WorldWideScience

Sample records for mediating lysophosphatidylcholine synthesis

  1. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes.

    Science.gov (United States)

    Mangiapane, E H; Brindley, D N

    1986-01-01

    Rat hepatocytes in monolayer culture were preincubated for 19 h with 1 microM-dexamethasone, and the incubation was continued for a further 23 h with [14C]oleate, [3H]glycerol and 1 microM-dexamethasone. Dexamethasone increased the secretion of triacylglycerol into the medium in particles that had the properties of very-low-density lipoproteins. The increased secretion was matched by a decrease in the triacylglycerol and phosphatidylcholine that remained in the hepatocytes. Preincubating the hepatocytes for the total 42 h period with 36 nM-insulin decreased the amount of triacylglycerol in the medium and in the cells after the final incubation for 23 h with radioactive substrates. However, insulin had no significant effect on the triacylglycerol content of the cell and medium when it was present only in the final 23 h incubation. Insulin antagonized the effects of dexamethasone in stimulating the secretion of triacylglycerol from the hepatocytes, especially when it was present throughout the total 42 h period. The labelling of lysophosphatidylcholine in the medium when hepatocytes were incubated with [14C]oleate and [3H]glycerol was greater than that of phosphatidylcholine. The appearance of this lipid in the medium, unlike that of triacylglycerol and phosphatidylcholine, was not stimulated by dexamethasone, or inhibited by colchicine. However, the presence of lysophosphatidylcholine in the medium was decreased when the hepatocytes were incubated with both dexamethasone and insulin. These findings are discussed in relation to the control of the synthesis of glycerolipids and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by the liver, particularly in relation to the interactions of glucocorticoids and insulin. PMID:3513755

  2. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A–Phosphatidylinositol 3 Kinase–p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages

    Directory of Open Access Journals (Sweden)

    Hyo-Ji Lee

    2018-04-01

    Full Text Available Tuberculosis is caused by the infectious agent Mycobacterium tuberculosis (Mtb. Mtb has various survival strategies, including blockade of phagosome maturation and inhibition of antigen presentation. Lysophosphatidylcholine (LPC is a major phospholipid component of oxidized low-density lipoprotein and is involved in various cellular responses, such as activation of second messengers and bactericidal activity in neutrophils. In this study, macrophages were infected with a low infectious dose of Mtb and treated with LPC to investigate the bactericidal activity of LPC against Mtb. In macrophages infected with Mtb strain, H37Ra or H37Rv, LPC suppressed bacterial growth; however, this effect was suppressed in bone marrow-derived macrophages (BMDMs isolated from G2A (a G protein-coupled receptor involved in some LPC actions knockout mice. LPC also promoted phagosome maturation via phosphatidylinositol 3 kinase (PI3K–p38 mitogen-activated protein kinase (MAPK-mediated reactive oxygen species production and intracellular Ca2+ release during Mtb infection. In addition, LPC induced increased levels of intracellular cyclic adenosine monophosphate (cAMP and phosphorylated glycogen synthase kinase 3 beta (GSK3β in Mtb-infected macrophages. Protein kinase A (PKA-induced phosphorylation of GSK3β suppressed activation of NF-κB in LPC-treated macrophages during Mtb infection, leading to decreased secretion of pro-inflammatory cytokines and increased secretion of anti-inflammatory cytokines. These results suggest that LPC can effectively control Mtb growth by promoting phagosome maturation via cAMP-induced activation of the PKA–PI3K–p38 MAPK pathway. Moreover, LPC can regulate excessive production of pro-inflammatory cytokines associated with bacterial infection of macrophages.

  3. Web-Mediated Knowledge Synthesis for Educators

    Science.gov (United States)

    DeSchryver, Michael

    2015-01-01

    Ubiquitous and instant access to information on the Web is challenging what constitutes 21st century literacies. This article explores the notion of Web-mediated knowledge synthesis, an approach to integrating Web-based learning that may result in generative synthesis of ideas. This article describes the skills and strategies that may support…

  4. Gemfibrozil disrupts lysophosphatidylcholine and bile acid homeostasis via PPARα and its relevance to hepatotoxicity.

    Science.gov (United States)

    Liu, Aiming; Krausz, Kristopher W; Fang, Zhong-Ze; Brocker, Chad; Qu, Aijuan; Gonzalez, Frank J

    2014-04-01

    Gemfibrozil, a ligand of peroxisome proliferator-activated receptor α (PPARα), is one of the most widely prescribed anti-dyslipidemia fibrate drugs. Among the adverse reactions observed with gemfibrozil are alterations in liver function, cholestatic jaundice, and cholelithiasis. However, the mechanisms underlying these toxicities are poorly understood. In this study, wild-type and Ppara-null mice were dosed with a gemfibrozil-containing diet for 14 days. Ultra-performance chromatography electrospray ionization quadrupole time-of-flight mass spectrometry-based metabolomics and traditional approaches were used to assess the mechanism of gemfibrozil-induced hepatotoxicity. Unsupervised multivariate data analysis revealed four lysophosphatidylcholine components in wild-type mice that varied more dramatically than those in Ppara-null mice. Targeted metabolomics revealed taurocholic acid and tauro-α-muricholic acid/tauro-β-muricholic acid were significantly increased in wild-type mice, but not in Ppara-null mice. In addition to the above perturbations in metabolite homeostasis, phenotypic alterations in the liver were identified. Hepatic genes involved in metabolism and transportation of lysophosphatidylcholine and bile acid compounds were differentially regulated between wild-type and Ppara-null mice, in agreement with the observed downstream metabolic alterations. These data suggest that PPARα mediates gemfibrozil-induced hepatotoxicity in part by disrupting phospholipid and bile acid homeostasis.

  5. Key mediators modulating TAG synthesis and accumulation in ...

    African Journals Online (AJOL)

    the key mediators on TAG synthesis and accumulation, among which diacylglycerol acyltransferases (DGATs) is discussed for its clear role in TAG amount and composition. Furthermore TAG-accosiated proteins called oleosins are also discussed in depth due to their determination on the amount and size of oil bodies.

  6. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles.

    Science.gov (United States)

    Sathiyanarayanan, Ganesan; Dineshkumar, Krishnamoorthy; Yang, Yung-Hun

    2017-11-01

    Exopolysaccharides (EPSs) are structurally and functionally valuable biopolymer secreted by different prokaryotic and eukaryotic microorganisms in response to biotic/abiotic stresses and to survive in extreme environments. Microbial EPSs are fascinating in various industrial sectors due to their excellent material properties and less toxic, highly biodegradable, and biocompatible nature. Recently, microbial EPSs have been used as a potential template for the rapid synthesis of metallic nanoparticles and EPS-mediated metal reduction processes are emerging as simple, harmless, and environmentally benign green chemistry approaches. EPS-mediated synthesis of metal nanoparticles is a distinctive metabolism-independent bio-reduction process due to the formation of interfaces between metal cations and the polyanionic functional groups (i.e. hydroxyl, carboxyl and amino groups) of the EPS. In addition, the range of physicochemical features which facilitates the EPS as an efficient stabilizing or capping agents to protect the primary structure of the metal nanoparticles with an encapsulation film in order to separate the nanoparticle core from the mixture of composites. The EPS-capping also enables the further modification of metal nanoparticles with expected material properties for multifarious applications. The present review discusses the microbial EPS-mediated green synthesis/stabilization of metal nanoparticles, possible mechanisms involved in EPS-mediated metal reduction, and application prospects of EPS-based metal nanoparticles.

  7. Organic or organometallic template mediated clay synthesis

    Science.gov (United States)

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  8. Lysophosphatidylcholine: A Novel Modulator of Trypanosoma cruzi Transmission

    Science.gov (United States)

    Silva-Neto, Mário A. C.; Carneiro, Alan B.; Silva-Cardoso, Livia; Atella, Georgia C.

    2012-01-01

    Lysophosphatidylcholine is a bioactive lipid that regulates a large number of cellular processes and is especially present during the deposition and infiltration of inflammatory cells and deposition of atheromatous plaque. Such molecule is also present in saliva and feces of the hematophagous organism Rhodnius prolixus, a triatominae bug vector of Chagas disease. We have recently demonstrated that LPC is a modulator of Trypanosoma cruzi transmission. It acts as a powerful chemoattractant for inflammatory cells at the site of the insect bite, which will provide a concentrated population of cells available for parasite infection. Also, LPC increases macrophage intracellular calcium concentrations that ultimately enhance parasite invasion. Finally, LPC inhibits NO production by macrophages stimulated by live T. cruzi, and thus interferes with the immune system of the vertebrate host. In the present paper, we discuss the main signaling mechanisms that are likely used by such molecule and their eventual use as targets to block parasite transmission and the pathogenesis of Chagas disease. PMID:22132309

  9. Key Building Blocks via Enzyme-Mediated Synthesis

    Science.gov (United States)

    Fischer, Thomas; Pietruszka, Jörg

    Biocatalytic approaches to valuable building blocks in organic synthesis have emerged as an important tool in the last few years. While first applications were mainly based on hydrolases, other enzyme classes such as oxidoreductases or lyases moved into the focus of research. Nowadays, a vast number of biotransformations can be found in the chemical and pharmaceutical industries delivering fine chemicals or drugs. The mild reaction conditions, high stereo-, regio-, and chemoselectivities, and the often shortened reaction pathways lead to economical and ecological advantages of enzymatic conversions. Due to the enormous number of enzyme-mediated syntheses, the present chapter is not meant to be a complete review, but to deliver comprehensive insights into well established enzymatic systems and recent advances in the application of enzymes in natural product synthesis. Furthermore, it is focused on the most frequently used enzymes or enzyme classes not covered elsewhere in the present volume.

  10. Alterations of plasma lysophosphatidylcholine species in obesity and weight loss.

    Directory of Open Access Journals (Sweden)

    Susanne Heimerl

    Full Text Available Obesity and related diseases of the metabolic syndrome contribute to the major health problems in industrialized countries. Alterations in the metabolism of lipid classes and lipid species may significantly be involved in these metabolic overload diseases. However, little is known about specific lipid species in this syndrome and existing data are contradictive.In this study, we quantified plasma lipid species by electrospray ionization tandem mass spectrometry (ESI-MS/MS in obese subjects before and after 3 month weight loss as well as in a control group.The comparison of obese subjects with control subjects before weight loss revealed significantly lower lysophosphatidylcholine (LPC concentrations in obesity. LPC concentrations did not significantly increase during the observed period in the weight loss group. Analysis of LPC species revealed a decrease of most species in obesity and negative correlations with C-reactive protein (CRP and body mass index (BMI. Correlating BMI ratio before and after weight loss with the ratio of total LPC and individual LPC species revealed significant negative relationships of LPC ratios with BMI ratio.Our findings contribute to the contradictive discussion of the role of LPC in obesity and related chronic inflammation strongly supporting pre-existing data in the literature that show a decrease of LPC species in plasma of obese and a potentially anti-inflammatory role in these subjects.

  11. Lysophosphatidylcholine: A Novel Modulator of Trypanosoma cruzi Transmission

    Directory of Open Access Journals (Sweden)

    Mário A. C. Silva-Neto

    2012-01-01

    Full Text Available Lysophosphatidylcholine is a bioactive lipid that regulates a large number of cellular processes and is especially present during the deposition and infiltration of inflammatory cells and deposition of atheromatous plaque. Such molecule is also present in saliva and feces of the hematophagous organism Rhodnius prolixus, a triatominae bug vector of Chagas disease. We have recently demonstrated that LPC is a modulator of Trypanosoma cruzi transmission. It acts as a powerful chemoattractant for inflammatory cells at the site of the insect bite, which will provide a concentrated population of cells available for parasite infection. Also, LPC increases macrophage intracellular calcium concentrations that ultimately enhance parasite invasion. Finally, LPC inhibits NO production by macrophages stimulated by live T. cruzi, and thus interferes with the immune system of the vertebrate host. In the present paper, we discuss the main signaling mechanisms that are likely used by such molecule and their eventual use as targets to block parasite transmission and the pathogenesis of Chagas disease.

  12. The phospholipase PNPLA7 functions as a lysophosphatidylcholine hydrolase and interacts with lipid droplets through its catalytic domain.

    Science.gov (United States)

    Heier, Christoph; Kien, Benedikt; Huang, Feifei; Eichmann, Thomas O; Xie, Hao; Zechner, Rudolf; Chang, Ping-An

    2017-11-17

    Mammalian patatin-like phospholipase domain-containing proteins (PNPLAs) are lipid-metabolizing enzymes with essential roles in energy metabolism, skin barrier development, and brain function. A detailed annotation of enzymatic activities and structure-function relationships remains an important prerequisite to understand PNPLA functions in (patho-)physiology, for example, in disorders such as neutral lipid storage disease, non-alcoholic fatty liver disease, and neurodegenerative syndromes. In this study, we characterized the structural features controlling the subcellular localization and enzymatic activity of PNPLA7, a poorly annotated phospholipase linked to insulin signaling and energy metabolism. We show that PNPLA7 is an endoplasmic reticulum (ER) transmembrane protein that specifically promotes hydrolysis of lysophosphatidylcholine in mammalian cells. We found that transmembrane and regulatory domains in the PNPLA7 N-terminal region cooperate to regulate ER targeting but are dispensable for substrate hydrolysis. Enzymatic activity is instead mediated by the C-terminal domain, which maintains full catalytic competence even in the absence of N-terminal regions. Upon elevated fatty acid flux, the catalytic domain targets cellular lipid droplets and promotes interactions of PNPLA7 with these organelles in response to increased cAMP levels. We conclude that PNPLA7 acts as an ER-anchored lysophosphatidylcholine hydrolase that is composed of specific functional domains mediating catalytic activity, subcellular positioning, and interactions with cellular organelles. Our study provides critical structural insights into an evolutionarily conserved class of phospholipid-metabolizing enzymes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Cellular function of neuropathy target esterase in lysophosphatidylcholine action

    International Nuclear Information System (INIS)

    Vose, Sarah C.; Fujioka, Kazutoshi; Gulevich, Alex G.; Lin, Amy Y.; Holland, Nina T.; Casida, John E.

    2008-01-01

    Neuropathy target esterase (NTE) plays critical roles in embryonic development and maintenance of peripheral axons. It is a secondary target of some organophosphorus toxicants including analogs of insecticides and chemical warfare agents. Although the mechanistic role of NTE in vivo is poorly defined, it is known to hydrolyze lysophosphatidylcholine (LPC) in vitro and may protect cell membranes from cytotoxic accumulation of LPC. To determine the cellular function of NTE, Neuro-2a and COS-7 cells were transfected with a full-length human NTE-containing plasmid yielding recombinant NTE (rNTE). We find the same inhibitor sensitivity and specificity profiles for rNTE assayed with LPC or phenyl valerate (a standard NTE substrate) and that this correlation extends to the LPC hydrolases of human brain, lymphocytes and erythrocytes. All of these LPC hydrolases are therefore very similar to each other in respect to a conserved inhibitor binding site conformation. NTE is expressed in brain and lymphocytes and contributes to LPC hydrolase activities in these tissues. The enzyme or enzymes responsible for erythrocyte LPC hydrolase activity remain to be identified. We also show that rNTE protects Neuro-2a and COS-7 cells from exogenous LPC cytotoxicity. Expression of rNTE in Neuro-2a cells alters their phospholipid balance (analyzed by liquid chromatography-mass spectrometry with single ion monitoring) by lowering LPC-16:0 and LPC-18:0 and elevating glycerophosphocholine without a change in phosphatidylcholine-16:0/18:1 or 16:0/18:2. NTE therefore serves an important function in LPC homeostasis and action

  14. Recognition of lysophosphatidylcholine by type II NKT cells and protection from an inflammatory liver disease.

    Science.gov (United States)

    Maricic, Igor; Girardi, Enrico; Zajonc, Dirk M; Kumar, Vipin

    2014-11-01

    Lipids presented by the MHC class I-like molecule, CD1d, are recognized by NK T (NKT) cells, which can be broadly categorized into two subsets. The well-characterized type I NKT cells express a semi-invariant TCR and can recognize both α- and β-linked glycolipids, whereas type II NKT cells are less well studied, express a relatively diverse TCR repertoire, and recognize β-linked lipids. Recent structural studies have shown a distinct mode of recognition of a self-glycolipid sulfatide bound to CD1d by a type II NKT TCR. To further characterize Ag recognition by these cells, we have used the structural data and screened other small molecules able to bind to CD1d and activate type II NKT cells. Using plate-bound CD1d and APC-based Ag presentation assay, we found that phospholipids such as lysophosphatidylcholine (LPC) can stimulate the sulfatide-reactive type II NKT hybridoma Hy19.3 in a CD1d-dependent manner. Using plasmon resonance studies, we found that this type II NKT TCR binds with CD1d-bound LPC with micromolar affinities similar to that for sulfatide. Furthermore, LPC-mediated activation of type II NKT cells leads to anergy induction in type I NKT cells and affords protection from Con A-induced hepatitis. These data indicate that, in addition to self-glycolipids, self-lysophospholipids are also recognized by type II NKT cells. Because lysophospholipids are involved during inflammation, our findings have implications for not only understanding activation of type II NKT cells in physiological settings, but also for the development of immune intervention in inflammatory diseases. Copyright © 2014 by The American Association of Immunologists, Inc.

  15. Phospholipid class-specific brain enrichment in response to lysophosphatidylcholine docosahexaenoic acid infusion.

    Science.gov (United States)

    Chouinard-Watkins, Raphaël; Chen, Chuck T; Metherel, Adam H; Lacombe, R J Scott; Thies, Frank; Masoodi, Mojgan; Bazinet, Richard P

    2017-10-01

    Recent studies suggest that at least two pools of plasma docosahexaenoic acid (DHA) can supply the brain: non-esterified DHA (NE-DHA) and lysophosphatidylcholine (lysoPtdCho)-DHA. In contrast to NE-DHA, brain uptake of lysoPtdCho-DHA appears to be mediated by a specific transporter, but whether both forms of DHA supply undergo the same metabolic fate, particularly with regards to enrichment of specific phospholipid (PL) subclasses, remains to be determined. This study aimed to evaluate brain uptake of NE-DHA and lysoPtdCho-DHA into brain PL classes. Fifteen-week-old rats were infused intravenously with radiolabelled NE- 14 C-DHA or lysoPtdCho- 14 C-DHA (n=4/group) over five mins to achieve a steady-state plasma level. PLs were extracted from the brain and separated by thin layer chromatography and radioactivity was quantified by liquid scintillation counting. The net rate of entry of lysoPtdCho-DHA into the brain was between 59% and 86% lower than the net rate of entry of NE-DHA, depending on the PL class. The proportion of total PL radioactivity in the lysoPtdCho- 14 C-DHA group compared to the NE- 14 C-DHA group was significantly higher in choline glycerophospholipids (ChoGpl) (48% vs 28%, respectively) but lower in ethanolamine glycerophospholipids (EtnGpl) (32% vs 46%, respectively). In both groups, radioactivity was disproportionally high in phosphatidylinositol and ChoGpl but low in phosphatidylserine and EtnGpl compared to the corresponding DHA pool size. This suggests that DHA undergoes extensive PL remodeling after entry into the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert; Hamer, Rob; Loos, Katja

    2015-01-01

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis.

  17. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Hamer, R.J.; Loos, K.

    2015-01-01

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis.

  18. The effect of temperature and time on the formation of amylose- lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert J. J.; Oudhuis, A. A. C. M. (Lizette); Hamer, Rob J.; Loos, Katja

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amylose-lysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  19. The effect of temperature and time on the formation of amylose–lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Oudhuis, A.A.C.M.; Hamer, R.J.; Loos, K.

    2014-01-01

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amylose–lysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  20. Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles

    International Nuclear Information System (INIS)

    Ahmad, T.

    2014-01-01

    Metal nanoparticles harbour numerous exceptional physiochemical properties absolutely different from those of bulk metal as a function of their extremely small size and large superficial area to volume. Naked metal nanoparticles are synthesized by various physical and chemical methods. Chemical methods involving metal salt reduction in solution enjoy an extra edge over other protocols owing to their relative facileness and capability of controlling particle size along with the attribute of surface tailoring. Although chemical methods are the easiest, they are marred by the use of hazardous chemicals such as borohydrides. This has led to inclination of scientific community towards eco-friendly agents for the reduction of metal salts to form nanoparticles. Tannic acid, a plant derived polyphenolic compound, is one such agent which embodies characteristics of being harmless and environmentally friendly combined with being a good reducing and stabilizing agent. In this review, first various methods used to prepare metal nanoparticles are highlighted and further tannic acid mediated synthesis of metal nanoparticles is emphasized. This review brings forth the most recent findings on this issue.

  1. Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tufail Ahmad

    2014-01-01

    Full Text Available Metal nanoparticles harbour numerous exceptional physiochemical properties absolutely different from those of bulk metal as a function of their extremely small size and large superficial area to volume. Naked metal nanoparticles are synthesized by various physical and chemical methods. Chemical methods involving metal salt reduction in solution enjoy an extra edge over other protocols owing to their relative facileness and capability of controlling particle size along with the attribute of surface tailoring. Although chemical methods are the easiest, they are marred by the use of hazardous chemicals such as borohydrides. This has led to inclination of scientific community towards eco-friendly agents for the reduction of metal salts to form nanoparticles. Tannic acid, a plant derived polyphenolic compound, is one such agent which embodies characteristics of being harmless and environmentally friendly combined with being a good reducing and stabilizing agent. In this review, first various methods used to prepare metal nanoparticles are highlighted and further tannic acid mediated synthesis of metal nanoparticles is emphasized. This review brings forth the most recent findings on this issue.

  2. Structural and functional analysis of a platelet-activating lysophosphatidylcholine of Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Felipe Gazos-Lopes

    2014-08-01

    Full Text Available Trypanosoma cruzi is the causative agent of the life-threatening Chagas disease, in which increased platelet aggregation related to myocarditis is observed. Platelet-activating factor (PAF is a potent intercellular lipid mediator and second messenger that exerts its activity through a PAF-specific receptor (PAFR. Previous data from our group suggested that T. cruzi synthesizes a phospholipid with PAF-like activity. The structure of T. cruzi PAF-like molecule, however, remains elusive.Here, we have purified and structurally characterized the putative T. cruzi PAF-like molecule by electrospray ionization-tandem mass spectrometry (ESI-MS/MS. Our ESI-MS/MS data demonstrated that the T. cruzi PAF-like molecule is actually a lysophosphatidylcholine (LPC, namely sn-1 C18:1(delta 9-LPC. Similar to PAF, the platelet-aggregating activity of C18:1-LPC was abrogated by the PAFR antagonist, WEB 2086. Other major LPC species, i.e., C16:0-, C18:0-, and C18:2-LPC, were also characterized in all T. cruzi stages. These LPC species, however, failed to induce platelet aggregation. Quantification of T. cruzi LPC species by ESI-MS revealed that intracellular amastigote and trypomastigote forms have much higher levels of C18:1-LPC than epimastigote and metacyclic trypomastigote forms. C18:1-LPC was also found to be secreted by the parasite in extracellular vesicles (EV and an EV-free fraction. A three-dimensional model of PAFR was constructed and a molecular docking study was performed to predict the interactions between the PAFR model and PAF, and each LPC species. Molecular docking data suggested that, contrary to other LPC species analyzed, C18:1-LPC is predicted to interact with the PAFR model in a fashion similar to PAF.Taken together, our data indicate that T. cruzi synthesizes a bioactive C18:1-LPC, which aggregates platelets via PAFR. We propose that C18:1-LPC might be an important lipid mediator in the progression of Chagas disease and its biosynthesis could

  3. Nonionic emulsion-mediated synthesis of zeolite beta

    Indian Academy of Sciences (India)

    Zeolite beta synthesis was first carried out in a newly developed emulsion system containing nonionic polyoxyethylated alkylphenol surfactant, which showed interesting non-conventional features. Compared to the conventional hydrothermal synthesis of zeolite beta, the reported nonionic emulsion system showed a faster ...

  4. Biomolecule mediating synthesis of inorganic nanoparticles and their applications

    Science.gov (United States)

    Wei, Zengyan

    Project 1. The conventional phage display technique focuses on screening peptide sequences that can bind on target substrates, however the selected peptides are not necessary to nucleate and mediate the growth of the target inorganic crystals, and in many cases they only show moderate affinity to the targets. Here we report a novel phage display approach that can directly screen peptides catalytically growing inorganic nanoparticles in aqueous solution at room temperature. In this study, the phage library is incubated with zinc precursor at room temperature. Among random peptide sequences displayed on phages, those phages that can grow zinc oxide (ZnO) nanoparticles are selected with centrifugation. After several rounds of selection, the peptide sequences displayed on the phage viruses are analyzed by DNA sequencing. Our screening protocol provide a simple and convenient route for the discovery of catalytic peptides that can grow inorganic nanoparticles at room temperature. This novel screening protocol can extend the method on finding a wide range of new catalysts. Project 2. Genetically engineered collagen peptides are assembled into freestanding films when quantum dots (QDs) are co-assembled as joints between collagen domains. These peptide-based films show excellent mechanical properties with Young's modulus of 20 GPa, much larger than most of the multi-composite polymer films and previously reported freestanding nanoparticle-assembled sheets, and it is even close to that reported for the bone tissue in nature. These films show little permanent deformation under small indentation while the mechanical hysteresis becomes remarkable when the load approaches near and beyond the rupture point, which is also characteristic of the bone tissue. Project 3. The shape-controlled synthesis of nanoparticles have been established in single-phase solutions by controlling growth directions of crystalline facets on seed nanocrystals kinetically; however, it is difficult to

  5. Surfactant-assisted sacrificial template-mediated synthesis ...

    Indian Academy of Sciences (India)

    Heena Khajuria

    Lanthanide ion based nanomaterials have gained much attention due to their ... A number of studies on the synthesis .... cum Steady State Luminescence Spectrometer, Edinburgh ..... and their application in lithium-ion batteries Adv. Mater.

  6. A review on transition-metal mediated synthesis of quinolines

    Indian Academy of Sciences (India)

    Rashmi Sharma

    2018-06-14

    Jun 14, 2018 ... Special Section on Transition Metal Catalyzed Synthesis of Medicinally Relevant Molecules. A review on ...... iron(III) chloride and TEMPO oxoammonium salt as an .... propyl-3-ethylquinoline (209) in presence of platinum.

  7. Nonionic emulsion-mediated synthesis of zeolite beta

    Indian Academy of Sciences (India)

    Administrator

    , 18 Fuxue ... alkylation, disproportionation and other organic synthesis processes at present (Camblor et al 1996). Usually, zeolite beta is synthesized by hydrothermal method at ... However, microemulsion has not yet been applied to syn-.

  8. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles

    Science.gov (United States)

    Berti, Lorenzo; Burley, Glenn A.

    2008-02-01

    Since the advent of practical methods for achieving DNA metallization, the use of nucleic acids as templates for the synthesis of inorganic nanoparticles (NPs) has become an active area of study. It is now widely recognized that nucleic acids have the ability to control the growth and morphology of inorganic NPs. These biopolymers are particularly appealing as templating agents as their ease of synthesis in conjunction with the possibility of screening nucleotide composition, sequence and length, provides the means to modulate the physico-chemical properties of the resulting NPs. Several synthetic procedures leading to NPs with interesting photophysical properties as well as studies aimed at rationalizing the mechanism of nucleic acid-templated NP synthesis are now being reported. This progress article will outline the current understanding of the nucleic acid-templated process and provides an up to date reference in this nascent field.

  9. Titanium(III) chloride mediated synthesis of furan derivatives ...

    Indian Academy of Sciences (India)

    Administrator

    a radical-induced synthesis of substituted furans from α-bromo-β-keto enoleth- ers using tributyl tinhydride (TBTH) as the radical initiator with 35–69% yield. But the use of tin com- pounds has certain limitations due to their toxicity and difficulties in isolation of pure products free of tin residues. To overcome these difficulties ...

  10. Key mediators modulating TAG synthesis and accumulation in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... TAG complex process of synthesis and accumulation. ... these fatty acids modification by enzymes located in the ... Woody oils plants are utilized for many food and industrial ... dients for the food industry and feedstocks for chemicals ..... economic and energetic costs and benefits of biodiesel and ethanol.

  11. Streptomyces somaliensis mediated green synthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Meysam Soltani Nejad

    2015-07-01

    Full Text Available Objective(s: The development of reliable and ecofriendly process for the synthesis of nano-metals is an important aspect in the field of nanotechnology. Nano-metals are a special group of materials with broad area of applications. Materials and Methods: In this study, extracellular synthesis of silver nanoparticles (SNPs performed by use of the gram positive soil Streptomycetes. Streptomycetes isolated from rice fields of Guilan Province, Iran (5 isolates. Initial characterization of SNPs was performed by visual change color. To determine the bacterium taxonomical identity, its colonies characterized morphologically by use of scanning electron microscope. The PCR molecular analysis of active isolate represented its identity partially. In this regard, 16S rDNA of isolate G was amplified using universal bacterial primers FD1 and RP2. The PCR products were purified and sequenced. Sequence analysis of 16S rDNA was then conducted using NCBI GenBank database using BLAST. Also SNPs were characterized by, transmission electron microscopy (TEM and X-ray diffraction spectroscopy (XRD. Results: From all 5 collected Streptomyces somaliensis isolates, isolate G showed highest extracellular synthesis of SNPs via in vitro. SNPs were formed immediately by the addition of (AgNO3 solution (1 mM. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 450 nm, which confirmed the presence of SNPs. TEM revealed the extracellular formation of spherical silver nanoparticles in the size range of 5-35 nm. Conclusions: The biological approach for the synthesis of metal nanoparticles offers an environmentally benign alternative to the traditional chemical and physical synthesis methods. So, a simple, environmentally friendly and cost-effective method has been developed to synthesize AgNPs using Streptomycetes.

  12. Deciphering the roles of Arabidopsis LPCAT and PAH in phosphatidylcholine homeostasis and pathway coordination for chloroplast lipid synthesis.

    Science.gov (United States)

    Wang, Liping; Kazachkov, Michael; Shen, Wenyun; Bai, Mei; Wu, Hong; Zou, Jitao

    2014-12-01

    Phosphatidylcholine (PC) is a key intermediate in the metabolic network of glycerolipid biosynthesis. Lysophosphatidylcholine acyltransferase (LPCAT) and phosphatidic acid phosphatase (PAH) are two key enzymes of PC homeostasis. We report that LPCAT activity is markedly induced in the Arabidopsis pah mutant. The quadruple pah lpcat mutant, with dual defects in PAH and LPCAT, had a level of lysophosphatidylcholine (LPC) that was much higher than that in the lpcat mutants and a PC content that was higher than that in the pah mutant. Comparative molecular profile analysis of monogalactosyldiacylglycerol and digalactosyldiacylglycerol revealed that both the pah and pah lpcat mutants had increased proportions of 34:6 from the prokaryotic pathway despite differing levels of LPCAT activity. We show that a decreased representation of the C16:0 C18:2 diacylglycerol moiety in PC was a shared feature of pah and pah lpcat, and that this change in PC metabolic profile correlated with the increased prokaryotic contribution to chloroplast lipid synthesis. We detected increased PC deacylation in the pah lpcat mutant that was attributable at least in part to the induced phospholipases. Increased LPC generation was also evident in the pah mutant, but the phospholipases were not induced, raising the possibility that PC deacylation is mediated by the reverse reaction of LPCAT. We discuss possible roles of LPCAT and PAH in PC turnover that impacts lipid pathway coordination for chloroplast lipid synthesis. © 2014 National Research Council Canada. The Plant Journal © 2014 Society For Experimental Biology and John Wiley & Sons.

  13. A concise synthesis of the potent inflammatory mediator 5-oxo-ETE

    DEFF Research Database (Denmark)

    Tyagi, Rahul; Shimpukade, Bharat; Blättermann, Stefanie

    2012-01-01

    A concise and practical method for synthesis of the potent inflammatory mediator 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE, 1) from arachidonic acid in four steps and 70% overall yield is reported. Stability studies indicate that 1 can be safely handled without rigorous precautions...

  14. Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine.

    Science.gov (United States)

    Chávez-Zamudio, Rubi; Ochoa-Flores, Angélica A; Soto-Rodríguez, Ida; Garcia-Varela, Rebeca; García, Hugo Sergio

    2017-09-20

    Curcumin is the main and most abundant bioactive component in Curcuma longa L. with documented properties in the prevention and treatment of chronic degenerative and infectious diseases. However, curcumin has low solubility in aqueous media, hence low bioavailability when administered orally. The use of nanoemulsions as carriers can provide a partial solution to bioavailability restrictions. In our study, O/W nanoemulsions of curcumin were prepared using lysophosphatidylcholine, a phospholipid with proven emulsification capacity; nevertheless, such qualities have not been previously reported in the preparation of nanoemulsions. Lysophosphatidylcholine was obtained by enzymatic removal of one fatty acid residue from phosphatidylcholine. The objective of our work was to formulate stable curcumin nanoemulsions and evaluate their bioavailability in BALB/c mice plasma after oral administration. Formulated nanoemulsions had a droplet size mean of 154.32 ± 3.10 nm, a polydispersity index of 0.34 ± 0.07 and zeta potential of -10.43 ± 1.10 mV; stability was monitored for 12 weeks. Lastly, in vivo pharmacokinetic parameters, using BALB/c mice, were obtained; namely, C max of 610 ± 65.0 μg mL -1 and T max of 2 h. Pharmacokinetic data revealed a higher bioavailability of emulsified as opposed to free curcumin. Research regarding other potential emulsifiers that may provide better health benefits and carry nano-encapsulated bioactive compounds more effectively, is necessary. This study provides important data on the preparation and design of nanoencapsulated Curcumin using lysophosphatidylcholine as an emulsifier.

  15. Honey Mediated Green Synthesis of Nanoparticles: New Era of Safe Nanotechnology

    Directory of Open Access Journals (Sweden)

    Eranga Roshan Balasooriya

    2017-01-01

    Full Text Available With the advent of nanotechnology, many related industries rapidly developed over the recent past. Generally, top-down and bottom-up approaches are the two major processes used to synthesize nanoparticles; most of these require high temperatures, vacuum conditions, and harsh/toxic chemicals. As a consequence, adverse effects impacted organisms including humans. Some synthesis methods are expensive and time-consuming. As a corollary, the concept of “green nanotechnology” emerged with the green synthesis of nanoparticles commencing a new epoch in nanotechnology. This involves the synthesis of nanomaterial from microorganisms, macroorganisms, and other biological materials. Honey is documented as the world’s oldest food source with exceptional medical, chemical, physical, and pharmaceutical values. Honey mediated green synthesis is a relatively novel concept used during the past few years to synthesize gold, silver, carbon, platinum, and palladium nanoparticles. Honey acts as both a stabilizing and a reducing agent and importantly functions as a precursor in nanoparticle synthesis. This method usually requires room temperature and does not produce toxic byproducts. In conclusion, honey mediated green synthesis of nanoparticles provides a simple, cost effective, biocompatible, reproducible, rapid, and safe method. The special activity of honey functionalized nanoparticles may provide valuable end products with numerous applications in diverse fields.

  16. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Junker, L.H.; Davis, R.A.

    1989-01-01

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis

  17. Casein mediated green synthesis and decoration of reduced graphene oxide

    Science.gov (United States)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Vankayala, Raviraj; Kalluru, Poliraju; Tammina, Sai Kumar; Kiran Kumar, H. A.

    This research is mainly focusing on one-step biosynthesis of graphene from graphene oxide and its stabilization using naturally occurring milk protein, casein. The synthesis of casein reduced graphene oxide (CRGO) was completed within 7 h under reflux at 90 °C with the formation of few layered fine graphene nanosheets. UV-Vis, XRD, XPS analysis data revealed the reduction process of the graphene oxide. Results of FT-IR, HPLC and TEM analysis have shown that the ensuing material consists of graphene decorated with casein molecules. Aspartic acid and glutamic acid residue present in casein molecules are responsible for the reduction of graphene oxide.

  18. DNA polymerase I-mediated ultraviolet repair synthesis in toluene-treated Escherichia coli

    International Nuclear Information System (INIS)

    Dorson, J.W.; Moses, R.E.

    1978-01-01

    DNA synthesis after ultraviolet irradiation is low in wild type toluene-treated cells. The level of repair incorporation is greater in strains deficient in DNA polymerase I. The low level of repair synthesis is attributable to the concerted action of DNA polymerase I and polynucleotide ligase. Repair synthesis is stimulated by blocking ligase activity with the addition of nicotinamide mononucleotide (NMN) or the use of a ligase temperature-sensitive mutant. NMN stimulation is specific for DNA polymerase I-mediated repair synthesis, as it is absent in isogenic strains deficient in the polymerase function or the 5' yields 3' exonuclease function associated with DNA polymerase I. DNA synthesis that is stimulated by NMN is proportional to the ultraviolet exposure at low doses, nonconservative in nature, and is dependent on the uvrA gene product but is independent of the recA gene product. These criteria place this synthesis in the excision repair pathway. The NMN-stimulated repair synthesis requires ATP and is N-ethylmaleimide-resistant. The use of NMN provides a direct means for evaluating the involvement of DNA polymerase I in excision repair

  19. Triblock copolymer-mediated synthesis of catalytically active gold nanostructures

    Science.gov (United States)

    Santos, Douglas C.; de Souza, Viviane C.; Vasconcelos, Diego A.; Andrade, George R. S.; Gimenez, Iara F.; Teixeira, Zaine

    2018-04-01

    The design of nanostructures based on poly(ethylene oxide)-poly(propylene)-poly(ethylene oxide) (PEO-PPO-PEO) and metal nanoparticles is becoming an important research topic due to their multiple functionalities in different fields, including nanomedicine and catalysis. In this work, water-soluble gold nanoparticles have been prepared through a green aqueous synthesis method using Pluronic F127 as both reducing and stabilizing agents. The size dependence (varying from 2 to 70 nm) and stability of gold nanoparticles were systematically studied by varying some parameters of synthesis, which were the polymer concentration, temperature, and exposure to UV-A light, being monitored by UV-Vis spectroscopy and TEM. Also, an elaborated study regarding to the kinetic of formation (nucleation and growth) was presented. Finally, the as-prepared Pluronic-capped gold nanoparticles have shown excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride, in which a higher catalytic performance was exhibited when compared with gold nanoparticles prepared by classical reduction method using sodium citrate. [Figure not available: see fulltext.

  20. Isolation and identification of molecular species of phosphatidylcholine and lysophosphatidylcholine from jojoba seed meal (Simmondsia chinensis).

    Science.gov (United States)

    Léon, Fabian; Van Boven, Maurits; de Witte, Peter; Busson, Roger; Cokelaere, Marnix

    2004-03-10

    A mixture of lysophosphatidylcholine (LPC) and phosphatidylcholine (PC) has been isolated by column chromatography from a jojoba meal (Simmondsia chinensis) extract. The molecular species of both classes could be separated and isolated by C18 reversed phase HPLC. The two major compounds were identified by 1D and 2D (1)H and (13)C NMR, by MS, and by GC-MS as 1-oleoyl-3-lysophosphatidylcholine and 1,2-dioleoyl-3-phosphatidylcholine. Eight other molecular species of LPC and four other molecular species of PC could be assigned by comparison of the mass spectra of the isolated compounds with the spectra of the two major compounds. Complete characterization of the individual molecular species was achieved by GC and GC-MS analysis of the fatty acyl composition from the isolated compounds. The PC/LPC proportion in the phospholipid mixture from three different samples is 1.6 +/- 0.1. LPC is considered to be an important bioactive compound; the results of this study suggest further research for the evaluation of potential health benefits of jojoba meal phospholipids.

  1. Terminalia chebula mediated green and rapid synthesis of gold nanoparticles

    Science.gov (United States)

    Mohan Kumar, Kesarla; Mandal, Badal Kumar; Sinha, Madhulika; Krishnakumar, Varadhan

    2012-02-01

    Biologically inspired experimental process in synthesising nanoparticles is of great interest in present scenario. Biosynthesis of nanoparticles is considered to be one of the best green techniques in synthesising metal nanoparticles. Here, an in situ green biogenic synthesis of gold nanoparticles using aqueous extracts of Terminalia chebula as reducing and stabilizing agent is reported. Gold nanoparticles were confirmed by surface plasmon resonance in the range of 535 nm using UV-visible spectrometry. TEM analysis revealed that the morphology of the particles thus formed contains anisotropic gold nanoparticles with size ranging from 6 to 60 nm. Hydrolysable tannins present in the extract of T. chebula are responsible for reductions and stabilization of gold nanoparticles. Antimicrobial activity of gold nanoparticles showed better activity towards gram positive S. aureus compared to gram negative E. coli using standard well diffusion method.

  2. Piper betle-mediated green synthesis of biocompatible gold nanoparticles

    Science.gov (United States)

    Punuri, Jayasekhar Babu; Sharma, Pragya; Sibyala, Saranya; Tamuli, Ranjan; Bora, Utpal

    2012-08-01

    Here, we report the novel use of the ethonolic leaf extract of Piper betle for gold nanoparticle (AuNP) synthesis. The successful formation of AuNPs was confirmed by UV-visible spectroscopy, and different parameters such as leaf extract concentration (2%), gold salt concentration (0.5 mM), and time (18 s) were optimized. The synthesized AuNPs were characterized with different biophysical techniques such as transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). TEM experiments showed that nanoparticles were of various shapes and sizes ranging from 10 to 35 nm. FT-IR spectroscopy revealed that AuNPs were functionalized with biomolecules that have primary amine group -NH2, carbonyl group, -OH groups, and other stabilizing functional groups. EDX showed the presence of the elements on the surface of the AuNPs. FT-IR and EDX together confirmed the presence of biomolecules bounded on the AuNPs. Cytotoxicity of the AuNPs was tested on HeLa and MCF-7 cancer cell lines, and they were found to be nontoxic, indicating their biocompatibility. Thus, synthesized AuNPs have potential for use in various biomedical applications.

  3. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles

    Science.gov (United States)

    Nava, O. J.; Soto-Robles, C. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Olivas, A.; Luque, P. A.

    2017-11-01

    This work presents a study of the effects on the photocatalytic capabilities of zinc oxide nanoparticles when prepared via green synthesis using different fruit peel extracts as reducing agents. Zinc nitrate was used as a source of the zinc ions, while Lycopersicon esculentum (tomato), Citrus sinensis (orange), Citrus paradisi (grapefruit) and Citrus aurantifolia (lemon) contributed their peels for extracts. The Synthesized Samples were studied and characterized through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and High Resolution Transmission Electron Microscopy (HRTEM). All samples presented a band at 618 cm-1, indicating the presence of the Znsbnd O bond. The different samples all presented the same hexagonal crystal growth in their structure, the Wurtzite phase. The surface morphology of the nanoparticles showed that, depending on the extract used, the samples vary in size and shape distribution due to the chemical composition of the extracts. The photocatalytic properties of the zinc oxide samples were tested through UV light aided degradation of methylene blue. Most samples exhibited degradation rates at 180 min of around 97%, a major improvement when compared to chemically synthesized commercially available zinc oxide nanoparticles.

  4. Soluble Polymer-supported Synthesis of Indoles via Palladium-mediat -ed Heteroannulation of Terminal Alkynes with o-Iodoanilines

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A soluble polymer-supported synthesis of indoles via palladium-mediated hetero- annulation of terminal alkynes with o-iodoanilines has been described. The protocol provides a useful tool for constructing combinatorial indole libraries.

  5. High-throughput optimization of nitroxide mediated radical polymerizations as basis for the synthesis of temperature-responsive copolymers

    NARCIS (Netherlands)

    Hoogenboom, R.; Becer, C.R.; Eggenhuisen, T.M.; Schubert, U.S.

    2008-01-01

    The development of controlled radical polymn. techniques, namely atom transfer radical polymn. (ATRP), reversible addn. fragmentation transfer (RAFT) and nitroxide mediated radical polymn. (NMP), have opened up unprecedented possibilities for the synthesis of well-defined macromol. architectures

  6. Cyclopropenes in Metallacycle-Mediated Cross-Coupling with Alkynes: Convergent Synthesis of Highly Substituted Vinylcyclopropanes.

    Science.gov (United States)

    O'Rourke, Natasha F; Micalizio, Glenn C

    2016-03-18

    Stereodivergent metallacycle-mediated cross-coupling reactions are described for the synthesis of densely functionalized vinylcyclopropanes from the union of alkynes with cyclopropenes. Strategies explored include hydroxyl-directed and nondirected processes, with the latter of these delivering vinylcyclopropanes with exquisite levels of regio- and stereoselectivity. Challenges inherent to these coupling reactions include diastereoselectivity (with respect to the cyclopropene) and regioselectivity (with respect to both coupling partners).

  7. Banana peel extract mediated synthesis of gold nanoparticles.

    Science.gov (United States)

    Bankar, Ashok; Joshi, Bhagyashree; Kumar, Ameeta Ravi; Zinjarde, Smita

    2010-10-01

    Gold nanoparticles were synthesized by using banana peel extract (BPE) as a simple, non-toxic, eco-friendly 'green material'. The boiled, crushed, acetone precipitated, air-dried peel powder was used to reduce chloroauric acid. A variety of nanoparticles were formed when the reaction conditions were altered with respect to pH, BPE content, chloroauric acid concentration and temperature of incubation. The reaction mixtures displayed vivid colors and UV-vis spectra characteristic of gold nanoparticles. Dynamic light scattering (DLS) studies revealed that the average size of the nanoparticles under standard synthetic conditions was around 300nm. Scanning electron microscopy and energy dispersive spectrometry (EDS) confirmed these results. A coffee ring phenomenon, led to the aggregation of the nanoparticles into microcubes and microwire networks towards the periphery of the air-dried samples. X-ray diffraction studies of the samples revealed spectra that were characteristic for gold. Fourier transform infra red (FTIR) spectroscopy indicated the involvement of carboxyl, amine and hydroxyl groups in the synthetic process. The BPE mediated nanoparticles displayed efficient antimicrobial activity towards most of the tested fungal and bacterial cultures.

  8. Synthesis of cationic star polymers by simplified electrochemically mediated ATRP

    Directory of Open Access Journals (Sweden)

    P. Chmielarz

    2016-10-01

    Full Text Available Cyclodextrin-based cationic star polymers were synthesized using β-cyclodextrin (β-CD core, and 2-(dimethylamino ethyl methacrylate (DMAEMA as hydrophilic arms. Star-shaped polymers were prepared via a simplified electrochemically mediated ATRP (seATRP under potentiostatic and galvanostatic conditions. The polymerization results showed molecular weight (MW evolution close to theoretical values, and maintained narrow molecular weight distribution (MWD of obtained stars. The rate of the polymerizations was controlled by applying more positive potential values thereby suppressing star-star coupling reactions. Successful chain extension of the ω-functional arms with a hydrophobic n-butyl acrylate (BA formed star block copolymers and confirmed the living nature of the β-CD-PDMAEMA star polymers prepared by seATRP. Novelty of this work is that the β-CD-PDMAEMA-b-PBA cationic star block copolymers were synthesized for the first time via seATRP procedure, utilizing only 40 ppm of catalyst complex. The results from 1H NMR spectral studies support the formation of cationic star (copolymers.

  9. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation.

    Science.gov (United States)

    Jung, Hyejung; Chung, Heesung; Chang, Sung Eun; Choi, Sora; Han, Inn-Oc; Kang, Duk-Hee; Oh, Eok-Soo

    2014-05-01

    Syndecan-2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan-2 in melanogenesis. Syndecan-2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA-mediated knockdown of syndecan-2 was associated with reduced melanin synthesis, whereas overexpression of syndecan-2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan-2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan-2 expression, and this up-regulation of syndecan-2 was required for UVB-induced melanin synthesis. Taken together, these data suggest that syndecan-2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin-associated diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Prediction and optimization of the laccase-mediated synthesis of the antimicrobial compound iodine (I2).

    Science.gov (United States)

    Schubert, M; Fey, A; Ihssen, J; Civardi, C; Schwarze, F W M R; Mourad, S

    2015-01-10

    An artificial neural network (ANN) and genetic algorithm (GA) were applied to improve the laccase-mediated oxidation of iodide (I(-)) to elemental iodine (I2). Biosynthesis of iodine (I2) was studied with a 5-level-4-factor central composite design (CCD). The generated ANN network was mathematically evaluated by several statistical indices and revealed better results than a classical quadratic response surface (RS) model. Determination of the relative significance of model input parameters, ranking the process parameters in order of importance (pH>laccase>mediator>iodide), was performed by sensitivity analysis. ANN-GA methodology was used to optimize the input space of the neural network model to find optimal settings for the laccase-mediated synthesis of iodine. ANN-GA optimized parameters resulted in a 9.9% increase in the conversion rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    International Nuclear Information System (INIS)

    Heidenreich, K.A.; Toledo, S.P.

    1989-01-01

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of [3H]leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of [3H]aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons

  12. Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicus-Glomus intraradices mycorrhizal symbiosis.

    Science.gov (United States)

    Vijayakumar, Vinod; Liebisch, Gerhard; Buer, Benjamin; Xue, Li; Gerlach, Nina; Blau, Samira; Schmitz, Jessica; Bucher, Marcel

    2016-02-01

    Interaction of plant roots with arbuscular mycorrhizal fungi (AMF) is a complex trait resulting in cooperative interactions among the two symbionts including bidirectional exchange of resources. To study arbuscular mycorrhizal symbiosis (AMS) trait variation in the model plant Lotus japonicus, we performed an integrated multi-omics analysis with a focus on plant and fungal phospholipid (PL) metabolism and biological significance of lysophosphatidylcholine (LPC). Our results support the role of LPC as a bioactive compound eliciting cellular and molecular response mechanisms in Lotus. Evidence is provided for large interspecific chemical diversity of LPC species among mycorrhizae with related AMF species. Lipid, gene expression and elemental profiling emphasize the Lotus-Glomus intraradices interaction as distinct from other arbuscular mycorrhizal (AM) interactions. In G. intraradices, genes involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs were enhanced, while in Lotus, FA synthesis genes were up-regulated during AMS. Furthermore, FAS protein localization to mitochondria suggests FA biosynthesis and elongation may also occur in AMF. Our results suggest the existence of interspecific partitioning of PL resources for generation of LPC and novel candidate bioactive PLs in the Lotus-G. intraradices symbiosis. Moreover, the data advocate research with phylogenetically diverse Glomeromycota species for a broader understanding of the molecular underpinnings of AMS. © 2015 John Wiley & Sons Ltd.

  13. Protein mediated synthesis of fluorescent Au-nanoclusters for metal sensory coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Manja; Raff, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Fluorescent Au-nanocluster were successfully synthesized and used for the selective detection of Cu{sup 2} {sup +}. The synthesized Au-BSA-nanoclusters remain functional also after immobilization and show high thermal stability. Additionally, the transfer of the protein mediated Au-nanocluster synthesis route to S-layer proteins was achieved. (The presented work is part of the project BIONEWS dealing with long-term stable cells for the set-up and regeneration of sensor and actor materials for strategic relevant metals, in particular rare earth elements).

  14. Plant-mediated synthesis of nanoparticles: A newer and safer tool against mosquito-borne diseases?

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2016-04-01

    Full Text Available Prevention and control of mosquito-borne diseases is a key challenge of huge public health importance. Plant-mediated synthesis of nanoparticles has recently gained attention as a cheap, rapid and eco-friendly method to control mosquito vector populations, with special reference to young instars. Furthermore, plant-fabricated nanoparticles have been successfully employed as dengue virus growth inhibitors. In this Editorial, parasitologists, entomologists and researchers in drug nanosynthesis are encouraged to deal with a number of crucial challenges of public health importance.

  15. Green tea induced gold nanostar synthesis mediated by Ag(I) ions

    OpenAIRE

    Chen, Qiang; Kaneko, Toshiro; Hatakeyama, Rikizo

    2014-01-01

    We report a synthesis of tea components conjugated gold nanostars (AuNSs) with strong near infrared absorption by reducing an aqueous solution of chloroauric acid trihydrate via green tea in association with Ag(I) ions. Green tea acts as a reducing agent by providing electrons for the gold (III) reduction as well as a stabilizing agent by conjugating some of its components on the surfaces of AuNSs. Moreover, the Ag(I) ions play an important role in mediating the branched growth of the resulta...

  16. Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach

    Energy Technology Data Exchange (ETDEWEB)

    Hudlikar, Manish; Joglekar, Shreeram [University of Pune, Division of Biochemistry, Department of Chemistry (India); Dhaygude, Mayur [National Chemical Laboratory, Polymer Science and Engineering Division (India); Kodam, Kisan, E-mail: kodam@chem.unipune.ac.in [University of Pune, Division of Biochemistry, Department of Chemistry (India)

    2012-05-15

    A low-cost, green synthesis of ZnS nanoparticles is reported using 0.3 % latex solution prepared from Jatropha curcas L. ZnS nanoparticles were characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis optical absorption and photoluminescence techniques. Fourier Transform Infrared Spectroscopy was performed to find the role of cyclic peptides namely curcacycline A (an octapeptide), curcacycline B (a nonapeptide) and curcain (an enzyme) as a possible reducing and stabilizing agents present in the latex of J. curcas L. The average size of ZnS nanoparticles was found to be 10 nm. Latex of J. curcas L. itself acts as a source of sulphide (S{sup -2}) ions that are donated to Zn ions under present experimental conditions. Source of sulphide (S{sup -2}) ions is still unclear, but we speculate that cysteine or thiol residues present in enzyme curcain may be donating these sulphide (S{sup -2}) ions.

  17. Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach

    Science.gov (United States)

    Hudlikar, Manish; Joglekar, Shreeram; Dhaygude, Mayur; Kodam, Kisan

    2012-05-01

    A low-cost, green synthesis of ZnS nanoparticles is reported using 0.3 % latex solution prepared from Jatropha curcas L. ZnS nanoparticles were characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis optical absorption and photoluminescence techniques. Fourier Transform Infrared Spectroscopy was performed to find the role of cyclic peptides namely curcacycline A (an octapeptide), curcacycline B (a nonapeptide) and curcain (an enzyme) as a possible reducing and stabilizing agents present in the latex of J. curcas L. The average size of ZnS nanoparticles was found to be 10 nm. Latex of J. curcas L. itself acts as a source of sulphide (S-2) ions that are donated to Zn ions under present experimental conditions. Source of sulphide (S-2) ions is still unclear, but we speculate that cysteine or thiol residues present in enzyme curcain may be donating these sulphide (S-2) ions.

  18. Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach

    International Nuclear Information System (INIS)

    Hudlikar, Manish; Joglekar, Shreeram; Dhaygude, Mayur; Kodam, Kisan

    2012-01-01

    A low-cost, green synthesis of ZnS nanoparticles is reported using 0.3 % latex solution prepared from Jatropha curcas L. ZnS nanoparticles were characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy, energy dispersive analysis of X-rays, UV–vis optical absorption and photoluminescence techniques. Fourier Transform Infrared Spectroscopy was performed to find the role of cyclic peptides namely curcacycline A (an octapeptide), curcacycline B (a nonapeptide) and curcain (an enzyme) as a possible reducing and stabilizing agents present in the latex of J. curcas L. The average size of ZnS nanoparticles was found to be 10 nm. Latex of J. curcas L. itself acts as a source of sulphide (S −2 ) ions that are donated to Zn ions under present experimental conditions. Source of sulphide (S −2 ) ions is still unclear, but we speculate that cysteine or thiol residues present in enzyme curcain may be donating these sulphide (S −2 ) ions.

  19. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis.

    Science.gov (United States)

    Leduc, Antoine O H C; Munday, Philip L; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.

  20. Efficient seed-mediated method for the large-scale synthesis of Au nanorods

    International Nuclear Information System (INIS)

    Ahmed, Waqqar; Bhatti, Arshad Saleem; Ruitenbeek, Jan M. van

    2017-01-01

    Seed-mediated methods are widely followed for the synthesis of Au nanorods (NRs). However, mostly dilute concentrations of the Au precursor (HAuCl_4) are used in the growth solution, which leads to a low final concentration of NRs. Attempts of increasing the concentration of NRs by simply increasing the concentration of HAuCl_4, other reagents in the growth solution and seeds lead to a faster growth kinetics which is not favourable for NR growth. Herein, we demonstrate that the increase in growth kinetics for high concentrations of reagents in growth solution can be neutralised by decreasing the pH of the solution. The synthesis of the NRs can be scaled up by using higher concentrations of reagents and adding an optimum concentration of HCl in the growth solution. The concentration of HAuCl_4 in the growth solution can be increased up to 5 mM, and 10–20 times more NRs can be synthesised for the same reaction volume compared to that of the conventional seed-mediated method. We have also noticed that a cetyltrimethylammonium bromide (CTAB)-to-HAuCl_4 molar ratio of 50 is sufficient for obtaining high yield of NRs.

  1. Adiponectin inhibits insulin function in primary trophoblasts by PPARα-mediated ceramide synthesis.

    Science.gov (United States)

    Aye, Irving L M H; Gao, Xiaoli; Weintraub, Susan T; Jansson, Thomas; Powell, Theresa L

    2014-04-01

    Maternal adiponectin (ADN) levels are inversely correlated with birth weight, and ADN infusion in pregnant mice down-regulates placental nutrient transporters and decreases fetal growth. In contrast to the insulin-sensitizing effects in adipose tissue and muscle, ADN inhibits insulin signaling in the placenta. However, the molecular mechanisms involved are unknown. We hypothesized that ADN inhibits insulin signaling and insulin-stimulated amino acid transport in primary human trophoblasts by peroxisome proliferator-activated receptor-α (PPARα)-mediated ceramide synthesis. Primary human term trophoblast cells were treated with ADN and/or insulin. ADN increased the phosphorylation of p38 MAPK and PPARα. ADN inhibited insulin signaling and insulin-stimulated amino acid transport. This effect was dependent on PPARα, because activation of PPARα with an agonist (GW7647) inhibited insulin signaling and function, whereas PPARα-small interfering RNA reversed the effects of ADN on the insulin response. ADN increased ceramide synthase expression and stimulated ceramide production. C2-ceramide inhibited insulin signaling and function, whereas inhibition of ceramide synthase (with Fumonisin B1) reversed the effects of ADN on insulin signaling and amino acid transport. These findings are consistent with the model that maternal ADN limits fetal growth mediated by activation of placental PPARα and ceramide synthesis, which inhibits placental insulin signaling and amino acid transport, resulting in reduced fetal nutrient availability.

  2. Efficient seed-mediated method for the large-scale synthesis of Au nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Waqqar; Bhatti, Arshad Saleem [COMSATS Institute of Information Technology, Department of Physics (Pakistan); Ruitenbeek, Jan M. van, E-mail: Ruitenbeek@physics.leidenuniv.nl [Leiden University, Huygens-Kamerlingh Onnes Laboratory (Netherlands)

    2017-03-15

    Seed-mediated methods are widely followed for the synthesis of Au nanorods (NRs). However, mostly dilute concentrations of the Au precursor (HAuCl{sub 4}) are used in the growth solution, which leads to a low final concentration of NRs. Attempts of increasing the concentration of NRs by simply increasing the concentration of HAuCl{sub 4}, other reagents in the growth solution and seeds lead to a faster growth kinetics which is not favourable for NR growth. Herein, we demonstrate that the increase in growth kinetics for high concentrations of reagents in growth solution can be neutralised by decreasing the pH of the solution. The synthesis of the NRs can be scaled up by using higher concentrations of reagents and adding an optimum concentration of HCl in the growth solution. The concentration of HAuCl{sub 4} in the growth solution can be increased up to 5 mM, and 10–20 times more NRs can be synthesised for the same reaction volume compared to that of the conventional seed-mediated method. We have also noticed that a cetyltrimethylammonium bromide (CTAB)-to-HAuCl{sub 4} molar ratio of 50 is sufficient for obtaining high yield of NRs.

  3. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms

    Energy Technology Data Exchange (ETDEWEB)

    Uma Suganya, K.S. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Govindaraju, K., E-mail: govindtu@gmail.com [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Ganesh Kumar, V.; Stalin Dhas, T.; Karthick, V. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Singaravelu, G. [Nanoscience Division, Department of Zoology, Thiruvalluvar University, Vellore 632115 (India); Elanchezhiyan, M. [Department of Microbiology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113 (India)

    2015-02-01

    Biofunctionalized gold nanoparticles (AuNPs) play an important role in design and development of nanomedicine. Synthesis of AuNPs from biogenic materials is environmentally benign and possesses high bacterial inhibition and bactericidal properties. In the present study, blue green alga Spirulina platensis protein mediated synthesis of AuNPs and its antibacterial activity against Gram positive bacteria is discussed. AuNPs were characterized using Ultraviolet–visible (UV–vis) spectroscopy, Fluorescence spectroscopy, Fourier Transform-Infrared (FTIR) spectroscopy, Raman spectroscopy, High Resolution-Transmission Electron Microscopy (HR-TEM) and Energy Dispersive X-ray analysis (EDAX). Stable, well defined AuNPs of smaller and uniform shape with an average size of ∼ 5 nm were obtained. The antibacterial efficacy of protein functionalized AuNPs were tested against Gram positive organisms Bacillus subtilis and Staphylococcus aureus. - Highlights: • Size controlled synthesis of gold nanoparticles from blue green alga Spirulina platensis • Stability of gold nanoparticles at different temperatures • Potent antibacterial efficacy against Gram positive organisms.

  4. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum.

    Science.gov (United States)

    Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias

    2017-12-14

    Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Mechanism of plant-mediated synthesis of silver nanoparticles - A review on biomolecules involved, characterisation and antibacterial activity.

