEM). Fourier transform infra-red spectroscopy was used to detect the biomolecules responsible for reduction of silver ions. These biogenic Ag-nanoparticles showed appreciable antibacterial efficacy against three bacteria— Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus.

  9. Microwave Mediated Organic Reaction: A Convenient Approach for Rapid and Efficient Synthesis of Biologically Active Substituted 1,3-Dihydro-2H-indol-2-one Derivatives

    Directory of Open Access Journals (Sweden)

    Jnyanaranjan Panda

    2013-01-01

    Full Text Available A simple and efficient method has been developed for the synthesis of 1,3-dihydro-2H-indol-2-one derivatives using microwave irradiation technique. By taking advantage of the efficient source of energy of microwave, compound libraries for lead generation and optimization can be assembled in a fraction of time. In the present work, first the Schiff’s bases are synthesized by reaction of isatin with substituted anilines in the presence of acetic acid under microwave heating. Then the condensation of Schiff bases with different secondary amines in the presence of formaldehyde produces Mannich bases. The newly synthesized Mannich bases were characterized by means of spectral data and then evaluated for anthelmintic activity against Pheretima posthuma (Indian earthworm and compared with standard albendazole. The compounds were evaluated at the concentrations of 10, 20, and 50 mg/mL. The effect of the standard drug albendazole at 10 mg/mL was also evaluated. The results of the present study indicate that some of the test compounds significantly demonstrated paralysis and also caused death of worms in a dose-dependent manner.

  10. Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity.

    Science.gov (United States)

    Chanu, T Inakhunbi; Muthukumar, Thangavelu; Manoharan, Periakaruppan T

    2014-11-21

    Nanocomposites of gold nanoparticles and semiconductor ZnO with wurtzite structure, made by solution combustion synthesis (SCS), as a function of the Zn/fuel ratio with polyethylene glycol (PEG) as fuel exhibit the presence of both nanoparticles and clusters. Atomic gold clusters present on the surface of ZnO nanorods which can be identified by XPS and SEM are easily monitored and characterized by positive ion MALDI experiments as mostly odd numbered clusters, Au3 to Au11 in decreasing amounts. Low concentrations of the fuel produce AuClO and nanoparticles (NPs), with no clusters. Au-ZnO nanocomposites at all [Au] exhibit single blue shifted plasmon absorption and corresponding photoluminescence (PL). Increasing particle size prefers surface plasmon resonance (SPR) scattering of metal that could lead to PL enhancement; however, available ZnO surface in the Au-ZnO composite becomes more important than the particle size of the composite with higher [Au]. The catalytic activity of these Au-ZnO nanocomposites tested on 4-nitrophenol clearly revealed the presence of an intermediate with both NPs and clusters playing different roles. An in vitro study of cytotoxicity on MCF-7 cell lines revealed that these gold nanostructures have turned out to be powerful nanoagents for destruction of cancer cells even with small amounts of gold particles/clusters. The nanorods of ZnO, known to be nontoxic to normal cells, play a lesser role in the anticancer activity of these Au-ZnO nanocomposites.

  11. Enantioselective synthesis of α-phenyl- and α-(dimethylphenylsilyl)alkylboronic esters by ligand mediated stereoinductive reagent-controlled homologation using configurationally labile carbenoids.

    Science.gov (United States)

    Barsamian, Adam L; Wu, Zhenhua; Blakemore, Paul R

    2015-03-28

    Chain extension of boronic esters by the action of configurationally labile racemic lithium carbenoids in the presence of scalemic bisoxazoline ligands was explored for the enantioselective synthesis of the two title product classes. Enantioenriched 2° carbinols generated by oxidative work-up (NaOOH) of initial α-phenylalkylboronate products were obtained in 35-83% yield and 70-96% ee by reaction of B-alkyl and B-aryl neopentyl glycol boronates with a combination of O-(α-lithiobenzyl)-N,N-diisopropylcarbamate and ligand 3,3-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl] pentane in toluene solvent (-78 °C to rt) with MgBr2·OEt2 additive. Enantioenriched α-(dimethylsilylphenylsilyl)alkylboronates were obtained in 35-69% yield and 9-57% ee by reaction of B-alkyl pinacol boronates with a combination of lithio(dimethylphenylsilyl)methyl 2,4,6-triisopropylbenzoate and ligand 2,2-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl]propane in cumene solvent (-45 °C to -95 °C to rt). The stereochemical outcome of the second type of reaction depended on the temperature history of the organolithium·ligand complex indicating that the stereoinduction mechanism in this case involves some aspect of dynamic thermodynamic resolution.

  12. Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens.

    Science.gov (United States)

    Krishnaraj, Chandran; Ji, Byoung-Jun; Harper, Stacey L; Yun, Soon-Il

    2016-05-01

    Silver nanoparticles (AgNPs), manganese dioxide nanoparticles (MnO₂NPs) and silver-doped manganese dioxide nanoparticles (Ag-doped MnO₂NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extract from the leaves of medicinally important plant Cucurbita pepo was used as reducing and capping agents. Various characterization techniques were carried out to affirm the formation of nanoparticles. HR-TEM analysis confirmed the size of nanoparticles in the range of 15-70 nm and also metal doping was confirmed through XRD and EDS analyses. FT-IR analysis confirmed that the presence of biomolecules in the aqueous leaves extract was responsible for nanoparticles synthesis. Further, the concentration of metals and their doping in the reaction mixture was achieved by ICP-MS. The growth curve and well diffusion study of synthesized nanoparticles were performed against food- and water-borne Gram-positive and Gram-negative bacterial pathogens. The mode of interaction of nanoparticles on bacterial cells was demonstrated through Bio-TEM analysis. Interestingly, AgNPs and Ag-doped MnO₂NPs showed better antibacterial activity against all the tested bacterial pathogens; however, MnO₂NPs alone did not show any antibacterial properties. Hence, AgNPs and Ag-doped MnO₂NPs synthesized from aqueous plant leaves extract may have important role in controlling various food spoilage caused by bacteria.

  13. Silver nanoparticles synthesis mediated by newly isolates of Bacillus spp., nanoparticles characterization and their activity against Bean Yellow Mosaic Virus and human pathogens

    Directory of Open Access Journals (Sweden)

    Essam K.F. Elbeshehy

    2015-05-01

    Full Text Available Extracellular agents produced by newly isolated bacterial strains were able to catalyze the synthesis of silver nanoparticles (AgNPs. The most effective isolates were identified as Bacillus pumilus, B. persicus and B. licheniformis using molecular identification. DLS analysis revealed that the AgNPs synthesized by the above strains were in the size range of 77-92 nm. TEM observations shown that the nanoparticles were coated with a capping agent, which was probably involved in nanoparticles stabilization allowing their perfect dispersion in aqueous solutions. FTIR analyses indicated the presence of proteins in the capping agent of the nanoparticles and suggested that the oxidation of hydroxyl groups of peptide hydrolysates (originated from the growth medium is coupled to the reduction of silver ions. Energy Dispersive X-ray Spectroscopy confirmed the above results. The nanoparticles, especially those synthesized by B. licheniformis, were stable (zeta potential ranged from -16.6 to -21.3 mV and showed an excellent in vitro antimicrobial activity against important human pathogens and a considerable antiviral activity against the Bean Yellow Mosaic Virus. The significance of the particular antiviral activity is highlighted, given the significant yield reduction in fava bean crops resulting from Bean Yellow Mosaic Virus infections, in many African countries.

  14. Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers.