    Science.gov (United States)

    Rajeshkumar, S; Bharath, L V

    2017-08-01

    Engineering a reliable and eco-accommodating methodology for the synthesis of metal nanoparticles is a crucial step in the field of nanotechnology. Plant-mediated synthesis of metal nanoparticles has been developed as a substitute to defeat the limitations of conventional synthesis approaches such as physical and chemical methods. Biomolecules, such as proteins, amino acids, enzymes, flavonoids, and terpenoids from several plant extracts have been used as a stabilising and reducing agents for the synthesis of AgNPs. Regardless of an extensive range of biomolecules assistance in the synthesis procedure, researchers are facing a significant challenge to synthesise stable and geometrically controlled AgNPs. In the past decade, several efforts were made to develop Plant-mediated synthesis methods to produce stable, cost effective and eco-friendly AgNPs. More than hundred different plants extract sources for synthesising AgNPs were described in the last decade by several researchers. Most of the reviews were focused on various plant sources for synthesis, various characterization techniques for characteristic analysis, and antibacterial activity against bacterial. There are many reviews are available for the plant-mediated synthesis of AgNPs as well as antibacterial activity of AgNPs but this is the first review article mainly focused on biomolecules of plants and its various parts and operating conditions involved in the synthesis. Apart from, this review includes the characterisation of AgNPs and antibacterial activity of such nanoparticles with size, shape and method used for this study. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Glucosylceramide and Lysophosphatidylcholines as Potential Blood Biomarkers for Drug-Induced Hepatic Phospholipidosis

    Science.gov (United States)

    Saito, Kosuke; Maekawa, Keiko; Ishikawa, Masaki; Senoo, Yuya; Urata, Masayo; Murayama, Mayumi; Nakatsu, Noriyuki; Yamada, Hiroshi; Saito, Yoshiro

    2014-01-01

    Drug-induced phospholipidosis is one of the major concerns in drug development and clinical treatment. The present study involved the use of a nontargeting lipidomic analysis with liquid chromatography-mass spectrometry to explore noninvasive blood biomarkers for hepatic phospholipidosis from rat plasma. We used three tricyclic antidepressants (clomipramine [CPM], imipramine [IMI], and amitriptyline [AMT]) for the model of phospholipidosis in hepatocytes and ketoconazole (KC) for the model of phospholipidosis in cholangiocytes and administered treatment for 3 and 28 days each. Total plasma lipids were extracted and measured. Lipid molecules contributing to the separation of control and drug-treated rat plasma in a multivariate orthogonal partial least squares discriminant analysis were identified. Four lysophosphatidylcholines (LPCs) (16:1, 18:1, 18:2, and 20:4) and 42:1 hexosylceramide (HexCer) were identified as molecules separating control and drug-treated rats in all models of phospholipidosis in hepatocytes. In addition, 16:1, 18:2, and 20:4 LPCs and 42:1 HexCer were identified in a model of hepatic phospholipidosis in cholangiocytes, although LPCs were identified only in the case of 3-day treatment with KC. The levels of LPCs were decreased by drug-induced phospholipidosis, whereas those of 42:1 HexCer were increased. The increase in 42:1 HexCer was much higher in the case of IMI and AMT than in the case of CPM; moreover, the increase induced by IMI was dose-dependent. Structural characterization determining long-chain base and hexose delineated that 42:1 HexCer was d18:1/24:0 glucosylceramide (GluCer). In summary, our study demonstrated that d18:1/24:0 GluCer and LPCs are potential novel biomarkers for drug-induced hepatic phospholipidosis. PMID:24980264

  7. Cord Blood Lysophosphatidylcholine 16: 1 is Positively Associated with Birth Weight

    Directory of Open Access Journals (Sweden)

    Yong-Ping Lu

    2018-01-01

    Full Text Available Background/Aims: Impaired birth outcomes, like low birth weight, have consistently been associated with increased disease susceptibility to hypertension in later life. Alterations in the maternal or fetal metabolism might impact on fetal growth and influence birth outcomes. Discerning associations between the maternal and fetal metabolome and surrogate parameters of fetal growth could give new insight into the complex relationship between intrauterine conditions, birth outcomes, and later life disease susceptibility. Methods: Using flow injection tandem mass spectrometry, targeted metabolomics was performed in serum samples obtained from 226 mother/child pairs at delivery. Associations between neonatal birth weight and concentrations of 163 maternal and fetal metabolites were analyzed. Results: After FDR adjustment using the Benjamini-Hochberg procedure lysophosphatidylcholines (LPC 14: 0, 16: 1, and 18: 1 were strongly positively correlated with birth weight. In a stepwise linear regression model corrected for established confounding factors of birth weight, LPC 16: 1 showed the strongest independent association with birth weight (CI: 93.63 - 168.94; P = 6.94×10-11 . The association with birth weight was stronger than classical confounding factors such as offspring sex (CI: -258.81- -61.32; P = 0.002 and maternal smoking during pregnancy (CI: -298.74 - -29.51; P = 0.017. Conclusions: After correction for multiple testing and adjustment for potential confounders, LPC 16: 1 showed a very strong and independent association with birth weight. The underlying molecular mechanisms linking fetal LPCs with birth weight need to be addressed in future studies.

  8. A strategy for solubilizing delipidated apolipoprotein with lysophosphatidylcholine and reconstitution with phosphatidylcholine

    International Nuclear Information System (INIS)

    Kawooya, J.K.; Wells, M.A.; Law, J.H.

    1989-01-01

    The apolipoproteins of insect lipophorin were dissociated in guanidinium chloride and isolated by gel permeation chromatography. Over 98% of the total lipid in lipophorin was associated with apolipophorin I (apoLp-I), thus suggesting this apolipoprotein to be the lipid binding component of the particle. ApoLp-I was delipidated with ethanol/ether and solubilized in buffer that contained radioactive lysophosphatidylcholine ([ 3 H]LPC) above the critical micellar concentration. Sonic irradiation of radioactive phosphatidylcholine ([ 14 C]PC) with [ 3 H]LPC-solubilized apoLp-I at a molar ratio of 318 resulted in reconstituted lipophorin I (RLp-I). [ 3 H]LPC was bound to fatty acid free bovine serum albumin and was separated from RLp-I by density gradient ultracentrifugation and gel permeation chromatography. Negatively stained RLp-I particles were quasispherical with an average radius of 55 angstrom, and their overall morphology and secondary structure were similar to those of native hemolymph lipophorin. The RLp-I particle had a ρ = 1.137 g/mL, a M r ∼ 5.2 x 10 5 , and a [ 14 C]PC:apoLp-I molar ratio of 308. From the compositional analysis, molecular size, trypsinization, and lipolysis with phospholipase A 2 , the authors concluded that each RLp-I particle contained one molecule of apoLp-I and a monomolecular layer of [ 14 C]PC. When injected into the hemolymph of adult moths in vivo, RLp-I was loaded with lipid, as judged by a decrease in its density both in the presence and in the absence of adipokinetic hormone. The similarities in morphology and immunology of RLp-I and native lipophorin, together with the ability of RLp-I to load lipid, suggest that reconstituted lipophorins may serve as models to probe lipophorin structure and function

  9. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Melissa N Barber

    Full Text Available BACKGROUND: Obesity and type 2 diabetes (T2DM are associated with increased circulating free fatty acids and triacylglycerols. However, very little is known about specific molecular lipid species associated with these diseases. In order to gain further insight into this, we performed plasma lipidomic analysis in a rodent model of obesity and insulin resistance as well as in lean, obese and obese individuals with T2DM. METHODOLOGY/PRINCIPAL FINDINGS: Lipidomic analysis using liquid chromatography coupled to mass spectrometry revealed marked changes in the plasma of 12 week high fat fed mice. Although a number of triacylglycerol and diacylglycerol species were elevated along with of a number of sphingolipids, a particularly interesting finding was the high fat diet (HFD-induced reduction in lysophosphatidylcholine (LPC levels. As liver, skeletal muscle and adipose tissue play an important role in metabolism, we next determined whether the HFD altered LPCs in these tissues. In contrast to our findings in plasma, only very modest changes in tissue LPCs were noted. To determine when the change in plasma LPCs occurred in response to the HFD, mice were studied after 1, 3 and 6 weeks of HFD. The HFD caused rapid alterations in plasma LPCs with most changes occurring within the first week. Consistent with our rodent model, data from our small human cohort showed a reduction in a number of LPC species in obese and obese individuals with T2DM. Interestingly, no differences were found between the obese otherwise healthy individuals and the obese T2DM patients. CONCLUSION: Irrespective of species, our lipidomic profiling revealed a generalized decrease in circulating LPC species in states of obesity. Moreover, our data indicate that diet and adiposity, rather than insulin resistance or diabetes per se, play an important role in altering the plasma LPC profile.

  10. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization.

    Science.gov (United States)

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; Zhang, Jinshui; Zhang, Pengfei; Zhu, Huiyuan; Li, Changfeng; Chen, Zhigang; Li, Huaming; Dai, Sheng

    2016-01-04

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  11. Optimization of components in high-yield synthesis of block copolymer-mediated gold nanoparticles

    International Nuclear Information System (INIS)

    Ray, Debes; Aswal, Vinod Kumar

    2012-01-01

    The optimization to achieve stable and high-yield gold nanoparticles in block copolymer-mediated synthesis has been examined. Gold nanoparticles are synthesized using block copolymer P85 in gold salt HAuCl 4 ·3H 2 O solution. This method usually has a very limited yield which does not simply increase with the increase in the gold salt concentration. We show that the yield can be enhanced by increasing the block copolymer concentration but is limited to the factor by which the concentration is increased. On the other hand, the presence of an additional reductant (trisodium citrate) in 1:1 molar ratio with gold salt enhances the yield by manyfold. In this case (with additional reductant), the stable and high-yield nanoparticles having size about 14 nm can be synthesized at very low block copolymer concentrations. These nanoparticles thus can be efficiently used for their application such as for adsorption of proteins.

  12. Synthesis and Characterization of Optically Active Fractal Seed Mediated Silver Nickel Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joseph Adeyemi Adekoya

    2014-01-01

    Full Text Available The synthesis of new seed mediated AgNi allied bimetallic nanocomposites was successfully carried out by the successive reduction of the metal ions in diethylene glycol, ethylene glycol, glycerol, and pentaerythritol solutions, with concomitant precipitation of Ag/Ni bimetal sols. The optical measurement revealed the existence of distinct band edge with surface plasmon resonance (SPR in the region of 400–425 nm and excitonic emission with maximum peak at 382 nm which were reminiscent of cluster-in-cluster surface enriched bimetallic silver-nickel sols. The morphological characterization by transmission electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction analyses complimented by surface scan using X-ray photoelectron spectroscopy strongly supported the formation of intimately alloyed face-centered silver/nickel nanoclusters.

  13. Hydrogen adsorption-mediated synthesis of concave Pt nanocubes and their enhanced electrocatalytic activity

    Science.gov (United States)

    Lu, Bang-An; Du, Jia-Huan; Sheng, Tian; Tian, Na; Xiao, Jing; Liu, Li; Xu, Bin-Bin; Zhou, Zhi-You; Sun, Shi-Gang

    2016-06-01

    Concave nanocubes are enclosed by high-index facets and have negative curvature; they are expected to have enhanced reactivity, as compared to nanocubes with flat surfaces. Herein, we propose and demonstrate a new strategy for the synthesis of concave Pt nanocubes with {hk0} high-index facets, by using a hydrogen adsorption-mediated electrochemical square-wave potential method. It was found that Pt atoms prefer to deposit on edge sites rather than terrace sites on Pt surfaces with intensive hydrogen adsorption, resulting in the formation of concave structures. The as-prepared concave Pt nanocubes exhibit enhanced catalytic activity and stability towards oxidation of ethanol and formic acid in acidic solutions, compared to commercial Pt/C catalysts.Concave nanocubes are enclosed by high-index facets and have negative curvature; they are expected to have enhanced reactivity, as compared to nanocubes with flat surfaces. Herein, we propose and demonstrate a new strategy for the synthesis of concave Pt nanocubes with {hk0} high-index facets, by using a hydrogen adsorption-mediated electrochemical square-wave potential method. It was found that Pt atoms prefer to deposit on edge sites rather than terrace sites on Pt surfaces with intensive hydrogen adsorption, resulting in the formation of concave structures. The as-prepared concave Pt nanocubes exhibit enhanced catalytic activity and stability towards oxidation of ethanol and formic acid in acidic solutions, compared to commercial Pt/C catalysts. Electronic supplementary information (ESI) available: Details of DFT calculation, SEM images of concave Pt nanocubes, mass activity and stability characterization of the catalysts. See DOI: 10.1039/c6nr02349e

  14. Total synthesis of complestatin: development of a Pd(0)-mediated indole annulation for macrocyclization.

    Science.gov (United States)

    Shimamura, Hiroyuki; Breazzano, Steven P; Garfunkle, Joie; Kimball, F Scott; Trzupek, John D; Boger, Dale L

    2010-06-09

    Full details of the initial development and continued examination of a powerful intramolecular palladium(0)-mediated indole annulation for macrocyclization closure of the strained 16-membered biaryl ring system found in complestatin (1, chloropeptin II) and the definition of factors impacting its intrinsic atropodiastereoselectivity are described. Its examination and use in an alternative, second-generation total synthesis of complestatin are detailed in which the order of the macrocyclization reactions was reversed from our first-generation total synthesis. In this approach and with the ABCD biaryl ether ring system in place, the key Larock cyclization was conducted with substrate 36 (containing four phenols, five secondary amides, one carbamate, and four labile aryl chlorides) and provided the product 37 (56%) exclusively as a single atropisomer (>20:1, detection limits) possessing the natural (R)-configuration. In this instance, the complexity of the substrate and the reverse macrocyclization order did not diminish the atropodiastereoselectivity; rather, it provided an improvement over the 4:1 selectivity that was observed with the analogous substrate used to provide the isolated DEF ring system in our first-generation approach. Just as significant, the atroposelectivity represents a complete reversal of the diasteroselectivity observed with analogous macrocyclizations conducted using a Suzuki biaryl coupling.

  15. Fungus-Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus

    Directory of Open Access Journals (Sweden)

    Koji Yokoyama

    2011-12-01

    Full Text Available The biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, cost-effective and environmentally friendly technologies for nano-materials synthesis. In this report, silver nanoparticles (AgNPs were synthesized using a reduction of aqueous Ag+ ion with the culture supernatants of Aspergillus terreus. The reaction occurred at ambient temperature and in a few hours. The bioreduction of AgNPs was monitored by ultraviolet-visible spectroscopy, and the AgNPs obtained were characterized by transmission electron microscopy and X-ray diffraction. The synthesized AgNPs were polydispersed spherical particles ranging in size from 1 to 20 nm and stabilized in the solution. Reduced nicotinamide adenine dinucleotide (NADH was found to be an important reducing agent for the biosynthesis, and the formation of AgNPs might be an enzyme-mediated extracellular reaction process. Furthermore, the antimicrobial potential of AgNPs was systematically evaluated. The synthesized AgNPs could efficiently inhibit various pathogenic organisms, including bacteria and fungi. The current research opens a new avenue for the green synthesis of nano-materials.

  16. Replisome-mediated Translesion Synthesis and Leading Strand Template Lesion Skipping Are Competing Bypass Mechanisms*

    Science.gov (United States)

    Gabbai, Carolina B.; Yeeles, Joseph T. P.; Marians, Kenneth J.

    2014-01-01

    A number of different enzymatic pathways have evolved to ensure that DNA replication can proceed past template base damage. These pathways include lesion skipping by the replisome, replication fork regression followed by either correction of the damage and origin-independent replication restart or homologous recombination-mediated restart of replication downstream of the lesion, and bypass of the damage by a translesion synthesis DNA polymerase. We report here that of two translesion synthesis polymerases tested, only DNA polymerase IV, not DNA polymerase II, could engage productively with the Escherichia coli replisome to bypass leading strand template damage, despite the fact that both enzymes are shown to be interacting with the replicase. Inactivation of the 3′ → 5′ proofreading exonuclease of DNA polymerase II did not enable bypass. Bypass by DNA polymerase IV required its ability to interact with the β clamp and act as a translesion polymerase but did not require its “little finger” domain, a secondary region of interaction with the β clamp. Bypass by DNA polymerase IV came at the expense of the inherent leading strand lesion skipping activity of the replisome, indicating that they are competing reactions. PMID:25301949

  17. Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst.

    Science.gov (United States)

    Yeow, Jonathan; Xu, Jiangtao; Boyer, Cyrille

    2016-06-08

    Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm(2)), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology.

  18. Down-regulation of inflammatory mediator synthesis and infiltration of inflammatory cells by MMP-3 in experimentally induced rat pulpitis.

    Science.gov (United States)

    Takimoto, Koyo; Kawashima, Nobuyuki; Suzuki, Noriyuki; Koizumi, Yu; Yamamoto, Mioko; Nakashima, Misako; Suda, Hideaki

    2014-09-01

    Matrix metalloproteinase (MMP)-3 is a member of the MMP family that degrades the extracellular matrix. Application of MMP-3 to injured pulp tissue induces angiogenesis and wound healing, but its anti-inflammatory effects are still unclear. Here, we evaluated the anti-inflammatory functions of MMP-3 in vitro and in vivo. Nitric oxide and inflammatory mediator synthesis in macrophages activated by lipopolysaccharide (LPS) was measured in the presence or absence of MMP-3. The mouse Mmp3 (mMmp3) expression vector containing full length cDNA sequence of mMmp3 or cDNA sequence of mMmp3 missing the signal peptide and pro-peptide regions was transfected to RAW264, a mouse macrophage cell line, and NO synthesis and inflammatory mediator expression were evaluated. Pulpal inflammation was histologically and immunohistochemically evaluated in a rat model of incisor pulpitis induced by the application of LPS for 9 hours in the presence or absence of MMP-3. NO and pro-inflammatory mediator synthesis promoted by LPS was significantly down-regulated by MMP-3 in vitro. The full length of mMmp3 down-regulated the LPS-induced NO synthesis and chemical mediator mRNA expression, however the mMmp3 missing the signal peptide failed to block the NO synthesis induced by LPS. The numbers of major histocompatibility complex class II+ and CD68+ cells, which infiltrated into the rat incisor pulp tissues in response to the topical application of LPS, were significantly decreased by the application of MMP-3 in vivo. These results indicate that MMP-3 possesses anti-inflammatory functions, suggesting its potential utility as an anti-inflammatory agent for pulpal inflammation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Synthesis and Mechanism of Metal-Mediated Polymerization of Phenolic Resins

    Directory of Open Access Journals (Sweden)

    Zhao Yi

    2016-04-01

    Full Text Available Phenol-formaldehyde (PF resin is a high performance adhesive, but has not been widely developed due to its slow curing rate and high curing temperature. To accelerate the curing rate and to lower the curing temperature of PF resin, four types of metal-mediated catalysts were employed in the synthesis of PF resin; namely, barium hydroxide (Ba(OH2, sodium carbonate (Na2CO3, lithium hydroxide (LiOH, and zinc acetate ((CH3COO2Zn. The cure-acceleration effects of these catalysts on the properties of PF resins were measured, and the chemical structures of the PF resins accelerated with the catalysts were investigated by using Fourier transform infrared (FT-IR spectroscopy and quantitative liquid carbon-13 nuclear magnetic resonance (13C NMR. The results showed that the accelerated efficiency of these catalysts to PF resin could be ordered in the following sequence: Na2CO3 > (CH3COO2Zn > Ba(OH2 > LiOH. The catalysts (CH3COO2Zn and Na2CO3 increased the reaction activity of the phenol ortho position and the condensation reaction of ortho methylol. The accelerating mechanism of (CH3COO2Zn on PF resin is probably different from that of Na2CO3, which can be confirmed by the differences in the differential thermogravimetric (DTG curve and thermogravimetric (TG data. Compared to the Na2CO3-accelerated PF resin, the (CH3COO2Zn-accelerated PF resin showed different peaks in the DTG curve and higher weight residues. In the synthesis process, the catalyst (CH3COO2Zn may form chelating compounds (containing a metal-ligand bond, which can promote the linkage of formaldehyde to the phenolic hydroxyl ortho position.

  20. Synthesis of lipid mediators during UVB-induced inflammatory hyperalgesia in rats and mice.

    Directory of Open Access Journals (Sweden)

    Marco Sisignano

    Full Text Available Peripheral sensitization during inflammatory pain is mediated by a variety of endogenous proalgesic mediators including a number of oxidized lipids, some of which serve endogenous modulators of sensory TRP-channels. These lipids are eicosanoids of the arachidonic acid and linoleic acid pathway, as well as lysophophatidic acids (LPAs. However, their regulation pattern during inflammatory pain and their contribution to peripheral sensitization is still unclear. Here, we used the UVB-model for inflammatory pain to investigate alterations of lipid concentrations at the site of inflammation, the dorsal root ganglia (DRGs as well as the spinal dorsal horn and quantified 21 lipid species from five different lipid families at the peak of inflammation 48 hours post irradiation. We found that known proinflammatory lipids as well as lipids with unknown roles in inflammatory pain to be strongly increased in the skin, whereas surprisingly little changes of lipid levels were seen in DRGs or the dorsal horn. Importantly, although there are profound differences between the number of cytochrome (CYP genes between mice and rats, CYP-derived lipids were regulated similarly in both species. Since TRPV1 agonists such as LPA 18∶1, 9- and 13-HODE, 5- and 12-HETE were elevated in the skin, they may contribute to thermal hyperalgesia and mechanical allodynia during UVB-induced inflammatory pain. These results may explain why some studies show relatively weak analgesic effects of cyclooxygenase inhibitors in UVB-induced skin inflammation, as they do not inhibit synthesis of other proalgesic lipids such as LPA 18∶1, 9-and 13-HODE and HETEs.

  1. Synthesis of naturally-derived macromolecules through simplified electrochemically mediated ATRP

    Directory of Open Access Journals (Sweden)

    Paweł Chmielarz

    2017-11-01

    Full Text Available The flavonoid-based macroinitiator was received for the first time by the transesterification reaction of quercetin with 2-bromoisobutyryl bromide. In accordance with the “grafting from” strategy, a naturally-occurring star-like polymer with a polar 3,3',4',5,6-pentahydroxyflavone core and hydrophobic poly(tert-butyl acrylate (PtBA side arms was synthesized via a simplified electrochemically mediated ATRP (seATRP, utilizing only 78 ppm by weight (wt of a catalytic CuII complex. To demonstrate the possibility of temporal control, seATRP was carried out utilizing a multiple-step potential electrolysis. The rate of the polymerizations was well-controlled by applying optimal potential values during preparative electrolysis to prevent the possibility of intermolecular coupling of the growing polymer arms. This appears to be the first report using on-demand seATRP for the synthesis of QC-(PtBA-Br5 pseudo-star polymers. The naturally-derived macromolecules showed narrow MWDs (Đ = 1.08–1.11. 1H NMR spectral results confirm the formation of quercetin-based polymers. These new flavonoid-based polymer materials may find applications as antifouling coatings and drug delivery systems.

  2. Synthesis and structural characterization of carboxyethylpyrrole-modified proteins: mediators of age-related macular degeneration.

    Science.gov (United States)

    Lu, Liang; Gu, Xiaorong; Hong, Li; Laird, James; Jaffe, Keeve; Choi, Jaewoo; Crabb, John; Salomon, Robert G

    2009-11-01

    Protein modifications in which the epsilon-amino group of lysyl residues is incorporated into a 2-(omega-carboxyethyl)pyrrole (CEP) are mediators of age-related macular degeneration (AMD). They promote both angiogenesis into the retina ('wet AMD') and geographic retinal atrophy ('dry AMD'). Blood levels of CEPs are biomarkers for clinical prognosis of the disease. To enable mechanistic studies of their role in promoting AMD, for example, through the activation of B- and T-cells, interaction with receptors, or binding with complement proteins, we developed an efficient synthesis of CEP derivatives, that is especially effective for proteins. The structures of tryptic peptides derived from CEP-modified proteins were also determined. A key finding is that 4,7-dioxoheptanoic acid 9-fluorenylmethyl ester reacts with primary amines to provide 9-fluorenylmethyl esters of CEP-modified proteins that can be deprotected in situ with 1,8-diazabicyclo[5.4.0]undec-7-ene without causing protein denaturation. The introduction of multiple CEP-modifications with a wide variety of CEP:protein ratios is readily achieved using this strategy.

  3. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig

    2011-01-01

    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  4. Major Vault Protein Regulates Class A Scavenger Receptor-mediated Tumor Necrosis Factor-α Synthesis and Apoptosis in Macrophages*

    Science.gov (United States)

    Ben, Jingjing; Zhang, Yan; Zhou, Rongmei; Zhang, Haiyang; Zhu, Xudong; Li, Xiaoyu; Zhang, Hanwen; Li, Nan; Zhou, Xiaodan; Bai, Hui; Yang, Qing; Li, Donghai; Xu, Yong; Chen, Qi

    2013-01-01

    Atherosclerosis is considered a disease of chronic inflammation largely initiated and perpetuated by macrophage-dependent synthesis and release of pro-inflammatory mediators. Class A scavenger receptor (SR-A) expressed on macrophages plays a key role in this process. However, how SR-A-mediated pro-inflammatory response is modulated in macrophages remains ill defined. Here through immunoprecipitation coupled with mass spectrometry, we reported major vault protein (MVP) as a novel binding partner for SR-A. The interaction between SR-A and MVP was confirmed by immunofluorescence staining and chemical cross-linking assay. Treatment of macrophages with fucoidan, a SR-A ligand, led to a marked increase in TNF-α production, which was attenuated by MVP depletion. Further analysis revealed that SR-A stimulated TNF-α synthesis in macrophages via the caveolin- instead of clathrin-mediated endocytic pathway linked to p38 and JNK, but not ERK, signaling pathways. Importantly, fucoidan invoked an enrichment of MVP in lipid raft, a caveolin-reliant membrane structure, and enhanced the interaction among SR-A, caveolin, and MVP. Finally, we demonstrated that MVP elimination ameliorated SR-A-mediated apoptosis in macrophages. As such, MVP may fine-tune SR-A activity in macrophages which contributes to the development of atherosclerosis. PMID:23703615

  5. Cyclic-AMP mediated drugs: differential or global reduction of eicosanoid synthesis in the isolated rat lung?

    Directory of Open Access Journals (Sweden)

    Mark J. Post

    1992-01-01

    Full Text Available In this study the question was addressed whether cAMP mediated drugs induce a differential reduction of branches of the arachidonic acid metabolism rather than a global reduction of eicosanoid synthesis. The isolated lungs of actively sensitized rats were employed to study prostaglandin and leukotriene release in the presence and absence of the cAMP mediated drugs theophylline, milrinone, sulmazole, isobutyl-methylxanthine and salbutamol. The release of eicosanoids as measured by RIA was predominantly basal and continuous, with a mild antigen induced stimulation only for TXB2 and the leukotrienes. All drugs reduced eicosanoid release globally. It is concluded that cAMP mediated drugs interfere with arachidonic acid metabolism at a site proximal to the branching into lipoxygenase and cyclo-oxygenase pathways.

  6. Effect of hydromorphone hydrochloride combined with ropivacaine for PCEA after orthopedic surgery on the synthesis of pain mediators, inflammatory mediator and oxygen free radicals

    Directory of Open Access Journals (Sweden)

    Liang-Ying Luo

    2017-08-01

    Full Text Available Objective: To explore the effect of hydromorphone hydrochloride combined with ropivacaine for PCEA after orthopedic surgery on the synthesis of pain mediators, inflammatory mediator and oxygen free radicals. Methods: A total of 120 patients with fracture who underwent operation in the hospital between July 2014 and December 2016 were collected and divided into control group and observation group according to the random number table method, 60 cases in each group. Control group received morphine hydrochloride combined with ropivacaine for analgesia, observation group received hydromorphone hydrochloride combined with ropivacaine for analgesia, and the postoperative analgesia lasted for 48 h. The differences in serum levels of pain mediators, inflammatory mediators and oxidative stress indexes were compared between the two groups. Results: Immediately after operation, the differences in serum levels of pain mediators, inflammatory mediators and oxidative stress indexes were not statistically significant between the two groups. 48 h after operation, serum PGE2, SP, β-EP, IL-6, MCP-1, HMGB-1 and MDA levels of both groups of patients were significantly lower than those immediately after operation while Cu-Zn SOD and GSH-Px levels were significantly higher than those immediately after operation, and serum PGE2, SP, β-EP, IL-6, MCP-1, HMGB-1 and MDA levels of observation group were significantly lower than those of control group while Cu-Zn SOD and GSH-Px levels were significantly higher than those of control group. Conclusion: Hydromorphone hydrochloride combined with ropivacaine for PCEA after orthopedic surgery is effective in alleviating pain and inhibiting systemic inflammatory response.

  7. Lysophosphatidylcholine acyltransferase1 overexpression promotes oral squamous cell carcinoma progression via enhanced biosynthesis of platelet-activating factor.

    Science.gov (United States)

    Shida-Sakazume, Tomomi; Endo-Sakamoto, Yosuke; Unozawa, Motoharu; Fukumoto, Chonji; Shimada, Ken; Kasamatsu, Atsushi; Ogawara, Katsunori; Yokoe, Hidetaka; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2015-01-01

    The relevance of lysophosphatidylcholine acyltransferase1 (LPCAT1), a cytosolic enzyme in the remodeling pathway of phosphatidylcholine metabolism, in oral squamous cell carcinoma (OSCC) is unknown. We investigated LPCAT1 expression and its functional mechanism in OSCCs. We analyzed LPCAT1 mRNA and protein expression levels in OSCC-derived cell lines. Immunohistochemistry was performed to identify correlations between LPCAT1 expression levels and primary OSCCs clinicopathological status. We established LPCAT1 knockdown models of the OSCC-derived cell lines (SAS, Ca9-22) for functional analysis and examined the association between LPCAT1 expression and the platelet-activating factor (PAF) concentration and PAF-receptor (PAFR) expression. LPCAT1 mRNA and protein were up-regulated significantly (poral keratinocytes. Immunohistochemistry showed significantly (poral cancer.

  8. Synthesis of novel glycopolymer brushes via a combination of RAFT-mediated polymerisation and ATRP

    Directory of Open Access Journals (Sweden)

    Eric T.A. van den Dungen

    2011-03-01

    Full Text Available Glycopolymers (synthetic sugar-containing polymers have become increasingly attractive to polymer chemists because of their role as biomimetic analogues and their potential for commercial applications. Glycopolymers of different structures confer high hydrophilicity and water solubility and can therefore be used for specialised applications, such as artificial materials for a number of biological, pharmaceutical and biomedical uses. The synthesis and characterisation of a series of novel glycopolymer brushes, namely poly(2-(2-bromoisobutyryloxy ethyl methacrylate-g-poly(methyl 6-O-methacryloyl-α-D-glucoside (P(BIEM-g-P(6-O-MMAGIc, poly(2-(2-bromoisobutyryloxy ethyl methacrylate-co-methyl methacrylate-g-poly(methyl 6-O-methacryloyl-α-D-glucoside P(BIEM-co-MMA-g-P(6-O-MMAGIc, poly(2-(2-bromoisobutyryloxy ethyl methacrylate-b-methyl methacrylate-g-poly(methyl 6-O-methacryloyl-α-D-glucoside P(BIEM-b-MMA-g-P(6-O-MMAGIc and poly(4-vinylbenzyl chloride-alt-maleic anhydride-g-poly(methyl 6-O-methacryloyl-α-D-glucoside (P(Sd-alt-MAnh-g-P(6-O-MMAGIc are described in this paper. Reversible addition-fragmentation chain transfer (RAFT-mediated polymerisation was used to synthesise four well-defined atom transfer radical polymerisation (ATRP macroinitiators (the backbone of the glycopolymer brushes. These ATRP macroinitiators were subsequently used in the ‘grafting from’ approach (in which side chains are grown from the backbone to prepare high molar mass and low polydispersity index glycopolymer brushes with different grafting densities along the backbone. The number average molar mass of the glycopolymer brushes was determined using size exclusion chromatography with a multi-angle laser light

  9. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... to these general questions by distinguishing between two concepts: mediation and mediatization. The media effects tradition generally considers the effects of the media to be a result of individuals being exposed to media content, i.e. effects are seen as an outcome of mediated communication. Mediatization...... research is concerned with long-term structural changes involving media, culture, and society, i.e. the influences of the media are understood in relation to how media are implicated in social and cultural changes and how these processes come to create new conditions for human communication and interaction...

  10. Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Benedec D

    2018-02-01

    Full Text Available Daniela Benedec,1,* Ilioara Oniga,1,* Flavia Cuibus,1 Bogdan Sevastre,2 Gabriela Stiufiuc,3 Mihaela Duma,4 Daniela Hanganu,1 Cristian Iacovita,1 Rares Stiufiuc,1,5 Constantin Mihai Lucaciu1 1Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 2Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3Faculty of Physics, “Babeş Bolyai” University, 4State Veterinary Laboratory for Animal Health and Safety, 5Department of Bionanoscopy, MedFuture Research Center for Advance Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania *These authors contributed equally to this work Purpose: The leaves and flowering stem of Origanum vulgare contain essential oils, flavonoids, phenolic acids and anthocyanins. We propose a new, simple, one-pot, O. vulgare extract (OVE mediated green synthesis method of biocompatible gold nanoparticles (AuNPs possessing improved antioxidant, antimicrobial and plasmonic properties.Materials and methods: Different concentrations of OVEs were used to reduce gold ions and to synthetize biocompatible spherical AuNPs. Their morphology and physical properties have been investigated by means of transmission electron microscopy, ultraviolet–visible absorption spectroscopy, photon correlation spectroscopy and Fourier transform infrared spectroscopy, whereas their plasmonic properties have been tested using surface-enhanced Raman spectroscopy (SERS. The antioxidant properties of nanoparticles (NPs have been evaluated by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, and the antimicrobial tests were performed using the disk diffusion assay. Their cytotoxicity has been assessed by means of 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay.Results: The experimental results confirmed the successful synthesis of biocompatible, spherical, plasmonic NPs having a mean diameter of ~40 nm and an outstanding aqueous

  11. Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin

    International Nuclear Information System (INIS)

    Grijalva-Bustamante, G.A.; Evans-Villegas, A.G.; Castillo-Castro, T. del; Castillo-Ortega, M.M.; Cruz-Silva, R.; Huerta, F.; Morallón, E.

    2016-01-01

    Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy particles was studied by scanning electron microscopy and transmission electron microscopy whereas the chemical structure was studied by X-ray photoelectron and Fourier transformed infrared spectroscopic techniques. The redox mediators increased the polymerization yield without a significant modification of the electronic structure of PPy. The highest conductivity of PPy was reached when chondroitin sulfate was used simultaneously as dopant and template during pyrrole polymerization. Electroactive properties of PPy obtained from natural precursors were successfully used in the amperometric quantification of uric acid concentrations. PPy increases the amperometric sensitivity of carbon nanotube screen-printed electrodes toward uric acid detection. - Highlights: • A new method of pyrrole polymerization using naturally occurring redox mediators and doping agents was studied. • The catalytic efficiency of different redox mediators toward pyrrole oxidation was evaluated. • Two different naturally occurring polymers were studied as bifunctional steric stabilizer/doping agents. • Polypyrrole improves the amperometric response of carbon nanotube screen printed electrodes toward uric acid sensing.

  12. Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin

    Energy Technology Data Exchange (ETDEWEB)

    Grijalva-Bustamante, G.A. [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Evans-Villegas, A.G. [Departamento de Ciencias Químico Biológicas, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Castillo-Castro, T. del, E-mail: terecat@polimeros.uson.mx [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Castillo-Ortega, M.M. [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Cruz-Silva, R. [Research Center for Exotic Nanocarbons, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano (Japan); Huerta, F. [Departamento Ingeniería Textil y Papelera, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1, E-03801 Alcoy (Spain); Morallón, E. [Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain)

    2016-06-01

    Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy particles was studied by scanning electron microscopy and transmission electron microscopy whereas the chemical structure was studied by X-ray photoelectron and Fourier transformed infrared spectroscopic techniques. The redox mediators increased the polymerization yield without a significant modification of the electronic structure of PPy. The highest conductivity of PPy was reached when chondroitin sulfate was used simultaneously as dopant and template during pyrrole polymerization. Electroactive properties of PPy obtained from natural precursors were successfully used in the amperometric quantification of uric acid concentrations. PPy increases the amperometric sensitivity of carbon nanotube screen-printed electrodes toward uric acid detection. - Highlights: • A new method of pyrrole polymerization using naturally occurring redox mediators and doping agents was studied. • The catalytic efficiency of different redox mediators toward pyrrole oxidation was evaluated. • Two different naturally occurring polymers were studied as bifunctional steric stabilizer/doping agents. • Polypyrrole improves the amperometric response of carbon nanotube screen printed electrodes toward uric acid sensing.

  13. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-03-28

    The "target of rapamycin" (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens.

  14. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis.

    Science.gov (United States)

    Morgenstein, Randy M; Bratton, Benjamin P; Nguyen, Jeffrey P; Ouzounov, Nikolay; Shaevitz, Joshua W; Gitai, Zemer

    2015-10-06

    The rod shape of most bacteria requires the actin homolog, MreB. Whereas MreB was initially thought to statically define rod shape, recent studies found that MreB dynamically rotates around the cell circumference dependent on cell wall synthesis. However, the mechanism by which cytoplasmic MreB is linked to extracytoplasmic cell wall synthesis and the function of this linkage for morphogenesis has remained unclear. Here we demonstrate that the transmembrane protein RodZ mediates MreB rotation by directly or indirectly coupling MreB to cell wall synthesis enzymes. Furthermore, we map the RodZ domains that link MreB to cell wall synthesis and identify mreB mutants that suppress the shape defect of ΔrodZ without restoring rotation, uncoupling rotation from rod-like growth. Surprisingly, MreB rotation is dispensable for rod-like shape determination under standard laboratory conditions but is required for the robustness of rod shape and growth under conditions of cell wall stress.

  15. Synthesis of naturally occurring iminosugars from D-fructose by the use of a zinc-mediated fragmentation reaction

    DEFF Research Database (Denmark)

    Lauritsen, Anne; Madsen, Robert

    2006-01-01

    A short synthesis of 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and a formal synthesis of australine are described. In both cases, D-fructose is employed as the starting material and converted into a protected methyl 6-deoxy-6-iodo-furanoside. Zinc-mediated fragmentation produces an unsaturated...... ketone which serves as a key building block for both syntheses. Ozonolysis, reductive amination with benzylamine and deprotection affordfs 1,4-dideoxy-1,4-imino-D-arabinitol in only 7 steps and 11% overall yield from D-fructose. Alternatively, reductive amination with homoallylamine, ring......-closing metathesis and protecting group manipulations give rise to an intermediate which can be converted into australine in 3 steps. The intermediate is prepared by two different strategies both of which use a total of 9 steps. The first strategy utilizes benzyl ethers for protection of fructose while the second...

  16. Synthesis of Pyrroloquinones via a CAN Mediated Oxidative Free Radical Reaction of 1,3-Dicarbonyl Compounds with Aminoquinones

    Directory of Open Access Journals (Sweden)

    Thao Nguyen

    2013-01-01

    Full Text Available Pyrroloquinone ring systems are important structural units present in many biologically active molecules including a number of marine alkaloids. For example, they are found in a series of marine metabolites, such as tsitsikammamines, zyzzyanones, wakayin, and terreusinone. Several of these alkaloids have exhibited antimicrobial, antimalarial, antifungal, antitumor, and photoprotecting activities. Synthesis of pyrroloquinone unit is the key step in the synthesis of many of these important organic molecules. Here, we present a ceric (IV ammonium nitrate (CAN mediated oxidative free radical cyclization reaction of 1,3-dicarbonyl compounds with aminoquinones as a facile methodology for making various substituted pyrroloquinones. 1,3-dicarbonyl compounds used in this study are ethyl acetoacetate, acetylacetone, benzoyl acetone, and N,N-dimethyl acetoacetamide. The aminoquinones used in this study are 2-(benzylaminonaphthalene-1,4-dione and 6-(benzylamino-1-tosyl-1H-indole-4,7-dione. The yields of the synthesized pyrroloquinones ranged from 23–91%.

  17. A Sm(II)-mediated cascade approach to Dibenzoindolo[3,2-b]carbazoles : synthesis and evaluation

    OpenAIRE

    Levick, Matthew T.; Grace, Iain; Dai, Sheng-Yao; Kasch, Nicholas; Muryn, Christopher; Lambert, Colin; Turner, Michael L.; Procter, David J.

    2014-01-01

    Previously unstudied dibenzoindolo[3,2-b]carbazoles have been prepared by two-directional, phase tag-assisted synthesis utilizing a connective-Pummerer cyclization and a SmI2-mediated tag cleavage-cyclization cascade. The use of a phase tag allows us to exploit unstable intermediates that would otherwise need to be avoided. The novel materials were characterized by X-ray, cyclic voltammetry, UV-vis spectroscopy, TGA, and DSC. Preliminary studies on the performance of OFET devices are also des...

  18. High Throughput Synthesis and Screening for Agents Inhibiting Androgen Receptor Mediated Gene Transcription

    National Research Council Canada - National Science Library

    Boger, Dale L

    2005-01-01

    .... This entails the high throughput synthesis of DNA binding agents related to distamycin, their screening for binding to androgen response elements using a new high throughput DNA binding screen...

  19. High Throughout Synthesis and Screening for Agents Inhibiting Androgen Receptor Mediated Gene Transcription

    National Research Council Canada - National Science Library

    Boger, Dale

    2003-01-01

    .... This entails the high throughput synthesis of DNA binding agents related to distamycin, their screening for binding to androgen response elements using a new high throughput DNA binding screen...

  20. High Throughput Synthesis and Screening for Agents Inhibiting Androgen Receptor Mediated Gene Transcription

    National Research Council Canada - National Science Library

    Boger, Dale

    2004-01-01

    .... This entails the high throughput synthesis of DNA binding agents related to distamycin, their screening for binding to androgen response elements using a new high throughput DNA binding screen...

  1. Chemical control of the characteristics of Mo-doped carbon xerogels by surfactant-mediated synthesis

    Czech Academy of Sciences Publication Activity Database

    Maldonado-Hódar, F. J.; Jirglová, Hana; Pérez-Cadenas, A. F.; Morales-Torres, S.

    2013-01-01

    Roč. 51, JAN 2013 (2013), s. 213-223 ISSN 0008-6223 Institutional support: RVO:61388955 Keywords : synthesis * molybdenum * carbon xerogels Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.160, year: 2013

  2. Synthesis of quaternary aryl phosphonium salts: photoredox-mediated phosphine arylation.

    Science.gov (United States)

    Fearnley, A F; An, J; Jackson, M; Lindovska, P; Denton, R M

    2016-04-11

    We report a synthesis method for the construction of quaternary aryl phoshonium salts at ambient temperature. The regiospecific reaction involves the coupling of phosphines with aryl radicals derived from diaryliodonium salts under photoredox conditions.

  3. Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles

    Science.gov (United States)

    Supraja, N.; Prasad, T. N. V. K. V.; Krishna, T. Giridhara; David, E.

    2016-04-01

    Synthesis of metal nanoparticles using biological systems is an expanding research area in nanotechnology. Moreover, search for new nanoscale antimicrobials is been always attractive as they find numerous avenues for application in medicine. Biosynthesis of metallic nanoparticles is cost effective and eco-friendly compared to those of conventional methods of nanoparticles synthesis. Herein, we present the synthesis of zinc oxide nanoparticles using the stem bark extract of Boswellia ovalifoliolata, and evaluation of their antimicrobial efficacy. Stable ZnO nanoparticles were formed by treating 90 ml of 1 mM zinc nitrate aqueous solution with 10 ml of 10 % bark extract. The formation of B. ovalifoliolata bark-extract-mediated zinc oxide nanoparticles (BZnNPs) was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance (LSPR) at 230 nm. Fourier transform infrared spectroscopic (FT-IR) analysis revealed that primary and secondary amine groups in combination with the proteins present in the bark extract are responsible for the reduction and stabilization of the BZnNPs. The morphology and crystalline phase of the nanocrystals were determined by Transmission electron microscopy (TEM). The hydrodynamic diameter (20.3 nm) and a positive zeta potential (4.8 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of BZnNPs was evaluated (in vitro) against fungi, Gram-negative, and Gram-positive bacteria using disk diffusion method which were isolated from the scales formed in drinking water PVC pipelines.

  4. Iodine-Mediated Intramolecular Dehydrogenative Coupling: Synthesis of N-Alkylindolo[3,2-c]- and -[2,3-c]quinoline Iodides.

    Science.gov (United States)

    Volvoikar, Prajesh S; Tilve, Santosh G

    2016-03-04

    An I2/TBHP-mediated intramolecular dehydrogenative coupling reaction is developed for the synthesis of a library of medicinally important 5,11-dialkylindolo[3,2-c]quinoline salts and 5,7-dimethylindolo[2,3-c]quinoline salts. The annulation reaction is followed by aromatization to yield tetracycles in good yield. This protocol is also demonstrated for the synthesis of the naturally occurring isocryptolepine in salt form.

  5. Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia magna

    Directory of Open Access Journals (Sweden)

    Sadia Saif

    2016-11-01

    Full Text Available Research on green production methods for metal oxide nanoparticles (NPs is growing, with the objective to overcome the potential hazards of these chemicals for a safer environment. In this study, facile, ecofriendly synthesis of copper oxide (CuO nanoparticles was successfully achieved using aqueous extract of Pterospermum acerifolium leaves. P. acerifolium-fabricated CuO nanoparticles were further characterized by UV-Visible spectroscopy, field emission scanning electron microscopy (FE-SEM, energy dispersive X-ray (EDX, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS and dynamic light scattering (DLS. Plant-mediated CuO nanoparticles were found to be oval shaped and well dispersed in suspension. XPS confirmed the elemental composition of P. acerifolium-mediated copper nanoparticles as comprised purely of copper and oxygen. DLS measurements and ion release profile showed that P. acerifolium-mediated copper nanoparticles were more stable than the engineered CuO NPs. Copper oxide nanoparticles are used in many applications; therefore, their potential toxicity cannot be ignored. A comparative study was performed to investigate the bio-toxic impacts of plant-synthesized and engineered CuO nanoparticles on water flea Daphnia. Experiments were conducted to investigate the 48-h acute toxicity of engineered CuO NPs and plant-synthesized nanoparticles. Lower EC50 value 0.102 ± 0.019 mg/L was observed for engineered CuO NPs, while 0.69 ± 0.226 mg/L was observed for plant-synthesized CuO NPs. Additionally, ion release from CuO nanoparticles and 48-h accumulation of these nano CuOs in daphnids were also calculated. Our findings thus suggest that the contribution of released ions from nanoparticles and particles/ions accumulation in Daphnia needs to be interpreted with care.

  6. In silico characterization of 1,2-diacylglycerol cholinephosphotransferase and lysophospha-tidylcholine acyltransferase genes in Glycine max L. Merrill.

    Science.gov (United States)

    Sousa, C S; Barros, B A; Barh, D; Ghosh, P; Azevedo, V; Barros, E G; Moreira, M A

    2016-08-26

    The enzymes 1,2-diacylglycerol cholinephosphotrans-ferase (CPT) and lysophosphatidylcholine acyltransferase (LPCAT) are important in lipid metabolism in soybean seeds. Thus, understand-ing the genes that encode these enzymes may enable their modification and aid the improvement of soybean oil quality. In soybean, the genes encoding these enzymes have not been completely described; there-fore, this study aimed to identify, characterize, and analyze the in silico expression of these genes in soybean. We identified two gene models encoding CPT and two gene models encoding LPCAT, one of which presented an alternative transcript. The sequences were positioned on the physical map of soybean and the promoter regions were analyzed. Cis-elements responsible for seed-specific expression and responses to biotic and abiotic stresses were identified. Virtual expression analysis of the gene models for CPT and LPCAT indicated that these genes are expressed under different stress conditions, in somatic embryos during differentiation, in immature seeds, root tissues, and calli. Putative ami-no acid sequences revealed the presence of transmembrane domains, and analysis of the cellular localization of these enzymes revealed they are located in the endoplasmic reticulum.

  7. Lysophosphatidylcholines containing polyunsaturated fatty acids were found as Na+,K+-ATPase inhibitors in acutely volume-expanded hog

    International Nuclear Information System (INIS)

    Tamura, M.; Harris, T.M.; Higashimori, K.; Sweetman, B.J.; Blair, I.A.; Inagami, T.

    1987-01-01

    Na + ,K + -ATPase inhibitors activities against the specific binding of ouabain to Na + ,K + -ATPase and 86 Rb uptake into hog erythrocytes have been purified from the plasma of acutely saline-infused hog. The purifications were performed by a combination of Amberlite XAD-2 adsorption chromatography and four steps of high-performance liquid chromatography with four different types of columns. Fast atom bombardment (FAB) mass and proton NMR spectrometric studies identified the purified substances as γ-arachidoyl- [LPCA(γ), 34%], β-arachidoyl- [LPCA(β), 4%], γ-linoleoyl- (LPCL, 33%), and γ-oleoyl- (LPCO, 25%) lysophosphatidylcholine, expressed in molar ratio in the plasma. Small amounts of γ-docosapentaenoyl-, γ-eicosatrienoyl-, and γpalmitoyllysophosphatidylcholine were also detected by both FAB mass and 1 H NMR spectrometric studies. The inhibition of Na + ,K + -ATPase activity due to these compounds was always more sensitive than that of both ouabain-binding and 86 Rb uptake activities. The ouabain-displacing activity in plasma due to these compounds increased with time during saline infusion. The maximal plasma level was approximately 10 times higher than that in the preinfusion plasma sample. Although these results suggest that γ-acyl-LPC's with long-chain polyunsaturated fatty acids are not simple competitive inhibitors to Na + ,K + -ATPase, these compounds could be implicated in the pathogenesis of the circulation abnormality through the modulation of membrane enzyme

  8. Here, There, and Everywhere: The Ubiquitous Distribution of the Immunosignaling Molecule Lysophosphatidylcholine and Its Role on Chagas Disease.

    Science.gov (United States)

    Silva-Neto, Mário Alberto C; Lopes, Angela H; Atella, Georgia C

    2016-01-01

    Chagas disease is a severe illness, which can lead to death if the patients are not promptly treated. The disease is caused by the protozoan parasite Trypanosoma cruzi, which is mostly transmitted by a triatomine insect vector. There are 8-10 million people infected with T. cruzi in the world, but the transmission of such disease by bugs occurs only in the Americas, especially Latin America. Chronically infected patients will develop cardiac diseases (30%) and up digestive, neurological, or mixed disorders (10%). Lysophosphatidylcholine (LPC) is the major phospholipid component of oxidized low-density lipoproteins associated with atherosclerosis-related tissue damage. Insect-derived LPC powerfully attracts inflammatory cells to the site of the insect bite, enhances parasite invasion, and inhibits the production of nitric oxide by T. cruzi-stimulated macrophages. The recognition of the ubiquitous presence of LPC on the vector saliva, its production by the parasite itself and its presence both on patient plasma and its role on diverse host × parasite interaction systems lead us to compare its distribution in nature with the title of the famous Beatles song "Here, There and Everywhere" recorded exactly 50 years ago in 1966. Here, we review the major findings pointing out the role of such molecule as an immunosignaling modulator of Chagas disease transmission. Also, we believe that future investigation of the connection of this ubiquity and the immune role of such molecule may lead in the future to novel methods to control parasite transmission, infection, and pathogenesis.

  9. Plant Acyl-CoA:Lysophosphatidylcholine Acyltransferases (LPCATs) Have Different Specificities in Their Forward and Reverse Reactions*

    Science.gov (United States)

    Lager, Ida; Yilmaz, Jenny Lindberg; Zhou, Xue-Rong; Jasieniecka, Katarzyna; Kazachkov, Michael; Wang, Peng; Zou, Jitao; Weselake, Randall; Smith, Mark A.; Bayon, Shen; Dyer, John M.; Shockey, Jay M.; Heinz, Ernst; Green, Allan; Banas, Antoni; Stymne, Sten

    2013-01-01

    Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles in acyl editing of phosphatidylcholine (PC). Plant LPCAT genes were expressed in yeast and characterized biochemically in microsomal preparations of the cells. Specificities for different acyl-CoAs were similar for seven LPCATs from five different species, including species accumulating hydroxylated acyl groups in their seed oil, with a preference for C18-unsaturated acyl-CoA and low activity with palmitoyl-CoA and ricinoleoyl (12-hydroxyoctadec-9-enoyl)-CoA. We showed that Arabidopsis LPCAT1 and LPCAT2 enzymes catalyzed the acylation and de-acylation of both sn positions of PC, with a preference for the sn-2 position. When acyl specificities of the Arabidopsis LPCATs were measured in the reverse reaction, sn-2-bound oleoyl, linoleoyl, and linolenoyl groups from PC were transferred to acyl-CoA to a similar extent. However, a ricinoleoyl group at the sn-2-position of PC was removed 4–6-fold faster than an oleoyl group in the reverse reaction, despite poor utilization in the forward reaction. The data presented, taken together with earlier published reports on in vivo lipid metabolism, support the hypothesis that plant LPCAT enzymes play an important role in regulating the acyl-CoA composition in plant cells by transferring polyunsaturated and hydroxy fatty acids produced on PC directly to the acyl-CoA pool for further metabolism or catabolism. PMID:24189065

  10. Highly efficient water-mediated approach to access benzazoles: metal catalyst and base-free synthesis of 2-substituted benzimidazoles, benzoxazoles, and benzothiazoles.

    Science.gov (United States)

    Bala, Manju; Verma, Praveen Kumar; Sharma, Deepika; Kumar, Neeraj; Singh, Bikram

    2015-05-01

    An efficient water-catalyzed method has been developed for the synthesis of 2-substituted benzimidazoles, benzoxazoles, and benzothiazoles in one step. The present method excludes the usage of toxic metal catalysts and bases to produce benzazoles in good to excellent yields. An efficient and versatile water-mediated method has been established for the synthesis of various 2-arylbenzazoles. The present protocol excludes the usage of any catalyst and additive provided excellent selectivities and yields with high functional group tolerance for the synthesis of 2-arylated benzimidazoles, benzoxazoles, and benzothiazoles. Benzazolones were also synthesized using similar reaction protocol.

  11. Evidence that cytochrome b{sub 5} acts as a redox donor in CYP17A1 mediated androgen synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Duggal, Ruchia [Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States); Liu, Yilin [Department of Chemistry, Marquette University, Milwaukee, WI (United States); Gregory, Michael C.; Denisov, Ilia G. [Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States); Kincaid, James R. [Department of Chemistry, Marquette University, Milwaukee, WI (United States); Sligar, Stephen G., E-mail: s-sligar@illinois.edu [Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States); Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL (United States)

    2016-08-19

    Fe−S vibrational frequency. Thus, although Mn-b{sub 5} binds to CYP17A1, it is unable to enhance the lyase reaction, strongly suggesting that cyt b{sub 5} has a redox effector role in enhancement of the CYP17A1 mediated lyase reaction necessary for androgen synthesis. - Highlights: • Cyt b{sub 5} role in human CYP17A1 mediated androgen synthesis was probed in Nanodiscs. • Native cyt b{sub 5} enhances androgen synthesis by CYP17A1. • Redox inactive Mn cyt b{sub 5} does not enhance androgen synthesis by CYP17A1. • Interactions with Cyt b{sub 5} perturb Fe−S and heme Raman modes of CYP17A1. • Cyt b{sub 5} acts as a redox donor for CYP17A1 mediated androgen synthesis.

  12. Evidence that cytochrome b5 acts as a redox donor in CYP17A1 mediated androgen synthesis

    International Nuclear Information System (INIS)

    Duggal, Ruchia; Liu, Yilin; Gregory, Michael C.; Denisov, Ilia G.; Kincaid, James R.; Sligar, Stephen G.

    2016-01-01

    to CYP17A1, it is unable to enhance the lyase reaction, strongly suggesting that cyt b 5 has a redox effector role in enhancement of the CYP17A1 mediated lyase reaction necessary for androgen synthesis. - Highlights: • Cyt b 5 role in human CYP17A1 mediated androgen synthesis was probed in Nanodiscs. • Native cyt b 5 enhances androgen synthesis by CYP17A1. • Redox inactive Mn cyt b 5 does not enhance androgen synthesis by CYP17A1. • Interactions with Cyt b 5 perturb Fe−S and heme Raman modes of CYP17A1. • Cyt b 5 acts as a redox donor for CYP17A1 mediated androgen synthesis.

  13. Stress-induced cell death is mediated by ceramide synthesis in Neurospora crassa

    DEFF Research Database (Denmark)

    Plesofsky, Nora S; Levery, Steven B; Castle, Sherry A

    2008-01-01

    The combined stresses of moderate heat shock (45 degrees C) and analog-induced glucose deprivation constitute a lethal stress for Neurospora crassa. We found that this cell death requires fatty acid synthesis and the cofactor biotin. In the absence of the cofactor, the stressed cells are particul......The combined stresses of moderate heat shock (45 degrees C) and analog-induced glucose deprivation constitute a lethal stress for Neurospora crassa. We found that this cell death requires fatty acid synthesis and the cofactor biotin. In the absence of the cofactor, the stressed cells...

  14. Sustainable Strategy Utilizing Biomass: Visible-Light-Mediated Synthesis of gamma-Valerolactone

    Data.gov (United States)

    U.S. Environmental Protection Agency — A novel sustainable approach to valued g-valerolactone was investigated. This approach exploits the visible-light-mediated conversion of biomass-derived levulinic...

  15. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice[OPEN

    Science.gov (United States)

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-01-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. PMID:26002868

  16. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice.

    Science.gov (United States)

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-06-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. © 2015 American Society of Plant Biologists. All rights reserved.

  17. Timber industry waste-teak ( Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles

    Science.gov (United States)

    Devadiga, Aishwarya; Shetty, K. Vidya; Saidutta, M. B.

    2015-08-01

    The current research article emphasizes efficacious use of teak leaves, an agro -biowaste from world's premier hardwood timber industry, for "green" synthesis of silver nanoparticles (AgNPs). Bioactive compounds of the leaves act as prolific reducing and stabilizing agents in AgNP synthesis. The characterization of the AgNPs synthesized using teak leaves revealed that the particles are spherical with an average size of 28 nm and the presence of bioactive compounds present in teak leaf extract as capping agents on the nanoparticles. A prominent decrease in the content of bioactive compounds such as polyphenols, antioxidants and flavonoids after the biosynthesis of AgNPs signifies that these class of compounds act as reductants and stabilizers during biosynthesis. The biosynthesized silver nanoparticles were also successfully evaluated for their antibacterial characteristics against waterborne pathogens, E. coli and S. aureus, with minimum inhibitory concentration of 25.6 μg/mL. Exploitation of agrowaste resources for synthesis of AgNPs curtails indiscriminate usage of food and commercial plant materials, rather contributing a sustainable way for effective plant waste biomass utilization and management. The biosynthesized AgNps have potential application in water purifiers, antibacterial fabrics, sports wear and in cosmetics as antibacterial agent and the process used for its synthesis being greener is highly beneficial from environmental, energy consumption and economic perspectives.

  18. Water mediated eco-friendly green protocol for one-pot synthesis of ...

    Indian Academy of Sciences (India)

    the synthesis of important products, we describe here a simple, elegant and high yielding protocol for the syn- thesis of α-aminophosphonates in ..... In order to prove the involvement of water in the reac- tion mechanism unambiguously, the ...

  19. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    Science.gov (United States)

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  20. Cu-Mediated Stille Reactions of Sterically Congested Fragments: Towards the Total Synthesis of Zoanthamine

    DEFF Research Database (Denmark)

    Nielsen, Thomas E.; Le Quement, Sebastian; Juhl, Martin

    2005-01-01

    A study on the Stille reaction of alkenyl iodides and starmanes with structural resemblance to retrosynthetic fragments of a projected total synthesis of the marine alkaloid zoanthamine was carried out. A range of reaction conditions was examined, and a protocol developed by Corey utilizing excess...

  1. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli.

    Science.gov (United States)

    Biggs, Bradley Walters; Lim, Chin Giaw; Sagliani, Kristen; Shankar, Smriti; Stephanopoulos, Gregory; De Mey, Marjan; Ajikumar, Parayil Kumaran

    2016-03-22

    Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature's favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities.

  2. Ultrasound promoted and SiO2/CCl3COOH mediated synthesis of 2 ...

    Indian Academy of Sciences (India)

    First one-pot synthesis of 2-aryl-1-arylmethyl-1H- benzimidazole derivatives from ... to promote chemical reactions is called sonochemistry .... −1): 1615, 2845, 2980, 3036, 3067; 1H NMR (500MHz,. CDCl3):δ 5.38 (s, 2H, CH2), 6.65 (d, J = 8.0 ...

  3. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes

    Directory of Open Access Journals (Sweden)

    Shiqi Zhang

    2018-03-01

    Full Text Available Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1, an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c and its target genes, diacylglycerol acyltransferase (DGAT 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL and CGI-58 for adipose triglyceride lipase (ATGL, thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α, interleukin 1 beta (IL-1β, and interleukin 6 (IL-6 induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  4. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes.

    Science.gov (United States)

    Zhang, Shiqi; Liu, Guowen; Xu, Chuang; Liu, Lei; Zhang, Qiang; Xu, Qiushi; Jia, Hongdou; Li, Xiaobing; Li, Xinwei

    2018-01-01

    Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  5. Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    Science.gov (United States)

    Majumdar, Rakhi; Bag, Braja Gopal; Ghosh, Pooja

    2016-04-01

    The bark extract of Mimusops elengi is rich in different types of plant secondary metabolites such as flavonoids, tannins, triterpenoids and saponins. The present study shows the usefulness of the bark extract of Mimusops elengi for the green synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete within a few minutes without any extra stabilizing or capping agents and the polyphenols present in the bark extract acted as both reducing as well as stabilizing agents. The synthesized colloidal gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 3-nitrophenol and 4-nitrophenol to their corresponding aminophenols in water at room temperature.

  6. Seeds mediated synthesis of giant gold particles on the glass surface

    Science.gov (United States)

    Vasko, A. A.; Borodinova, T. I.; Marchenko, O. A.; Snegir, S. V.

    2018-03-01

    Herein, we present the protocols of synthesis of two types of gold particles which are in the great interest for the purpose of molecular electronics. The first type is the flat prisms with a triangular/hexagonal shape and a lateral size up to 80 µm. They were synthesized directly on a glass surface pretreated with (3-aminopropyl)-triethoxysilane molecules. The second type of particles was synthesized with using gold seeds with diameter of 18 nm. These seeds were deposited on a glass surface coated with APTES. The resulted three-dimensional structures with a form close to spherical increase in size up to 0.5-0.08 µm. Moreover, these particles grew up separately and did not merge during 48 h of synthesis.

  7. Nyctanthes arbortristis mediated synthesis of silver nanoparticles: Cytotoxicity assay against THP-1 human leukemia cell lines

    Science.gov (United States)

    Kumari, Priti; Kumari, Niraj; Jha, Anal K.; Singh, K. P.; Prasad, K.