    Science.gov (United States)

    Choonara, Yahya E; Pillay, Viness; Ndesendo, Valence M K; du Toit, Lisa C; Kumar, Pradeep; Khan, Riaz A; Murphy, Caragh S; Jarvis, Debbie-Leigh

    2011-10-15

    This study focused on evaluating four emulsion-based processing strategies for polymeric nanoparticle synthesis to explicate the mechanisms of nanoparticle formation and the influence on achieving sustained-release of two anti-tuberculosis drugs, isoniazid and rifampicin. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were formulated with and without sorbitan mono-oleate as a stabilizer using emulsion-solvent-surfactant-evaporation (ESSE) and emulsion-solvent-evaporation (ESE) approaches. An alginate solution gelled by ionic crosslinking with calcium chloride was employed to prepare alginate hydrogel nanoparticles via reverse-emulsion-cationic-gelification (RECG) and reverse-emulsion-surfactant-cationic-gelification (RESCG) approaches. In vitro drug release analysis was performed. The size, zeta potential and morphology of the nanoparticles were analyzed. Molecular mechanics energy relationships (MMER) were employed to explore the spatial disposition of alginate and PLGA with respect to the emulsifying profile of sorbitan monooleate and to corroborate the experimental findings. Results revealed that particle size of the PLGA nanoparticles was influenced by the stabilizer concentration. Nanoparticles synthesized by the ESSE approach had smaller sizes of 240±8.7 nm and 195.5±5.4 nm for rifampicin- and isoniazid-loaded nanoparticles, respectively. This was a substantial size reduction from nanoparticles generated by the ESE approach (>1000 nm). The RESCG approach produced stable and higher nanoparticle yields with desirable size (277±1.0 nm; 289±1.2 nm), a low polydispersity index (27.1±0.3 mV; 28.5±0.5 mV) and drug entrapment efficiency of 73% and 75% for isoniazid and rifampicin, respectively. Drug release from the ESSE and RESCG synthesized nanoparticles displayed desirable release of the two anti-TB drugs with sustained zero-order kinetics over a period of 8h. MMER supported the mechanisms of nanoparticle formation with a sphericalized interlaced network

  15. One-pot environmentally friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with an enhanced multifunctional behavior.

    Science.gov (United States)

    Khandelwal, Mahima; Kumar, Anil

    2016-03-28

    The present paper reports the one-pot synthesis of N-doped graphene-Ag nanocomposites (N-GrAg) involving the in situ generation of Ag nanoparticles (NPs). The simultaneous reduction of GO and Ag(+) to produce N-GrAg has been achieved under mild reaction conditions using an environmentally benign reducing agent, glycine, in aqueous medium without adding any external stabilizer. XRD and SAED analyses revealed the presence of Ag in the fcc structure. HRTEM analysis shows a 'd' spacing of 0.236 nm corresponding to the highest intensity (111) reflection of Ag which matches the fcc structure. The N-doping of graphene and its uniform decoration by Ag NPs (with an av. dia. of 17.5 nm) having a relatively low surface atomic % of Ag (0.309) are evidenced by TEM and XPS analyses. Raman spectroscopy has also revealed that the decoration of N-Gr with Ag NPs resulted in the enhancement of the D and G bands by about 365%. The presence of Ag in N-GrAg prevents the folding of the graphene sheet as was revealed by TEM analysis. The supramolecular interactions of Ag with different moieties of N in N-GrAg were evidenced by IR, (13)C NMR and XPS analyses, which resulted in the enhancement of its surface area and electrical conductivity as compared to that of N-Gr. The presence of Ag NPs on N-Gr increased the current response in cyclic voltammetry by more than seven fold as compared to that of N-Gr. These nanocomposites exhibited a fairly high SERS activity for 4-aminothiophenol, employed as the probe molecule, and allowed its detection at a 50 nM concentration even for the fairly small sized Ag NPs used in the present work.

  16. Interleukin-10 modulates the synthesis of inflammatory mediators in the sensory circumventricular organs: implications for the regulation of fever and sickness behaviors

    Directory of Open Access Journals (Sweden)

    Harden Lois M

    2013-02-01

    Full Text Available Abstract Background Whereas the role played by interleukin (IL-10 in modulating fever and sickness behavior has been linked to it targeting the production of pro-inflammatory cytokines in the circulation, liver and spleen, it is not known whether it could directly target the local production of pro-inflammatory cytokines within the sensory circumventricular organs (CVOs situated within the brain, but outside the blood–brain barrier. Using inactivation of IL-10, we, therefore, investigated whether IL-10 could modulate the synthesis of pro-inflammatory cytokines within the sensory CVOs, in particular the organum vasculosum laminae terminalis (OVLT and area postrema (AP. Findings Primary OVLT and AP microcultures were established from topographically excised rat pup brain tissue. The microcultures were pretreated with either IL-10 antibodies (AB (10 μl/350 μl medium or phosphate-buffered saline (PBS (10 μl/350 μl medium before being incubated with lipopolysaccharide (LPS (100 μg/ml or PBS in complete medium for 6 h. Supernatants were removed from the microcultures after 6 h of incubation with LPS and used for the determination of IL-6 and tumor necrosis factor (TNF-α. Pre-treating the OVLT and AP microcultures with IL-10 antibodies significantly enhanced the LPS-induced increase in TNF-α and IL-6 in the supernatant obtained from the microcultures. Conclusions Our results show for the first time that the LPS-induced release of pro-inflammatory cytokines in cells cultured from the AP and OVLT can be modulated in the presence of IL-10 antibodies. Thus, we have identified that the sensory CVOs may have a key role to play in both the initiation and modulation of neuroinflammation.

  17. Mechanical stretch-induced vascular hypertrophy occurs through modulation of leptin synthesis-mediated ROS formation and GATA-4 nuclear translocation

    Science.gov (United States)

    Ghantous, Crystal M.; Kobeissy, Firas H.; Soudani, Nadia; Rahman, Farah A.; Al-Hariri, Mustafa; Itani, Hana A.; Sabra, Ramzi; Zeidan, Asad

    2015-01-01

    Background: Obesity and hypertension are associated with increased leptin production contributing to cardiovascular remodeling. Mechanisms involving mechanical stretch-induced leptin production and the cross talk between signaling pathways leading to vascular remodeling have not been fully elucidated. Methods and Results: Rat portal vein (RPV) organ culture was used to investigate the effect of mechanical stretch on leptin protein expression in vascular smooth muscle cells (VSMCs). Moreover, the involvement of reactive oxygen species (ROS), the RhoA/ROCK pathway, actin cytoskeleton dynamics and the transcriptional factor GATA-4 activation in mechanical stretch-induced vascular remodeling were investigated. Stretching the RPV for 1 or 24 h significantly increased leptin protein level and ROS formation in VSMCs, which was prevented by 1 h pretreatment with the ROCK inhibitor Y-27632 and the actin cytoskeleton depolymerization agent cytochalasin D. Moreover, Western blotting and immunohistochemistry revealed that mechanical stretch or treatment with 3.1 nmol/L leptin for 24 h significantly increased actin polymerization, as reflected by an increase in the F-actin to G-actin ratio. Increases in blood vessels’ wet weight and [3H]-leucine incorporation following a 24 h treatment with conditioned media from cultured stretched RPVs indicated RPV hypertrophy. This effect was prevented by 1 h pretreatment with anti-leptin antibody, indicating leptin’s crucial role in promoting VSMC hypertrophy. As an index of GATA-4 activation, GATA-4 nuclear translocation was assessed by immunohistochemistry method. Pretreating VSMC with leptin for 1 h significantly activated GATA-4 nuclear translocation, which was potently attenuated by the NADPH oxidase inhibitor apocynin, Y-27632, and cytochalasin D. Conclusion: Our results demonstrate that ROS formation, RhoA/ROCK pathway, and GATA-4 activation play a pivotal role in mechanical stretch-induced leptin synthesis leading to VSMC

  18. Simultaneous axial screw dislocation-mediated growth and radial layer-by-layer deposition for controlled synthesis of asymmetric axial ZnO nanospindles

    Science.gov (United States)

    Yang, Hong-Jie; He, Sheng-Yan; Tuan, Hsing-Yu

    2014-07-01

    Single-component nanostructures with axial asymmetry were successfully synthesized in organic solvents via a new type of growth model. Asymmetric axial ZnO nanospindles with a hexagonal cross-section were produced by a growth model consisting of simultaneous axial screw dislocation-mediated growth and radial layer-by-layer deposition. The growth process of ZnO nanospindles is explained by comprehensively characterizing and monitoring the products at different reaction time intervals. Hexagonal discs containing dislocations were first generated at a reaction time of 2.5 min. When the reaction time continued to increase, the nanodiscs grew along the direction. Half-nanospindles were formed at mid-reaction stage when the growth rate of [0001] was greater than [000-1]. Finally, the asymmetric nanospindles were obtained at 40 min. Further, the length of the asymmetric axial ZnO spindles can be precisely tuned by the adjustment of reaction temperature. Thus, the growth model presented here can synthesize a new category of one-dimensional asymmetric nanostructures.Single-component nanostructures with axial asymmetry were successfully synthesized in organic solvents via a new type of growth model. Asymmetric axial ZnO nanospindles with a hexagonal cross-section were produced by a growth model consisting of simultaneous axial screw dislocation-mediated growth and radial layer-by-layer deposition. The growth process of ZnO nanospindles is explained by comprehensively characterizing and monitoring the products at different reaction time intervals. Hexagonal discs containing dislocations were first generated at a reaction time of 2.5 min. When the reaction time continued to increase, the nanodiscs grew along the direction. Half-nanospindles were formed at mid-reaction stage when the growth rate of [0001] was greater than [000-1]. Finally, the asymmetric nanospindles were obtained at 40 min. Further, the length of the asymmetric axial ZnO spindles can be precisely tuned by the

  19. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway).

    Science.gov (United States)

    Kumar, C Ganesh; Poornachandra, Y; Chandrasekhar, Cheemalamarri

    2015-11-28

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications.

  20. Green Synthesis of ZnO Nanoparticles by an Alginate Mediated Ion-Exchange Process and a case study for Photocatalysis of Methylene Blue Dye

    Science.gov (United States)

    Keong, Choo Cheng; Sunitha Vivek, Yamini; Salamatinia, Babak; Amini Horri, Bahman

    2017-04-01

    In this study, zinc oxide (ZnO) was prepared via extrusion-dripping method through an ion exchange mediated process using sodium alginate. The samples were synthesized at 500 °C and 600 °C to study the effect of calcination temperature. The morphology, microstructure and optical activity of the calcined ZnO nanoparticles were analyzed by TGA, FESEM and XRD. It was found that ZnO nanoparticles synthesized at 600 °C was of higher purity with high crystallinity. To enhance the photocatalytic efficiency of zinc oxide, ZnO/NCC films were synthesized at varying ZnO loading fractions of 10 wt%, 15 wt%, 20 wt% and 25 wt% and were evaluated by photodegradation of Methylene blue dye and the highest dye percentage removal is found to be 96% which is obtained at ZnO loadings of 25 wt%. The usage of ion-exchange process has shown promising results in producing ZnO of desirable characteristics.

  1. A facile one-pot synthesis of starch functionalized graphene as nano-carrier for pH sensitive and starch-mediated drug delivery.

    Science.gov (United States)

    Liu, Kunping; Wang, Yimin; Li, Huiming; Duan, Yixiang

    2015-04-01

    A fast, green and facile method was developed to prepare starch functionalized graphene nanosheets (starch-GNS) via the reduction of exfoliated graphene oxides by soluble starch, which acted both as a reductant and as a functionalization reagent for capping graphene nanosheets to prevent aggregation. The as-prepared starch-GNS exhibited good biocompatibility, which was deemed crucial for the biomedical application of graphene. Cellular toxicity tests suggested that the starch-GNS was nontoxic to SW-620 cells even at the relatively concentration of 200 μg mL(-1). After the loading of the commonly used anticancer drug hydroxycamptothecin (HCPT) via physisorption on starch-GNS, the HCPT@starch-GNS composite exhibited a high drug loading capacity and was therefore used for cellular imaging and drug delivery studies. Through the nonspecific endocytosis effect, the HCPT@starch-GNS composite was encapsulated into cytoplasm by SW-620 cancer cells. With the double action of an acid microenvironment and the diastase in SW-620 cells, the HCPT@starch-GNS composite showed high toxicity to the SW-620 cells and experienced a pH sensitive as well as a starch-mediated in vitro sustained release process, which had the potential advantage of improving therapeutic efficacy. Therefore, the starch-GNS composite could be used as an ideal nano-carrier for drug delivery and offered a new avenue for broadening the application of graphene in biomedicine. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Biomolecule-assisted synthesis of defect-mediated Cd1-xZnxS/MoS2/graphene hollow spheres for highly efficient hydrogen evolution.

    Science.gov (United States)

    Du, Ruifeng; Zhang, Yihe; Li, Baoying; Yu, Xuelian; Liu, Huijuan; An, Xiaoqiang; Qu, Jiuhui

    2016-06-28

    Moderate efficiency and the utilization of noble metal cocatalysts are the key factors that restrict the large-scale application of photocatalytic hydrogen production. To develop more efficient photocatalysts based on earth abundant elements, either a new material strategy or a fundamental understanding of the semiconductor/cocatalyst interfaces is highly desirable. In this paper, we studied the feasibility of in situ formation of defect-rich cocatalysts on graphene-based photocatalysts. A facile biomolecule-assisted strategy was used to self-assmble Cd1-xZnxS/MoS2/graphene hollow spheres. The defect-mediated cocatalyst and synergetic charge transfer around heterostructured interfaces exhibit a significant impact on the visible-light-driven photocatalytic activity of multicomponent solid solutions. With engineered interfacial defects, Cd0.8Zn0.2S/MoS2/graphene hollow spheres exhibited a 63-fold improved H2 production rate, which was even 2 and 3.8 times higher than those of CdS/MoS2/graphene hollow spheres and Cd0.8Zn0.2S/Pt. Therefore, our research provides a promising approach for the rational design of high-efficiency and low-cost photocatalysts for solar fuel production.

  3. Synthesis of Cu(2+)-mediated nano-sized salbutamol-imprinted polymer and its use for indirect recognition of ultra-trace levels of salbutamol.

    Science.gov (United States)

    Alizadeh, Taher; Fard, Leyla Abolghasemi

    2013-03-26

    Cu(2+)-mediated salbutamol-imprinted polymer nanoparticles, synthesized by precipitation polymerization, were mixed with graphite powder and n-eicosane in order to fabricate a modified carbon paste electrode. This electrode was then applied for indirect differential pulse voltammetry determination of salbutamol. In the presence of Cu(2+) ions, the formed Cu(2+)-salbutamol complex was adsorbed in to the pre-designed cavities of the MIP particles, situated on the electrode surface. Since the electrochemical signal of salbutamol was intrinsically small, the oxidation peak of the participant Cu(2+), after reduction step, was recorded and used as an indication of salbutamol amount, adsorbed in the electrode. Different variables influencing the sensor performance were studied and the best conditions were chosen for the determination purpose. Correlation between the sensor response to salbutamol and its concentration was linear in the range of 1.0×10(-9)-5.5×10(-8) M. Detection limit was calculated equal to 6.0×10(-10) M (S/N). Five replicated determination of salbutamol (1×10(-8) M) resulted in standard error of 3.28%, meaning a satisfactory precision of the determination method. The prepared sensor was applied for real sample analysis. In order to minimize the interference effect, the synthesized polymer was successfully used as a solid phase sorbent for salbutamol extraction, before analysis of real samples by the developed sensor.

  4. Albumin-stimulated DNA synthesis is mediated by Ca2+/PKC as well as EGF receptor-dependent p44/42 MAPK and NF-kappaB signal pathways in renal proximal tubule cells.