    2018-05-01

    Green synthesis, characterizations and applications of nanoparticles have become an important branch of nanotechnology now a day. In this paper, green synthesis of silver nanoparticles (AgNPs) using the aqueous extract of Nyctanthes arbortristis as a reducing and stabilizing agent, has been discussed. Present synthetic method is very handy, cost-effective and reproducible. Formation of AgNPs was characterized by X-ray diffraction, dynamic light scattering, scanning electron microscopy and UV-visible spectroscopy techniques. The phytochemicals responsible for nano-transformation were principally flavonoids, phenols and glycosides present in the leaves. Further, the dose dependent cytotoxicity assay of biosynthesized AgNPs against THP-1 human leukemia cell lines showed the encouraging results.

  8. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus.

    Science.gov (United States)

    Devipriya, Duraipandi; Roopan, Selvaraj Mohana

    2017-11-01

    Recently, non-toxic source mediated synthesis of metal and a metal oxide nanoparticle attains more attention due to key applicational responsibilities. This present report stated that the eco-friendly synthesis of copper oxide nanoparticles (CuO NPs) using Cissus quadrangularis (C. quadrangularis) plant extract. Further the eco-friendly synthesized CuO NPs were characterized using a number of analytical techniques. The observed results stated that the synthesized CuO NPs were spherical in shape with 30±2nm. Then the eco-friendly synthesized CuO NPs were subjected for anti-fungal against two strains namely Aspergillus niger (A. niger) resulted in 83% at 500ppm, 86% of inhibition at 1000ppm and Aspergillus flavus (A. flavus) resulted in 81% at 500ppm, 85% of inhibition at 1000ppm respectively. Despite the fact that compared to standard Carbendazim, eco-friendly synthesized CuO NPs exhibits better results were discussed in this manuscript. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing.

    Science.gov (United States)

    Ahmed, Khan Behlol Ayaz; Senthilnathan, Rajendran; Megarajan, Sengan; Anbazhagan, Veerappan

    2015-10-01

    Owing to the benign nature, plant extracts mediated green synthesis of metal nanoparticles (NPs) is rapidly expanding. In this study, we demonstrated the successful green synthesis of silver nanoparticles (AgNPs) by utilizing natural sunlight and redox protein complex composed of ferredoxin-NADP(+) reductase (FNR) and ferredoxin (FD). The capping and stabilization of the AgNPs by the redox protein was confirmed by Fourier transform infrared spectroscopy. Light and redox protein is the prerequisite factor for the formation of AgNPs. The obtained result shows that the photo generated free radicals by the redox protein is responsible for the reduction of Ag(+) to Ag(0). Transmission electron microscopy revealed the formation of spherical AgNPs with size ranging from 10 to 15 nm. As-prepared AgNPs exhibit excellent catalytic activity toward the degradation of hazardous organic dyes, such as methylene blue, methyl orange and methyl red. These bio-inspired AgNPs is highly sensitive and selective in sensing hazardous mercury ions in the water at micromolar concentration. In addition, FNR/FD extract stabilized AgNPs showed good antimicrobial activity against gram positive and gram negative bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Seed-mediated synthesis of silver nanocrystals with controlled sizes and shapes in droplet microreactors separated by air.

    Science.gov (United States)

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan

    2013-12-17

    Silver nanocrystals with uniform sizes were synthesized in droplet microreactors through seed-mediated growth. The key to the success of this synthesis is the use of air as a carrier phase to generate the droplets. The air not only separates the reaction solution into droplets but also provides O2 for the generation of reducing agent (glycolaldehyde). It also serves as a buffer space for the diffusion of NO, which is formed in situ due to the oxidative etching of Ag nanocrystals with twin defects. For the first time, we were able to generate Ag nanocrystals with controlled sizes and shapes in continuous production by using droplet microreactors. For Ag nanocubes, their edge lengths could be readily controlled in the range of 30-100 nm by varying the reaction time, the amount of seeds, and the concentration of AgNO3 in the droplets. Furthermore, we demonstrated the synthesis of Ag octahedra in the droplet microreactors. We believe that the air-driven droplet generation device can be extended to other noble metals for the production of nanocrystals with controlled sizes and shapes.

  11. AKAP3 synthesis is mediated by RNA binding proteins and PKA signaling during mouse spermiogenesis.

    Science.gov (United States)

    Xu, Kaibiao; Yang, Lele; Zhao, Danyun; Wu, Yaoyao; Qi, Huayu

    2014-06-01

    Mammalian spermatogenesis is regulated by coordinated gene expression in a spatiotemporal manner. The spatiotemporal regulation of major sperm proteins plays important roles during normal development of the male gamete, of which the underlying molecular mechanisms are poorly understood. A-kinase anchoring protein 3 (AKAP3) is one of the major components of the fibrous sheath of the sperm tail that is formed during spermiogenesis. In the present study, we analyzed the expression of sperm-specific Akap3 and the potential regulatory factors of its protein synthesis during mouse spermiogenesis. Results showed that the transcription of Akap3 precedes its protein synthesis by about 2 wk. Nascent AKAP3 was found to form protein complex with PKA and RNA binding proteins (RBPs), including PIWIL1, PABPC1, and NONO, as revealed by coimmunoprecipitation and protein mass spectrometry. RNA electrophoretic gel mobility shift assay showed that these RBPs bind sperm-specific mRNAs, of which proteins are synthesized during the elongating stage of spermiogenesis. Biochemical and cell biological experiments demonstrated that PIWIL1, PABPC1, and NONO interact with each other and colocalize in spermatids' RNA granule, the chromatoid body. In addition, NONO was found in extracytoplasmic granules in round spermatids, whereas PIWIL1 and PABPC1 were diffusely localized in cytoplasm of elongating spermatids, indicating their participation at different steps of mRNA metabolism during spermatogenesis. Interestingly, type I PKA subunits colocalize with PIWIL1 and PABPC1 in the cytoplasm of elongating spermatids and cosediment with the RBPs in polysomal fractions on sucrose gradients. Further biochemical analyses revealed that activation of PKA positively regulates AKAP3 protein synthesis without changing its mRNA level in elongating spermatids. Taken together, these results indicate that PKA signaling directly participates in the regulation of protein translation in postmeiotic male germ cells

  12. Honey Mediated Green Synthesis of Nanoparticles: New Era of Safe Nanotechnology

    OpenAIRE

    Balasooriya, Eranga Roshan; Jayasinghe, Chanika Dilumi; Jayawardena, Uthpala Apekshani; Ruwanthika, Ranasinghe Weerakkodige Dulashani; Mendis de Silva, Rohini; Udagama, Preethi Vidya

    2017-01-01

    With the advent of nanotechnology, many related industries rapidly developed over the recent past. Generally, top-down and bottom-up approaches are the two major processes used to synthesize nanoparticles; most of these require high temperatures, vacuum conditions, and harsh/toxic chemicals. As a consequence, adverse effects impacted organisms including humans. Some synthesis methods are expensive and time-consuming. As a corollary, the concept of “green nanotechnology” emerged with the green...

  13. o-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles.

    Science.gov (United States)

    Chaudhari, Pramod S; Pathare, Sagar P; Akamanchi, Krishnacharaya G

    2012-04-20

    A systematic exploration of thiophilic ability of o-iodoxybenzoic acid (IBX) for oxidative desulfurization to trigger domino reactions leading to new methodologies for synthesis of different azoles is described. A variety of highly substituted oxadiazoles, thiadiazoles, triazoles, and tetrazoles have been successfully synthesized in good to excellent yields, starting from readily accessible thiosemicarbazides, bis-diarylthiourea, 1,3-disubtituted thiourea, and thioamides. © 2012 American Chemical Society

  14. Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: Sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants

    International Nuclear Information System (INIS)

    Vose, Sarah C.; Holland, Nina T.; Eskenazi, Brenda; Casida, John E.

    2007-01-01

    Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC 50 values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined

  15. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials.

    Science.gov (United States)

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-04-11

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  16. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    Directory of Open Access Journals (Sweden)

    Peter Hesemann

    2014-04-01

    Full Text Available The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA, mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  17. Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis

    International Nuclear Information System (INIS)

    Burkovics, Peter; Sebesta, Marek; Kolesar, Peter; Sisakova, Alexandra; Marini, Victoria; Plault, Nicolas; Szukacsov, Valeria; Pinter, Lajos; Haracska, Lajos; Robert, Thomas; Kolesar, Peter; Gangloff, Serge; Krejci, Lumir

    2013-01-01

    Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability. (authors)

  18. Dioscorea bulbifera Mediated Synthesis of Novel AucoreAgshell Nanoparticles with Potent Antibiofilm and Antileishmanial Activity

    Directory of Open Access Journals (Sweden)

    Sougata Ghosh

    2015-01-01

    Full Text Available Dioscorea bulbifera is a potent medicinal plant used in both Indian and Chinese traditional medicine owing to its rich phytochemical diversity. Herein, we report the rapid synthesis of novel AucoreAgshell nanoparticles by D. bulbifera tuber extract (DBTE. AucoreAgshell NPs synthesis was completed within 5 h showing a prominent peak at 540 nm. HRTEM analysis revealed 9 nm inner core of elemental gold covered by a silver shell giving a total particle diameter upto 15 nm. AucoreAgshellNPs were comprised of 57.34±1.01% gold and 42.66±0.97% silver of the total mass. AucoreAgshellNPs showed highest biofilm inhibition upto 83.68±0.09% against A. baumannii. Biofilms of P. aeruginosa, E. coli, and S. aureus were inhibited up to 18.93±1.94%, 22.33±0.56%, and 30.70±1.33%, respectively. Scanning electron microscopy (SEM and atomic force microscopy (AFM confirmed unregulated cellular efflux through pore formation leading to cell death. Potent antileishmanial activity of AucoreAgshellNPs (MIC=32 µg/mL was confirmed by MTT assay. Further SEM micrographs showed pronounced deformity in the spindle shaped cellular morphology changing to spherical. This is the first report of synthesis, characterization, antibiofilm, and antileishmanial activity of AucoreAgshellNPs synthesized by D. bulbifera.

  19. Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine.

    Science.gov (United States)

    McFarlane, Matthew R; Liang, Guosheng; Engelking, Luke J

    2014-01-24

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes.

  20. Insig Proteins Mediate Feedback Inhibition of Cholesterol Synthesis in the Intestine*

    Science.gov (United States)

    McFarlane, Matthew R.; Liang, Guosheng; Engelking, Luke J.

    2014-01-01

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes. PMID:24337570

  1. Zinc mediated activation of terminal alkynes: stereoselective synthesis of alkynyl glycosides.

    Science.gov (United States)

    Tatina, Madhu Babu; Kusunuru, Anil Kumar; Yousuf, Syed Khalid; Mukherjee, Debaraj

    2014-10-28

    Zinc mediated alkynylation reaction was studied for the preparation of C-glycosides from unactivated alkynes. Different glycosyl donors such as glycals and anomeric acetates were tested towards an alkynyl zinc reagent obtained from alkynes using zinc dust and ethyl bromoacetate as an additive. The method provides simple, mild and stereoselective access to alkynyl glycosides both from aromatic and aliphatic acetylenes.

  2. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis

    OpenAIRE

    Leduc, Antoine O. H. C.; Munday, Philip L.; Brown, Grant E.; Ferrari, Maud C. O.

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Wh...

  3. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    Science.gov (United States)

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  4. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity

    International Nuclear Information System (INIS)

    Venil, Chidambaram Kulandaisamy; Sathishkumar, Palanivel; Malathi, Mahalingam; Usha, Rajamanickam; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Ahmad, Wan Azlina

    2016-01-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ("1H NMR and "1"3C NMR), UV–Vis, and LC–MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36 μg mL"−"1. This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. - Highlights: • First report on flexirubin mediated silver nanoparticles • Silver nanoparticles synthesised using flexirubin • Flexirubin mediated silver nanoparticles found to possess in vitro anti-cancer activity

  5. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Venil, Chidambaram Kulandaisamy, E-mail: ckvenil@gmail.com [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Sathishkumar, Palanivel [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Malathi, Mahalingam [Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu (India); Usha, Rajamanickam [Department of Microbiology, Karpagam University, Coimbatore 641 023, Tamil Nadu (India); Jayakumar, Rajarajeswaran [Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusoff, Abdull Rahim Mohd [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Ahmad, Wan Azlina, E-mail: azlina@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia)

    2016-02-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ({sup 1}H NMR and {sup 13}C NMR), UV–Vis, and LC–MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36 μg mL{sup −1}. This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. - Highlights: • First report on flexirubin mediated silver nanoparticles • Silver nanoparticles synthesised using flexirubin • Flexirubin mediated silver nanoparticles found to possess in vitro anti-cancer activity.

  6. Graphite oxide-mediated synthesis of porous CeO2 quadrangular prisms and their high-efficiency adsorptive performance

    International Nuclear Information System (INIS)

    Chang, Ling; Wang, Fengxian; Xie, Dong; Zhang, Jun; Du, Gaohui

    2013-01-01

    Graphical abstract: - Highlights: • Porous CeO 2 quadrangular prisms have been prepared via graphite oxide-mediated synthesis. • Dual-pore hierarchical systems are formed with the pore distributions around 4 nm and 30 nm. • Porous CeO 2 exhibits a rapid adsorption to Rhodamine B with a removal efficiency of ∼99%. • Porous CeO 2 retains the same performances in different pH solutions. - Abstract: We report a graphite oxide-mediated approach for synthesizing porous CeO 2 through a facile hydrothermal process followed by thermal annealing in air. The phase structure, morphology, microstructure and porosity of the products have been revealed by a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N 2 adsorption. The as-prepared CeO 2 products show well-defined quadrangular prism morphology, and they are composed of interconnected nanoparticles with diameters around 30–100 nm. In particular, the dual-pore hierarchical systems are created in the CeO 2 quadrangular prisms with the pore distributions around 4 nm and 30 nm. The dye sorption capacity of the porous CeO 2 is investigated, which exhibits a rapid adsorption to rhodamine B with a high removal efficiency of ∼99%. Moreover, the CeO 2 absorbent retains the same performances in different pH solutions

  7. Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Sun, Yuhua [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Chen, Xiaofang [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhu, Peizhi, E-mail: pzzhu@umich.edu [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Wei, Shicheng, E-mail: sc-wei@pku.edu.cn [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2013-07-01

    Biomimetic synthesis of carbonated apatites with good biocompatibility is a promising strategy for the broadening application of apatites for bone tissue engineering. Most researchers were interested in collagen or gelatin-based templates for synthesis of apatite minerals. Inspired by recent findings about the important role of polysaccharides in bone biomineralization, here we reported that heparin, a mucopolysaccharide, was used to synthesize carbonated apatites in vitro. The results indicated that the Ca/P ratio, carbon content, crystallinity and morphology of the apatites varied depending on the heparin concentration and the initial pH value. The morphology of apatite changed from flake-shaped to needle-shaped, and the degree of crystallinity decreased with the increasing of heparin concentration. Biocompatibility of the apatites was tested by proliferation and alkaline phosphatase activity of MC3T3-E1 cells. The results suggested that carbonated apatites synthesized in the presence of heparin were more favorable to the proliferation and differentiation of MC3T3-E1 cells compared with traditional method. In summary, the heparin concentration and the initial pH value play a key role in the chemical constitution and morphology, as well as biological properties of apatites. These biocompatible nano-apatite crystals hold great potential to be applied as bioactive materials for bone tissue engineering. - Highlights: • Heparin was used as a template to synthesize needle-shaped nano-apatite. • Changing the pH value and concentration led to different properties of apatite. • Apatite prepared by heparin was more favorable to the osteogenic differentiation. • Possible synthesis mechanism of apatite templated by heparin was described.

  8. Endo-symbiont mediated synthesis of gold nanobactericides and their activity against human pathogenic bacteria.

    Science.gov (United States)

    Syed, Baker; M N, Nagendra Prasad; K, Mohan Kumar; B L, Dhananjaya; Satish, Sreedharamurthy

    2017-06-01

    Synthesis of gold nanobactericides (AuNBs) were achieved by treating 1mM chloroaurate with cell free supernatant of Aneurinibacillus migulanus. Formation of AuNBs was initially was monitored with change in colour to ruby red. Further confirmation was assessed with UV-visible spectra with maximum absorption occurring at 510nm. Transmission electron microscopy (TEM) analysis revealed the polydispersity of AuNBs with size distribution ranging from 10 to 60nm with an average size of 30nm. Crystalline nature was studied using X-ray diffraction which exhibited characteristic peaks indexed to Bragg's reflection at 2θ angle which confers (111), (200), (220), and (311) planes suggesting AuNBs were face-centred cubic. Fourier transform infrared spectroscopy (FTIR) analysis revealed absorption peaks occurring at 3341cm -1 , 1635cm -1 and 670cm -1 which corresponds to functional groups attributing to synthesis. The antibacterial efficacy of AuNBs was tested against selective human pathogenic bacteria and activity was measured as zone of inhibition by using disc and well diffusion. Bactericidal activity was interpreted with standard antibiotics gentamicin and kanamycin. Micro broth dilution assay expressed the minimal concentration of AuNBs to inhibit the growth of test pathogens. Highest activity was observed against Pseudomonas aeruginosa (MTCC 7903) with 21.00±0.57mm compared to other pathogens. The possible mode of action of AuNBs on DNA was carried out with in vitro assay as preliminary test against pathogenic DNA isolated from P. aeruginosa. Further studies will be interesting enough to reveal the exact interactive mechanism of AuNBs with DNA. Overall study contributes towards biogenic synthesis of AuNBs as one of the alternative in combating drug resistant pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application

    Science.gov (United States)

    Lakshmipathy, R.; Palakshi Reddy, B.; Sarada, N. C.; Chidambaram, K.; Khadeer Pasha, Sk.

    2015-02-01

    The present study reports the feasibility of synthesis of palladium nanoparticles (Pd NPs) by watermelon rind. The aqueous extract prepared from watermelon rind, an agro waste, was evaluated as capping and reducing agent for biosynthesis of palladium nanoparticles. The formation of Pd NPs was visually monitored with change in color from pale yellow to dark brown and later monitored with UV-Vis spectroscopy. The synthesized Pd NPs were further characterized by XRD, FTIR, DLS, AFM and TEM techniques. The synthesized Pd NPs were employed in Suzuki coupling reaction as catalyst. The results reveal that watermelon rind, an agro waste, is capable of synthesizing spherical-shaped Pd NPs with catalytic activity.

  10. Polyol-mediated synthesis of copper indium sulphide by solvothermal process

    International Nuclear Information System (INIS)

    Gorai, S.; Chaudhuri, S.

    2005-01-01

    A simple polyol-mediated solvothermal method has been proposed to synthesize copper indium sulphide. XRD studies reveal that the products are well crystallized. SEM indicates rod-like (with different aspect ratio) and star-shaped flake-like morphology of the products. The products are also characterized by optical studies and compositional analysis (XRF). XRF results show the formation of stoichiometric and non-stoichiometric copper indium sulphides depending on the reaction conditions

  11. THE MEDIATING ROLE OF SCIENCE MUSEUM IN STRUCTURING AND SYNTHESIS OF LEARNING

    Directory of Open Access Journals (Sweden)

    Fanny Angulo Delgado

    2016-10-01

    Full Text Available Understanding the mediating role of science museum in learning scientific content in school, it involves reflecting on the contributions of research to the question of what and how people learn in non-conventional educational settings. It has been shown that most people spend less than 3% of their lives learning in school, which emphasizes the importance of conceptualizing what they are and how much of their learning take place. While that question is resolved, it speaks at this bioassay on the complementary relationship between the museum and the school, as both institutions share the same educational purpose, but differ in the ways of achieving it. The science museum joins the class as a mediator that facilitates student learning as part of an education that promotes understanding of the phenomena of the world through models, which means that school learning goes in stages, one of which is that students have opportunity to structure new knowledge and synthesize on its own model. For this it is necessary that students speak, read, listen and write in science class, while the thought is expressed in language to attest to the facts. These communication skills arise in science class as indicators of mediation exercised by the museum and allow us to understand that it takes place in at least two dimensions: museographic and didactics.

  12. Infrared heating mediated synthesis and characterization of FeCo/C nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Karpenkov, Dmitriy Yu., E-mail: Karpenkov_dmitriy@yahoo.com [National University of Science and Technology “MISiS”, 119991 Moscow (Russian Federation); Technical University of Darmstadt, 64289 Darmstadt (Germany); Muratov, Dmitriy G. [National University of Science and Technology “MISiS”, 119991 Moscow (Russian Federation); A.V.Topchiev Institute of Petrochemical Synthesis, RAS, 119991 Moscow (Russian Federation); Kozitov, Lev V. [National University of Science and Technology “MISiS”, 119991 Moscow (Russian Federation); Skokov, Konstantin P. [Technical University of Darmstadt, 64289 Darmstadt (Germany); Karpenkov, Alexey Yu. [Chelyabinsk State University, 454001 Chelyabinsk (Russian Federation); Tver State University, 170100 Tver (Russian Federation); Popkova, Alena V. [Tver State University, 170100 Tver (Russian Federation); Gutfleisch, Oliver [Technical University of Darmstadt, 64289 Darmstadt (Germany)

    2017-05-01

    Metal-filled carbon nanocomposites containing 20 wt% of metallic FeCo nanoparticles were synthesized by means of infrared heating of precursors (polyacrylonitrile – iron acetylacetonate - cobalt acetate). This fabrication approach shows promise for making radiation-absorbent materials in short one-step process with ability to control the size of nanoparticles and attune the composition of the metallic components. In this work the magnetic behavior of reaction products obtained at different stages of the synthesis have been investigated in detail. We report on the influence of the annealing temperature on evolution of the structure, chemical composition, size, surface morphology, spontaneous magnetization and coercivity of the FeCo nanoparticles. - Highlights: • A method of preparation of FeCo metal-filled carbon nanocomposites was proposed. • Proposed method is based on infrared heating of the precursors. • This technique excels at up scaling and the ability to control the particle size. • Usage of IR radiation leads to significant reduction of process time and temperature. • The influence of the synthesis parameters on physical properties was studied.

  13. Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications.

    Science.gov (United States)

    Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Abbas, Khawar; Youssif, Bahaa Gm; Bashir, Sajid; Yuk, Soon Hong; Bukhari, Syed Nasir Abbas

    2017-01-01

    Polysaccharides are being extensively employed for the synthesis of silver nanoparticles (Ag NPs) having diverse morphology and applications. Herein, we present a novel and green synthesis of Ag NPs without using any physical reaction conditions. Linseed hydrogel (LSH) was used as a template to reduce Ag + to Ag 0 . AgNO 3 (10, 20, and 30 mmol) solutions were mixed with LSH suspension in deionized water and exposed to diffused sunlight. Reaction was monitored by noting the change in the color of reaction mixture up to 10 h. Ag NPs showed characteristic ultraviolet-visible (UV/Vis) absorptions from 410 to 437 nm in the case of sunlight and 397-410 nm in the case of temperature study. Transmission electron microscopy images revealed the formation of spherical Ag NPs in the range of 10-35 nm. Face-centered cubic array of Ag NPs was confirmed by characteristic diffraction peaks in powder X-ray diffraction spectrum. Ag NPs were stored in LSH thin films, and UV/Vis spectra recorded after 6 months indicated that Ag NPs retained their texture over the storage period. Significant antimicrobial activity was observed when microbial cultures (bacteria and fungi) were exposed to the synthesized Ag NPs. Wound-healing studies revealed that Ag NP-impregnated LSH thin films could have potential applications as an antimicrobial dressing in wound management procedures.

  14. Sugar-mediated semidian oscillation of gene expression in the cassava storage root regulates starch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Baguma, Yona; Sun, Chuanxin; Boren, Mats; Olsson, Helena; Rosenqvist, Sara; Mutisya, Joel; Rubaihayo, Patrick R.; Jansson, Christer

    2008-01-15

    Starch branching enzyme (SBE) activity in the cassava storage root exhibited a diurnal fluctuation, dictated by a transcriptional oscillation of the corresponding SBE genes. The peak of SBE activity coincided with the onset of sucrose accumulation in the storage, and we conclude that the oscillatory mechanism keeps the starch synthetic apparatus in the storage root sink in tune with the flux of sucrose from the photosynthetic source. When storage roots were uncoupled from the source, SBE expression could be effectively induced by exogenous sucrose. Turanose, a sucrose isomer that cannot be metabolized by plants, mimicked the effect of sucrose, demonstrating that downstream metabolism of sucrose was not necessary for signal transmission. Also glucose and glucose-1-P induced SBE expression. Interestingly, induction by sucrose, turanose and glucose but not glucose-1-P sustained an overt semidian (12-h) oscillation in SBE expression and was sensitive to the hexokinase (HXK) inhibitor glucosamine. These results suggest a pivotal regulatory role for HXK during starch synthesis. Abscisic acid (ABA) was another potent inducer of SBE expression. Induction by ABA was similar to that of glucose-1-P in that it bypassed the semidian oscillator. Both the sugar and ABA signaling cascades were disrupted by okadaic acid, a protein phosphatase inhibitor. Based on these findings, we propose a model for sugar signaling in regulation of starch synthesis in the cassava storage root.

  15. Circadian rhythm genes mediate fenvalerate-induced inhibition of testosterone synthesis in mouse Leydig cells.

    Science.gov (United States)

    Guo, Yichen; Shen, Ouxi; Han, Jingjing; Duan, Hongyu; Yang, Siyuan; Zhu, Zhenghong; Tong, Jian; Zhang, Jie

    2017-01-01

    Fenvalerate (Fen), a widely used pesticide, is known to impair male reproductive functions by mechanisms that remain to be elucidated. Recent studies indicated that circadian clock genes may play an important role in successful male reproduction. The aim of this study was to determine the effects of Fen on circadian clock genes involved in the biosynthesis of testosterone using TM3 cells derived from mouse Leydig cells. Data demonstrated that the circadian rhythm of testosterone synthesis in TM3 cells was disturbed following Fen treatment as evidenced by changes in the circadian rhythmicity of core clock genes (Bmal1, Rev-erbα, Rorα). Further, the observed altered rhythms were accompanied by increased intracellular Ca 2+ levels and modified steroidogenic acute regulatory (StAR) mRNA expression. Thus, data suggested that Fen inhibits testosterone synthesis via pathways involving intracellular Ca 2+ and clock genes (Bmal1, Rev-Erbα, Rorα) as well as StAR mRNA expression in TM3 cells.

  16. Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods.

    Science.gov (United States)

    Usman, Muhammad Sani; Ibrahim, Nor Azowa; Shameli, Kamyar; Zainuddin, Norhazlin; Yunus, Wan Md Zin Wan

    2012-12-14

    Herein we report a synthesis of copper nanoparticles (Cu-NPs) in chitosan (Cts) media via a chemical reaction method. The nanoparticles were synthesized in an aqueous solution in the presence of Cts as stabilizer and CuSO(4)·5H(2)O precursor. The synthesis proceeded with addition of NaOH as pH moderator, ascorbic acid as antioxidant and hydrazine( )as the reducing agent. The characterization of the prepared NPs was done using ultraviolet-visible spectroscopy, which showed a 593 nm copper band. The Field Emission Scanning Electron Microscope (FESEM) images were also observed, and found to be in agreement with the UV-Vis result, confirming the formation of metallic Cu-NPs. The mean size of the Cu-NPs was estimated to be in the range of 35-75 nm using X-ray diffraction. XRD was also used in analysis of the crystal structure of the NPs. The interaction between the chitosan and the synthesized NPs was studied using Fourier transform infrared (FT-IR) spectroscopy, which showed the capping of the NPs by Cts.

  17. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling

    Directory of Open Access Journals (Sweden)

    Felty Quentin

    2006-04-01

    Full Text Available Abstract Background Since estrogen is known to increase vascular endothelial cell growth, elevated estrogen exposure from hormone replacement therapy or oral contraceptives has the potential to contribute in the development of abnormal proliferative vascular lesions and subsequent thickening of the vasculature. How estrogen may support or promote vascular lesions is not clear. We have examined in this study whether estrogen exposure to vascular endothelial cells increase the formation of reactive oxygen species (ROS, and estrogen-induced ROS is involved in the growth of endothelial cells. Methods The effect of estrogen on the production of intracellular oxidants and the role of estrogen-induced ROS on cell growth was studied in human umbilical vein endothelial cells. ROS were measured by monitoring the oxidation of 2'7'-dichlorofluorescin by spectrofluorometry. Endothelial cell growth was measured by a colorimetric immunoassay based on BrdU incorporation into DNA. Results Physiological concentrations of estrogen (367 fmol and 3.67 pmol triggered a rapid 2-fold increase in intracellular oxidants in endothelial cells. E2-induced ROS formation was inhibited to basal levels by cotreatment with the mitochondrial inhibitor rotenone (2 μM and xanthine oxidase inhibitor allopurinol (50 μM. Inhibitors of NAD(PH oxidase, apocynin and DPI, did not block E2-induced ROS formation. Furthermore, the NOS inhibitor, L-NAME, did not prevent the increase in E2-induced ROS. These findings indicate both mitochondria and xanthine oxidase are the source of ROS in estrogen treated vascular endothelial cells. E2 treated cells showed a 2-fold induction of BrdU incorporation at 18 h which was not observed in cells exposed to vehicle alone. Cotreatment with ebselen (20 μM and NAC (1 mM inhibited E2-induced BrdU incorporation without affecting the basal levels of DNA synthesis. The observed inhibitory effect of NAC and ebselen on E2-induced DNA synthesis was also shown

  18. Plant-mediated synthesis of biosilver nanoparticles using Pandanus amaryllifolius extract and its bactericidal activity

    Energy Technology Data Exchange (ETDEWEB)

    Akhir, Rabiatuladawiyah Md.; Fairuzi, Afiza Ahmad [School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450 Selangor Darul Ehsan (Malaysia); Ismail, Nur Hilwani [School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450 Selangor Darul Ehsan Malaysia (Malaysia)

    2015-08-28

    In this work, we describe a cost effective, easily scaled up and environmental friendly technique for green synthesis of silver nanoparticles (AgNPs) from 5 mM AgNO{sub 3} solution using aqueous extract of Pandanus amaryllifolius (P. amaryllifolius) leaves as reducing agent. Biosynthesized silver nanoparticles was confirmed by sampling the reaction mixture at regular intervals and the absorption maxima was scanned by Ultraviolet-Visible (UV-Vis) spectroscopy at wavelength of 200-500 nm. Images from Field Emission Scanning Electron Microscope (FESEM) have shown that the silver nanoparticles are 17-30 nm in range and assembled in mostly spherical shape. Elemental composition analysis by using Energy Dispersive X-ray (EDX) confirmed the presence of silver. Low concentration of biosynthesized silver nanoparticles have been found to exhibit good antibacterial activity against Staphylococcus aureus bacteria with average mean diameter of zone of inhibition (ZOI) of 16 mm.

  19. Piper betle-mediated synthesis, characterization, antibacterial and rat splenocyte cytotoxic effects of copper oxide nanoparticles.

    Science.gov (United States)

    Praburaman, Loganathan; Jang, Jum-Suk; Muthusamy, Govarthanan; Arumugam, Sengottaiyan; Manoharan, Koildhasan; Cho, Kwang-Min; Min, Cho; Kamala-Kannan, Seralathan; Byung-Taek, Oh

    2016-09-01

    The study reports a simple, inexpensive, and eco-friendly synthesis of copper oxide nanoparticles (CuONPs) using Piper betle leaf extract. Formation of CuONPs was confirmed by UV-visible spectroscopy at 280 nm. Transmission electron microscopy (TEM) images showed that the CuONPs were spherical, with an average size of 50-100 nm. The scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) peak was observed approximately at 1 and 8 keV. The X-ray diffraction (XRD) studies indicated that the particles were crystalline in nature. CuONPs effectively inhibited the growth of phytopathogens Ralstonia solanacearum and Xanthomonas axonopodis. The cytotoxic effect of the synthesized CuONPs was analyzed using rat splenocytes. The cell viability was decreased to 94% at 300 μg/mL.

  20. Opuntia ficus indica peel derived pectin mediated hydroxyapatite nanoparticles: Synthesis, spectral characterization, biological and antimicrobial activities

    Science.gov (United States)

    Gopi, D.; Kanimozhi, K.; Kavitha, L.

    2015-04-01

    In the present study, we have adapted a facile and efficient green route for the synthesis of HAP nanoparticles using pectin as a template which was extracted from the peel of prickly pear (Opuntia ficus indica) fruits. The concentration of pectin plays a major role in the behavior of crystallinity, purity, morphology as well as biological property of the as-synthesized HAP nanoparticles. The extracted pectin and the as-synthesized nanoparticles were characterized by various analytical techniques. The in vitro apatite formation on the surface of the as-synthesized nanoparticles in simulated body fluid (SBF) for various days showed an enhanced bioactivity. Also, the antimicrobial activity was investigated using various microorganisms. All the results revealed the formation of pure, low crystalline and discrete granular like HAP nanoparticles of size around 25 nm with enhanced biological and antimicrobial activities. Hence the as-synthesized nanoparticles can act as a better bone regenerating material in the field of biomedicine.

  1. Ligand mediated synthesis of AgInSe2 nanoparticles with tetragonal/orthorhombic crystal phases

    International Nuclear Information System (INIS)

    Abazović, Nadica D.; Čomor, Mirjana I.; Mitrić, Miodrag N.; Piscopiello, Emanuela; Radetić, Tamara; Janković, Ivana A.; Nedeljković, Jovan M.

    2012-01-01

    Nanosized AgInSe 2 particles (d ∼ 7–25 nm) were synthesized using colloidal chemistry method at 270 °C. As solvents/surface ligands 1-octadecene, trioctylphosphine, and oleylamine were used. It was shown that choice of ligand has crucial impact not only on final crystal phase of nanoparticles, but also at mechanism of crystal growth. X-ray diffraction and TEM/HRTEM techniques were used to identify obtained crystal phases and to measure average size and shape of nanoparticles. UV/Vis data were used to estimate band-gap energies of obtained samples. It was shown that presented routes can provide synthesis of nanoparticles with desired crystal phase (tetragonal and/or orthorhombic), with band-gap energies in the range from 1.25 to 1.53 eV.

  2. Ethylenediamine diacetate (EDDA) mediated synthesis of aurones under ultrasound: their evaluation as inhibitors of SIRT1.

    Science.gov (United States)

    Manjulatha, Khanapur; Srinivas, S; Mulakayala, Naveen; Rambabu, D; Prabhakar, M; Arunasree, Kalle M; Alvala, Mallika; Basaveswara Rao, M V; Pal, Manojit

    2012-10-01

    An improved synthesis of functionalized aurones has been accomplished via the reaction of benzofuran-3(2H)-one with a range of benzaldehydes in the presence of a mild base EDDA under ultrasound. A number of aurones were synthesized (within 5-30min) and the molecular structure of a representative compound determined by single crystal X-ray diffraction study confirmed Z-geometry of the C-C double bond present within the molecule. Some of the compounds synthesized have shown SIRT1 inhibiting as well as anti proliferative properties against two cancer cell lines in vitro. Compound 3a [(Z)-2-(5-bromo-2-hydroxybenzylidene) benzofuran-3(2H)-one] was identified as a potent inhibitor of SIRT1 (IC(50)=1μM) which showed a dose dependent increase in the acetylation of p53 resulting in induction of apoptosis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Lactobacillus species mediated synthesis of silver nanoparticles and their antibacterial activity against opportunistic pathogens in vitro

    Directory of Open Access Journals (Sweden)

    Inna Garmasheva

    2016-12-01

    Results: The capsular layers of Lactobacillus strains contained heteropolysaccharides that were composed mostly of glucose, mannose, galactose and rhamnose in a different molar ratio. It was found that Ag NPs with large size (30.65 ± 5.81 nm obtained from L. acidophilus 58p were more active against S. epidermidis, E. coli, K. pneumonia, S. flexneri and S. sonnei compared with Ag NPs from L. plantarum 92T (19.92 ± 3.4 nm. Conclusion: The size and antibacterial activities of Ag NPs were strain-dependent and such characteristics may be due to the capsular biopolymer composition of Lactobacillus strains used for Ag NPs synthesis.

  4. Ferromagnetic filled carbon nanotubes and nanoparticles: synthesis and lipid-mediated delivery into human tumor cells

    International Nuclear Information System (INIS)

    Moench, I.; Meye, A.; Leonhardt, A.; Kraemer, K.; Kozhuharova, R.; Gemming, T.; Wirth, M.P.; Buechner, B.

    2005-01-01

    We describe the synthesis and the properties of Fe-filled multi-walled carbon nanotubes (MWNTs) and nanoparticles (NP) produced by chemical vapor deposition (CVD). We have employed ferrocene as a starting substance and oxidized Si-wafers as substrates. The magnetic properties and the interaction of the material with bladder cancer cells were determined. After the addition of NP suspensions to cultured cells, no adhesion of the nanoparticles/nanotubes (NT/NP) to the cell membrane and also no cellular uptake were observed. However, the preincubation of the (NT/NP) suspension with cationic lipid caused an efficient delivery of the lipid-nanostructure complexes into the cytoplasm within 2 h after adding to the culture medium

  5. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method

    Directory of Open Access Journals (Sweden)

    Yadollah Abdollahi

    2012-05-01

    Full Text Available The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG, and β-d-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD, zeta potential measurements and Fourier transform infrared (FT-IR. The use of green chemistry reagents, such as glucose, provides green and economic features to this work.

  6. Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay

    Directory of Open Access Journals (Sweden)

    Wang S

    2011-12-01

    Full Text Available Shige Wang1, Shihui Wen2, Mingwu Shen2, Rui Guo2, Xueyan Cao2, Jianhua Wang3, Xiangyang Shi1,2,41State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, 2College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 3Department of Biochemistry and Molecular Cell Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China; 4Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, PortugalBackground: We report on aminopropyltriethoxysilane (APTS-mediated surface modification of nanohydroxyapatite with different surface functional groups for potential biomedical applications. In this study, nanohydroxyapatite covalently linked with APTS (n-HA-APTS was reacted with acetic anhydride or succinic anhydride to produce neutralized (n-HA-APTS.Ac or negatively charged (n-HA-APTS.SAH nanohydroxyapatite, respectively. Nanohydroxyapatite formed with amine, acetyl, and carboxyl groups was extensively characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectroscopy, and zeta potential measurements.Results: In vitro 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric assay revealed that the slight toxicity of the amine-functionalized n-HA-APTS could be eliminated by post-functionalization of APTS amines to form acetyl and carboxyl groups. Blood compatibility assessment demonstrated that the negligible hemolytic activity of the pristine nanohydroxyapatite particles did not appreciably change after APTS-mediated surface functionalization.Conclusion: APTS-mediated functionalization of nanohydroxyapatite with different surface groups may be useful for further functionalization of nanohydroxyapatite with biologically active materials, thereby providing possibilities for a broad range of

  7. Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires

    International Nuclear Information System (INIS)

    Subramania, A; Kumar, G Vijaya; Priya, A R Sathiya; Vasudevan, T

    2007-01-01

    The main aim of this work is to prepare MgO nanoparticles and nanowires by a novel polyol-mediated thermolysis (PMT) process. The influence of different mole concentration of magnesium acetate, polyvinyl pyrrolidone (PVP; capping agent) and ethylene glycol (EG; solvent as well as reducing agent) on the formation of nanoparticles and nanowires and the effect of calcination on the crystalline size of the samples were also examined. The resultant oxide structure, thermal behaviour, size and shape have been studied using x-ray diffraction (XRD) studies, thermal (TG/DTA) analysis and scanning electron microscopy (SEM)/transmission electron microscopy (TEM) respectively

  8. Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Subramania, A; Kumar, G Vijaya; Priya, A R Sathiya; Vasudevan, T [Advanced Materials Research Lab, Department of Industrial Chemistry, Alagappa University, Karaikudi-630 003 (India)

    2007-06-06

    The main aim of this work is to prepare MgO nanoparticles and nanowires by a novel polyol-mediated thermolysis (PMT) process. The influence of different mole concentration of magnesium acetate, polyvinyl pyrrolidone (PVP; capping agent) and ethylene glycol (EG; solvent as well as reducing agent) on the formation of nanoparticles and nanowires and the effect of calcination on the crystalline size of the samples were also examined. The resultant oxide structure, thermal behaviour, size and shape have been studied using x-ray diffraction (XRD) studies, thermal (TG/DTA) analysis and scanning electron microscopy (SEM)/transmission electron microscopy (TEM) respectively.

  9. Polyol-mediated thermolysis process for the synthesis of MgO nanoparticles and nanowires

    Science.gov (United States)

    Subramania, A.; Vijaya Kumar, G.; Sathiya Priya, A. R.; Vasudevan, T.

    2007-06-01

    The main aim of this work is to prepare MgO nanoparticles and nanowires by a novel polyol-mediated thermolysis (PMT) process. The influence of different mole concentration of magnesium acetate, polyvinyl pyrrolidone (PVP; capping agent) and ethylene glycol (EG; solvent as well as reducing agent) on the formation of nanoparticles and nanowires and the effect of calcination on the crystalline size of the samples were also examined. The resultant oxide structure, thermal behaviour, size and shape have been studied using x-ray diffraction (XRD) studies, thermal (TG/DTA) analysis and scanning electron microscopy (SEM)/transmission electron microscopy (TEM) respectively.

  10. Highly Concentrated Seed-Mediated Synthesis of Monodispersed Gold Nanorods (Postprint)

    Science.gov (United States)

    2017-07-17

    product purity. Recent reports on seed development26,27 and mechanistic processes during Au NR growth25,28 provide additional insights to address the...in reactant concentration (1G-3G), but at a cost of process generality. At the higher reactant concentrations (>5G), no adjustment of seed ...of seed -mediated growth process generality. Defining 1V as the volume of the nanorod produced from the typical one-step 1S/1G reaction, a mS/1G+nG

  11. Baseline effects of lysophosphatidylcholine and nerve growth factor in a rat model of sciatic nerve regeneration after crush injury

    Directory of Open Access Journals (Sweden)

    Ryan L Wood

    2018-01-01

    Full Text Available Schwann cells play a major role in helping heal injured nerves. They help clear debris, produce neurotrophins, upregulate neurotrophin receptors, and form bands of Büngner to guide the healing nerve. But nerves do not always produce enough neurotrophins and neurotrophin receptors to repair themselves. Nerve growth factor (NGF is an important neurotrophin for promoting nerve healing and lysophosphatidylcholine (LPC has been shown to stimulate NGF receptors (NGFR. This study tested the administration of a single intraneural injection of LPC (1 mg/mL for single LPC injection and 10 mg/mL for multiple LPC injections at day 0 and one (day 7, two (days 5 and 7, or three (days 5, 7, and 9 injections of NGF (160 ng/mL for single injections and 80 ng/mL for multiple injections to determine baseline effects on crushed sciatic nerves in rats. The rats were randomly divided into four groups: control, crush, crush-NGF, and crush-LPC-NGF. The healing of the nerves was measured weekly by monitoring gait; electrophysiological parameters: compound muscle action potential (CMAP amplitudes; and morphological parameters: total fascicle areas, myelinated fiber counts, fiber densities, fiber packing, and mean g-ratio values at weeks 3 and 6. The crush, crush-NGF, and crush-LPC-NGF groups statistically differed from the control group for all six weeks for the electrophysiological parameters but only differed from the control group at week 3 for the morphological parameters. The crush, crush-NGF, and crush-LPC-NGF groups did not differ from each other over the course of the study. Single injections of LPC and NGF one week apart or multiple treatments of NGF at 5, 7 and 9 days post-injury did not alter the healing rate of the sciatic nerves during weeks 1-6 of the study. These findings are important to define the baseline effects of NGF and LPC injections, as part of a larger effort to determine the minimal dose regimen of NGF to regenerate peripheral nerves.

  12. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens

    International Nuclear Information System (INIS)

    Adavallan, K; Krishnakumar, N

    2014-01-01

    Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15−53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition. (papers)

  13. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens

    Science.gov (United States)

    Adavallan, K.; Krishnakumar, N.

    2014-06-01

    Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15-53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition.

  14. Synthesis of Chromane Derivatives via Indium-mediated Intramolecular Allenylation and Allylation to Imines

    International Nuclear Information System (INIS)

    Kang, Han Young; Yu, Yeon Kwon

    2004-01-01

    The results of preparing chromans by intramolecular allylation are shown in Table 2. The results indicated that the indium-mediated allylation was not as efficient as the allenylation. About 10-20% decrease in yields was observed. As mentioned above, in each case only a single isomer was observed, and the stereochemistry of the product was determined as cis by analysis of 1 H NMR and NOE spectra. There are, however, still some limitations in these transformations. Especially, in the case of allylation mixtures of cis and trans isomers are always produced in about 2 : 1 ratio (cis/trans). The ratio was not improved under the various reaction conditions we attempted. Since the indium-mediated addition to carbonyl groups has been successful, it occurred to us that it would be worthwhile to test the addition to carbon-nitrogen double bonds, that is, imine groups. We wish to report here the results of the investigations on allylation and allenylation to C=N bond to provide the chromane structures. The whole transformations

  15. Synthesis and characterization of KCu3S2 microstructures through a composite-hydroxide mediated method

    International Nuclear Information System (INIS)

    Huang Linyong; Liu Jing; Zuo Zhiyuan; Liu Hong; Liu Duo; Wang Jiyang; Boughton, Robert I.

    2010-01-01

    Graphical abstract: Display Omitted Research highlights: → One of the ternary K-Cu-S compounds, KCu 3 S 2 microbelts and nanobelts were synthesized by using a composite-hydroxide mediated (CHM) approach with the absence of any organic surfactants. → X-ray powder diffraction results indicate that the belts possess a monoclinic KCu 3 S 2 crystalline structure. → Scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) were used to obtain detailed characterization of the microstructure and nanostructure of this material. → A growth mechanism of KCu 3 S 2 microbelts was proposed. → Measurements of the UV-vis absorption spectrum have been performed, and the results reveal that this material is semiconducting with a bandgap of 1.459 eV. - Abstract: KCu 3 S 2 microslabs and microbelts have been synthesized using a composite-hydroxide mediated (CHM) approach without the presence of an organic surfactant. X-ray powder diffraction results indicate that the belts possess a monoclinic KCu 3 S 2 crystalline structure. Scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) were used to obtain detailed characterization of the microstructure and nanostructure of this material. Measurements of the UV-vis absorption spectrum have been performed, and the results reveal that this material is semiconducting with a bandgap of 1.459 eV.

  16. Identification of lysophosphatidylcholine, γ-stearoyl (LPCD) as an endogenous Na+, K+-ATPase inhibitor in volume-expanded hog plasma

    International Nuclear Information System (INIS)

    Tamura, M.; Inagami, T.

    1986-01-01

    We have shown that the Na + , K + -ATPase inhibitory activities in the plasma of volume-expanded hog consist of multiple components. One group of the major inhibitory activities induced by intravascular saline infusion was identified as unsaturated free fatty acids. The present study was undertaken to determine the identity of the remaining Na + , K + -ATPase inhibitory activity in the plasma of volume-expanded hogs. Three peaks with ouabain displacing activity (ODA) were separated by HPLC on a reversed phase octadecyl column. The slowest eluting material which showed good solubility in water and recognizable optical absorbance at 214 nm was purified further by three additional steps of reverse phase HPLC. FAB mass spectrometry and 1 H NMR spectroscopy identified this substance as lysophosphatidylcholine, γ-stearoyl. Both purified and synthetic LPCS showed dose-dependent inhibition of Na + , K + -ATPase and displacement of [ 3 H] ouabain from the ATPase. Lysophosphatidylcholines containing either palmitoyl or myristoyl groups also exhibited the Na + , K + -ATPase inhibitory activity and the ODA. The ODA in the LPCS containing fraction increased during the saline infusion. These results indicate that LPCS is an endogenous Na + , K + -ATPase inhibitor which is induced by the expansion of plasma volume

  17. Receptor-mediated photo-cytotoxicity: synthesis of a photoactivatable psoralen derivative conjugated to insulin.

    Science.gov (United States)

    Gasparro, F P; Knobler, R M; Yemul, S S; Bisaccia, E; Edelson, R L

    1986-12-15

    4'-Aminomethyl-4,5',8-trimethylpsoralen has been chemically conjugated to insulin using a carbodiimide derivative. The psoralen moiety retains its photochemical reactivity as evidenced by its ability to crosslink DNA after exposure to long wavelength ultraviolet light (UVA, 320-400 nm). This chimeric molecule has been used to selectively kill a population of lymphocytes whose expression of insulin receptors has been stimulated with phytohemagglutinin. Insulin carries the psoralen into the cell via receptor-mediated endocytosis, where it is subsequently activated by exposure to UVA light. The UVA induced activity of AMT-insulin can be blocked by the presence of native insulin. The viability of unstimulated lymphocytes was not affected by AMT-insulin and UVA light. The hybrid insulin-psoralen molecule may be a prototype for a family of phototoxic drugs which can be selectively delivered to subsets of lymphocytes.

  18. Microwave mediated synthesis of nanostructured Co -WO_3 and CoWO_4 for supercapacitor applications

    International Nuclear Information System (INIS)

    Dhilip Kumar, R.; Karuppuchamy, S.

    2016-01-01

    Co-WO_3 and CoWO_4 nanopowders have been successfully obtained from microwave mediated process. The characterization of the prepared nanopowders was carried out by X-ray diffraction (XRD), scanning electron microscopy and Energy dispersive X-ray spectroscopy techniques. The XRD pattern confirms the formation of orthorhombic and monoclinic phase of the as-synthesized and calcined samples, respectively. Scanning electron microscopic examination of the resultant powders reveals the formation of nanoporous morphology. The electrochemical performance of the Co-WO_3 and CoWO_4 coated electrodes was also investigated. The maximum specific capacitance of 45 F/g was achieved for the Co-WO_3 nanopowder. - Highlights: • Novel nano-sized Co-WO_3 and CoWO_4 materials have been prepared. • A new and simple solution growth technique was developed. • Co-WO_3 is a promising material for supercapacitor applications.

  19. Nitroxide-mediated radical ring-opening copolymerization: chain-end investigation and block copolymer synthesis.

    Science.gov (United States)

    Delplace, Vianney; Harrisson, Simon; Tardy, Antoine; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien

    2014-02-01

    Well-defined, degradable copolymers are successfully prepared by nitroxide-mediated radical ring opening polymerization (NMrROP) of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or methyl methacrylate (MMA), a small amount of acrylonitrile (AN) and cyclic ketene acetals (CKAs) of different structures. Phosphorous nuclear magnetic resonance allows in-depth chain-end characterization and gives crucial insights into the nature of the copoly-mer terminal sequences and the living chain fractions. By using a small library of P(OEGMA-co-AN-co-CKA) and P(MMA-co-AN-co-CKA) as macroinitiators, chain extensions with styrene are performed to furnish (amphiphilic) block copolymers comprising a degradable segment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of Titanium Dioxide nanoparticles via sucrose ester micelle-mediated hydrothermal processing route

    International Nuclear Information System (INIS)

    Anwar, N.S.; Kassim, A.; Lim, H.N.; Zakarya, S.A.; Huang, N.M.

    2010-01-01

    Titanium dioxide nanoparticles were synthesized via low-temperature sucrose ester micelle-mediated hydrothermal processing route using titanium isopropoxide as the precursor. X-ray diffractometer revealed that the samples possessed a mixed crystalline phases consisting of anatase and brookite in which anatase was the main phase. Upon increasing the hydrothermal reaction temperature, the degree of crystallinity of the nanoparticles improved and their morphology transformed from bundles of needles to rods and to spheres. Photo catalytic behaviour of the as-synthesized nanoparticles was investigated by photodegradation of methylene blue solution in an ultraviolet A irradiating photo reactor. The as-synthesized nanoparticles exhibited higher photo catalytic performance as compared to the commercial counterpart. (author)

  1. Uncaria gambir Roxb. mediated green synthesis of silver nanoparticles using diethanolamine as capping agent

    Science.gov (United States)

    Labanni, A.; Zulhadjri; Handayani, D.; Arief, S.

    2018-01-01

    Studies of silver nanoparticles preparation has been developed increasingly due to the wide application in various areas and field, such as medicine, energy, catalysis, and electronic. An environmental-friendly method is needed to fabricate biocompatible silver nanoparticles without producing hazardous materials to the environment. In this study, we synthesized silver nanoparticles by green synthesis method, using leaf extract of gambir (Uncaria gambir Roxb.) as bioreducing agent and aqueous diethanolamine (DEA) solution as capping agents. The AgNO3/DEA molar ratio was varied to investigate the effect of DEA concentration to the properties of silver nanoparticles. The formation of silver nanoparticles was indicated by colour changes to yellowish brown and confirmed by result of UV-Vis spectrophotometer analysis which shown absorption band at 400 to 410 nm. The absorbance was increased to the reaction time of 24 hours, and was decrease by the increasing of DEA concentration in reaction. TEM analysis showed that prepared silver nanoparticles were spherical in shape with diameter of 3,5 - 45,5 nm. The diameter of DEA capped silver nanoparticles was 13 nm, smaller than uncapped silver nanoparticles which was 26 nm It exhibited good stability to time reaction of one month which was potential to be developed in some fields.

  2. Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique

    International Nuclear Information System (INIS)

    Palanisamy, Prakash; Raichur, Ashok M.

    2009-01-01

    Spherical nickel oxide nanoparticles were synthesized by microemulsion technique using rhamnolipids as the surfactant along with n-heptane and water. Nickel hydroxide (Ni(OH) 2 ) particles were first formed which were then calcined to obtain nickel oxide (NiO) particles. Scanning Electron Microscopy (SEM) studies revealed that the synthesized nickel hydroxide particles were spherical in shape with stacked lamellar sheets. Nickel hydroxide was converted to nickel oxide by calcinations at 600 deg. C for 3 h and was confirmed by X-ray Diffraction (XRD) analysis. Transmission Electron Microscopy (TEM) showed that the nickel oxide particles were crystalline and of uniform size. The effect of pH on particle size was investigated and it was found that the particle size decreased from 86 ± 8 nm at pH 11.6 to 47 ± 5 nm at pH 12.5. A novel method using rhamnolipid biosurfactant for microemulsion synthesis has been demonstrated which offers an eco-friendly alternative to conventional microemulsion technique based on organic surfactants

  3. Coriandrum sativum mediated synthesis of silver nanoparticles and evaluation of their biological characteristics

    Science.gov (United States)

    Senthilkumar, N.; Aravindhan, V.; Ruckmani, K.; Vetha Potheher, I.

    2018-05-01

    Silver (Ag) nanoparticles (NPs) were prepared by percolated green synthesis method using Coriandrum sativum leaf, root, seed and stem extracts and reported its antibacterial activity. The synthesized Ag NPs were confirmed by UV–visible Spectroscopy, Powder x-ray Diffraction (PXRD), Fourier Transform Infra Red (FT-IR) Spectroscopy analyzes. The Maximum absorbance observed around 400–450 nm reveal the characteristic absorbance of Ag NPs. The Dynamic Light Scattering (DLS) analysis shows the stability of synthesized NPs with average size varying from 35 to 53 nm and also zeta potential stability varying from ‑20 to ‑30 mV. The cubic structure, crystalline nature and purity of the material was confirmed by powder x-ray diffraction studies. FT-IR spectrum shows the presence of various functional groups in the resultant material. The Field Emission Scanning Electron Microscopy (FESEM) image shows the surface morphology of the synthesized NPs and the Energy Dispersive x-ray Analysis (EDAX) confirms the presence of silver metal ions. The Coriandrum sativum aqueous extract exhibited excellent antimicrobial activity against Klebsiella pneumoniae (Gram -ve) bacteria. Numerous studies have been made previously in our field of study but optimization has not been carried out by both extract (different parts like leaf, root, seed and stem) and without addition of any external source such as chemicals, heat etc.

  4. Porphyrin Co(III-Nitrene Radical Mediated Pathway for Synthesis of o-Aminoazobenzenes

    Directory of Open Access Journals (Sweden)

    Monalisa Goswami

    2018-05-01

    Full Text Available Azobenzenes are versatile compounds with a range of applications, including dyes and pigments, food additives, indicators, radical reaction initiators, molecular switches, etc. In this context, we report a general method for synthesizing o-aminoazobenzenes using the commercially available cobalt(II tetraphenyl porphyrin [CoII(TPP]. The net reaction is a formal dimerization of two phenyl azides with concomitant loss of two molecules of dinitrogen. The most commonly used methodology to synthesize azobenzenes is based on the initial diazotization of an aromatic primary amine at low temperatures, which then reacts with an electron rich aromatic nucleophile. As such, this limits the synthesis of azobenzenes with an amine functionality. In contrast, the method we report here relies heavily on the o-amine moiety and retains it in the product. The reaction is metal catalyzed and proceeds through a porphyrin Co(III-nitrene radical intermediate, which is known to form on activation of organic azides at the cobalt center. The synthesized o-aminoazobenzenes are bathochromatically shifted, as compared to azobenzenes without amine substituents. Based on the crystal structure of one of the products, strong H-bonding between the N-atom of the azo functionality and the H of the NH2 substituent is shown to stabilize the trans isomeric form of the product. The NH2 substituents offers possibilities for further functionalization of the synthesized azo compounds.

  5. Methionine-mediated synthesis of magnetic nanoparticles and functionalization with gold quantum dots for theranostic applications

    Directory of Open Access Journals (Sweden)

    Arūnas Jagminas

    2017-08-01

    Full Text Available Biocompatible superparamagnetic iron oxide nanoparticles (NPs through smart chemical functionalization of their surface with fluorescent species, therapeutic proteins, antibiotics, and aptamers offer remarkable potential for diagnosis and therapy of disease sites at their initial stage of growth. Such NPs can be obtained by the creation of proper linkers between magnetic NP and fluorescent or drug probes. One of these linkers is gold, because it is chemically stable, nontoxic and capable to link various biomolecules. In this study, we present a way for a simple and reliable decoration the surface of magnetic NPs with gold quantum dots (QDs containing more than 13.5% of Au+. Emphasis is put on the synthesis of magnetic NPs by co-precipitation using the amino acid methionine as NP growth-stabilizing agent capable to later reduce and attach gold species. The surface of these NPs can be further conjugated with targeting and chemotherapy agents, such as cancer stem cell-related antibodies and the anticancer drug doxorubicin, for early detection and improved treatment. In order to verify our findings, high-resolution transmission electron microscopy (HRTEM, atomic force microscopy (AFM, FTIR spectroscopy, inductively coupled plasma mass spectroscopy (ICP-MS, and X-ray photoelectron spectroscopy (XPS of as-formed CoFe2O4 NPs before and after decoration with gold QDs were applied.

  6. Lipase mediated synthesis of rutin fatty ester: Study of its process parameters and solvent polarity.

    Science.gov (United States)

    Vaisali, C; Belur, Prasanna D; Regupathi, Iyyaswami

    2017-10-01

    Lipophilization of antioxidants is recognized as an effective strategy to enhance solubility and thus effectiveness in lipid based food. In this study, an effort was made to optimize rutin fatty ester synthesis in two different solvent systems to understand the influence of reaction system hydrophobicity on the optimum conditions using immobilised Candida antartica lipase. Under unoptimized conditions, 52.14% and 13.02% conversion was achieved in acetone and tert-butanol solvent systems, respectively. Among all the process parameters, water activity of the system was found to show highest influence on the conversion in each reaction system. In the presence of molecular sieves, the ester production increased to 62.9% in tert-butanol system, unlike acetone system. Under optimal conditions, conversion increased to 60.74% and 65.73% in acetone and tert-butanol system, respectively. This study shows, maintaining optimal water activity is crucial in reaction systems having polar solvents compared to more non-polar solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fungus-mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis.

    Science.gov (United States)

    Tidke, Pritish R; Gupta, Indarchand; Gade, Aniket K; Rai, Mahendra

    2014-12-01

    We report the extracellular biosynthesis of gold nanoparticles (AuNPs) using a fungus Fusarium acuminatum. Mycosynthesis of Au-NPs was carried out by challenging the fungal cells filtrate with HAuCl 4 solution (1 mM), as nanoparticles synthesizing enzyme secrete extracellularly by the fungi. The AuNPs were characterized with the help of UV-Visible spectrophotometer, Fourier Transform Infrared spectroscopy, Zeta Potential, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). We observed absorbance peak in between 520 nm-550 nm corresponding to the surface plasmon absorbance of the gold nanoparticles. The nanoparticles synthesized in the present investigation were found to be capped by proteins. XRD results showed that the distinctive formation of crystalline gold nanoparticles in the solution. The spherical and polydispersed AuNPs in the range 8 to 28 nm with average size of 17 nm were observed by TEM analysis. We also standardized the parameters like the effect of pH, temperature and salt concentration on the biosynthesis of gold nanoparticles. It was found that acidic pH, 1 mM salt concentration and 37 (°)C temperature were found to be optimum for the synthesis of Au-NPs. Therefore, the present study introduces the easy, better and cheaper method for biosynthesis of AuNPs.

  8. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    Science.gov (United States)

    Caicedo, Hector M.; Dempere, Luisa A.; Vermerris, Wilfred

    2012-03-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells.

  9. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    International Nuclear Information System (INIS)

    Caicedo, Hector M; Vermerris, Wilfred; Dempere, Luisa A

    2012-01-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells. (paper)

  10. Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against Mycobacterium tuberculosis.