    Science.gov (United States)

    Lee, Yu Jin; Han, Ho Jae

    2008-03-01

    It is now recognized that significant tubular reabsorption of albumin occurs under physiological conditions that may play an important role in maintaining proximal tubular integrity and function. Therefore, this study examined the effect of bovine serum albumin (BSA) on DNA synthesis and its related signal molecules in primary cultured rabbit renal proximal tubule cells (PTCs). BSA increased the level of [(3)H]thymidine incorporation in a dose (> or =3 mg/ml)- and time (> or =3 h)-dependent manner, intracellular Ca(2+) concentration, and the level of protein kinase C (PKC) phosphorylation and stimulated the phosphorylation of the epidermal growth factor receptor (EGFR), which was inhibited by EGTA (extracellular Ca(2+) chelator), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM, intracellular Ca(2+) chelator), or PKC inhibitors (staurosporine or bisindolylmaleimide I). In addition, the PKC inhibitors or an EGFR inhibitor (AG-1478) blocked the BSA-induced phosphorylation of p44/42 mitogen-activated protein kinases (MAPKs). BSA also increased the level of nuclear factor-kappaB (NF-kappaB) and inhibitor of NF-kappaB (IkappaB) phosphorylation, which was blocked by staurosporine, AG-1478, or PD-98059 (p44/42 MAPK inhibitor). Inhibition of Ca(2+), PKC, EGFR, p44/42 MAPK, or NF-kappaB signal pathways blocked the BSA-induced incorporation of [(3)H]thymidine. Consequently, the inhibition of Ca(2+), PKC, EGFR, p44/42 MAPKs, or NF-kappaB blocked the BSA-induced increases in cyclin D1, cyclin-dependent kinase (CDK)4, cyclin E, or CDK2 and restored the BSA-induced inhibition of p21(WAF/Cip1) and p27(Kip1) expression. In conclusion, BSA stimulates DNA synthesis that is mediated by Ca(2+)/PKC as well as the EGFR-dependent p44/42 MAPK and NF-kappaB signal pathways in PTCs.

  5. Novel 5-oxo-hexahydroquinoline derivatives: design, synthesis, in vitro P-glycoprotein-mediated multidrug resistance reversal profile and molecular dynamics simulation study.

    Science.gov (United States)

    Shahraki, Omolbanin; Edraki, Najmeh; Khoshneviszadeh, Mehdi; Zargari, Farshid; Ranjbar, Sara; Saso, Luciano; Firuzi, Omidreza; Miri, Ramin

    2017-01-01

    Overexpression of the efflux pump P-glycoprotein (P-gp) is one of the important mechanisms of multidrug resistance (MDR) in many tumor cells. In this study, 26 novel 5-oxo-hexahydroquinoline derivatives containing different nitrophenyl moieties at C4 and various carboxamide substituents at C3 were designed, synthesized and evaluated for their ability to inhibit P-gp by measuring the amount of rhodamine 123 (Rh123) accumulation in uterine sarcoma cells that overexpress P-gp (MES-SA/Dx5) using flow cytometry. The effect of compounds with highest MDR reversal activities was further evaluated by measuring the alterations of MES-SA/Dx5 cells' sensitivity to doxorubicin (DXR) using MTT assay. The results of both biological assays indicated that compounds bearing 2-nitrophenyl at C4 position and compounds with 4-chlorophenyl carboxamide at C3 demonstrated the highest activities in resistant cells, while they were devoid of any effect in parental nonresistant MES-SA cells. One of the active derivatives, 5c, significantly increased intracellular Rh123 at 100 µM, and it also significantly reduced the IC50 of DXR by 70.1% and 88.7% at 10 and 25 µM, respectively, in MES-SA/Dx5 cells. The toxicity of synthesized compounds against HEK293 as a noncancer cell line was also investigated. All tested derivatives except for 2c compound showed no cytotoxicity. A molecular dynamics simulation study was also performed to investigate the possible binding site of 5c in complex with human P-gp, which showed that this compound formed 11 average H-bonds with Ser909, Thr911, Arg547, Arg543 and Ser474 residues of P-gp. A good agreement was found between the results of the computational and experimental studies. The findings of this study show that some 5-oxo-hexahydroquinoline derivatives could serve as promising candidates for the discovery of new agents for P-gp-mediated MDR reversal.

  6. Novel 5-oxo-hexahydroquinoline derivatives: design, synthesis, in vitro P-glycoprotein-mediated multidrug resistance reversal profile and molecular dynamics simulation study

    Science.gov (United States)

    Shahraki, Omolbanin; Edraki, Najmeh; Khoshneviszadeh, Mehdi; Zargari, Farshid; Ranjbar, Sara; Saso, Luciano; Firuzi, Omidreza; Miri, Ramin

    2017-01-01

    Overexpression of the efflux pump P-glycoprotein (P-gp) is one of the important mechanisms of multidrug resistance (MDR) in many tumor cells. In this study, 26 novel 5-oxo-hexahydroquinoline derivatives containing different nitrophenyl moieties at C4 and various carboxamide substituents at C3 were designed, synthesized and evaluated for their ability to inhibit P-gp by measuring the amount of rhodamine 123 (Rh123) accumulation in uterine sarcoma cells that overexpress P-gp (MES-SA/Dx5) using flow cytometry. The effect of compounds with highest MDR reversal activities was further evaluated by measuring the alterations of MES-SA/Dx5 cells’ sensitivity to doxorubicin (DXR) using MTT assay. The results of both biological assays indicated that compounds bearing 2-nitrophenyl at C4 position and compounds with 4-chlorophenyl carboxamide at C3 demonstrated the highest activities in resistant cells, while they were devoid of any effect in parental nonresistant MES-SA cells. One of the active derivatives, 5c, significantly increased intracellular Rh123 at 100 µM, and it also significantly reduced the IC50 of DXR by 70.1% and 88.7% at 10 and 25 µM, respectively, in MES-SA/Dx5 cells. The toxicity of synthesized compounds against HEK293 as a noncancer cell line was also investigated. All tested derivatives except for 2c compound showed no cytotoxicity. A molecular dynamics simulation study was also performed to investigate the possible binding site of 5c in complex with human P-gp, which showed that this compound formed 11 average H-bonds with Ser909, Thr911, Arg547, Arg543 and Ser474 residues of P-gp. A good agreement was found between the results of the computational and experimental studies. The findings of this study show that some 5-oxo-hexahydroquinoline derivatives could serve as promising candidates for the discovery of new agents for P-gp-mediated MDR reversal. PMID:28243063

  7. Regulation of T-type Ca2+ channel in lysophosphatidylcholine-stimulated cardiomyocytes%溶血磷脂酰胆碱对心肌细胞T型钙离子通道的调控

    Institute of Scientific and Technical Information of China (English)