    Science.gov (United States)

    Taranath, Tarikere C; Patil, Bheemanagouda N

    2016-06-01

    The present investigation was undertaken to synthesize zinc oxide nanoparticles using Limonia acidissima L. and to test their efficacy against the growth of Mycobacterium tuberculosis. The formation of zinc oxide nanoparticles was confirmed with UV-visible spectrophotometry. Fourier transform infrared spectroscopy shows the presence of bio-molecules involved in the stabilization of zinc oxide nanoparticles. The shape and size was confirmed with atomic force microscope, X-ray diffraction, and high resolution transmission electron microscope. These nanoparticles were tested for their effect on the growth of M. tuberculosis through the microplate alamar blue assay technique. The UV-visible data reveal that an absorbance peak at 374nm confirms formation of zinc oxide nanoparticles and they are spherical in shape with sizes between 12nm and 53nm. These nanoparticles control the growth of M. tuberculosis at 12.5μg/mL. Phytosynthesis of zinc oxide nanoparticles is a green, eco-friendly technology because it is inexpensive and pollution free. In the present investigation, based on our results we conclude that the aqueous extract of leaves of L. acidissima can be used for the synthesis of zinc oxide nanoparticles. These nanoparticles control the growth of M. tuberculosis and this was confirmed with the microplate alamar blue method. The potential of biogenic zinc oxide nanoparticles may be harnessed as a novel medicine ingredient to combat tuberculosis disease. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  11. Gum Tragacanth-Mediated Synthesis of Nanocrystalline ZnO Powder for Use in Varistors

    Science.gov (United States)

    Liu, Ting-Ting; Wang, Mao-Hua; Su, Hang; Chen, Xi; Chen, Chao; Zhang, Ruo-Chen

    2015-10-01

    Zinc oxide nanopowders were synthesized by a sol-gel method with gum tragacanth and zinc nitrate as raw materials. Gum tragacanth was used as stabilizer to control the mobility of zinc cations and the growth of the nanopowders. Thermo-gravimetric analysis, x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, and scanning electron microscopy were used to characterize the as-prepared samples. Zinc oxide (ZnO) nanoparticles calcined at different temperatures had a hexagonal wurtzite structure with average particle size ranging from 32.29 nm to 42.83 nm. The crystallinity of ZnO nanoparticles was improved by increasing the calcination temperature. The density of ZnO varistor ceramics sintered at 1150°C for 2 h in air was 5.46 g/cm3, which was 97.5% of the theoretical density, their breakdown voltage was 4572 V/cm, and their nonlinear coefficient was ~16.8. This method can be used as an excellent alternative method for synthesis of ZnO nanoparticles with a plant extract as a raw material. Our experimental results show our method had the advantage of improving the electrical performance of ZnO varistors.

  12. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications

    Directory of Open Access Journals (Sweden)

    Sutanuka Pattanayak

    2017-09-01

    Full Text Available The work deals with an environmentally benign process for the synthesis of silver nanoparticle using Butea monosperma bark extract which is used both as a reducing as well as capping agent at room temperature. The reaction mixture turned brownish yellow after about 24 h and an intense surface plasmon resonance (SPR band at around 424 nm clearly indicates the formation of silver nanoparticles. Fourier transform-Infrared (FT-IR spectroscopy showed that the nanoparticles were capped with compounds present in the plant extract. Formation of crystalline fcc silver nanoparticles is analysed by XRD data and the SAED pattern obtained also confirms the crystalline behaviour of the Ag nanoparticles. The size and morphology of these nanoparticles were studied using High Resolution Transmission Electron Microscopy (HRTEM which showed that the nanoparticles had an average dimension of ∼35 nm. A larger DLS data of ∼98 nm shows the presence of the stabilizer on the nanoparticles surface. The bio-synthesized silver nanoparticles revealed potent antibacterial activity against human bacteria of both Gram types. In addition these biologically synthesized nanoparticles also proved to exhibit excellent cytotoxic effect on human myeloid leukemia cell line, KG-1A with IC50 value of 11.47 μg/mL.

  13. Opuntia ficus indica peel derived pectin mediated hydroxyapatite nanoparticles: synthesis, spectral characterization, biological and antimicrobial activities.

    Science.gov (United States)

    Gopi, D; Kanimozhi, K; Kavitha, L

    2015-04-15

    In the present study, we have adapted a facile and efficient green route for the synthesis of HAP nanoparticles using pectin as a template which was extracted from the peel of prickly pear (Opuntia ficus indica) fruits. The concentration of pectin plays a major role in the behavior of crystallinity, purity, morphology as well as biological property of the as-synthesized HAP nanoparticles. The extracted pectin and the as-synthesized nanoparticles were characterized by various analytical techniques. The in vitro apatite formation on the surface of the as-synthesized nanoparticles in simulated body fluid (SBF) for various days showed an enhanced bioactivity. Also, the antimicrobial activity was investigated using various microorganisms. All the results revealed the formation of pure, low crystalline and discrete granular like HAP nanoparticles of size around 25 nm with enhanced biological and antimicrobial activities. Hence the as-synthesized nanoparticles can act as a better bone regenerating material in the field of biomedicine. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon.

    Science.gov (United States)

    Zhang, Qiang; Cobley, Claire; Au, Leslie; McKiernan, Maureen; Schwartz, Andrea; Wen, Long-Ping; Chen, Jingyi; Xia, Younan

    2009-09-01

    Au nanocages synthesized from Ag nanocubes via the galvanic replacement reaction are finding widespread use in a range of applications because of their tunable optical properties. Most of these applications require the use of nanocages with a uniform size and in large quantities. This requirement translates into a demand for scaling up the production of Ag nanocubes with uniform, well-controlled sizes. Here we report such a method based on the modification of NaHS-mediated polyol synthesis with argon protection for fast reduction, which allows for the production of Ag nanocubes on a scale of 0.1 g per batch. The Ag nanocubes had an edge length tunable from 25 to 45 nm together with a size variation within +/-5 nm. The use of argon protection was the key to the success of this scale-up synthesis, suggesting the importance of controlling oxidative etching during synthesis.

  15. Production of Ag Nanocubes on a Scale of 0.1 g per Batch by Protecting the NaHS-Mediated Polyol Synthesis with Argon

    OpenAIRE

    Zhang, Qiang; Cobley, Claire; Au, Leslie; McKiernan, Maureen; Schwartz, Andrea; Wen, Long-Ping; Chen, Jingyi; Xia, Younan

    2009-01-01

    Gold nanocages synthesized from Ag nanocubes via the galvanic replacement reaction are finding widespread use in a range of applications due to their tunable optical properties. Most of these applications require the use of nanocages with a uniform size and in large quantities. This requirement translates into a demand for scaling up the production of Ag nanocubes with uniform, well-controlled sizes. Here we report such a method based on the modification of NaHS-mediated polyol synthesis with...

  16. One-Pot Synthesis of Charged Amphiphilic Diblock and Triblock Copolymers Via High-Throughput Cu(0-Mediated Polymerization

    Directory of Open Access Journals (Sweden)

    Lenny Voorhaar

    2017-07-01

    Full Text Available Block copolymers containing functionalized monomers, for example those containing charged groups, can be used for many purposes, one of which is the design of polymeric supramolecular materials based on electrostatic interactions. In this paper the synthesis of diblock copolymers and ABA-triblock copolymers containing poly(n-butyl acrylate as a first or middle block and poly(2-(dimethylaminoethyl acrylate, poly(1-ethoxyethyl acrylate and poly(1-ethoxyethyl-2-carboxyethyl acrylate as second or outer blocks, resulting in block copolymers that can contain positive or negative charges, is reported. The polymerizations were performed and optimized via one-pot sequential monomer addition reactions via Cu(0-mediated polymerization using an automated parallel synthesizer. Different initiators, monomer concentrations and polymerization times were tested. While a bromide-containing initiator led to the best results for most monomers, when polymerizing 2-(dimethylaminoethyl acrylate the use of a chloride-containing initiator was necessary. Due to the slower polymerization using this initiator, a longer polymerization time was needed before addition of the second monomer. Using the optimized conditions, the diblock and triblock copolymers could be synthesized with good control over molecular weight and dispersities around 1.1 were obtained.

  17. Seed-mediated co-reduction in a large lattice mismatch system: synthesis of Pd-Cu nanostructures.

    Science.gov (United States)

    Kunz, Meredith R; McClain, Sophia M; Chen, Dennis P; Koczkur, Kallum M; Weiner, Rebecca G; Skrabalak, Sara E

    2017-06-08

    Metal nanoparticles (NPs) are of interest for applications in catalysis, electronics, chemical sensing, and more. Their utility is dictated by their composition and physical parameters such as particle size, particle shape, and overall architecture (e.g., hollow vs. solid). Interestingly, the addition of a second metal to create bimetallic NPs adds multifunctionality, with new emergent properties common. However, synthesizing structurally defined bimetallic NPs remains a great challenge. One synthetic pathway to architecturally controlled bimetallic NPs is seed-mediated co-reduction (SMCR) in which two metal precursors are simultaneously co-reduced to deposit metal onto shape-controlled metal seeds, which direct the overgrowth. Previously demonstrated in a Au-Pd system, here SMCR is applied to a system with a larger lattice mismatch between the depositing metals: Pd and Cu (7% mismatch for Pd-Cu vs. 4% for Au-Pd). Through manipulation of precursor reduction kinetics, the morphology and bimetallic distribution of the resultant NPs can be tuned to achieve eight-branched Pd-Cu heterostructures with Cu localized at the tips of the Pd nanocubes as well as branched Pd-Cu alloyed nanostructures and polyhedra. Significantly, the symmetry of the seeds can be transferred to the final nanostructures. This study expands our understanding of SMCR as a route to structurally defined bimetallic nanostructures and the synthesis of multicomponent nanomaterials more generally.

  18. Seed-mediated synthesis of gold nanorods: control of the aspect ratio by variation of the reducing agent

    International Nuclear Information System (INIS)

    Koeppl, Susanne; Ghielmetti, Nico; Caseri, Walter; Spolenak, Ralph

    2013-01-01

    Seed-mediated growth methods involving reduction of tetrachloroaurate(III) with ascorbic acid are common for the synthesis of gold nanorods. This study shows, however, that simply by appropriate choice of the reducing agent a drastic influence on the aspect ratio can be attained. Weaker reducing agents, such as dihydroxybenzene isomers (hydroquinone, catechol or resorcinol) or glucose can increase the aspect ratio of the nanorods by an order of magnitude, up to values as high as 100 (nanowires). The increase in aspect ratio is mainly a consequence of an increase in length of the particles (up to 1–3 μm). This effect is probably associated with a decrease in the reduction rate of gold(III) species by dihydroxybenzenes or glucose compared to ascorbic acid. The reduction potential of the reducing agents strongly depends on the pH value, and related effects on the dimensions of the nanoparticles are also reflected in this study. The nanorods exhibited penta-twinned nature without noteworthy defects (e.g. stacking faults and dislocations).

  19. Type I Interferon-Mediated Skewing of the Serotonin Synthesis Is Associated with Severe Disease in Systemic Lupus Erythematosus

    Science.gov (United States)

    Lood, Christian; Tydén, Helena; Gullstrand, Birgitta; Klint, Cecilia; Wenglén, Christina; Nielsen, Christoffer T.; Heegaard, Niels H. H.; Jönsen, Andreas; Kahn, Robin; Bengtsson, Anders A.

    2015-01-01

    Serotonin, a highly pro-inflammatory molecule released by activated platelets, is formed by tryptophan. Tryptophan is also needed in the production of kynurenine, a process mediated by the type I interferon (IFN)-regulated rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO). The aim of this study was to investigate levels of serotonin in patients with the autoimmune disease systemic lupus erythematosus (SLE), association to clinical phenotype and possible involvement of IDO in regulation of serotonin synthesis. Serotonin levels were measured in serum and plasma from patients with SLE (n=148) and healthy volunteers (n=79) by liquid chromatography and ELISA, as well as intracellularly in platelets by flow cytometry. We found that SLE patients had decreased serotonin levels in serum (p=0.01) and platelets (pserotonin (p=0.0008) as well as increased IDO activity (pserotonin levels in platelets and serum (pserotonin levels were associated with severe SLE with presence of anti-dsDNA antibodies and nephritis. In all, reduced serum serotonin levels in SLE patients were related to severe disease phenotype, including nephritis, suggesting involvement of important immunopathological processes. Further, our data suggest that type I IFNs, present in SLE sera, are able to up-regulate IDO expression, which may lead to decreased serum serotonin levels. PMID:25897671

  20. Seed-mediated growth and manipulation of Au nanorods via size-controlled synthesis of Au seeds

    International Nuclear Information System (INIS)

    Liu Juncheng; Duggan, Jennifer N.; Morgan, Joshua; Roberts, Christopher B.

    2012-01-01

    Seed-mediated growth of gold (Au) nanorods with highly controllable length, width, and aspect ratio was accomplished via carefully size-controlled synthesis of the original Au seeds. A slow dynamic growth of Au nanoparticle seeds was observed after reduction of the Au salt (i.e., hydrogen tetrachloroaurate (III) hydrate) by sodium borohydride (NaBH 4 ) in the presence of cetyltrimethyl ammonium bromide (CTAB). As such, the size of the Au nanoparticle seeds can therefore be manipulated through control over the duration of the reaction period (i.e., aging times of 2, 8, 48, 72, and 144 h were used in this study). These differently sized Au nanoparticles were subsequently used as seeds for the growth of Au nanorods, where the additions of Au salt, CTAB, AgNO 3 , and ascorbic acid were employed. Smaller Au nanoparticle seeds obtained via short growth/aging time resulted in Au nanorods with higher aspect ratio and thus longer longitudinal surface plasmon wavelength (LSPW). The larger Au nanoparticle seeds obtained via longer growth/aging time resulted in Au nanorods with lower aspect ratio and shorter LSPW.

  1. Cocos nucifera coir-mediated green synthesis of Pd NPs and its investigation against larvae and agricultural pest.

    Science.gov (United States)

    Elango, Ganesh; Mohana Roopan, Selvaraj; Abdullah Al-Dhabi, Naif; Arasu, Mariadhas Valan; Irukatla Damodharan, Kasinathan; Elumalai, Kuppuswamy

    2017-12-01

    In recent decades, several scientists focused their process towards nanoparticles synthesis by using various sustainable approaches. Cocos nucifera (C. nucifera) was one of the versatile trees in tropical regions which also can act as a thrust quencher in all over the world. Cocos nucifera coir was one of the waste by-products in all coconut-refining industries and with the help C. nucifera coir, Palladium nanoparticles (Pd NPs) were synthesized. Green-synthesized spherical-shape Pd NPs were over layered by secondary metabolites from C. nucifera coir extract and with an average particle size of 62 ± 2 nm, which were confirmed by morphological analysis. Eco-friendly mediated Pd NPs were further subjected to several biological applications like larvicidal against Aedes aegypti (A. aegypti) and anti-feedent, ovicidal, and oviposition deterrent against agricultural pest Callasobruchus maculates (C. maculates) and compared with C. nuciferacoir methanolic extract, which results in LC 50 value of 288.88 ppm and LC 90 value of 483.06 ppm using LSD-Tukey's test against dengue vector (A. aegypti). Cocos nucifera coir methanolic extract shows significant output while compared with Pd NPs towards anti-feedent assays; ovicidal activity and oviposition deterrent were discussed here.

  2. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential.

    Science.gov (United States)

    Mittal, Amit Kumar; Kumar, Sanjay; Banerjee, Uttam Chand

    2014-10-01

    In this study a synthetic approach for the stable, mono-dispersed high yielding bimetallic (Ag-Se) nanoparticles by quercetin and gallic acid is described. The bimetallic nanoparticles were synthesized at room temperature. Different reaction parameters (concentration of quercetin, gallic acid and Ag/Se salt, pH, temperature and reaction time) were optimized to control the properties of nanoparticles. The nanoparticles were characterized by various analytical techniques and their size was determined to be 30-35 nm. Our findings suggest that both the reduction as well as stabilization of nanoparticles were achieved by the flavonoids and phenolics. This study describes the efficacy of quercetin and gallic acid mediated synthesis of bimetallic (Ag-Se) nanoparticles and their in vitro antioxidant, antimicrobial (Gram-positive and Gram-negative bacteria) and antitumor potentials. The synthesized Ag-Se nanoparticles were used as anticancer agents for Dalton lymphoma (DL) cells and in in vitro 80% of its viability was reduced at 50 μg/mL. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. RAFT-mediated synthesis of cationic poly[(ar-vinylbenzyl)trimethylammonium chloride] brushes for quantitative DNA immobilization

    International Nuclear Information System (INIS)

    Demirci, Serkan; Caykara, Tuncer

    2013-01-01

    The synthesis of cationic poly[(ar-vinylbenzyl)trimethylammonium chloride)] [poly(VBTAC)] brushes was achieved via reversible addition-fragmentation chain transfer (RAFT) polymerization and used for quantitative DNA immobilization. Initially, silicon surfaces were modified with RAFT chain transfer agent by utilizing an amide reaction involving a silicon wafer modified with allylamine and 4-cyanopentanoic acid dithiobenzoate (CPAD). Poly(VBTAC) brushes were then prepared via RAFT-mediated polymerization from the surface immobilized CPAD. Various characterization techniques including ellipsometry, X-ray photoelectron spectroscopy, grazing angle-Fourier transform infrared spectroscopy, atomic force microscopy and contact-angle goniometer were used to characterize the immobilization of CPAD on the silicon wafer and the subsequent polymer formation. The addition of free CPAD was required for the formation of well-defined polymer brushes, which subsequently resulted in the presence of free polymer chains in solution. The free polymer chains were isolated and used to estimate the molecular weights and polydispersity index of chains attached to the surface. Moreover, from atomic force microscopy and ellipsometry measurements, it was also determined that the density of immobilized DNA on the cationic poly(VBTAC) brushes can be quantitatively controlled by adjusting the solution concentration. Highlights: ► The cationic poly(VBTAC) brushes were prepared by RAFT polymerization. ► Grafting density of cationic poly(VBTAC) brushes was as high as 0.76 chains/nm 2 . ► The cationic poly(VBTAC) brushes were used for quantitative DNA immobilization.

  4. NAMPT-mediated salvage synthesis of NAD+ controls morphofunctional changes of macrophages.

    Directory of Open Access Journals (Sweden)

    Gerda Venter

    Full Text Available Functional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H (i.e. NAD+ and NADH and NADP(H (i.e. NADP+ and NADPH play an essential role. Whereas the link to intracellular ATP availability has been studied extensively, much less is known about the relationship between actin cytoskeleton dynamics and intracellular redox state and NAD+-supply. Here, we focus on the role of nicotinamide phosphoribosyltransferase (NAMPT, found in extracellular form as a cytokine and growth factor, and in intracellular form as one of the key enzymes for the production of NAD+ in macrophages. Inhibition of NAD+ salvage synthesis by the NAMPT-specific drug FK866 caused a decrease in cytosolic NAD+ levels in RAW 264.7 and Maf-DKO macrophages and led to significant downregulation of the glycolytic flux without directly affecting cell viability, proliferation, ATP production capacity or mitochondrial respiratory activity. Concomitant with these differential metabolic changes, the capacity for phagocytic ingestion of particles and also substrate adhesion of macrophages were altered. Depletion of cytoplasmic NAD+ induced cell-morphological changes and impaired early adhesion in phagocytosis of zymosan particles as well as spreading performance. Restoration of NAD+ levels by NAD+, NMN, or NADP+ supplementation reversed the inhibitory effects of FK866. We conclude that direct coupling to local, actin-based, cytoskeletal dynamics is an important aspect of NAD+'s cytosolic role in the regulation of morphofunctional characteristics of macrophages.

  5. NAMPT-Mediated Salvage Synthesis of NAD+ Controls Morphofunctional Changes of Macrophages

    Science.gov (United States)

    Venter, Gerda; Oerlemans, Frank T. J. J.; Willemse, Marieke; Wijers, Mietske; Fransen, Jack A. M.; Wieringa, Bé

    2014-01-01

    Functional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H) (i.e. NAD+ and NADH) and NADP(H) (i.e. NADP+ and NADPH) play an essential role. Whereas the link to intracellular ATP availability has been studied extensively, much less is known about the relationship between actin cytoskeleton dynamics and intracellular redox state and NAD+-supply. Here, we focus on the role of nicotinamide phosphoribosyltransferase (NAMPT), found in extracellular form as a cytokine and growth factor, and in intracellular form as one of the key enzymes for the production of NAD+ in macrophages. Inhibition of NAD+ salvage synthesis by the NAMPT-specific drug FK866 caused a decrease in cytosolic NAD+ levels in RAW 264.7 and Maf-DKO macrophages and led to significant downregulation of the glycolytic flux without directly affecting cell viability, proliferation, ATP production capacity or mitochondrial respiratory activity. Concomitant with these differential metabolic changes, the capacity for phagocytic ingestion of particles and also substrate adhesion of macrophages were altered. Depletion of cytoplasmic NAD+ induced cell-morphological changes and impaired early adhesion in phagocytosis of zymosan particles as well as spreading performance. Restoration of NAD+ levels by NAD+, NMN, or NADP+ supplementation reversed the inhibitory effects of FK866. We conclude that direct coupling to local, actin-based, cytoskeletal dynamics is an important aspect of NAD+’s cytosolic role in the regulation of morphofunctional characteristics of macrophages. PMID:24824795

  6. The Synthesis of Cellulose Graft Copolymers Using Cu(0)-Mediated Polymerization

    Science.gov (United States)

    Donaldson, Jason L.

    Cellulose is the most abundant renewable polymer on the planet and there is great interest in expanding its use beyond its traditional applications. However, its hydrophilicity and insolubility in most common solvent systems are obstacles to its widespread use in advanced materials. One way to counteract this is to attach hydrophobic polymer chains to cellulose: this allows the properties of the copolymer to be tailored by the molecular weight, density, and physical properties of the grafts. Two methods were used here to synthesize the graft copolymers: a 'grafting-from' approach, where synthetic chains were grown outward from bromoester moieties on cellulose (Cell-BiB) via Cu(0)-mediated polymerization; and a 'grafting-to' approach, where fully formed synthetic chains with terminal sulfide functionality were added to cellulose acetate with methacrylate functionality (CA-MAA) via thiol-ene Michael addition. The Cell-BiB was synthesized in the ionic liquid 1-butyl-3-methylimidazolium chloride and had a degree of substitution of 1.13. Polymerization from Cell-BiB proceeded at similar but slightly slower rate than an analogous non-polymeric initiator (EBiB). The average graft density of poly(methyl acrylate) chains was 0.71 chains/ring, with a maximum of 1.0 obtained. The graft density when grafting poly(methyl methacrylate) was only 0.15, and this appeared to be due to the slow initiation of BiB groups. Using EBiB to model the reaction and improve the design should allow this to be overcome. Chain extension experiments demonstrated the living behaviour of the polymer. The CA-MAA was synthesized by esterification with methacrylic acid. Reactions of CA-MAA with thiophenol and dodecanethiol resulted in quantitative addition of the thiol to the alkene. The grafts were synthesized by Cu(0)-mediated polymerization from a bifunctional initiator containing a disulfide bond, followed by reduction to sulfides. The synthetic polymers were successfully grafted to CA-MAA but the

  7. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won; Rondinone, Adam Justin; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

    2017-09-19

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  8. Microemulsion mediated synthesis of triangular shape SnO{sub 2} nanoparticles: Luminescence application

    Energy Technology Data Exchange (ETDEWEB)

    Luwang, Meitram Niraj, E-mail: mn.luwang@ncl.res.in

    2014-01-30

    The triangular prism shapes of SnO{sub 2}·xH{sub 2}O nanoparticles are prepared using microemulsion route. The effect of variation of water pool value on the formation of SnO{sub 2} nanoparticles was studied. There is the quantum size effect in absorption study of SnO{sub 2} nanoparticles. With the increase of the water pool value, there is a decrease in the band edge absorption energy suggesting the weak quantum confinement effect (QCE) in SnO{sub 2} nanoparticles. Quenching effect increases with increase of water to surfactant ratio in luminescence. There is no significant effect in lifetime values for SnO{sub 2} nanoparticles in both microemulsion and powder form. SnO{sub 2} nanoparticles show green emission due to oxygen vacancy. SnO{sub 2} nanoparticles when doped with Eu{sup 3+} ions give the enhanced luminescence of Eu{sup 3+} due to the surface mediated energy transfer from SnO{sub 2} to Eu{sup 3+} ion.

  9. Microemulsion mediated synthesis of triangular shape SnO2 nanoparticles: Luminescence application

    International Nuclear Information System (INIS)

    Luwang, Meitram Niraj

    2014-01-01

    The triangular prism shapes of SnO 2 ·xH 2 O nanoparticles are prepared using microemulsion route. The effect of variation of water pool value on the formation of SnO 2 nanoparticles was studied. There is the quantum size effect in absorption study of SnO 2 nanoparticles. With the increase of the water pool value, there is a decrease in the band edge absorption energy suggesting the weak quantum confinement effect (QCE) in SnO 2 nanoparticles. Quenching effect increases with increase of water to surfactant ratio in luminescence. There is no significant effect in lifetime values for SnO 2 nanoparticles in both microemulsion and powder form. SnO 2 nanoparticles show green emission due to oxygen vacancy. SnO 2 nanoparticles when doped with Eu 3+ ions give the enhanced luminescence of Eu 3+ due to the surface mediated energy transfer from SnO 2 to Eu 3+ ion.

  10. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    Science.gov (United States)

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji Won; Rondinone, Adam J.; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

    2014-06-24

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component containing at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  11. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou, E-mail: duyk@suda.edu.cn

    2017-07-31

    Highlights: • Cross-linked Pt-NiO nanochains using seed-mediated growth method are synthesized. • The as-prepared catalysts exhibit higher electrocatalytic activity than Pt/C for MOR. • The Pt-NiO(1:1 by molar) catalyst shows the best electrocatalytic property towards MOR. - Abstract: A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt{sup 2+} were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt{sup 2+} to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  12. Synthesis of Well-defined Amphiphilic Block Copolymers by Organotellurium-Mediated Living Radical Polymerization (TERP).

    Science.gov (United States)

    Kumar, Santosh; Changez, Mohammad; Murthy, C N; Yamago, Shigeru; Lee, Jae-Suk

    2011-10-04

    Low-molecular weight amphiphilic diblock copolymers, polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP), and (P2VP-b-PS) with different block ratios were synthesized for the first time via organotellurium-mediated living radical polymerization (TERP). For both the homo- and block copolymerizations, good agreement between the theoretical, and experimental molecular weights was found with nearly 100% yield in every case. The molecular weight distribution for all the samples ranged between 1.10 and 1.24, which is well below the theoretical lower limit of 1.50 for a conventional free radical polymerization. Furthermore, a very simple approach to producing highly dense arrays of titania nanoparticles (TiO2 ) is presented using a site-selective reaction of titanium tetraisopropoxide within the P2VP domains of micellar film of P2VP-b-PS in toluene through the sol-gel method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    International Nuclear Information System (INIS)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou

    2017-01-01

    Highlights: • Cross-linked Pt-NiO nanochains using seed-mediated growth method are synthesized. • The as-prepared catalysts exhibit higher electrocatalytic activity than Pt/C for MOR. • The Pt-NiO(1:1 by molar) catalyst shows the best electrocatalytic property towards MOR. - Abstract: A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt 2+ were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt 2+ to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  14. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts

    Science.gov (United States)

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-09-01

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields.Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se

  15. Synthesis colloidal Kyllinga brevifolia-mediated silver nanoparticles at different temperature for methylene blue removal

    Science.gov (United States)

    Isa, Norain; Sarijo, Siti Halimah; Aziz, Azizan; Lockman, Zainovia

    2017-09-01

    Metallic nanoparticles are well known of having wide applications in various fields such as, catalysis, electronics, energy, chemistry and medicine due to its unique physico-chemical properties. In this study, nanocatalyst Kyllinga brevifolia-mediated silver nanoparticles (AgNPs) were prepared by reduction of silver nitrate using aqueous extract of Kyllinga brevifolia at different temperature. The formations of AgNPs were monitored using UV-visible spectroscopy. Transmission electron microscope (TEM) results reveal that the AgNPs well dispersed with average particle size are 22.34 and 6.73 nm for synthesized at room temperature and cold temperature respectively. The biomolecules present in the Kyllinga brevifolia aqueous extract responsible for the formation of AgNPs were identified using Fourier transform infrared (FTIR). Our AgNPs performed excellent catalytic activity in degradation of methylene blue (MB) dyes via electron relay effect. MB is toxic to ecological system and also has carcinogenic properties. The AgNPs nanocatalysts synthesized in this study are highly dispersed, quasi-spherical and due to their size in nanoscale, they have shown effectiveness for degradation of MB dyes. More importantly, our AgNPs were prepared using biomolecules as capping and reducing agent, which make our product "greener" than available AgNPs that are commonly prepared using hydrazine and borohydride; which are harmful substances to human and environment. Not only the AgNPs can act as nanocatalyst for degradation of MB, they can also be expected to degrade other types of toxic dyes used in textiles industry.

  16. Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level

    Science.gov (United States)

    Asante, Curtis O; Wallace, Victoria C; Dickenson, Anthony H

    2009-01-01

    Background The mammalian target of rapamycin (mTOR) is a key regulator of mRNA translation whose action can be inhibited by the drug rapamycin. Forms of long-term plasticity require protein synthesis and evidence indicates that mRNA in dendrites, axon terminals and cell bodies is essential for long-term synaptic plasticity. Specific to pain, shifts in pain thresholds and responsiveness are an expression of neuronal plasticity and this likely contributes to persistent pain. We investigated this by inhibiting the activity of mTOR with rapamycin at the spinal level, of rats that were subjected to the formalin test, using both behavioural and electrophysiological techniques. Results For in vivo electrophysiology, Sprague Dawley rats were fully anaesthetised and single-unit extracellular recordings were obtained from lamina V wide dynamic range (WDR) dorsal horn spinal neurones at the region where input is received from the hind paw. Neuronal responses from naive rats showed that rapamycin-sensitive pathways were important in nociceptive-specific C-fibre mediated transmission onto WDR neurones as well mechanically-evoked responses since rapamycin was effective in attenuating these measures. Formalin solution was injected into the hind paw prior to which, rapamycin or vehicle was applied directly onto the exposed spinal cord. When rapamycin was applied to the spinal cord prior to hind paw formalin injection, there was a significant attenuation of the prolonged second phase of the formalin test, which comprises continuing afferent input to the spinal cord, neuronal hyperexcitability and an activated descending facilitatory drive from the brainstem acting on spinal neurones. In accordance with electrophysiological data, behavioural studies showed that rapamycin attenuated behavioural hypersensitivity elicited by formalin injection into the hind paw. Conclusion We conclude that mTOR has a role in maintaining persistent pain states via mRNA translation and thus protein

  17. Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level

    Directory of Open Access Journals (Sweden)

    Wallace Victoria C

    2009-06-01

    Full Text Available Abstract Background The mammalian target of rapamycin (mTOR is a key regulator of mRNA translation whose action can be inhibited by the drug rapamycin. Forms of long-term plasticity require protein synthesis and evidence indicates that mRNA in dendrites, axon terminals and cell bodies is essential for long-term synaptic plasticity. Specific to pain, shifts in pain thresholds and responsiveness are an expression of neuronal plasticity and this likely contributes to persistent pain. We investigated this by inhibiting the activity of mTOR with rapamycin at the spinal level, of rats that were subjected to the formalin test, using both behavioural and electrophysiological techniques. Results For in vivo electrophysiology, Sprague Dawley rats were fully anaesthetised and single-unit extracellular recordings were obtained from lamina V wide dynamic range (WDR dorsal horn spinal neurones at the region where input is received from the hind paw. Neuronal responses from naive rats showed that rapamycin-sensitive pathways were important in nociceptive-specific C-fibre mediated transmission onto WDR neurones as well mechanically-evoked responses since rapamycin was effective in attenuating these measures. Formalin solution was injected into the hind paw prior to which, rapamycin or vehicle was applied directly onto the exposed spinal cord. When rapamycin was applied to the spinal cord prior to hind paw formalin injection, there was a significant attenuation of the prolonged second phase of the formalin test, which comprises continuing afferent input to the spinal cord, neuronal hyperexcitability and an activated descending facilitatory drive from the brainstem acting on spinal neurones. In accordance with electrophysiological data, behavioural studies showed that rapamycin attenuated behavioural hypersensitivity elicited by formalin injection into the hind paw. Conclusion We conclude that mTOR has a role in maintaining persistent pain states via m

  18. Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway

    Directory of Open Access Journals (Sweden)

    Barańska Sylwia

    2009-03-01

    Full Text Available Abstract Background Mucopolysaccharidoses (MPS are inherited metabolic disorders caused by mutations leading to dysfunction of one of enzymes involved in degradation of glycosaminoglycans (GAGs. Due to their impaired degradation, GAGs accumulate in cells of patients, which results in dysfunction of tissues and organs. Substrate reduction therapy is one of potential treatment of these diseases. It was demonstrated previously that genistein (4', 5, 7-trihydroxyisoflavone inhibits synthesis and reduces levels of GAGs in cultures of fibroblasts of MPS patients. Recent pilot clinical study indicated that such a therapy may be effective in MPS III (Sanfilippo syndrome. Methods To learn on details of the molecular mechanism of genistein-mediated inhibition of GAG synthesis, efficiency of this process was studied by measuring of incorporation of labeled sulfate, storage of GAGs in lysosomes was estimated by using electron microscopic techniques, and efficiency of phosphorylation of epidermal growth factor (EGF receptor was determined by using an ELISA-based assay with fluorogenic substrates. Results Effects of genistein on inhibition of GAG synthesis and accumulation in fibroblasts from patients suffering from various MPS types were abolished in the presence of an excess of EGF, and were partially reversed by an increased concentration of genistein. No such effects were observed when an excess of 17β-estradiol was used instead of EGF. Moreover, EGF-mediated stimulation of phsophorylation of the EGF receptor was impaired in the presence of genistein in both wild-type and MPS fibroblasts. Conclusion The results presented in this report indicate that the mechanism of genistein-mediated inhibition of GAG synthesis operates through epidermal growth factor (EGF-dependent pathway.

  19. Conductive polymer-based nanoparticles for laser-mediated photothermal ablation of cancer: synthesis, characterization, and in vitro evaluation

    Directory of Open Access Journals (Sweden)

    Cantu T

    2017-01-01

    Full Text Available Travis Cantu,1 Kyle Walsh,2 Varun P Pattani,3 Austin J Moy,3 James W Tunnell,3 Jennifer A Irvin,1,2 Tania Betancourt1,2 1Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX, USA; 2Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA; 3Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA Abstract: Laser-mediated photothermal ablation of cancer cells aided by photothermal agents is a promising strategy for localized, externally controlled cancer treatment. We report the synthesis, characterization, and in vitro evaluation of conductive polymeric nanoparticles (CPNPs of poly(diethyl-4,4'-{[2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl-1,4-phenylene]bis(oxy}dibutanoate (P1 and poly(3,4-ethylenedioxythiophene (PEDOT stabilized with 4-dodecylbenzenesulfonic acid and poly(4-styrenesulfonic acid-co-maleic acid as photothermal ablation agents. The nanoparticles were prepared by oxidative-emulsion polymerization, yielding stable aqueous suspensions of spherical particles of <100 nm diameter as determined by dynamic light scattering and electron microscopy. Both types of nanoparticles show strong absorption of light in the near infrared region, with absorption peaks at 780 nm for P1 and 750 nm for PEDOT, as well as high photothermal conversion efficiencies (~50%, that is higher than commercially available gold-based photothermal ablation agents. The nanoparticles show significant photostability as determined by their ability to achieve consistent temperatures and to maintain their morphology upon repeated cycles of laser irradiation. In vitro studies in MDA-MB-231 breast cancer cells demonstrate the cytocompatibility of the CPNPs and their ability to mediate complete cancer cell ablation upon irradiation with an 808-nm laser, thereby establishing the potential of these systems as agents for laser-induced photothermal therapy. Keywords

  20. Soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB ferromagnetic materials and their characterization

    Science.gov (United States)

    Rao, G. V. S. Jayapala; Prasad, T. N. V. K. V.; Shameer, Syed; Rao, M. Purnachandra

    2018-04-01

    Neodymium iron boron (NdFeB) permanent magnets have high energy product with suitable magnetic and physical properties for an array of applications including power generation and motors. However, synthetic routes of NdFeB permanent magnets involve critical procedures with high energy and needs scientific skills. Herein, we report on soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB (Co-NdFeB) permanent magnetic powders (Nd: 15%, Fe: 77.5%, B: 7.5% and Co with molar ratios: 0.5, 1, 1.5 and 2). A 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the prepared nanoscale Co-NdFeB magnetic powders was done using the techniques such as Dynamic Light Scattering (DLS for size and zeta potential measurements), X-ray diffraction (XRD) for structural determination, Scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS) for surface morphological and elemental analysis, Fourier transform infrared spectroscopy (FT-IR) for the identification of functional groups associated and hysteresis loop studies to quantify the magnetization. The results revealed that particles were in irregular and tubular shaped and highly stable (Zeta potential: -44.4 mV) with measured size <100 nm. XRD micrographs revealed a tetragonal crystal structure and FTIR showed predominant N-H and O-H stretching indicates the involvement of these functional groups in the reduction and stabilization process of Co-NdFeB magnetic powders. Hysteresis studies signify the effect of an increase in Co concentration.

  1. Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization.

    Science.gov (United States)

    Gopi, D; Kanimozhi, K; Bhuvaneshwari, N; Indira, J; Kavitha, L

    2014-01-24

    Hydroxyapatite [HAP, Ca10(PO4)6(OH)2] is the main inorganic component of natural bone and is widely used in various biomedical applications. In this paper, we have reported the synthesis of HAP nanoparticles by banana peel pectin mediated green template method. The pectin extracted from the peels of banana and its various concentrations were exploited in our study to achieve a controlled crystallinity, particle size as well as uniform morphology of HAP. The extracted pectin was characterized by spectral techniques like Fourier transform infrared spectroscopy (FTIR) for the functional group analysis, proton-1 nuclear magnetic resonance spectroscopy ((1)H NMR) and carbon-13 nuclear magnetic resonance spectroscopy ((13)C NMR) for the identification of H and C atoms in the extracted pectin, respectively. The HAP nanoparticles were synthesized using different concentrations of the as-extracted pectin. The purity, crystallinity and morphology of the as-synthesized HAP nanoparticles were evaluated by FTIR, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX) and transmission electron microscopy (TEM), respectively. Moreover the antibacterial activity of HAP nanoparticles was evaluated against the gram positive and negative bacteria like Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The experimental results revealed that the HAP nanoparticles synthesized in the presence of an optimized concentration of pectin are pure, low crystalline, spherical and discrete particles with reduced size. Also, the HAP sample derived in the presence of pectin showed an enhanced antibacterial activity than that of the HAP synthesized in the absence of pectin. Hence, the HAP nanoparticles synthesized using pectin as a green template can act as a good biomaterial for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Aegle marmelos Mediated Green Synthesis of Different Nanostructured Metal Hexacyanoferrates: Activity against Photodegradation of Harmful Organic Dyes

    Directory of Open Access Journals (Sweden)

    Vidhisha Jassal

    2016-01-01

    Full Text Available Prussian blue analogue potassium metal hexacyanoferrate (KMHCF nanoparticles Fe4[Fe(CN6]3 (FeHCF, K2Cu3[Fe(CN6]2 (KCuHCF, K2Ni[Fe(CN6]·3H2O (KNiHCF, and K2Co[Fe(CN6] (KCoHCF have been synthesized using plant based biosurfactant Aegle marmelos (Bael and water as a green solvent. It must be emphasized here that no harmful reagent or solvent was used throughout the study. Plant extracts are easily biodegradable and therefore do not cause any harm to the environment. Hence, the proposed method of synthesis of various KMHCF nanoparticles followed a green path. The synthesized nanoparticles were characterized by powder X-ray diffraction (PXRD, Field-Emission Scanning Electron Microscopy (FE-SEM, Transmission Electron Microscopy (TEM, and Fourier Transform Infrared Spectroscopy (FT-IR. MHCF nanoparticles were used for the photocatalytic degradation of toxic dyes like Malachite Green (MG, Eriochrome Black T (EBT, Methyl Orange (MO, and Methylene Blue (MB. Under optimized reaction conditions, maximum photocatalytic degradation was achieved in case of KCuHCF nanoparticles mediated degradation process (MG: 96.06%, EBT: 83.03%, MB: 94.72%, and MO: 63.71% followed by KNiHCF (MG: 95%, EBT: 80.32%, MB: 91.35%, and MO: 59.42%, KCoHCF (MG: 91.45%, EBT: 78.84%, MB: 89.28%, and MO: 58.20%.

  3. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    International Nuclear Information System (INIS)

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey

    2013-01-01

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease

  4. Indium mediated isoprenylation of carbonyl compounds with 2-bromomethyl-1,3-butadiene: a short synthesis of (±-ipsenol

    Directory of Open Access Journals (Sweden)

    Ceschi Marco A.

    2003-01-01

    Full Text Available Isoprenylation of aldehydes and ketones was directly performed by selective indium insertion on a mixture of 2-bromomethyl-1,3-butadiene and its vinylic isomers in good yields. A short synthesis of (±-ipsenol, an aggregation pheromone of the Ips paraconfusus bark beetle, demonstrates the utility of this method in organic synthesis.

  5. Effect of Phosphatase and Tensin Homologue on Chromosome 10 on Angiotensin II-Mediated Proliferation, Collagen Synthesis, and Akt/P27 Signaling in Neonatal Rat Cardiac Fibroblasts

    Directory of Open Access Journals (Sweden)

    Ling Nie

    2016-01-01

    Full Text Available Cardiac fibroblasts (CFs play a key role in cardiac fibrosis by regulating the balance between extracellular matrix synthesis and breakdown. Although phosphatase and tensin homologue on chromosome 10 (PTEN has been found to play an important role in cardiovascular disease, it is not clear whether PTEN is involved in functional regulation of CFs. In the present study, PTEN was overexpressed in neonatal rat CFs via recombinant adenovirus-mediated gene transfer. The effects of PTEN overexpression on cell-cycle progression and angiotensin II- (Ang II- mediated regulation of collagen metabolism, synthesis of matrix metalloproteinases, and Akt/P27 signaling were investigated. Compared with uninfected cells and cells infected with green fluorescent protein-expressing adenovirus (Ad-GFP, cells infected with PTEN-expressing adenovirus (Ad-PTEN significantly increased PTEN protein and mRNA levels in CFs (P<0.05. The proportion of CFs in the G1/S cell-cycle phase was significantly higher for PTEN-overexpressing cells. In addition, Ad-PTEN decreased mRNA expression and the protein synthesis rate of collagen types I and III and antagonized Ang II-induced collagen synthesis. Overexpression of PTEN also decreased Ang II-induced matrix metalloproteinase-2 (MMP-2 and tissue inhibitor of metalloproteinase-1 (TIMP-1 production as well as gelatinase activity. Moreover, Ad-PTEN decreased Akt expression and increased P27 expression independent of Ang II stimulation. These results suggest that PTEN could regulate its functional effects in neonatal rat CFs partially via the Akt/P27 signaling pathway.

  6. trans-2-Tritylcyclohexanol as a chiral auxiliary in permanganate-mediated oxidative cyclization of 2-methylenehept-5-enoates: application to the synthesis of trans-(+)-linalool oxide.

    Science.gov (United States)

    Al Hazmi, Ali M; Sheikh, Nadeem S; Bataille, Carole J R; Al-Hadedi, Azzam A M; Watkin, Sam V; Luker, Tim J; Camp, Nicholas P; Brown, Richard C D

    2014-10-03

    The permanganate-mediated oxidative cyclization of a series of 2-methylenehept-5-eneoates bearing different chiral auxiliaries was investigated, leading to the discovery of trans-2-tritylcyclohexanol (TTC) as a highly effective chiral controller for the formation of the 2,5-substituted THF diol product with high diastereoselectivity (dr ∼97:3). Chiral resolution of (±)-TTC, prepared in one step from cyclohexene oxide, afforded (-)-(1S,2R)-TTC (er >99:1), which was applied to the synthesis of (+)-trans-(2S,5S)-linalool oxide.

  7. β-Hydroxybutyrate Facilitates Fatty Acids Synthesis Mediated by Sterol Regulatory Element-Binding Protein1 in Bovine Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2015-11-01

    Full Text Available Background/Aims: In dairy cows, β-hydroxybutyrate (BHBA is utilized as precursors of de novo synthesized fatty acids in mammary gland. Ketotic cows are characterized by excessive negative energy balance (NEB, which can further increase the blood BHBA concentration. Sterol regulatory element-binding protein1 (SREBP1 and cell death-inducing DNA fragmentation factor-alpha-like effector α (Cidea play crucial roles in lipid synthesis. Therefore, we hypothesized that BHBA could stimulate SREBP1/Cidea pathway to increase milk fat synthesis in bovine mammary epithelial cells. Methods: Bovine mammary epithelial cells were treated with different concentrations of BHBA and transfected with adenovirus to silence SREBP1 expression. The effects of BHBA on the lipid synthesis in bovine mammary epithelial cells were investigated. Results: The results showed that BHBA could significantly increase the expression of SREBP1, fatty acid synthase (FAS, acetyl-CoA carboxylase α (ACC-α, Cidea and diacylglycerol transferase-1 (DGAT-1, as well as the triglycerides (TG content in bovine mammary epithelial cells. BHBA treatment also increased the transfer of mature SREBP1 to nucleus compared with control group. However, SREBP1 silencing could significantly down-regulate the overexpression of FAS, ACC-α, Cidea and DGAT-1, as well as TG content induced by BHBA. Conclusion: The present data indicate that BHBA can significantly increase TG secretion mediated by SREBP1 in bovine mammary epithelial cells.

  8. Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications—photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains

    Science.gov (United States)

    Iyyappa Rajan, P.; Vijaya, J. Judith; Jesudoss, S. K.; Kaviyarasu, K.; Kennedy, L. John; Jothiramalingam, R.; Al-Lohedan, Hamad A.; Vaali-Mohammed, Mansoor-Ali

    2017-08-01

    With aim of promoting the employability of green fuels in the synthesis of nano-scaled materials with new kinds of morphologies for multiple applications, successful synthesis of self-assembled NiO nano-sticks was achieved through a 100% green-fuel-mediated hot-plate combustion reaction. The synthesized NiO nano-sticks show excellent photocatalytic activity on Rose Bengal dye and superior antibacterial potential towards both Gram-positive and Gram-negative bacteria.

  9. Platelet-activating factor synthesis and receptor-mediated signaling are downregulated in ovine newborn lungs: relevance in postnatal pulmonary adaptation and persistent pulmonary hypertension of the newborn.

    Science.gov (United States)

    Renteria, L S; Cruz, E; Ibe, B O

    2013-12-01

    Platelet-activating factor (PAF) is a phospholipid with a wide range of biological activities. We studied PAF metabolism and PAF receptor (PAFR) signaling in perinatal ovine lungs to understand PAF's role in transition of the perinatal pulmonary hemodynamics and pathophysiology of persistent pulmonary hypertension of the newborn. We hypothesized that downregulation of PAF synthesis with upregulation of PAF catabolism by acetylhydrolase (PAF-Ah) in the newborn lung is needed for fetus-to-newborn pulmonary adaptation. Studies were conducted on fetal and newborn lamb pulmonary arteries (PA), veins (PV) and smooth muscle cells (SMC). PAF metabolism, PAFR binding and cell proliferation were studied by cell culture; gene expression was studied by qPCR. Fetal lungs synthesized 60% more PAF than newborn lungs. Compared with the fetal PVs and SMCs, PAF-Ah activity in newborn was 40-60% greater. PAF-Ah mRNA expression in newborn vessels was different from the expression by fetal PA. PAF-Ah gene clone activity confirmed deletion of hypoxia-sensitive site. PAFR mRNA expression by the PVs and SMC-PV of the fetus and newborn was greater than by corresponding PAs and SMC-PA. Q-PCR study of PAFR expression by the SMC-PV of both groups was greater than SMC-PA. Fetal SMCs bound more PAF than the newborn SMCs. PAFR antagonist, CV-3988, inhibited PAFR binding and DNA synthesis by the fetal SMCs, but augmented binding and DNA synthesis by newborn cells. We show different PAF-PAFR mediated effects in perinatal lungs, suggesting both transcriptional and translational regulation of PAF-Ah and PAFR expression in the perinatal lamb lungs. These indicate that the downregulation of PAF-mediated effects postnatally protects against persistent pulmonary hypertension of the newborn.

  10. Cellular ATP synthesis mediated by type III sodium-dependent phosphate transporter Pit-1 is critical to chondrogenesis.

    Science.gov (United States)

    Sugita, Atsushi; Kawai, Shinji; Hayashibara, Tetsuyuki; Amano, Atsuo; Ooshima, Takashi; Michigami, Toshimi; Yoshikawa, Hideki; Yoneda, Toshiyuki

    2011-01-28

    Disturbed endochondral ossification in X-linked hypophosphatemia indicates an involvement of P(i) in chondrogenesis. We studied the role of the sodium-dependent P(i) cotransporters (NPT), which are a widely recognized regulator of cellular P(i) homeostasis, and the downstream events in chondrogenesis using Hyp mice, the murine homolog of human X-linked hypophosphatemia. Hyp mice showed reduced apoptosis and mineralization in hypertrophic cartilage. Hyp chondrocytes in culture displayed decreased apoptosis and mineralization compared with WT chondrocytes, whereas glycosaminoglycan synthesis, an early event in chondrogenesis, was not altered. Expression of the type III NPT Pit-1 and P(i) uptake were diminished, and intracellular ATP levels were also reduced in parallel with decreased caspase-9 and caspase-3 activity in Hyp chondrocytes. The competitive NPT inhibitor phosphonoformic acid and ATP synthesis inhibitor 3-bromopyruvate disturbed endochondral ossification with reduced apoptosis in vivo and suppressed apoptosis and mineralization in conjunction with reduced P(i) uptake and ATP synthesis in WT chondrocytes. Overexpression of Pit-1 in Hyp chondrocytes reversed P(i) uptake and ATP synthesis and restored apoptosis and mineralization. Our results suggest that cellular ATP synthesis consequent to P(i) uptake via Pit-1 plays an important role in chondrocyte apoptosis and mineralization, and that chondrogenesis is ATP-dependent.

  11. Application of a diagnostic methodology by quantification of 26:0 lysophosphatidylcholine in dried blood spots for Japanese newborn screening of X-linked adrenoleukodystrophy

    Directory of Open Access Journals (Sweden)

    Chen Wu

    2017-09-01

    Full Text Available X-linked adrenoleukodystrophy (X-ALD is a rare inherited metabolic disease that results in the accumulation of very long chain fatty acids (VLCFA in plasma and all tissues. Recent studies regarding cerebral X-ALD (CALD treatment emphasize the importance of its early diagnosis. 26:0 lysophosphatidylcholine (LysoPC is a sensitive biomarker for newborn screening of X-ALD, while its application for Japanese DBS is unclear. Therefore, we evaluated the feasibility of 20:0 LysoPC and 24:0 LysoPC along with 26:0 LysoPC for diagnosing X-ALD in a cohort of newborns (n = 604, healthy adults (n = 50 and patients (n = 4. Results indicated that 26:0 LysoPC had strong significance for discrimination of patients by the amounts of 2.0 to 4.0 and 0.1 to 1.9 pmol/punch for patients and newborns/healthy adults, respectively. Based on these values, we recommend that further diagnostic confirmation is essential if the amount of 26:0 LysoPC in DBS is above 1.7 pmol/punch.

  12. A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study

    Science.gov (United States)

    Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu

    2014-10-01

    Green synthesis of nanoparticles is widely accepted due to the less toxicity in comparison with chemical methods. But there are certain drawbacks like slow formation of nanoparticles, difficulty to control particle size and shape make them less convenient. Here we report a novel cost-effective and eco-friendly method for the rapid green synthesis of silver nanoparticles using leaf extracts of Piper nigrum. Our results suggest that this method can be used for obtaining silver nanoparticles with controllable size within a few minutes. The fabricated nanoparticles possessed excellent antibacterial property against both Gram-positive and Gram-negative bacteria.

  13. Indium mediated isoprenylation of carbonyl compounds with 2-bromomethyl-1,3-butadiene: a short synthesis of (±)-ipsenol

    OpenAIRE

    Ceschi Marco A.; Petzhold Cesar; Schenato Rossana A.

    2003-01-01

    Isoprenylation of aldehydes and ketones was directly performed by selective indium insertion on a mixture of 2-bromomethyl-1,3-butadiene and its vinylic isomers in good yields. A short synthesis of (±)-ipsenol, an aggregation pheromone of the Ips paraconfusus bark beetle, demonstrates the utility of this method in organic synthesis. A isoprenilação de aldeídos e cetonas foi realizada através da inserção seletiva de índio sobre uma mistura de 2-bromometil-1,3-butadieno e seus isômeros viníl...

  14. Base-mediated generation of ketenimines from ynamides: direct access to azetidinimines by an imino staudinger synthesis

    OpenAIRE

    Romero, Eugénie; Minard, Corinne; Benchekroun, Mohamed; Ventre, Sandrine; Retailleau, Pascal; Dodd, Robert H; Cariou, Kevin

    2017-01-01

    Ynamides were used as precursors for the in situ generation of highly reactive ketenimines which could be trapped with imines in a [2+2] cycloaddition. This imino Staudinger synthesis led to a variety of imino-analogs of β-lactams, namely azetidinimines (20 examples), that could be further functionalized through a broad range of transformations.

  15. Mechanism and microstructural evolution of polyol mediated synthesis of nanostructured M-type SrFe12O19

    International Nuclear Information System (INIS)

    Tenorio Gonzalez, F.N.; Bolarín Miró, A.M.; Sánchez De Jesús, F.; Cortés Escobedo, C.A.; Ammar, S.

    2016-01-01

    The synthesis mechanism of nanostructured M-type strontium hexaferrite SrFe 12 O 19 with high coercivity (5.7 kOe) obtained by a polyol process and annealing is proposed. The results show that the hexaferrite is synthesized through the formation of a complex with diethylene glycol during the hydrolysis and solvation stage, followed by the condensation of magnetite and strontium oxide. The results of the monitoring of the process by X-ray diffraction (XRD) of synthesized powders, magnetization hysteresis loops and micromorphology are presented and discussed. The proposed mechanism suggests the intermediate formation of the magnetite phase, which shows coercivity near zero at room temperature and confirms the nanoscale of the particles. Results of thermogravimetric and differential thermal analysis indicate that this phase is followed by the formation of the hematite phase after a heat treatment up to 543 °C in an oxidizing atmosphere. Finally, the hexagonal phase is obtained after application of annealing at 836 °C through the reaction between hematite and strontium oxide. - Highlights: • SrFe 12 O 19 was successfully obtained by a polyol-assisted synthesis. • Magnetite nanoparticles have been obtained as intermediate phase. • A synthesis mechanism for the growing stage of magnetite is proposed. • A reaction sequence and the synthesis mechanism to obtain hexaferrite is presented.

  16. LIM kinase-1 selectively promotes glycoprotein Ib-IX–mediated TXA2 synthesis, platelet activation, and thrombosis

    OpenAIRE

    Estevez, Brian; Stojanovic-Terpo, Aleksandra; Delaney, M. Keegan; O’Brien, Kelly A.; Berndt, Michael C.; Ruan, Changgeng; Du, Xiaoping

    2013-01-01

    Role for LIMK1 in GPIb-IX–dependent cPLA2 activation, TXA2 synthesis, and platelet activation independent of its role in actin polymerization.LIMK1 is important in arterial thrombosis in vivo but appears to be dispensable for hemostasis, suggesting a new antithrombotic target.

  17. A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide.

    Science.gov (United States)

    Dey, Ramendra Sundar; Hajra, Saumen; Sahu, Ranjan K; Raj, C Retna; Panigrahi, M K

    2012-02-07

    A rapid and facile route for the synthesis of reduced graphene oxide sheets (rGOs) at room temperature by the chemical reduction of graphene oxide using Zn/acid in aqueous solution is demonstrated. This journal is © The Royal Society of Chemistry 2012

  18. Solvent-Mediated Eco-Friendly Synthesis and Characterization of Monodispersed Bimetallic Ag/Pd Nano composites for Sensing and Raman Scattering Applications

    International Nuclear Information System (INIS)

    Sathiyadevi, G.; Loganathan, B.; Karthikeyan, B.; Karthikeyan, B.

    2014-01-01

    The solvent-mediated eco-friendly monodispersed Ag/Pd bimetallic nano composites (BNCs) having thick core and thin shell have been prepared through novel green chemical solvent reduction method. Reducing solvent, dimethyl formamide (DMF) is employed for the controlled green synthesis. Characterization of the synthesized Ag/Pd BNCs has been done by x-ray diffraction (XRD) studies, high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray analysis (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern. The nature of the interaction of L-cysteine with Ag/Pd BNCs has been studied by using surface plasmon spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), cyclic voltammetry (CV), and theoretical methods.

  19. Vasoconstrictor role of cyclooxygenase-1-mediated prostacyclin synthesis in non-insulin-dependent diabetic mice induced by high-fat diet and streptozotocin.

    Science.gov (United States)

    Zhu, Ningxia; Liu, Bin; Luo, Wenhong; Zhang, Yingzhan; Li, Hui; Li, Shasha; Zhou, Yingbi

    2014-08-01

    This study tested the hypothesis that in diabetic arteries, cyclooxygenase (COX)-1 mediates endothelial prostacyclin (PGI2) synthesis, which evokes vasoconstrictor activity under the pathological condition. Non-insulin-dependent diabetes was induced to C57BL/6 mice and those with COX-1 deficiency (COX-1(-/-) mice) using a high-fat diet in combination with streptozotocin injection. In vitro analyses were performed 3 mo after. Results showed that in diabetic aortas, the endothelial muscarinic receptor agonist ACh evoked an endothelium-dependent production of the PGI2 metabolite 6-keto-PGF1α, which was abolished in COX-1(-/-) mice. Meanwhile, COX-1 deficiency or COX-1 inhibition prevented vasoconstrictor activity in diabetic abdominal aortas, resulting in enhanced relaxation evoked by ACh. In a similar manner, COX-1 deficiency increased the relaxation evoked by ACh in nitric oxide synthase-inhibited diabetic renal arteries. Also, in diabetic abdominal aortas and/or renal arteries, both PGI2 and the COX substrate arachidonic acid evoked contractions similar to those of nondiabetic mice. However, the contraction to arachidonic acid, but not that to PGI2, was abolished in vessels from COX-1(-/-) mice. Moreover, we found that 3 mo after streptozotocin injection, systemic blood pressure increased in diabetic C57BL/6 mice but not in diabetic COX-1(-/-) mice. These results explicitly demonstrate that in the given arteries from non-insulin-dependent diabetic mice, COX-1 remains a major contributor to the endothelial PGI2 synthesis that evokes vasoconstrictor activity under the pathological condition. Also, our data suggest that COX-1 deficiency prevents or attenuates diabetic hypertension in mice, although this could be related to the loss of COX-1-mediated activities derived from both vascular and nonvascular tissues. Copyright © 2014 the American Physiological Society.

  20. Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A bioorganic substrates-mediated synthesis.

    Science.gov (United States)

    Mercado, D Fabio; Magnacca, Giuliana; Malandrino, Mery; Rubert, Aldo; Montoneri, Enzo; Celi, Luisella; Bianco Prevot, Alessandra; Gonzalez, Mónica C

    2014-03-26

    This paper describes the synthesis of paramegnetic iron-containing hydroxyapatite nanoparticles and their increased Cu(2+) sorbent capacity when using Ca(2+) complexes of soluble bioorganic substrates from urban wastes as synthesis precursors. A thorough characterization of the particles by TEM, XRD, FTIR spectroscopy, specific surface area, TGA, XPS, and DLS indicates that loss of crystallinity, a higher specific area, an increased surface oxygen content, and formation of surface iron phases strongly enhance Cu(2+) adsorption capacity of hydroxyapatite-based materials. However, the major effect of the surface and morphologycal modifications is the size diminution of the aggregates formed in aqueous solutions leading to an increased effective surface available for Cu(2+) adsorption. Maximum sorption values of 550-850 mg Cu(2+) per gram of particles suspended in an aqueous solution at pH 7 were determined, almost 10 times the maximum values observed for hydroxyapatite nanoparticles suspensions under the same conditions.

  1. Prostaglandin (PG) E3 synthesis elicted by adrenergic stimuli in guinea-pig trachea (GPT) is mediated primarily by B2 adrenergic receptors

    International Nuclear Information System (INIS)

    Nadel, G.L.; Malik, K.U.; Lew, D.B.

    1990-01-01

    The purpose of this study was to examine arachidonic acid (AA) metabolism and to characterize the type of adrenergic receptor (AR) involved in the production of the major metabolite of this fatty acid. [ 14 C]AA was incubated with GPT-rings and the radiolabelled products were extracted and separated by TLC method. The medium was also assayed for radiolabelled immunoreactive PG's (iPG's) and leukotrienes (LT) B4 and C4 by RIA or Enzyme immunoassay (EIA) after exposure to various AR agonists. [ 14 C]AA was incorporated into GPT-rings and metabolized mainly into iPGE2 and smaller amounts into PGF2α. Trace amounts of PGD2 and 6-keto-PGF1α but not LTB4 or LTC4 were detected by RIA and/or EIA. Incubation of GPT rings for 15 minutes with isoproterenol and salbutamol resulted in a significant increase of PGE2 synthesis (optimum conc: 10 -7 , 10 -7 M respectively). In contrast, dobutamine, norepinephrine, phenylnephrine and xylazine (up to 10 -6 M) did not significantly increase PGE2 production. Isoproterenol-induced iPGE2 production was inhibited by a selective β2 antagonist, butoxamine (70%: 10 -7 M, 91%: 10 -6 M) and somewhat reduced by β1 antagonists practolol and metoprolol (30-64%:10 -6 M). These data suggest that isoproterenol induced iPGE2 synthesis is primarily mediated via activation of β2 adrenergic receptor

  2. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    International Nuclear Information System (INIS)

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G.

    2013-01-01

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease

  3. Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel.

    Science.gov (United States)

    Gupta, Arpita; Bonde, Shital R; Gaikwad, Swapnil; Ingle, Avinash; Gade, Aniket K; Rai, Mahendra

    2014-09-01

    Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.

  4. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    Energy Technology Data Exchange (ETDEWEB)

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G., E-mail: deborah.murdock@vanderbilt.edu

    2013-11-15

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.

  5. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis.

    Science.gov (United States)

    Iwasaki, T; Yamaguchi-Shinozaki, K; Shinozaki, K

    1995-05-20

    In Arabidopsis thaliana, the induction of a dehydration-responsive gene, rd22, is mediated by abscisic acid (ABA) but the gene does not include any sequence corresponding to the consensus ABA-responsive element (ABRE), RYACGTGGYR, in its promoter region. The cis-regulatory region of the rd22 promoter was identified by monitoring the expression of beta-glucuronidase (GUS) activity in leaves of transgenic tobacco plants transformed with chimeric gene fusions constructed between 5'-deleted promoters of rd22 and the coding region of the GUS reporter gene. A 67-bp nucleotide fragment corresponding to positions -207 to -141 of the rd22 promoter conferred responsiveness to dehydration and ABA on a non-responsive promoter. The 67-bp fragment contains the sequences of the recognition sites for some transcription factors, such as MYC, MYB, and GT-1. The fact that accumulation of rd22 mRNA requires protein synthesis raises the possibility that the expression of rd22 might be regulated by one of these trans-acting protein factors whose de novo synthesis is induced by dehydration or ABA. Although the structure of the RD22 protein is very similar to that of a non-storage seed protein, USP, of Vicia faba, the expression of the GUS gene driven by the rd22 promoter in non-stressed transgenic Arabidopsis plants was found mainly in flowers and bolted stems rather than in seeds.

  6. Base-Mediated Generation of Ketenimines from Ynamides: Direct Access to Azetidinimines by an Imino-Staudinger Synthesis.

    Science.gov (United States)

    Romero, Eugénie; Minard, Corinne; Benchekroun, Mohamed; Ventre, Sandrine; Retailleau, Pascal; Dodd, Robert H; Cariou, Kevin

    2017-09-21

    Ynamides were used as precursors for the in situ generation of highly reactive ketenimines that could be trapped with imines in a [2+2] cycloaddition. This imino-Staudinger synthesis led to a variety of imino-analogs of β-lactams, namely azetidinimines (20 examples), that could be further functionalized through a broad range of transformations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita, E-mail: nayakb@nitrkl.ac.in

    2016-01-01

    In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV–vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. - Highlights: • Rapid, cost effective, benign synthesis of AgNPs using novel bark extracts • Color change and absorbance peak observed at 426 and 420 nm due to SPR phenomenon • Crystalline and spherical nanoparticles having average size of ~ 40 and ~ 50 nm each • Highly enhanced antimicrobial activity against human nosocomial strains • Demonstrated dose dependent toxicity towards osteosarcoma MG-63 cell lines.

  8. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma

    International Nuclear Information System (INIS)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita

    2016-01-01

    In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV–vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. - Highlights: • Rapid, cost effective, benign synthesis of AgNPs using novel bark extracts • Color change and absorbance peak observed at 426 and 420 nm due to SPR phenomenon • Crystalline and spherical nanoparticles having average size of ~ 40 and ~ 50 nm each • Highly enhanced antimicrobial activity against human nosocomial strains • Demonstrated dose dependent toxicity towards osteosarcoma MG-63 cell lines

  9. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions.

    Science.gov (United States)

    González-Béjar, María; Peters, Kate; Hallett-Tapley, Geniece L; Grenier, Michel; Scaiano, Juan C

    2013-02-28

    Surface plasmon excitation of gold nanoparticles on ZnO in the presence of an aldehyde, an amine and phenylacetylene led to rapid and selective formation of propargylamines with good yields (50-95%) at room temperature. Plasmon mediated catalysis is the best available route for this ternary coupling.

  10. Synthesis of diblock copolymers comprising poly(2-vinylpyridine-co-acrylonitrile) and polystyrene blocks by nitroxide-mediated radical polymerization

    Czech Academy of Sciences Publication Activity Database

    Lokaj, Jan; Poláková, Lenka; Holler, Petr; Starovoytova, Larisa; Štěpánek, Petr; Diat, O.

    2007-01-01

    Roč. 105, č. 3 (2007), s. 1616-1622 ISSN 0021-8995 R&D Projects: GA ČR GESON/03/E001 Institutional research plan: CEZ:AV0Z40500505 Keywords : 2-vinylpyridine-acrylonitrile copolymers * nitroxide-mediated radical copolymerization * chain extension Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.008, year: 2007

  11. A rapid quantitative analysis of bile acids, lysophosphatidylcholines and polyunsaturated fatty acids in biofluids based on ultraperformance liquid chromatography coupled with triple quadrupole tandem massspectrometry.

    Science.gov (United States)

    Peng, Zhangxiao; Zhang, Qian; Mao, Ziming; Wang, Jie; Liu, Chunying; Lin, Xuejing; Li, Xin; Ji, Weidan; Fan, Jianhui; Wang, Maorong; Su, Changqing

    2017-11-15

    Much evidence suggested that quantitative analysis of bile acids (BAs), lysophosphatidylcholines (LPCs), and polyunsaturated fatty acids (PUFAs) in biofluids may be very useful for diagnosis and prevention of hepatobiliary disease with a non-invasive manner. However, simultaneously fast analysis of these metabolites has been challenging for their huge differences of physicochemical properties and concentration levels in biofluids. In this study, we present a liquid chromatography-mass spectrometry method with a high throughput analytical cycle (10min) to fast and accurately quantify fifteen potential biomarkers (eight BAs, four LPCs and three PUFAs) of hepatobiliary disease. The accuracy for the fifteen analytes in plasma and urine matrices was 80.45%-118.99% and 84.55%-112.66%, respectively. The intra- and inter- precisions for the fifteen analytes in plasma and urine matrices were all less than 20% and the lower limit of quantification (LLOQ) of analytes is up to 0.0283-8.2172nmol/L. Therefore, this method is fast, sensitive and accurate for the quantitative analysis of BAs, LPCs and PUFAs in biofluids. Moreover, the stability and concentration differences of the analytes in plasma and serum were evaluated, and the results demonstrated that LPCs is stable, but PUFAs is very unstable in freeze and thaw cycles, and the concentrations of the analytes in serum were slightly higher than those in plasma. We suggested plasma may be a kind of better bio-sample than serum using for quantitative analysis of metabolites in blood, due to the characteristics of plasma are more close to blood than those of serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The pro-atherogenic effects of macrophages are reduced upon formation of a complex between C-reactive protein and lysophosphatidylcholine

    Directory of Open Access Journals (Sweden)

    Chang Mi-Kyung

    2012-10-01

    Full Text Available Abstract Rationale C-reactive protein (CRP and lysophosphatidylcholine (LPC are phosphorylcholine-(PC-containing oxidized phospholipids (oxPLs found in oxidized LDL (oxLDL, which trigger pro-atherogenic activities of macrophages during the process of atherosclerosis. It has been previously reported that CRP binds to the PC head group of oxLDL in a calcium-dependent manner. The aim of this study was to investigate the importance of binding between CRP and LPC to the pro-atherogenic activities of macrophages. Objectives and findings A chemiluminescent immunoassay and HPLC showed that human recombinant CRP formed a stable complex with LPC in the presence of calcium. The Kd value of the binding of the CRP-LPC complex to the receptors FcγRIA or FcγRIIA was 3–5 fold lower than that of CRP alone. The CRP-LPC complex triggered less potent generation of reactive oxygen species and less activation of the transcription factors AP-1 and NF-kB by human monocyte-derived macrophages in comparison to CRP or LPC alone. However, CRP did not affect activities driven by components of oxLDL lacking PC, such as upregulation of PPRE, ABCA1, CD36 and PPARγ and the enhancement of cholesterol efflux by human macrophages. The presence of CRP inhibited the association of Dil-labelled oxLDL to human macrophages. Conclusions The formation of complexes between CRP and PC-containing oxPLs, such as LPC, suppresses the pro-atherogenic effects of CRP and LPC on macrophages. This effect may in part retard the progression of atherosclerosis.

  13. Supplementing female rats with DHA-lysophosphatidylcholine increases docosahexaenoic acid and acetylcholine contents in the brain and improves the memory and learning capabilities of the pups

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, A.; Nieto, S.; Sanhueza, J.; Morgado, N.; Rojas, I.; Zanartu, P.

    2010-07-01

    Docosahexaenoic acid (Dha) is supplied to the foetus and newborn through the mother from their own reserves and their diet. No consensus about the best form to supplement DHA has been established. We propose that DHA containing lysophosphatidylcholine (DHA-LPC), obtained from DHA-rich eggs may be a suitable form of DHA and choline (the precursor of acetylcholine) supplementation. We evaluated the effectiveness of DHA-LPC to increase DHA and acetylcholine concentration in the brain of pups born from female rats supplemented with DHA-LPC before and during pregnancy. We also evaluated the effect of DHA supplementation on learning and memory capabilities of pups through the Skinner test for operant conditioning. Female Wistar rats received 40-day supplementation of DHA-LPC (8 mg DHA/kg b.w/daily.), before and during pregnancy. After delivery, plasma, erythrocyte, liver, and adipose tissue DHA and plasma choline were analyzed. Brains from 60 day-old pups separated into frontal cortex, cerebellum, striatum, hippocampus, and occipital cortex, were assessed for DHA, acetylcholine, and acetylcholine transferase (CAT) activity. Pups were subjected to the Skinner box test. DHA-LPC supplementation produces higher choline and liver DHA contents in the mothers plasma and increases the pups DHA and acetylcholine in the cerebellum and hippocampus. CAT was not modified by supplementation. The Skinner test shows that pups born from DHA-LPC supplemented mothers exhibit better scores of learning and memory than the controls. Conclusion: DHA-LPC may be an adequate form for DHA supplementation during the perinatal period. (Author) 66 refs.

  14. Altered plasma lysophosphatidylcholines and amides in non-obese and non-diabetic subjects with borderline-to-moderate hypertriglyceridemia: a case-control study.

    Directory of Open Access Journals (Sweden)

    Sae Young Lee

    Full Text Available Hypertriglyceridemia (HTG is a risk factor for atherosclerotic cardiovascular disease (CVD. We investigated alterations in plasma metabolites associated with borderline-to-moderate HTG (triglycerides (TG 150-500 mg/dL. Using UPLC-LTQ-Orbitrap mass spectrometry analysis, the metabolomics profiles of 111 non-diabetic and non-obese individuals with borderline-to-moderate HTG were compared with those of 111 age- and sex-matched controls with normotriglyceridemia (NTG, TG <150 mg/dL. When compared to the NTG control group, the HTG group exhibited higher plasma levels of lysophosphatidylcholines (lysoPCs, including C14:0 (q = 0.001 and C16:0 (q = 1.8E-05, and several amides, including N-ethyldodecanamide (q = 2.9E-05, N-propyldodecanamide (q = 3.5E-05, palmitoleamide (q = 2.9E-06, and palmitic amide (q = 0.019. The metabolomic profiles of the HTG group also exhibited lower plasma levels of cis-4-octenedioic acid (q<1.0E-9 and docosanamide (q = 0.002 compared with those of the NTG controls. LysoPC 16:0 and palmitoleamide emerged as the primary metabolites able to discriminate the HTG group from the NTG group in a partial least-squares discriminant analysis and were positively associated with the fasting triglyceride levels. We identified alterations in lysoPCs, amides, and cis-4-octenedioic acid among non-diabetic and non-obese individuals with borderline-to-moderate HTG. These results provide novel insights into the metabolic alterations that occur in the early metabolic stages of HTG. This information may facilitate the design of early interventions to prevent disease progression.

  15. Lysophosphatidylcholines containing polyunsaturated fatty acids were found as Na/sup +/,K/sup +/-ATPase inhibitors in acutely volume-expanded hog

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, M.; Harris, T.M.; Higashimori, K.; Sweetman, B.J.; Blair, I.A.; Inagami, T.

    1987-05-19

    Na/sup +/,K/sup +/-ATPase inhibitors activities against the specific binding of ouabain to Na/sup +/,K/sup +/-ATPase and /sup 86/Rb uptake into hog erythrocytes have been purified from the plasma of acutely saline-infused hog. The purifications were performed by a combination of Amberlite XAD-2 adsorption chromatography and four steps of high-performance liquid chromatography with four different types of columns. Fast atom bombardment (FAB) mass and proton NMR spectrometric studies identified the purified substances as ..gamma..-arachidoyl- (LPCA(..gamma..), 34%), ..beta..-arachidoyl- (LPCA(..beta..), 4%), ..gamma..-linoleoyl- (LPCL, 33%), and ..gamma..-oleoyl- (LPCO, 25%) lysophosphatidylcholine, expressed in molar ratio in the plasma. Small amounts of ..gamma..-docosapentaenoyl-, ..gamma..-eicosatrienoyl-, and ..gamma..palmitoyllysophosphatidylcholine were also detected by both FAB mass and /sup 1/H NMR spectrometric studies. The inhibition of Na/sup +/,K/sup +/-ATPase activity due to these compounds was always more sensitive than that of both ouabain-binding and /sup 86/Rb uptake activities. The ouabain-displacing activity in plasma due to these compounds increased with time during saline infusion. The maximal plasma level was approximately 10 times higher than that in the preinfusion plasma sample. Although these results suggest that ..gamma..-acyl-LPC's with long-chain polyunsaturated fatty acids are not simple competitive inhibitors to Na/sup +/,K/sup +/-ATPase, these compounds could be implicated in the pathogenesis of the circulation abnormality through the modulation of membrane enzyme.

  16. Leptin Enhances Synthesis of Proinflammatory Mediators in Human Osteoarthritic Cartilage—Mediator Role of NO in Leptin-Induced PGE2, IL-6, and IL-8 Production

    Directory of Open Access Journals (Sweden)

    Katriina Vuolteenaho

    2009-01-01

    Full Text Available Obesity is an important risk factor for osteoarthritis (OA in weight-bearing joints, but also in hand joints, pointing to an obesity-related metabolic factor that influences on the pathogenesis of OA. Leptin is an adipokine regulating energy balance, and it has recently been related also to arthritis and inflammation as a proinflammatory factor. In the present paper, the effects of leptin on human OA cartilage were studied. Leptin alone or in combination with IL-1 enhanced the expression of iNOS and COX-2, and production of NO, PGE2, IL-6, and IL-8. The results suggest that the effects of leptin are mediated through activation of transcription factor nuclear factor κB (NF-κB and mitogen-activated protein kinase (MAPK pathway c-Jun NH2-terminal kinase (JNK. Interestingly, inhibition of leptin-induced NO production with a selective iNOS inhibitor 1400 W inhibited also the production of IL-6, IL-8, and PGE2, and this was reversed by exogenously added NO-donor SNAP, suggesting that the effects of leptin on IL-6, IL-8, and PGE2 production are dependent on NO. These findings support the idea of leptin as a factor enhancing the production of proinflammatory factors in OA cartilage and as an agent contributing to the obesity-associated increased risk for osteoarthritis.

  17. Investigation of phospholipid synthesis and the disposition of amino acid and carbohydrate

    International Nuclear Information System (INIS)

    Boehme, D.S.

    1986-01-01

    The synthesis of pulmonary phospholipids by offspring of diabetic female rats was assessed by means of high performance liquid chromatography combined with automated phosphate analysis. No changes in the pool sizes of the major phospholipids or their precursors were observed. However, offspring of both insulin-treated and untreated diabetic mothers displayed increased pulmonary lyso-phosphatidylcholine. The concentration of glycerylphosphorylcholine, the metabolic product of lyso-phosphatidylcholine, was also increased in these offspring, providing further evidence of a reduced reacylation pathway in the offspring of diabetic mothers. The concentration of phosphatidylglycerol was reduced in the lungs from offspring of diabetic mothers. Preliminary investigation suggested that the mechanism of insulin action on lungs from offspring of diabetic rats may be the diversion of substrate from lipid synthetic pathways into protein synthesis. The utilization of [14C]-labeled amino acids and carbohydrates by normal fetal rat lung, however, revealed no direct insulin effect on protein synthesis. The ability of the fetal lung to convert amino acids into Krebs Cycle intermediates was demonstrated

  18. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA.

    Science.gov (United States)

    Ohmine, Yuta; Satoh, Yukari; Kiyokawa, Kazuya; Yamamoto, Shinji; Moriguchi, Kazuki; Suzuki, Katsunori

    2016-04-02

    Plant pathogenic Agrobacterium strains can transfer T-DNA regions of their Ti plasmids to a broad range of eukaryotic hosts, including fungi, in vitro. In the recent decade, the yeast Saccharomyces cerevisiae is used as a model host to reveal important host proteins for the Agrobacterium-mediated transformation (AMT). Further investigation is required to understand the fundamental mechanism of AMT, including interaction at the cell surface, to expand the host range, and to develop new tools. In this study, we screened a yeast mutant library for low AMT mutant strains by advantage of a chromosome type T-DNA, which transfer is efficient and independent on integration into host chromosome. By the mutant screening, we identified four mutant strains (srs2Δ, rad52Δ, smi1Δ and erg28Δ), which showed considerably low AMT efficiency. Structural analysis of T-DNA product replicons in AMT colonies of mutants lacking each of the two DNA repair genes, SRS2 and RAD52, suggested that the genes act soon after T-DNA entry for modification of the chromosomal T-DNA to stably maintain them as linear replicons and to circularize certain T-DNA simultaneously. The cell wall synthesis regulator SMI1 might have a role in the cell surface interaction between the donor and recipient cells, but the smi1Δ mutant exhibited pleiotropic effect, i.e. low effector protein transport as well as low AMT for the chromosomal T-DNA, but relatively high AMT for integrative T-DNAs. The ergosterol synthesis regulator/enzyme-scaffold gene ERG28 probably contributes by sensing a congested environment, because growth of erg28Δ strain was unaffected by the presence of donor bacterial cells, while the growth of the wild-type and other mutant yeast strains was suppressed by their presence. RAD52 and the DNA helicase/anti-recombinase gene SRS2 are necessary to form and maintain artificial chromosomes through the AMT of chromosomal T-DNA. A sterol synthesis scaffold gene ERG28 is important in the high

  19. Ultrasound mediated, iodine catalyzed green synthesis of novel 2-amino-3-cyano-4H-pyran derivatives.

    Science.gov (United States)

    Tabassum, Sumaiya; Govindaraju, Santhosh; Khan, Riyaz-ur-Rahaman; Pasha, Mohamed Afzal

    2015-05-01

    An efficient synthesis of a novel series of twelve substituted 2-amino-3-cyano-4H-pyran derivatives was achieved by a one-pot three-component cyclocondensation reaction of heteroaryl aldehydes, malononitrile and active methylene compounds catalyzed by iodine in aqueous medium under ultrasound irradiation. In comparison with conventional methods, our protocol is convenient and offers several advantages, such as shorter reaction time, higher yields, milder conditions and environmental friendliness. We have herein successfully demonstrated the synergistic outcome of multi-component reaction (MCR) and sonication to offer a facile route for the design of these derivatives. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Exploration of mild copper-mediated coupling of organotrifluoroborates in the synthesis of thiirane-based inhibitors of matrix metalloproteinases.

    Science.gov (United States)

    Testero, Sebastian A; Bouley, Renee; Fisher, Jed F; Chang, Mayland; Mobashery, Shahriar

    2011-05-01

    The copper-mediated and non-basic oxidative cross-coupling of organotrifluoroborates with phenols was applied to elaboration of the structures of thiirane-based inhibitors of matrix metalloproteinases. By revision of the synthetic sequence to allow this cross-coupling as the final step, and taking advantage of the neutral nature of organotrifluoroborate cross-coupling, a focussed series of inhibitors showing aryloxy and alkenyloxy replacement of the phenoxy substituent was prepared. This reaction shows exceptional promise as an alternative to the classic copper-mediated but strongly basic Ullmann reaction, for the diversification of ether segments within base-labile lead structures. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Role of Protein Synthesis Initiation Factors in Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression

    Science.gov (United States)

    2012-03-01

    Manuscript s • Submitted to the Journal of Nutritional Biochemistry (Feb 21, 2012) “The soy isoflavone equol may increase cancer malignancy via upregulation...29] Ko KP, Park SK, Park B et al. Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean...Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression. PRINCIPAL INVESTIGATOR: Columba de la Parra Simental CONTRACTING

  2. Micrococcus luteus mediated dual mode synthesis of gold nanoparticles: involvement of extracellular α-amylase and cell wall teichuronic acid.

    Science.gov (United States)

    Arunkumar, Pichaimani; Thanalakshmi, Muthukrishnan; Kumar, Priyadarsini; Premkumar, Kumpati

    2013-03-01

    In the present study we have utilized the bioreductive potential of Micrococcus luteus for the synthesis of gold nanoparticles. Biochemical and physiological analysis indicate that the biosynthesized GNPs were achieved by dual mode, involving extracellular α-amylase and cell wall teichuronic acid (TUA) of M. luteus. The biosynthetic potential of both α-amylase and TUA, after isolation from bacterium, was examined. Under optimum conditions, these biomolecules reduces Au(3+) into Au(0) and the resulting GNPs were found to be stable for 1 month. The synthesized GNPs were characterized by UV-VIS spectrometry, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS). Results demonstrated that the synthesized GNPs were found to be monodispersive and spherical in shape with an average size of ∼6 nm and ∼50 nm for α-amylase and teichuronic acid, respectively. These findings suggest that M. luteus can be exploited as a potential biosource for the eco-friendly synthesis of gold nanoparticles. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma.

    Science.gov (United States)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita

    2016-01-01

    In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV-vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Cellulose nanocrystals as templates for cetyltrimethylammonium bromide mediated synthesis of Ag nanoparticles and their novel use in PLA films.

    Science.gov (United States)

    Yalcinkaya, E E; Puglia, D; Fortunati, E; Bertoglio, F; Bruni, G; Visai, L; Kenny, J M

    2017-02-10

    In the present paper, we reported how cellulose nanocrystals (CNC) from microcrystalline cellulose have the capacity to assist in the synthesis of metallic nanoparticles chains. A cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as modifier for CNC surface. Silver nanoparticles were synthesized on CNC, and nanoparticle density and size were optimized by varying concentrations of nitrate and reducing agents, and the reduction time. The experimental conditions were optimized for the synthesis and the resulting Ag grafted CNC (Ag-g-CNC) were characterized by means of TGA, SEM, FTIR and XRD, and then introduced in PLA matrix. PLA nanocomposite containing silver grafted cellulose nanocrystals (PLA/0.5Ag-g-1CNC) was characterized by optical and thermal analyses and the obtained data were compared with results from PLA nanocomposites containing 1% wt. of CNC (PLA/1CNC), 0.5% wt. of silver nanoparticles (PLA/0.5Ag) and hybrid system containing CNC and silver in the same amount (PLA/1CNC/0.5Ag). The results demonstrated that grafting of silver nanoparticles on CNC positively affected the thermal degradation process and cold crystallization processes of PLA matrix. Finally, the antibacterial activity of the different systems was studied at various incubation times and temperatures, showing the best performance for PLA/1CNC/0.5Ag based nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Photo-mediated optimized synthesis of silver nanoparticles for the selective detection of Iron(III), antibacterial and antioxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijuevs@gmail.com [Nano Material Research Laboratory, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, U.P. (India); Mohan, Sweta; Singh, Devendra K. [Nano Material Research Laboratory, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, U.P. (India); Verma, Devendra K. [School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, U.P. (India); Singh, Vikas Kumar [Nano Material Research Laboratory, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, U.P. (India); Hasan, Syed Hadi, E-mail: shhasan.apc@itbhu.ac.in [Nano Material Research Laboratory, Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, U.P. (India)

    2017-02-01

    The AgNPs synthesized by green method have shown great potential in several applications such as biosensing, biomedical, catalysis, electronic etc. The present study deals with the selective colorimetric detection of Fe{sup 3+} using photoinduced green synthesized AgNPs. For the synthesis purpose, an aqueous extract of Croton bonplandianum (AEC) was used as a reducing and stabilizing agent. The biosynthesis was confirmed by UV–visible spectroscopy where an SPR band at λ{sub max} 436 nm after 40 s and 428 nm after 30 min corresponded to the existence of AgNPs. The optimum conditions for biosynthesis of AgNPs were 30 min sunlight exposure time, 5.0% (v/v) AEC inoculum dose and 4 mM AgNO{sub 3} concentration. The stability of synthesized AgNPs was monitored up to 9 months. The size and shape of AgNPs with average size 19.4 nm were determined by Field Emission Scanning Electron Microscope (FE-SEM) and High-Resolution Transmission Electron Microscope (HR-TEM). The crystallinity was determined by High-Resolution X-ray Diffractometer (HR-XRD) and Selected Area Electron Diffraction (SAED) pattern. The chemical and elemental compositions were determined by Fourier Transformed Infrared Spectroscopy (FTIR) and Energy Dispersive X-ray Spectroscopy (EDX) respectively. The Atomic Force Microscopy (AFM) images represented the lateral and 3D topological characteristics of AgNPs. The XPS analysis confirmed the presence of two individual peaks which attributed to the Ag 3d3/2 and Ag 3d5/2 binding energies corresponding to the presence of metallic silver. The biosynthesized AgNPs showed potent antibacterial activity against both gram-positive and gram-negative bacterial strains as well as antioxidant activity. On the basis of results and facts, a probable mechanism was also proposed to explore the possible route of AgNPs synthesis, colorimetric detection of Fe{sup 3+}, antibacterial and antioxidant activity. - Highlights: • Process was photo catalytic and able to synthesize Ag

  6. Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent

    Directory of Open Access Journals (Sweden)

    M.S. Geetha

    2016-09-01

    Full Text Available Presently the progress of green chemistry in the synthesis of nanoparticles with the use of plants has engrossed a great attention. This study reports the synthesis of ZnO using latex of Euphorbia Jatropa as reducing agent. As prepared product was characterized by powder X-ray diffractometer (PXRD, Fourier transform infra-red spectroscopy (FTIR, scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS, transmission electron microscopy (TEM, X-ray photo electron spectroscopy (XPS, Rietveld refinement, UV–Visible spectroscopy and photoluminescence (PL. The concentration of plant latex plays an important role in controlling the size of the particle and its morphology. PXRD graphs showed the well crystallisation of the particles. The average particle size was calculated using Scherrer equation and advanced Williamson Hall (WH plots. The average particle size was around 15 nm. This result was also supported by SEM and TEM analyses. FTIR shows the characteristic peak of ZnO at 435 cm−1. SEM and TEM micrographs show that the particles were almost hexagonal in nature. EDS of SEM analysis confirmed that the elements are only Zn and O. EDS confirmed purity of ZnO. Atomic states were confirmed by XPS results. Crystal parameters were determined using Rietveld refinement. From UV–Visible spectra average energy gap was calculated which is ∼3.63 eV. PL studies showed UV emission peak at 392 nm and broad band visible emission centred in the range 500–600 nm. The Commission International de I'Eclairage and colour correlated temperature coordinates were estimated for ZnO prepared using 2 ml, 4 ml and 6 ml Jatropa latex. The results indicate that the phosphor may be suitable for white light emitting diode (WLED. The study fruitfully reveals simple, fast, economical and eco friendly method of synthesis of multifunctional ZnO nanoparticles (Nps.

  7. Lantana camara Linn leaf extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    Science.gov (United States)

    Dash, Shib Shankar; Bag, Braja Gopal; Hota, Poulami

    2015-03-01

    A facile one-step green synthesis of stable gold nanoparticles (AuNPs) has been described using chloroauric acid (HAuCl4) and the leaf extract of Lantana camara Linn (Verbenaceae family) at room temperature. The leaf extract enriched in various types of plant secondary metabolites is highly efficient for the reduction of chloroaurate ions into metallic gold and stabilizes the synthesized AuNPs without any additional stabilizing or capping agents. Detailed characterizations of the synthesized gold nanoparticles were carried out by surface plasmon resonance spectroscopy, transmission electron microscopy, dynamic light scattering, Zeta potential, X-ray diffraction and Fourier transform-infrared spectroscopy studies. The synthesized AuNPs have been utilized as a catalyst for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol in water at room temperature under mild reaction condition. The kinetics of the reduction reaction has been studied spectrophotometrically.

  8. Abroma augusta Linn bark extract-mediated green synthesis of gold nanoparticles and its application in catalytic reduction

    Science.gov (United States)

    Das, Subhajit; Bag, Braja Gopal; Basu, Ranadhir

    2015-10-01

    The bark extract of Abroma augusta Linn is rich in medicinally important phytochemicals including antioxidants and polyphenols. First one step green synthesis of gold nanoparticles (AuNPs) has been described utilizing the bark extract of Abroma augusta L. and chloroauric acid under very mild reaction conditions. The phytochemicals present in the bark extract acted both as a reducing as well as a stabilizing agent, and no additional stabilizing and capping agents were needed. Detailed characterizations of the stabilized AuNPs were carried out by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles has been demonstrated for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol, and the kinetics of the reduction reaction have been studied spectrophotometrically.

  9. H2O2 rejuvenation-mediated synthesis of stable mixed-morphology Ag3PO4 photocatalysts

    Directory of Open Access Journals (Sweden)

    Henry Agbe

    2018-04-01

    Full Text Available Ag3PO4 photocatalyst has attracted interest of the scientific community in recent times due to its reported high efficiency for water oxidation and dye degradation. However, Ag3PO4 photo-corrodes if electron accepter such as AgNO3 is not used as scavenger. Synthesis of efficient Ag3PO4 followed by a simple protocol for regeneration of the photocatalyst is therefore a prerequisite for practical application. Herein, we present a facile method for the synthesis of a highly efficient Ag3PO4, whose photocatalytic efficiency was demonstrated using 3 different organic dyes: Methylene Blue (MB, Methyl orange (MO and Rhodamine B (RhB organic dyes for degradation tests. Approximately, 19 % of Ag3PO4 is converted to Ag0 after 4.30 hours of continuous UV-Vis irradiation in presence of MB organic dye. We have shown that the Ag/Ag3PO4 composite can be rejuvenated by a simple chemical oxidation step after several cycles of photocatalysis tests. At an optimal pH of 6.5, a mixture of cubic, rhombic dodecahedron, nanosphere and nanocrystals morphologies of the photocatalyst was formed. H2O2 served as the chemical oxidant to re-insert the surface metallic Ag into the Ag3PO4 photocatalyst but also as the agent that can control morphology of the regenerated as-prepared photocatalyst without the need for any other morphology controlling Agent (MCA. Surprisingly, the as- regenerated Ag3PO4 was found to have higher photocatalytic reactivity than the freshly made material and superior at least 17 times in comparison with the conventional Degussa TiO2, and some of TiO2 composites tested in this work. Keywords: Materials chemistry, Materials science, Engineering

  10. Particle size, morphology and color tunable ZnO:Eu{sup 3+} nanophosphors via plant latex mediated green combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekhar, M. [Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103 (India); Department of Physics, Acharya Institute of Technology, Bangalore 560 107 (India); Nagabhushana, H., E-mail: bhushanvlc@gmail.com [Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103 (India); Sharma, S.C. [B.S. Narayan Centre of Excellence for Advanced Materials, B.M.S. Institute of Technology, Yelahanka, Bangalore 560 064 (India); Department of Mechanical Engineering, B.M.S. Institute of Technology, Yelahanka, Bangalore 560 064 (India); Sudheer kumar, K.H. [Department of Environmental Science, Kuvempu University, Shankarghatta, Shimoga 577 451 (India); Department of Chemistry, B.M.S. Institute of Technology, Yelahanka, Bangalore 560 064 (India); B.S. Narayan Centre of Excellence for Advanced Materials, B.M.S. Institute of Technology, Yelahanka, Bangalore 560 064 (India); Dhananjaya, N. [Department of Physics, B.M.S. Institute of Technology, Yelahanka, Bangalore 560 064 (India); B.S. Narayan Centre of Excellence for Advanced Materials, B.M.S. Institute of Technology, Yelahanka, Bangalore 560 064 (India); Sunitha, D.V. [Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103 (India); Shivakumara, C. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India); Nagabhushana, B.M. [Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore 560 054 (India)

    2014-01-25

    Highlights: • ZnO:Eu{sup 3+} phosphors were prepared by green synthesis route. • Morphology and particle size was tuned by varying the concentration of plant latex. • The phosphor show excellent chromaticity coordinates in the white region. -- Abstract: Efficient ZnO:Eu{sup 3+} (1–11 mol%) nanophosphors were prepared for the first time by green synthesis route using Euphorbia tirucalli plant latex. The final products were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), etc. The average particle size of ZnO:Eu{sup 3+} (7 mol%) was found to be in the range 27–47 nm. With increase of plant latex, the particle size was reduced and porous structure was converted to spherical shaped particles. Photoluminescence (PL) spectra indicated that the peaks situated at ∼590, 615, 648 and 702 nm were attributed to the {sup 5}D{sub 0} → {sup 7}F{sub j(j=1,2,3,4)} transitions of Eu{sup 3+} ions. The highest PL intensity was recorded for 7 mol% with Eu{sup 3+} ions and 26 ml plant latex concentration. The PL intensity increases with increase of plant latex concentration up to 30 ml and there after it decreases. The phosphor prepared by this method show spherical shaped particles, excellent chromaticity co-ordinates in the white light region which was highly useful for WLED’s. Further, present method was reliable, environmentally friendly and alternative to economical routes.

  11. Alpha-2 adrenoceptors and imidazoline receptors in cardiomyocytes mediate counterbalancing effect of agmatine on NO synthesis and intracellular calcium handling.

    Science.gov (United States)

    Maltsev, Alexander V; Kokoz, Yuri M; Evdokimovskii, Edward V; Pimenov, Oleg Y; Reyes, Santiago; Alekseev, Alexey E

    2014-03-01

    Evidence suggests that intracellular Ca(2+) levels and contractility of cardiomyocytes can be modulated by targeting receptors other than already identified adrenergic or non-adrenergic sarcolemmal receptors. This study uncovers the presence in myocardial cells of adrenergic α2 (α2-AR) and imidazoline I1 (I1R) receptors. In isolated left ventricular myocytes generating stationary spontaneous Ca(2+) transients in the absence of triggered action potentials, the prototypic agonist of both receptors agmatine can activate corresponding signaling cascades with opposing outcomes on nitric oxide (NO) synthesis and intracellular Ca(2+) handling. Specifically, activation of α2-AR signaling through PI3 kinase and Akt/protein kinase B stimulates NO production and abolishes Ca(2+) transients, while targeting of I1R signaling via phosphatidylcholine-specific phospholipase C (PC-PLC) and protein kinase C (PKC) suppresses NO synthesis and elevates averaged intracellular Ca(2+). We identified that endothelial NO synthase (eNOS) is a major effector for both signaling cascades. According to the established eNOS transitions between active (Akt-dependent) and inactive (PKC-dependent) conformations, we suggest that balance between α2-AR and I1R signaling pathways sets eNOS activity, which by defining operational states of myocellular sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) can adjust Ca(2+) re-uptake and thereby cardiac inotropy. These results indicate that the conventional catalog of cardiomyocyte sarcolemmal receptors should be expanded by the α2-AR and I1R populations, unveiling previously unrecognized targets for endogenous ligands as well as for existing and potential pharmacological agents in cardiovascular medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. First report on soapnut extract-mediated synthesis of sulphur-substituted nanoscale NdFeB permanent magnets and their characterization

    Science.gov (United States)

    Jayapala Rao, G. V. S.; Prasad, T. N. V. K. V.; Shameer, Syed; Arun, T.; Purnachandra Rao, M.

    2017-10-01

    Biosynthesis of nanoscale materials has its own advantages over other physical and chemical methods. Using soapnut extract as reducing and stabilizing agent for the synthesis of inorganic nanoscale materials is novel and has not been exploited to its potential so far. Herein, we report for the first time on the effects of sulphur substitution on soapnut extract-mediated synthesis of nanoscale NdFeB (S-NdFeB) permanent magnetic powders (Nd 15%, Fe 77.5%, B 7.5% and S with molar ratios: 0.1, 0.2, 0.3, 0.4, and 0.5). To synthesize, a 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the as-prepared nanoscale S-NdFeB magnetic materials was done using the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS for size and zeta potential measurements) and vibrating sample magnetometer (VSM)-hysteresis loop studies. The results revealed that particles were highly stable (with a negative zeta potential of 25.7 mV) with irregular and spherical shape (with measured hydrodynamic diameter 6.7 and 63.5 nm). The tetragonal structures of the formed powders were revealed by XRD micrographs. Hysteresis loop studies clearly indicate the effect of S concentration on the enhanced magnetization of the materials.

  13. Prostaglandin (PG) E3 synthesis elicted by adrenergic stimuli in guinea-pig trachea (GPT) is mediated primarily by B2 adrenergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nadel, G.L.; Malik, K.U.; Lew, D.B. (Univ. of Tennessee, Memphis (United States))

    1990-02-26

    The purpose of this study was to examine arachidonic acid (AA) metabolism and to characterize the type of adrenergic receptor (AR) involved in the production of the major metabolite of this fatty acid. ({sup 14}C)AA was incubated with GPT-rings and the radiolabelled products were extracted and separated by TLC method. The medium was also assayed for radiolabelled immunoreactive PG's (iPG's) and leukotrienes (LT) B4 and C4 by RIA or Enzyme immunoassay (EIA) after exposure to various AR agonists. ({sup 14}C)AA was incorporated into GPT-rings and metabolized mainly into iPGE2 and smaller amounts into PGF2{alpha}. Trace amounts of PGD2 and 6-keto-PGF1{alpha} but not LTB4 or LTC4 were detected by RIA and/or EIA. Incubation of GPT rings for 15 minutes with isoproterenol and salbutamol resulted in a significant increase of PGE2 synthesis (optimum conc: 10{sup {minus}7}, 10{sup {minus}7}M respectively). In contrast, dobutamine, norepinephrine, phenylnephrine and xylazine (up to 10{sup {minus}6}M) did not significantly increase PGE2 production. Isoproterenol-induced iPGE2 production was inhibited by a selective {beta}2 antagonist, butoxamine (70%: 10{sup {minus}7}M, 91%: 10{sup {minus}6}M) and somewhat reduced by {beta}1 antagonists practolol and metoprolol (30-64%:10{sup {minus}6}M). These data suggest that isoproterenol induced iPGE2 synthesis is primarily mediated via activation of {beta}2 adrenergic receptor.

  14. Assessment of Intrathecal Free Light Chain Synthesis: Comparison of Different Quantitative Methods with the Detection of Oligoclonal Free Light Chains by Isoelectric Focusing and Affinity-Mediated Immunoblotting.

    Science.gov (United States)

    Zeman, David; Kušnierová, Pavlína; Švagera, Zdeněk; Všianský, František; Byrtusová, Monika; Hradílek, Pavel; Kurková, Barbora; Zapletalová, Olga; Bartoš, Vladimír

    2016-01-01

    We aimed to compare various methods for free light chain (fLC) quantitation in cerebrospinal fluid (CSF) and serum and to determine whether quantitative CSF measurements could reliably predict intrathecal fLC synthesis. In addition, we wished to determine the relationship between free kappa and free lambda light chain concentrations in CSF and serum in various disease groups. We analysed 166 paired CSF and serum samples by at least one of the following methods: turbidimetry (Freelite™, SPAPLUS), nephelometry (N Latex FLC™, BN ProSpec), and two different (commercially available and in-house developed) sandwich ELISAs. The results were compared with oligoclonal fLC detected by affinity-mediated immunoblotting after isoelectric focusing. Although the correlations between quantitative methods were good, both proportional and systematic differences were discerned. However, no major differences were observed in the prediction of positive oligoclonal fLC test. Surprisingly, CSF free kappa/free lambda light chain ratios were lower than those in serum in about 75% of samples with negative oligoclonal fLC test. In about a half of patients with multiple sclerosis and clinically isolated syndrome, profoundly increased free kappa/free lambda light chain ratios were found in the CSF. Our results show that using appropriate method-specific cut-offs, different methods of CSF fLC quantitation can be used for the prediction of intrathecal fLC synthesis. The reason for unexpectedly low free kappa/free lambda light chain ratios in normal CSFs remains to be elucidated. Whereas CSF free kappa light chain concentration is increased in most patients with multiple sclerosis and clinically isolated syndrome, CSF free lambda light chain values show large interindividual variability in these patients and should be investigated further for possible immunopathological and prognostic significance.

  15. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors.

    Science.gov (United States)

    Wu, Yuxiang; Pan, Miaobo; Dai, Yuxuan; Liu, Baomin; Cui, Jian; Shi, Wei; Qiu, Qianqian; Huang, Wenlong; Qian, Hai

    2016-05-15

    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50>100μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Neonatal detection of Aicardi Goutières Syndrome by increased C26:0 lysophosphatidylcholine and interferon signature on newborn screening blood spots.

    Science.gov (United States)

    Armangue, Thais; Orsini, Joseph J; Takanohashi, Asako; Gavazzi, Francesco; Conant, Alex; Ulrick, Nicole; Morrissey, Mark A; Nahhas, Norah; Helman, Guy; Gordish-Dressman, Heather; Orcesi, Simona; Tonduti, Davide; Stutterd, Chloe; van Haren, Keith; Toro, Camilo; Iglesias, Alejandro D; van der Knaap, Marjo S; Goldbach Mansky, Raphaela; Moser, Anne B; Jones, Richard O; Vanderver, Adeline

    2017-11-01

    Aicardi Goutières Syndrome (AGS) is a heritable interferonopathy associated with systemic autoinflammation causing interferon (IFN) elevation, central nervous system calcifications, leukodystrophy and severe neurologic sequelae. An infant with TREX1 mutations was recently found to have abnormal C26:0 lysophosphatidylcholine (C26:0 Lyso-PC) in a newborn screening platform for X-linked adrenoleukodystrophy, prompting analysis of this analyte in retrospectively collected samples from individuals affected by AGS. In this study, we explored C26:0 Lyso-PC levels and IFN signatures in newborn blood spots and post-natal blood samples in 19 children with a molecular and clinical diagnosis of AGS and in the blood spots of 22 healthy newborns. We used Nanostring nCounter™ for IFN-induced gene analysis and a high-performance liquid chromatography with tandem mass spectrometry (HPLC MS/MS) newborn screening platform for C26:0 Lyso-PC analysis. Newborn screening cards from patients across six AGS associated genes were collected, with a median disease presentation of 2months. Thirteen out of 19 (68%) children with AGS had elevations of first tier C26:0 Lyso-PC (>0.4μM), that would have resulted in a second screen being performed in a two tier screening system for X-linked adrenoleukodystrophy (X-ALD). The median (95%CI) of first tier C26:0 Lyso-PC values in AGS individuals (0.43μM [0.37-0.48]) was higher than that seen in controls (0.21μM [0.21-0.21]), but lower than X-ALD individuals (0.72μM [0.59-0.84])(p<0.001). Fourteen of 19 children had elevated expression of IFN signaling on blood cards relative to controls (Sensitivity 73.7%, 95%CI 51-88%, Specificity 95%, 95% CI 78-99%) including an individual with delayed disease presentation (36months of age). All five AGS patients with negative IFN signature at birth had RNASEH2B mutations. Consistency of agreement between IFN signature in neonatal and post-natal samples was high (0.85). This suggests that inflammatory markers

  17. Phosphorylation of the human respiratory syncytial virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins.

    Science.gov (United States)

    Asenjo, Ana; Villanueva, Nieves

    2016-01-04

    The M2-2 protein regulates the balance between human respiratory syncytial virus (HRSV) transcription and replication. Here it is shown that M2-2 mediated transcriptional inhibition is managed through P protein phosphorylation. Transcription inhibition by M2-2 of the HRSV based minigenome pRSVluc, required P protein phosphorylation at serines (S) in positions 116, 117, 119 and increased inhibition is observed if S232 or S237 is also phosphorylated. Phosphorylation of these residues is required for viral particle egression from infected cells. Viral RNA synthesis complementation assays between P protein variants, suggest that two types of P proteins participate in the process as components of RNA dependent RNA polymerase (RdRp). Type I is only functional when, as a homotetramer, it is bound to N and L proteins through residues 203-241. Type II is functionally independent of these interactions and binds to N protein at a region outside residues 232-241. P protein type I phosphorylation at S116, S117 and S119, did not affect the activity of RdRp but this phosphorylation in type II avoids its interaction with N protein and impairs RdRp functionality for transcription and replication. Structural changes in the RdRp, mediated by phosphorylation turnover at the indicated residues, in the two types of P proteins, may result in a fine adjustment, late in the infectious cycle, of transcription, replication and progression in the morphogenetic process that ends in egression of the viral particles from infected cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis.

    Science.gov (United States)

    Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J

    2017-12-08

    Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Controllable synthesis and characterization of CdS quantum dots by a microemulsion-mediated hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Rongrong; Han, Boning; Yang, Lin, E-mail: yanglin@hbu.edu.cn; Yang, Yanmin; Xu, Ying; Mai, Yaohua, E-mail: yaohuamai@hbu.edu.cn

    2016-04-15

    CdS QDs were successfully synthesized through a chemical reaction between cadmium acetate dehydrate and thioacetamide by using a microemulsion-mediated hydrothermal method. The properties of as-prepared CdS QDs can be controlled by using Emulsifier OP and CTAB surfactant, which produce a universal cubic phase and an unusual hexagonal phase, respectively. As a comparison, CdS QDs prepared by CTAB exhibit a better crystallinity and dispersibility. A possible mechanism involving the critical role of surfactant in the formation of crystal structure has also been explored in this paper. It is also found that the crystal size gradually increase with the increase of temperature, and the observation of red-shift in the absorption and emission peaks gives a clear evidence of the quantum confinement effect. All the desired properties of CdS QDs synthesized in this study imply the possibility of the preparation of high quality QDs under the appropriate reaction conditions.

  20. Short-hairpin RNA-mediated stable silencing of Grb2 impairs cell growth and DNA synthesis

    International Nuclear Information System (INIS)

    Di Fulvio, Mauricio; Henkels, Karen M.; Gomez-Cambronero, Julian

    2007-01-01

    Grb2 is an SH2-SH3 protein adaptor responsible for linking growth factor receptors with intracellular signaling cascades. To study the role of Grb2 in cell growth, we have generated a new COS7 cell line (COS7 shGrb2 ), based on RNAi technology, as null mutations in mammalian Grb2 genes are lethal in early development. This novel cell line continuously expresses a short hairpin RNA that targets endogenous Grb2. Stable COS7 shGrb2 cells had the shGrb2 integrated into the genomic DNA and carried on SiL construct (made refractory to the shRNA-mediated interference), but not with an SH2-deficient mutant (R86K). Thus, a viable knock-down and rescue protocol has demonstrated that Grb2 is crucial for cell proliferation

  1. Free-radical-mediated conjugate additions. Enantioselective synthesis of butyrolactone natural products: (-)-enterolactone, (-)-arctigenin, (-)-isoarctigenin, (-)-nephrosteranic acid, and (-)-roccellaric acid.

    Science.gov (United States)

    Sibi, Mukund P; Liu, Pingrong; Ji, Jianguo; Hajra, Saumen; Chen, Jian-xie

    2002-03-22

    Lewis acid-mediated conjugate addition of alkyl radicals to a differentially protected fumarate 10 produced the monoalkylated succinates with high chemical efficiency and excellent stereoselectivity. A subsequent alkylation or an aldol reaction furnished the disubstituted succinates with syn configuration. The chiral auxiliary, 4-diphenylmethyl-2-oxazolidinone, controlled the stereoselectivity in both steps. Manipulation of the disubstituted succinates obtained by alkylation furnished the natural products (-)-enterolactone, (-)-arctigenin, and (-)-isoarctigenin. The overall yields for the target natural products were 20-26% over six steps. Selective functionalization of the disubstituted succinates obtained by aldol condensation gave the paraconic acid natural products (-)-nephrosteranic acid (8) and (-)-roccellaric acid (9). The overall yield of the natural products 8 and 9 over four steps was 53% and 42%, respectively.

  2. Developmental expression of Manduca shade, the P450 mediating the final step in molting hormone synthesis

    DEFF Research Database (Denmark)

    Rewitz, Kim; Rybczynski, Robert; Warren, James T.

    2006-01-01

    body and epidermis with very low expression in the prothoracic gland and nervous system. Developmental variations in E20MO enzymatic activity are almost perfectly correlated with comparable changes in the gene expression of Msshd in the fat body and midgut during the fifth instar and the beginning...... gene shade (shd; CYP314A1) that encodes the E20MO in the tobacco hornworm, Manduca sexta. Manduca Shd (MsShd) mediates the conversion of E to 20E when expressed in Drosophila S2 cells. In accord with the central dogma, the data show that Msshd is expressed mainly in the midgut, Malpighian tubules, fat...... of pupal-adult development. The results indicate three successive and overlapping peaks of expression in the fat body, midgut and Malpighian tubules, respectively, during the fifth larval instar. The data suggest that precise tissue-specific transcriptional regulation controls the levels, and thereby...

  3. Effect of pH on ionic liquid mediated synthesis of gold nanoparticle using elaiseguineensis (palm oil) kernel extract

    Science.gov (United States)

    Irfan, Muhammad; Ahmad, Tausif; Moniruzzaman, Muhammad; Abdullah, Bawadi

    2017-05-01

    This study was conducted for microwave assisted synthesis of stable gold nanoparticles (AuNPs) by reduction of chloroauric acid with Elaeis Guineensis (palm oil) kernel (POK) extract which was prepared in aqueous solution of ionic liquid, [EMIM][OAc], 1-Ethyl-3-methylimidazolium acetate. Effect of initial pH of reaction mixture (3.5 - 8.5) was observed on SPR absorbance, maximum wavelength (λmax ) and size distribution of AuNPs. Change of pH of reaction mixture from acidic to basic region resulted in appearance of strong SPR absorption peaks and blue shifting of λmax from 533 nm to 522 nm. TEM analysis revealed the formation of predominantly spherical AuNPs with mean diameter of 8.51 nm. Presence of reducing moieties such as flavonoids, phenolic and carboxylic groups in POK extract was confirmed by FTIR analysis. Colloidal solution of AuNPs was remained stable at room temperature and insignificant difference in zeta value was recorded within experimental tenure of 4 months.

  4. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum

    Science.gov (United States)

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

    2013-01-01

    In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production. PMID:23569372

  5. Synthesis of [(11)C]Am80 via Novel Pd(0)-Mediated Rapid [(11)C]Carbonylation Using Arylboronate and [(11)C]Carbon Monoxide.

    Science.gov (United States)

    Takashima-Hirano, Misato; Ishii, Hideki; Suzuki, Masaaki

    2012-10-11

    (11)C-labeled methylbenzoates [(11)C]4a-d were synthesized using Pd(0)-mediated rapid cross-coupling reactions employing [(11)C]carbon monoxide and arylboronic acid neopentyl glycol esters 3a-d under atmospheric pressure in methanol-dimethylformamide (MeOH-DMF), in radiochemical yields of 12 ± 5-26 ± 13% (decay-corrected based on [(11)C]O). The reaction conditions were highly favorable for the synthesis of [(11)C]Am80 ([(11)C]2) and [(11)C]methyl 4-((5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)carbamoyl)benzoate ([(11)C]2-Me) using 4-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-N-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)benzamide (5), both of which produced a decay-corrected radiochemical yield (RCY) of 26 ± 13%, with >99% radiochemical purity and an average specific radioactivity of 44 GBq/μmol. The yields of [(11)C]4a, [(11)C]2-Me, and [(11)C]2 were improved by the use of a 2-fold excess of the solvents and reagents under the same conditions to give respective yields of 66 ± 8, 65 ± 7, and 48 ± 2%.

  6. Synthesis of adenine mediated superparamagnetic colloidal β-FeOOH nanostructure(s): study of their morphological changes and magnetic behavior

    International Nuclear Information System (INIS)

    Kumar, Anil; Gupta, Sudhir Kumar

    2013-01-01

    This paper describes the synthesis of adenine-mediated superparamagnetic β-FeOOH nanostructures in aqueous medium. Capping by adenine provides a synthetic control to manipulate their size, morphology, optical and magnetization properties. β-FeOOH binds to adenine mainly through –NH 2 , N(3); N(9)H and N(7) of the pyridine and imidazole rings, respectively. At low [adenine], it produces nanorods, but at higher [adenine] (>1 × 10 −2 mol dm −3 ), increasing numbers of spherical nanoparticles encapsulating β-FeOOH with an average diameter of 2.5 nm in the core and adenine molecules in the shell are obtained, causing an increase in the specific surface area by about twofold. Dynamic light scattering technique also depicts a regular decrease in their hydrodynamic size with increasing [adenine] and exhibits the highest stability with a zeta potential of ∼67 mV for the sample containing 2 × 10 −2 mol dm −3 adenine (SP5). An increasing [adenine] from 1 × 10 −3 to 2 × 10 −2 mol dm −3 in these samples enhanced the value of saturation magnetization (M S ), due to β-FeOOH, gradually from 2.0 to 6.9 emu g −1 at 300 K, but at S at 300 K having potential for environmental and biological applications.

  7. Sodium Phenylbutyrate Enhances Astrocytic Neurotrophin Synthesis via Protein Kinase C (PKC)-mediated Activation of cAMP-response Element-binding Protein (CREB)

    Science.gov (United States)

    Corbett, Grant T.; Roy, Avik; Pahan, Kalipada

    2013-01-01

    Neurotrophins, such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are believed to be genuine molecular mediators of neuronal growth and homeostatic synapse activity. However, levels of these neurotrophic factors decrease in different brain regions of patients with Alzheimer disease (AD). Induction of astrocytic neurotrophin synthesis is a poorly understood phenomenon but represents a plausible therapeutic target because neuronal neurotrophin production is aberrant in AD and other neurodegenerative diseases. Here, we delineate that sodium phenylbutyrate (NaPB), a Food and Drug Administration-approved oral medication for hyperammonemia, induces astrocytic BDNF and NT-3 expression via the protein kinase C (PKC)-cAMP-response element-binding protein (CREB) pathway. NaPB treatment increased the direct association between PKC and CREB followed by phosphorylation of CREB (Ser133) and induction of DNA binding and transcriptional activation of CREB. Up-regulation of markers for synaptic function and plasticity in cultured hippocampal neurons by NaPB-treated astroglial supernatants and its abrogation by anti-TrkB blocking antibody suggest that NaPB-induced astroglial neurotrophins are functionally active. Moreover, oral administration of NaPB increased the levels of BDNF and NT-3 in the CNS and improved spatial learning and memory in a mouse model of AD. Our results highlight a novel neurotrophic property of NaPB that may be used to augment neurotrophins in the CNS and improve synaptic function in disease states such as AD. PMID:23404502

  8. New colorimetric and fluorometric sensing strategy based on the anisotropic growth of histidine-mediated synthesis of gold nanoclusters for iodide-specific detection.

    Science.gov (United States)

    Wang, Yifeng; Zhu, Haiyan; Yang, Xiaoming; Dou, Yao; Liu, Zhongde

    2013-04-07

    Iodide, as a biologically important anion, it remains a worthwhile yet challenging undertaking to find a sensitive and specific approach to provide a technically simple iodide detection. In this article, it was found that no other ions than iodide-induced anisotropic growth of gold nanocrystals (AuNCs) originated from a small molecule, histidine-mediated synthesis of AuNCs, were observed. Simultaneously, it is accompanied by the fluorescence quenching of AuNCs and the naked-eye visible color change. Therefore, a new colorimetric and fluorometric sensing strategy was developed for the iodide-specific detection. Compared with currently reported methods, the present one displays the advantages of the visual detection and simplicity. The quenched fluorescence and enhanced surface plasmon resonance absorbance were found to be proportional to the iodide concentration over the range of 0.8-60 and 1.2-50 μM with a detection limit (3σ) of 118 nM and 215 nM, respectively.

  9. Highly selective sulfur ylide mediated asymmetric epoxidations and aziridinations using an inexpensive chiral sulfide and applications to the synthesis of quinine and quinidine (abstract)

    International Nuclear Information System (INIS)

    Arshad, M.; Illa, O.; Mcgarrigle, E.M.

    2011-01-01

    Asymmetric sulfur ylide mediated epoxidation, which is considered a complimentary method to asymmetric epoxidation of alkene has been utilized as a key step in the asymmetric total synthesis of complex cinchona alkaloids quinine and quinidine. Isothiocineole 1, which was readily available in one step from very inexpensive starting materials, is employed as a chiral sulfide to prepare the desired sulfonium salt 2. The semi-stabilised ylide derived from this salt on epoxidation with meroquinene aldehyde 3, afforded the required epoxide 4 in 81% yield and 89:11 diastereoselectivity (trans/cis). The epoxide was converted to the target quinine 5 in 73% yield over four steps in one pot. Similarly, the opposite enantiomer of isothiocineole was used to synthesise the corresponding sulfonium salt, which on reaction with meroquinene aldehyde gave epoxide in 73% yield and 84:16 diastereoselectivity (trans/cis). This epoxide was transformed to the target quinidine in 78% yield over four steps in one pot. The epoxidation reactions proceeded under reagent control with high trans selectivity. The effect of sulfide and ylide substituents on the stereochemical outcome of the epoxidation reaction is also prescribed. (author)

  10. A focus on polarity: Investigating the role of orientation cues in mediating student performance on mRNA synthesis tasks in an introductory cell and molecular biology course.

    Science.gov (United States)

    Olimpo, Jeffrey T; Quijas, Daniel A; Quintana, Anita M

    2017-11-01

    The central dogma has served as a foundational model for information flow, exchange, and storage in the biological sciences for several decades. Despite its continued importance, however, recent research suggests that novices in the domain possess several misconceptions regarding the aforementioned processes, including those pertaining specifically to the formation of messenger ribonucleic acid (mRNA) transcripts. In the present study, we sought to expand upon these observations through exploration of the influence of orientation cues on students' aptitude at synthesizing mRNAs from provided deoxyribonucleic acid (DNA) template strands. Data indicated that participants (n = 45) were proficient at solving tasks of this nature when the DNA template strand and the mRNA molecule were represented in an antiparallel orientation. In contrast, participants' performance decreased significantly on items in which the mRNA was depicted in a parallel orientation relative to the DNA template strand. Furthermore, participants' Grade Point Average, self-reported confidence in understanding the transcriptional process, and spatial ability were found to mediate their performance on the mRNA synthesis tasks. Collectively, these data reaffirm the need for future research and pedagogical interventions designed to enhance students' comprehension of the central dogma in a manner that makes transparent its relevance to real-world scientific phenomena. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):501-508, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  11. Polymer-mediated synthesis of a nitrogen-doped carbon aerogel with highly dispersed Pt nanoparticles for enhanced electrocatalytic activity

    International Nuclear Information System (INIS)

    2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Kim, Gil-Pyo; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Lee, Minzae; Lee, Yoon Jae; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Bae, Seongjun; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Song, Hyeon Dong; Song, In Kyu; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Yi, Jongheop

    2016-01-01

    Highlights: • Highly dispersed Pt nanoparticles on N-doped carbon aerogel were synthesized for ORR. • Poly(ethyleneimine) was used as nitrogen source and as nucleation sites for Pt. • Precise discussion were conducted to clarify the effect of poly(ethyleneimine). • High Pt dispersion and N-doping results in superior electrocatalytic activity. - Abstract: A simple chemical process for the direct synthesis of a nitrogen (N)-doped carbon aerogel (NCA) with highly dispersed Pt nanoparticles via a poly(ethyleneimine) (PEI)-assisted strategy is described. A resorcinol-formaldehyde (RF) gel was treated with water soluble cationic PEI, which mainly functions as an anchoring site for metal ions. The functionalized PEI chains on the surface of the RF gel resulted in the unique formation of chemical complexes, with PtCl 6 2− anchored to the RF gel, and subsequent homogeneous metal nanoparticle growth. The abundant amino groups containing PEI grafted to the RF gel also allowed the nitrogen atoms to be incorporated into the carbon framework, which can directly be converted into a NCA. The spherical Pt nanoparticles in the resulting material (Pt/NCA) were highly dispersed on the surface of the NCA without any evidenced of agglomeration, even after a thermal annealing at 900 °C. Compared with a Pt/CA synthesized by a conventional reduction method, the Pt/NCA showed enhanced electrochemical performance with a high electrochemically active surface area (191.1 cm 2 g −1 ) and electrocatalytic activity (V onset = 0.95 V vs. RHE) with respect to oxygen reduction. The superior electrocatalytic activities of the Pt/NCA can be attributed to the synergistic effect of the highly dispersed Pt nanoparticles and the N-doped carbon supports that were prepared using the PEI-assisted strategy. The findings reported herein suggest that the use of PEI can be effectively extended to broad applications that require the homogeneous deposition of metal nanoparticles.

  12. Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells

    Directory of Open Access Journals (Sweden)

    Lu RQ

    2012-04-01

    Full Text Available Renquan Lu1, Dapeng Yang2, Daxiang Cui2, Zhongyang Wang3, Lin Guo11Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, 2Department of Bio-Nano-Science and Engineering, National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 3College of Chemistry and Chemical Engineering, Yantai University, Shan Dong Province, People's Republic of ChinaAbstract: A simple, cost-effective, and environmentally friendly approach to the aqueous-phase synthesis of silver (Ag nanoparticles was demonstrated using silver nitrate (AgNO3 and freshly extracted egg white. The bio-conjugates were characterized by UV-visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectrometry, and dynamic light scattering. These results indicated that biomolecule-coated Ag nanoparticles are predominantly spherical in shape with an average size of 20 nm. The proteins of egg white, which have different functional groups, played important roles in reducing Ag+ and maintaining product attributes such as stability and dispersity. In vitro cytotoxicity assays showed that these Ag-protein bio-conjugates showed good biocompatibility with mouse fibroblast cell lines 3T3. Furthermore, X-ray irradiation tests on 231 tumor cells suggested that the biocompatible Ag-protein bio-conjugates enhanced the efficacy of irradiation, and thus may be promising candidates for use during cancer radiation therapy.Keywords: green chemistry, biosynthesis, egg white, Ag nanoparticles, X-ray irradiation

  13. An increase in the cerebral infarction area during fatigue is mediated by il-6 through an induction of fibrinogen synthesis

    Directory of Open Access Journals (Sweden)

    Hong Lei

    2014-06-01

    Full Text Available OBJECTIVES:Our study aimed to investigate the impact of fatigue on the severity of stroke and to explore the underlying mechanisms.METHODS:Fatigued male rats underwent middle cerebral artery occlusion and the infarcted brain area was determined. Then, coagulation parameters were assessed in the fatigued group and a control group. In addition, the level of fibrinogen was determined in rats deprived of sleep for various numbers of days. To study whether interleukin-6 was involved in fibrinogen synthesis during fatigue, we also measured levels of interleukin-6 in rats deprived of sleep for various numbers of days. Furthermore, brain injury by middle cerebral artery occlusion was measured in wild-type mice, interleukin-6-/- mice and wild-type mice treated with bezafibrate.RESULTS:More severe cerebral infarction was observed in the fatigued rats, resulting in an infarct ratio of 23.4%. The infarct ratio was significantly increased in the fatigued rats compared with that in the control group (8%, p<0.05. The level of fibrinogen was increased significantly in the fatigued rats compared with that in the control group. In addition, a marked reduction in fibrinogen level was observed in the fatigued interleukin-6-/- mice compared to their wild-type counterparts, whereas no difference was observed between fatigued wild-type mice and interleukin-6-/- rats treated with recombinant human interleukin-6. The reduction in brain injury due to middle cerebral artery occlusion during fatigue was observed in interleukin-6-/- mice and wild-type mice treated with bezafibrate.CONCLUSION:Fatigue could increase stroke severity and was associated with the interleukin-6-induced expression of fibrinogen.