    刘刚; 郑明奇; 王玮; 王晓宇; 马芳芳; 于红芳; 李学永

    2011-01-01

    Objective: To study the effect of lysophosphatidylcholine (LPC) on T-type calcium channel currents (Ica.T ) in cardiomyocytes, and identify the mechanism by which LPC accumulation in intracellu-lar and/or interstitial space may uptake tachycardia and various arrhythmias during cardiac ischemia. Methods: Neonatal rat cardiomyocytes from 1 to 3-day-old Wistar rats and hypertrophied ventricular myo-cytes from Wistar rats were prepared. Human cardiac T-type calcium channel αl subunits, Cav3.1 and Cav3. 2, were stably expressed in HEK293 cells. In this study, cardiomyocytes and heterologous expression of human Cav3. 1 and Cav3. 2 components were measureed by whole-cell patch clamp to study the up-regulation of Ica.T by LPC. Results: LPC markedly accelerated the spontaneous beating rates of neonatal rat cardiomyocytes from (42 ±8) beats/min in control to (64 ±8) beats/min after LPC application for 5 min at the physiological [ Ca2+ ] ( concentration ( pCa =7.2). In neonatal cardiomyocytes, Ica.T was significantly increased by 10 μmol/L LPC by 21.5% when [ Ca2+ ]; was high (pCa = 7). Intracellular Ca2+ -dependent augmentation of Ica.T by LPC was confirmed not only in neonatal cardiomyocytes but also in adult ventricular myocytes from the hypertrophied hearts. In this experiment, Ica.T was significantly increased by 10 μmol/L LPC by 23.5% when [Ca2+ ]; was high (pCa =7) , although it was unchanged when [Ca2+]I was low (pCa = ll), control; (3.8 ±0.2) pA/pF, n = 16; LPC: (3.7 ±0.4) pA/pF, n = 10. LPC exerted no effect on the Cav3. 1 T-type Ca2+ channel current (ICav3.1) regardless of the [Ca2+ ]I concentration at a pCa of 7 or at a pCa of 11. In contrast, LPC up-regulated the Cav3. 2 T-type Ca2+ channel current (ICav3.2), which was much larger at a pCa of 7 [ LPC = 10 (μmol/L:(68. 8 ±2.1) pA/pF, n = 10; LPC=50 (xmol/L: (78.4 ±4.8) pA/pF, n=9)] than that at a pCa of 11 [(38.5 ± 2.1) pA/pF, n = 11]. Conclusion: The present study indicates that LPC up-regulates the

  8. SCMC for SLA: A Research Synthesis

    Science.gov (United States)

    Sauro, Shannon

    2011-01-01

    This research synthesis explores the role of synchronous computer-mediated communication (SCMC) for second language acquisition (SLA). Using Hymes' (1971) notion of communicative competence and Canale and Swain's (1980; Canale, 1983) subsequent framework for communicative language teaching, the synthesis examines the research trends, methods, and…

  9. Synthesis of a jojoba bean disaccharide.

    Science.gov (United States)

    Kornienko, A; Marnera, G; d'Alarcao, M

    1998-08-01

    A synthesis of the disaccharide recently isolated from jojoba beans, 2-O-alpha-D-galactopyranosyl-D-chiro-inositol, has been achieved. The suitably protected chiro-inositol unit was prepared by an enantiospecific synthesis from L-xylose utilizing SmI2-mediated pinacol coupling as a key step.

  10. SCMC for SLA: A Research Synthesis

    Science.gov (United States)

    Sauro, Shannon

    2011-01-01

    This research synthesis explores the role of synchronous computer-mediated communication (SCMC) for second language acquisition (SLA). Using Hymes' (1971) notion of communicative competence and Canale and Swain's (1980; Canale, 1983) subsequent framework for communicative language teaching, the synthesis examines the research trends, methods, and…

  11. Effect of LIF-withdrawal on acetylcholine synthesis in the embryonic stem cell line CGR8 is not mediated by STAT3, PI3Ks or cAMP/PKA pathways.

    Science.gov (United States)

    Michel-Schmidt, Rosmarie; Kirkpatrick, Charles James; Wessler, Ignaz

    2015-11-01

    Acetylcholine (ACh) acts as a local cellular signaling molecule and is widely expressed in nature, including mammalian cells and embryonic stem cells. The murine embryonic stem cell line CGR8 synthesizes and releases substantial amounts of ACh. Particularly during early differentiation - a period associated with multiple alterations in geno-/phenotype functions - synthesis and release of ACh are increased by 10-fold. In murine stem cells second messengers of the STAT-3, PI3K and cAMP/PKA pathways are involved in maintaining self-renewal and pluripotency. The present experiments were designed to test whether blockers of these signaling pathways enhance ACh cell content in the presence of LIF, i.e. when CGR8 is pluripotent. NSC74859, an inhibitor of STAT-3, affected neither the proliferation rate nor ACh cell content, whereas the more sensitive STAT-3 inhibitor FLLL31 reduced the proliferation rate and increased ACh cell content by about 3-fold. The PI3K inhibitor LY294002 reduced the proliferation rate but did not modify the ACh cell content, whereas the PKA inhibitor H89 produced effects comparable to FLLL31. Interestingly, in control experiments a strong inverse correlation was found between cell density and ACh cell content, which could explain the 3-fold increase in the ACh cell content observed in the presence of FLLL31 and H89. Forskolin, a PKA activator, had no effect. In conclusion, it appears unlikely that the 10-fold increase in ACh cell content induced by LIF removal, i.e. during early differentiation, is mediated by second messengers of the STAT-3, PI3K and cAMP/PKA pathways. However, the PI3K pathway appears to be involved in control of the inverse relation between cell density and ACh cell content, because this correlation was significantly attenuated in the presence of LY294002.

  12. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines.

    Science.gov (United States)

    Priyadharshini, Ramaramesh Indra; Prasannaraj, Govindaraj; Geetha, Natesan; Venkatachalam, Perumal

    2014-12-01

    A rapid and novel microwave-mediated protocol was established for extracellular synthesis of metallic silver (Ag) and zinc oxide (ZnO) nanoparticles using the extracts of macro-algae Gracilaria edulis (GE) and also examined its anticancer activity against human prostate cancer cell lines (PC3). The formation of silver nanoparticles (GEAgNPs) and zinc oxide nanoparticles (GEZnONPs) in the reaction mixture was determined by ultraviolet-visible spectroscopy. The synthesized Ag and ZnO nanoparticles were characterized by X-ray diffraction, Fourier transform infra-red spectroscopy, energy dispersive X-ray, and field emission scanning electron microscopy. The silver and zinc oxide nanoparticles were spherical and rod-shaped, respectively. Cell viability assays were carried out to determine the cytotoxic effects of AgNPs and ZnONPs against PC3 and normal African monkey kidney (VERO) cell line. The inhibitory concentration values were found to be 39.60, 28.55, 53.99 μg/mL and 68.49, 88.05, 71.98 μg/mL against PC3 cells and Vero cells for AgNPs, ZnONPs, and aqueous G. edulis extracts, respectively, at 48 h incubation period. As evidenced by acridine orange/ethidium bromide staining, the percentage of the apoptotic bodies was found to be 62 and 70 % for AgNPs and ZnONPs, respectively. The present results strongly suggest that the synthesized ZnONPs showed an effective anticancer activity against PC3 cell lines than AgNPs.

  13. Mediatized Humanitarianism

    DEFF Research Database (Denmark)

    Vestergaard, Anne

    2014-01-01

    The article investigates the implications of mediatization for the legitimation strategies of humanitarian organizations. Based on a (full population) corpus of ~400 pages of brochure material from 1970 to 2007, the micro-textual processes involved in humanitarian organizations' efforts to legiti......The article investigates the implications of mediatization for the legitimation strategies of humanitarian organizations. Based on a (full population) corpus of ~400 pages of brochure material from 1970 to 2007, the micro-textual processes involved in humanitarian organizations' efforts...... legitimation by accountancy, legitimation by institutionalization, and legitimation by compensation. The analysis relates these changes to a problem of trust associated with mediatization through processes of mediation....

  14. Design, synthesis and evaluation of novel 2-thiophen-5-yl-3H-quinazolin-4-one analogues as inhibitors of transcription factors NF-kappaB and AP-1 mediated transcriptional activation: Their possible utilization as anti-inflammatory and anti-cancer agents.