  14. Metal-mediated gem-Difluoroallylation of N-Acylhydrazones: Highly Efficient Synthesis of a,a-Difluorohomoallylic Amines

    Institute of Scientific and Technical Information of China (English)

    YUE Xuyi; QIU Xiaolong; QING Fengling

    2009-01-01

    Indium-mediated gem-difluoroallylation of aldehyde-derived N-acylhydrazones 1a-1q and 4a-4g with 3-bromo-3,3-difluoropropene 2 afforded a,a-difluorohomoallylic hydrazides 3a-3q and 5a-5g in high yields, re-spectively. Functional groups such as nitro, phenolic hydroxyl, benzyloxy and even C=C bonds of a,fl-unsaturated aldehydes were compatible under this mild and operationally simple gem-difluoroallylic reaction condition. By means of substitution of Zn powder for indium, gem-difluoroallylation of ketone-derived N-acylhydrazones 6a-6d also provided the corresponding a,a-difluorohomoallylic hydrazides 7a-7d in medium yields. The N-N bond cleavage of the hydrazide 3a proceeded smoothly to give the corresponding primary gem-difluorohomoallylic amine 8, which could be converted to gem-difluoro-δ-substituted α,β-unsaturated lactam 11 via acryloylation fol-lowed by ring closing metathesis (RCM) reaction.

  15. Design and synthesis of structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization chemistry

    Institute of Scientific and Technical Information of China (English)

    Dong Jinyong

    2006-01-01

    Functionalization of polyolefins is an industrially important yet scientifically challenging research subject.This paper summarizes our recent effort to access structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization.In one approach,polypropylenes containing side chain functional groups of controlled concentrations were obtained by Ziegler-Natta-catalyzed copolymerization of propylene in combination with either living anionic or controlled radical polymerization of polar monomers.The copolymerization of propylene with 1,4-divinylbenzene using an isospecific MgC12-supported TIC14 catalyst yielded potypropylenes containing pendant styrene moieties.Both metalation reaction with n-butyllithium and hydrochlorination reaction with dry hydrogen chloride selectively and quantitatively occurred at the pendant reactive sites,generating polymeric benzyllithium and 1-chloroethylbenzene species.These species initiated living anionic polymerization of styrene(S)and atom transfer radical polymerization(in the presence of CuC1 and pentamethyldiethylenetriamine) of methyl methacrylate(MMA),respectively,resulting in functional polypropylene graft copolymers(PP-g-PS and PP-g-PMMA)with controllable graft lengths.In another approach,chain end-functionalized polypropylenes containing a terminal OH-group with controlled molecular weights were directly prepared by propylene polymerization with a metaUocene catalyst through a selective aluminum chain transfer reaction.Both approaches proved to be desirable polyolefin functionalization routes in terms of efficiency and polymer structure controllability.

  16. Polyethylenimine-assisted seed-mediated synthesis of gold nanoparticles for surface-enhanced Raman scattering studies

    Science.gov (United States)

    Philip, Anish; Ankudze, Bright; Pakkanen, Tuula T.

    2018-06-01

    Large-sized gold nanoparticles (AuNPs) were synthesized with a new polyethylenimine - assisted seed - mediated method for surface-enhanced Raman scattering (SERS) studies. The size and polydispersity of gold nanoparticles are controlled in the growth step with the amounts of polyethylenimine (PEI) and seeds. Influence of three silicon oxide supports having different surface morphologies, namely halloysite (Hal) nanotubes, glass plates and inverse opal films of SiO2, on the performance of gold nanoparticles in Raman scattering of a 4-aminothiophenol (4-ATP) analyte was investigated. Electrostatic interaction between positively charged polyethylenimine-capped AuNPs and negatively charged surfaces of silicon oxide supports was utilized in fabrication of the SERS substrates using deposition and infiltration methods. The Au-photonic crystal of the three SERS substrate groups is the most active one as it showed the highest analytical enhancement factor (AEF) and the lowest detection limit of 1x10-8 M for 4-ATP. Coupling of the optical properties of photonic crystals with the plasmonic properties of AuNPs provided Au-photonic crystals with the high SERS activity. The AuNPs clusters formed both in the photonic crystal and on the glass plate are capable of forming more hot spots as compared to sparsely distributed AuNPs on Hal nanotubes and thereby increasing the SERS enhancement.

  17. Low temperature synthesis of seed mediated CuO bundle of nanowires, their structural characterisation and cholesterol detection

    Energy Technology Data Exchange (ETDEWEB)

    Ibupoto, Z.H., E-mail: zafar.hussin.ibupoto@liu.se [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden); Khun, K. [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden); Liu, X. [Department of Physics, Chemistry, and Biology (IFM), Linköping University, 58183 Linköping Sweden (Sweden); Willander, M. [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden)

    2013-10-15

    In this study, we have successfully synthesised CuO bundle of nanowires using simple, cheap and low temperature hydrothermal growth method. The growth parameters such as precursor concentration and time for duration of growth were optimised. The field emission scanning electron microscopy (FESEM) has demonstrated that the CuO bundles of nanowires are highly dense, uniform and perpendicularly oriented to the substrate. The high resolution transmission electron microscopy (HRTEM) has demonstrated that the CuO nanostructures consist of bundle of nanowires and their growth pattern is along the [010] direction. The X-ray diffraction (XRD) technique described that CuO bundle of nanowires possess the monoclinic crystal phase. The surface and chemical composition analyses were carried out with X-ray photoelectron spectroscopy (XPS) technique and the obtained results suggested the pure crystal state of CuO nanostructures. In addition, the CuO nanowires were used for the cholesterol sensing application by immobilising the cholesterol oxidase through electrostatic attraction. The infrared reflection absorption spectroscopy study has also revealed that CuO nanostructures are consisting of only Cu-O bonding and has also shown the possible interaction of cholesterol oxidase with the sharp edge surface of CuO bundle of nanowires. The proposed cholesterol sensor has demonstrated the wide range of detection of cholesterol with good sensitivity of 33.88 ± 0.96 mV/decade. Moreover, the CuO bundle of nanowires based sensor electrode has revealed good repeatability, reproducibility, stability, selectivity and a fast response time of less than 10 s. The cholesterol sensor based on the immobilised cholesterol oxidase has good potential applicability for the determination of cholesterol from the human serum and other biological samples. - Highlights: • This study describes the synthesis of bundle of CuO nanowires by hydrothermal method. • CuO nanostructures exhibit good alignment and

  18. Low temperature synthesis of seed mediated CuO bundle of nanowires, their structural characterisation and cholesterol detection

    International Nuclear Information System (INIS)

    Ibupoto, Z.H.; Khun, K.; Liu, X.; Willander, M.

    2013-01-01

    In this study, we have successfully synthesised CuO bundle of nanowires using simple, cheap and low temperature hydrothermal growth method. The growth parameters such as precursor concentration and time for duration of growth were optimised. The field emission scanning electron microscopy (FESEM) has demonstrated that the CuO bundles of nanowires are highly dense, uniform and perpendicularly oriented to the substrate. The high resolution transmission electron microscopy (HRTEM) has demonstrated that the CuO nanostructures consist of bundle of nanowires and their growth pattern is along the [010] direction. The X-ray diffraction (XRD) technique described that CuO bundle of nanowires possess the monoclinic crystal phase. The surface and chemical composition analyses were carried out with X-ray photoelectron spectroscopy (XPS) technique and the obtained results suggested the pure crystal state of CuO nanostructures. In addition, the CuO nanowires were used for the cholesterol sensing application by immobilising the cholesterol oxidase through electrostatic attraction. The infrared reflection absorption spectroscopy study has also revealed that CuO nanostructures are consisting of only Cu-O bonding and has also shown the possible interaction of cholesterol oxidase with the sharp edge surface of CuO bundle of nanowires. The proposed cholesterol sensor has demonstrated the wide range of detection of cholesterol with good sensitivity of 33.88 ± 0.96 mV/decade. Moreover, the CuO bundle of nanowires based sensor electrode has revealed good repeatability, reproducibility, stability, selectivity and a fast response time of less than 10 s. The cholesterol sensor based on the immobilised cholesterol oxidase has good potential applicability for the determination of cholesterol from the human serum and other biological samples. - Highlights: • This study describes the synthesis of bundle of CuO nanowires by hydrothermal method. • CuO nanostructures exhibit good alignment and

  19. Quercetin-mediated synthesis of graphene oxide–silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma

    Directory of Open Access Journals (Sweden)

    Yuan YG

    2017-08-01

    mitochondrial membrane potential, reduced numbers of mitochondria, enhanced level of reactive oxygen species generation, increased expression of pro-apoptotic genes, and decreased expression of anti-apoptotic genes. GO-AgNPs induced caspase-9/3-dependent apoptosis via DNA fragmentation. Finally, GO-AgNPs induced accumulation of autophagosomes and autophagic vacuoles.Conclusion: In this study, we developed an environmentally friendly, facile, dependable, and simple method for the synthesis of GO-AgNPs nanocomposites using quercetin. The synthesized GO-AgNPs exhibited enhanced cytotoxicity compared with that of GO at very low concentrations. This study not only elucidates the potential cytotoxicity against neuroblastoma cancer cells, but also reveals the molecular mechanism of toxicity. Keywords: neuroblastoma, cell viability, cytotoxicity, graphene oxide–silver nanoparticles nanocomposite, apoptosis, autophagy

  20. Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4 cell line

    Directory of Open Access Journals (Sweden)

    Azizi S

    2017-12-01

    Full Text Available Susan Azizi,1 Mahnaz Mahdavi Shahri,2 Heshu Sulaiman Rahman,3–5 Raha Abdul Rahim,6 Abdullah Rasedee,5 Rosfarizan Mohamad1,7 1Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 2Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran; 3College of Veterinary Medicine, University of Sulaimani, Sulaimani Nwe, 4College of Health Science, Komar University of Science and Technology (KUST, Chaq-Chaq Qularaise, Sulaimani City, Iraq; 5Faculty of Veterinary Medicine, 6Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, 7Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia Abstract: Among nanoparticles used for medical applications, palladium nanoparticles (PdNPs are among the least investigated. This study was undertaken to develop PdNPs by green synthesis using white tea (W.tea; Camellia sinensis extract to produce the Pd@W.tea NPs. The Pd@W.tea NPs were characterized by UV–vis spectroscopy and X-ray diffractometry, and evaluated with transmission electron microscopy (TEM and scanning electron microscopy (SEM. The Pd@W.tea NPs were spherical (size 6–18 nm and contained phenols and flavonoids acquired from the W.tea extract. Pd@W.tea NPs has good 1-diphenyl-2-picrylhydrazyl (DPPH, OH, and NO-scavenging properties as well as antibacterial effects toward Staphylococcus epidermidis and Escherichia coli. MTT assay showed that Pd@W.tea NPs (IC50 =0.006 µM were more antiproliferative toward the human leukemia (MOLT-4 cells than the W.tea extract (IC50 =0.894 µM, doxorubicin (IC50 =2.133 µM, or cisplatin (IC50 =0.013 µM, whereas they were relatively innocuous for normal human fibroblast (HDF-a cells. The anticancer cell effects of Pd@W.tea NPs are mediated through the induction of apoptosis

  1. Endoplasmic Reticulum Stress Induced Synthesis of a Novel Viral Factor Mediates Efficient Replication of Genotype-1 Hepatitis E Virus.

    Directory of Open Access Journals (Sweden)

    Vidya P Nair

    2016-04-01

    Full Text Available Hepatitis E virus (HEV causes acute hepatitis in many parts of the world including Asia, Africa and Latin America. Though self-limiting in normal individuals, it results in ~30% mortality in infected pregnant women. It has also been reported to cause acute and chronic hepatitis in organ transplant patients. Of the seven viral genotypes, genotype-1 virus infects humans and is a major public health concern in South Asian countries. Sporadic cases of genotype-3 and 4 infection in human and animals such as pigs, deer, mongeese have been reported primarily from industrialized countries. Genotype-5, 6 and 7 viruses are known to infect animals such as wild boar and camel, respectively. Genotype-3 and 4 viruses have been successfully propagated in the laboratory in mammalian cell culture. However, genotype-1 virus replicates poorly in mammalian cell culture and no other efficient model exists to study its life cycle. Here, we report that endoplasmic reticulum (ER stress promotes genotype-1 HEV replication by inducing cap-independent, internal initiation mediated translation of a novel viral protein (named ORF4. Importantly, ORF4 expression and stimulatory effect of ER stress inducers on viral replication is specific to genotype-1. ORF4 protein sequence is mostly conserved among genotype-1 HEV isolates and ORF4 specific antibodies were detected in genotype-1 HEV patient serum. ORF4 interacted with multiple viral and host proteins and assembled a protein complex consisting of viral helicase, RNA dependent RNA polymerase (RdRp, X, host eEF1α1 (eukaryotic elongation factor 1 isoform-1 and tubulinβ. In association with eEF1α1, ORF4 stimulated viral RdRp activity. Furthermore, human hepatoma cells that stably express ORF4 or engineered proteasome resistant ORF4 mutant genome permitted enhanced viral replication. These findings reveal a positive role of ER stress in promoting genotype-1 HEV replication and pave the way towards development of an efficient

  2. Supplementing female rats with DHA-lysophosphatidylcholine increases docosahexaenoic acid and acetylcholine contents in the brain and improves the memory and learning capabilities of the pups.

    Directory of Open Access Journals (Sweden)

    Rojas, I.

    2010-03-01

    Full Text Available Docosahexaenoic acid (DHA is supplied to the foetus and newborn through the mother from their own reserves and their diet. No consensus about the best form to supplement DHA has been established. We propose that DHAcontaining lysophosphatidylcholine (DHA-LPC, obtained from DHA-rich eggs may be a suitable form of DHA and choline (the precursor of acetylcholine supplementation. We evaluated the effectiveness of DHA-LPC to increase DHA and acetylcholine concentration in the brain of pups born from female rats supplemented with DHA-LPC before and during pregnancy. We also evaluated the effect of DHA supplementation on learning and memory capabilities of pups through the Skinner test for operant conditioning. Female Wistar rats received 40-day supplementation of DHA-LPC (8 mg DHA/kg b.w/daily., before and during pregnancy. After delivery, plasma, erythrocyte, liver, and adipose tissue DHA and plasma choline were analyzed. Brains from 60 day-old pups separated into frontal cortex, cerebellum, striatum, hippocampus, and occipital cortex, were assessed for DHA, acetylcholine, and acetylcholine transferase (CAT activity. Pups were subjected to the Skinner box test. DHA-LPC supplementation produces higher choline and liver DHA contents in the mother’s plasma and increases the pups’ DHA and acetylcholine in the cerebellum and hippocampus. CAT was not modified by supplementation. The Skinner test shows that pups born from DHA-LPC supplemented mothers exhibit better scores of learning and memory than the controls. Conclusion: DHA-LPC may be an adequate form for DHA supplementation during the perinatal period.El ácido docosahexaenoico (DHA que requiere el feto y el recién nacido lo aporta la madre desde sus reservas y la dieta, por lo cual se sugiere suplementar a la madre con DHA. No hay consenso sobre la mejor forma de suplementación. Proponemos que un lisofosfolípido que contiene DHA y colina (DHA-LPC obtenido de huevos con alto contenido de DHA es

  3. Synthesis and Functional Characterization of Novel Sialyl LewisX Mimic-Decorated Liposomes for E-selectin-Mediated Targeting to Inflamed Endothelial Cells.

    Science.gov (United States)

    Chantarasrivong, Chanikarn; Ueki, Akiharu; Ohyama, Ryutaro; Unga, Johan; Nakamura, Shinya; Nakanishi, Isao; Higuchi, Yuriko; Kawakami, Shigeru; Ando, Hiromune; Imamura, Akihiro; Ishida, Hideharu; Yamashita, Fumiyoshi; Kiso, Makoto; Hashida, Mitsuru

    2017-05-01

    Sialyl LewisX (sLeX) is a natural ligand of E-selectin that is overexpressed by inflamed and tumor endothelium. Although sLeX is a potential ligand for drug targeting, synthesis of the tetrasaccharide is complicated with many reaction steps. In this study, structurally simplified novel sLeX analogues were designed and linked with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG) for E-selectin-mediated liposomal delivery. The sLeX structural simplification strategies include (1) replacement of the Gal-GlcNAc disaccharide unit with lactose to reduce many initial steps and (2) substitution of neuraminic acid with a negatively charged group, i.e., 3'-sulfo, 3'-carboxymethyl (3'-CM), or 3'-(1-carboxy)ethyl (3'-CE). While all the liposomes developed were similar in particle size and charge, the 3'-CE sLeX mimic liposome demonstrated the highest uptake in inflammatory cytokine-treated human umbilical vein endothelial cells (HUVECs), being even more potent than native sLeX-decorated liposomes. Inhibition studies using antiselectin antibodies revealed that their uptake was mediated primarily by overexpressed E-selectin on inflamed HUVECs. Molecular dynamics simulations were performed to gain mechanistic insight into the E-selectin binding differences among native and mimic sLeX. The terminally branched methyl group of the 3'-CE sLeX mimic oriented and faced the bulk hydrophilic solution during E-selectin binding. Since this state is entropically unfavorable, the 3'-CE sLeX mimic molecule might be pushed toward the binding pocket of E-selectin by a hydrophobic effect, leading to a higher probability of hydrogen-bond formation than native sLeX and the 3'-CM sLeX mimic. This corresponded with the fact that the 3'-CE sLeX mimic liposome exhibited much greater uptake than the 3'-CM sLeX mimic liposome.

  4. Synthesis, characterization and evaluation of antimicrobial efficacy and brine shrimp lethality assay of Alstonia scholaris stem bark extract mediated ZnONPs

    Directory of Open Access Journals (Sweden)

    Nookala Supraja

    2018-07-01

    Full Text Available Alstonia scholaris is one of the most important medicinal plants and herein, we present the synthesis of zinc oxide nanoparticles using the bark extract of Alstonia scholaris, and evaluation of their antimicrobial efficacy. Stable ZnO nanoparticles were formed by treating 90 mL of 1 mM zinc nitrate aqueous solution with 10 mL of 10% bark extract. The formation of Alstonia scholaris bark extract mediated zinc oxide nanoparticles was confirmed by UV–visible spectroscopic analysis and recorded the localized surface plasmon resonance (LSPR at 430 nm. Fourier transform infrared spectroscopic (FT-IR analysis revealed that primary and secondary amine groups in combination with the proteins present in the bark extract is responsible for the reduction and stabilization of the ZnONPs. The crystalline phase of the nanocrystals was determined by XRD analysis and morphology was studied using transmission electron microscopy (TEM. The hydrodynamic diameter (26.2 nm and a positive zeta potential (43.0 mV were measured using the dynamic light scattering technique. The antimicrobial activity of Alstonia scholaris ZnONPs was evaluated (in-vitro using disc diffusion method against fungi, Gram-negative and Gram-positive bacteria which were isolated from the biofilm formed in drinking water PVC pipelines. The results obtained suggested that ZnO nanoparticles exhibit a good anti-fungal activity than bactericidal effect towards all pathogens tested in in-vitro disc diffusion method (170 ppm, 100 ppm and 50 ppm. Further, the toxicity of biosynthesized ZnONPs was tested against Alstonia scholaris to evaluate the cytotoxic effect that displayed LC50 value of 95% confidence intervals.

  5. A Concise Li/liq. NH{sub 3} Mediated Synthesis of (4E,10Z)-Tetradeca-4,10-dienyl Acetate: The Major Sex Pheromone of Apple Leafminer Moth, Phyllonorycter ringoniella

    Energy Technology Data Exchange (ETDEWEB)

    Prem Kumar, B.; Vijaykumar, B. V. D.; Harshavardhan, S. J.; Jung, Haedong; Xie, Yongsheng; Shin, Dongsoo; Jang, Kiwan [Changwon National Univ., Changwon (Korea, Republic of); Lee, Dong Ha [Hanbat National Univ., Daejeon (Korea, Republic of); Yoon, Yongjin [Gyeongsang National Univ., Jinju (Korea, Republic of)

    2014-01-15

    We have accomplished a protection free, concise, Li/liq. NH3 mediated and gram scale synthesis of (4E,10Z)-tetradeca-4,10-dienyl acetate (1), the major sex pheromone of apple leafminer moth, Phyllonorycter ringoniella starting from commercially available 1-pentyne, 1,4- dibromobutane and 4-petyne-1-ol in 24% overall yield. The Li/liq. NH3 based mono-alkynylation of dibromobutane has been introduced for the first time. The stereoselective formation of 10(Z) and 4(E) olefins are accomplished by partial hydrogenation (Lindlar's catalyst) and birch reduction respectively. The economy, efficiency, simplicity and high stereo chemical purity of this synthesis allow the potential use of pheromone 1 in integrated field studies to understand the behavioral responses of male apple leaf miner moth.

  6. CeO2-TiO2 Photocatalyst: Ionic Liquid-Mediated Synthesis, Characterization, and Performance for Diisopropanolamine Visible Light Degradation

    Directory of Open Access Journals (Sweden)

    Jagath Retchahan Sivalingam

    2018-01-01

    Full Text Available CeO2-TiO2 photocatalyst with Ce:Ti molar ratio of 1:9 was synthesized via co-precipitation method in the presence of 1-ethyl-3-methyl imidazolium octylsulfate, [EMIM][OctSO4] (CeO2-TiO2-IL. The ionic liquid acts as a templating agent for particle growth. The CeO2-TiO2 and TiO2 photocatalysts were also synthesized without any ionic liquid for comparison. Calcination was conducted on the as-synthesized materials at 400˚C for 2 h. The photocatalysts were characterized using diffuse reflectance UV-Vis spectroscopy (DR-UV-Vis, field emission scanning electron microscopy (FESEM, X-ray powder diffraction (XRD, and surface area and pore size analyzer (SAP. The presence of CeO2 has changed the optical property of TiO2. It has extended the absorption edge of TiO2 from UV to visible region. The calculated band gap energy decreased from 2.82 eV (TiO2 to 2.30 eV (CeO2-TiO2-IL. The FESEM morphology showed that samples forms aggregates and the surface smoothens when ionic liquid was added. The average crystallite size of TiO2, CeO2-TiO2, and CeO2-TiO2-IL were 20.8 nm, 5.5 nm, and 4 nm. In terms of performance, photodegradation of 1000 ppm of diisopropanolamine (DIPA was conducted in the presence of hydrogen peroxide (H2O2 and visible light irradiation which was provided by a 500 W halogen lamp. The best performance was displayed by CeO2-TiO2-IL calcined at 400˚C. It was able to remove 82.0% DIPA and 54.8% COD after 6 h reaction.  Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 22nd October 2017; Accepted: 29th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Sivalingam, J.R., Kait, C.F., Wilfred, C.D. (2018. CeO2-TiO2 Photocatalyst: Ionic Liquid-Mediated Synthesis, Characterization, and Performance for Diisopropanolamine Visible Light Degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 170-178 (doi:10.9767/bcrec.13.1.1396.170-178

  7. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  8. Autoclave mediated one-pot-one-minute synthesis of AgNPs and Au-Ag nanocomposite from Melia azedarach bark extract with antimicrobial activity against food pathogens.

    Science.gov (United States)

    Pani, Alok; Lee, Joong Hee; Yun, Soon-Ii

    2016-01-01

    The increasing use of nanoparticles and nanocomposite in pharmaceutical and processed food industry have increased the demand for nontoxic and inert metallic nanostructures. Chemical and physical method of synthesis of nanostructures is most popular in industrial production, despite the fact that these methods are labor intensive and/or generate toxic effluents. There has been an increasing demand for rapid, ecofriendly and relatively cheaper synthesis of nanostructures. Here, we propose a strategy, for one-minute green synthesis of AgNPs and a one-pot one-minute green synthesis of Au-Ag nanocomposite, using Melia azedarach bark aqueous extract as reducing agent. The hydrothermal mechanism of the autoclave technology has been successfully used in this study to accelerate the nucleation and growth of nano-crystals. The study also presents high antimicrobial potential of the synthesized nano solutions against common food and water born pathogens. The multistep characterization and analysis of the synthesized nanomaterial samples, using UV-visible spectroscopy, ICP-MS, FT-IR, EDX, XRD, HR-TEM and FE-SEM, also reveal the reaction dynamics of AgNO3, AuCl3 and plant extract in synthesis of the nanoparticles and nanocomposite. The antimicrobial effectiveness of the synthesized Au-Ag nanocomposite, with high gold to silver ratio, reduces the dependency on the AgNPs, which is considered to be environmentally more toxic than the gold counterpart. We hope that this new strategy will change the present course of green synthesis. The rapidity of synthesis will also help in industrial scale green production of nanostructures using Melia azedarach.

  9. Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli

    Science.gov (United States)

    2012-01-01

    NrdH reduce SSC to L-cysteine, and the generated sulfite is then utilized as the sulfur source to produce additional L-cysteine molecule through the sulfate pathway in E. coli. We also found that co-overexpression of NrdH, CysI, and CysK increases L-cysteine production. Our results propose that the enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from SSC is a novel method for improvement of L-cysteine production. PMID:22607201

  10. Increased synthesis of high-molecular-weight cPLA2 mediates early UV-induced PGE2 in human skin.

    Science.gov (United States)

    Gresham, A; Masferrer, J; Chen, X; Leal-Khouri, S; Pentland, A P

    1996-04-01

    Ultraviolet light (UV) B-induced inflammation is characterized by dramatic increases in prostaglandin E2 (PGE2) synthesis due to enhanced arachidonate deacylation from the membrane. Therefore, the effect of UV on sythesis, mass, and distribution of the high-molecular-weight phospholipase A2 (cPLA2) in cultured human keratinocytes and human skin was studied. The 105-kDa cPLA2 was demonstrated to be the critical enzyme in UV-induced PGE2 synthesis and erythema in the first 6 h postirradiation. Immunoprecipitation of 35S-labeled protein showed cPLA2 synthesis increased three- to fourfold 6 h after irradiation. Immunoprecipitated 32P-labeled cPLA2 demonstrated phosphorylation of cPLA2 was concurrently induced, suggesting that UV also activates cPLA2. This increase in cPLA2 synthesis and activation also closely correlated with increased PGE2 synthesis and [3H]arachidonic acid release and was effectively blocked by both an S-oligonucleotide antisense to cPLA2 and methyl arachidonate fluorophosphate, a specific inhibitor of cPLA2. Biopsy and histochemical examination of erythematous sites expressed increased amounts of cPLA2 whereas nonerythematous irradiated sites did not. In contrast, cyclooxygenase-1 and -2 in cultures and skin explants were unaffected 6 h post-UV, and no change in cyclooxygenase activity was observed at this time. These results suggest that increased cPLA2 synthesis occurs only when skin is exposed to UV doses that are sufficient to cause erythema and indicate expression of cPLA2 participates in acute UV inflammation.

  11. Epigenetic Programming of Synthesis, Release, and/or Receptor Expression of Common Mediators Participating in the Risk/Resilience for Comorbid Stress-Related Disorders and Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Carlos Manuel Zapata-Martín del Campo

    2018-04-01

    Full Text Available Corticotrophin releasing factor, vasopressin, oxytocin, natriuretic hormones, angiotensin, neuregulins, some purinergic substances, and some cytokines contribute to the long-term modulation and restructuring of cardiovascular regulation networks and, at the same time, have relevance in situations of comorbid abnormal stress responses. The synthesis, release, and receptor expression of these mediators seem to be under epigenetic control since early stages of life, possibly underlying the comorbidity to coronary artery disease (CAD and stress-related disorders (SRD. The exposure to environmental conditions, such as stress, during critical periods in early life may cause epigenetic programming modifying the development of pathways that lead to stable and long-lasting alterations in the functioning of these mediators during adulthood, determining the risk of or resilience to CAD and SRD. However, in contrast to genetic information, epigenetic marks may be dynamically altered throughout the lifespan. Therefore, epigenetics may be reprogrammed if the individual accepts the challenge to undertake changes in their lifestyle. Alternatively, epigenetics may remain fixed and/or even be inherited in the next generation. In this paper, we analyze some of the common neuroendocrine functions of these mediators in CAD and SRD and summarize the evidence indicating that they are under early programming to put forward the theoretical hypothesis that the comorbidity of these diseases might be epigenetically programmed and modified over the lifespan of the individual.

  12. Epigenetic Programming of Synthesis, Release, and/or Receptor Expression of Common Mediators Participating in the Risk/Resilience for Comorbid Stress-Related Disorders and Coronary Artery Disease

    Science.gov (United States)

    Zapata-Martín del Campo, Carlos Manuel; Martínez-Rosas, Martín

    2018-01-01

    Corticotrophin releasing factor, vasopressin, oxytocin, natriuretic hormones, angiotensin, neuregulins, some purinergic substances, and some cytokines contribute to the long-term modulation and restructuring of cardiovascular regulation networks and, at the same time, have relevance in situations of comorbid abnormal stress responses. The synthesis, release, and receptor expression of these mediators seem to be under epigenetic control since early stages of life, possibly underlying the comorbidity to coronary artery disease (CAD) and stress-related disorders (SRD). The exposure to environmental conditions, such as stress, during critical periods in early life may cause epigenetic programming modifying the development of pathways that lead to stable and long-lasting alterations in the functioning of these mediators during adulthood, determining the risk of or resilience to CAD and SRD. However, in contrast to genetic information, epigenetic marks may be dynamically altered throughout the lifespan. Therefore, epigenetics may be reprogrammed if the individual accepts the challenge to undertake changes in their lifestyle. Alternatively, epigenetics may remain fixed and/or even be inherited in the next generation. In this paper, we analyze some of the common neuroendocrine functions of these mediators in CAD and SRD and summarize the evidence indicating that they are under early programming to put forward the theoretical hypothesis that the comorbidity of these diseases might be epigenetically programmed and modified over the lifespan of the individual. PMID:29670001

  13. Epigenetic Programming of Synthesis, Release, and/or Receptor Expression of Common Mediators Participating in the Risk/Resilience for Comorbid Stress-Related Disorders and Coronary Artery Disease.

    Science.gov (United States)

    Zapata-Martín Del Campo, Carlos Manuel; Martínez-Rosas, Martín; Guarner-Lans, Verónica

    2018-04-18

    Corticotrophin releasing factor, vasopressin, oxytocin, natriuretic hormones, angiotensin, neuregulins, some purinergic substances, and some cytokines contribute to the long-term modulation and restructuring of cardiovascular regulation networks and, at the same time, have relevance in situations of comorbid abnormal stress responses. The synthesis, release, and receptor expression of these mediators seem to be under epigenetic control since early stages of life, possibly underlying the comorbidity to coronary artery disease (CAD) and stress-related disorders (SRD). The exposure to environmental conditions, such as stress, during critical periods in early life may cause epigenetic programming modifying the development of pathways that lead to stable and long-lasting alterations in the functioning of these mediators during adulthood, determining the risk of or resilience to CAD and SRD. However, in contrast to genetic information, epigenetic marks may be dynamically altered throughout the lifespan. Therefore, epigenetics may be reprogrammed if the individual accepts the challenge to undertake changes in their lifestyle. Alternatively, epigenetics may remain fixed and/or even be inherited in the next generation. In this paper, we analyze some of the common neuroendocrine functions of these mediators in CAD and SRD and summarize the evidence indicating that they are under early programming to put forward the theoretical hypothesis that the comorbidity of these diseases might be epigenetically programmed and modified over the lifespan of the individual.

  14. PhI(OAc)2-mediated one-pot oxidative decarboxylation and aromatization of tetrahydro-β-carbolines: synthesis of norharmane, harmane, eudistomin U and eudistomin I.

    Science.gov (United States)

    Kamal, Ahmed; Tangella, Yellaiah; Manasa, Kesari Lakshmi; Sathish, Manda; Srinivasulu, Vunnam; Chetna, Jadala; Alarifi, Abdullah

    2015-08-28

    Iodobenzene diacetate was employed as a mild and efficient reagent for one-pot oxidative decarboxylation of tetrahydro-β-carboline acids and dehydrogenation of tetrahydro-β-carbolines to access the corresponding aromatic β-carbolines. To the best of our knowledge this is the first synthesis of β-carbolines via a one-pot oxidative decarboxylation at ambient temperature. The utility of this protocol has been demonstrated in the synthesis of β-carboline alkaloids norharmane (2o), harmane (2p), eudistomin U (9) and eudistomin I (12).

  15. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  16. Mechanism and microstructural evolution of polyol mediated synthesis of nanostructured M-type SrFe{sub 12}O{sub 19}

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio Gonzalez, F.N.; Bolarín Miró, A.M. [Área Académica de Ciencias de la Tierra y Materiales, UAEH, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42184 Pachuca, Hidalgo (Mexico); Sánchez De Jesús, F., E-mail: fsanchez@uaeh.edu.mx [Área Académica de Ciencias de la Tierra y Materiales, UAEH, Carr. Pachuca-Tulancingo Km. 4.5, C.P. 42184 Pachuca, Hidalgo (Mexico); Cortés Escobedo, C.A. [Centro de Investigación e Innovación Tecnológica del IPN, Cda. CECATI S/N, Col. Sta. Catarina, C. P. 02250 Azcapotzalco, D. F. (Mexico); Ammar, S. [Université Paris Diderot, Paris 7, Laboratoire Interfaces, Traitements, Organisation et Dynamiqué des Systéme UMR, 7086, Paris (France)

    2016-06-01

    The synthesis mechanism of nanostructured M-type strontium hexaferrite SrFe{sub 12}O{sub 19} with high coercivity (5.7 kOe) obtained by a polyol process and annealing is proposed. The results show that the hexaferrite is synthesized through the formation of a complex with diethylene glycol during the hydrolysis and solvation stage, followed by the condensation of magnetite and strontium oxide. The results of the monitoring of the process by X-ray diffraction (XRD) of synthesized powders, magnetization hysteresis loops and micromorphology are presented and discussed. The proposed mechanism suggests the intermediate formation of the magnetite phase, which shows coercivity near zero at room temperature and confirms the nanoscale of the particles. Results of thermogravimetric and differential thermal analysis indicate that this phase is followed by the formation of the hematite phase after a heat treatment up to 543 °C in an oxidizing atmosphere. Finally, the hexagonal phase is obtained after application of annealing at 836 °C through the reaction between hematite and strontium oxide. - Highlights: • SrFe{sub 12}O{sub 19} was successfully obtained by a polyol-assisted synthesis. • Magnetite nanoparticles have been obtained as intermediate phase. • A synthesis mechanism for the growing stage of magnetite is proposed. • A reaction sequence and the synthesis mechanism to obtain hexaferrite is presented.

  17. An Efficient Synthesis of Substituted Furans by Cupric Halide-Mediated Intramolecular Halocyclization of 2-(1-Alkynyl)-2-alken-1-ones

    International Nuclear Information System (INIS)

    Fu, Weijun; Guo, Wenbo; Zhu, Mei; Xu, Chen; Xu, Fengjuan

    2013-01-01

    An efficient synthesis of 3-halofurans by the intramolecular cyclization of 2-(1-alkynyl)-2-alken-1-ones with cupric halide has been developed. A broad range of 3-chloro- and 3-bromofuran derivatives could be obtained in the present method in moderate to good yields. The 3-halofuran derivatives are potential synthetic intermediates for amplification of molecular complexity

  18. Lipoprotein cholesterol uptake mediates upregulation of bile acid synthesis by increasing cholesterol 7a-hydroxylase but not sterol 27- hydroxylase gene expression in cultured rat hepatocytes.

    NARCIS (Netherlands)

    Post, S.M.; Twisk, J.W.R.; van der Fits, L.T.E.; Wit, E.C.M.; Hoekman, M.F.M.; Mager, W.H.; Princen, H.M.G.

    1999-01-01

    Lipoproteins may supply substrate for the formation of bile acids, and the amount of hepatic cholesterol can regulate bile-acid synthesis and increase cholesterol 7α-hydroxylase expression. However, the effect of lipoprotein cholesterol on sterol 27-hydroxylase expression and the role of different

  19. Repression of branched-chain amino acid synthesis in Staphylococcus aureus is mediated by isoleucine via CodY, and by a leucine-rich attenuator peptide.

    Science.gov (United States)

    Kaiser, Julienne C; King, Alyssa N; Grigg, Jason C; Sheldon, Jessica R; Edgell, David R; Murphy, Michael E P; Brinsmade, Shaun R; Heinrichs, David E

    2018-01-01

    Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine) for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.

  20. Repression of branched-chain amino acid synthesis in Staphylococcus aureus is mediated by isoleucine via CodY, and by a leucine-rich attenuator peptide.

    Directory of Open Access Journals (Sweden)

    Julienne C Kaiser

    2018-01-01

    Full Text Available Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.

  1. Synthesis of 3,3-disubstituted oxindoles by visible-light-mediated radical reactions of aryl diazonium salts with N-arylacrylamides.

    Science.gov (United States)

    Fu, Weijun; Xu, Fengjuan; Fu, Yuqin; Zhu, Mei; Yu, Jiaqi; Xu, Chen; Zou, Dapeng

    2013-12-06

    A mild and efficient visible-light-mediated diarylation of N-arylacrylamides with aryl diazonium salts under mild conditions has been developed. This method provides convenient access to a variety of useful 3,3-disubstituted oxindoles by constructing two C-C bonds in one step.

  2. Design and Synthesis of 11C-Labelled Compound Libraries for the Molecular Imaging of EGFr, VEGFr-2, AT1 and AT2 Receptors: Transition-Metal Mediated Carbonylations Using [11C]Carbon Monoxide

    International Nuclear Information System (INIS)

    Aaberg, Ola

    2009-01-01

    This work deals with radiochemistry and new approaches to develop novel PET tracers labelled with the radionuclide 11 C. Two methods for the synthesis of 11 C-labelled acrylamides have been explored. First, [1- 11 C]-acrylic acid was obtained from a palladium(0)-mediated 11 C-carboxylation of acetylene with [ 11 C]carbon monoxide; this could be converted to the corresponding acyl chloride and then combined with benzylamine to form N-benzyl[carbonyl- 11 C]acrylamide. In the second method, the palladium(0)-mediated carbonylation of vinyl halides with [ 11 C]carbon monoxide was explored. This latter method, yielded labelled acrylamides in a single step with retention of configuration at the C=C double bond, and required less amine compared to the acetylene method. The vinyl halide method was used to synthesize a library of 11 C-labelled EGFr-inhibitors in 7-61% decay corrected radiochemical yield via a combinatorial approach. The compounds were designed to target either the active or the inactive form of EGFr, following computational docking studies. The rhodium(I)-mediated carbonylative cross-coupling of an azide and an amine was shown to be a very general reaction and was used to synthesize a library of dual VEGFr-2/PDGFrβ inhibitors that were 11 C-labelled at the urea position in 38-78% dc rcy. The angiotensin II AT 1 receptor antagonist eprosartan was 11 C-labelled at one of the carboxyl groups in one step using a palladium(0)-mediated carboxylation. Autoradiography shows specific binding in rat kidney, lung and adrenal cortex, and organ distribution shows a high accumulation in the intestines, kidneys and liver. Specific binding in frozen sections of human adrenal incidentalomas warrants further investigations of this tracer. Three angiotensin II AT 2 ligands were 11 C-labelled at the amide group in a palladium(0)-mediated aminocarbonylation in 16-36% dc rcy. One of the compounds was evaluated using in vitro using autoradiography, and in vivo using organ

  3. Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts

    International Nuclear Information System (INIS)

    Flier, J.S.; Usher, P.; Moses, A.C.

    1986-01-01

    Insulin and insulin-like growth factor type I (IGF-I) stimulate an overlapping spectrum of biological responses in human skin fibroblasts. Although insulin and IGF-I are known to stimulate the incorporation of [ 3 H]thymidine into DNA in these cells, the identify of the receptor(s) that mediates this effect has not been fully clarified. The mouse anti-human IGF-I receptor antibody αIR-3 binds with specificity to IGF-I but not to insulin receptors in human placental membranes; it also specifically inhibits the binding of 125 I-labeled IGF-I but not 125 I-labeled insulin to suspensions of human skin fibroblasts in a dose-dependent manner. αIR-3 competitively inhibits IGF-I-mediated stimulation of [ 3 H]thymidine incorporation into DNA. This inhibition is dependent on the concentration of αIR-3 and in the presence of a fixed antibody concentration can be partially overcome by high concentrations of IGF-I. In contrast, at concentrations of 3 H]thymidine incorporation is not inhibited by αIR-3. However, the incremental effects of higher concentrations (> 1 μg/ml) of insulin on [ 3 H]thymidine incorporation are inhibited by αIR-3. αIR-3 is a highly specific antagonist of IGF-I receptor-mediated mitogenesis in human skin fibroblasts. By using this antibody, it is shown directly that insulin can act through the IGF-I receptor to stimulate DNA synthesis but can also activate this effect through the insulin receptor itself

  4. Buffer-induced swelling and vesicle budding in binary lipid mixtures of dioleoylphosphatidylcholine:dioleoylphosphatidylethanolamine and dioleoylphosphatidylcholine:lysophosphatidylcholine using small-angle X-ray scattering and ³¹P static NMR.

    Science.gov (United States)

    Barriga, Hanna M G; Bazin, Richard; Templer, Richard H; Law, Robert V; Ces, Oscar

    2015-03-17

    A large variety of data exists on lipid phase behavior; however, it is mostly in nonbuffered systems over nonbiological temperature ranges. We present biophysical data on lipid mixtures of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE), and lysophosphatidylcholine (LysoPC) examining their behaviors in excess water and buffer systems over the temperature range 4-34 °C. These mixtures are commonly used to investigate the effects of spontaneous curvature on integral membrane proteins. Using small-angle X-ray scattering (SAXS) and (31)P NMR, we observed lamellar and vesicle phases, with the buffer causing an increase in the layer spacing. Increasing amounts of DOPE in a DOPC bilayer decreased the layer spacing of the mesophase, while the opposite trend was observed for increasing amounts of LysoPC. (31)P static NMR was used to analyze the DOPC:LysoPC samples to investigate the vesicle sizes present, with evidence of vesicle budding observed at LysoPC concentrations above 30 mol %. NMR line shapes were fitted using an adapted program accounting for the distortion of the lipids within the magnetic field. The distortion of the vesicle, because of magnetic susceptibility, varied with LysoPC content, and a discontinuity was found in both the water and buffer samples. Generally, the distortion increased with LysoPC content; however, at a ratio of DOPC:LysoPC 60:40, the sample showed a level of distortion of the vesicle similar to that of pure DOPC. This implies an increased flexibility in the membrane at this point. Commonly, the assumption is that for increasing LysoPC concentration there is a reduction in membrane tension, implying that estimations of membrane tension based on spontaneous curvature assumptions may not be accurate.

  5. Enzymatic synthesis of vanillin

    NARCIS (Netherlands)

    van den Heuvel, RHH; Fraaije, MW; Laane, C; van Berkel, WJH; Heuvel, Robert H.H. van den; Berkel, Willem J.H. van

    Due to increasing interest in natural vanillin, two enzymatic routes for the synthesis of vanillin were developed. The flavoprotein vanillyl alcohol oxidase (VAO) acts on a wide range of phenolic compounds and converts both creosol and vanillylamine to vanillin with high yield. The VAO-mediated

  6. Enzymatic synthesis of vanillin

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Fraaije, M.W.; Laane, C.; Berkel, van W.J.H.

    2001-01-01

    Due to increasing interest in natural vanillin, two enzymatic routes for the synthesis of vanillin were developed. The flavoprotein vanillyl alcohol oxidase (VAO) acts on a wide range of phenolic compounds and converts both creosol and vanillylamine to vanillin with high yield. The VAO-mediated

  7. Rh(II-mediated domino [4 + 1]-annulation of α-cyanothioacetamides using diazoesters: A new entry for the synthesis of multisubstituted thiophenes

    Directory of Open Access Journals (Sweden)

    Jury J. Medvedev

    2017-11-01

    Full Text Available A new approach towards the synthesis of multisubstituted thiophenes is elaborated based on Rh(II-catalyzed domino reactions of acyclic diazoesters with α-cyanothioacetamides. It provides a way for the preparation of 5-amino-3-(alkoxycarbonylaminothiophene-2-carboxylates, 2-(5-amino-2-methoxycarbonylthiophene-3-ylaminomalonates and (2-cyano-5-aminothiophene-3-ylcarbamates with the preparative yields of up to 67%. It was also shown that α-cyanothioacetamides easily interact with dirhodium carboxylates to give rather stable 2:1 complexes, resulting in an evident decrease in the efficiency of the catalytic process at moderate temperatures (20–30 °C.

  8. Hydrodehalogenation of alkyl iodides with base-mediated hydrogenation and catalytic transfer hydrogenation: application to the asymmetric synthesis of N-protected α-methylamines.

    Science.gov (United States)

    Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S

    2014-09-05

    We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.

  9. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30–200 nm and Comparison of Their Optical Properties

    OpenAIRE

    Zhang, Qiang; Li, Weiyang; Moran, Christine; Zeng, Jie; Chen, Jingyi; Wen, Long-Ping; Xia, Younan

    2010-01-01

    Silver nanocubes with edge lengths controllable in the range of 30–200 nm were synthesized using an approach based on seeded growth. The key to the success of this synthesis is the use of single-crystal Ag seeds to direct the growth and the use of AgNO3 as a precursor to elemental Ag where the by-product HNO3 can block both the homogeneous nucleation and evolution of single-crystal seeds into twinned nanoparticles. Either spherical (in the shape of cubooctahedron) or cubic seeds could be empl...

  10. Green coconut ( Cocos nucifera Linn) shell extract mediated size controlled green synthesis of polyshaped gold nanoparticles and its application in catalysis

    Science.gov (United States)

    Paul, Koushik; Bag, Braja Gopal; Samanta, Kousik

    2014-08-01

    The shell extract of green coconut ( Cocos nucifera Linn) has been utilized for the synthesis of gold nanoparticles at room temperature under very mild condition without any extra stabilizing or capping agents. The size of the synthesized gold nanoparticles could be controlled by varying the concentration of the shell extract. The stabilized gold nanoparticles were analyzed by surface plasmon resonance spectroscopy, HRTEM, Energy dispersive X-ray spectroscopy and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles was studied for the sodium borohydride reduction of 4-nitrophenol and the kinetics of the reduction reaction were studied spectrophotometrically.

  11. Synthesis of 2-azaindolizines by using an iodine-mediated oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamides and an investigation of their photophysical properties.

    Science.gov (United States)

    Shibahara, Fumitoshi; Kitagawa, Asumi; Yamaguchi, Eiji; Murai, Toshiaki

    2006-11-23

    Iodine-mediated, oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamides serves as an efficient and versatile method for the preparation of 2-azaindolizines (imidazo[1,5-a]pyridines) and rare 2-azaindolizine sulfur-bridged dimers. The 2-azaindolizines prepared in this manner are readily converted to a variety of fluorescent compounds by using transition-metal-catalyzed cross-coupling reactions. [reaction: see text].

  12. Pleuropterus multiflorus (Hasuo) mediated straightforward eco-friendly synthesis of silver, gold nanoparticles and evaluation of their anti-cancer activity on A549 lung cancer cell line.

    Science.gov (United States)

    Castro-Aceituno, Verónica; Abbai, Ragavendran; Moon, Seong Soo; Ahn, Sungeun; Mathiyalagan, Ramya; Kim, Yu-Jin; Kim, Yeon-Ju; Yang, Deok Chun

    2017-09-01

    Pleuropterus multiflorus (Hasuo) is a widely used medicinal plant in Korea and China for treating amnesia, isnomia, heart throbbing etc. With the constructive idea of promoting the wide-spread usage of P. multiflorus, we propose its indirect usage in the form of biologically active silver (Pm-AgNPs) and gold nanoparticles (Pm-AuNPs). The synthesized nanoparticles were predominantly spherical, crystalline with the Z-average hydrodynamic diameter of 274.8nm and 104.8nm respectively. Also, proteins and phenols were identified as the major players involved in their synthesis and stability. Further, Pm-AgNPs at 25μg/mL were significantly cytotoxic to lung cancer cells, whereas, Pm-AuNPs were not cytotoxic to both normal keratinocyte and lung cancer cells even at 100μg/mL. In addition, further evaluation of the anti-cancer activity of these new nanoparticles, such as migration and apoptosis, shown that Pm-AgNPs have a potential therapeutic effect on A549 lung cancer cell treatment. To the best of our knowledge, this is the first report dissecting out the ability of the endemic P. multiflorus for the synthesis of bioactive silver and gold nanoparticle which would open up doors for its extensive usage in medicinal field. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Rapid PCR-mediated synthesis of competitor molecules for accurate quantification of beta(2) GABA(A) receptor subunit mRNA.

    Science.gov (United States)

    Vela, J; Vitorica, J; Ruano, D

    2001-12-01

    We describe a fast and easy method for the synthesis of competitor molecules based on non-specific conditions of PCR. RT-competitive PCR is a sensitive technique that allows quantification of very low quantities of mRNA molecules in small tissue samples. This technique is based on the competition established between the native and standard templates for nucleotides, primers or other factors during PCR. Thus, the most critical parameter is the use of good internal standards to generate a standard curve from which the amount of native sequences can be properly estimated. At the present time different types of internal standards and methods for their synthesis have been described. Normally, most of these methods are time-consuming and require the use of different sets of primers, different rounds of PCR or specific modifications, such as site-directed mutagenesis, that need subsequent analysis of the PCR products. Using our method, we obtained in a single round of PCR and with the same primer pair, competitor molecules that were successfully used in RT-competitive PCR experiments. The principal advantage of this method is high versatility and economy. Theoretically it is possible to synthesize a specific competitor molecule for each primer pair used. Finally, using this method we have been able to quantify the increase in the expression of the beta(2) GABA(A) receptor subunit mRNA that occurs during rat hippocampus development.

  14. Ionic liquid mediated stereoselective synthesis of alanine linked hybrid quinazoline-4(3H)-one derivatives perturbing the malarial reductase activity in folate pathway.

    Science.gov (United States)

    Patel, Tarosh S; Bhatt, Jaimin D; Vanparia, Satish F; Patel, Urmila H; Dixit, Ritu B; Chudasama, Chaitanya J; Patel, Bhavesh D; Dixit, Bharat C

    2017-12-15

    Grimmel's method was optimized as well as modified leading to the cyclization and incorporation of alanine linked sulphonamide in 4-quinazolin-(3H)-ones. Further, the generation of heterocyclic motif at position-3 of 4-quinazolinones was explored by synthesis of imines, which unfortunately led to an isomeric mixture of stereoisomers. The hurdle of diastereomers encountered on the path was eminently rectified by development of new rapid and reproducible methodology involving the use of imidazolium based ionic liquid as solvents as well as catalyst for cyclization as well as synthesis of imines in situ at position-3 leading to procurement of single E-isomer as the target hybrid heterocyclic molecules. The purity and presence of single isomer was also confirmed by HPLC and spectroscopic techniques. Further, the synthesized sulphonamide linked 4-quinazolin-(3H)-ones hybrids were screened for their antimalarial potency rendering potent entities (4b, 4c, 4 l, 4 t and 4u). The active hybrids were progressively screened for enzyme inhibitory efficacy against presumed receptor Pf-DHFR and h-DHFR computationally as well as in vitro, proving their potency as dihydrofolate reductase inhibitors. The ADME properties of these active molecules were also predicted to enhance the knowhow of the oral bioavailability, indicating good bioavailability of the active entities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: Investigation of process-variables impact using Box-Behnken based statistical design.

    Science.gov (United States)

    Alam, Md Sabir; Garg, Arun; Pottoo, Faheem Hyder; Saifullah, Mohammad Khalid; Tareq, Abu Izneid; Manzoor, Ovais; Mohsin, Mohd; Javed, Md Noushad

    2017-11-01

    Due to unique inherent catalytic characteristics of different size, shape and surface functionalized gold nanoparticles, their potential applications, are being explored in various fields such as drug delivery, biosensor, diagnosis and theranostics. However conventional process for synthesis of these metallic nanoparticles utilizes toxic reagents as reducing agents, additional capping agent for stability as well as surface functionalization for drug delivery purposes. Hence, in this work suitability of gum Ghatti for reducing, capping and surface functionalization during the synthesis of stable Gold nanoparticles were duly explored. Role and impact of key process variables i.e. volume of chloroauric acid solution, gum solution and temperature at their respective three different levels, as well as mechanism of formation of optimized gold nanoparticles were also investigated using Box- Behnken design. These novel synthesized optimized Gold nanoparticles were further characterized by UV spectrophotometer for its surface plasmon resonance (SPR) at around ∼530nm, dynamic light scattering (DLS) for its hydrodynamic size (112.5nm), PDI (0.222) and zeta potential (-21.3mV) while, transmission electron microscopy (TEM) further revealed surface geometry of these nanoparticles being spherical in shape. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Short Synthesis of (+)-Cyclophellitol

    DEFF Research Database (Denmark)

    Hansen, Flemming Gundorph; Bundgaard, Eva; Madsen, Robert

    2005-01-01

    A new synthesis of (+)-cyclophellitol, a potent b-glucosidase inhibitor, has been completed in nine steps from D-xylose. The key transformations involve a zinc-mediated fragmentation of benzyl-protected methyl 5-deoxy-5-iodo-xylofuranoside followed by a highly diastereoselective indium-mediated c......-mediated coupling with ethyl 4-bromocrotonate. Subsequent ring-closing olefin metathesis, ester reduction, olefin epoxidation, and deprotection then afford the natural product. This constitutes the shortest synthesis of (+)-cyclophellitol reported to date....

  17. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis.

    Science.gov (United States)

    Dennis, Michael D; Jefferson, Leonard S; Kimball, Scot R

    2012-12-14

    Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5'-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.

  18. Plant Extract Mediated Eco-Friendly Synthesis of Pd@Graphene Nanocatalyst: An Efficient and Reusable Catalyst for the Suzuki-Miyaura Coupling

    Directory of Open Access Journals (Sweden)

    Mujeeb Khan

    2017-01-01

    Full Text Available Suzuki-Miyaura coupling reaction catalyzed by the palladium (Pd-based nanomaterials is one of the most versatile methods for the preparation of biaryls. However, use of organic solvents as reaction medium causes a big threat to environment due to the generation of toxic byproducts as waste during the work up of these reactions. Therefore, the use of water as reaction media has attracted tremendous attention due to its environmental, economic, and safety benefits. In this study, we report on the synthesis of green Pd@graphene nanocatalyst based on an in situ functionalization approach which exhibited excellent catalytic activity towards the Suzuki–Miyaura cross-coupling reactions of phenyl halides with phenyl boronic acids under facile conditions in water. The green and environmentally friendly synthesis of Pd@graphene nanocatalyst (PG-HRG-Pd is carried out by simultaneous reduction of graphene oxide (GRO and PdCl2 using Pulicaria glutinosa extract (PGE as reducing and stabilizing agent. The phytomolecules present in the plant extract (PE not only facilitated the reduction of PdCl2, but also helped to stabilize the surface of PG-HRG-Pd nanocatalyst, which significantly enhanced the dispersibility of nanocatalyst in water. The identification of PG-HRG-Pd was established by various spectroscopic and microscopic techniques, including, high-resolution transmission electron microscopy (HRTEM, X-ray diffraction (XRD, ultraviolet–visible spectroscopy (UV-Vis, Fourier transform infrared spectroscopy (FT-IR, and Raman spectroscopy. The as-prepared PG-HRG-Pd nanocatalyst demonstrated excellent catalytic activity towards the Suzuki-Miyaura cross coupling reactions under aqueous, ligand free, and aerobic conditions. Apart from this the reusability of the catalyst was also evaluated and the catalyst yielded excellent results upon reuse for several times with marginal loss of its catalytic performance. Therefore, the method developed for the green

  19. Metal and base free synthesis of primary amines via ipso amination of organoboronic acids mediated by [bis(trifluoroacetoxy)iodo]benzene (PIFA).

    Science.gov (United States)

    Chatterjee, Nachiketa; Goswami, Avijit

    2015-08-07

    A metal and base free synthesis of primary amines has been developed at ambient temperature through ipso amination of diversely functionalized organoboronic acids, employing a combination of [bis(trifluoroacetoxy)iodo]benzene (PIFA)-N-bromosuccinimide (NBS) and methoxyamine hydrochloride as the aminating reagent. The amines were primarily obtained as their trifluoroacetate salts which on subsequent aqueous alkaline work up provided the corresponding free amines. The combination of PIFA-NBS is found to be the mildest choice compared to the commonly used strong bases (e.g. n-BuLi, Cs2CO3) for activating the aminating agent. The reaction is expected to proceed via activation of the aminating reagent followed by B-N 1,2-aryl migration.

  20. Intercultural Mediation

    OpenAIRE

    Dragos Marian Radulescu; Denisa Mitrut

    2012-01-01

    The Intercultural Mediator facilitates exchanges between people of different socio-cultural backgrounds and acts as a bridge between immigrants and national and local associations, health organizations, services and offices in order to foster integration of every single individual. As the use mediation increases, mediators are more likely to be involved in cross-cultural mediation, but only the best mediators have the opportunity to mediate cross border business disputes or international poli...

  1. Synthesis of 2-iodobenzamides and 3-(iodoacetamide)benzamides linked to D-galactose and their tri-n-butyltin hydride-mediated radical carbocyclization reactions

    International Nuclear Information System (INIS)

    Leal, Daniel Henriques Soares; Queiroga, Carla Graziella; Pires, Magno Carvalho; Prado, Maria Auxiliadra Fontes; Alves, Ricardo Jose; Cesar, Amary

    2009-01-01

    Starting from methyl 6-O-allyl-4-azido-2,3-di-O-benzyl-4-deoxy-a-D-galactopyranoside, four new derivatives containing 2-iodobenzamide and 3-(iodoacetamide)benzamido groups were synthesized. These four compounds were submitted to tri-n-butyltin hydride mediated radical cyclization reactions, resulting in two macrolactams from 11- and 15-endo aryl radical cyclization. The corresponding four hydrogenolysis products were also obtained. The structures of the new compounds were elucidated by 1 H and 13 C NMR spectroscopy, DEPT, COSY, HMQC and HMBC experiments. (author)

  2. Rhizome of Anemarrhena asphodeloides as mediators of the eco-friendly synthesis of silver and gold spherical, face-centred cubic nanocrystals and its anti-migratory and cytotoxic potential in normal and cancer cell lines.

    Science.gov (United States)

    Lee, Hyun A; Castro-Aceituno, Veronica; Abbai, Ragavendran; Moon, Seong Soo; Kim, Yeon-Ju; Simu, Shakina Yesmin; Yang, Deok Chun

    2018-03-29

    The water extract of Anemarrhena asphodeloides, the traditional oriental medicinal plant, mediated the eco-friendly synthesis of silver nanoparticles (Aa-AgNPs) and gold nanoparticles (Aa-AuNPs). First, its therapeutic rhizome was powdered prior to water extraction and then silver, gold nanoparticles were synthesized. Aa-AgNPs and Aa-AuNPs were found to be spherical, face-centred cubic nanocrystals with a Z-average hydrodynamic diameter of 190 and 258 nm, respectively. In addition, proteins and aromatic biomolecules were the plausible players associated with the production and stabilization of Aa-AgNPs; instead, phenolic compounds were responsible for the synthesis and stability of Aa-AuNPs. In vitro cytotoxic analysis revealed that up to 50 μg.mL -1 concentration Aa-AuNPs did not exhibit any toxicity on 3T3-L1, HT29 and MCF7 cell lines, while being specifically cytotoxic to A549 cell line. On the contrary, Aa-AgNPs displayed a significantly higher toxicity in comparison to Aa-AuNPs in all cell lines specially MCF7 cell line. Since cancer cells were more sensitive to Aa-Au/AgNPs treatments, further evaluation was done in order to determine their anticancer potential. Reactive oxygen species (ROS) generation was not affected by Aa-AuNPs, on the other hand, Aa-AgNPs treatment exhibited a higher potential to induce oxidative stress in A549 cells than HT29 and MCF7 cells. In addition, Aa-Ag/AuNPs reduced cell migration in A549 cells at 10 and 50 μg.mL -1 , respectively. So far, this is the only report uncovering the ability of A. asphodeloides to synthesize silver and gold nanoparticles with anticancer potential and also indirectly enabling its large-scale utilization with value addition.

  3. Room-temperature synthesis of pure perovskite-related Cs4PbBr6 nanocrystals and their ligand-mediated evolution into highly luminescent CsPbBr3 nanosheets

    Science.gov (United States)

    Yang, Liu; Li, Dongmei; Wang, Cong; Yao, Wei; Wang, Hao; Huang, Kaixiang

    2017-07-01

    Currently, all-inorganic cesium lead-halide perovskite nanocrystals have attracted enormous attentions owing to their excellent optical performances. While great efforts have been devoted to CsPbBr3 nanocrystals, the perovskite-related Cs4PbBr6 nanocrystals, which were newly reported, still remained poorly understood. Here, we reported a novel room-temperature reaction strategy to synthesize pure perovskite-related Cs4PbBr6 nanocrystals. Size of the products could be adjusted through altering the amount of ligands, simply. A mixture of two good solvents with different polarity was innovatively used as precursor solvent, being one key to the high-yield Cs4PbBr6 nanocrystals synthesis. Other two keys were Cs+ precursor concentration and surface ligands. Ingenious experiments were designed to reveal the underlying reaction mechanism. No excitonic emission was observed from the prepared Cs4PbBr6 nanocrystals in our work. We considered the green emission which was observed in other reports originated from the avoidless transformation of Cs4PbBr6 into CsPbBr3 nanocrystals. Indeed, the new-prepared Cs4PbBr6 nanocrystals could transform into CsPbBr3 nanosheets with surface ligands mediated. The new-transformed two-dimensional CsPbBr3 nanosheets could evolve into large-size nanosheets. The influences of surface ligand density on the fluorescent intensity and stability of transformed CsPbBr3 nanosheets were also explained. Notably, the photoluminescence quantum yield of the as-transformed CsPbBr3 nanosheets could reach as high as 61.6% in the form of thin film. The fast large-scale synthesis of Cs4PbBr6 nanocrystals and their ligand-mediated transformation into high-fluorescent CsPbBr3 nanosheets will be beneficial to the future optoelectronic applications. Our work provides new approaches to understand the structural evolution and light-emitting principle of perovskite nanocrystals. [Figure not available: see fulltext.

  4. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes.