    Science.gov (United States)

    Giri, Rajan S; Thaker, Hardik M; Giordano, Tony; Williams, Jill; Rogers, Donna; Vasu, Kamala K; Sudarsanam, Vasudevan

    2010-04-01

    In an attempt to discover novel inhibitors of NF-kappaB and AP-1 mediated transcriptional activation utilizing the concept of chemical lead based medicinal chemistry and bioisosterism a series of 2-(2,3-disubstituted-thiophen-5-yl)-3H-quinazolin-4-one analogs was designed. A facile and simple route for the synthesis of the designed molecules was developed. Synthesized molecules were evaluated for their activity as inhibitors towards NF-kappaB and AP-1 mediated transcriptional activation in a cell line report-based assay. This series provides us with a substantial number of compounds inhibiting the activity of NF-kappaB and/or AP-1 mediated transcriptional activation. These compounds also exhibit anti-inflammatory and anti-cancer activity in in vivo models of inflammation and cancer. The 4-pyridyl group is found to be the most important pharmacophore on the third position of thiophene ring for inhibiting NF-kappaB and AP-1 mediated transcriptional activation. The relationships between the activities shown by these compounds in the in vivo and in vitro models have been established by using FVB transgenic mice model. These results suggest the suitability of the designed molecular framework as a potential scaffold for the design of molecules with inhibitory activity towards NF-kappaB and AP-1 mediated transcriptional activation, which may also exhibit anti-inflammatory and anti-cancer activity. This series of molecules warrants further study to explore their potential as therapies for use in chronic inflammatory conditions and cancer. Development of the synthetic protocol for the synthesis of this series of molecules, biological activities and a structure-activity relationship (SAR) have been discussed herein.

  15. Complex Mediation

    DEFF Research Database (Denmark)

    Bødker, Susanne; Andersen, Peter Bøgh

    2005-01-01

    This article has its starting point in a large number of empirical findings regarding computer-mediated work. These empirical findings have challenged our understanding of the role of mediation in such work; on the one hand as an aspect of communication and cooperation at work and on the other hand...... as an aspect of human engagement with instruments of work. On the basis of previous work in activity-theoretical and semiotic human—computer interaction, we propose a model to encompass both of these aspects. In a dialogue with our empirical findings we move on to propose a number of types of mediation...... that have helped to enrich our understanding of mediated work and the design of computer mediation for such work....

  16. A short synthesis of (+/-)-cytisine.

    Science.gov (United States)

    Botuha, Candice; Galley, Carl M S; Gallagher, Timothy

    2004-07-07

    The synthesis of racemic cytisine has been completed using (i)N-selective alkylation of 6-bromopyridone with bromide and (ii) Pd(0) mediated intramolecular alpha-arylation of lactam as key steps to achieve rapid assembly of the tricyclic core skeleton of the lupin alkaloids.

  17. Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines

    Science.gov (United States)

    Jiménez Pérez, Zuly Elizabeth; Mathiyalagan, Ramya; Markus, Josua; Kim, Yeon-Ju; Kang, Hyun Mi; Abbai, Ragavendran; Seo, Kwang Hoon; Wang, Dandan; Soshnikova, Veronika; Yang, Deok Chun

    2017-01-01

    There has been a growing interest in the design of environmentally affable and biocompatible nanoparticles among scientists to find novel and safe biomaterials. Panax ginseng Meyer berries have unique phytochemical profile and exhibit beneficial pharmacological activities such as antihyperglycemic, antiobesity, antiaging, and antioxidant properties. A comprehensive study of the biologically active compounds in ginseng berry extract (GBE) and the ability of ginseng berry (GB) as novel material for the biosynthesis of gold nanoparticles (GBAuNPs) and silver nanoparticles (GBAgNPs) was conducted. In addition, the effects of GBAuNPs and GBAgNPs on skin cell lines for further potential biological applications are highlighted. GBAuNPs and GBAgNPs were synthesized using aqueous GBE as a reducing and capping agent. The synthesized nanoparticles were characterized for their size, morphology, and crystallinity. The nanoparticles were evaluated for antioxidant, anti-tyrosinase, antibacterial, and cytotoxicity activities and for morphological changes in human dermal fibroblast and murine melanoma skin cell lines. The phytochemicals contained in GBE effectively reduced and capped gold and silver ions to form GBAuNPs and GBAgNPs. The optimal synthesis conditions (ie, temperature and v/v % of GBE) and kinetics were investigated. Polysaccharides and phenolic compounds present in GBE were suggested to be responsible for stabilization and functionalization of nanoparticles. GBAuNPs and GBAgNPs showed increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals compared to GBE. GBAuNPs and GBAgNPs effectively inhibited mushroom tyrosinase, while GBAgNPs showed antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, GBAuNPs were nontoxic to human dermal fibroblast and murine melanoma cell lines, and GBAgNPs showed cytotoxic effect on murine melanoma cell lines. The current results evidently suggest that GBAgNPs can act as potential

  18. Biomolecule-mediated synthesis of nanocrystalline semiconductors

    Science.gov (United States)

    Bae, Weon

    CdS and ZnS nanocrystalline semiconductors (NCs) were prepared by titrating inorganic sulfide into preformed Cd(II)- or Zn(II)-complexes of phytochelatins, glutathione or cysteine. This strategy resulted in the formation NCs capped by the chosen biomolecule. The range of sizes and their distributions depended primarily on the quantity of sulfide titrated and the biomolecule chosen for the initial metallo-complex. The processes of NC formation were studied by absorption and fluorescence spectrophotometry. The size distribution was analyzed by gel permeation chromatography. Ethanol precipitation of NCs under aqueous conditions was used to isolate nanoparticles within a very narrow size-range. Reduction of selected dyes was also studied on the surfaces of NCs. Glutathione-capped CdS nanoparticles exhibited significant size heterogeneity even at a single sulfide titration. In contrast, phytochelatins showed much less dispersion in size at a given sulfide titration. Phytochelatins could replace glutathione without changing the size of glutathione-capped CdS nanoparticles. Cysteine appeared to be intermediate between glutathione and phytochelatins in the formation of CdS nanoparticles. The calculated radii, using an effective mass approximation method, were 10.8-17.3, 10.6-11.8, and 13.5-15.5A for glutathione-, phytochelatin-, and cysteine-capped CdS nanoparticles, respectively. Cysteine-capped ZnS showed narrower size distribution than glutathione-capped ZnS. However, elevated temperatures were necessary to accomplish optimal yields of cysteine-capped ZnS NCs. An additional control over the size distribution of NCs was achieved by size-selective precipitation with ethanol. These procedures led to the isolation of nanoparticles that were more uniform in size and chemical compositions as determined by spectroscopic and chemical analyses of size-fractionated samples. Precipitation also allowed preparation of large quantities of powdered nanoparticles that could be resuspended in water or buffers. Thus, procedures described here offer novel strategies for the large-scale manufacture of NCs in a desired size-range and within narrow size distribution. Capping molecules can be chosen to provide additional flexibility in the surface properties of these NCs and thus in the potential applications of these unique materials in a variety of applications.

  19. Arginine Supplementation Recovered the IFN-γ-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2α Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells

    OpenAIRE

    Xia, Xiaojing; Che, Yanyi; Gao, Yuanyuan; Zhao, Shuang; Ao, Changjin; Yang, Hongjian; Liu, Juxiong; Liu, Guowen; Han, Wenyu; Wang, Yuping; Lei, Liancheng

    2016-01-01

    During the lactation cycle of the bovine mammary gland, autophagy is induced in bovine mammary epithelial cells (BMECs) as a cellular homeostasis and survival mechanism. Interferon gamma (IFN-γ) is an important antiproliferative and apoptogenic factor that has been shown to induce autophagy in multiple cell lines in vitro. However, it remains unclear whether IFN-γ can induce autophagy and whether autophagy affects milk synthesis in BMECs. To understand whether IFN-γ affects milk synthesis, we...

  20. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (γ-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK).

    Science.gov (United States)

    Kleszczyński, Konrad; Zillikens, Detlef; Fischer, Tobias W

    2016-09-01

    Melatonin is an ubiquitous molecule with a variety of functions including potent antioxidative properties. Due to its lipophilic character, it easily crosses cellular and intracellular membranes and reaches all subcellular organelles. Because of its ability to scavenge free radicals, melatonin protects against oxidative stress, for example, induced by ultraviolet radiation (UVR). Here, we investigated, in a dose-dependent (0, 10, 25, and 50 mJ/cm(2) ) and time-dependent (0, 4, 24, 48 hr post-UVR) manner, whether melatonin prevents the UVR-mediated alterations in ATP synthesis and the generation of reactive oxygen species (ROS) in normal human epidermal keratinocytes (NHEK). Additionally, we evaluated the molecular mechanism of action of melatonin with regard to activation of phase-2 antioxidative enzymes via nuclear erythroid 2-related factor (Nrf2). We found that (i) melatonin counteracted UVR-induced alterations in the ATP synthesis and reduced free radical formation; (ii) melatonin induced the translocation of Nrf2 transcription factor from the cytosol into the nucleus resulting in, (iii) melatonin enhanced gene expression of phase-2 antioxidative enzymes including γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NADPH: quinone dehydrogenase-1 (NQO1) representing an elevated antioxidative response of keratinocytes. These results suggest that melatonin not only directly scavenges ROS, but also significantly induces the activation of phase-2 antioxidative enzymes via the Nrf2 pathway uncovering a new action mechanism that supports the ability of keratinocytes to protect themselves from UVR-mediated oxidative stress.

  1. Axion Mediation

    CERN Document Server

    Baryakhtar, Masha; March-Russell, John

    2013-01-01

    We explore the possibility that supersymmetry breaking is mediated to the Standard Model sector through the interactions of a generalized axion multiplet that gains a F-term expectation value. Using an effective field theory framework we enumerate the most general possible set of axion couplings and compute the Standard Model sector soft-supersymmetry-breaking terms. Unusual, non-minimal spectra, such as those of both natural and split supersymmetry are easily implemented. We discuss example models and low-energy spectra, as well as implications of the particularly minimal case of mediation via the QCD axion multiplet. We argue that if the Peccei-Quinn solution to the strong-CP problem is realized in string theory then such axion-mediation is generic, while in a field theory model it is a natural possibility in both DFSZ- and KSVZ-like regimes. Axion mediation can parametrically dominate gravity-mediation and is also cosmologically beneficial as the constraints arising from axino and gravitino overproduction ...

  2. Mediatized Parenthood

    DEFF Research Database (Denmark)

    Sonne Damkjær, Maja

    2017-01-01

    to parenthood? The dissertation explores this question on the basis of a synchronous study within an overall mediatization perspective. The first part of the dissertation focuses on a conceptualization of the relationship between digital media and parenting as well as an exploration of theoretical perspectives...... and methods that make it possible to study the interactions between the two. Concretely, the dissertation builds on a number of key studies within audience research, which have contributed knowledge about the media’s role in the family and the home. This is done by including three approaches to mediatization......) a family-oriented, b) a peer-oriented, c) an oppositional, and d) non-use. Secondary contribution: Based on qualitative audience research and mediatization theory, the dissertation contributes a conceptualization of the relationship between media and parenthood. This is carried out in a study design...

  3. Mediating Business

    DEFF Research Database (Denmark)

    "Mediating Business" is a study of the expansion of business journalism. Building on evidence from Denmark, Finland, Norway and Sweden, "Mediating Business" is a comparative and multidisciplinary study of one of the major transformations of the mass media and the realm of business - nationally...... and globally. The book explores the history of key innovations and innovators in the business press. It analyzes changes in the discourse of business journalism associated with the growth in business news and the development of new ways of framing business issues and events. Finally, it examines...... the organizational implications of the increased media visibility of business and, in particular, the development of corporate governance and media relations....

  4. Mediatized play

    DEFF Research Database (Denmark)

    Johansen, Stine Liv

    Children’s play must nowadays be understood as a mediatized field in society and culture. Media – understood in a very broad sense - holds severe explanatory power in describing and understanding the practice of play, since play happens both with, through and inspired by media of different sorts....... In this presentation the case of ‘playing soccer’ will be outlined through its different mediated manifestations, including soccer games and programs on TV, computer games, magazines, books, YouTube videos and soccer trading cards....

  5. Probes for Narcotic Receptor Mediated Phenomena. 39. Enantiomeric N-Substituted Benzofuro[2,3-c]pyridin-6-ols: Synthesis and Topological Relationship to Oxide-Bridged Phenylmorphans

    Science.gov (United States)

    2009-01-01

    1989, 32, 2221–2226. (4) Burke, T. R. Jr.; Jacobson, A. E.; Rice, K. C.; Silverton , J. V. Probes for Narcotic Receptor Mediated Phenomena. 4...Chem. 1984, 49, 1051–1056. (5) Burke, T. R.Jr.; Jacobson, A. E.; Rice, K. C.; Silverton , J. V. Probes for Narcotic Receptor Mediated Phenomena. 6

  6. Prevention of non-immune mediated transfusion-related acute lung injury; from blood bank to patient.

    Science.gov (United States)

    van Bruggen, Robin; de Korte, Dirk

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is a severe form of pulmonary insufficiency induced by transfusion. TRALI is the leading cause of transfusion-related death, and is caused by the infusion of either anti-leukocyte antibodies in plasma containing blood products or neutrophil priming substances that accumulate during storage of cellular blood products. Among these neutrophil priming substances are bioactive lipids, such as lyso-phosphatidylcholines (lysoPCs) and arachidonic acid, soluble CD40L (sCD40L) and possibly other, as yet unidentified substances. The accumulation of these substances during cellular blood product storage and their role in the induction of "non-immune mediated" TRALI pathogenesis are highly relevant for the current debate of the use of longer vs. shorter stored blood products. In this review, the accumulation of these different substances during storage, as well as their mode of action in inducing TRALI are discussed. In addition, different improvements in current blood banking procedures to prevent TRALI due to these non-immune mediators will be proposed.

  7. Total synthesis of the proposed structure of astakolactin

    OpenAIRE

    Takayuki Tonoi; Keisuke Mameda; Moe Fujishiro; Yutaka Yoshinaga; Isamu Shiina

    2014-01-01

    The first total synthesis of the proposed structure of astakolactin, a sesterterpene metabolite isolated from the marine sponge Cacospongia scalaris, has been achieved, mainly featuring Johnson–Claisen rearrangement, asymmetric Mukaiyama aldol reaction and MNBA-mediated lactonization.

  8. An efficient chemical synthesis of nicotinamide riboside (NAR) and analogues.

    Science.gov (United States)

    Tanimori, Shinji; Ohta, Takeshi; Kirihata, Mitsunori

    2002-04-22

    A simple and efficient synthesis of nicotinamide riboside (NAR) 1 and derivatives 4 and 5 via trimethylsilyl trifluoromethanesulfonate (TMSOTf)-mediated N-glycosilation followed by spontaneous deacetylation by treating with methanol is reported.

  9. Synthesis of labdane diterpenes galanal A and B from (+)-sclareolide.

    Science.gov (United States)

    Kumar, Chebolu Naga Sesha Sai Pavan; Chein, Rong-Jie

    2014-06-06

    The first chemical synthesis of galanal A and B was achieved by a concise and highly efficient pathway starting from commercially available (+)-sclareolide and features a Wittig reaction and a titanocene-mediated radical cyclization as the key steps.

  10. Palladium-mediated intracellular chemistry

    Science.gov (United States)

    Yusop, Rahimi M.; Unciti-Broceta, Asier; Johansson, Emma M. V.; Sánchez-Martín, Rosario M.; Bradley, Mark

    2011-03-01

    Many important intracellular biochemical reactions are modulated by transition metals, typically in the form of metalloproteins. The ability to carry out selective transformations inside a cell would allow researchers to manipulate or interrogate innumerable biological processes. Here, we show that palladium nanoparticles trapped within polystyrene microspheres can enter cells and mediate a variety of Pd0-catalysed reactions, such as allylcarbamate cleavage and Suzuki-Miyaura cross-coupling. The work provides the basis for the customization of heterogeneous unnatural catalysts as tools to carry out artificial chemistries within cells. Such in cellulo synthesis has potential for a plethora of applications ranging from cellular labelling to synthesis of modulators or inhibitors of cell function.