    OpenAIRE

    Mangiapane, E H; Brindley, D N

    1986-01-01

    Rat hepatocytes in monolayer culture were preincubated for 19 h with 1 microM-dexamethasone, and the incubation was continued for a further 23 h with [14C]oleate, [3H]glycerol and 1 microM-dexamethasone. Dexamethasone increased the secretion of triacylglycerol into the medium in particles that had the properties of very-low-density lipoproteins. The increased secretion was matched by a decrease in the triacylglycerol and phosphatidylcholine that remained in the hepatocytes. Preincubating the ...

  5. Synthesis of Gallic Acid Analogs as Histamine and Pro-Inflammatory Cytokine Inhibitors for Treatment of Mast Cell-Mediated Allergic Inflammation.

    Science.gov (United States)

    Fei, Xiang; Je, In-Gyu; Shin, Tae-Yong; Kim, Sang-Hyun; Seo, Seung-Yong

    2017-05-29

    Gallic acid (3,4,5-trihydroxybenzoic acid), is a natural product found in various foods and herbs that are well known as powerful antioxidants. Our previous report demonstrated that it inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. In this report, various amide analogs of gallic acid have been synthesized by introducing different amines through carbodiimide-mediated amide coupling and Pd/C-catalyzed hydrogenation. These compounds showed a modest to high inhibitory effect on histamine release and pro-inflammatory cytokine expression. Among them, the amide bearing ( S )-phenylglycine methyl ester 3d was found to be more active than natural gallic acid. Further optimization yielded several ( S )- and ( R )-phenylglycine analogs that inhibited histamine release in vitro. Our findings suggest that some gallamides could be used as a treatment for allergic inflammatory diseases.

  6. Soft-template mediated synthesis of GaOOH nanorod-shelled microspheres and thermal conversion to beta-Ga2O3.

    Science.gov (United States)

    Wang, Jian; Li, Qi; Qiu, Xiaohui; He, Yujian; Liu, Wei

    2010-07-01

    Micrometer-scale hollow spheres self-assembled by GaOOH nanorods were synthesized under hydrothermal conditions using gallium nitrate and sodium hydroxide as starting materials. The structures and morphologies of the products were studied by X-ray diffraction and scanning electron microscopy. Time-dependent experiments revealed three stages involved in the process of reaction including the initial stage of formation of surfactant vesicles which can be considered as soft templates, followed by the nucleation of GaOOH nanoclusters, and the assembling and growth of nanorods under the modulation of the spherical vesicles. The growth kinetics of the GaOOH nanorods was systematically investigated. Based on the experimental observation, a template-mediated assembling mechanism was proposed. We further demonstrated that the GaOOH nanorods could be converted to gallium oxide (beta-Ga2O3) nanorods by calcination without changing the spherical morphology of the assemblies.

  7. Seed-mediated synthesis of NaY F4:Y b, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity

    International Nuclear Information System (INIS)

    Guo Hai; Li Zhengquan; Qian Haisheng; Hu Yong; Muhammad, Idris Niagara

    2010-01-01

    Rational combination of different functional lanthanide materials within a single nanocrystal presents a feasible way to develop a multifunctional nanoplatform for various biomedical applications. The conventional methods of synthesizing and integrating two kinds of material together generally involve laborious procedures, whilst codoping different functional ions inside a single lanthanide nanocrystal usually results in a decrease in both its fluorescence and its magnetic resonance relaxivity. Here, we present a seed-mediated synthetic route to prepare core-shell structured NaY F 4 :Y b, Er/NaGdF 4 nanocrystals. Epitaxial growth of a gadolinium layer on an upconversion lanthanide seed not only improves its upconversion fluorescence, but also creates a paramagnetic shell with high magnetic resonance relaxivity. The prepared nanocrystals are uniform in size, stable in water and easy for conjugation after modification, which may have the potential to serve as a versatile imaging tool for smart detection or diagnosis in future biomedical engineering.

  8. l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis

    Directory of Open Access Journals (Sweden)

    Abhishek Mandal

    2017-07-01

    Full Text Available The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL, depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important

  9. A simple one-step synthesis of ZnS nanoparticles via salt-alkali-composited-mediated method and investigation on their comparative photocatalytic activity

    International Nuclear Information System (INIS)

    Xiang, Donghu; Zhu, Yabo; He, Zhanjun; Liu, Zhangsheng; Luo, Jin

    2013-01-01

    Graphical abstract: The TEM image shows that the as-synthesized ZnS particle size was estimated to be about 40 nm and this newly synthesized ZnS nanoparticles can be as a promising photocatalytic degradation material for the organic pollutant removal. Display Omitted Highlights: ► ZnS nanoparticles with cubic phase have been successfully synthesized via salt-alkali-composited-mediated method (SACM) for the first time and this method has not been found so far. ► Its band gap (E g ) is a little bigger than commercial ZnS particle mainly due to quantum size effect. ► The as-synthesized ZnS nanoparticles show much more efficient photocatalytic degradation on methyl orange than commercial ZnS powder. -- Abstract: ZnS nanoparticles have been successfully synthesized via salt-alkali-composited-mediated method (SACM) for the first time, using a mixture of LiNO 3 and LiOH (LiNO 3 /LiOH = 60.7:39.3) as a reaction solvent, sodium sulfide and zinc nitrate as reactants at temperature of 210 °C for 24 h in the absence of organic dispersant or capping agents. X-ray diffraction, environment scanning electron microscopy (ESEM) and Transmission electron microscopy (TEM) indicated that the as-synthesized products were well crystallized and belonged to nano-scale. Their UV–vis absorption spectrum demonstrated a band gap of 3.6406 eV corresponding to the absorption edge of 340 nm. The experimental result of photocatalytic degradation on methyl orange by the nano-ZnS showed much better photocatalysis than that by the commercial ZnS powder under the irradiation of ultraviolet light and visible light, respectively.

  10. Enantioselective synthesis of α-phenyl- and α-(dimethylphenylsilyl)alkylboronic esters by ligand mediated stereoinductive reagent-controlled homologation using configurationally labile carbenoids.

    Science.gov (United States)

    Barsamian, Adam L; Wu, Zhenhua; Blakemore, Paul R

    2015-03-28

    Chain extension of boronic esters by the action of configurationally labile racemic lithium carbenoids in the presence of scalemic bisoxazoline ligands was explored for the enantioselective synthesis of the two title product classes. Enantioenriched 2° carbinols generated by oxidative work-up (NaOOH) of initial α-phenylalkylboronate products were obtained in 35-83% yield and 70-96% ee by reaction of B-alkyl and B-aryl neopentyl glycol boronates with a combination of O-(α-lithiobenzyl)-N,N-diisopropylcarbamate and ligand 3,3-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl] pentane in toluene solvent (-78 °C to rt) with MgBr2·OEt2 additive. Enantioenriched α-(dimethylsilylphenylsilyl)alkylboronates were obtained in 35-69% yield and 9-57% ee by reaction of B-alkyl pinacol boronates with a combination of lithio(dimethylphenylsilyl)methyl 2,4,6-triisopropylbenzoate and ligand 2,2-bis[(4S)-4,5-dihydro-4-isopropyloxazol-2-yl]propane in cumene solvent (-45 °C to -95 °C to rt). The stereochemical outcome of the second type of reaction depended on the temperature history of the organolithium·ligand complex indicating that the stereoinduction mechanism in this case involves some aspect of dynamic thermodynamic resolution.

  11. Induction of apoptosis in HeLa cancer cells by an ultrasonic-mediated synthesis of curcumin-loaded chitosan-alginate-STPP nanoparticles.

    Science.gov (United States)

    Ahmadi, Fatemeh; Ghasemi-Kasman, Maryam; Ghasemi, Shahram; Gholamitabar Tabari, Maryam; Pourbagher, Roghayeh; Kazemi, Sohrab; Alinejad-Mir, Ali

    2017-01-01

    Natural herbal compounds have been widely introduced as an alternative therapeutic approach in cancer therapy. Despite potent anticancer activity of curcumin, its clinical application has been limited because of low water solubility and resulting poor bioavailability. In this study, we designed a novel ultrasonic-assisted method for the synthesis of curcumin-loaded chitosan-alginate-sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). Furthermore, antitumor effect of curcumin-loaded NPs was evaluated in vitro. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to characterize the properties of NPs. Antitumor activity of curcumin-loaded NPs was assessed by using MTT and quantitative real-time polymerase chain reaction (qRT-PCR). FE-SEM and AFM data revealed the spherical morphology, and the average size of NPs was curcumin-loaded CS-ALG-STPP NPs displayed significant antitumor activity compared with the free curcumin. Gene expression level analyses showed that curcumin NPs significantly increased the apoptotic gene expression. Collectively, our results suggest that curcumin-loaded NPs significantly suppressed proliferation and promoted the induction of apoptosis in human cervical epithelioid carcinoma cancer cells, which might be regarded as an effective alternative strategy for cancer therapy.

  12. Induction of apoptosis in HeLa cancer cells by an ultrasonic-mediated synthesis of curcumin-loaded chitosan–alginate–STPP nanoparticles

    Science.gov (United States)

    Ahmadi, Fatemeh; Ghasemi-Kasman, Maryam; Ghasemi, Shahram; Gholamitabar Tabari, Maryam; Pourbagher, Roghayeh; Kazemi, Sohrab; Alinejad-Mir, Ali

    2017-01-01

    Natural herbal compounds have been widely introduced as an alternative therapeutic approach in cancer therapy. Despite potent anticancer activity of curcumin, its clinical application has been limited because of low water solubility and resulting poor bioavailability. In this study, we designed a novel ultrasonic-assisted method for the synthesis of curcumin-loaded chitosan–alginate–sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). Furthermore, antitumor effect of curcumin-loaded NPs was evaluated in vitro. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to characterize the properties of NPs. Antitumor activity of curcumin-loaded NPs was assessed by using MTT and quantitative real-time polymerase chain reaction (qRT-PCR). FE-SEM and AFM data revealed the spherical morphology, and the average size of NPs was curcumin-loaded CS-ALG-STPP NPs displayed significant antitumor activity compared with the free curcumin. Gene expression level analyses showed that curcumin NPs significantly increased the apoptotic gene expression. Collectively, our results suggest that curcumin-loaded NPs significantly suppressed proliferation and promoted the induction of apoptosis in human cervical epithelioid carcinoma cancer cells, which might be regarded as an effective alternative strategy for cancer therapy. PMID:29238191

  13. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30–200 nm and Comparison of Their Optical Properties

    Science.gov (United States)

    Zhang, Qiang; Li, Weiyang; Moran, Christine; Zeng, Jie; Chen, Jingyi; Wen, Long-Ping; Xia, Younan

    2010-01-01

    Silver nanocubes with edge lengths controllable in the range of 30–200 nm were synthesized using an approach based on seeded growth. The key to the success of this synthesis is the use of single-crystal Ag seeds to direct the growth and the use of AgNO3 as a precursor to elemental Ag where the by-product HNO3 can block both the homogeneous nucleation and evolution of single-crystal seeds into twinned nanoparticles. Either spherical (in the shape of cubooctahedron) or cubic seeds could be employed for this growth process. The edge length of resultant Ag nanocubes can be readily controlled by varying the amount of Ag seeds used, the amount of AgNO3 added, or both. For the first time, we could obtain Ag nanocubes with uniform edge lengths controllable in the range of 30–200 nm and then compare their localized surface plasmon resonance and surface-enhanced Raman scattering properties. PMID:20698704

  14. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties.

    Science.gov (United States)

    Zhang, Qiang; Li, Weiyang; Moran, Christine; Zeng, Jie; Chen, Jingyi; Wen, Long-Ping; Xia, Younan

    2010-08-18

    Silver nanocubes with edge lengths controllable in the range of 30-200 nm were synthesized using an approach based on seeded growth. The keys to the success of this synthesis are the use of single-crystal Ag seeds to direct the growth and the use of AgNO(3) as a precursor to elemental Ag, where the byproduct HNO(3) can block both the homogeneous nucleation and evolution of single-crystal seeds into twinned nanoparticles. Either spherical (in the shape of a cuboctahedron) or cubic seeds could be employed for this growth process. The edge length of the resultant Ag nanocubes can be readily controlled by varying the amount of Ag seeds used, the amount of AgNO(3) added, or both. For the first time, we could obtain Ag nanocubes with uniform edge lengths controllable in the range of 30-200 nm and then compare their localized surface plasmon resonance and surface-enhanced Raman scattering properties.

  15. Synthesis of Ag-Cu and Ag-Cu{sub 2}O alloy nanoparticles using a seed-mediated polyol process, thermodynamic and kinetic aspects

    Energy Technology Data Exchange (ETDEWEB)

    Niknafs, Yasaman; Amirjani, Amirmostafa; Marashi, Pirooz, E-mail: pmarashi@aut.ac.ir; Fatmehsari, Davoud Haghshenas

    2017-03-01

    In this paper, Ag, Ag-Cu and Ag-Cu{sub 2}O nanoparticles were synthesized using a modified polyol method. Size, shape and composition of the obtained nanostructures were effectively controlled by adjusting the kinetic and thermodynamic conditions. Response surface methodology was employed to consider the interaction of parameters and to develop a polynomial equation for predicting the size of the silver nanoparticles. The precisely controlled silver nanoaprticles were used as the seeds for the formation of alloyed nanoparticles. By manipulating the involved parameters, both spherical and cubical Ag-Cu and Ag-Cu{sub 2}O nanostructures are obtainable in the size range of 90–100 nm. The morphological, optical and compositional characteristics of the obtained nanostructures were studied using SEM, FE-SEM, UV–Vis, EDS and XRD. - Highlights: • Synthesis of Ag, Ag-Cu and Ag-Cu{sub 2}O alloy nanostructures. • RSM was successfully employed for predicting the size of the AgNPs. • Size and composition tuning by adjusting the kinetic and thermodynamic conditions.

  16. Lead-oriented synthesis: Investigation of organolithium-mediated routes to 3-D scaffolds and 3-D shape analysis of a virtual lead-like library.

    Science.gov (United States)

    Lüthy, Monique; Wheldon, Mary C; Haji-Cheteh, Chehasnah; Atobe, Masakazu; Bond, Paul S; O'Brien, Peter; Hubbard, Roderick E; Fairlamb, Ian J S

    2015-06-01

    Synthetic routes to six 3-D scaffolds containing piperazine, pyrrolidine and piperidine cores have been developed. The synthetic methodology focused on the use of N-Boc α-lithiation-trapping chemistry. Notably, suitably protected and/or functionalised medicinal chemistry building blocks were synthesised via concise, connective methodology. This represents a rare example of lead-oriented synthesis. A virtual library of 190 compounds was then enumerated from the six scaffolds. Of these, 92 compounds (48%) fit the lead-like criteria of: (i) -1⩽AlogP⩽3; (ii) 14⩽number of heavy atoms⩽26; (iii) total polar surface area⩾50Å(2). The 3-D shapes of the 190 compounds were analysed using a triangular plot of normalised principal moments of inertia (PMI). From this, 46 compounds were identified which had lead-like properties and possessed 3-D shapes in under-represented areas of pharmaceutical space. Thus, the PMI analysis of the 190 member virtual library showed that whilst scaffolds which may appear on paper to be 3-D in shape, only 24% of the compounds actually had 3-D structures in the more interesting areas of 3-D drug space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Plant-mediated synthesis of silver nanoparticles using parsley ( Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-12-01

    Synthesis of nanomaterials may involve various routes including physical, chemical and biological approaches. Here, the biological green route was chosen to prepare silver nanoparticles from silver salts to avoid the requirement of costly instruments and involvement of hazardous chemicals as well. To make the process clean and green, leaf extract of parsley ( Petroselinum crispum) was used to synthesize Ag nanoparticles at room temperature. The formation of Ag-nanoparticles was monitored by UV-Vis spectroscopy. The presence of silver in the sample and its crystalline nature were verified by X-ray diffraction (XRD) analysis. The size distribution profile and particle size in the suspension were manipulated from dynamic light scattering (DLS) pattern. The shape, size and morphology of the biogenic nanoparticles were studied using high resolution transmission electron microscope (TEM). Fourier transform infra-red spectroscopy was used to detect the biomolecules responsible for reduction of silver ions. These biogenic Ag-nanoparticles showed appreciable antibacterial efficacy against three bacteria— Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus.

  18. Solid-phase-assisted synthesis of targeting peptide-PEG-oligo(ethane amino)amides for receptor-mediated gene delivery.

    Science.gov (United States)

    Martin, Irene; Dohmen, Christian; Mas-Moruno, Carlos; Troiber, Christina; Kos, Petra; Schaffert, David; Lächelt, Ulrich; Teixidó, Meritxell; Günther, Michael; Kessler, Horst; Giralt, Ernest; Wagner, Ernst

    2012-04-28

    In the forthcoming era of cancer gene therapy, efforts will be devoted to the development of new efficient and non-toxic gene delivery vectors. In this regard, the use of Fmoc/Boc-protected oligo(ethane amino)acids as building blocks for solid-phase-supported assembly represents a novel promising approach towards fully controlled syntheses of effective gene vectors. Here we report on the synthesis of defined polymers containing the following: (i) a plasmid DNA (pDNA) binding domain of eight succinoyl-tetraethylenpentamine (Stp) units and two terminal cysteine residues; (ii) a central polyethylene glycol (PEG) chain (with twenty-four oxyethylene units) for shielding; and (iii) specific peptides for targeting towards cancer cells. Peptides B6 and c(RGDfK), which bind transferrin receptor and α(v)β(3) integrin, respectively, were chosen because of the high expression of these receptors in many tumoral cells. This study shows the feasibility of designing these kinds of fully controlled vectors and their success for targeted pDNA-based gene transfer. This journal is © The Royal Society of Chemistry 2012

  19. Biomolecule-mediated hydrothermal synthesis of polyoxoniobate-CdS nanohybrids with enhanced photocatalytic performance for hydrogen production and RhB degradation.

    Science.gov (United States)

    Liu, Meiying; Chen, Hong; Zhao, Hongmei; He, Yunfei; Li, Yunhe; Wang, Ran; Zhang, Lancui; You, Wansheng

    2017-07-25

    Using a biomolecule of l-cystine as the sulfur source and coordinating agent, polyoxoniobate-CdS nanohybrids were successfully synthesized under mild hydrothermal conditions. The adsorption of ammonium group (-NH 2 ) in l-cystine molecular structure on the surface of CdS renders the amine-anchored CdS positively charged, which readily combines with the negatively charged polyoxoniobate clusters in terms of the electrostatic interaction. The as-obtained polyoxoniobate-CdS nanohybrids exhibit much superior activity for H 2 evolution and RhB degradation under visible light as compared to the unhybridized CdS and polyoxoniobate. After co-loading Nb 6 and NiS as cocatalyst, the H 2 -evolution activity of the nanohybrids is further increased up to 39 times as high as that of naked CdS, which can be attributed to an enhanced electron-transfer by adopting polyoxoniobate as electron-acceptor to retard the electron-hole recombination. The work may open an avenue for the green synthesis of cost-effective POMs-CdS nanohybrid photocatalysts for solar energy applications.

  20. Synthesis and Physicochemical Characterization of D-Tagatose-1-phosphate: The Substrate of the Tagatose-1-Phosphate Kinase TagK in the PTS-mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis

    Science.gov (United States)

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I.; Thompson, John; Joris, Bernard; Battistel, Marcos D.

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multi-component PEP-dependent:tag-PTS present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by 31P and 1H NMR spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-Tagatose catabolic Pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TFHis6) of Escherichia coli. The active fusion enzyme was named TagK-TFHis6. Tag-1P and D-fructose-1-phosphate (Fru-1P) are substrates for the TagK-TFHis6 enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate (Tag-6P) and D-fructose-6-phosphate (Fru-6P) are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific enzyme II (EIITag) in E.coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and EI, to restore the phosphate transfer is demonstrated. PMID:26159072

  1. Synthesis and Physicochemical Characterization of D-Tagatose-1-Phosphate: The Substrate of the Tagatose-1-Phosphate Kinase in the Phosphotransferase System-Mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis.

    Science.gov (United States)

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I; Thompson, John; Joris, Bernard; Battistel, Marcos D

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multicomponent phosphoenolpyruvate:sugar phosphotransferase system (PEP-PTS) present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by (31)P and (1)H nuclear magnetic resonance spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-tagatose catabolic pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TF(His6)) of Escherichia coli. The active fusion enzyme was named TagK-TF(His6). Tag-1P and D-fructose-1-phosphate are substrates for the TagK-TF(His6) enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate and D-fructose-6-phosphate are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as the substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific Enzyme II in E. coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and Enzyme I to restore the phosphate transfer is demonstrated. © 2015 S. Karger AG, Basel.

  2. L-Cysteine supplementation increases adiponectin synthesis and secretion, and GLUT4 and glucose utilization by upregulating disulfide bond A-like protein expression mediated by MCP-1 inhibition in 3T3-L1 adipocytes exposed to high glucose.

    Science.gov (United States)

    Achari, Arunkumar Elumalai; Jain, Sushil K

    2016-03-01

    Adiponectin is an anti-diabetic and anti-atherogenic adipokine; its plasma levels are decreased in obesity, insulin resistance, and type 2 diabetes. An adiponectin-interacting protein named disulfide bond A-like protein (DsbA-L) plays an important role in the assembly of adiponectin. This study examined the hypothesis that L-cysteine (LC) regulates glucose homeostasis through the DsbA-L upregulation and synthesis and secretion of adiponectin in diabetes. 3T3L1 adipocytes were treated with LC (250 and 500 µM, 2 h) and high glucose (HG, 25 mM, 20 h). Results showed that LC supplementation significantly (p L, adiponectin, and GLUT-4 protein expression and glucose utilization in HG-treated adipocytes. LC supplementation significantly (p L expression and adiponectin levels in 3T3-L1 cells. Treatment with LC prevented the decrease in DsbA-L, adiponectin, and GLUT-4 expression in 3T3L1 adipocyte cells exposed to MCP-1. Thus, this study demonstrates that DsbA-L and adiponectin upregulation mediates the beneficial effects of LC on glucose utilization by inhibiting MCP-1 secretion in adipocytes and provides a novel mechanism by which LC supplementation can improve insulin sensitivity in diabetes.

  3. Sodium phenylbutyrate enhances astrocytic neurotrophin synthesis via protein kinase C (PKC)-mediated activation of cAMP-response element-binding protein (CREB): implications for Alzheimer disease therapy.

    Science.gov (United States)

    Corbett, Grant T; Roy, Avik; Pahan, Kalipada

    2013-03-22

    Neurotrophins, such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are believed to be genuine molecular mediators of neuronal growth and homeostatic synapse activity. However, levels of these neurotrophic factors decrease in different brain regions of patients with Alzheimer disease (AD). Induction of astrocytic neurotrophin synthesis is a poorly understood phenomenon but represents a plausible therapeutic target because neuronal neurotrophin production is aberrant in AD and other neurodegenerative diseases. Here, we delineate that sodium phenylbutyrate (NaPB), a Food and Drug Administration-approved oral medication for hyperammonemia, induces astrocytic BDNF and NT-3 expression via the protein kinase C (PKC)-cAMP-response element-binding protein (CREB) pathway. NaPB treatment increased the direct association between PKC and CREB followed by phosphorylation of CREB (Ser(133)) and induction of DNA binding and transcriptional activation of CREB. Up-regulation of markers for synaptic function and plasticity in cultured hippocampal neurons by NaPB-treated astroglial supernatants and its abrogation by anti-TrkB blocking antibody suggest that NaPB-induced astroglial neurotrophins are functionally active. Moreover, oral administration of NaPB increased the levels of BDNF and NT-3 in the CNS and improved spatial learning and memory in a mouse model of AD. Our results highlight a novel neurotrophic property of NaPB that may be used to augment neurotrophins in the CNS and improve synaptic function in disease states such as AD.

  4. Impact of EPA ingestion on COX- and LOX-mediated eicosanoid synthesis in skin with and without a pro-inflammatory UVR challenge – Report of a randomised controlled study in humans

    Science.gov (United States)

    Pilkington, Suzanne M; Rhodes, Lesley E; Al-Aasswad, Naser M I; Massey, Karen A; Nicolaou, Anna

    2014-01-01

    Scope Eicosapentaenoic acid (EPA), abundant in oily fish, is reported to reduce skin inflammation and provide photoprotection, potential mechanisms include competition with arachidonic acid (AA) for metabolism by cyclooxygenases/lipoxygenases to less pro-inflammatory mediators. We thus examine impact of EPA intake on levels of AA, EPA and their resulting eicosanoids in human skin with or without ultraviolet radiation (UVR) challenge. Methods and results In a double-blind randomised controlled study, 79 females took 5 g EPA-rich or control lipid for 12 wk. Pre- and post-supplementation, red blood cell and skin polyunsaturated fatty acids were assessed by GC, and eicosanoids from unexposed and UVR-exposed skin by LC-MS/MS. Active supplementation increased red blood cell and dermal EPA versus control (both p skin (p skin; 12-hydroxyeicosatetraenoic acids:12-HEPE was lower in UVR-exposed skin (3:1 versus 11:1; p skin EPA:AA content, shifting eicosanoid synthesis towards less pro-inflammatory species, and promoting a regulatory milieu under basal conditions and in response to inflammatory insult. PMID:24311515

  5. Induction of apoptosis in HeLa cancer cells by an ultrasonic-mediated synthesis of curcumin-loaded chitosan–alginate–STPP nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmadi F

    2017-11-01

    Full Text Available Fatemeh Ahmadi,1 Maryam Ghasemi-Kasman,2,3 Shahram Ghasemi,4 Maryam Gholamitabar Tabari,5 Roghayeh Pourbagher,2 Sohrab Kazemi,6 Ali Alinejad-Mir7 1Student Research Committee, Babol University of Medical Sciences, 2Cellular and Molecular Biology Research Center, 3Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; 4Faculty of Chemistry, University of Mazandaran, Babolsar, Iran; 5Infertility and Health Reproductive Research Center, Health Research Institute, 6Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; 7Department of Chemical Engineering, University of Mazandaran, Babolsar, Iran Abstract: Natural herbal compounds have been widely introduced as an alternative therapeutic approach in cancer therapy. Despite potent anticancer activity of curcumin, its clinical application has been limited because of low water solubility and resulting poor bioavailability. In this study, we designed a novel ultrasonic-assisted method for the synthesis of curcumin-loaded chitosan–alginate–sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs. Furthermore, antitumor effect of curcumin-loaded NPs was evaluated in vitro. Field emission scanning electron microscopy (FE-SEM and atomic force microscopy (AFM were used to characterize the properties of NPs. Antitumor activity of curcumin-loaded NPs was assessed by using MTT and quantitative real-time polymerase chain reaction (qRT-PCR. FE-SEM and AFM data revealed the spherical morphology, and the average size of NPs was <50 nm. In vitro cytotoxicity assay suggested that curcumin-loaded CS-ALG-STPP NPs displayed significant antitumor activity compared with the free curcumin. Gene expression level analyses showed that curcumin NPs significantly increased the apoptotic gene expression. Collectively, our results suggest that curcumin-loaded NPs significantly suppressed proliferation and promoted the induction of

  6. Tetramethylene glycol mediated hydrothermal synthesis of defect-rich SnO2 nanoparticles for fast adsorption and degradation of MB dye

    Science.gov (United States)

    Rani, Barkha; Jadhao, Charushila Vasant; Sahu, Niroj Kumar

    2018-04-01

    Defect-rich pristine tin oxide nanoparticles (SnO2 NPs) with high colloidal stability have been synthesized by tetramethylene glycol (TMG) mediated hydrothermal process and characterized by XRD, TEM, Zeta Potential, PL spectroscopy and porosity measurement techniques. XRD result suggests the formation of rutile phase of SnO2 with average crystallite size of 2.65 nm. TMG act as a structure directing agent assist in the formation of network like structure of SnO2 NPs as confirmed from TEM. Significant blue shifts in the UV absorption spectrum as that of the bulk and defect bands in the PL spectrum are observed. The nanomaterial possesses very high surface area of 263.102 m2/g and large pore volume. The above properties strongly influence the photocatalytic degradation of methylene blue dye. Very fast adsorption and 96% degradation (under UV irradiation) has been achieved when 10 ppm methylene blue solutions is catalysed by 20 mg SnO2 NPs which pave the way for potential environmental application.

  7. Biomolecule-assisted synthesis of defect-mediated Cd1-xZnxS/MoS2/graphene hollow spheres for highly efficient hydrogen evolution.

    Science.gov (United States)

    Du, Ruifeng; Zhang, Yihe; Li, Baoying; Yu, Xuelian; Liu, Huijuan; An, Xiaoqiang; Qu, Jiuhui

    2016-06-28

    Moderate efficiency and the utilization of noble metal cocatalysts are the key factors that restrict the large-scale application of photocatalytic hydrogen production. To develop more efficient photocatalysts based on earth abundant elements, either a new material strategy or a fundamental understanding of the semiconductor/cocatalyst interfaces is highly desirable. In this paper, we studied the feasibility of in situ formation of defect-rich cocatalysts on graphene-based photocatalysts. A facile biomolecule-assisted strategy was used to self-assmble Cd1-xZnxS/MoS2/graphene hollow spheres. The defect-mediated cocatalyst and synergetic charge transfer around heterostructured interfaces exhibit a significant impact on the visible-light-driven photocatalytic activity of multicomponent solid solutions. With engineered interfacial defects, Cd0.8Zn0.2S/MoS2/graphene hollow spheres exhibited a 63-fold improved H2 production rate, which was even 2 and 3.8 times higher than those of CdS/MoS2/graphene hollow spheres and Cd0.8Zn0.2S/Pt. Therefore, our research provides a promising approach for the rational design of high-efficiency and low-cost photocatalysts for solar fuel production.

  8. Discovery of Novel Bromophenol Hybrids as Potential Anticancer Agents through the Ros-Mediated Apoptotic Pathway: Design, Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Li-Jun Wang

    2017-11-01

    Full Text Available A series of bromophenol hybrids with N-containing heterocyclic moieties were designed, and their anticancer activities against a panel of five human cancer cell lines (A549, Bel7402, HepG2, HCT116 and Caco2 using MTT assay in vitro were explored. Among them, thirteen compounds (17a, 17b, 18a, 19a, 19b, 20a, 20b, 21a, 21b, 22a, 22b, 23a, and 23b exhibited significant inhibitory activity against the tested cancer cell lines. The structure-activity relationships (SARs of bromophenol derivatives were discussed. The promising candidate compound 17a could induce cell cycle arrest at G0/G1 phase and induce apoptosis in A549 cells, as well as caused DNA fragmentations, morphological changes and ROS generation by the mechanism studies. Furthermore, compound 17a suppression of Bcl-2 levels (decrease in the expression of the anti-apoptotic proteins Bcl-2 and down-regulation in the expression levels of Bcl-2 in A549 cells were observed, along with activation caspase-3 and PARP, which indicated that compound 17a induced A549 cells apoptosis in vitro through the ROS-mediated apoptotic pathway. These results might be useful for bromophenol derivatives to be explored and developed as novel anticancer drugs.

  9. Mediation Analysis with Multiple Mediators.

    Science.gov (United States)

    VanderWeele, T J; Vansteelandt, S

    2014-01-01

    Recent advances in the causal inference literature on mediation have extended traditional approaches to direct and indirect effects to settings that allow for interactions and non-linearities. In this paper, these approaches from causal inference are further extended to settings in which multiple mediators may be of interest. Two analytic approaches, one based on regression and one based on weighting are proposed to estimate the effect mediated through multiple mediators and the effects through other pathways. The approaches proposed here accommodate exposure-mediator interactions and, to a certain extent, mediator-mediator interactions as well. The methods handle binary or continuous mediators and binary, continuous or count outcomes. When the mediators affect one another, the strategy of trying to assess direct and indirect effects one mediator at a time will in general fail; the approach given in this paper can still be used. A characterization is moreover given as to when the sum of the mediated effects for multiple mediators considered separately will be equal to the mediated effect of all of the mediators considered jointly. The approach proposed in this paper is robust to unmeasured common causes of two or more mediators.

  10. Quinazoline derivatives: synthesis and bioactivities

    OpenAIRE

    Wang, Dan; Gao, Feng

    2013-01-01

    Owing to the significant biological activities, quinazoline derivatives have drawn more and more attention in the synthesis and bioactivities research. This review summarizes the recent advances in the synthesis and biological activities investigations of quinazoline derivatives. According to the main method the authors adopted in their research design, those synthetic methods were divided into five main classifications, including Aza-reaction, Microwave-assisted reaction, Metal-mediated reac...

  11. Ultrasonic and hydrothermal mediated synthesis routes for functionalized Mg-Al LDH: Comparison study on surface morphology, basic site strength, cyclic sorption efficiency and effectiveness.

    Science.gov (United States)

    Ezeh, Collins I; Tomatis, Marco; Yang, Xiaogang; He, Jun; Sun, Chenggong

    2018-01-01

    Amine functionalized layered double hydroxide (LDHs) adsorbents prepared using three different routes: co-precipitation, sono-chemical and ultrasonic-assisted high pressure hydrothermal. The prepared adsorbent samples were characterized using X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The performance of the prepared adsorbents was tested in a controlled thermal-swing adsorption process to measure its adsorption capacity, regeneration and cyclic efficiencies subsequently. The characterisation results were compared with those obtained using the conventional preparation routes but taking into account of the impact of sonochemical and hydrothermal pre-treatment on textural properties, adsorption capacity, regeneration and cyclic efficiencies. Textural results depicts a surge in surface area of the adsorbent synthesised by hydrothermal route (311m 2 /g) from 25 to 171m 2 /g for conventional and ultrasonic routes respectively. Additionally, it has been revealed from the present study that adsorbents prepared using ultrasonic-assisted hydrothermal route exhibit a better CO 2 uptake capacity than that prepared using sonochemical and conventional routes. Thus, the ultrasonic-assisted hydrothermal treatment can effectively promote the adsorption capacity of the adsorbent. This is probably due to the decrease of moderate (M-O) and weak (OH - groups) basic sites with subsequent surge in the number of strong basic sites (O 2- ) resulting from the hydrothermal process. Moreover, the cyclic adsorption efficiency of the ultrasonic mediated process was found to be 76% compared with 60% for conventional and 53% for hydrothermal routes, respectively. According to the kinetic model analysis, adsorption mechanism is mostly dominated by physisorption before amine

  12. Disruption of prefoldin-2 protein synthesis in root-knot nematodes via host-mediated gene silencing efficiently reduces nematode numbers and thus protects plants.

    Science.gov (United States)

    Ajjappala, Hemavathi; Chung, Ha Young; Sim, Joon-Soo; Choi, Inchan; Hahn, Bum-Soo

    2015-03-01

    The aim of this study is to demonstrate the feasibility of down-regulating endogeneous prefoldin-2 root-knot nematode transcripts by expressing dsRNA with sequence identity to the nematode gene in tobacco roots under the influence of strong Arabidopsis ubiquitin (UBQ1) promoter. Root-knot nematodes (RKNs) are sedentary endoparasites infecting a wide range of plant species. They parasitise the root system, thereby disrupting water and nutrient uptake and causing major reductions in crop yields. The most reliable means of controlling RKNs is via the use of soil fumigants such as methyl bromide. With the emergence of RNA interference (RNAi) technology, which permits host-mediated nematode gene silencing, a new strategy to control plant pathogens has become available. In the present study, we investigated host-induced RNAi gene silencing of prefoldin-2 in transgenic Nicotiana benthamiana. Reductions in prefoldin-2 mRNA transcript levels were observed when nematodes were soaked in a dsRNA solution in vitro. Furthermore, nematode reproduction was suppressed in RNAi transgenic lines, as evident by reductions in the numbers of root knots (by 34-60 % in independent RNAi lines) and egg masses (by 33-58 %). Endogenous expression of prefoldin-2, analysed via real-time polymerase chain reaction and Western blotting, revealed that the gene was strongly expressed in the pre-parasitic J2 stage. Our observations demonstrate the relevance and potential importance of targeting the prefoldin gene during the nematode life cycle. The work also suggests that further improvements in silencing efficiency in economically important crops can be accomplished using RNAi directed against plant-parasitic nematodes.

  13. Enantioselective synthesis of tetrafluorinated ribose and fructose.

    Science.gov (United States)

    Linclau, Bruno; Boydell, A James; Timofte, Roxana S; Brown, Kylie J; Vinader, Victoria; Weymouth-Wilson, Alexander C

    2009-02-21

    A perfluoroalkylidene lithium mediated cyclisation approach for the enantioselective synthesis of a tetrafluorinated aldose (ribose) and of a tetrafluorinated ketose (fructose), both in the furanose and in the pyranose form, is described.

  14. Lysophosphatidylcholine (LPC) metabolism and cardiac arrhythmias

    International Nuclear Information System (INIS)

    Giffin, D.M.; Man, R.Y.K.; Arthur, G.; Choy, P.C.

    1986-01-01

    The effect of LPC in the production of cardiac arrhythmias in isolated mammalian hearts has been well-documented. Cardiac arrhythmias are initiated by the accumulation of the lysolipid in the cardiac membrane. When isolated rat hearts were perfused in 10 μM LPC for 10 min, severe arrhythmias were observed in all experiments. In isolated guinea pig hearts that were perfused under identical conditions, the development of severe arrhythmias was never observed, and mild arrhythmias were produced in less than 50% of the hearts used. When the hearts of both species were perfused with [ 14 C-palmitate]-LPC, the labellings found in the microsomal fractions (expressed in mg protein) were similar. However, a higher amount of labelled LPC (2-fold) was found in rat heart microsomes, whereas a higher amount of labelled fatty acid was located in the guinea pig heart microsomes. Determination of lysophospholipase activities in these microsomal fractions revealed that the specific activity of the enzyme was much higher in the guinea pig heart than the rat heart. The authors conclude that the differential effect of LPC-induced arrhythmias between the rat and guinea pig heart may be a direct result of the lysophospholipase activities in these hearts. The ability to catabolize LPC more rapidly in the guinea pig heart may decrease the accumulation of LPC in the membrane, and hence, reduce the production of arrhythmias

  15. Synthesis of a jojoba bean disaccharide.

    Science.gov (United States)

    Kornienko, A; Marnera, G; d'Alarcao, M

    1998-08-01

    A synthesis of the disaccharide recently isolated from jojoba beans, 2-O-alpha-D-galactopyranosyl-D-chiro-inositol, has been achieved. The suitably protected chiro-inositol unit was prepared by an enantiospecific synthesis from L-xylose utilizing SmI2-mediated pinacol coupling as a key step.

  16. Mediation Analysis with Multiple Mediators

    OpenAIRE

    VanderWeele, T.J.; Vansteelandt, S.

    2014-01-01

    Recent advances in the causal inference literature on mediation have extended traditional approaches to direct and indirect effects to settings that allow for interactions and non-linearities. In this paper, these approaches from causal inference are further extended to settings in which multiple mediators may be of interest. Two analytic approaches, one based on regression and one based on weighting are proposed to estimate the effect mediated through multiple mediators and the effects throu...

  17. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.; Roach, P.J.; DePaoli-Roach, A.A.; Magistretti, Pierre J.; Allaman, I.

    2016-01-01

    to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin

  18. A cross-metathesis approach to the stereocontrolled synthesis of the AB ring segment of ciguatoxin

    OpenAIRE

    Kadota, Isao; Abe, Takashi; Uni, Miyuki; Takamura, Hiroyoshi; Yamamoto, Yoshinori

    2008-01-01

    Synthesis of the AB ring segments of ciguatoxin is described. The present synthesis includes a Lewis acid mediated cyclization of allylstannane with aldehyde, cross-metathesis reaction introducing the side chain, and Grieco-Nishizawa dehydration on the A ring.

  19. Complex Mediation

    DEFF Research Database (Denmark)

    Bødker, Susanne; Andersen, Peter Bøgh

    2005-01-01

    This article has its starting point in a large number of empirical findings regarding computer-mediated work. These empirical findings have challenged our understanding of the role of mediation in such work; on the one hand as an aspect of communication and cooperation at work and on the other hand...... as an aspect of human engagement with instruments of work. On the basis of previous work in activity-theoretical and semiotic human—computer interaction, we propose a model to encompass both of these aspects. In a dialogue with our empirical findings we move on to propose a number of types of mediation...... that have helped to enrich our understanding of mediated work and the design of computer mediation for such work....

  20. Organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.E.

    1991-01-01

    This paper reports on reactions of organoboranes. Organoboron routes to unsaturated hydrocarbons. Boronic ester homologation. Properties of organosilicon compounds. Alkene synthesis (Peterson olefination). Allylsilanes and acylsilanes.

  1. Plant-mediated biosynthesis of silver nanoparticles by leaf extracts ...

    Indian Academy of Sciences (India)

    MS received 6 May 2016; accepted 24 June 2016. Abstract. ... is reported to control stomach ulcer [9,10]. Udosen et al [11] ... In the synthesis of nanoparticles via green approach, bio- ... In plant-mediated synthesis, the control of the size of.

  2. Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines

    Directory of Open Access Journals (Sweden)

    Jiménez Pérez ZE

    2017-02-01

    Full Text Available Zuly Elizabeth Jiménez Pérez,1 Ramya Mathiyalagan,1 Josua Markus,1 Yeon-Ju Kim,2 Hyun Mi Kang,3 Ragavendran Abbai,1 Kwang Hoon Seo,2 Dandan Wang,2 Veronika Soshnikova,2 Deok Chun Yang1,21Department of Biotechnology and Ginseng Bank, 2Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea; 3Advanced Cosmeceutical Technology R&D Center, Suwon, Republic of KoreaAbstract: There has been a growing interest in the design of environmentally affable and biocompatible nanoparticles among scientists to find novel and safe biomaterials. Panax ginseng Meyer berries have unique phytochemical profile and exhibit beneficial pharmacological activities such as antihyperglycemic, antiobesity, antiaging, and antioxidant properties. A comprehensive study of the biologically active compounds in ginseng berry extract (GBE and the ability of ginseng berry (GB as novel material for the biosynthesis of gold nanoparticles (GBAuNPs and silver nanoparticles (GBAgNPs was conducted. In addition, the effects of GBAuNPs and GBAgNPs on skin cell lines for further potential biological applications are highlighted. GBAuNPs and GBAgNPs were synthesized using aqueous GBE as a reducing and capping agent. The synthesized nanoparticles were characterized for their size, morphology, and crystallinity. The nanoparticles were evaluated for antioxidant, anti-tyrosinase, antibacterial, and cytotoxicity activities and for morphological changes in human dermal fibroblast and murine melanoma skin cell lines. The phytochemicals contained in GBE effectively reduced and capped gold and silver ions to form GBAuNPs and GBAgNPs. The optimal synthesis conditions (ie, temperature and v/v % of GBE and kinetics were investigated. Polysaccharides and phenolic compounds present in GBE were suggested to be responsible for stabilization and functionalization of nanoparticles. GBAuNPs and GBAgNPs showed increased scavenging activity

  3. Mediatized play

    DEFF Research Database (Denmark)

    Johansen, Stine Liv

    Children’s play must nowadays be understood as a mediatized field in society and culture. Media – understood in a very broad sense - holds severe explanatory power in describing and understanding the practice of play, since play happens both with, through and inspired by media of different sorts........ In this presentation the case of ‘playing soccer’ will be outlined through its different mediated manifestations, including soccer games and programs on TV, computer games, magazines, books, YouTube videos and soccer trading cards....

  4. Mediating Business

    DEFF Research Database (Denmark)

    "Mediating Business" is a study of the expansion of business journalism. Building on evidence from Denmark, Finland, Norway and Sweden, "Mediating Business" is a comparative and multidisciplinary study of one of the major transformations of the mass media and the realm of business - nationally...... and globally. The book explores the history of key innovations and innovators in the business press. It analyzes changes in the discourse of business journalism associated with the growth in business news and the development of new ways of framing business issues and events. Finally, it examines...... the organizational implications of the increased media visibility of business and, in particular, the development of corporate governance and media relations....

  5. Organic synthesis

    International Nuclear Information System (INIS)

    Lallemand, J.Y.; Fetizon, M.

    1988-01-01

    The 1988 progress report of the Organic Synthesis Chemistry laboratory (Polytechnic School, France), is presented. The laboratory activities are centered on the chemistry of natural products, which have a biological activity and on the development of new reactions, useful in the organic synthesis. The research works involve the following domains: the natural products chemistry which are applied in pharmacology, the plants and insects chemistry, the organic synthesis, the radical chemistry new reactions and the bio-organic physicochemistry. The published papers, the congress communications and the thesis are listed [fr

  6. Molecular Regulation of Histamine Synthesis

    Directory of Open Access Journals (Sweden)

    Hua Huang

    2018-06-01

    Full Text Available Histamine is a critical mediator of IgE/mast cell-mediated anaphylaxis, a neurotransmitter and a regulator of gastric acid secretion. Histamine is a monoamine synthesized from the amino acid histidine through a reaction catalyzed by the enzyme histidine decarboxylase (HDC, which removes carboxyl group from histidine. Despite the importance of histamine, transcriptional regulation of HDC gene expression in mammals is still poorly understood. In this review, we focus on discussing advances in the understanding of molecular regulation of mammalian histamine synthesis.

  7. Design and synthesis of multidentate ligands via metal promoted C ...

    Indian Academy of Sciences (India)

    Unknown

    and can be controlled by the proper selection of the mediator complex. The two ... are important as these provide facile synthesis of many novel molecules that are ..... and the Council of Scientific and Industrial Research, New Delhi is gratefully.

  8. Diversity Oriented Synthesis of Natural 2-Arylbenzofuran, Moracin F

    International Nuclear Information System (INIS)

    Yun, So-Ra; Jun, Jong-Gab

    2016-01-01

    Diversity oriented synthesis of natural 2-arylbenzofuran, moracin F (1) has been carried out from the commercially available starting materials using Sonogashira coupling, Suzuki coupling, neutral Al 2 O 3 mediated cyclization, and intramolecular Wittig reaction as key steps.

  9. A Phosphine-mediated Synthesis of 2,3,4,5-tetra-substituted N-hydroxypyrroles from α-oximino Ketones and Dialkyl Acetylenedicarboxylates Under Ionic Liquid Green-media.

    Science.gov (United States)

    Shahvelayati, Ashraf S; Ghazvini, Maryam; Yadollahzadeh, Khadijeh; Delbari, Akram S

    2018-01-01

    The development of multicomponent reactions (MCRs) in the presence of task-specific ionic liquids (ILs), used not only as environmentally benign reaction media, but also as catalysts, is a new approach that meet with the requirements of sustainable chemistry. In recent years, the use of ionic liquids as a green media for organic synthesis has become a chief study area. This is due to their unique properties such as non-volatility, non-flammability, chemical and thermal stability, immiscibility with both organic compounds and water and recyclability. Ionic liquids are used as environmentally friendly solvents instead of hazardous organic solvents. We report the condensation reaction between α-oximinoketone and dialkyl acetylene dicarboxylate in the presence of triphenylphosphine to afford substituted pyrroles under ionic liquid conditions in good yields. Densely functionalized pyrroles was easily prepared from reaction of α-oximinoketones, dialkyl acetylene dicarboxylate in the presence of triphenylphosphine in a quantitative yield under ionic liquid conditions at room temperature. In conclusion, ionic liquids are indicated as a useful and novel reaction medium for the selective synthesis of functionalized pyrroles. This reaction medium can replace the use of hazardous organic solvents. Easy work-up, synthesis of polyfunctional compounds, decreased reaction time, having easily available-recyclable ionic liquids, and good to high yields are advantages of present method. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles.

    Science.gov (United States)

    Kiran, G Seghal; Selvin, Joseph; Manilal, Aseer; Sujith, S

    2011-12-01

    Taking into consideration the needs of greener bioprocesses and novel enhancers for synthesis using microbial processes, biosurfactants, and/or biosurfactant producing microbes are emerging as an alternate source for the rapid synthesis of nanoparticles. A microemulsion technique using an oil-water-surfactant mixture was shown to be a promising approach for nanoparticle synthesis. Biosurfactants are natural surfactants derived from microbial origin composed mostly of sugar and fatty acid moieties, they have higher biodegradability, lower toxicity, and excellent biological activities. The biosurfactant mediated process and microbial synthesis of nanoparticles are now emerging as clean, nontoxic, and environmentally acceptable "green chemistry" procedures. The biosurfactant-mediated synthesis is superior to the methods of bacterial- or fungal-mediated nanoparticle synthesis, since biosurfactants reduce the formation of aggregates due to the electrostatic forces of attraction and facilitate a uniform morphology of the nanoparticles. In this review, we highlight the biosurfactant mediated synthesis of nanoparticles with relevant details including a greener bioprocess, sources of biosurfactants, and biological synthesized nanoparticles based on the available literature and laboratory findings.

  11. Plant-mediated green synthesis of ZnO nanoparticles using Garcinia gummi-gutta seed extract: Photoluminescence, screening of their catalytic activity in antioxidant, formylation and biodiesel production

    Science.gov (United States)

    Raghavendra, M.; Yatish, K. V.; Lalithamba, H. S.

    2017-08-01

    The green synthesis of multifunctional ZnO nanoparticles (NPs) was prepared by treatment of zinc nitrate with an extract of Garcinia gummi-gutta seed by the combustion method. The ZnO NPs were characterized by XRD, scanning electron microscopy, UV-visible, FTIR spectroscopic techniques. The prepared ZnO NPs were evaluated for photoluminescence (PL), antioxidant properties and also utilized as a catalyst for the formylation of aromatic amines and biodiesel production. The study reveals that the reaction is simple, mild and environmental friendly. Furthermore, the reaction results in excellent yield of products.

  12. Albumin synthesis in protein energy malnutrition

    International Nuclear Information System (INIS)

    Duggan, C.; Hardy, S.; Kleinman, R.E.; Lembcke, J.; Young, V.E.

    1994-01-01

    The dietary treatment of protein-energy malnutrition (PEM) has been designed on an empirical basis, with outcomes for successful management including body weight gain and resolution of apathy. We propose using the measurements of protein synthesis as a more objective measure of renourishment. We will therefore randomize a group of malnourished children (weigh-for-height Z score 13 C-leucine and serial measurements of 13 C-enrichment of albumin. Isotope infusions will be performed on days one and three, following a standard three hour fast. Since albumin synthesis is reduced under the influence of cytokines which mediate the inflammatory response, results will be stratified according to the presence or absence of clinically apparent infections. We hypothesize that the provision of added dietary protein will optimize albumin synthesis rates in PEM as well as attenuate the reduction in albumin synthesis seen in the presence of infections. (author). 20 refs

  13. Ultrasound mediated catalyst free synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-ones leading to novel quinoline derivatives: their evaluation as potential anti-cancer agents.

    Science.gov (United States)

    Mulakayala, Naveen; Rambabu, D; Raja, Mohan Rao; M, Chaitanya; Kumar, Chitta Suresh; Kalle, Arunasree M; Rama Krishna, G; Malla Reddy, C; Basaveswara Rao, M V; Pal, Manojit

    2012-01-15

    A facile and catalyst free synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-ones has been accomplished via the reaction of 4-chloro-2-oxo-2H-chromene-3-carbaldehyde with various aromatic amines in the presence of ultrasound. Some of these compounds were converted to the corresponding 2-(3-(hydroxymethyl)quinolin-2-yl)phenols and further structure elaboration of a representative quinoline derivative is presented. Molecular structure of two representative compounds was confirmed by single crystal X-ray diffraction study. Many of these compounds were evaluated for their anti-proliferative properties in vitro against four cancer cell lines and several compounds were found to be active. Further in vitro studies indicated that inhibition of sirtuins could be the possible mechanism of action of these molecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Structure-Based Design and Synthesis of a Small Molecule that Exhibits Anti-inflammatory Activity by Inhibition of MyD88-mediated Signaling to Bacterial Toxin Exposure.

    Science.gov (United States)

    Alam, Shahabuddin; Javor, Sacha; Degardin, Melissa; Ajami, Dariush; Rebek, Mitra; Kissner, Teri L; Waag, David M; Rebek, Julius; Saikh, Kamal U

    2015-08-01

    Both Gram-positive and Gram-negative pathogens or pathogen-derived components, such as staphylococcal enterotoxins (SEs) and endotoxin (LPS) exposure, activate MyD88-mediated pro-inflammatory cellular immunity for host defense. However, dysregulated MyD88-mediated signaling triggers exaggerated immune response that often leads to toxic shock and death. Previously, we reported a small molecule compound 1 mimicking BB-loop structure of MyD88 was capable of inhibiting pro-inflammatory response to SEB exposure in mice. In this study, we designed a dimeric structure compound 4210 covalently linked with compound 1 by a non-polar cyclohexane linker which strongly inhibited the production of pro-inflammatory cytokines in human primary cells to SEB (IC50 1-50 μm) or LPS extracted from Francisella tularensis, Escherichia coli, or Burkholderia mallei (IC50 10-200 μm). Consistent with cytokine inhibition, in a ligand-induced cell-based reporter assay, compound 4210 inhibited Burkholderia mallei or LPS-induced MyD88-mediated NF-kB-dependent expression of reporter activity (IC50 10-30 μm). Furthermore, results from a newly expressed MyD88 revealed that 4210 inhibited MyD88 dimer formation which is critical for pro-inflammatory signaling. Importantly, a single administration of compound 4210 in mice showed complete protection from lethal toxin challenge. Collectively, these results demonstrated that compound 4210 inhibits toxin-induced inflated pro-inflammatory immune signaling, thus displays a potential bacterial toxin therapeutic. © 2014 John Wiley & Sons A/S.

  15. Pd(II)-Catalyzed Alkylation of Tertiary Carbon via Directing-Group-Mediated C(sp(3))-H Activation: Synthesis of Chiral 1,1,2-Trialkyl Substituted Cyclopropanes.

    Science.gov (United States)

    Hoshiya, Naoyuki; Takenaka, Kei; Shuto, Satoshi; Uenishi, Jun'ichi

    2016-01-04

    A Pd(OAc)2-catalyzed alkylation reaction of the tertiary carbon of chiral cyclopropane substrates with alkyl iodides and bromides via C(sp(3))-H activation has been developed. This is an elusive example of a C-H activation-mediated alkylation of tertiary carbon to effectively construct a quaternary carbon center. The alkylation proceeded with various alkyl halides, including those of functional groups, to provide a variety of chiral cis- and trans-1,1,2,-trialkyl substituted cyclopropanes of medicinal chemical importance.

  16. mediation: R package for causal mediation analysis

    OpenAIRE

    Tingley, Dustin; Yamamoto, Teppei; Hirose, Kentaro; Keele, Luke; Imai, Kosuke

    2012-01-01

    In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting su...

  17. Micro dynamics in mediation

    OpenAIRE

    Boserup, Hans

    2014-01-01

    The author has identified a number of styles in mediation, which lead to different processes and different outcomes. Through discourse and conversation analysis he examines the micro dynamics in three of these, the postmodern styles: systemic, transformative and narrative mediation. The differences between the three mediation ideologies and practice is illustrated through role play scripts enacted in each style. Mediator and providers of mediation and trainers in mediation are encouraged to a...

  18. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition.

    Science.gov (United States)

    Gao, Lu; Rabbitt, Elizabeth H; Condon, Jennifer C; Renthal, Nora E; Johnston, John M; Mitsche, Matthew A; Chambon, Pierre; Xu, Jianming; O'Malley, Bert W; Mendelson, Carole R

    2015-07-01

    The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A-deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process. As mice lacking both SRC-1 and SRC-2 die at birth due to respiratory distress, we crossed double-heterozygous males and females. Parturition was severely delayed (~38 hours) in heterozygous dams harboring SRC-1/-2-deficient embryos. These mothers exhibited decreased myometrial NF-κB activation, PGF2α, and expression of contraction-associated genes; impaired luteolysis; and elevated circulating progesterone. These manifestations also occurred in WT females bearing SRC-1/-2 double-deficient embryos, indicating that a fetal-specific defect delayed labor. SP-A, as well as the enzyme lysophosphatidylcholine acyltransferase-1 (LPCAT1), required for synthesis of surfactant dipalmitoylphosphatidylcholine, and the proinflammatory glycerophospholipid platelet-activating factor (PAF) were markedly reduced in SRC-1/-2-deficient fetal lungs near term. Injection of PAF or SP-A into AF at 17.5 days post coitum enhanced uterine NF-κB activation and contractile gene expression, promoted luteolysis, and rescued delayed parturition in SRC-1/-2-deficient embryo-bearing dams. These findings reveal that fetal lungs produce signals to initiate labor when mature and that SRC-1/-2-dependent production of SP-A and PAF is crucial for this process.

  19. Biological synthesis of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Szewczyk, K; Waszak, K

    2009-01-01

    Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

  20. The Process Mediation Framework for Semantic Web Services

    Czech Academy of Sciences Publication Activity Database

    Vaculín, Roman; Neruda, Roman

    2009-01-01

    Roč. 3, č. 1 (2009), s. 27-58 ISSN 1746-1375 R&D Projects: GA MŠk ME08095; GA AV ČR 1ET100300517 Institutional research plan: CEZ:AV0Z10300504 Keywords : process mediation * OWL-S * semantic web services * adapter synthesis Subject RIV: IN - Informatics, Computer Science

  1. Total synthesis and stereochemical assignment of the salicylate antitumor macrolide lobatamide C(1).

    Science.gov (United States)

    Shen, Ruichao; Lin, Cheng Ting; Porco, John A

    2002-05-22

    The total synthesis and stereochemical assignment of the potent antitumor macrolide lobatamide C is reported. The synthesis involves Cu(I)-mediated enamide formation and Na(2)CO(3)-mediated esterification of a beta-hydroxy acid and a salicylate cyanomethyl ester. Macrolactonization was accomplished using a Mitsunobu protocol. The stereochemical assignment of lobatamide C was achieved by Mosher ester analysis and comparison with prepared stereoisomers.

  2. The total synthesis of calcium atorvastatin.

    Science.gov (United States)

    Dias, Luiz C; Vieira, Adriano S; Barreiro, Eliezer J

    2016-02-21

    A practical and convergent asymmetric route to calcium atorvastatin (1) is reported. The synthesis of calcium atorvastatin (1) was performed using the remote 1,5-anti asymmetric induction in the boron-mediated aldol reaction of β-alkoxy methylketone (4) with pyrrolic aldehyde (3) as a key step. Calcium atorvastatin was obtained from aldehyde (3) after 6 steps, with a 41% overall yield.

  3. DNA synthesis in the pituitary gland of the rat: effect of sulpiride and clomiphene.

    Science.gov (United States)

    Burdman, J A; Szijan, I; Jahn, G A; Machiavelli, G; Kalbermann, L E

    1979-09-15

    Sulpiride administration to rats releases prolactin and increases DNA replication in the anterior pituitary gland. Clomiphene prevents the stimulation of DNA synthesis produced by sulpiride, but does not affect prolactin release from the gland. These findings suggest that the intracellular prolactin content of the anterior pituitary gland plays a role in the regulation of DNA synthesis through a mechanism mediated by oestrogens.

  4. Improved synthesis of (S)-N-Boc-5-oxaproline for protein synthesis with the α-ketoacid-hydroxylamine (KAHA) ligation.

    Science.gov (United States)

    Murar, Claudia E; Harmand, Thibault J; Bode, Jeffrey W

    2017-09-15

    We describe a new route for the synthesis of (S)-N-Boc-5-oxaproline. This building block is a key element for the chemical synthesis of proteins with the α-ketoacid-hydroxylamine (KAHA) ligation. The new synthetic pathway to the enantiopure oxaproline is based on a chiral amine mediated enantioselective conjugate addition of a hydroxylamine to trans-4-oxo-2-butenoate. This route is practical, scalable and economical and provides decagram amounts of material for protein synthesis and conversion to other protected forms of (S)-oxaproline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Lysophosphatidylcholine Induces Taurine Release from HeLa Cells

    DEFF Research Database (Denmark)

    Lambert, Ian H.; Falktoft, Birgitte

    2000-01-01

    Cell volume regulation, Membrane permeabilization, Vitamin E, Tyrosine phosphorylation, Lysophospholipids......Cell volume regulation, Membrane permeabilization, Vitamin E, Tyrosine phosphorylation, Lysophospholipids...

  6. Nordic Mediation Reseach

    DEFF Research Database (Denmark)

    A presentation of 12 studies on mediation from researchers from Denmark, Finland, Norway and Sweden.......A presentation of 12 studies on mediation from researchers from Denmark, Finland, Norway and Sweden....

  7. N-acetylcysteine stimulates protein synthesis in enterocytes independently of glutathione synthesis.

    Science.gov (United States)

    Yi, Dan; Hou, Yongqing; Wang, Lei; Long, Minhui; Hu, Shengdi; Mei, Huimin; Yan, Liqiong; Hu, Chien-An Andy; Wu, Guoyao

    2016-02-01

    Dietary supplementation with N-acetylcysteine (NAC) has been reported to improve intestinal health and treat gastrointestinal diseases. However, the underlying mechanisms are not fully understood. According to previous reports, NAC was thought to exert its effect through glutathione synthesis. This study tested the hypothesis that NAC enhances enterocyte growth and protein synthesis independently of cellular glutathione synthesis. Intestinal porcine epithelial cells were cultured for 3 days in Dulbecco's modified Eagle medium containing 0 or 100 μM NAC. To determine a possible role for GSH (the reduced form of glutathione) in mediating the effect of NAC on cell growth and protein synthesis, additional experiments were conducted using culture medium containing 100 μM GSH, 100 μM GSH ethyl ester (GSHee), diethylmaleate (a GSH-depletion agent; 10 μM), or a GSH-synthesis inhibitor (buthionine sulfoximine, BSO; 20 μM). NAC increased cell proliferation, GSH concentration, and protein synthesis, while inhibiting proteolysis. GSHee enhanced cell proliferation and GSH concentration without affecting protein synthesis but inhibited proteolysis. Conversely, BSO or diethylmaleate reduced cell proliferation and GSH concentration without affecting protein synthesis, while promoting protein degradation. At the signaling level, NAC augmented the protein abundance of total mTOR, phosphorylated mTOR, and phosphorylated 70S6 kinase as well as mRNA levels for mTOR and p70S6 kinase in IPEC-1 cells. Collectively, these results indicate that NAC upregulates expression of mTOR signaling proteins to stimulate protein synthesis in enterocytes independently of GSH generation. Our findings provide a hitherto unrecognized biochemical mechanism for beneficial effects of NAC in intestinal cells.

  8. Bayesian Mediation Analysis

    OpenAIRE

    Yuan, Ying; MacKinnon, David P.