  11. Synthesis and Characterization of DNase 1-Stabilized Gold Nanoclusters

    Science.gov (United States)

    2014-10-01

    biomolecule , and toxic synthesis protocols. For example, organic dyes such as fluorescein isothiocyanate (FITC) green and diamidino-2-phenylindole (DAPI...we present a new approach for biomolecule mediated synthesis of AuNCs. We have for the first time used DNase 1 to synthesize AuNCs of multiple

  12. Plants: Emerging as Nanofactories towards Facile Route in Synthesis of Nanoparticles

    Science.gov (United States)

    Baker, Syed; Rakshith, Devaraju; Kavitha, Kumara Shanthamma; Santosh, Parthasarathy; Kavitha, Holalu Umapathy; Rao, Yashavantha; Satish, Sreedharamurthy

    2013-01-01

    Plant mediated nanoparticles’ synthesis has led to a remarkable progress via unfolding a green synthesis protocol towards nanoparticles’ synthesis. It seems to have drawn quite an unequivocal attention with a view of reformulating the novel strategies as alternatives for popular conventional methods. Hence, the present review summarizes the literature reported thus far and envisions towards plants as emerging sources of nanofactories. PMID:24163802

  13. Extremophilic Enzymatic Response: Role of Proteins in Controlling Selenium Nanoparticle Synthesis

    Science.gov (United States)

    2014-11-28

    structures formed called nanorods. 3. Additional work: Synthesis of gold nanoparticles . Additionally, we produced gold nanoparticles using another...Performance Report Title: Extremophilic Enzymatic Response: Role of Proteins in Controlling Selenium Nanoparticle Synthesis . Research Interest...of selenite. Apparently a NADPH/NADH-dependent 4 reductase, extracted from this microorganism, mediates selenium nanoparticles synthesis under

  14. Plants: Emerging as Nanofactories towards Facile Route in Synthesis of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sreedharamurthy Satish

    2013-04-01

    Full Text Available Plant mediated nanoparticles’ synthesis has led to a remarkable progress via unfolding a green synthesis protocol towards nanoparticles’ synthesis. It seems to have drawn quite an unequivocal attention with a view of reformulating the novel strategies as alternatives for popular conventional methods. Hence, the present review summarizes the literature reported thus far and envisions towards plants as emerging sources of nanofactories.

  15. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications.

    Science.gov (United States)

    Thatoi, Priyabrata; Kerry, Rout George; Gouda, Sushanto; Das, Gitishree; Pramanik, Krishna; Thatoi, Hrudayanath; Patra, Jayanta Kumar

    2016-10-01

    Green synthesis by using biological agents has been a simple and effective approach for the synthesis of various forms of nanoparticles. The present investigation was intended to synthesis Ag-NPs and ZnO-NPs under photo-condition using the aqueous extracts of two mangrove plants namely Heritiera fomes and Sonneratia apetala and evaluate their potential biomedical applications. The formation of nanoparticles in aqueous solution of H. fomes and S. apetala under exposure to sun light was validated by change in color and formation of monodispersed NPs with a narrow particle size distribution. Fourier transform infrared spectroscopy (FT-IR) reveals the presence of Oxime and other heterocyclic compounds to be the most probable compounds responsible for the reduction and stability of nanoparticles in the solutions. The synthesized NPs displayed moderate free radical scavenging properties. The anti-inflammatory potential of ZnO-NPs was recorded to be comparatively higher than that of Ag-NP with 79% and 69.1% respectively. The Ag-NPs with unique properties of inhibiting α-amylase (91.14% and 89.16%) were found to be significantly high indicating its antidiabetic property. The synthesized NPs showed varied zone of inhibition (9-16mm) against the tested microbial pathogens. The synthesized nanoparticles possess strong biological activities in terms of antioxidant, anti-inflammatory, antidiabetic and antibacterial, potentials which could be utilized in various biological applications by the cosmetic, food and biomedical industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE2 synthesis and cytotoxicity in human colorectal carcinoma cell lines

    NARCIS (Netherlands)

    Dommels, Y.E.M.; Haring, M.M.G.; Keestra, N.G.M.; Alink, G.M.; Bladeren, P.J. van; Ommen, B. van

    2003-01-01

    This study was conducted to investigate the role of the enzyme cyclooxygenase (COX) and its prostaglandin product PGE2 in n-6 and n-3 polyunsaturated fatty acid (PUFA)-mediated effects on cellular proliferation of two human colorectal carcinoma cell lines. The long chain PUFAs eicosapentaenoic acid

  17. The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE2 synthesis and cytotoxicity in human colorectal carcinoma cell lines

    NARCIS (Netherlands)

    Dommels, Y.E.M.; Haring, M.M.G.; Keestra, N.G.M.; Alink, G.M.; Bladeren, P.J. van; Ommen, B. van

    2003-01-01

    This study was conducted to investigate the role of the enzyme cyclooxygenase (COX) and its prostaglandin product PGE2 in n-6 and n-3 polyunsaturated fatty acid (PUFA)-mediated effects on cellular proliferation of two human colorectal carcinoma cell lines. The long chain PUFAs eicosapentaenoic acid

  18. Synthesis of novel well-defined poly(vinyl acetate)-b-poly(acrylonitrile) and derivatized water-soluble poly(vinyl alcohol)-b-poly(acrylic acid) block copolymers by cobalt-mediated radical polymerization

    NARCIS (Netherlands)

    Debuigne, A.; Warnant, J.; Jerome, R.; Voets, I.K.; Keizer, de A.; Cohen Stuart, M.A.; Detrembleur, C.

    2008-01-01

    Poly(vinyl acetate)¿Co(acac)2 macroinitiators, prepared by cobalt-mediated radical polymerization of vinyl acetate (VAc), were used to synthesize well-defined poly(vinyl acetate)-b-poly(acrylonitrile) (PVAc-b-PAN) block copolymers. Different solvents and temperatures were tested for the polymerizati

  19. Pd/C-mediated synthesis of α-pyrone fused with a five-membered nitrogen heteroaryl ring: A new route to pyrano[4,3-c]pyrazol-4(1H-ones

    Directory of Open Access Journals (Sweden)

    Dhilli Rao Gorja

    2009-11-01

    Full Text Available Pd/C-mediated alkynylation of 5-iodo-pyrazole-4-carboxylic acid, involving the first regioselective construction of α-pyrone ring on a pyrazol moiety via tandem coupling–cyclization process, has been developed to afford pyrano[4,3-c]pyrazol-4(1H-one in a single pot.

  20. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles.

    Science.gov (United States)

    Kiran, G Seghal; Selvin, Joseph; Manilal, Aseer; Sujith, S

    2011-12-01

    Taking into consideration the needs of greener bioprocesses and novel enhancers for synthesis using microbial processes, biosurfactants, and/or biosurfactant producing microbes are emerging as an alternate source for the rapid synthesis of nanoparticles. A microemulsion technique using an oil-water-surfactant mixture was shown to be a promising approach for nanoparticle synthesis. Biosurfactants are natural surfactants derived from microbial origin composed mostly of sugar and fatty acid moieties, they have higher biodegradability, lower toxicity, and excellent biological activities. The biosurfactant mediated process and microbial synthesis of nanoparticles are now emerging as clean, nontoxic, and environmentally acceptable "green chemistry" procedures. The biosurfactant-mediated synthesis is superior to the methods of bacterial- or fungal-mediated nanoparticle synthesis, since biosurfactants reduce the formation of aggregates due to the electrostatic forces of attraction and facilitate a uniform morphology of the nanoparticles. In this review, we highlight the biosurfactant mediated synthesis of nanoparticles with relevant details including a greener bioprocess, sources of biosurfactants, and biological synthesized nanoparticles based on the available literature and laboratory findings.