    2009-01-01

    This article proposes Bayesian analysis of mediation effects. Compared to conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian mediation analysis, inference is straightforward and exact, which makes it appealing for studies with small samples. Third, the Bayesian approach is conceptua...

  9. mediation: R Package for Causal Mediation Analysis

    Directory of Open Access Journals (Sweden)

    Dustin Tingley

    2014-09-01

    Full Text Available In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting such an analysis. The package is organized into two distinct approaches. Using the model-based approach, researchers can estimate causal mediation effects and conduct sensitivity analysis under the standard research design. Furthermore, the design-based approach provides several analysis tools that are applicable under different experimental designs. This approach requires weaker assumptions than the model-based approach. We also implement a statistical method for dealing with multiple (causally dependent mediators, which are often encountered in practice. Finally, the package also offers a methodology for assessing causal mediation in the presence of treatment noncompliance, a common problem in randomized trials.

  10. Bayesian Mediation Analysis

    Science.gov (United States)

    Yuan, Ying; MacKinnon, David P.

    2009-01-01

    In this article, we propose Bayesian analysis of mediation effects. Compared with conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian…

  11. Síntese e hidrólise de azalactonas de Erlenmeyer-Plöchl mediadas por radiação micro-ondas em aparelhos doméstico e dedicado: experimentos de química orgânica para a graduação Synthesis and hydrolysis of Erlenmeyer-Plöchl azalactones mediated by microwave radiation in domestic and dedicated ovens: undergraduate organic chemistry experiments

    Directory of Open Access Journals (Sweden)

    Silvio Cunha

    2013-01-01

    Full Text Available This work describes a green chemistry experiment for the synthesis of Erlenmeyer-Plöchl azalactones mediated by microwave irradiation, employing both dedicated and domestic equipment. Hippuric acid was reacted with equimolar amounts of benzaldehyde, p-chloro-benzaldehyde or p-N,N-dimethyl-benzaldehyde in acetic anhydride as the solvent. Acid hydrolysis of obtained 4-benzylidene-2-phenyloxazol-5(4H-one under microwave and convectional heating afforded Z-α-(benzoylaminocinnamic acid at a 51-61.5% yield. The UV-Vis molecular spectra of 4-benzylidene-2-phenyloxazol-5(4H-one and 4-(4'-N,N-dimethylbenzylidene-2-phenyloxazol-5(4H-one were obtained in ethanol, CH2Cl2 and DMSO and bathochromic shift was observed for the latter azalactone.

  12. Total synthesis of ciguatoxin.

    Science.gov (United States)

    Hamajima, Akinari; Isobe, Minoru

    2009-01-01

    Something fishy: Ciguatoxin (see structure) is one of the principal toxins involved in ciguatera poisoning and the target of a total synthesis involving the coupling of three segments. The key transformations in this synthesis feature acetylene-dicobalthexacarbonyl complexation.

  13. Albumin synthesis in protein energy malnutrition

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, C; Hardy, S; Kleinman, R E [Harvard Medical School, Boston, MA (United States); Lembcke, J [Instituto de Investigacion Nutricional, La Molina, Lima (Peru); Young, V E [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Lab. of Human Nutrition

    1994-12-31

    The dietary treatment of protein-energy malnutrition (PEM) has been designed on an empirical basis, with outcomes for successful management including body weight gain and resolution of apathy. We propose using the measurements of protein synthesis as a more objective measure of renourishment. We will therefore randomize a group of malnourished children (weigh-for-height Z score <-2.0) to receive either a standard (10% of calories as protein) or increased (15%) amount of dietary protein early in their recovery phase. We will calculate albumin synthesis rates via the flooding dose technique, using {sup 13}C-leucine and serial measurements of {sup 13}C-enrichment of albumin. Isotope infusions will be performed on days one and three, following a standard three hour fast. Since albumin synthesis is reduced under the influence of cytokines which mediate the inflammatory response, results will be stratified according to the presence or absence of clinically apparent infections. We hypothesize that the provision of added dietary protein will optimize albumin synthesis rates in PEM as well as attenuate the reduction in albumin synthesis seen in the presence of infections. (author). 20 refs.

  14. General gauge mediation

    International Nuclear Information System (INIS)

    Meade, Patrick; Seiberg, Nathan; Shih, David

    2009-01-01

    We give a general definition of gauge mediated supersymmetry breaking which encompasses all the known gauge mediation models. In particular, it includes both models with messengers as well as direct mediation models. A formalism for computing the soft terms in the generic model is presented. Such a formalism is necessary in strongly-coupled direct mediation models where perturbation theory cannot be used. It allows us to identify features of the entire class of gauge mediation models and to distinguish them from specific signatures of various subclasses. (author)

  15. Bayesian dynamic mediation analysis.

    Science.gov (United States)

    Huang, Jing; Yuan, Ying

    2017-12-01

    Most existing methods for mediation analysis assume that mediation is a stationary, time-invariant process, which overlooks the inherently dynamic nature of many human psychological processes and behavioral activities. In this article, we consider mediation as a dynamic process that continuously changes over time. We propose Bayesian multilevel time-varying coefficient models to describe and estimate such dynamic mediation effects. By taking the nonparametric penalized spline approach, the proposed method is flexible and able to accommodate any shape of the relationship between time and mediation effects. Simulation studies show that the proposed method works well and faithfully reflects the true nature of the mediation process. By modeling mediation effect nonparametrically as a continuous function of time, our method provides a valuable tool to help researchers obtain a more complete understanding of the dynamic nature of the mediation process underlying psychological and behavioral phenomena. We also briefly discuss an alternative approach of using dynamic autoregressive mediation model to estimate the dynamic mediation effect. The computer code is provided to implement the proposed Bayesian dynamic mediation analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Unexplored vegetal green synthesis of silver nanoparticles: A ...

    African Journals Online (AJOL)

    Antibacterial properties of silver ion are known from ancient times. The plant extract mediated synthesis of nanoparticles is gaining popularity due to green chemistry for the generation of nanosized materials. Corchorus olitorus Linn and Ipomea batatas (L.) Lam are world crops having leaves of high nutritional value.

  17. Synthesis of ribavirin 2’-Me-C-nucleoside analogues

    Directory of Open Access Journals (Sweden)

    Fanny Cosson

    2017-04-01

    Full Text Available An efficient synthetic pathway leading to two carbonated analogues of ribavirin is described. The key-steps in the synthesis of these ribosyltriazoles bearing a quaternary carbon atom in the 2’-position are an indium-mediated alkynylation and a 1,3-dipolar cyclization.

  18. Synthesis of benzimidazoles via iridium-catalyzed acceptorless dehydrogenative coupling.

    Science.gov (United States)

    Sun, Xiang; Lv, Xiao-Hui; Ye, Lin-Miao; Hu, Yu; Chen, Yan-Yan; Zhang, Xue-Jing; Yan, Ming

    2015-07-21

    Iridium-catalyzed acceptorless dehydrogenative coupling of tertiary amines and arylamines has been developed. A number of benzimidazoles were prepared in good yields. An iridium-mediated C-H activation mechanism is suggested. This finding represents a novel strategy for the synthesis of benzimidazoles.

  19. Causal mediation analysis with multiple mediators.

    Science.gov (United States)

    Daniel, R M; De Stavola, B L; Cousens, S N; Vansteelandt, S

    2015-03-01

    In diverse fields of empirical research-including many in the biological sciences-attempts are made to decompose the effect of an exposure on an outcome into its effects via a number of different pathways. For example, we may wish to separate the effect of heavy alcohol consumption on systolic blood pressure (SBP) into effects via body mass index (BMI), via gamma-glutamyl transpeptidase (GGT), and via other pathways. Much progress has been made, mainly due to contributions from the field of causal inference, in understanding the precise nature of statistical estimands that capture such intuitive effects, the assumptions under which they can be identified, and statistical methods for doing so. These contributions have focused almost entirely on settings with a single mediator, or a set of mediators considered en bloc; in many applications, however, researchers attempt a much more ambitious decomposition into numerous path-specific effects through many mediators. In this article, we give counterfactual definitions of such path-specific estimands in settings with multiple mediators, when earlier mediators may affect later ones, showing that there are many ways in which decomposition can be done. We discuss the strong assumptions under which the effects are identified, suggesting a sensitivity analysis approach when a particular subset of the assumptions cannot be justified. These ideas are illustrated using data on alcohol consumption, SBP, BMI, and GGT from the Izhevsk Family Study. We aim to bridge the gap from "single mediator theory" to "multiple mediator practice," highlighting the ambitious nature of this endeavor and giving practical suggestions on how to proceed. © 2014 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  20. Flexible Mediation Analysis With Multiple Mediators.

    Science.gov (United States)

    Steen, Johan; Loeys, Tom; Moerkerke, Beatrijs; Vansteelandt, Stijn

    2017-07-15

    The advent of counterfactual-based mediation analysis has triggered enormous progress on how, and under what assumptions, one may disentangle path-specific effects upon combining arbitrary (possibly nonlinear) models for mediator and outcome. However, current developments have largely focused on single mediators because required identification assumptions prohibit simple extensions to settings with multiple mediators that may depend on one another. In this article, we propose a procedure for obtaining fine-grained decompositions that may still be recovered from observed data in such complex settings. We first show that existing analytical approaches target specific instances of a more general set of decompositions and may therefore fail to provide a comprehensive assessment of the processes that underpin cause-effect relationships between exposure and outcome. We then outline conditions for obtaining the remaining set of decompositions. Because the number of targeted decompositions increases rapidly with the number of mediators, we introduce natural effects models along with estimation methods that allow for flexible and parsimonious modeling. Our procedure can easily be implemented using off-the-shelf software and is illustrated using a reanalysis of the World Health Organization's Large Analysis and Review of European Housing and Health Status (WHO-LARES) study on the effect of mold exposure on mental health (2002-2003). © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Technology-Use Mediation

    DEFF Research Database (Denmark)

    Bansler, Jørgen P.; Havn, Erling C.

    2003-01-01

    This study analyzes how a group of ‘mediators’ in a large, multinational company adapted a computer-mediated communication technology (a ‘virtual workspace’) to the organizational context (and vice versa) by modifying features of the technology, providing ongoing support for users, and promoting...... appropriate conventions of use. Our findings corroborate earlier research on technology-use mediation, which suggests that such mediators can exert considerable influence on how a particular technology will be established and used in an organization. However, this study also indicates that the process...... of technology-use mediation is more complex and indeterminate than earlier literature suggests. In particular, we want to draw attention to the fact that advanced computer-mediated communication technologies are equivocal and that technology-use mediation consequently requires ongoing sensemaking (Weick 1995)....

  2. The Schizosaccharomyces pombe Mediator

    DEFF Research Database (Denmark)

    Venturi, Michela

    , Schizosaccharomyces pombe and mammalian Mediator. In our study, we have taken the S. pombe Mediator into consideration and characterized genetically and biochemically two subunits already know in S. cerevisiae, Med9 and Med11, but still not identified in the S. pombe Mediator. Genetic analysis has shown that med9......In the past several years great attention has been dedicated to the characterization of the Mediator complex in a different range of model organisms. Mediator is a conserved co-activator complex involved in transcriptional regulation and it conveys signals from regulatory transcription factors...... to the basal transcription machinery. Mediator was initially isolated from Saccharomyces cerevisiae based on its ability to render a RNA polymerase II in vitro transcription system responsive to activators. Additionally, structural studies have revealed striking structural similarities between S. cerevisiae...

  3. Applied mediation analyses

    DEFF Research Database (Denmark)

    Lange, Theis; Hansen, Kim Wadt; Sørensen, Rikke

    2017-01-01

    In recent years, mediation analysis has emerged as a powerful tool to disentangle causal pathways from an exposure/treatment to clinically relevant outcomes. Mediation analysis has been applied in scientific fields as diverse as labour market relations and randomized clinical trials of heart...... disease treatments. In parallel to these applications, the underlying mathematical theory and computer tools have been refined. This combined review and tutorial will introduce the reader to modern mediation analysis including: the mathematical framework; required assumptions; and software implementation...

  4. Immunologically mediated oral diseases

    OpenAIRE

    Jimson, Sudha; Balachader, N.; Anita, N.; Babu, R.

    2015-01-01

    Immune mediated diseases of oral cavity are uncommon. The lesions may be self-limiting and undergo remission spontaneously. Among the immune mediated oral lesions the most important are lichen planus, pemphigus, erythema multiformi, epidermolysis bullosa, systemic lupus erythematosis. Cellular and humoral mediated immunity play a major role directed against epithelial and connective tissue in chronic and recurrent patterns. Confirmatory diagnosis can be made by biopsy, direct and indirect imm...

  5. Direct asymmetric vinylogous aldol reaction of allyl ketones with isatins: Divergent synthesis of 3-hydroxy-2-oxindole derivatives

    KAUST Repository

    Zhu, Bo; Zhang, Wen; Lee, Richmond; Han, Zhiqiang; Yang, Wenguo; Tan, Davin; Huang, Kuo-Wei; Jiang, Zhiyong

    2013-01-01

    6 in 1: The highly enantioselective title reaction is mediated by a bifunctional catalyst and leads to E-configured vinylogous aldol products (see scheme). These products are used as common intermediates in the synthesis of six biologically active 3

  6. Implementing general gauge mediation

    International Nuclear Information System (INIS)

    Carpenter, Linda M.; Dine, Michael; Festuccia, Guido; Mason, John D.

    2009-01-01

    Recently there has been much progress in building models of gauge mediation, often with predictions different than those of minimal gauge mediation. Meade, Seiberg, and Shih have characterized the most general spectrum which can arise in gauge-mediated models. We discuss some of the challenges of building models of general gauge mediation, especially the problem of messenger parity and issues connected with R symmetry breaking and CP violation. We build a variety of viable, weakly coupled models which exhibit some or all of the possible low energy parameters.

  7. Complex-mediated microwave-assisted synthesis of polyacrylonitrile nanoparticles

    Directory of Open Access Journals (Sweden)

    Trinath Biswal

    2010-10-01

    Full Text Available Trinath Biswal, Ramakanta Samal, Prafulla K SahooDepartment of Chemistry, Utkal University, Vani Vihar, Bhubaneswar 751004, IndiaAbstract: The polymerization of acrylonitrile (AN is efficiently, easily, and quickly achieved in the presence of trans-[Co(IIIen2Cl2]Cl complex in a domestic microwave (MW oven. MW irradiation notably promoted the polymerization reaction; this phenomenon is ascribed to the acceleration of the initiator, ammonium persulfate (APS, decomposition by microwave irradiation in the presence of [Co(IIIen2Cl2]Cl. The conversion of monomer to the polymer was mostly excellent in gram scale. Irradiation at low power and time produced more homogeneous polymers with high molecular weight and low polydispersity when compared with the polymer formed by a conventional heating method. The interaction of reacting components was monitored by UV-visible spectrometer. The average molecular weight was derived by gel permeation chromatography (GPC, viscosity methods, and sound velocity by ultrasonic interferometer. The uniform and reduced molecular size was characterized by transmission electron microscopy, the diameter of polyacrylonitrile nanoparticles (PAN being in the range 50–115 nm and 40–230 nm in microwave and conventional heating methods respectively. The surface morphology of PAN prepared by MW irradiation was characterized by scanning electron microscope (SEM. From the kinetic results, the rate of polymerization (Rp was expressed as Rp = [AN]0.63 [APS]0.57 [complex (I].0.88Keywords: microwave, complex catalyst, nanoparticle, kinetics

  8. Copper-mediated Synthesis of Mono- and Dichlorinated Diaryl Ethers

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jan K.; Církva, Vladimír

    2014-01-01

    Roč. 55, č. 30 (2014), s. 4185-4188 ISSN 0040-4039 Institutional support: RVO:67985858 Keywords : O-arylation * Chan-Lam coupling * kovats indices Subject RIV: CC - Organic Chemistry Impact factor: 2.379, year: 2014

  9. Isocyanide-mediated multicomponent synthesis of C-oximinoamidines.

    Science.gov (United States)

    Mercalli, Valentina; Meneghetti, Fiorella; Tron, Gian Cesare

    2013-11-15

    By capitalizing on the different reactivity of nitrile N-oxides with isocyanides and amine, α-oximinoamidines, a so far elusive class of compounds, have been synthesized in a straightforward way by reacting isocyanides, syn-chlorooximes, and amines in a multicomponent fashion.

  10. Surfactant-assisted sacrificial template-mediated synthesis

    Indian Academy of Sciences (India)

    ... spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopyand photoluminescence studies. Influence of surfactant and solvents on morphology and luminescence of the final product in sacrificial template-assisted method has been investigated in detail.

  11. Selenium-mediated synthesis of biaryls through rearrangement.

    Science.gov (United States)

    Shahzad, Sohail A; Vivant, Clotilde; Wirth, Thomas

    2010-03-19

    A new cyclization of beta-keto ester substituted stilbene derivatives using selenium electrophiles in the presence of Lewis acids is described. Substituted naphthols are obtained through cyclization and subsequent 1,2-rearrangement of aryl groups under very mild reaction conditions.

  12. Synthesis of fused ring compounds "via" chromium mediated dearomatisation

    OpenAIRE

    Bellido Ramos, Alejandro

    2005-01-01

    Le travail de thèse présenté dans ce manuscrit décrit la synthèse de nouveaux composés cycliques de type [6, n] de jonction "Cis". Ces composés sont obtenus par une séquence de réactions commençant par la réaction de dearomatisation [Cr(arène)(CO)₃], pour finir par une fermeture de cycle par métathèse d'alcènes. L'obtention du système [6, 7] énantioenricihi a été possible via cette méthode. Par ailleurs ce travail de thèse présente deux applications concrètes de l'utilisation de la réaction d...

  13. Lamellar Micelles - Mediated Synthesis of Nanoscale Thick Sheets of Titania

    Czech Academy of Sciences Publication Activity Database

    Klusoň, P.; Lusková, H.; Šolcová, Olga; Matějová, Lenka; Cajthaml, Tomáš

    2007-01-01

    Roč. 61, 14-15 (2007), s. 2931-2934 ISSN 0167-577X R&D Projects: GA ČR(CZ) GA104/04/0963; GA ČR(CZ) GD203/03/H140 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : nanostructures * lamellar titania * templating Subject RIV: CA - Inorganic Chemistry Impact factor: 1.625, year: 2007

  14. Synthesis and characterization of Eichhornia-mediated copper oxide ...

    Indian Academy of Sciences (India)

    In this paper, we report the biosynthesis and characterization of copper oxide nanoparticles ... copper oxide nanoparticles by simple, cost-effective and ecofriendly method as an alternative to other available ... Currently, zinc oxide, gold, silver.

  15. Rhodium mediated bond activation: from synthesis to catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Hung-An [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Recently, our lab has developed monoanionic tridentate ligand, ToR, showing the corresponding coordination chemistry and catalyst reactivity of magnesium, zirconium, zinc and iridium complexes. This thesis details synthetic chemistry, structural study and catalytic reactivity of the ToR-supported rhodium compounds. Tl[ToR] has been proved to be a superior ligand transfer agent for synthesizing rhodium complexes. The salt metathesis route of Tl[ToM] with [Rh(μ-Cl)(CO)]2 and [Rh(μ- Cl)(COE)]2 gives ToMRh(CO)2 (2.2) and ToMRhH(β3-C8H13) (3.1) respectively while Tl[ToM] with [Rh(μ-Cl)(CO)]2 affords ToPRh(CO)2 (2.3). 2.2 reacts with both strong and weak electrophiles, resulting in the oxazoline N-attacked and the metal center-attacked compounds correspondingly. Using one of the metal center-attacked electrophiles, 2.3 was demonstrated to give high diastereoselectivity. Parallel to COE allylic C-H activation complex 3.1, the propene and allylbenzene allylic C-H activation products have also been synthesized. The subsequent functionalization attempts have been examined by treating with Brønsted acids, Lewis acids, electrophiles, nucleophiles, 1,3-dipolar reagents and reagents containing multiple bonds able to be inserted. Various related complexes have been obtained under these conditions, in which one of the azide insertion compounds reductively eliminates to give an allylic functionalization product stoichiometrically. 3.1 reacts with various primary alcohols to give the decarbonylation dihydride complex ToMRh(H)2CO (4.1). 4.1 shows catalytic reactivity for primary alcohol decarbonylation under a photolytic condition. Meanwhile, 2.2 has been found to be more reactive than 4.1 for catalytic alcohol decarbonylation under the same condition. Various complexes and primary alcohols have been investigated as well. The proposed mechanism is based on the stochiometric reactions of the possible metal and organic intermediates. Primary amines, hypothesized to undergo a similar reaction pathway, have been verified to give dehydrogenative coupling product, imines. In the end, the well-developed neutral tridentate Tpm coordinates to the rhodium bis(ethylene) dimer in the presence of TlPF6 to give the cationic complex, [TpmRh(C2H4)2][PF6] (5.1). 5.1 serves as the first example of explicit determination of the solid state hapticity, evidenced by X-ray structure, among all the cationic TpmRM(C2H4)2+ (TpmR = Tpm, Tpm*, M = Rh, Ir) derivatives. The substitution chemistry of this compound has been studied by treating with soft and hard donors. The trimethylphosphine-sbustituted complex activates molecular hydrogen to give the dihydride compound.

  16. Zirconocene-mediated preparation of precursors for estratriene synthesis

    Czech Academy of Sciences Publication Activity Database

    Herrmann, Pavel; Buděšínský, Miloš; Kotora, Martin

    2007-01-01

    Roč. 36, č. 10 (2007), s. 1268-1269 ISSN 0366-7022 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : zirconocene * cyclization * allylation Subject RIV: CC - Organic Chemistry Impact factor: 1.480, year: 2007

  17. Teaching Mediated Public Relations.

    Science.gov (United States)

    Kent, Michael L.

    2001-01-01

    Discusses approaches to teaching a mediated public relations course, emphasizing the World Wide Web. Outlines five course objectives, assignments and activities, evaluation, texts, and lecture topics. Argues that students mastering these course objectives will understand ethical issues relating to media use, using mediated technology in public…

  18. Fashion, Mediations & Method Assemblages

    DEFF Research Database (Denmark)

    Sommerlund, Julie; Jespersen, Astrid Pernille

    of handling multiple, fluid realities with multiple, fluid methods. Empirically, the paper works with mediation in fashion - that is efforts the active shaping of relations between producer and consumer through communication, marketing and PR. Fashion mediation is by no means simple, but organise complex...

  19. The Mediated Transparent Society

    DEFF Research Database (Denmark)

    Backer, Lise

    2001-01-01

    in the mediated transparent society. The paper concludes that, based on these analyses, the mediated panopticism working on the business segment is not an effective disciplinary apparatus, which can guarantee that business corporations are carrying out important ecological or ethical improvements....

  20. Laccase/Mediator Systems

    NARCIS (Netherlands)

    Hilgers, Roelant; Vincken, Jean Paul; Gruppen, Harry; Kabel, Mirjam A.

    2018-01-01

    Laccase-mediator systems (LMS) have been widely studied for their capacity to oxidize the nonphenolic subunits of lignin (70-90% of the polymer). The phenolic subunits (10-30% of the polymer), which can also be oxidized without mediators, have received considerably less attention. Consequently, it

  1. TopBP1-mediated DNA processing during mitosis.

    Science.gov (United States)

    Gallina, Irene; Christiansen, Signe Korbo; Pedersen, Rune Troelsgaard; Lisby, Michael; Oestergaard, Vibe H

    2016-01-01

    Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells. (1) Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.

  2. The multitalented Mediator complex.

    Science.gov (United States)

    Carlsten, Jonas O P; Zhu, Xuefeng; Gustafsson, Claes M

    2013-11-01

    The Mediator complex is needed for regulated transcription of RNA polymerase II (Pol II)-dependent genes. Initially, Mediator was only seen as a protein bridge that conveyed regulatory information from enhancers to the promoter. Later studies have added many other functions to the Mediator repertoire. Indeed, recent findings show that Mediator influences nearly all stages of transcription and coordinates these events with concomitant changes in chromatin organization. We review the multitude of activities associated with Mediator and discuss how this complex coordinates transcription with other cellular events. We also discuss the inherent difficulties associated with in vivo characterization of a coactivator complex that can indirectly affect diverse cellular processes via changes in gene transcription. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Music, radio and mediatization

    DEFF Research Database (Denmark)

    Michelsen, Morten; Krogh, Mads

    2016-01-01

    of mediatization where media as such seem to be ascribed agency. Instead, we consider historical accounts of music–radio in order to address the complex nonlinearity of concrete processes of mediatization as they take place in the multiple meetings between a decentred notion of radio and musical life.......Mediatization has become a key concept for understanding the relations between media and other cultural and social fields. Contributing to the discussions related to the concept of mediatization, this article discusses how practices of radio and music(al life) influence each other. We follow Deacon......’s and Stanyer’s advice to supplement the concept of mediatization with ‘a series of additional concepts at lower levels of abstraction’ and suggest, in this respect, the notion of heterogeneous milieus of music–radio. Hereby, we turn away from the all-encompassing perspectives related to the concept...

  4. The Synthesis of a kind of dipeptide

    International Nuclear Information System (INIS)

    He, Jiaheng

    2009-04-01

    The research on novel radioiodopharmaceutical which treat tumor efficiently is meaningful, moreover, this result just base on the synthesis of the prodrug of radiopharmaceutical. About 85% of malignacy express positive for telomer- ase. It aims to search for a kind of new compound, which can restrain telomer- ase and therapy tumor. In this work, a novel prodrug of radioiodopharmaceutical(C 6 H 4 IPOC1NH (CH 2 ) 6 NH-Leu-Gly-Boc)had been designed and synthe- sized. Some important inter-mediates also had been synthesized. The compound had been analysed using E.S., 1 HNMR(D 2 O, 200 MHz) and ESI-MS. The results indicated that the synthesis was successful. C 6 H 4 IPOC1NH(CH 2 ) 6 NH- Leu-Gly-Boc was synthesised from liquid phase instead of trational state phase, which would reduce the cost and improve the maneuverability. (authors)

  5. Immunomodulatory Effects Mediated by Dopamine

    Science.gov (United States)

    Alvarez-Herrera, Samantha; Pérez-Sánchez, Gilberto; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Flores-Gutierrez, Enrique Octavio; Quintero-Fabián, Saray

    2016-01-01

    Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers. PMID:27795960

  6. Immunomodulatory Effects Mediated by Dopamine

    Directory of Open Access Journals (Sweden)

    Rodrigo Arreola

    2016-01-01

    Full Text Available Dopamine (DA, a neurotransmitter in the central nervous system (CNS, has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R and D2-like receptors (D2R, D3R, and D4R. The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS, there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers.

  7. General resonance mediation

    International Nuclear Information System (INIS)

    McGarrie, Moritz

    2012-07-01

    We extend the framework of general gauge mediation to cases where the mediating fields have a nontrivial spectral function, as might arise from strong dynamics. We demonstrate through examples that this setup describes a broad class of possible models of gauge mediated supersymmetry breaking. A main emphasis is to give general formulas for cross sections for σ(visible → hidden) in these resonance models. We will also give formulas for soft masses, A-terms and demonstrate the framework with a holographic setup.

  8. General resonance mediation

    Energy Technology Data Exchange (ETDEWEB)

    McGarrie, Moritz

    2012-07-15

    We extend the framework of general gauge mediation to cases where the mediating fields have a nontrivial spectral function, as might arise from strong dynamics. We demonstrate through examples that this setup describes a broad class of possible models of gauge mediated supersymmetry breaking. A main emphasis is to give general formulas for cross sections for {sigma}(visible {yields} hidden) in these resonance models. We will also give formulas for soft masses, A-terms and demonstrate the framework with a holographic setup.

  9. Positively deflected anomaly mediation

    International Nuclear Information System (INIS)

    Okada, Nobuchika

    2002-01-01

    We generalize the so-called 'deflected anomaly mediation' scenario to the case where threshold corrections of heavy messengers to the sparticle squared masses are positive. A concrete model realizing this scenario is also presented. The tachyonic slepton problem can be fixed with only a pair of messengers. The resultant sparticle mass spectrum is quite different from that in the conventional deflected anomaly mediation scenario, but is similar to the one in the gauge mediation scenario. The lightest sparticle is mostly B-ino

  10. Polyarene mediators for mediated redox flow battery

    Science.gov (United States)

    Delnick, Frank M.; Ingersoll, David; Liang, Chengdu

    2018-01-02

    The fundamental charge storage mechanisms in a number of currently studied high energy redox couples are based on intercalation, conversion, or displacement reactions. With exception to certain metal-air chemistries, most often the active redox materials are stored physically in the electrochemical cell stack thereby lowering the practical gravimetric and volumetric energy density as a tradeoff to achieve reasonable power density. In a general embodiment, a mediated redox flow battery includes a series of secondary organic molecules that form highly reduced anionic radicals as reaction mediator pairs for the reduction and oxidation of primary high capacity redox species ex situ from the electrochemical cell stack. Arenes are reduced to stable anionic radicals that in turn reduce a primary anode to the charged state. The primary anode is then discharged using a second lower potential (more positive) arene. Compatible separators and solvents are also disclosed herein.

  11. Hamiltonian Algorithm Sound Synthesis

    OpenAIRE

    大矢, 健一

    2013-01-01

    Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.

  12. Synthesis of Mechanisms

    DEFF Research Database (Denmark)

    Hansen, John Michael

    1999-01-01

    These notes describe an automated procedure for analysis and synthesis of mechanisms. The analysis method is based on the body coordinate formulation, and the synthesis is based on applying optimization methods, used to minimize the difference between an actual and a desired behaviour...

  13. Synthesis of oligonucleotide phosphorodithioates

    DEFF Research Database (Denmark)

    Beaton, G.; Brill, W. K D; Grandas, A.

    1991-01-01

    The synthesis of DNA containing sulfur at the two nonbonding internucleotide valencies is reported. Several different routes using either tervalent or pentavalent mononucleotide synthons are described.......The synthesis of DNA containing sulfur at the two nonbonding internucleotide valencies is reported. Several different routes using either tervalent or pentavalent mononucleotide synthons are described....

  14. Synthesis of Isoiminosugars

    DEFF Research Database (Denmark)

    Hyldtoft, Lene; Godskesen, Michael Anders; Lundt, Inge

    1998-01-01

    A short synthesis of isoiminosugars have been developed. Bromolactones are diastereoselectively alkylated at C-2 followed by ring closure to the corresponding lactams. Reduction of these then gives isoiminosugars......A short synthesis of isoiminosugars have been developed. Bromolactones are diastereoselectively alkylated at C-2 followed by ring closure to the corresponding lactams. Reduction of these then gives isoiminosugars...

  15. Integrated biofuels process synthesis

    DEFF Research Database (Denmark)

    Torres-Ortega, Carlo Edgar; Rong, Ben-Guang

    2017-01-01

    Second and third generation bioethanol and biodiesel are more environmentally friendly fuels than gasoline and petrodiesel, andmore sustainable than first generation biofuels. However, their production processes are more complex and more expensive. In this chapter, we describe a two-stage synthesis......% used for bioethanol process), and steam and electricity from combustion (54%used as electricity) in the bioethanol and biodiesel processes. In the second stage, we saved about 5% in equipment costs and 12% in utility costs for bioethanol separation. This dual synthesis methodology, consisting of a top......-level screening task followed by a down-level intensification task, proved to be an efficient methodology for integrated biofuel process synthesis. The case study illustrates and provides important insights into the optimal synthesis and intensification of biofuel production processes with the proposed synthesis...

  16. VHDL for logic synthesis

    CERN Document Server

    Rushton, Andrew

    2011-01-01

    Many engineers encountering VHDL (very high speed integrated circuits hardware description language) for the first time can feel overwhelmed by it. This book bridges the gap between the VHDL language and the hardware that results from logic synthesis with clear organisation, progressing from the basics of combinational logic, types, and operators; through special structures such as tristate buses, register banks and memories, to advanced themes such as developing your own packages, writing test benches and using the full range of synthesis types. This third edition has been substantially rewritten to include the new VHDL-2008 features that enable synthesis of fixed-point and floating-point hardware. Extensively updated throughout to reflect modern logic synthesis usage, it also contains a complete case study to demonstrate the updated features. Features to this edition include: * a common VHDL subset which will work across a range of different synthesis systems, targeting a very wide range of technologies...

  17. Biomimetic synthesis of noble metal nanocrystals

    Science.gov (United States)

    Chiu, Chin-Yi

    At the nanometer scale, the physical and chemical properties of materials heavily depend on their sizes and shapes. This fact has triggered considerable efforts in developing controllable nanomaterial synthesis. The controlled growth of colloidal nanocrystal is a kinetic process, in which high-energy facets grow faster and then vanish, leading to a nanocrystal enclosed by low-energy facets. Identifying a surfactant that can selectively bind to a particular crystal facet and thus lower its surface energy, is critical and challenging in shape controlled synthesis of nanocrystals. Biomolecules exhibiting exquisite molecular recognition properties can be exploited to precisely engineer nanostructured materials. In the first part of my thesis, we employed the phage display technique to select a specific multifunctional peptide sequence which can bind on Pd surface and mediate Pd crystal nucleation and growth, achieving size controlled synthesis of Pd nanocrystals in aqueous solution. We further demonstrated a rational biomimetic approach to the predictable synthesis of nanocrystals enclosed by a particular facet in the case of Pt. Specifically, Pt {100} and Pt {111} facet-specific peptides were identified and used to synthesize Pt nanocubes and Pt nano-tetrahedrons, respectively. The mechanistic studies of Pt {111} facet-specific peptide had led us to study the facet-selective adsorption of aromatic molecules on noble metal surfaces. The discoveries had achieved the development of design strategies to select facet-selective molecules which can synthesize nanocrystals with expected shapes in both Pt and Pd system. At last, we exploited Pt facet-specific peptides and controlled the molecular interaction to produce one- and three- dimensional nanostructures composed of anisotropic nanoparticles in synthetic conditions without supramolecular pre-organization, demonstrating the full potential of biomolecules in mediating material formation process. My research on biomimetic

  18. Chemoenzymatic synthesis of carbon-14 labelled antioxidants

    International Nuclear Information System (INIS)

    Deigner, H.P.; Freyberg, C.; Heck, R.

    1993-01-01

    The syntheses of [ 14 C] labelled antioxidants are described. We developed an efficient synthetic methodology to prepare a series of labelled amides with antioxidant activity, starting from [ 14 C] KCN and alkyl or aryl halides. By a combination of nucleophilic displacement of halides by [ 14 C] cyanide, mediated by ultrasound and subsequent mild and selective enzymatic hydrolysis of the resulting nitriles, labelled carboxylic acids were obtained. Labelled amines were prepared by reduction of the respective nitriles. Availability of [ 14 C] KCN, efficient introduction of the label by ultrasound mediated reaction and selective and mild hydrolysis by commercially available nitrilase (Rhodococcus sp.), makes possible a wide range of applications of this methodology in the synthesis of functionalized labelled compounds. (Author)

  19. Solid-phase synthesis of complex and pharmacologically interesting heterocycles

    DEFF Research Database (Denmark)

    Nielsen, Thomas Eiland

    2009-01-01

    Efficient routes for the creation of heterocycles continue to be one of the primary goals for solid-phase synthesis. Recent advances in this field rely most notably on transition-metal-catalysis and N-acyliminium chemistry to mediate a range of cyclization processes for the generation of compounds...... with significant structural complexity and diversity. This review describes some of the most systematic solid-phase approaches that are potentially suited for pharmaceutical applications, that is, the methods described are useful for the synthesis of compound collections, and exhibit tunable stereochemistry...

  20. Combustion Synthesis Of Ultralow-density Nanoporous Gold Foams

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Bruce C [Los Alamos National Laboratory; Mueller, Alex H [Los Alamos National Laboratory; Steiner, Stephen A [Los Alamos National Laboratory; Luther, Erik P [Los Alamos National Laboratory

    2008-01-01

    A new synthetic pathway for producing nanoporous gold monoliths through combustion synthesis from Au bistetrazoJeamine complexes has been demonstrated. Applications of interest for Au nanofoams include new substrates for nanoparticle-mediated catalysis, embedded antennas, and spectroscopy. Integrated support-and-catalystin-one nanocomposites prepared through combustion synthesis of mixed AuBTA/metal oxide pellets would also be an interesting technology approach for low-cost in-line catalytic conversion media. Furthermore, we envision preparation of ultrahigh surface area gold electrodes for application in electrochemical devices through this method.

  1. Making mediation work.

    Science.gov (United States)

    Arif, Zeba

    2016-10-26

    Mediation can be an effective way of solving conflict between staff members. It signifies a willingness for people to work together to discuss their differences in a constructive way, before going down the official grievance route.

  2. Technology-Use Mediation

    DEFF Research Database (Denmark)

    Bansler, Jørgen P.; Havn, Erling C.

    2004-01-01

    Implementation of new computer-mediated communication (CMC) systems in organizations is a complex socio-technical endeavour, involving the mutual adaptation of technology and organization over time. Drawing on the analytic concept of sensemaking, this paper provides a theoretical perspective...... that deepens our understanding of how organizations appropriate new electronic communication media. The paper analyzes how a group of mediators in a large, multinational company adapted a new web-based CMC technology (a virtual workspace) to the local organizational context (and vice versa) by modifying...... features of the technology, providing ongoing support for users, and promoting appropriate conventions of use. We found that these mediators exerted considerable influence on how the technology was established and used in the organization. The mediators were not neutral facilitators of a well...

  3. Understanding Mediation Support

    OpenAIRE

    Lanz, David; Pring, Jamie; von Burg, Corinne; Zeller, Mathias

    2017-01-01

    Recent decades have witnessed increasing institutionalization of mediation support through the establishment of mediation support structures (MSS) within foreign ministries and secretariats of multilateral organizations. This study sheds light on this trend and aims to better understand the emergence, design and development of different MSS. This study analyzes six MSS, namely those established in the United Nations (UN), the Organization for Security and Co-operation in Europe (OSCE), the Eu...

  4. ENVIRONMENTAL CONFLICT MEDIATION

    Directory of Open Access Journals (Sweden)

    GABRIELA G. MIHUT

    2011-04-01

    Full Text Available At a time of global economic crisis followed by resource crisis, a period in which the world seeks alternative resources through eco-investment, environmental conflicts are inevitable. Romania is among the few countries that do not pay enough attention to environmental conflicts and to the advantages to of solving them through mediation procedure. The present paper deals with areas in which conflicts can be applied in environmental mediation and its benefits.

  5. Tagetes erecta mediated phytosynthesis of silver nanoparticles: an eco-friendly approach

    Directory of Open Access Journals (Sweden)

    ANIKET K. GADE

    2012-11-01

    Full Text Available Dhuldhaj UP, Deshmukh SD, Gade AK, Yashpal M, Rai MK. 2012. Tagetes erecta mediated phytosynthesis of silver nanoparticles:an eco-friendly approach. Nusantara Bioscience 4: 109-112. Nanotechnology is a multidisciplinary field having applications in the various fields like medicine, pharmacy, engineering and biotechnology. An important step in nanotechnology is to develop simple and eco-friendly method for the nanomaterial synthesis. Here we describe simple and eco-friendly method for synthesis of silver nanoparticles by extract of Tagetes erecta plant leaves. The phytosynthesis (synthesis by plant of silver nanoparticles was detected by color change from light-green to dark-brown. Synthesis of silver nanoparticles was confirmed by UV-Vis spectrophotometry, further characterization includes nanoparticle tracking analysis system (NTA (LM20 and transmission electron microscopy (TEM. TEM analysis confirms the synthesis of the polydispersed spherical silver nanoparticles of 20-50 n

  6. Protocol: developing a conceptual framework of patient mediated knowledge translation, systematic review using a realist approach

    OpenAIRE

    Wiljer David; Webster Fiona; Brouwers Melissa C; Légaré France; Gagliardi Anna R; Badley Elizabeth; Straus Sharon

    2011-01-01

    Abstract Background Patient involvement in healthcare represents the means by which to achieve a healthcare system that is responsive to patient needs and values. Characterization and evaluation of strategies for involving patients in their healthcare may benefit from a knowledge translation (KT) approach. The purpose of this knowledge synthesis is to develop a conceptual framework for patient-mediated KT interventions. Methods A preliminary conceptual framework for patient-mediated KT interv...

  7. mma: An R Package for Mediation Analysis with Multiple Mediators

    OpenAIRE

    Qingzhao Yu; Bin Li

    2017-01-01

    Mediation refers to the effect transmitted by mediators that intervene in the relationship between an exposure and a response variable. Mediation analysis has been broadly studied in many fields. However, it remains a challenge for researchers to consider complicated associations among variables and to differentiate individual effects from multiple mediators. [1] proposed general definitions of mediation effects that were adaptable to all different types of response (categorical or continuous...

  8. Gas Phase Nanoparticle Synthesis

    Science.gov (United States)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  9. Radiation chemical synthesis

    International Nuclear Information System (INIS)

    Zagoretz, P.A.; Poluetkov, V.A.; Shostenko, A.G.

    1986-01-01

    The authors consider processes in radiation chemical synthesis which are being developed in various scientific-research organizations. The important advantages of radiation chlorination, viz. the lower temperature compared with the thermal method and the absence of dehydrochlorination products are discussed. The authors examine the liquid-phase chlorination of trifluorochloroethyltrichloromethyl ether to obtain the pentachloro-contining ether, trifluorodichloroethyltrichloromethyl ether. The authors discuss radiation synthesis processes that have be used formulated kinetic equations on which models have been based. It is concluded that the possibilities of preparative (micro- and low-tonnage) radiation synthesis are promising

  10. Analysis of multiparty mediation processes

    NARCIS (Netherlands)

    Vuković, Siniša

    2013-01-01

    Crucial challenges for multiparty mediation processes include the achievement of adequate cooperation among the mediators and consequent coordination of their activities in the mediation process. Existing literature goes only as far as to make it clear that successful mediation requires necessary

  11. In-site synthesis of monodisperse, oleylamine-capped Ag nanoparticles through microemulsion approach

    Science.gov (United States)

    Chen, Shun; Ju, Yanyun; Guo, Yi; Xiong, Chuanxi; Dong, Lijie

    2017-03-01

    Ag NPs were in-site synthesized through microemulsion method by reducing silver acetate with oleylamine-mediated at 70 °C with highly monodisperse and narrow size from 10 to 20 nm. The synthesis of Ag NPs was aided by oleylamine and the role of oleylamine was researched. This in-site synthesis approach to Ag NPs was reproducibility and high yield more than 80% with stable store about 6 months.

  12. In-site synthesis of monodisperse, oleylamine-capped Ag nanoparticles through microemulsion approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shun; Ju, Yanyun [Wuhan University of Technology, School of Materials Science and Engineering (China); Guo, Yi [Wuhan University of Technology, Center for Materials Research and Analysis (China); Xiong, Chuanxi; Dong, Lijie, E-mail: dong@whut.edu.cn [Wuhan University of Technology, School of Materials Science and Engineering (China)

    2017-03-15

    Ag NPs were in-site synthesized through microemulsion method by reducing silver acetate with oleylamine-mediated at 70 °C with highly monodisperse and narrow size from 10 to 20 nm. The synthesis of Ag NPs was aided by oleylamine and the role of oleylamine was researched. This in-site synthesis approach to Ag NPs was reproducibility and high yield more than 80% with stable store about 6 months.

  13. Synthesis of Calystegine A(3) from Glucose by the Use of Ring-Closing Metathesis

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard; Pipper, Charlotte Bressen; Madsen, Robert

    2009-01-01

    A synthesis of the nortropane alkaloid calystegine A(3) is described from D-glucose. The key step employs a zinc-mediated tandem reaction where a benzyl-protected methyl 6-iodo glucoside is fragmented to give an unsaturated aldehyde, which is then transformed into the corresponding benzylimine...... affords calystegine A(3). The synthesis uses a total of 13 steps from glucose and confirms the absolute configuration of the natural product....

  14. Enantioselective synthesis of the novel chiral sulfoxide derivative as a glycogen synthase kinase 3beta inhibitor.

    Science.gov (United States)

    Saitoh, Morihisa; Kunitomo, Jun; Kimura, Eiji; Yamano, Toru; Itoh, Fumio; Kori, Masakuni

    2010-09-01

    Glycogen synthase kinase 3beta (GSK-3beta) inhibitors are expected to be attractive therapeutic agents for the treatment of Alzheimer's disease (AD). Recently we discovered sulfoxides (S)-1 as a novel GSK-3beta inhibitor having in vivo efficacy. We investigated practical asymmetric preparation methods for the scale-up synthesis of (S)-1. The highly enantioselective synthesis of (S)-1 (94% ee) was achieved by titanium-mediated oxidation with D-(-)-diethyl tartrate on gram scale.

  15. Mediation: The Wise Advocacy

    Directory of Open Access Journals (Sweden)

    Towseef Ahmad

    2016-01-01

    Full Text Available AbstractAdversarial litigation is not the only means of resolving disputes and settling of claims. There are various options. Alternative means of dispute resolution can save money and time, and can help to anchor and resolve the dispute while exploring valuable good offices, amicable approaches and facilitation. Mediation, as used in law, is a process of managing negotiation by a neutral third party in the form of Alternative Dispute Resolution (ADR, as a convenient way of resolving disputes between two or more parties with speediation processes. On the sidelines typically, a neutral third party, the mediator assists the parties to negotiate a settlement. The term “mediation” broadly refers to any instance in which a neutral third party helps others to reach an amicable and mutually acceptable agreement. More specifically, mediation has a structure, timetable and dynamic approaches that “ordinary” negotiations usually lack. The process helps the parties to flourish the healthy ideas which are different and distinct from the legal rights in a Court of law. It is well known in International Law also and disputants can submit their disputes to mediation in a variety of matters such as commercial, legal, diplomatic, workplace, community and family matters, which assumes a great significance and it is bricolaged within the framework of this article.Keywords: Adversarial, Litigation, Mediation, Negotiation and Amicable.

  16. In vivo synthesis of phosphatidylcholine in rat brain via the phospholipid methylation pathway

    Science.gov (United States)

    Lakher, Michael; Wurtman, Richard J.

    1987-01-01

    The in vivo synthesis of brain phosphatidylcholine (PC) by the methylation of phosphatidylethanolamine (PE) was examined. (H-3)methyl)methionine was infused i.c.v., by indwelling cannula, and brain samples were taken 0.5-18 h thereafter and assayed for (H-3)PC, as well as for its biosynthetic intermediates (H-3)phosphatidyl monomethylethanolamine ((H-3)PMME) and (H-3)phosphatidyl dimethylethanolamine ((H-3)PDME), and for (H-3)lysophosphatidylcholine ((H-3)LPC) and S-(H-3)adenosylmethionine ((H-3)SAM). Most of the (H-3)PC (79-94 percent) was present ipsilateral to the infusion site; indicating that the radioactivity in the (H-3)PC was primarily of intracerebral origin, and not taken up from the blood. Moreover, only very low levels of (H-3)PC were attained in brains of animals receiving (H-3)methionine i.p. and these levels were symmetrically distributed. (H-3)PMME and (H-3)PDME turned over with apparent half-lives of 2.2 h and 2.4 h. In contrast, the accumulation of brain (H-3)PC was biphasic, suggesting the existence of two pools, the more labile of which turned over rapidly (t(sub 1/2) = 5 h) and was formed for as long as (H-3)PMME and (H-3)PDME are present in the brain, and another, which was distinguishable only at 18 h after the (H-3)methionine infusion. (The latter pool may have been synthesized from (H-3)choline that was released via the hydrolysis of some of the brain (H-3)PC previously formed by the methylation of PE.) Subcellular fractionation of brain tissue obtained after in vivo labelling with (H-3)methionine revealed that mitochondrial PC had the highest specific radioactivity (dpm per micromol total lipid phosphorus), and myelin the least. These observations affirm that rat brain does synthesize PC in vivo by methylating PE, and the technique provides an experimental system which may be useful for examining the physiological regulation of this process.

  17. Synthesis of Acetylhomoagmatine

    Directory of Open Access Journals (Sweden)

    Carmenza Duque

    2006-08-01

    Full Text Available Abstract: The first total synthesis of acetylhomoagmatine, a natural product isolated form the methanolic extracts from the sponge Cliona celata, is performed in four steps in a very high yield.

  18. 2002 Annual report: synthesis

    International Nuclear Information System (INIS)

    2003-01-01

    This synthesis of the Annual Report 2002 presents information of the main activities on the scope of the radiation protection and nuclear safety of the Nuclear Regulatory Authority (ARN) of the Argentina during 2002

  19. Principles of asymmetric synthesis

    CERN Document Server

    Gawley, Robert E; Aube, Jeffrey

    2012-01-01

    The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis, this book presents a detailed analysis of the factors that govern stereoselectivity in organic reactions. After an explanation of the basic physical-organic principles governing stereoselective reactions, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Practical Aspects of Asymmetric Synthesis" provides a critical overview of the most common methods for the preparation of enantiomerically pure compounds, techniques for analysis of stereoisomers using chromatographic, spectroscopic, and chiroptical methods. The authors then present an overview of the most important methods in contemporary asymmetric synthesis organized by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions, one chapter on reductions...

  20. Synthesis of protargol

    International Nuclear Information System (INIS)

    Baratova, Z.R.; Sattarova, M.A.; Abdurakhmanov, A.Kh.; Solojenkin, P.M.

    1997-01-01

    This paper is devoted to synthesis of protargol containing 7,5-8,3% of silver. The flowsheet of obtaining of protargol was elaborated. The obtained protargol contains 7,5% of silver, insoluble in alcohol, ether and chloroform.

  1. Synthesis Polarimetry Calibration

    Science.gov (United States)

    Moellenbrock, George

    2017-10-01

    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  2. SYNTHESIS, CHARACTERIZATION AND PHOTOCATALYTIC ...

    African Journals Online (AJOL)

    ISSN 1011-3924. © 2018 Chemical Society of Ethiopia and The Authors. Printed in Ethiopia ... SYNTHESIS, CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITY OF .... cm−1 to determine the surface functional groups. 10 mg of sample ...

  3. 2000 Annual report: synthesis

    International Nuclear Information System (INIS)

    2001-01-01

    This synthesis of the Annual Report 2000 present information of the main activities on the scope of the radiation protection and nuclear safety of the Nuclear Regulatory Authority (NRA) of the Argentina during 2000

  4. 2001 Annual report: synthesis

    International Nuclear Information System (INIS)

    2001-01-01

    This synthesis of the Annual Report 2001 presents information of the main activities on the scope of the radiation protection and nuclear safety of the Nuclear Regulatory Authority (ARN) of the Argentina during 2001

  5. Two-directional synthesis as a tool for diversity-oriented synthesis: Synthesis of alkaloid scaffolds

    Directory of Open Access Journals (Sweden)

    Kieron M. G. O’Connell

    2012-06-01

    Full Text Available Two-directional synthesis represents an ideal strategy for the rapid elaboration of simple starting materials and their subsequent transformation into complex molecular architectures. As such, it is becoming recognised as an enabling technology for diversity-oriented synthesis. Herein, we provide a thorough account of our work combining two-directional synthesis with diversity-oriented synthesis, with particular reference to the synthesis of polycyclic alkaloid scaffolds.

  6. Immunologically mediated oral diseases.

    Science.gov (United States)

    Jimson, Sudha; Balachader, N; Anita, N; Babu, R

    2015-04-01

    Immune mediated diseases of oral cavity are uncommon. The lesions may be self-limiting and undergo remission spontaneously. Among the immune mediated oral lesions the most important are lichen planus, pemphigus, erythema multiformi, epidermolysis bullosa, systemic lupus erythematosis. Cellular and humoral mediated immunity play a major role directed against epithelial and connective tissue in chronic and recurrent patterns. Confirmatory diagnosis can be made by biopsy, direct and indirect immunoflouresence, immune precipitation and immunoblotting. Therapeutic agents should be selected after thorough evaluation of immune status through a variety of tests and after determining any aggravating or provoking factors. Early and appropriate diagnosis is important for proper treatment planning contributing to better prognosis and better quality of life of patient.

  7. Immunologically mediated oral diseases

    Directory of Open Access Journals (Sweden)

    Sudha Jimson

    2015-01-01

    Full Text Available Immune mediated diseases of oral cavity are uncommon. The lesions may be self-limiting and undergo remission spontaneously. Among the immune mediated oral lesions the most important are lichen planus, pemphigus, erythema multiformi, epidermolysis bullosa, systemic lupus erythematosis. Cellular and humoral mediated immunity play a major role directed against epithelial and connective tissue in chronic and recurrent patterns. Confirmatory diagnosis can be made by biopsy, direct and indirect immunoflouresence, immune precipitation and immunoblotting. Therapeutic agents should be selected after thorough evaluation of immune status through a variety of tests and after determining any aggravating or provoking factors. Early and appropriate diagnosis is important for proper treatment planning contributing to better prognosis and better quality of life of patient.

  8. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  9. Nitrocyclopropanes: synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Averina, Elena B; Yashin, N V; Kuznetsova, Tamara S; Zefirov, Nikolai S [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-10-31

    State-of-the-art data on the methods of synthesis, properties and transformations of nitro- and- dinitrocyclopropanes of different structure is generalized and described systematically. The attention is focused on stereoselective cyclopropanation methods, new approaches to the synthesis of natural products and their synthetic analogues with diversified biological activities, in particular, of aminocyclopropane acids based on nitrocyclopropanes, and the formation of structures of energetic compounds.

  10. Causal mediation analysis with multiple causally non-ordered mediators.

    Science.gov (United States)

    Taguri, Masataka; Featherstone, John; Cheng, Jing

    2018-01-01

    In many health studies, researchers are interested in estimating the treatment effects on the outcome around and through an intermediate variable. Such causal mediation analyses aim to understand the mechanisms that explain the treatment effect. Although multiple mediators are often involved in real studies, most of the literature considered mediation analyses with one mediator at a time. In this article, we consider mediation analyses when there are causally non-ordered multiple mediators. Even if the mediators do not affect each other, the sum of two indirect effects through the two mediators considered separately may diverge from the joint natural indirect effect when there are additive interactions between the effects of the two mediators on the outcome. Therefore, we derive an equation for the joint natural indirect effect based on the individual mediation effects and their interactive effect, which helps us understand how the mediation effect works through the two mediators and relative contributions of the mediators and their interaction. We also discuss an extension for three mediators. The proposed method is illustrated using data from a randomized trial on the prevention of dental caries.

  11. A Concise Synthesis of Castanospermine by the Use of a Transannular Cyclization

    DEFF Research Database (Denmark)

    Jensen, Thomas; Mikkelsen, Mette; Lauritsen, Anne

    2009-01-01

    A nine-step synthesis of (+)-castanospermine has been accomplished in 22% overall yield from methyl alpha-D-glucopyranoside. The key transformations involve a zinc-mediated fragmentation of benzyl-protected methyl 6-iodoglucopyranoside, ring-closing olefin metathesis, and strain-release transannu......A nine-step synthesis of (+)-castanospermine has been accomplished in 22% overall yield from methyl alpha-D-glucopyranoside. The key transformations involve a zinc-mediated fragmentation of benzyl-protected methyl 6-iodoglucopyranoside, ring-closing olefin metathesis, and strain...

  12. Inhibition of ATP synthesis by fenbufen and its conjugated metabolites in rat liver mitochondria

    DEFF Research Database (Denmark)

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-01-01

    in the drug induced liver injury (DILI) by fenbufen, the inhibitory effect of fenbufen and its conjugated metabolites on oxidative phosphorylation (ATP synthesis) in rat liver mitochondria was investigated. Fenbufen glucuronide (F-GlcA), fenbufen-N-acetyl cysteine-thioester (F-NAC) and fenbufen...... and fenbufen show any protective effect on fenbufen mediated inhibition of oxidative phosphorylation. Inclusion of NADPH in mitochondrial preparations with fenbufen did not modulate the inhibitory effects, suggesting no role of CYP mediated oxidative metabolites on the ATP synthesis in isolated mitochondria...

  13. Acridone derivative 8a induces oxidative stress-mediated apoptosis in CCRF-CEM leukemia cells: application of metabolomics in mechanistic studies of antitumor agents.

    Directory of Open Access Journals (Sweden)

    Yini Wang

    Full Text Available A new acridone derivative, 2-aminoacetamido-10-(3, 5-dimethoxy-benzyl-9(10H-acridone hydrochloride (named 8a synthesized in our lab shows potent antitumor activity, but the mechanism of action remains unclear. Herein, we report the use of an UPLC/Q-TOF MS metabolomic approach to study the effects of three compounds with structures optimized step-by-step, 9(10H-acridone (A, 10-(3,5-dimethoxybenzyl-9(10H-acridone (I, and 8a, on CCRF-CEM leukemia cells and to shed new light on the probable antitumor mechanism of 8a. Acquired data were processed by principal component analysis (PCA and orthogonal partial least squares discriminant analysis (OPLS-DA to identify potential biomarkers. Comparing 8a-treated CCRF-CEM leukemia cells with vehicle control (DMSO, 23 distinct metabolites involved in five metabolic pathways were identified. Metabolites from glutathione (GSH and glycerophospholipid metabolism were investigated in detail, and results showed that GSH level and the reduced/oxidized glutathione (GSH/GSSG ratio were significantly decreased in 8a-treated cells, while L-cysteinyl-glycine (L-Cys-Gly and glutamate were greatly increased. In glycerophospholipid metabolism, cell membrane components phosphatidylcholines (PCs were decreased in 8a-treated cells, while the oxidative products lysophosphatidylcholines (LPCs were significantly increased. We further found that in 8a-treated cells, the reactive oxygen species (ROS and lipid peroxidation product malondialdehyde (MDA were notably increased, accompanied with decrease of mitochondrial transmembrane potential, release of cytochrome C and activation of caspase-3. Taken together our results suggest that the acridone derivative 8a induces oxidative stress-mediated apoptosis in CCRF-CEM leukemia cells. The UPLC/Q-TOF MS based metabolomic approach provides novel insights into the mechanistic studies of antitumor drugs from a point distinct from traditional biological investigations.

  14. Dendritic protein synthesis in the normal and diseased brain

    Science.gov (United States)

    Swanger, Sharon A.; Bassell, Gary J.

    2015-01-01

    Synaptic activity is a spatially-limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases. PMID:23262237

  15. The psychology of divorce: A synthesis of the literature

    OpenAIRE

    Carr, Alan

    1995-01-01

    In this synthesis of the international literature on psychological aspects of divorce, the causes and consequences of divorce for parents and children are summarized. The majority of parents and children show no major long-term adverse psychological consequences to divorce. Personal and contextual factors that mediate the impact of divorce on parents and children and that may account of the negative impact of divorce on a minority of parents and children are also examined. The impact of media...

  16. Liver protein synthesis stays elevated after chemotherapy in tumour-bearing mice.

    Science.gov (United States)

    Samuels, Sue E; McLaren, Teresa A; Knowles, Andrew L; Stewart, Sarah A; Madelmont, Jean-Claude; Attaix, Didier

    2006-07-28

    We studied the effect of chemotherapy on liver protein synthesis in mice bearing colon 26 adenocarcinoma (C26). Liver protein mass decreased (-32%; Psynthesis increased (20-35%; Psynthesis. Increased protein synthesis in tumour-bearing mice was primarily mediated by increasing ( approximately 15%; Psynthesis (Cs; mg RNA/g protein). Cystemustine, a nitrosourea chemotherapy that cures C26 with 100% efficacy, rapidly restored liver protein mass; protein synthesis however stayed higher than in healthy mice ( approximately 15%) throughout the initial and later stages of recovery. Chemotherapy had no significant effect on liver protein mass and synthesis in healthy mice. Reduced food intake was not a factor in this model. These data suggest a high priority for liver protein synthesis during cancer cachexia and recovery.

  17. Silver-mediated oxidative C-H difluoromethylation of phenanthridines and 1,10-phenanthrolines.

    Science.gov (United States)

    Zhu, Sheng-Qing; Xu, Xiu-Hua; Qing, Feng-Ling

    2017-10-17

    A silver-mediated oxidative difluoromethylation of phenanthridines and 1,10-phenanthrolines with TMSCF 2 H is disclosed. This C-H difluoromethylation of N-containing polycyclic aromatics constitutes an efficient method for the regioselective synthesis of difluoromethylated N-heterocycles.

  18. Mesenchymal stem cells maintain TGF-beta-mediated chondrogenic phenotype in alginate bead culture

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Schmal, H; Kaiser, S

    2006-01-01

    cultured in osteogenic medium after TGF-beta-mediated chondroinduction. Gene expression of col2a1, aggrecan, COMP, alkaline phosphatase (AP), and correlating protein synthesis was analyzed. After short-term stimulation with TGF-beta, MSCs maintained a chondrogenic phenotype. Chondrogenic gene expression...

  19. A modified approach to 2-(N-aryl)-1,3-oxazoles: application to the synthesis of the IMPDH inhibitor BMS-337197 and analogues.

    Science.gov (United States)

    Dhar, T G Murali; Guo, Junqing; Shen, Zhongqi; Pitts, William J; Gu, Henry H; Chen, Bang-Chi; Zhao, Rulin; Bednarz, Mark S; Iwanowicz, Edwin J

    2002-06-13

    [structure: see text] A modified approach to the synthesis of 2-(N-aryl)-1,3-oxazoles, employing an optimized iminophosphorane/heterocumulene-mediated methodology, and its application to the synthesis of BMS-337197, a potent inhibitor of IMPDH, are described.

  20. Mediation analysis with time varying exposures and mediators.

    Science.gov (United States)

    VanderWeele, Tyler J; Tchetgen Tchetgen, Eric J

    2017-06-01

    In this paper we consider causal mediation analysis when exposures and mediators vary over time. We give non-parametric identification results, discuss parametric implementation, and also provide a weighting approach to direct and indirect effects based on combining the results of two marginal structural models. We also discuss how our results give rise to a causal interpretation of the effect estimates produced from longitudinal structural equation models. When there are time-varying confounders affected by prior exposure and mediator, natural direct and indirect effects are not identified. However, we define a randomized interventional analogue of natural direct and indirect effects that are identified in this setting. The formula that identifies these effects we refer to as the "mediational g-formula." When there is no mediation, the mediational g-formula reduces to Robins' regular g-formula for longitudinal data. When there are no time-varying confounders affected by prior exposure and mediator values, then the mediational g-formula reduces to a longitudinal version of Pearl's mediation formula. However, the mediational g-formula itself can accommodate both mediation and time-varying confounders and constitutes a general approach to mediation analysis with time-varying exposures and mediators.